WO2007026817A1 - バイオマスを原料とする糖組成物の製造方法 - Google Patents

バイオマスを原料とする糖組成物の製造方法 Download PDF

Info

Publication number
WO2007026817A1
WO2007026817A1 PCT/JP2006/317212 JP2006317212W WO2007026817A1 WO 2007026817 A1 WO2007026817 A1 WO 2007026817A1 JP 2006317212 W JP2006317212 W JP 2006317212W WO 2007026817 A1 WO2007026817 A1 WO 2007026817A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
acid treatment
cellulose
treatment step
supernatant
Prior art date
Application number
PCT/JP2006/317212
Other languages
English (en)
French (fr)
Inventor
Makoto Hisamatsu
Atsushi Furujyo
Original Assignee
Mie University
Oji Paper Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie University, Oji Paper Co., Ltd. filed Critical Mie University
Priority to AU2006285712A priority Critical patent/AU2006285712B2/en
Priority to CN200680031375.8A priority patent/CN101253276B/zh
Publication of WO2007026817A1 publication Critical patent/WO2007026817A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials

Definitions

  • the present invention relates to a method for producing a sugar composition such as oligosaccharide or glucose by performing an acid treatment using biomass as a raw material.
  • the woody biomass that can be expected to be supplied most in the biomass has a physically and chemically strong structure in which the crystal structure of cellulose fibers forms a complex with lignin.
  • the cell mouth is a polymer of D-glucose with j81-4 bonds and is composed of a crystalline region and an amorphous region.
  • the other polysaccharide is hemicellulose and is composed of various monosaccharides such as xylose, arabinose and mannose.
  • Lignin is an aromatic polymer based on phenolpropane and has a different structure from sugar compositions such as cellulose and hemicellulose. From a chemical standpoint, wood is composed of a major component of about 50% cellulose, about 20% to 30% hemicellulose, and about 20 to 30% lignin, and several percent of minor components (non-patent literature). 1).
  • woody biomass or woody biomass content such as thinned wood, building waste, industrial waste, domestic waste, agricultural waste, etc. are either landfilled or incinerated
  • dioxin problems caused by the incineration disposal of the disposal site, etc.
  • the current processing method is approaching its limit. Since woody biomass can be a useful biochemical raw material and energy resource, the development of technologies that extract useful components while reducing waste reduction is desired as a countermeasure against environmental and energy problems. Yes.
  • Non-Patent Documents 2 to 5 methods for biomass conversion have been widely performed, such as pyrolysis, gasification, and anaerobic fermentation.
  • methods for obtaining ethanol by fermentation after acid or enzymatic hydrolysis are widely studied.
  • the enzyme hydrolysis reaction requires the enzyme molecules to enter the target biomass voids, so that chemical, physical and microbial methods need to be pretreated to bring the enzyme into contact with the substrate. This is a barrier to practical use due to cost reasons.
  • the acid saccharification method by acid hydrolysis a method of hydrolyzing polysaccharides such as cellulose and micelle mouth, which are main components, into monosaccharides and separating them from lignin of an aromatic polymer, As shown in the above-mentioned book, it has been tackled for a long time.
  • the saccharification methods that have been proposed so far are roughly classified into the dilute acid method and the concentrated acid method, depending on the concentration of the acid used as the catalyst.
  • the dilute acid method is a method that aims at sugarcane by using several percent sulfuric acid at a reaction temperature of 120 ° C, sometimes 240 ° C.
  • the concentrated acid method uses about 70% sulfuric acid or about 40% hydrochloric acid, which is lower than the dilute acid method! It is difficult to recover the corrosion and acid.
  • Amorphous cellulose obtained by vigorous stirring at a temperature of 30 to 60 ° C in a state in which a cellulosic substance is dissolved and Z or swollen in phosphoric acid having a concentration of 70% by mass or more.
  • cellooligosaccharide is degraded with cellulase (Patent Document 1).
  • a cellulose material is dissolved in a metal chelate caustic swelling solvent such as cadoxene and hydrolyzed with dilute sulfuric acid (Patent Document 3).
  • Patent Document 5 In order to destroy the microstructure, it is treated with mineral acid and acetic acid for the purpose of acetylation (Patent Document 5).
  • the sugar sugar method using acid has a problem in production cost, such as high temperature / high pressure conditions or strong stirring conditions are required for any reaction.
  • the oligosaccharide is a combination of several monosaccharides such as glucose and fructose, and includes a furato-oligosaccharide, a soybean oligosaccharide, a galata-oligosaccharide, a xylo-oligosaccharide, and a guaro-oligosaccharide.
  • These oligosaccharides are said to have an action to prevent the decay of the intestinal cholesterol and bile acids as well as the dietary fiber, as well as the anti-caries sweetener, the intestinal regulating action by the selective growth promoting effect of intestinal bacteria.
  • Pulp obtained by digesting natural lignocellulosic material is partially hydrolyzed with cellulase to obtain cellooligosaccharides.
  • the reaction solution is continuously processed through an ultrafiltration membrane to adjust the degree of polymerization of the oligosaccharide (Patent Document 6).
  • Patent Document 9 (4) Fragmentation, steaming, water washing, water extraction, ozone treatment, ion exchange resin treatment, concentration and drying to obtain an oligosaccharide from a xylan-containing natural product.
  • Patent Document 1 Japanese Patent No. 3016419
  • Patent Document 2 Japanese Patent Publication No. 11-506934
  • Patent Document 3 JP-A-54-160755
  • Patent Document 4 Japanese Patent Publication No.57-53801
  • Patent Document 5 Japanese Patent Publication No.59-53040
  • Patent Document 6 Japanese Patent Publication No. 8-2312
  • Patent Document 7 Japanese Patent Laid-Open No. 62-155095
  • Patent Document 8 JP-A-8-283284
  • Patent Document 9 Japanese Patent Publication No. 7-055957
  • Patent Document 10 JP-A-12-333692
  • Non-patent document 1 Takahide Haraguchi et al. “Wood chemistry” p4-5, published by Buneidou, 1985
  • Non-patent document 2 “Use technology of woody biomass” edited by the Japan Wood Society, pi 9-61, Bunagaido Edition, issued July 1991
  • Non-Patent Document 3 Hideaki Yukawa et al., “Latest Technology of Biomass Energy Utilization”, Chapter ⁇ -1 published by CMC, August 2001
  • Non-Patent Document 4 Keisuke Iizuka et al. “Latest Technology of Wood Chemicals” p6-34, published by CMC, October 2001
  • Non-Patent Document 5 Funaoka et al. “New Development of Woody Organic Resources” Chapter 5-2, CMC Publishing, published in January 2005
  • an object of the present invention is to easily separate and obtain a sugar composition contained in woody biomass or the like at low cost.
  • Another object of the present invention is to improve the ethanol fermentation efficiency in the subsequent stage by separating the hemicellulose-based sugar composition from the cellulose-based sugar composition.
  • the present invention for achieving the above object includes the following embodiments.
  • a method for producing a plurality of types of sugar compositions comprising a step of separating and recovering different types of sugar compositions in each treatment step by repeating the treatment in the acid treatment step.
  • the acid treatment solution used in each of the acid treatment steps includes one acid selected from sulfuric acid, nitric acid, hydrochloric acid, and phosphoric acid or a mixed acid of a plurality of acids ( A method for producing a plurality of types of sugar compositions according to any one of items 1) to (4).
  • One acid treatment process power in each of the acid treatment steps is a step of separating and obtaining a cellulose-based oligosaccharide as a supernatant, and the acid concentration of the acid treatment liquid in the acid treatment step is 64 to The method for producing a plurality of types of sugar compositions according to any one of items (1) to (6), wherein the content is 70% by mass.
  • the one acid treatment step is a step of separating and obtaining a cellulose-based oligosaccharide as a supernatant, and the acid concentration of the separated supernatant in the acid treatment step is 64 to 70 masses.
  • the sugar composition is separated from the supernatant separated in each acid treatment step using a cellulose base material as a filter, (1) to (1) 8.
  • the method comprises the steps of converting the cellulosic oligosaccharide obtained in the acid treatment step with an acid or an enzyme into a monosaccharide mainly composed of glucose (7) to
  • the cell-containing oligosaccharide having a low polymerization degree is obtained by treating the supernatant containing the cellulose-based oligosaccharide with a filter comprising a cellulose substrate.
  • woody biomass or woody biomass such as building waste, industrial waste, domestic waste, agricultural waste, thinned wood, etc., which has conventionally been mostly landfilled or incinerated. Since the content is high, it is possible to obtain a sugar composition that can be a useful biochemical raw material energy source from these wastes, and a promising technology is provided as a countermeasure against environmental and energy problems.
  • FIG. 1 shows an ion chromatograph of the hydrolysis product of Reference Example 2.
  • FIG. 2 shows an ion chromatograph of the sugar composition solution of Example 12.
  • FIG. 3 shows an ion chromatograph of the hydrolysis product of the sugar composition solution of Example 12.
  • FIG. 5 shows an ion chromatograph of the hydrolysis product of the second-stage reactive sugar composition solution of cedar.
  • FIG. 6 shows an ion chromatograph of the hydrolysis product of the first-stage reactive sugar composition solution of cypress.
  • FIG. 7 shows an ion chromatograph of the hydrolysis product of the second-stage reactive sugar composition solution of cypress.
  • FIG. 8 shows an ion chromatograph of the hydrolysis product of the first-stage reactive sugar composition solution of Quercus.
  • FIG. 9 shows an ion chromatograph of the hydrolysis product of the second-stage reactive sugar composition solution of Quercus.
  • FIG. 10 shows an ion chromatograph of the hydrolysis product of the first-stage reaction sugar composition solution of Eucalyptus.
  • FIG. 11 shows an ion chromatograph of the hydrolysis product of the second-stage reactive sugar composition solution of Eucalyptus.
  • biomass to be treated by the present invention includes rice husk, bamboo, bagasse, Agricultural waste such as straw and corn cobs are included.
  • Agricultural waste such as straw and corn cobs
  • Cellulosic materials such as old newspapers, magazines, cardboard, waste paper, pulp, pulp sludge, linter, cotton and cotton can also be processed.
  • the biomass raw material can be reduced in reaction time by being refined before being processed.
  • passing through a 10 mm aperture sieve is effective in reducing the reaction time, and it is more desirable to make the particle size 5 mm or less.
  • the particles are preferably 10 m or more.
  • the biomass raw material is treated with an acid treatment solution containing 55 to 63% by mass of acid to elute hemicellulose-based oligosaccharides.
  • acids include mineral acids such as sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boiling acid, and organic acids such as trifluoroacetic acid.
  • sulfuric acid, nitric acid, hydrochloric acid, and phosphoric acid power among the powers in which these acid mixtures can be used are preferred.
  • At least one type of sulfuric acid that is preferred is more desirable, especially 60 to 62% by mass of sulfuric acid. Suitable for the method of the present invention.
  • the reaction for eluting the hemicellulose-based oligosaccharide is preferably 25 ° C. or lower, more preferably 20 ° C. or lower, in order to prevent a decrease in the degree of polymerization of 1S oligosaccharide that occurs rapidly at normal pressure and 35 ° C. or lower.
  • the reaction temperature for eluting the hemicellulose oligosaccharide is preferably 0 ° C. or higher.
  • the reaction time is preferably about 2 to 48 hours, more preferably about 4 to 24 hours. This reaction is different from the conventional technology that does not require heating and pressurizing, and the product is mainly oligosaccharide and a small amount even if monosaccharide is present. For this reason, the coloration derived from the furfural compound produced by the excessive decomposition of monosaccharides and the Maillard reaction involving monosaccharides and amino acids is suppressed.
  • the supernatant obtained by removing the insoluble fraction from the reaction solution by centrifugation or the like is subjected to an ion exchange resin method, a membrane concentration method, or the like. It can be easily separated and collected even by adsorption with a force group, cellulose powder, or cellulose filter. Also effective is a method of aggregating oligosaccharides by removing the reaction fluid insoluble fraction and then diluting the acid concentration rapidly.
  • the hemicellulose-based oligosaccharide composition obtained by the above method varies in yield, structure ratio, and the like depending on the treated biomass material.
  • oligosaccharides include xylo-oligosaccharides derived from dalcronoxylan, galactan-derived galata-oligosaccharides, dalcomannan-derived mannolo-oligosaccharides, and the like. Obtained as an oligosaccharide composition.
  • the cellulose-based oligosaccharide can be dissolved by treating the insoluble fraction with an acid treatment solution containing 64-70% by mass of acid.
  • an acid treatment solution containing 64-70% by mass of acid.
  • sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boiling acid, trichroic acetic acid, or a mixed solution containing these acids as main components can be used.
  • sulfuric acid, nitric acid, hydrochloric acid, and phosphoric acid At least one selected is preferred, and sulfuric acid is more desirable, especially 64 to 66% by mass of sulfuric acid in the method of the present invention. Suitable for elution!
  • the reaction for dissolving the cellulose-based oligosaccharide occurs rapidly at normal pressure and 35 ° C or lower, but it is often desirable that the temperature be 25 ° C or lower in order to prevent a decrease in the degree of polymerization of the oligosaccharide.
  • the reaction temperature for eluting the cell mouth oligosaccharide is preferably 0 ° C. or higher.
  • the reaction time is preferably about 1 to 48 hours, more preferably about 2 to 24 hours.
  • the method for recovering the cellulose-based oligosaccharide can be the same as the method for recovering the hemicellulose-based oligosaccharide.
  • the reaction liquid force can recover cellulosic oligosaccharides by subjecting the supernatant obtained by removing the insoluble fraction by centrifugation or the like to the ion exchange resin method, membrane concentration method, etc. Pulp It can be easily separated and recovered by adsorption with cellulose powder and cellulose filter. It is also effective to agglomerate the cellulose oligosaccharide by removing the insoluble fraction from the reaction solution containing the cellulose oligosaccharide and then diluting the acid concentration rapidly.
  • the acid solution after the treatment is obtained by setting the solution in which the cellulose-based oligosaccharide is dissolved to the same concentration as that used for elution of the hemicellulose-based oligosaccharide (55 to 63 mass%). It can be reused in the previous step without adjusting the concentration.
  • the supernatant obtained by removing the reaction solution insoluble fraction containing the cellulose-based oligosaccharide is treated with a filter that also serves as a cellulose substrate and contains a cellulose-based oligosaccharide component having a low polymerization degree.
  • a filter that also serves as a cellulose substrate and contains a cellulose-based oligosaccharide component having a low polymerization degree.
  • Cellulose oligosaccharide components with a relatively high degree of polymerization and the filtrate are divided, and the acid concentration of the filtrate containing a cellulose oligosaccharide component with a low degree of polymerization is reduced to 30-63% by mass, so that the cellulose type has a low degree of polymerization.
  • the “low polymerization degree” means an average polymerization degree of 2 to 4, and “comparatively a high polymerization degree” means an average polymerization degree of 5 to 15.
  • the “average degree of polymerization” is calculated by calculating the total sugar amount by the phenol sulfuric acid method and then quantifying the reducing sugar by the Somogy Nelson method.
  • the solid biomass is separated in at least one of the series of treatment steps in which the solid biomass is sequentially treated using at least two acid treatment solutions having different acid concentrations.
  • concentration of the sugar composition contained in the supernatant can be increased by adding a solid substance containing the sugar composition to be separated in the treatment step to the reaction.
  • the first acid treatment step is a step in which the woody biomass raw material is treated with 55 to 63% by mass of acid to separate the hemicellulose oligosaccharide composition into a supernatant and an insoluble fraction.
  • the second acid treatment step is a step of obtaining a cellulosic oligosaccharide by treating the insoluble fraction of the first step with 64-70% by mass of acid, wherein the first and second An embodiment in which the treatment for increasing the concentration of the sugar component is performed for each acid treatment step will be described.
  • the first acid treatment step it is possible to increase the concentration of hemicellulose-based oligosaccharides in the supernatant by reacting the separated supernatant with a new woody biomass raw material. It is.
  • the insoluble fraction separated in the separate first acid treatment step is added to the supernatant separated in the second acid treatment step and reacted to cause the cellulose oligosaccharide in the supernatant to react. It is possible to increase the concentration.
  • the sugar liquid obtained by the acid sugar method is a mixture of oligosaccharides or monosaccharides derived from hemicellulose or cell mouth. It was necessary to perform membrane treatment or chromatography such as ion exchange 'reverse phase'.
  • the method of the present invention makes it possible to separate hemicellulose oligosaccharides, cellulose oligosaccharides, and glucose without using an enzyme that is said to have high substrate specificity.
  • Cellulose oligosaccharides obtained after removal of hemicellose-based oligosaccharides can also be converted to glucose by hydrolysis with acids or enzymes. Can also be provided.
  • % is based on the total mass unless otherwise specified, and the addition rate of the woody biomass substance is a ratio to the absolute dry mass.
  • the average degree of polymerization is calculated by calculating the total sugar amount by the phenol sulfuric acid method and then quantifying the reducing sugar by the Somogie Nelson method. For each quantification method, “Quantitative method for reducing sugar” (Sakuzo Fukui Publishing Center) was considered.
  • the reaction mixture was centrifuged to separate the supernatant and the precipitate. From the obtained supernatant, a sugar composition of 1.4 mg to 53. lmg of total sugar was obtained.
  • Table 1 shows the total degree of polymerization of these sugar composition solutions and the average degree of polymerization obtained from the quantitative determination of the reducing terminal. The numerical values in the table are calculated using the arithmetic average value of three test tubes.
  • Japanese cedar wood powder prepared to an average particle size of 0.5 mm A large number of tubes were added, 10 ml of 61% sulfuric acid was added to each tube, and the mixture was stirred with a stirrer for 8 hours while maintaining the temperature at 25 ° C. to obtain the first reaction solution. The reaction solution was centrifuged to separate the supernatant and the precipitate.
  • the above are the same conditions as in Reference Example 14. A number of these samples were prepared and used for the following examples.
  • Example 1-1 For the first-stage precipitate, instead of 63% sulfuric acid, the same operation was carried out with 65%, 67%, and 69% sulfuric acid, and the second-stage reaction solution. Got. These were designated as Examples 1-2, 1-3, and 14. For reference, the same operation was performed with 61% sulfuric acid to obtain a second-stage reaction solution, which was referred to as Reference Example 4.
  • the sugar composition obtained as each of the second-stage reaction solutions was measured for the total sugar recovery rate and the average degree of polymerization obtained from the reducing end quantification in the same manner as in Reference Example 1, and are shown in Table 2.
  • the reaction solution treated with 61% sulfuric acid was compared with the sugar recovery rate value of the reaction solution treated with one stage of 65% sulfuric acid (Reference Example 15: recovery rate 53.1%). (Reference Example 1-4: 20.8%) and the reaction rate obtained by treating the residue with 65% sulfuric acid (Example 12: 29.8%), the sum of the recovery rates should be comparable. There was found. It was also found that there was no change in the total recovery even if the sulfuric acid concentration in the second stage was increased.
  • Example 1 The sugar composition solution of the second-stage reaction solution obtained in 2 was analyzed by ion chromatography manufactured by Dionetas in the same manner as in Reference Example 3. As a result, cellooligosaccharides having a degree of polymerization of 10 were present. (See Figure 2). When this sugar composition solution was hydrolyzed to monosaccharide and analyzed by ion chromatography manufactured by Dionetas, 95% or more was glucose (see FIG. 3). According to this example, it is possible to mainly extract only hemicellulose-derived sugars in the first stage, and it is also possible to extract only sugar-derived sugars in the second stage reaction liquid. I am clear.
  • Example 12 the reaction temperature for obtaining the second reaction solution with 65% sulfuric acid was 25. Change to C, 0. C, 20. C, 30. C, 35. C, 40. C, 50. C, 60.
  • the test was performed at each temperature of C.
  • Table 3 shows the reaction temperature, sugar composition amount (recovery rate), and average degree of polymerization.
  • Example 1-2 in Table 3 is a copy of the data of Example 1-2 in Table 2. According to this example, it was found that the temperature does not significantly affect the sugar recovery, but the degree of sugar polymerization changes greatly.
  • Microcrystalline cellulose powder (trade name: Funacel) manufactured by Funakoshi Co., Ltd., magazine paper, corrugated paper, toilet paper (trade name Napier manufactured by Oji Paper Co., Ltd.) and soy sauce squeezed residue were pulverized with a planetary ball mill manufactured by FRITCH. These lOOmg samples were each taken in a plastic test tube, and a second-stage reaction solution was obtained under the same conditions as in Example 12 below. Table 4 shows the amount of sugar composition (recovery rate) and the average degree of polymerization. For comparison, the data of Example 12 was also transferred.
  • Example 1-2 A force similar to that of Example 1-2 for lOOmg of cedar, cypress, Japanese oak, and eucalyptus wood powder prepared to an average particle size of 0.5 mm.
  • the second-stage reaction was carried out at 27 ° C for 2 hours.
  • a second-stage reaction solution was obtained.
  • the sugar composition of each of the first-stage reaction solution and the second-stage reaction solution was hydrolyzed to monosaccharides and analyzed by ion chromatography manufactured by Dionetas. Ion chromatographs are shown in Figs. The correspondence between the figure and the sample is described in the “Brief description of drawing” column. According to this example, it was found that various kinds of woody biomass can be used.
  • a second-stage reaction solution was obtained in the same manner as in Example 12 except that cedar wood flour prepared in an average particle size of 0.25 mm, 0.1 mm, and 0.05 mm was used. This is designated as Examples 6-1 to 63.
  • the amount of sugar composition (recovery rate), the average degree of polymerization, and the raw material size of each reaction solution in the second stage are shown in Table 5, and the data of Example 1-2 were also copied for comparison.
  • Example 6-2 a second-stage reaction solution was obtained in the same manner as in Example 1-2, except that cedar canna waste that passed through a 1, 5, 10, 20 mm sieve was used. This is referred to as Examples 6-4 to 6-7.
  • Table 5 shows the sugar composition amount (recovery rate), the average degree of polymerization, and the raw material size of each second-stage reaction solution. According to this example, it was found that the woody biomass material used had no effect on the recovery until the particle size was 10 mm.
  • a second-stage reaction solution was obtained with a number of test tubes and used in Examples 7 and 8 below.
  • the first reaction solution with 61% sulfuric acid in another test tube is taken as fraction 1 and labeled as Fr.
  • Fr. 2 is labeled as fraction 2 when the supernatant of the second reaction solution in 65% sulfuric acid is taken in a separate test tube.
  • Fr. 2 was neutralized with 3N NaOH, the neutralized solution and microcrystalline cellulose powder (trade name: Funacel) lg manufactured by Funakoshi Co., Ltd. were mixed, and stirred at 25 ° C for 1 hour at 50 rpm. After the treatment, remove the supernatant (Fr. 5), wash the precipitate several times with pure water, add 2 ml of 70% ethanol, stir at 25 ° C for 1 hour at 50 rpm and remove the supernatant (Fr. 6) was recovered.
  • microcrystalline cellulose powder trade name: Funacel lg manufactured by Funakoshi Co., Ltd.
  • Example 1-1 A freshly prepared first-stage precipitate of Example 1-1 was added to Fr. 2 and stirred for 8 hours while maintaining the temperature at 25 ° C. to obtain a second reaction liquid.
  • the reaction solution was separated into a supernatant (Fr. 8) and a precipitate by centrifugation.
  • the first stage of Example 1-1 newly prepared again A precipitate was added, and a third reaction supernatant (Fr. 9) was obtained through the same treatment.
  • the same procedure is repeated, and the total sugar recovery and the average degree of polymerization are shown in Table 9 for the supernatant of the fourth (Fr. 10), fifth (Fr. 11), and sixth (Fr. 12) reaction liquids. Show. According to this example, it was found that the sugar concentration in the reaction solution can be increased.
  • wood systems such as building waste, industrial waste, domestic waste, agricultural waste, thinned wood, etc., which have been mostly landfilled and incinerated in the past. It is possible to obtain sugar compositions that can be useful biochemical raw materials and energy resources from wastes with high biomass or woody biomass content, which is expected to contribute to solving environmental problems.
  • various oligosaccharides provided at low cost by the method of the present invention can be expected to have an intestinal regulating action due to the selective growth promoting effect of caries-preventing sweeteners and enteric bacteria.
  • the use as lactic acid drinks certified as foods for use, and useful sugars added to foods, etc. is expected to expand to use as emulsifiers and moisturizers in the pharmaceutical and sanitary fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 本発明は、固形バイオマス、特に木質系バイオマスを酸濃度の異なる2種以上の酸処理液による処理工程で順次処理し、各処理工程で得られる反応液から上清と固形物を分離し、分離した固形物を引き続く酸処理工程で処理する操作を繰り返すことによって各処理工程で種類の異なる糖組成物を分離、回収する工程を含むことを特徴とするヘミセルロース系オリゴ糖、セルロース系オリゴ糖、グルコース類の3種の糖組成物を製造する方法に関する。

Description

明 細 書
ノィォマスを原料とする糖組成物の製造方法
技術分野
[0001] 本発明は、バイオマスを原料として、酸処理を行うことによりオリゴ糖ゃグルコースな どの糖組成物を製造する方法に関する。
本願は、 2005年 8月 31曰に出願された特願 2005— 250860号に基づいて優先 権を主張し、その内容をここに援用する。
背景技術
[0002] 地球温暖化対策で、二酸化炭素排出量の削減目標を定めた京都議定書が批准さ れ、日本は二酸ィ匕炭素排出量を 1990年比で 6%削減しなければならない。二酸ィ匕 炭素排出削減には、化石燃料エネルギーを使用するのではなぐバイオマスェネル ギ一に転換することが有効である。このような背景下に、日本でもアルコールビジネス は動き出しており、 2006年から 3%アルコールを添加したガソリンの販売が開始され る力 2000年実績のガソリン使用量で換算した場合、全てのガソリンに添加すれば 約 180万キロリットルのアルコール需要が見込まれる。
[0003] ノィォマスで最も供給量が期待できる木質系バイオマスは、セルロース繊維の結晶 構造がリグニンと複合体を形成して物理的及び化学的に強い構造を有する。セル口 ースは j8 1— 4結合をした D-グルコースの重合体であり、結晶領域と非結晶領域で 構成されている。その他の構成多糖がへミセルロースで、キシロース、ァラビノース、 マンノース等の種々の単糖で構成されている。リグニンはフエ-ルプロパンを基本単 位とする芳香族性高分子で、セルロースやへミセルロースなどの糖組成物とは構造 が異なる。化学的に見ると木材はセルロースが約 50%、へミセルロースが約 20%〜 30%、リグニンが約 20〜30%の主要成分と、数%の副成分で構成されている(非特 許文献 1)。
[0004] 間伐材、建築廃材、産業廃棄物、生活廃棄物、農産廃棄物などの木質系バイオマ スもしくは木質系バイオマス含有率が多いこれらの廃棄物は、そのほとんどが埋め立 て ·焼却処分されて 、るが、処分場の枯渴ゃ焼却処分で生じるダイォキシン問題など で、現在の処理方法は限界に近づいている。木質系バイオマスは有用な生化学原 料やエネルギー資源となり得る可能性もあるため、廃棄物減量の削減を図りながら有 用な成分を取り出す技術開発は、環境問題とエネルギー問題の対策として望まれて いる。
[0005] 従来より、様々な手法により、木質系バイオマスから高発熱量燃料への転換が図ら れてきており、特にメタン、ブタノール、エタノール、あるいはメタノールなどの液体燃 料に転換することがこれまで数多く試みられてきた。その理由として、力さ高い固体の 状態よりも、輸送'貯蔵面での優位性が挙げられるが、それ以上に、単位質量当たり の発熱量が木材に比べて著しく改善されることも大きな理由である。
[0006] バイオマス転換の方法としては、多数の著書 (非特許文献 2〜5)に示されて 、るよ うに、熱分解、ガス化、嫌気性発酵など、広く行われてきているが、その中でも、酸又 は酵素加水分解により単糖ィ匕した後、発酵によりエタノールを得る方法が広く研究さ れている。このうち、酵素加水分解反応は、酵素分子を対象となるバイオマス空隙に 進入させる必要があることから、酵素を基質に接触させるために、化学的、物理的、 微生物的方法による前処理を行う必要がある点がコスト的な面などから、実用化の障 壁になっている。
[0007] 一方、酸加水分解による酸糖化法としては、主成分であるセルロース、へミセル口 ースなどの多糖を単糖に加水分解し、芳香族性高分子のリグニンと分離する方法が 、前述の著書にも示されているように、古くから取り組まれてきた。これまでに提案さ れてきた糖化法は、触媒として用いる酸の濃度によって希酸法と濃酸法に大別され る。希酸法は数%程度の硫酸を用いて 120°Cから、時には 240°C程度の反応条件 で行うことにより糖ィ匕を目指す方法である。容易な酸の回収と再利用、装置の腐食性 が低 、ことが特徴として挙げられる反面、高温高圧下の反応条件が必要であることと 、グルコース収率が低いという欠点がある。濃酸法は 70%程度の硫酸もしくは 40% 程度の塩酸を用いる方法であり、希酸法に比べて低!、温度で反応が可能で収率が 高 、と 、う利点がある反面、装置の腐食と酸の回収が難 、ことが挙げられる。
[0008] 以上の方法はいずれも、後段のエタノール発酵過程に供する液を効率的に産出す るためのものであり、さらに改良された方法として、以下のような技術も提案されてい る。
[0009] (1)セルロース系物質を 70質量%以上の濃度のリン酸に溶解及び Z又は膨潤させ た状態で、 30〜60°Cの温度で強力な攪拌を行って得られる非結晶セルロースある いはセロオリゴ糖をセルラーゼで分解する(特許文献 1)。
(2)セルロース及びへミセルロース系物質を約 25〜90質量%の酸溶液で 35〜80 °Cの条件で混合することによってゲルイ匕し、その後、酸濃度を 20〜30質量%に稀釈 した後、 80〜100°Cに加熱して加水分解を促進する(特許文献 2)。
[0010] (3)セルロース材料をカドキセンなど金属キレート苛性膨潤溶媒に溶解し、希硫酸を 用いて加水分解する(特許文献 3)。
(4)セルロース系材料を濃塩酸と、濃硫酸との混液中で処理する(特許文献 4)。
(5)微細構造破壊の為に、ァセチル化を目的として鉱酸と酢酸で処理する(特許文 献 5)。
[0011] しかしながら、これらのいずれの方法も、処理後の糖液はへミセルロース、セルロー スの構成糖の混合物となり、後段の発酵過程において、キシロース等の糖は発酵反 応を著しく阻害することがわ力つている。そのため、このような糖ィ匕液力 発酵に必要 な炭素源だけを純ィ匕するためにさまざまな提案がなされてきた。
さらに、酸による糖ィ匕法は、いずれの反応も高温 ·高圧条件もしくは強攪拌条件が 必要であることなど、製造コストが問題となっている。
また、後段の発酵過程での効率化のため、前述の糖化液中でほとんど単糖の状態 にまで分解されており、近年、整腸作用などの生理作用が注目されているオリゴ糖そ のものを取り出すことについて着目されておらず、得られたオリゴ糖を再度、酸又は 酵素加水分解を行うことによりグルコース収率を向上することだけに着目されてきた。
[0012] オリゴ糖は、ブドウ糖や果糖などの単糖が数個結合したもので、フラタトオリゴ糖、大 豆オリゴ糖、ガラタトオリゴ糖、キシロオリゴ糖、ァガロオリゴ糖などがある。これらのオリ ゴ糖は、虫歯予防甘味料、腸内細菌の選択的な増殖促進効果による整腸作用、食 物繊維と同様に、余分な腸内コレステロール、胆汁酸の排出作用があるとされており 、特定保健用食品として認定された乳酸飲料、食品などに添加される有用な糖類で あり、医薬、サニタリーの分野でも乳化剤、保湿剤など幅広い用途がある。 [0013] オリゴ糖の製造方法としては、これまでに以下のような技術が提案されている。
(1)天然リグノセルロース材料を蒸解して得られるパルプを、セルラーゼによって部分 的に加水分解してセロオリゴ糖を得る。この際、反応液を連続的に限外濾過膜で処 理し、オリゴ糖の重合度を調節する (特許文献 6)。
(2)キシラン原料をへミセルラーゼ処理により、特定の反応条件で分解することでキ シロースの生成を抑えながらキシロビオースを高濃度で得る(特許文献 7)。
[0014] (3)レバン及びィヌロビオースを加水分解する活性を有する酵素源の存在下、水性 媒体中でィヌロビオースを反応させ、水性媒体中に生成したオリゴ糖類を採取する( 特許文献 8)。
(4)キシラン含有天然物から細片化、蒸煮、水洗、水抽出、オゾン処理、イオン交換 榭脂処理、濃縮乾固してオリゴ糖を得る (特許文献 9)。
(5)製紙用パルプのへミセルラーゼ処理後の液を膜濾過法によって濃縮し、酸加水 分解してオリゴ糖を得る (特許文献 10)。
[0015] 以上の(1)〜(5)の方法において、(4)以外はいずれもオリゴ糖を得る過程もしくは 、前処理の段階に酵素を用いている。これは、基質特異性の高い酵素を利用し、純 粋なオリゴ糖を得るためであるが、高価な酵素を利用することが実用化を妨げてきた 。 (4)については高温'高圧下条件が必要で、オゾン処理もコスト高の一因となって いる。
特許文献 1:特許第 3016419号公報
特許文献 2:特表平 11― 506934号公報
特許文献 3 :特開昭 54— 160755号公報
特許文献 4:特公昭 57— 53801号公報
特許文献 5:特公昭 59 - 53040号公報
特許文献 6:特公平 8 - 2312号公報
特許文献 7:特開昭 62 - 155095号公報
特許文献 8:特開平 8 - 283284号公報
特許文献 9 :特公平 7— 055957号公報
特許文献 10:特開平 12— 333692号公報 非特許文献 1 :原口隆英ら「木材の化学」 p4〜5、文永堂出版、 1985年発行 非特許文献 2 :日本木材学会編「木質バイオマスの利用技術」 pi 9〜61、文永堂出 版、 1991年 7月発行
非特許文献 3 :湯川秀明ら「バイオマスエネルギー利用の最新技術」各論編 Π-1章、 CMC出版、 2001年 8月発行
非特許文献 4:飯塚尭介ら「ウッドケミカルスの最新技術」 p6〜34、 CMC出版、 2001 年 10月発行
非特許文献 5 :船岡ら「木質系有機資源の新展開」第 5章- 2、 CMC出版、 2005年 1 月発行
発明の開示
発明が解決しょうとする課題
[0016] 本発明者らは、バイオマス、特に木質系バイオマスの酸処理において、へミセル口 ース系オリゴ糖、セルロース系オリゴ糖、グルコースにそれぞれ着目し、鋭意研究を 重ねた結果、これら 3種の糖組成物を、酵素反応などを用いることなぐ簡易に分離 することが可能であることを見出した。従って、本発明は、木質系等のバイオマスに含 まれる糖組成物を安価にかつ簡易に分離、取得することを目的とする。また、へミセ ルロース系糖組成物をセルロース系糖組成物と分離することにより、後段のエタノー ル発酵効率向上も可能とすることを目的としている。
課題を解決するための手段
[0017] 前記の目的を達成するための本発明は、次の各実施態様を包含する。
(1)固形バイオマスを酸濃度の異なる 2種以上の酸処理液による処理工程で順次処 理し、各処理工程で得られる反応液から上清と固形物を分離し、分離した固形物を 引き続く酸処理工程で処理する操作を繰り返すことによって各処理工程で種類の異 なる糖組成物を分離、回収する工程を含むことを特徴とする複数種の糖組成物を製 造する方法。
[0018] (2)前記固形バイオマスが木質系バイオマスを含有することを特徴とする(1)項記載 の複数種の糖組成物を製造する方法。
[0019] (3)前記固形バイオマスが 10mmの目開きのふるいを通過するサイズに微細化され て ヽることを特徴とする(1)項又は(2)項に記載の複数種の糖組成物を製造する方 法。
[0020] (4)前記各酸処理工程における処理温度が 35°C以下であることを特徴とする(1)項 〜(3)項の 、ずれか 1項に記載の複数種の糖組成物を製造する方法。
[0021] (5)前記各酸処理工程で使用する酸処理液が、硫酸、硝酸、塩酸及びリン酸から選 ばれる 1種の酸もしくは複数種の酸の混合酸を含むことを特徴とする(1)項〜 (4)項 のいずれか 1項に記載の複数種の糖組成物を製造する方法。
[0022] (6)前記各酸処理工程における 1つの酸処理工程力 上清としてへミセルロース系ォ リゴ糖を分離、取得する工程でり、かつ、該酸処理工程における酸処理液の酸濃度 が 55〜63質量%であることを特徴とする(1)項〜(5)項の 、ずれか 1項に記載の複 数種の糖組成物を製造する方法。
[0023] (7)前記各酸処理工程における 1つの酸処理工程力 上清としてセルロース系オリゴ 糖を分離、取得する工程であり、かつ、該酸処理工程における酸処理液の酸濃度が 64〜70質量%であることを特徴とする(1)項〜(6)項のいずれか 1項に記載の複数 種の糖組成物を製造する方法。
[0024] (8)前記 1つの酸処理工程が上清としてセルロース系オリゴ糖を分離、取得する工程 であり、かつ、該酸処理工程において、分離される上清の酸濃度を 64〜70質量% 力も 30〜63質量%まで低下させて上清中のセルロース系オリゴ糖を凝集させること を特徴とする(7)項に記載の複数種の糖組成物を製造する方法。
[0025] (9)前記各酸処理工程において分離された上清中から、糖組成物を、フィルタ一とし てセルロース基材を使用して分離することをする特徴とする( 1)項〜(8)項の ヽずれ 力 1項に記載の複数種の糖組成物を製造する方法。
[0026] (10)前記酸処理工程で得られるセルロース系オリゴ糖を酸又は酵素によって処理し てグルコースを主成分とする単糖に転化する工程を有することを特徴とする(7)項〜
(9)項の 、ずれか 1項に記載の複数種の糖組成物を製造する方法。
[0027] (11)前記固形バイオマスを酸濃度の異なる 2種以上の酸処理液による処理工程で 順次処理する一連の処理工程は、最初の酸処理液による処理工程が上清としてへミ セルロース系オリゴ糖を分離、取得する工程であり、次の酸処理液による処理工程が 、前段の酸処理工程で上清力 分離された固形物を酸処理液で処理して上清として セルロース系オリゴ糖を分離取得する工程であることを特徴とする(1)項〜(10)項の いずれか 1項に記載の複数種の糖組成物を製造する方法。
[0028] (12)前記セルロース系オリゴ糖を分離取得する酸処理工程は、セルロース系オリゴ 糖を含有する上清をセルロース基材カ なるフィルターで処理して低重合度のセル口 ース系オリゴ糖成分含有ろ液と比較的に高重合度のセルロース系オリゴ糖成分に分 割する工程を有することを特徴とする(1)項〜(11)項のいずれか 1項に記載の複数 種の糖組成物を製造する方法。
[0029] (13)前記低重合度のセルロース系オリゴ糖成分含有ろ液の酸濃度を 30〜63質量 %に低下させて低重合度のセルロース系オリゴ糖成分を凝集させて高重合度のセル ロース系オリゴ糖に転ィ匕することを特徴とする(12)項記載の複数種の糖組成物を製 造する方法。
[0030] (14)前記固形バイオマスを酸濃度の異なる 2種以上の酸処理液による処理工程で 順次処理する一連の処理工程の少なくとも一つの処理工程において、分離された上 清に対して、当該処理工程で分離されるべき糖組成物を含有する固形物を加え、当 該酸処理工程を再度行うことを特徴とする、(1)項〜(11)項のいずれか 1項に記載 の複数種の糖組成物を製造する方法。
発明の効果
[0031] 本発明によれば、従来、そのほとんどが埋め立て ·焼却処分されている建築廃材、 産業廃棄物、生活廃棄物、農産廃棄物などや間伐材などの木質系バイオマスもしく は木質系バイオマス含有率が多 、これらの廃棄物から、有用な生化学原料ゃェネル ギー資源となり得る糖組成物を得ることが可能性となり、環境問題とエネルギー問題 の対策として有望な技術が提供される。
図面の簡単な説明
[0032] [図 1]参考例 2の加水分解生成物のイオンクロマトグラフを示す。
[図 2]実施例 1 2の糖組成物溶液のイオンクロマトグラフを示す。
[図 3]実施例 1 2の糖組成物溶液の加水分解生成物のイオンクロマトグラフを示す。
[図 4]スギの第一段反応糖組成物溶液の加水分解生成物のイオンクロマトグラフを示 す。
[図 5]スギの第二段反応糖組成物溶液の加水分解生成物のイオンクロマトグラフを示 す。
[図 6]ヒノキの第一段反応糖組成物溶液の加水分解生成物のイオンクロマトグラフを 示す。
[図 7]ヒノキの第二段反応糖組成物溶液の加水分解生成物のイオンクロマトグラフを 示す。
[図 8]コナラの第一段反応糖組成物溶液の加水分解生成物のイオンクロマトグラフを 示す。
[図 9]コナラの第二段反応糖組成物溶液の加水分解生成物のイオンクロマトグラフを 示す。
[図 10]ユーカリの第一段反応糖組成物溶液の加水分解生成物のイオンクロマトダラ フを示す。
[図 11]ユーカリの第二段反応糖組成物溶液の加水分解生成物のイオンクロマトダラ フを示す。
発明を実施するための最良の形態
[0033] 以下、本発明をさらに詳しく説明する。
本発明が処理対象とするバイオマスには、間伐材、建築廃材、木材チップ、おがく ず、剪定材ゃ、木質材含有物を含む産業 ·生活廃棄物等の他に、籾殻、竹、バガス、 ワラ類、トウモロコシ穂軸などの農産廃棄物などが含まれる。また、古新聞、雑誌、段 ボール、古紙、パルプ、パルプスラッジ、リンター、綿、木綿などのセルロース系物質 も処理可能である。前記バイオマス原料は、処理に供する前に微細化を行うことによ つて反応時間を短縮することが可能である。微細化の程度としては、 10mmの目開き ふるいを通過すれば、反応時間短縮に効果があり、 5mm以下の粒子にすることがさ らに望ましい。また、前記粒子は、 10 m以上であることが好ましい。
[0034] 本発明の方法においては、まず、前記バイオマス原料を 55〜63質量%の酸を含 む酸処理液で処理することにより、へミセルロース系オリゴ糖を溶出させる。酸として は、硫酸、硝酸、塩酸、リン酸、沸酸などの鉱酸ゃトリフルォロ酢酸のような有機酸も しくは、これらの酸混合液が使用可能である力 中でも硫酸、硝酸、塩酸、及びリン酸 力も選択される少なくとも 1種が好ましぐ硫酸が更に望ましぐ特に 60〜62質量%の 硫酸が本発明の方法には適している。
へミセルロース系オリゴ糖を溶出させる反応は、常圧、 35°C以下で速やかに起こる 1S オリゴ糖重合度低下を防ぐためには 25°C以下が望ましぐ 20°C以下がより更に 好ましい。また、へミセルロース系オリゴ糖を溶出させるための反応温度は、 0°C以上 であることが好ましい。また、反応時間は、好ましくは 2〜48時間、より好ましくは 4〜2 4時間程度である。この反応は特に加熱'加圧の必要がなぐ従来の技術とは異なり 生成物はオリゴ糖が主体で単糖は存在しても微量である。このため、単糖の過分解 により生ずるフルフラールイ匕合物や、単糖とアミノ酸が関与するメイラード反応由来の 着色は抑制される。
[0035] 溶出したへミセルロース系オリゴ糖の回収方法としては、前記反応液から遠心分離 などにより不溶画分を取り除いて得た上清に、イオン交換榭脂法、膜濃縮法などを施 すことにより回収することが可能である力 ノ ルプ、セルロースパウダー、セルロース フィルターによる吸着でも容易に分離、回収することが可能である。また、前記反応 液力 不溶画分を取り除いた後、酸濃度を急激に稀釈することによってオリゴ糖を凝 集させる方法も有効である。
[0036] 以上の方法によって得られるへミセルロース系オリゴ糖組成物は、処理したノィォ マス原料によって、収率、構造'割合などが異なるものとなる。オリゴ糖の種類としては 、ダルクロノキシラン由来のキシロオリゴ糖や、ガラクタン由来のガラタトオリゴ糖、ダル コマンナン由来のマンノオリゴ糖などが挙げられ、例えば、キシロース、ァラビノース、 ガラクトース、ラムノース、ガラタツロン酸、グルクロン酸、グルコースなどで構成される オリゴ糖組成物として得られる。
[0037] 次に、不溶画分について 64〜70質量%の酸を含む酸処理液で処理することにより 、セルロース系オリゴ糖を溶解させることができる。酸としては、硫酸、硝酸、塩酸、リ ン酸、沸酸、トリクロ口酢酸もしくは、これらの酸を主成分とした混合液が使用可能で あるが、中でも硫酸、硝酸、塩酸、及びリン酸力 選択される少なくとも 1種が好ましく 、硫酸が更に望ましぐ特に 64〜66質量%の硫酸が本発明の方法でセロオリゴ糖を 溶出させるためには適して!/ヽる。
セルロース系オリゴ糖を溶解させる反応は、常圧、 35°C以下で速やかに起こるが、 オリゴ糖の重合度の低下を防ぐには 25°C以下が望ましい場合が多い。また、セル口 ース系オリゴ糖を溶出させるための反応温度は、 0°C以上であることが好ましい。また 、反応時間は、好ましくは 1〜48時間、より好ましくは 2〜24時間程度である。
[0038] セルロース系オリゴ糖の回収方法もへミセルロース系オリゴ糖の回収方法がそのま ま踏襲できる。すなわち、反応液力も遠心分離などにより不溶画分を取り除いて得た 上清に、イオン交換榭脂法、膜濃縮法などを施すことによりセルロース系オリゴ糖を 回収することが可能である力 パルプ、セルロースパウダー、セルロースフィルターに よる吸着でも容易に分離、回収することが可能である。また、前記セルロース系オリゴ 糖を含有する反応液から不溶画分を取り除いた後、酸濃度を急激に稀釈すること〖こ よってセルロース系オリゴ糖を凝集させる方法も有効である。特に、凝集による回収を 行う場合、セルロース系オリゴ糖が溶解した液をへミセルロース系オリゴ糖溶出時に 使用する酸濃度(55〜63質量%)と同じ濃度にすることにより、処理後の酸液濃度を 調製することなく前段工程で再利用可能となる。
[0039] また、前記セルロース系オリゴ糖を含有する反応液力 不溶画分を取り除いて得た 上清を、セルロース基材カもなるフィルターで処理して低重合度のセルロース系オリ ゴ糖成分含有ろ液と比較的に高重合度のセルロース系オリゴ糖成分に分割し、低重 合度のセルロース系オリゴ糖成分含有ろ液の酸濃度を 30〜63質量%に低下させて 低重合度のセルロース系オリゴ糖成分を凝集させて高重合度のセルロース系オリゴ 糖に転ィ匕することもできる。前記「低重合度」とは、平均重合度 2〜4を意味し、「比較 的に高重合度」とは、平均重合度 5〜 15を意味する。なお、「平均重合度」は、フ ノ ール硫酸法によって全糖量を算出した後に、ソモギーネルソン法によって還元糖の 定量を行うことによって算出される。
[0040] 更に本発明においては、酸濃度の異なる少なくとも 2種の酸処理液を用いて固形バ ィォマスを順次処理する一連の処理工程の少なくとも一つの処理工程にお 、て、分 離された上清に対して、当該処理工程で分離されるべき糖組成物を含有する固形物 を加えて反応させることにより、上清中に含まれる糖組成物の濃度を高めることができ る。
以下に、第一の酸処理工程が、木質系バイオマス原料を 55〜63質量%の酸で処 理してへミセルロース系オリゴ糖組成物を含む上清と不溶画分に分離する工程であ り、第二の酸処理工程が、前記第一の工程の不溶画分を 64〜70質量%の酸で処 理することによりセルロース系オリゴ糖を得る工程であって、第一および第 2の各酸処 理工程にぉ 、て、糖成分の濃度を高める処理を施す実施態様につ!、て説明する。 この場合、第一の酸処理工程では、分離された上清に対して新たな木質系バイオ マス原料を加えて反応させることにより上清中のへミセルロース系オリゴ糖の濃度を 高めることが可能である。次に、第二の酸処理工程で分離された上清に対して、別の 第一の酸処理工程で分離された不溶画分を加えて反応させることにより上清中のセ ルロース系オリゴ糖濃度を高くすることが可能である。
[0041] これまでの技術では、酸糖ィ匕法により得られる糖液は、へミセルロース由来、セル口 ース由来のオリゴ糖もしくは単糖の混合物であり、それぞれを分離するには、別途、 膜処理か、イオン交換'逆相などのクロマトグラフィーを行う必要があった。本発明の 方法により、基質特異性が高いといわれている酵素を用いなくとも、へミセルロース系 オリゴ糖、セルロース系オリゴ糖、グルコースを分離することが可能となる。へミセル口 ース系オリゴ糖を除去した後に得られるセルロース系オリゴ糖は、さらに、酸もしくは 酵素による加水分解によって、グルコースに変換することも可能である力 機能性食 品等としてセロオリゴ糖の状態で提供することも可能である。
実施例
[0042] 以下、本発明を実施例により詳細に説明するが、本発明は以下の実施例に限定さ れるものではない。以下に示す各実施例において、「%」は、特に断りがない限りは全 ての質量によるものであり、対木質系バイオマス物質の添加率は、絶乾質量に対す る比である。また、平均重合度の算出には、フエノール硫酸法によって全糖量を算出 した後に、ソモギーネルソン法によって還元糖の定量を行うことによって算出している 。各定量方法については、「還元糖の定量法」(福井作蔵著 学会出版センター)を 考にした。
[0043] <参考例 1 > 平均粒子径 0. 5mmサイズに調製されたスギ木粉 lOOmgづっをプラスチック試験 管 3本に入れ、夫々に 49%硫酸 10mlをカ卩え、 25°Cに保ちながらスターラーにより 8 時間攪拌し、反応液を得た。同様な操作を、 53%、 57%、 61%、 65%の各濃度の 硫酸についても行った。
前記反応液を遠心分離により上清と沈殿物を分離した。得られた上清から全糖 1. 4mg〜53. lmgの糖組成物が得られた。これら糖組成物溶液の全糖回収率及び還 元末端定量から得られた平均重合度を測定し表 1に示す。なお、表の数値は、 3本の 試験管の算術平均値を採用して記載した。
[0044] [表 1]
Figure imgf000013_0001
[0045] <参考例 2 >
参考例 1—4と同じ糖組成物を更に一つ作成し、蒸留水で 20倍に希釈し、 110°C、 30分のオートクレープ処理を行い、単糖まで加水分解し、ダイオネタス社製イオンク 口マトにより分析したところ、キシロース 4. 4mg、マンノース 7. lmg、ガラクトース 2. 7 mg、ァラビノース 2. lmg、グルコース 4. 5mgであった。イオンクロマトグラフを図 1に 示す。
[0046] <参考例 3 >
参考例 1—5と同じ糖組成物を更に一つ作成し、蒸留水で 20倍に希釈し、 110°C、 30分のオートクレープ処理を行い、単糖まで加水分解し、ダイオネタス社製イオンク 口マトにより分析したところ、キシロース 4. 8mg、マンノース 13. lmg、ガラクトース 4. 6mg、ァラビノース 2. 9mg、グルコース 27. 7mgであった。
[0047] <参考例 4、実施例 1 >
平均粒子径 0. 5mmサイズに調製されたスギ木粉 lOOmgづっをプラスチック試験 管多数本に入れ、夫々に 61%硫酸 10mlをカ卩え、 25°Cに保ちながらスターラーによ り 8時間攪拌し、一段目の反応液を得た。前記反応液を遠心分離により上清と沈殿 物を分離した。以上は参考例 1 4と同じ条件である。この試料を多数本作成し、以 下の実施例に供した。
上清は別の試験管に移し、沈殿物を試験管内に残し、これに 63%硫酸を 10mlカロ え、 25°Cに保ちながら 4時間攪拌した。得られた二段目の反応液を遠心分離した。 得られた上清からは全糖 17. 4mgの糖組成物が得られた。これを実施例 1—1とする 前記一段目の沈殿物に対して、 63%硫酸に変えて、 65%、 67%、 69%の各硫酸 により同様の操作を行い、二段目の反応液を得た。これらを実施例 1— 2、 1— 3、 1 4とした。また、参考のため、 61%の硫酸により同様の操作を行い二段目の反応液を 得て、これを参考例 4とした。
前記の各二段目の反応液として得られた糖組成物について、参考例 1と同様に全 糖回収率及び還元末端定量から得られた平均重合度を測定し、表 2に示す。
[0048] 本実施例により、 65%硫酸の一段で処理した反応液 (参考例 1 5 :回収率 53. 1 %)の糖の回収率値と比較して、 61%硫酸で処理した反応液 (参考例 1—4 : 20. 8 %)と、残渣を 65%硫酸で処理した反応液 (実施例 1 2: 29. 8%)の両者の回収率 を加算した値は同程度であることが判明した。また二段目の硫酸濃度を上昇してもト 一タルの回収率に変動がないことも判明した。
[0049] [表 2]
Figure imgf000014_0001
<実施例 2>
実施例 1 2で得られた、二段目の反応液の糖組成物溶液を参考例 3と同様にダイ オネタス社製イオンクロマトにより分析したところ、重合度 10までのセロオリゴ糖が存 在した(図 2参照)。この糖組成物溶液を単糖まで加水分解し、ダイオネタス社製ィォ ンクロマトにより分析したところ、 95%以上がグルコースであった(図 3参照)。本実施 例により、一段目にはへミセルロース由来の糖だけを主として抽出することが可能で、 同様に二段目の反応液にはセルロース由来の糖だけを主として抽出可能であること が半 lj明した。
[0051] <実施例 3 >
実施例 1 2にお 、て、 65%硫酸で二段目の反応液を得るための反応温度を 25 。Cに変えて、 0。C、 20。C、 30。C、 35。C、 40。C、 50。C、 60。Cの各温度でそれぞれ行 つた。反応温度と、糖組成物量(回収率)と平均重合度を表 3に示す。なお、表 3中の 実施例 1—2は、表 2中の実施例 1—2のデータを転記したものである。本実施例によ り、温度は糖の回収率にあまり影響しないが、糖の重合度が大きく変化することが判 明した。
[0052] [表 3]
Figure imgf000015_0001
[0053] <実施例 4 >
フナコシ社製 微結晶セルロース粉末 (商品名:フナセル)、雑誌古紙、段ボール原 紙、トイレットペーパー(王子製紙社製 商品名ネピア)、醤油絞りかすを、 FRITCH 社製 遊星型ボールミルにて粉砕した。これら試料 lOOmgを、それぞれプラスチック 製試験管に取り、以下実施例 1 2と同様の条件で、二段目の反応液を得た。この糖 組成物量(回収率)と平均重合度を表 4に示す。比較のため、実施例 1 2のデータ も転 tiした。
本実施例により、様々な形態の木質バイオマス原料を利用可能であることが判明し [0054] [表 4]
Figure imgf000016_0001
[0055] <実施例 5 >
平均粒子径 0. 5mmサイズに調製されたスギ、ヒノキ、コナラ、ユーカリ木粉それぞ れ lOOmgに対し、実施例 1—2と概略同様である力 二段目の反応を 27°C、 2時間と し、二段目の反応液を得た。それぞれの一段目の反応液、二段目の反応液の糖組 成物を単糖まで加水分解し、ダイオネタス社製 イオンクロマトにより分析した。イオン クロマトグラフを図 4〜図 11に示す。図と試料の対応は、「図面の簡単な説明」の欄に 記載した。本実施例により、様々な榭種の木質バイオマスが利用可能であることが判 明した。
[0056] <実施例 6 >
平均粒子径 0. 25mm, 0. lmm、 0. 05mmの各サイズに調製されたスギ木粉を用 Vヽた他は実施例 1 2と同様にして二段目の反応液を得た。これを実施例 6— 1〜6 3とする。各二段目の反応液の糖組成物量 (回収率)と平均重合度及び原料サイ ズを表 5に示し、比較のため実施例 1—2のデータも転記した。
更に、 1、 5、 10、 20mmのメッシュのふるいを通過したスギのカンナ屑を用いた他 は実施例 1—2と同様にして二段目の反応液を得た。これを実施例 6— 4〜6— 7とす る。各二段目の反応液の糖組成物量(回収率)と平均重合度及び原料サイズを表 5 に示した。本実施例により、使用する木質バイオマス原料は粒径が 10mmまでは回 収率に影響がないことが判明した。
[0057] [表 5] 原料サイズ 回収率(½) 重 'CI度
実施例 6- 1 0.05 mm 24.5 4.26
6 - 2 0,1 mm 23.2 4.21
6—3 0.25 mm 30.2 4.37 実施例 1一 2 0.5 mm 29.8 4.42
実施例 6— 4 1 mm 29.2 4.49
6 - 5 5 mm 28.7 4.53
6-6 10 mm 26.5 4.82
6-7 20 mm 13.2 5.18
[0058] <実施例 7 >
実施例 1— 2と同様な条件で、多数の試験管で二段目の反応液を得て以下の実施 例 7、 8に供した。この段階において、 61%硫酸による第一の反応液を別の試験管に 取ったものをフラクション 1とし Fr. 1と表示する。 65%硫酸による第二の反応液の上 清液を別の試験管に取ったものをフラクション 2とし Fr. 2と表示する。
Fr. 2の試験管から液 lmlを 100ml用のビーカーに移し、これに 20°Cの水 19ml を添加した。析出した多量の沈殿を遠心分離機(15000rpm、 15min、 20°C)で分 離して回収し、得られた反応液の上清 (Fr. 3)と沈殿 (Fr. 4)の糖組成物量(回収率 )と平均重合度を表 6に示す。本実施例により、溶解度の違いを利用することで、重合 度の高いオリゴ糖を分離可能であることが判明した。
[0059] [表 6]
Figure imgf000017_0001
[0060] <実施例 8 >
Fr. 2を 3Nの NaOHで中和し、該中和液とフナコシ社製 微結晶セルロース粉末( 商品名:フナセル) lgとを混合し、 25°Cで一時間、 50rpmで攪拌した。処理後、上清 (Fr. 5)を取り除き、純水で沈殿を数回洗浄した後に、 70%エタノールを 2ml添カロし 、 25°Cで一時間、 50rpmで攪拌して上清 (Fr. 6)を回収した。
さらに、 Fr. 5の lmlに対し、活性炭(WAKO社製 品番 034— 18051) lOOmgを 添加し、 25°Cで一時間、 50rpmで攪拌し、上清を取り除き、純水で活性炭を数回洗 浄した後に、 70%エタノールを 2ml添カ卩し、 25°Cで一時間、 50rpmで攪拌して上清 (Fr. 7)を得ることによって、硫酸や NaOHなどの塩を除去した。得られたオリゴ糖の 回収率、平均重合度を表 7に示す。本実施例により、結晶性セルロースや活性炭な どを用いることにより、吸着作用度の違いを利用して重合度の異なるオリゴ糖を分離 可能であることが判明した。
[0061] [表 7]
Figure imgf000018_0001
[0062] <実施例 9 >
Fr. 2と、参考例 3の上清をそれぞれ 10ml採取した。 5Nの NaOHで pH4. 5に調 製した後、 0. 2M酢酸緩衝液 (pH4. 5)に溶解させた 1%セルラーゼ Tァマノ 4 (天 野ェンザィム社製)を lml添カ卩し、総量を 20mlになるように純水を添カ卩して 45°Cで 7 2時間の酵素処理を行った。コントロールとして煮沸して失活させた酵素液を用いて、 同様に処理を行った。処理後、上清を回収し、イオンクロマトによってグルコース量を 測定し、回収率を表 8に示す。本実施例により、得られるオリゴ糖はセルラーゼにより 単糖に分解可能であることが判明した。
[0063] [表 8]
Figure imgf000018_0002
<実施例 10 >
Fr. 2に対し、新たに調製した実施例 1—1の一段目沈殿物を添加し、 25°Cに保ち ながら 8時間攪拌し 2回目の反応液を得た。前記反応液を遠心分離により上清 (Fr. 8)と沈殿物に分離した。 Fr. 8に対し、再度、新たに調製した実施例 1—1の一段目 沈殿物を添加し、同様の処理を経て 3回目の反応液上清 (Fr. 9)を得た。以上同様 の手順を繰り返し、 4回目(Fr. 10)、 5回目(Fr. 11)、 6回目(Fr. 12)の反応液の 上清について全糖量回収率及び平均重合度として表 9に示す。本実施例により、反 応液中の糖濃度を増加することが可能であることが判明した。
[0065] [表 9]
Figure imgf000019_0001
[0066] <実施例 11 >
平均粒子径 0. 5mmサイズに調製されたスギ木粉 lOOmgづっをプラスチック試験 管多数本に入れ、夫々に 10〜70%の酸 10mlをカ卩え、 25°Cに保ちながらスターラ 一により 8時間攪拌し、一段目の反応液を得た。使用した酸は硫酸、リン酸、硝酸、沸 酸、塩酸、酢酸、トリフルォロ酢酸、ギ酸をそれぞれ行い、高濃度の酸を入手しにくい 、硝酸、沸酸、塩酸はそれぞれ上限濃度が 60%、 40%、 30%までを利用した。前記 反応液を遠心分離により上清と沈殿物を分離した。反応液の上清について全糖量回 収率として表 10に示す。
本実施例により、硫酸を使用した場合に最も糖回収率が高いことが判明した。
[0067] [表 10]
Figure imgf000019_0002
産業上の利用可能性 以上、詳述したように、本発明によれば、従来、その殆どが埋め立て、焼却処分さ れている建築廃材、産業廃棄物、生活廃棄物、農産廃棄物などや間伐材などの木 質系バイオマスもしくは木質系バイオマス含有率が多い廃棄物から、有用な生化学 原料やエネルギー資源となり得る糖組成物を得ることが可能となり、環境問題の解決 に寄与することが期待される。また、本発明の方法によって安価に提供される各種ォ リゴ糖類は、虫歯予防甘味料、腸内細菌の選択的な増殖促進効果による整腸作用 が期待できることから、食物繊維と同様に、特定保健用食品として認定された乳酸飲 料、食品などに添加される有用な糖類としての用途が広がり、医薬、サニタリーの分 野における乳化剤、保湿剤などとしての用途への拡大も期待できる。

Claims

請求の範囲
[1] 固形バイオマスを酸濃度の異なる 2種以上の酸処理液による処理工程で順次処理 し、各処理工程で得られる反応液から上清と固形物を分離し、分離した固形物を引 き続く酸処理工程で処理する操作を繰り返すことによって各処理工程で種類の異な る糖組成物を分離、回収する工程を含むことを特徴とする複数種の糖組成物を製造 する方法。
[2] 前記固形バイオマスが木質系バイオマスを含有することを特徴とする請求項 1記載 の複数種の糖組成物を製造する方法。
[3] 前記固形バイオマスが 10mmの目開きのふるいを通過するサイズに微細化されて いることを特徴とする請求項 1又は請求項 2に記載の複数種の糖組成物を製造する 方法。
[4] 前記各酸処理工程における処理温度が 35°C以下であることを特徴とする請求項 1 〜請求項 3のいずれか 1項に記載の複数種の糖組成物を製造する方法。
[5] 前記各酸処理工程で使用する酸処理液が、硫酸、硝酸、塩酸及びリン酸から選ば れる 1種の酸もしくは複数種の酸の混合酸を含むことを特徴とする請求項 1〜請求項 4のいずれか 1項に記載の複数種の糖組成物を製造する方法。
[6] 前記各酸処理工程における 1つの酸処理工程力 上清としてへミセルロース系オリ ゴ糖を分離、取得する工程でり、かつ、該酸処理工程における酸処理液の酸濃度が 55〜63質量%であることを特徴とする請求項 1〜請求項 5のいずれか 1項に記載の 複数種の糖組成物を製造する方法。
[7] 前記各酸処理工程における 1つの酸処理工程力 上清としてセルロース系オリゴ糖 を分離、取得する工程であり、かつ、該酸処理工程における酸処理液の酸濃度が 64 〜70質量%であることを特徴とする請求項 1〜請求項 6のいずれか 1項に記載の複 数種の糖組成物を製造する方法。
[8] 前記 1つの酸処理工程が上清としてセルロース系オリゴ糖を分離、取得する工程で あり、かつ、該酸処理工程において、分離される上清の酸濃度を 64〜70質量%から 30〜63質量%まで低下させて上清中のセルロース系オリゴ糖を凝集させることを特 徴とする請求項 7に記載の複数種の糖組成物を製造する方法。
[9] 前記各酸処理工程において分離された上清中から、糖組成物を、フィルタ一として セルロース基材を使用して分離することを特徴とする請求項 1〜請求項 8のいずれか 1項に記載の複数種の糖組成物を製造する方法。
[10] 前記酸処理工程で得られるセルロース系オリゴ糖を酸又は酵素によって処理してグ ルコースを主成分とする単糖に転化する工程を有することを特徴とする請求項 7〜請 求項 9のいずれか 1項に記載の複数種の糖組成物を製造する方法。
[11] 前記固形バイオマスを酸濃度の異なる 2種以上の酸処理液による処理工程で順次 処理する一連の処理工程は、最初の酸処理液による処理工程が上清としてへミセル ロース系オリゴ糖を分離、取得する工程であり、次の酸処理液による処理工程力 前 段の酸処理工程で上清力 分離された固形物を酸処理液で処理して上清としてセ ルロース系オリゴ糖を分離取得する工程であることを特徴とする請求項 1〜請求項 10 のいずれか 1項に記載の複数種の糖組成物を製造する方法。
[12] 前記セルロース系オリゴ糖を分離取得する酸処理工程は、セルロース系オリゴ糖を 含有する上清をセルロース基材力 なるフィルターで処理して低重合度のセルロース 系オリゴ糖成分含有ろ液と比較的に高重合度のセルロース系オリゴ糖成分に分割す る工程を有することを特徴とする請求項 1〜請求項 11のいずれか 1項に記載の複数 種の糖組成物を製造する方法。
[13] 前記低重合度のセルロース系オリゴ糖成分含有ろ液の酸濃度を 30〜63質量%に 低下させて低重合度のセルロース系オリゴ糖成分を凝集させて高重合度のセルロー ス系オリゴ糖に転ィ匕することを特徴とする請求項 12に記載の複数種の糖組成物を製 造する方法。
[14] 前記固形バイオマスを酸濃度の異なる 2種以上の酸処理液による処理工程で順次 処理する一連の処理工程の少なくとも一つの処理工程において、分離された上清に 対して、当該処理工程で分離されるべき糖組成物を含有する固形物を加え、当該酸 処理工程を再度行うことを特徴とする、請求項 1〜請求項 11のいずれか 1項に記載 の複数種の糖組成物を製造する方法。
PCT/JP2006/317212 2005-08-31 2006-08-31 バイオマスを原料とする糖組成物の製造方法 WO2007026817A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2006285712A AU2006285712B2 (en) 2005-08-31 2006-08-31 Method of producing saccharide composition starting with biomass
CN200680031375.8A CN101253276B (zh) 2005-08-31 2006-08-31 以生物质为原料的糖组合物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005250860 2005-08-31
JP2005-250860 2005-08-31

Publications (1)

Publication Number Publication Date
WO2007026817A1 true WO2007026817A1 (ja) 2007-03-08

Family

ID=37808900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317212 WO2007026817A1 (ja) 2005-08-31 2006-08-31 バイオマスを原料とする糖組成物の製造方法

Country Status (3)

Country Link
CN (1) CN101253276B (ja)
AU (1) AU2006285712B2 (ja)
WO (1) WO2007026817A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031469A1 (ja) * 2007-09-05 2009-03-12 Toyota Jidosha Kabushiki Kaisha 植物系繊維材料の糖化分離方法
JP2009171885A (ja) 2008-01-23 2009-08-06 Nippon Paper Industries Co Ltd セルロース含有物から糖を製造する方法
US8382905B2 (en) 2007-04-25 2013-02-26 Toyota Jidosha Kabushiki Kaisha Plant-fiber-material transformation method
US8409356B2 (en) 2008-06-03 2013-04-02 Toyota Jidosha Kabushiki Kaisha Method for glycosylating and separating plant fiber material
JP2013518880A (ja) * 2010-02-03 2013-05-23 アーチャー・ダニエルズ・ミッドランド カンパニー リグノセルロースバイオマスの改良された分画方法
US8460471B2 (en) 2008-06-03 2013-06-11 Toyota Jidosha Kabushiki Kaisha Method for glycosylating and separating plant fiber material
JP2015532202A (ja) * 2012-10-13 2015-11-09 グリーン・シュガー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・プロドゥクトイノヴァツィオーネン・アウス・ビーオマセ ハロゲン化水素酸を用いてペレット化可能なバイオマスを加水分解する方法
JP2016005485A (ja) * 2015-10-07 2016-01-14 日本製紙株式会社 セルロース含有物から糖を製造する方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101514349B (zh) * 2008-02-21 2012-01-04 中国林业科学研究院亚热带林业研究所 一种由竹材纤维制备燃料乙醇的方法
CN103088686B (zh) * 2012-12-25 2015-06-17 济南圣泉集团股份有限公司 一种由木质纤维素生物质制备纸浆并联产生物碳的工艺
CN103031763B (zh) * 2012-12-25 2015-04-22 济南圣泉集团股份有限公司 一种生物质原料的综合利用工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753801B2 (ja) * 1975-12-24 1982-11-15
US5411594A (en) * 1991-07-08 1995-05-02 Brelsford; Donald L. Bei hydrolysis process system an improved process for the continuous hydrolysis saccharification of ligno-cellulosics in a two-stage plug-flow-reactor system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753801A (ja) * 1980-09-13 1982-03-31 Canon Inc Konetsujikikirokusochi

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753801B2 (ja) * 1975-12-24 1982-11-15
US5411594A (en) * 1991-07-08 1995-05-02 Brelsford; Donald L. Bei hydrolysis process system an improved process for the continuous hydrolysis saccharification of ligno-cellulosics in a two-stage plug-flow-reactor system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAGAKU DAIJITEN HENSHU IINKAI: "Kagaku Daijiten Shukusatsuban", 10 September 1976, KYORITSU SHUPPAN CO., LTD., pages: 268, XP003009691 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8382905B2 (en) 2007-04-25 2013-02-26 Toyota Jidosha Kabushiki Kaisha Plant-fiber-material transformation method
WO2009031469A1 (ja) * 2007-09-05 2009-03-12 Toyota Jidosha Kabushiki Kaisha 植物系繊維材料の糖化分離方法
JP2009060828A (ja) * 2007-09-05 2009-03-26 Toyota Motor Corp 植物系繊維材料の糖化分離方法
US8486197B2 (en) 2007-09-05 2013-07-16 Toyota Jidosha Kabushiki Kaisha Method of saccharification and separation for plant fiber materials
JP2009171885A (ja) 2008-01-23 2009-08-06 Nippon Paper Industries Co Ltd セルロース含有物から糖を製造する方法
US8409356B2 (en) 2008-06-03 2013-04-02 Toyota Jidosha Kabushiki Kaisha Method for glycosylating and separating plant fiber material
US8460471B2 (en) 2008-06-03 2013-06-11 Toyota Jidosha Kabushiki Kaisha Method for glycosylating and separating plant fiber material
JP2013518880A (ja) * 2010-02-03 2013-05-23 アーチャー・ダニエルズ・ミッドランド カンパニー リグノセルロースバイオマスの改良された分画方法
JP2015532202A (ja) * 2012-10-13 2015-11-09 グリーン・シュガー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・プロドゥクトイノヴァツィオーネン・アウス・ビーオマセ ハロゲン化水素酸を用いてペレット化可能なバイオマスを加水分解する方法
JP2016005485A (ja) * 2015-10-07 2016-01-14 日本製紙株式会社 セルロース含有物から糖を製造する方法

Also Published As

Publication number Publication date
CN101253276A (zh) 2008-08-27
CN101253276B (zh) 2012-10-10
AU2006285712B2 (en) 2009-11-12
AU2006285712A1 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
WO2007026817A1 (ja) バイオマスを原料とする糖組成物の製造方法
JP4717756B2 (ja) バイオマスを原料とする糖組成物の製造方法
Yuan et al. A biorefinery scheme to fractionate bamboo into high-grade dissolving pulp and ethanol
Sun et al. Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation
AU2012209451B2 (en) Processes and systems for enzymatically isolating lignin and other bioproducts from herbaceous plants
Sun et al. Effect of various pretreatments on improving cellulose enzymatic digestibility of tobacco stalk and the structural features of co-produced hemicelluloses
AU2015261591B2 (en) Processing Biomass
JP4928254B2 (ja) セルロース含有物の糖化方法
WO2002067691A1 (en) Hydrolysis of biomass material
BR112013004261B1 (pt) Método para o tratamento de sacarificação enzimática de uma matéria-prima a base de lignocelulose
JP2012504935A (ja) リグノセルロース材料を処理するための2段階酵素加水分解法
CN104540957A (zh) 用于生物质液化的组合物和方法
Fang et al. Co-production of xylooligosaccharides and glucose from birch sawdust by hot water pretreatment and enzymatic hydrolysis
Wei et al. Comparison of microwave-assisted zinc chloride hydrate and alkali pretreatments for enhancing eucalyptus enzymatic saccharification
US20210285155A1 (en) Methods of making specialized cellulose and other products from biomass
CN104136466A (zh) 集成生物精制
WO2014106221A1 (en) Processes and apparatus for producing fermentable sugars, cellulose solids, and lignin from lignocellulosic biomass
JP2011092151A (ja) 植物系原料の処理方法
Zhang et al. Xylo-oligosaccharides and lignin production from Camellia oleifera shell by malic acid hydrolysis at mild conditions
Mussatto Biomass pretreatment with acids
Liu et al. Subcritical CO 2-assisted autohydrolysis for the co-production of oligosaccharides and fermentable sugar from corn straw
JP2009022180A (ja) セルロース系バイオマスから糖液を製造する方法
Jia et al. Enhancement of rotary evaporation on the purification of poplar prehydrolysis liquor and preparation of xylo-oligosaccharide
Tian et al. Selectively fractionate hemicelluloses with high molecular weight from poplar thermomechanical pulp by tetramethylammonium hydroxide
WO2014012017A2 (en) Two-loop dilute preprocessing and pretreatment of cellulosic feedstocks

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680031375.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006285712

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1200800618

Country of ref document: VN

ENP Entry into the national phase

Ref document number: 2006285712

Country of ref document: AU

Date of ref document: 20060831

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 06797172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP