WO2007026704A1 - Composition for dip molding and dip molded product - Google Patents

Composition for dip molding and dip molded product Download PDF

Info

Publication number
WO2007026704A1
WO2007026704A1 PCT/JP2006/316996 JP2006316996W WO2007026704A1 WO 2007026704 A1 WO2007026704 A1 WO 2007026704A1 JP 2006316996 W JP2006316996 W JP 2006316996W WO 2007026704 A1 WO2007026704 A1 WO 2007026704A1
Authority
WO
WIPO (PCT)
Prior art keywords
dip
weight
composition
monomer
parts
Prior art date
Application number
PCT/JP2006/316996
Other languages
French (fr)
Japanese (ja)
Inventor
Misao Aida
Osamu Ishizu
Hisanori Ota
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to JP2007533260A priority Critical patent/JP5380839B2/en
Publication of WO2007026704A1 publication Critical patent/WO2007026704A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • C08L13/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/003Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core

Definitions

  • the present invention relates to a dip-molding composition and a dip-molded article. More specifically, the present invention has a good releasability from a molding die, sufficient tensile strength and elongation at break, and Dip molding composition that can give dip molded products with excellent ethanol resistance
  • a molded product obtained by dip molding a composition for dip molding such as natural rubber latex or synthetic rubber latex is flexible and has sufficient mechanical strength. In addition to household use, it is widely used in various industries such as the food industry and electronic component manufacturing industry, and also for medical use.
  • Such a rubber glove is particularly required to be not easily torn during wearing (sufficient tensile strength and elongation at break) in order to protect the hand safely.
  • many disposable rubber gloves are required to be resistant to ethanol (ethanol resistance) because they are used by first disinfecting ethanol after being worn on the hand.
  • a dip-molded product used for such rubber gloves is usually manufactured by the following method. That is, first, a coagulant such as calcium chloride is attached to the surface of a mold shaped like a hand or a finger, and the above-mentioned mold is immersed in a dip molding composition containing rubber latex (dip). To do. Next, the film is pulled up to form a coating film (dip-molded layer) on the surface of the mold, and then the dip-molded layer is vulcanized (crosslinked) by heating.
  • a coagulant such as calcium chloride
  • dip dip molding composition containing rubber latex
  • the film is pulled up to form a coating film (dip-molded layer) on the surface of the mold, and then the dip-molded layer is vulcanized (crosslinked) by heating.
  • rubber gloves (dip molded products) produced in this way tend to adhere to molds that are highly sticky, so that it is often difficult to remove them from the mold (release). was there.
  • Patent Document 1 discloses a carboxy-modified conjugated gen-based rubber latex having a glass transition temperature of 50 ° C or lower, and a glove force obtained by dip molding this latex. While the glove described in this document is excellent in flexibility and elongation at break, it has a problem that it is inferior in tensile strength and easily adheres to a mold.
  • Patent Document 2 discloses a copolymer obtained by emulsion copolymerization of an aromatic butyl monomer, a conjugation monomer and an unsaturated acid monomer, and having a gel content (indicating the level of internal crosslinking) of a specific value or less.
  • a polymer latex and a glove obtained by dip molding this latex are disclosed. The purpose of this document is to obtain a glove with excellent tensile strength. However, the tensile strength is still insufficient, and the strength is inferior to ethanol resistance and releasability from molded molds. there were.
  • Patent Document 3 is characterized in that it is formed from a carboxyl-cleaved chain aliphatic gen-Z acrylonitrile Z (meth) acrylic acid ester terpolymer. Latex gloves with improved properties are disclosed. This document aims to improve the slipperiness between the glove surfaces, but on the other hand, there is a problem that the elongation at break is insufficient and the ethanol resistance is inferior.
  • Patent Document 1 U.S. Pat.No. 5,910,533
  • Patent Document 2 U.S. Patent 6,627,325
  • Patent Document 3 Japanese Patent Publication No. 6-70143
  • the present invention has been made in view of such a situation, has good releasability from a mold, has sufficient tensile strength and elongation at break, and shika is also excellent in ethanol resistance. It is an object of the present invention to provide a dip-forming composition that can provide a dip-formed product. Also, Another object of the present invention is to provide a dip-molded product obtained by dip-molding such a dip-molding composition and having the above characteristics.
  • the present inventors have found that a monomer containing a conjugation monomer, an aromatic butyl monomer, and an ethylenically unsaturated acid monomer. The mass mixture Then, the ratio of these monomers is set within a predetermined range, and the amount of insoluble toluene in the case where the copolymer constituting the copolymer latex is immersed in toluene under predetermined conditions is also determined.
  • the inventors have found that the above-described object can be achieved by controlling to a specific value or more, and have completed the present invention.
  • the dip molding composition according to the present invention comprises:
  • Monomer mixture comprising 34-60 parts by weight of conjugation monomer, 39-65 parts by weight of aromatic vinyl monomer, and 1-: LO part by weight of ethylenically unsaturated acid monomer 100
  • a dip-molding composition having a copolymer latex obtained by copolymerizing parts by weight, wherein the copolymer constituting the copolymer latex is placed in toluene at a temperature of 20 ° C for 24 hours.
  • the toluene-insoluble content of the copolymer when immersed for 30 minutes is 30% by weight or more with respect to 100% by weight of the entire copolymer.
  • the conjugation monomer is 1,3-butadiene, isoprene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene.
  • the aromatic bur monomer is composed of styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, ⁇ -phenyl styrene, ⁇ -methoxy styrene, chloromethyl styrene, m-fluoro styrene, and urnaphthalene. At least one selected, and more preferably styrene.
  • the ethylenically unsaturated acid monomer is an ethylenically unsaturated monocarboxylic acid monomer, an ethylenically unsaturated polyvalent carboxylic acid monomer, or an ethylenically unsaturated polyvalent carboxylic acid monomer. It is at least one selected from the group power consisting of an acid anhydride, an ethylenically unsaturated polycarboxylic acid partial ester monomer and an ethylenically unsaturated sulfonic acid monomer, more preferably an ethylenically unsaturated monocarboxylic acid More preferred is methacrylic acid.
  • the dip molding composition of the present invention preferably further contains a crosslinking agent. More preferably, the crosslinking agent is at least one selected from the group consisting of sulfur, organic peroxides and polyamines, and more preferably sulfur. The amount of the crosslinking agent is preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the solid content in the dip molding composition.
  • the dip molding composition of the present invention preferably further contains a crosslinking accelerator.
  • the blending amount of the crosslinking accelerator is preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the solid content in the dip molding composition.
  • the dip molding composition of the present invention preferably further contains acid zinc. It is preferable that the amount of the zinc oxide zinc is 0.3 to 3 parts by weight with respect to 100 parts by weight of the solid content in the dip molding composition.
  • the dip molding composition of the present invention preferably has a pH of 8.5-12.
  • the dip molding film is formed when a metal plate is immersed in the dip molding composition to form a dip molding film on the metal plate.
  • the value of the 180 ° peel test of the molded film is 4.9 (NZ25mm) or less.
  • a dip-molded product according to the present invention is a dip-molded product obtained by dip molding the above dip molding composition.
  • the dip-formed product of the present invention preferably has a tensile strength measured in accordance with ASTM D-412 of 2 OMPa or more and an elongation at break of 600% or more.
  • the dip-molded product of the present invention preferably has a tensile strength of 16 MPa or more measured at a tensile speed of 500 mmZ after being immersed in ethanol at a temperature of 20 ° C. for 1 hour.
  • the copolymer latex to be contained in the dip-molding composition comprises the above conjugate monomer, aromatic vinyl monomer, and ethylenically unsaturated acid monomer.
  • the monomer mixture contained in the range is formed by copolymerization, and the toluene-insoluble content of the copolymer constituting the copolymer latex is set in the predetermined range. Therefore, it is possible to obtain a dip-molded product that has good releasability from the mold during production, has sufficient tensile strength and elongation at break, and is excellent in ethanol resistance. In particular, it is possible to improve productivity by making the mold release property good. Also, by improving the ethanol resistance, for example, when a dip-molded product is used for rubber gloves and sterilized with ethanol, tearing of the gloves during use can be effectively prevented.
  • dip molding composition of the present invention and the dip molded product obtained by crosslinking the dip molding composition of the present invention will be described in detail.
  • the dip molding composition of the present invention is a copolymer obtained by copolymerizing a monomer mixture containing a conjugation monomer, an aromatic vinyl monomer, and an ethylenically unsaturated acid monomer. Combined latex at least.
  • the C4-C12 compound containing a conjugation is preferable.
  • conjugated diene monomers include 1,3-butadiene, isoprene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene. 1, 3-pentagen, black mouth plane and the like. Of these, 1,3-butadiene and 1,3-butadiene are preferred, and 1,3-butadiene and isoprene are preferred.
  • These conjugation monomers can be used alone or in combination of two or more.
  • the amount of the conjugation monomer used is 34 to 60 parts by weight, preferably 38 to 55 parts by weight, and more preferably 40 to 52 parts by weight with respect to 100 parts by weight of the total monomers. If this amount is too small, the elongation at break is poor, and conversely if too large, the releasability from the mold and the tensile strength are poor.
  • Houki Bure Monomer examples include styrene, (X-methyl styrene, p-methyl styrene, p-phenyl styrene, p-methoxy styrene, chloromethyl styrene, m-phenol styrene, and urnaphthalene. Of these, styrene is particularly preferred, and these aromatic vinyl monomers can be used alone or in combination of two or more.
  • the amount of the aromatic vinyl monomer used is 39 to 65 parts by weight, preferably 42 to 60 parts by weight, and more preferably 45 to 58 parts by weight with respect to 100 parts by weight of the total monomers. If the amount of the aromatic vinyl monomer is too small, the releasability from the mold is poor in ethanol resistance, and conversely if too large, the elongation at break is poor.
  • the ethylenically unsaturated acid monomer is not particularly limited as long as it is an ethylenically unsaturated monomer containing an acidic group.
  • the acidic group include a carboxyl group, a sulfonic acid group, and an acid anhydride group.
  • ethylenically unsaturated monocarboxylic acid monomers such as acrylic acid and methacrylic acid; ethylenically unsaturated polycarboxylic acid monomers such as itaconic acid, maleic acid and fumaric acid; Ethylenically unsaturated polycarboxylic acid anhydrides such as citraconic anhydride; ethylenically unsaturated polycarboxylic acid partial ester monomers such as monobutyl fumarate, monobutyl maleate, mono-2-hydroxypropyl maleate; styrene sulfone And ethylenically unsaturated sulfonic acid monomers such as acids.
  • monocarboxylic acid monomers such as acrylic acid and methacrylic acid
  • ethylenically unsaturated polycarboxylic acid monomers such as itaconic acid, maleic acid and fumaric acid
  • Ethylenically unsaturated polycarboxylic acid anhydrides such as citraconic
  • methacrylic acid is particularly preferred, with ethylenically unsaturated monocarboxylic acids being more preferred, with ethylenically unsaturated carboxylic acids being preferred.
  • ethylenically unsaturated acid monomers can also be used as alkali metal salts or ammonium salts. These ethylenically unsaturated acid monomers can be used alone or in combination of two or more.
  • the amount of the ethylenically unsaturated acid monomer used is 1 to 10 parts by weight, preferably 1.5 to 8 parts by weight, more preferably 2 to 7 parts by weight, based on 100 parts by weight of the total monomers. . If the amount of the ethylenically unsaturated acid monomer is too small, the tensile strength is inferior. On the other hand, if the amount is too large, the elongation at break is inferior.
  • Other monomers include, for example, fluoralkyl butyl ether such as fluoroethyl vinyl ether; (meth) acrylamide, N-methylol (meth) acrylamide, N, N dimethylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide N-propoxymethyl ethylenically unsaturated amide monomers such as (meth) acrylamide; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylic acid-2-ethyl Hexyl, trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, dibutyl maleate, dibutyl fumarate, jetyl maleate, methoxymethyl (meth) acrylate, ethoxyethyl (meth) acrylate, (Meth) acrylic acid Ethyl,
  • the amount used is preferably 20 parts by weight or less, more preferably 15 parts by weight or less, and even more preferably 10 parts by weight or less with respect to 100 parts by weight of the total monomers. is there. If the amount of the other monomer is too large, the effects of the present invention described above tend to be difficult to obtain.
  • the copolymer latex used in the present invention emulsion-polymerizes a mixture of the above monomers. Can be manufactured.
  • a conventionally known emulsion polymerization method may be employed.
  • commonly used polymerization auxiliary materials such as emulsifiers, polymerization initiators, chain transfer agents and the like can be used.
  • the emollient is not particularly limited, but nonionic such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester, etc.
  • Emulsifiers Fatty acid salts such as myristic acid, palmitic acid, oleic acid, linolenic acid, alkyl benzene sulfonates such as sodium dodecylbenzene sulfonate, higher alcohol sulfate esters, alkyl sulfosuccinates, etc.
  • the polymerization initiator is not particularly limited, and examples thereof include inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide; Benzene Hyde Peroxide, Cumene Hyde Peroxide, t-Butyl Hyde Peroxide, 1, 1, 3, 3-Tetramethylbutyl Hyde Peroxide, 2, 5 Dimethylhexane 2, 5 Dihydrate Peroxide, G Organic peroxides such as butyl peroxide, di- ⁇ -tamyl peroxide, acetyl chloride, isobutyryl peroxide, benzoyl peroxide; azobisisobutyoxy-tolyl, azobis-2,4 dimethyl valeryl-tolyl, azobisisobutyric acid Azo compounds such as methyl; and the like.
  • inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium pers
  • a copolymer latex when used, a copolymer latex can be stably produced, and a dip molded product having excellent tensile strength and elongation at break can be obtained.
  • These polymerization initiators can be used alone or in combination of two or more. The amount of the polymerization initiator used is usually 0.01 to 1 part by weight with respect to 100 parts by weight of all monomers.
  • the inorganic peroxide initiator and the organic peroxide initiator described above are combined with a reducing agent.
  • a reducing agent can be used as a redox polymerization initiator.
  • a reducing agent include, but are not limited to, compounds containing metal ions in a reduced state such as ferrous sulfate and cuprous naphthenate; sulfonic acid compounds such as sodium methanesulfonate; dimethyl And amine compounds such as a phosphorus.
  • chain transfer agents examples include mercaptans such as n-butyl mercaptan and t-dodecyl mercaptan; sulfides such as tetraethylthiuramsulfide and dipentamethylenethiuramhexasulfide; a- methylstyrene dimer; tetrasalt ⁇ ⁇ ; and so on. Of these, mercaptans are preferred. Tododecyl mercaptan is more preferred. These can be used alone or in combination of two or more.
  • the amount of the chain transfer agent used is preferably 0.1 to 1 part by weight, more preferably 0.2 to 0.5 part by weight, based on 100 parts by weight of all monomers.
  • the amount of water used in the emulsion polymerization is usually about 80 to 600 parts by weight, preferably 100 to 300 parts by weight, with respect to 100 parts by weight of the total monomers.
  • the method of adding each monomer described above is not particularly limited, and a method of mixing the monomers to form a monomer mixture and charging the monomer mixture into the polymerization reactor all at once. , A method of continuously adding the monomer mixture to the polymerization reactor, charging a part of the monomer into the polymerization reactor, and adding the remaining monomer continuously or divided into the polymerization reactor Use any of these methods.
  • polymerization auxiliary materials such as a particle size adjusting agent, a chelating agent, an oxygen scavenger, and a dispersing agent can be used as necessary.
  • Emulsion polymerization is usually carried out in water using the monomers and polymerization auxiliary materials.
  • the polymerization temperature is not particularly limited, but is preferably 5 to 60 ° C, more preferably 30 to 50 ° C.
  • the polymerization time is about 5 to 30 hours.
  • Emulsion polymerization is performed under the above conditions, and when a predetermined polymerization conversion rate is reached, the polymerization reaction is stopped by a method of cooling the polymerization system or a method of adding a polymerization terminator. Polymerization reaction The polymerization conversion rate when the reaction is stopped is preferably 90% by weight or more, more preferably 94% by weight or more. Then, after stopping the polymerization reaction, a copolymer latex can be obtained by removing unreacted monomers and adjusting the solid content concentration and pH as desired.
  • each monomer constituting the copolymer latex to be contained in the dip molding composition is set to the above predetermined amount, and further a copolymer latex is constituted.
  • the toluene insoluble content of the copolymer is set to the following specific range.
  • the insoluble content of toluene is 30% by weight or more, preferably in the range of 40 to 95% by weight, more preferably 50 to 90% by weight, based on 100% by weight of the entire copolymer constituting the copolymer latex.
  • toluene insoluble matter for example, a dry film made of copolymer latex is placed in a wire mesh cage and immersed in toluene at a temperature of 20 ° C for 24 hours, and then the basket is pulled up and dried, and the dried film before and after immersion The specific force can be calculated.
  • the toluene insoluble matter depends on various factors such as polymerization temperature, reaction time, type and amount of polymerization initiator, type and amount of crosslinkable monomer, and type and amount of chain transfer agent. It can select and adjust suitably.
  • the number average particle size of the copolymer latex is a number average particle size measured with a transmission electron microscope, and is preferably 60 to 300 nm, more preferably 80 to 150 nm.
  • the particle size can be adjusted to a desired value by adjusting the amounts of emulsifier and polymerization initiator used.
  • the copolymer latex may further contain auxiliary materials such as an anti-aging agent, an ultraviolet absorber, a preservative, and an antibacterial agent.
  • auxiliary materials such as an anti-aging agent, an ultraviolet absorber, a preservative, and an antibacterial agent.
  • the dip molding composition of the present invention preferably further contains a crosslinking agent in order to crosslink the copolymer latex.
  • sulfur examples include powdered sulfur, sulfur white, precipitated sulfur, colloidal sulfur, and surface-treated sulfur. Examples include yellow and insoluble sulfur.
  • Organic peroxides include, for example, dibenzoyl peroxide, benzoyl (3-methylbenzoyl) peroxide, di (4 methylbenzoyl) peroxide, dilauryl peroxide, distearoyl peroxide, di- ⁇ -tamil peroxide 1, 1 bis (t-butylperoxy) cyclododecane, succinic acid peroxide, bis (4-tert-butylcyclohexyl) peroxydicarbonate, t-butylperoxymaleic acid, and the like.
  • polyamine examples include hexamethylenediamine, triethylenetetramine, tetraethylenepentamine and the like.
  • the amount of the crosslinking agent is preferably 0.1 to 3 parts by weight, more preferably 0.3 to 2 parts per 100 parts by weight of the solid content (latex solid content) in the dip molding composition. 5 parts by weight, more preferably 0.5 to 2 parts by weight. If the amount of the crosslinking agent is too small, the tensile strength is inferior. On the other hand, if the amount is too large, the elongation at break is inferior.
  • crosslinking agent When sulfur is used as the crosslinking agent, it is preferable to incorporate a crosslinking accelerator (vulcanization accelerator) or zinc oxide.
  • crosslinking accelerator those usually used for dip molding can be used, and examples thereof include decyl dithiocarbamic acid, dibutyldithiocarbamic acid, and di-2-ethyl.
  • the amount of the crosslinking accelerator is preferably 0.1 to 2 parts by weight, more preferably 0.2 to 1.5 parts by weight, more preferably 100 parts by weight of the latex solid content. Preferably from 0.25 1 part by weight. If this amount is too small, the tensile strength decreases, and if it is too large, the elongation at break is inferior.
  • the amount of acid zinc is preferably 0.3 to 3 parts by weight, more preferably 0.5 to 2 parts by weight, and still more preferably 1 to 1. 5 parts by weight. If the amount is too small, the tensile strength is inferior. Conversely, if the amount is too large, the elongation at break is inferior.
  • the dip molding composition of the present invention may further contain a pH adjuster, a thickener, an anti-aging agent, a dispersant, a pigment, a filler, a softener, and the like, if necessary. .
  • the solid content concentration of the dip molding composition of the present invention is preferably 10 to 60% by weight, more preferably 20 to 45% by weight.
  • the pH of the dip molding composition of the present invention is preferably 8.5 to 12, more preferably 9 to L1.
  • the dip-forming composition of the present invention has a 180 ° peel test value of the dip-formed film when the dip-formed film is formed on the metal plate by immersing the metal plate. 4. 9 (NZ25mm) or less, preferably 3.4 (NZ25mm) or less. When the value of the peel test is low, it is easy to release from the mold during dip molding. Therefore, the value of the peel test is preferably low.
  • the peel test value is determined by, for example, forming a dip-molded layer made of a dip-molding composition on a metal plate, then heating to crosslink the copolymer latex, and then peeling the molded film. It can be measured by obtaining the tensile load required for this.
  • the metal plate used in this case is not particularly limited as long as a metal plate generally used for adhesion tests is used, but stainless steel plates, aluminum and aluminum alloy plates, chrome plates, etc. can be used. . Among these, a stainless steel plate can be preferably used.
  • the dip-molded product of the present invention is obtained by dip-forming the above-described dip-molding composition of the present invention.
  • the dip-molding method a conventionally known method can be adopted, and examples thereof include a direct dipping method, an anode adhesion dipping method, and a teag adhesion dipping method.
  • the anode coagulation dipping method is preferable in that a dip-molded product having a uniform thickness is easily obtained.
  • a dip forming method by an anode adhesion dipping method as one embodiment will be described.
  • the dip mold is immersed in a coagulant solution, and the coagulant is adhered to the surface of the dip mold.
  • Various materials such as porcelain, glass, metal, and plastic can be used as the dip mold.
  • the shape of the mold should be matched to the shape of the final dip-molded product.
  • the coagulant solution is a solution in which a coagulant such as a salting-out agent is dissolved in water, alcohol, or a mixture thereof.
  • Halogenated metals such as barium chloride, calcium chloride, magnesium chloride, dumbbell, salt and aluminum; nitrates such as barium nitrate, calcium nitrate, and zinc nitrate; acetates such as barium acetate, calcium acetate, and zinc acetate; calcium sulfate, And sulfates such as magnesium sulfate and aluminum sulfate.
  • the concentration of the coagulant in the coagulant solution is preferably 5 to 70% by weight, more preferably 15 to 50% by weight.
  • the dip molding die to which the coagulant is adhered is immersed in the dip molding composition of the present invention described above, and then the dip molding die is pulled up to form a dip molding layer on the dip molding die. To do.
  • the dip-molded layer formed in the dip-molding die is heated to crosslink the copolymer latex.
  • the heating temperature is preferably 100 to 150 ° C. If the temperature is too low, the cross-linking reaction takes a long time, which may reduce productivity. On the other hand, if it is too high, the deterioration of the acidity of the copolymer latex may be accelerated and the physical properties of the molded product may be lowered.
  • the heat treatment time may be appropriately selected according to the heat treatment temperature, but is usually 10 to 120 minutes.
  • the heating method is not particularly limited. For example, an external heating method using infrared rays or hot air or an internal heating method using high frequency can be employed. Of these, heating with hot air is preferred.
  • the dip-molded layer before the dip-molded layer is subjected to heat treatment, the dip-molded layer is immersed in warm water of 20 to 80 ° C for about 0.5 to 60 minutes to obtain water-soluble impurities. It is preferable to remove (emulsifier, water-soluble polymer, coagulant, etc.).
  • the dip-molded layer crosslinked by heat treatment is removed from the dip-mold to obtain a dip-molded product.
  • a method of peeling from the mold by hand or a method of peeling by water pressure or compressed air pressure can be employed.
  • the dip-molded article of the present invention comprises the above-described dip-molding composition of the present invention (preferably It is obtained by dip molding a composition having a 180 ° peel test value of 4.9 (NZ25 mm) or less, and is excellent in releasability from the mold. Therefore, the adhesion to the mold is effectively prevented, and as a result, the mold can be removed easily and easily.
  • a heat treatment may be performed at a temperature of 60 to 120 ° C for 10 to 120 minutes.
  • the dip-formed product is a glove
  • talc, calcium carbonate, starch particles, etc. are used in order to prevent adhesion at the contact surface between the dip-formed products and to improve slippage during attachment / detachment.
  • Sprinkle inorganic or organic fine particles on the surface of the glove form an elastomer layer containing these fine particles on the surface of the glove, or chlorinate the surface layer of the glove.
  • the dip-molded product of the present invention thus obtained has a good tensile strength of 20 MPa or more, a breaking elongation of 600% or more, and a resistance to ethanol that can sufficiently withstand normal use conditions. It has sex. That is, the tensile strength at break after immersion in ethanol is preferably 16 MPa or more, more preferably 20 MPa or more, and further preferably 25 MPa or more, and has excellent ethanol resistance.
  • the tensile strength at break after immersion in ethanol can be measured by immersing the dip-molded product in ethanol at a temperature of 20 ° C for 1 hour, and then performing a tensile test on the immersed molded product. it can.
  • the dip-molded product of the present invention since the dip-molding composition of the present invention is formed by dip molding, such a problem can be effectively solved.
  • such a dip-formed product of the present invention can have a thickness of about 0.1 to about 3 mm, particularly 0.1 to 0.3 mm, it is thin with such a thickness. It can be used suitably for things. Specifically, medical supplies such as nipples, syringes, conduits, and water pillows for baby bottles; toys and exercise equipment such as balloons, dolls, and balls; industrial products such as pressure forming bags and gas storage bags Goods: Medical, household, agricultural, fishery and industrial gloves; can be used for finger sack, etc., particularly suitable for thin medical gloves. When the molded product is a glove, it may be a sabot type or an unsupport type.
  • the copolymer latex was cast on a framed glass plate, and then allowed to stand for 120 hours under conditions of a temperature of 20 ° C. and a relative humidity of 65% to obtain a dry film having a thickness of 1 mm.
  • Toluene insoluble matter (W / W) X 100 (1)
  • a stainless steel plate (SUS304) with a length of 200mm x width 25 111111 according to JIS K6854 is vertically placed vertically, and the bottom edge of the plate is immersed to a position of 175mm. Then, it pulled up and dried at 60 degreeC for 10 minutes. Next, the dried plate is dipped in the dip molding composition in the same manner as described above to the position where the bottom end force of the plate is 170 mm, and then pulled up to dip forming layer before crosslinking on both sides of the plate. Formed.
  • the plate on which the dip-formed layer was formed was washed with distilled water at 40 ° C for 5 minutes, pre-dried at 20 ° C for 5 minutes, then dried at 60 ° C for 10 minutes, and then 120 ° C. And were cross-linked for 30 minutes to obtain a dip-formed film, and a test piece for a peel test was obtained.
  • one end of the dip-formed film was peeled in advance in the vertical direction by 95 mm using one side of the test piece prepared above.
  • stainless steel plate Attach the upper end to the upper grip of the Tensilon universal testing machine, and then attach one end of the dip molding film previously peeled off to the lower grip of the Tensilon universal testing machine. It was.
  • the dip-formed film is not in close contact with the glove mold and can be easily detached.
  • B The dip-molded film is partially adhered to the glove mold, and is somewhat difficult to remove.
  • C The dip-formed layer is in close contact with the glove mold and is difficult to remove.
  • a dumbbell-shaped test piece was produced from the obtained rubber glove (dip-formed product) using a dumbbell (Die — C) according to ASTM D-412. Next, the test piece was pulled with a Tensilon universal testing machine at a tensile speed of 500 mmZ, and the tensile strength at break (MPa) and the elongation at break (%) were measured.
  • test piece similar to that used for measurement of tensile strength and elongation at break was immersed for 1 hour in ethanol (special grade reagent) at a temperature of 20 ° C. Then, the test piece after immersion was pulled with a Tensilon universal tester at a tensile speed of 500 mmZ, and the tensile strength at break (tensile strength after ethanol immersion) was measured.
  • a vulcanizing agent (crosslinking agent) dispersion was obtained.
  • 9.16 parts of this vulcanizing agent dispersion was added to 222.2 parts of the copolymer latex produced above (100 parts as the solid content) and mixed.
  • an appropriate amount of deionized water was added to adjust the solid content concentration to 30% and pH 9.0, and further ripened for 1 day to obtain a dip molding composition.
  • Rubber bowl dip molded product
  • a rubber glove (dip molded product) was produced by the following method using the dip molding composition obtained above.
  • an aqueous coagulant solution was prepared by mixing 20 parts of calcium nitrate, 0.05 part of polyethylene glycol octyl phenyl ether as a nonionic emulsifier and 80 parts of water.
  • a glove mold heated to 60 ° C. was immersed in this coagulant aqueous solution for 10 seconds, pulled up, and then dried under conditions of a temperature of 60 ° C. for 10 minutes to attach the coagulant to the glove mold .
  • the glove mold to which the coagulant was adhered was immersed in the dip molding composition obtained above for 15 seconds and pulled up to form a dip molding layer on the surface of the glove mold.
  • the formed dip-formed layer is immersed in distilled water at 40 ° C for 5 minutes to remove water-soluble impurities, then pre-dried at 20 ° C for 5 minutes, further dried at 60 ° C for 10 minutes, and then 120 ° C. Vulcanization was performed for 30 minutes. Finally, the dip-formed layer after vulcanization was peeled off from the glove mold to obtain a rubber glove (date-formed product) having a thickness of 0.1 mm.
  • the copolymer latex obtained above was subjected to a toluene-insoluble matter, a 180 ° peel test for the dip molding composition, and a dip molded product from the mold. Each evaluation of peelability, tensile strength, elongation at break and tensile strength after immersion in ethanol was performed by the above methods. The results are shown in Table 1.
  • copolymer latex contained in the dip molding composition by changing the addition amount of the chain transfer agent and the conditions of the addition method.
  • the toluene-insoluble content of the copolymer constituting was adjusted.
  • tododecyl mercaptan in the amount shown in Table 1 was added at the start of polymerization.
  • the amount of t-decyl mercaptan added at the start of polymerization was 0.2 parts, and 0.1 part of t-decyl mercaptan was added when the polymerization conversion was 60%. did.
  • post-addition means the amount added at a polymerization conversion rate of 603 ⁇ 4.
  • Comparative Example 1 corresponds to a synthetic NBR for gloves that is generally commercially available.
  • the rubber gloves (dip-molded products) obtained using the dip-molding composition according to the present invention have good release properties from the mold.
  • the tensile strength and elongation at break were sufficient, and the tensile strength after immersion in ethanol was high, resulting in excellent ethanol resistance (Examples 1 to 4). That is, according to these Examples 1 to 4, since the adhesion to the mold is low, it is possible to perform the detachment of the mold force well, and the force is also suitable for glove use that is used after being disinfected with ethanol. It can be used suitably.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Moulding By Coating Moulds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Disclosed is a composition for dip molding containing a copolymer latex obtained by copolymerizing 100 parts by weight of a monomer mixture containing 34-60 parts by weight of a conjugated diene monomer, 39-65 parts by weight of an aromatic vinyl monomer and 1-10 parts by weight of an ethylenically unsaturated acid monomer. This composition for dip molding is characterized in that when the copolymer constituting the copolymer latex is dipped in toluene at 20˚C for 24 hours, the toluene insoluble fraction of the copolymer is not less than 30% by weight relative to 100% by weight of the copolymer as a whole. This composition for dip molding has good releasability from molding dies while exhibiting sufficient tensile strength and elongation at break. In addition, this composition enables to obtain a dip molded product having excellent ethanol resistance.

Description

ディップ成形用組成物およびディップ成形品  DIP MOLDING COMPOSITION AND DIP MOLDED ARTICLE
技術分野  Technical field
[0001] 本発明は、ディップ成形用組成物およびディップ成形品に係り、さら〖こ詳しくは、成 形型からの離型性が良好であり、十分な引張り強度および破断伸びを有し、しかも、 耐エタノール性に優れたディップ成形品を与えることのできるディップ成形用組成物 [0001] The present invention relates to a dip-molding composition and a dip-molded article. More specifically, the present invention has a good releasability from a molding die, sufficient tensile strength and elongation at break, and Dip molding composition that can give dip molded products with excellent ethanol resistance
、およびこのディップ成形用組成物をディップ成形して得られるディップ成形品に関 する。 And a dip-molded product obtained by dip-molding this dip-molding composition.
背景技術  Background art
[0002] 天然ゴムラテックスや合成ゴムラテックスカゝらなるディップ成形用組成物を、ディップ 成形して得られる成形品は、柔軟で、かつ十分な機械的強度を有することから、ゴム 手袋用途として、家事用の他、食品工業や電子部品製造業などの種々の工業用、さ らには医療用など幅広く使用されている。  [0002] A molded product obtained by dip molding a composition for dip molding such as natural rubber latex or synthetic rubber latex is flexible and has sufficient mechanical strength. In addition to household use, it is widely used in various industries such as the food industry and electronic component manufacturing industry, and also for medical use.
[0003] このようなゴム手袋 (ディップ成形品)には、手を安全に保護するために、着用中に 破れにくいこと(引張り強度および破断伸びが十分であること)が特に要求されている 。同時に、多くの使い捨てゴム手袋は、その使用に際しては、まず手に装着した後に エタノール消毒して力 使用されるため、エタノールに対する耐性 (耐エタノール性) も要求されている。  Such a rubber glove (dip-molded product) is particularly required to be not easily torn during wearing (sufficient tensile strength and elongation at break) in order to protect the hand safely. At the same time, many disposable rubber gloves are required to be resistant to ethanol (ethanol resistance) because they are used by first disinfecting ethanol after being worn on the hand.
[0004] このようなゴム手袋用途に使用されるディップ成形品は、通常、次の方法により製造 される。すなわち、まず、手、指などの形をした成形型の表面に塩ィ匕カルシウムなど の凝固剤を付着させ、ゴムラテックスを含有するディップ成形用組成物に上述した成 形型を浸漬 (ディップ)する。次いで、これを引き上げて成形型の表面に塗膜 (デイツ プ成形層)を形成させた後、加熱することによりディップ成形層を加硫 (架橋)すること により成形される。し力しながら、このようにして作製されるゴム手袋 (ディップ成形品) は粘着性が高ぐ成形型に付着し易いため、成形型からの脱離 (離型)がしばしば困 難となることがあった。そのため、成形型力も脱離しやすいこと (離型性の良いこと)、 すなわち、型に密着しな!、こと (密着性が小さ!、こと)も要求されて 、る。 [0005] 従来、このようなゴム手袋として、天然ゴムラテックスをディップ成形して得られるもの が多用されていた。し力しながら、天然ゴムラテックス製の手袋には、ゴム成分中に微 量に存在するタンパク成分により、使用者によってはアレルギーを引き起こすおそれ がある。そのため、そのような懸念のない合成ゴムラテックス製の手袋が提案されてい る。 [0004] A dip-molded product used for such rubber gloves is usually manufactured by the following method. That is, first, a coagulant such as calcium chloride is attached to the surface of a mold shaped like a hand or a finger, and the above-mentioned mold is immersed in a dip molding composition containing rubber latex (dip). To do. Next, the film is pulled up to form a coating film (dip-molded layer) on the surface of the mold, and then the dip-molded layer is vulcanized (crosslinked) by heating. However, rubber gloves (dip molded products) produced in this way tend to adhere to molds that are highly sticky, so that it is often difficult to remove them from the mold (release). was there. For this reason, it is also required that the mold force is easy to detach (that is, good releasability), that is, it is not in close contact with the mold (low adhesion). [0005] Conventionally, as such rubber gloves, those obtained by dip molding natural rubber latex have been frequently used. However, natural rubber latex gloves may cause allergies, depending on the user, due to minute amounts of protein components in the rubber component. Therefore, synthetic rubber latex gloves that do not have such concerns have been proposed.
[0006] たとえば、特許文献 1には、 50°C以下のガラス転移温度を有するカルボキシ変性 共役ジェン系ゴムラテックス、およびこのラテックスをディップ成形して得られた手袋 力 開示されている。この文献記載の手袋は、柔軟性、破断伸びに優れている一方 で、引張り強度に劣るとともに、成形型に密着し易いという不具合があった。  [0006] For example, Patent Document 1 discloses a carboxy-modified conjugated gen-based rubber latex having a glass transition temperature of 50 ° C or lower, and a glove force obtained by dip molding this latex. While the glove described in this document is excellent in flexibility and elongation at break, it has a problem that it is inferior in tensile strength and easily adheres to a mold.
[0007] また、特許文献 2には、芳香族ビュルモノマー、共役ジェンモノマーおよび不飽和 酸モノマーを乳化共重合して得られ、ゲル含量(内部架橋のレベルを示す)が特定 値以下である共重合体ラテックス、およびこのラテックスをディップ成形して得られた 手袋が、開示されている。この文献においては、引張り強度に優れた手袋を得ること を目的としているが、引張り強度は未だ不十分であり、し力も、耐ェタノール性や、成 形型からの離型性に劣るという不具合があった。  [0007] Further, Patent Document 2 discloses a copolymer obtained by emulsion copolymerization of an aromatic butyl monomer, a conjugation monomer and an unsaturated acid monomer, and having a gel content (indicating the level of internal crosslinking) of a specific value or less. A polymer latex and a glove obtained by dip molding this latex are disclosed. The purpose of this document is to obtain a glove with excellent tensile strength. However, the tensile strength is still insufficient, and the strength is inferior to ethanol resistance and releasability from molded molds. there were.
[0008] さらに、特許文献 3には、カルボキシルイ匕開鎖脂肪族ジェン Zアクリロニトリル Z (メ タ)アクリル酸エステル三元共重合体カゝら形成されることを特徴とし、離型性および装 着性が改良されたラテックス手袋が開示されている。この文献では、手袋表面同士の 滑り性を改善することを目的としているが、一方で、破断伸びが不十分であり、さらに は、耐エタノール性に劣るという不具合があった。  [0008] Furthermore, Patent Document 3 is characterized in that it is formed from a carboxyl-cleaved chain aliphatic gen-Z acrylonitrile Z (meth) acrylic acid ester terpolymer. Latex gloves with improved properties are disclosed. This document aims to improve the slipperiness between the glove surfaces, but on the other hand, there is a problem that the elongation at break is insufficient and the ethanol resistance is inferior.
特許文献 1 :米国特許 5, 910, 533号明細書  Patent Document 1: U.S. Pat.No. 5,910,533
特許文献 2 :米国特許 6, 627, 325号明細書  Patent Document 2: U.S. Patent 6,627,325
特許文献 3:特公平 6 - 70143号公報  Patent Document 3: Japanese Patent Publication No. 6-70143
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、このような実状に鑑みてなされ、成形型からの離型性が良好であり、十 分な引張り強度および破断伸びを有し、しカゝも、耐エタノール性に優れたディップ成 形品を与えることのできるディップ成形用組成物を提供することを目的とする。また、 本発明は、このようなディップ成形用組成物をディップ成形して得られ、上記特性を 有するディップ成形品を提供することも目的とする。 [0009] The present invention has been made in view of such a situation, has good releasability from a mold, has sufficient tensile strength and elongation at break, and shika is also excellent in ethanol resistance. It is an object of the present invention to provide a dip-forming composition that can provide a dip-formed product. Also, Another object of the present invention is to provide a dip-molded product obtained by dip-molding such a dip-molding composition and having the above characteristics.
課題を解決するための手段  Means for solving the problem
[0010] 本発明者等は、上記目的を達成すべく鋭意検討を行った結果、共役ジェン単量体 と、芳香族ビュル単量体と、エチレン性不飽和酸単量体と、を含む単量体混合物を
Figure imgf000004_0001
ヽて、こ れらの単量体の比率を所定範囲とし、しカゝも、共重合体ラテックスを構成する共重合 体を所定の条件でトルエン中に浸漬させた場合におけるトルエン不溶解分を特定の 値以上に制御することで、上記目的を達成できることを見出し、本発明を完成させる に至った。
[0010] As a result of diligent studies to achieve the above object, the present inventors have found that a monomer containing a conjugation monomer, an aromatic butyl monomer, and an ethylenically unsaturated acid monomer. The mass mixture
Figure imgf000004_0001
Then, the ratio of these monomers is set within a predetermined range, and the amount of insoluble toluene in the case where the copolymer constituting the copolymer latex is immersed in toluene under predetermined conditions is also determined. The inventors have found that the above-described object can be achieved by controlling to a specific value or more, and have completed the present invention.
[0011] すなわち、本発明に係るディップ成形用組成物は、  [0011] That is, the dip molding composition according to the present invention comprises:
共役ジェン単量体 34〜60重量部と、芳香族ビニル単量体 39〜65重量部と、ェチ レン性不飽和酸単量体 1〜: LO重量部と、を含む単量体混合物 100重量部を、共重 合して得られる共重合体ラテックスを有するディップ成形用組成物であって、 前記共重合体ラテックスを構成する共重合体を、温度 20°Cのトルエン中に、 24時 間浸漬した場合における、前記共重合体のトルエン不溶解分が、共重合体全体 100 重量%に対して、 30重量%以上である。  Monomer mixture comprising 34-60 parts by weight of conjugation monomer, 39-65 parts by weight of aromatic vinyl monomer, and 1-: LO part by weight of ethylenically unsaturated acid monomer 100 A dip-molding composition having a copolymer latex obtained by copolymerizing parts by weight, wherein the copolymer constituting the copolymer latex is placed in toluene at a temperature of 20 ° C for 24 hours. The toluene-insoluble content of the copolymer when immersed for 30 minutes is 30% by weight or more with respect to 100% by weight of the entire copolymer.
[0012] 好ましくは、前記共役ジェン単量体が、 1, 3—ブタジエン、イソプレン、 2—メチルー 1, 3—ブタジエン、 2, 3—ジメチルー 1, 3—ブタジエン、 2—ェチルー 1, 3—ブタジ ェン、 1, 3—ペンタジェンおよびクロ口プレンよりなる群力 選ばれる少なくとも一種 であり、より好ましくは 1, 3—ブタジエンおよび Zまたはイソプレンであり、さらに好まし くは 1, 3—ブタジエンである。 [0012] Preferably, the conjugation monomer is 1,3-butadiene, isoprene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene. Group, consisting of 1,3-pentadiene and black-opened plane, at least one selected, more preferably 1,3-butadiene and Z or isoprene, more preferably 1,3-butadiene. .
好ましくは、前記芳香族ビュル単量体が、スチレン、 α—メチルスチレン、 ρ—メチ ノレスチレン、 ρ—フエニルスチレン、 ρ—メトキシスチレン、クロロメチルスチレン、 m—フ ルォロスチレンおよびビュルナフタレンよりなる群力 選ばれる少なくとも一種であり、 より好ましくはスチレンである。  Preferably, the aromatic bur monomer is composed of styrene, α-methyl styrene, ρ-methyl styrene, ρ-phenyl styrene, ρ-methoxy styrene, chloromethyl styrene, m-fluoro styrene, and urnaphthalene. At least one selected, and more preferably styrene.
好ましくは、前記エチレン性不飽和酸単量体が、エチレン性不飽和モノカルボン酸 単量体、エチレン性不飽和多価カルボン酸単量体、エチレン性不飽和多価カルボン 酸無水物、エチレン性不飽和多価カルボン酸部分エステル単量体およびエチレン性 不飽和スルホン酸単量体よりなる群力 選ばれる少なくとも一種であり、より好ましくは エチレン性不飽和モノカルボン酸であり、さらに好ましくはメタクリル酸である。 Preferably, the ethylenically unsaturated acid monomer is an ethylenically unsaturated monocarboxylic acid monomer, an ethylenically unsaturated polyvalent carboxylic acid monomer, or an ethylenically unsaturated polyvalent carboxylic acid monomer. It is at least one selected from the group power consisting of an acid anhydride, an ethylenically unsaturated polycarboxylic acid partial ester monomer and an ethylenically unsaturated sulfonic acid monomer, more preferably an ethylenically unsaturated monocarboxylic acid More preferred is methacrylic acid.
[0013] 本発明のディップ成形用組成物は、さらに架橋剤を含有していることが好ましい。前 記架橋剤は、硫黄、有機過酸ィ匕物およびポリアミンよりなる群力 選ばれる少なくとも 一種であることがより好ましぐさらに好ましくは硫黄である。また、前記架橋剤の配合 量は、ディップ成形用組成物中の固形分 100重量部に対して、 0. 1〜3重量部であ ることが好ましい。  [0013] The dip molding composition of the present invention preferably further contains a crosslinking agent. More preferably, the crosslinking agent is at least one selected from the group consisting of sulfur, organic peroxides and polyamines, and more preferably sulfur. The amount of the crosslinking agent is preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the solid content in the dip molding composition.
本発明のディップ成形用組成物は、さらに架橋促進剤を含有していることが好まし い。前記架橋促進剤の配合量は、ディップ成形用組成物中の固形分 100重量部に 対して 0. 1〜2重量部であることが好ましい。  The dip molding composition of the present invention preferably further contains a crosslinking accelerator. The blending amount of the crosslinking accelerator is preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the solid content in the dip molding composition.
本発明のディップ成形用組成物は、さらに酸ィ匕亜鉛を含有して ヽることが好ま ヽ。 前記酸ィ匕亜鉛の配合量は、ディップ成形用組成物中の固形分 100重量部に対して 0. 3〜3重量部であることが好ましい。  The dip molding composition of the present invention preferably further contains acid zinc. It is preferable that the amount of the zinc oxide zinc is 0.3 to 3 parts by weight with respect to 100 parts by weight of the solid content in the dip molding composition.
本発明のディップ成形用組成物は、 pHが 8. 5〜 12であることが好ましい。  The dip molding composition of the present invention preferably has a pH of 8.5-12.
[0014] 本発明のディップ成形用組成物において、好ましくは、前記ディップ成形用組成物 に、金属製板を浸漬させて前記金属製板上にディップ成形膜を形成した場合におけ る、前記ディップ成形膜の 180° 剥離試験の値が、 4. 9 (NZ25mm)以下である。 [0014] In the dip molding composition of the present invention, preferably, the dip molding film is formed when a metal plate is immersed in the dip molding composition to form a dip molding film on the metal plate. The value of the 180 ° peel test of the molded film is 4.9 (NZ25mm) or less.
[0015] 本発明に係るディップ成形品は、上記 ヽずれかのディップ成形用組成物を、デイツ プ成形して得られるディップ成形品である。 [0015] A dip-molded product according to the present invention is a dip-molded product obtained by dip molding the above dip molding composition.
本発明のディップ成形品は、 ASTM D— 412に準拠して測定した引張り強度が 2 OMPa以上、かつ破断伸びが 600%以上であることが好ましい。  The dip-formed product of the present invention preferably has a tensile strength measured in accordance with ASTM D-412 of 2 OMPa or more and an elongation at break of 600% or more.
また、本発明のディップ成形品は、温度 20°Cのエタノール中に 1時間浸漬した後の 、引張速度 500mmZ分にて測定した引張り強度が 16MPa以上であることが好まし い。  Further, the dip-molded product of the present invention preferably has a tensile strength of 16 MPa or more measured at a tensile speed of 500 mmZ after being immersed in ethanol at a temperature of 20 ° C. for 1 hour.
発明の効果  The invention's effect
[0016] 本発明によると、ディップ成形用組成物中に含有させる共重合体ラテックスを、共役 ジェン単量体と、芳香族ビニル単量体と、エチレン性不飽和酸単量体と、を上記した 範囲で含む単量体混合物を共重合してなるものとし、しかも、共重合体ラテックスを 構成する共重合体のトルエン不溶解分を上記所定の範囲とする。そのため、製造時 における成形型からの離型性が良好であり、十分な引張り強度および破断伸びを有 し、しかも、耐エタノール性に優れたディップ成形品を得ることができる。特に、成形 型からの離型性を良好とすることにより、生産性の向上を図ることが可能となる。また、 耐エタノール性を向上させることにより、たとえば、ディップ成形品をゴム手袋用途に 使用し、エタノール消毒した際においても、使用時における手袋の破れを有効に防 止することができる。 [0016] According to the present invention, the copolymer latex to be contained in the dip-molding composition comprises the above conjugate monomer, aromatic vinyl monomer, and ethylenically unsaturated acid monomer. did The monomer mixture contained in the range is formed by copolymerization, and the toluene-insoluble content of the copolymer constituting the copolymer latex is set in the predetermined range. Therefore, it is possible to obtain a dip-molded product that has good releasability from the mold during production, has sufficient tensile strength and elongation at break, and is excellent in ethanol resistance. In particular, it is possible to improve productivity by making the mold release property good. Also, by improving the ethanol resistance, for example, when a dip-molded product is used for rubber gloves and sterilized with ethanol, tearing of the gloves during use can be effectively prevented.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明のディップ成形用組成物、および本発明のディップ成形用組成物を 架橋して得られるディップ成形品について、詳細に説明する。  Hereinafter, the dip molding composition of the present invention and the dip molded product obtained by crosslinking the dip molding composition of the present invention will be described in detail.
[0018] ディップ Hfe ffl Hfe [0018] Dip Hfe ffl Hfe
本発明のディップ成形用組成物は、共役ジェン単量体と、芳香族ビニル単量体と、 エチレン性不飽和酸単量体と、を含む単量体混合物を共重合して得られる共重合体 ラテックスを、少なくとも含む。  The dip molding composition of the present invention is a copolymer obtained by copolymerizing a monomer mixture containing a conjugation monomer, an aromatic vinyl monomer, and an ethylenically unsaturated acid monomer. Combined latex at least.
[0019] 共重合体ラテックス [0019] Copolymer latex
共役ジヱン単量体  Conjugated dye monomer
共役ジェン単量体としては、特に限定されないが、共役ジェンを含有する炭素数 4 〜12の化合物が好ましい。このような共役ジェン単量体としては、たとえば、 1, 3— ブタジエン、イソプレン、 2—メチルー 1, 3—ブタジエン、 2, 3—ジメチルー 1, 3—ブ タジェン、 2—ェチルー 1, 3—ブタジエン、 1, 3—ペンタジェン、クロ口プレンなどが 挙げられる。なかでも、 1, 3—ブタジエンおよびイソプレンが好ましぐ 1, 3—ブタジ ェンがより好まし 、。これらの共役ジェン単量体は単独で又は 2種以上を組み合せて 用!/、ることができる。  Although it does not specifically limit as a conjugation monomer, The C4-C12 compound containing a conjugation is preferable. Examples of such conjugated diene monomers include 1,3-butadiene, isoprene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene. 1, 3-pentagen, black mouth plane and the like. Of these, 1,3-butadiene and 1,3-butadiene are preferred, and 1,3-butadiene and isoprene are preferred. These conjugation monomers can be used alone or in combination of two or more.
共役ジェン単量体の使用量は、全単量体 100重量部に対して、 34〜60重量部、 好ましくは 38〜55重量部、より好ましくは 40〜52重量部である。この量が少なすぎ ると破断伸びに劣り、逆に多すぎると、成形型からの離型性や引張り強度に劣る。  The amount of the conjugation monomer used is 34 to 60 parts by weight, preferably 38 to 55 parts by weight, and more preferably 40 to 52 parts by weight with respect to 100 parts by weight of the total monomers. If this amount is too small, the elongation at break is poor, and conversely if too large, the releasability from the mold and the tensile strength are poor.
[0020] 芳呑族ビュル単量体 芳香族ビュル単量体としては、例えば、スチレン、 (X—メチルスチレン、 p—メチルス チレン、 p—フエニルスチレン、 p—メトキシスチレン、クロロメチルスチレン、 m—フノレ ォロスチレン、ビュルナフタレンなどが挙げられる。これらのなかでも、特にスチレンが 好ま 、。これらの芳香族ビニル単量体は単独で又は 2種以上を組み合せて用いる ことができる。 [0020] Houki Bure Monomer Examples of the aromatic bur monomer include styrene, (X-methyl styrene, p-methyl styrene, p-phenyl styrene, p-methoxy styrene, chloromethyl styrene, m-phenol styrene, and urnaphthalene. Of these, styrene is particularly preferred, and these aromatic vinyl monomers can be used alone or in combination of two or more.
芳香族ビニル単量体の使用量は、全単量体 100重量部に対して、 39〜65重量部 、好ましくは 42〜60重量部、より好ましくは 45〜58重量部である。芳香族ビニル単 量体の量が少なすぎると、成形型からの離型性ゃ耐エタノール性に劣り、逆に多す ぎると、破断伸びに劣る。  The amount of the aromatic vinyl monomer used is 39 to 65 parts by weight, preferably 42 to 60 parts by weight, and more preferably 45 to 58 parts by weight with respect to 100 parts by weight of the total monomers. If the amount of the aromatic vinyl monomer is too small, the releasability from the mold is poor in ethanol resistance, and conversely if too large, the elongation at break is poor.
[0021] エチレン件不飽和酸単量体 [0021] Ethylene unsaturated acid monomer
エチレン性不飽和酸単量体としては、酸性基を含有するエチレン性不飽和単量体 であれば特に限定されない。酸性基としては、たとえば、カルボキシル基、スルホン酸 基、酸無水物基などが挙げられる。  The ethylenically unsaturated acid monomer is not particularly limited as long as it is an ethylenically unsaturated monomer containing an acidic group. Examples of the acidic group include a carboxyl group, a sulfonic acid group, and an acid anhydride group.
具体的には、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸単量体 ;ィタコン酸、マレイン酸、フマル酸等のエチレン性不飽和多価カルボン酸単量体;無 水マレイン酸、無水シトラコン酸等のエチレン性不飽和多価カルボン酸無水物;フマ ル酸モノブチル、マレイン酸モノブチル、マレイン酸モノー 2—ヒドロキシプロピル等の エチレン性不飽和多価カルボン酸部分エステル単量体;スチレンスルホン酸等のェ チレン性不飽和スルホン酸単量体;などが挙げられる。なかでも、エチレン性不飽和 カルボン酸が好ましぐエチレン性不飽和モノカルボン酸がより好ましぐメタクリル酸 が特に好まし 、。これらのエチレン性不飽和酸単量体はアルカリ金属塩またはアンモ -ゥム塩として用いることもできる。また、これらのエチレン性不飽和酸単量体は単独 でまたは 2種以上を組み合せて用いることができる。  Specifically, ethylenically unsaturated monocarboxylic acid monomers such as acrylic acid and methacrylic acid; ethylenically unsaturated polycarboxylic acid monomers such as itaconic acid, maleic acid and fumaric acid; Ethylenically unsaturated polycarboxylic acid anhydrides such as citraconic anhydride; ethylenically unsaturated polycarboxylic acid partial ester monomers such as monobutyl fumarate, monobutyl maleate, mono-2-hydroxypropyl maleate; styrene sulfone And ethylenically unsaturated sulfonic acid monomers such as acids. Of these, methacrylic acid is particularly preferred, with ethylenically unsaturated monocarboxylic acids being more preferred, with ethylenically unsaturated carboxylic acids being preferred. These ethylenically unsaturated acid monomers can also be used as alkali metal salts or ammonium salts. These ethylenically unsaturated acid monomers can be used alone or in combination of two or more.
エチレン性不飽和酸単量体の使用量は、全単量体 100重量部に対して、 1〜10量 部、好ましくは 1. 5〜8重量部、より好ましくは 2〜7重量部である。エチレン性不飽和 酸単量体の量が少なすぎると、引張り強度に劣り、逆に多すぎると、破断伸びに劣る  The amount of the ethylenically unsaturated acid monomer used is 1 to 10 parts by weight, preferably 1.5 to 8 parts by weight, more preferably 2 to 7 parts by weight, based on 100 parts by weight of the total monomers. . If the amount of the ethylenically unsaturated acid monomer is too small, the tensile strength is inferior. On the other hand, if the amount is too large, the elongation at break is inferior.
[0022] 他の単量体 本発明のディップ成形用組成物に含有される共重合体ラテックスには、上記の単量 体に加えて、必要に応じて、これらと共重合可能な他の単量体を使用することができ る。 [0022] Other monomers In the copolymer latex contained in the dip molding composition of the present invention, in addition to the above-mentioned monomer, if necessary, other monomers copolymerizable with these can be used. The
他の単量体としては、たとえば、フルォロェチルビ-ルエーテル等のフルォロアル キルビュルエーテル;(メタ)アクリルアミド、 N—メチロール (メタ)アクリルアミド、 N, N ジメチロール (メタ)アクリルアミド、 N—メトキシメチル (メタ)アクリルアミド、 N—プロ ポキシメチル (メタ)アクリルアミド等のエチレン性不飽和アミド単量体;(メタ)アクリル 酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸— 2— ェチルへキシル、(メタ)アクリル酸トリフルォロェチル、(メタ)アクリル酸テトラフルォロ プロピル、マレイン酸ジブチル、フマル酸ジブチル、マレイン酸ジェチル、(メタ)アタリ ル酸メトキシメチル、(メタ)アクリル酸エトキシェチル、(メタ)アクリル酸メトキシェトキシ ェチル、(メタ)アクリル酸シァノメチル、(メタ)アクリル酸 2—シァノエチル、(メタ)ァ クリル酸— 1—シァノプロピル、(メタ)アクリル酸— 2 ェチル—6 シァノへキシル、 ( メタ)アクリル酸一 3—シァノプロピル、(メタ)アクリル酸ヒドロキシェチル、(メタ)アタリ ル酸ヒドロキシプロピル、グリシジル (メタ)アタリレート、ジメチルアミノエチル (メタ)ァク リレート等のエチレン性不飽和カルボン酸エステル単量体;(メタ)アクリロニトリルなど のエチレン性不飽和-トリル単量体;ジビュルベンゼン、ポリエチレングリコールジ(メ タ)アタリレート、ポリプロピレングリコールジ (メタ)アタリレート、トリメチロールプロパン トリ (メタ)アタリレート、ペンタエリスリトール (メタ)アタリレート等の架橋性単量体;など を挙げることができる。これらの単量体は、単独で又は 2種以上を組み合わせて使用 することができる。  Other monomers include, for example, fluoralkyl butyl ether such as fluoroethyl vinyl ether; (meth) acrylamide, N-methylol (meth) acrylamide, N, N dimethylol (meth) acrylamide, N-methoxymethyl (meth) acrylamide N-propoxymethyl ethylenically unsaturated amide monomers such as (meth) acrylamide; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylic acid-2-ethyl Hexyl, trifluoroethyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, dibutyl maleate, dibutyl fumarate, jetyl maleate, methoxymethyl (meth) acrylate, ethoxyethyl (meth) acrylate, ( (Meth) acrylic acid Ethyl, cyanomethyl (meth) acrylate, 2-cyanoethyl (meth) acrylate, (meth) acrylic acid— 1-cyanopropyl, (meth) acrylic acid—2 ethyl-6 cyanohexyl, (meth) acrylic acid 1 3 — Ethylenically unsaturated carboxylic acid ester monomers such as cyanopropyl, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, glycidyl (meth) acrylate, dimethylaminoethyl (meth) acrylate; Ethylenically unsaturated-tolyl monomers such as (meth) acrylonitrile; dibutenebenzene, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, penta Crosslinkable simple substances such as erythritol (meth) atarylate Body; and the like. These monomers can be used alone or in combination of two or more.
これら他の単量体を使用する場合における使用量は、全単量体 100重量部に対し て、好ましくは 20重量部以下、より好ましくは 15重量部以下、さらに好ましくは 10重 量部以下である。他の単量体の量が多すぎると、上述した本発明の効果が得難くな る傾向にある。  When these other monomers are used, the amount used is preferably 20 parts by weight or less, more preferably 15 parts by weight or less, and even more preferably 10 parts by weight or less with respect to 100 parts by weight of the total monomers. is there. If the amount of the other monomer is too large, the effects of the present invention described above tend to be difficult to obtain.
共重合体ラテックスの製造方法  Method for producing copolymer latex
次に、本発明で用いる共重合体ラテックスの製造方法を説明する。  Next, a method for producing the copolymer latex used in the present invention will be described.
本発明で用いる共重合体ラテックスは、上記の各単量体の混合物を、乳化重合す ることにより製造することができる。乳化重合方法としては、従来公知の乳化重合法を 採用すれば良い。また、乳化重合するに際しては、乳化剤、重合開始剤、連鎖移動 剤等の通常用いられる重合副資材を使用することができる。 The copolymer latex used in the present invention emulsion-polymerizes a mixture of the above monomers. Can be manufactured. As the emulsion polymerization method, a conventionally known emulsion polymerization method may be employed. For emulsion polymerization, commonly used polymerization auxiliary materials such as emulsifiers, polymerization initiators, chain transfer agents and the like can be used.
[0024] 乳ィ匕剤としては、特に限定されな 、が、たとえば、ポリオキシエチレンアルキルエー テル、ポリオキシエチレンアルキルフエノールエーテル、ポリオキシエチレンアルキル エステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン性乳化剤;ミ リスチン酸、パルミチン酸、ォレイン酸、リノレン酸等の脂肪酸の塩、ドデシルベンゼン スルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、高級アルコール硫酸エス テル塩、アルキルスルホコハク酸塩等のァ-オン性乳化剤; a , j8 不飽和カルボン 酸のスルホエステル、 a , j8—不飽和カルボン酸のサルフェートエステル、スルホア ルキルァリールエーテル等の共重合性乳ィ匕剤;などが挙げられる。なかでも、ァ-ォ ン性乳化剤が好適に用いられる。これらの乳化剤は単独で又は 2種以上を組み合せ て用いることができる。乳化剤の使用量は、全単量体 100重量部に対して、好ましく は 0. 1〜10重量部、より好ましくは 2〜6重量部である。 [0024] The emollient is not particularly limited, but nonionic such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester, etc. Emulsifiers: Fatty acid salts such as myristic acid, palmitic acid, oleic acid, linolenic acid, alkyl benzene sulfonates such as sodium dodecylbenzene sulfonate, higher alcohol sulfate esters, alkyl sulfosuccinates, etc. A, j8 unsaturated carboxylic acid sulfoester, a , j8-unsaturated carboxylic acid sulfate ester, sulfoalkylaryl ether, and other copolymerizable whey agents; Of these, ionic emulsifiers are preferably used. These emulsifiers can be used alone or in combination of two or more. The amount of the emulsifier used is preferably 0.1 to 10 parts by weight, more preferably 2 to 6 parts by weight with respect to 100 parts by weight of the total monomers.
[0025] 重合開始剤としては、特に限定されないが、たとえば、過硫酸ナトリウム、過硫酸力 リウム、過硫酸アンモ-ゥム、過リン酸カリウム、過酸化水素等の無機過酸化物;ジィ ソプロピルベンゼンハイド口パーオキサイド、クメンハイド口パーオキサイド、 t ブチル ハイド口パーオキサイド、 1, 1, 3, 3—テトラメチルブチルハイド口パーオキサイド、 2, 5 ジメチルへキサン 2, 5 ジハイド口パーオキサイド、ジー t ブチルパーォキサ イド、ジー α タミルパーオキサイド、ァセチルパーオキサイド、イソブチリルパーォキ サイド、ベンゾィルパーオキサイド等の有機過酸化物;ァゾビスイソブチ口-トリル、ァ ゾビス— 2, 4 ジメチルバレ口-トリル、ァゾビスイソ酪酸メチル等のァゾ化合物;など が挙げられる。なかでも、無機過酸ィ匕物を用いると、共重合体ラテックスを安定して製 造することができ、し力も、引張り強度および破断伸びに優れたディップ成形品が得 られるため、好ましく用いられる。これらの重合開始剤は、それぞれ単独で、あるいは 2種類以上を組み合せて使用することができる。重合開始剤の使用量は、全単量体 100重量部に対して、通常、 0. 01〜1重量部である。  [0025] The polymerization initiator is not particularly limited, and examples thereof include inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide; Benzene Hyde Peroxide, Cumene Hyde Peroxide, t-Butyl Hyde Peroxide, 1, 1, 3, 3-Tetramethylbutyl Hyde Peroxide, 2, 5 Dimethylhexane 2, 5 Dihydrate Peroxide, G Organic peroxides such as butyl peroxide, di-α-tamyl peroxide, acetyl chloride, isobutyryl peroxide, benzoyl peroxide; azobisisobutyoxy-tolyl, azobis-2,4 dimethyl valeryl-tolyl, azobisisobutyric acid Azo compounds such as methyl; and the like. In particular, when an inorganic peroxide is used, a copolymer latex can be stably produced, and a dip molded product having excellent tensile strength and elongation at break can be obtained. . These polymerization initiators can be used alone or in combination of two or more. The amount of the polymerization initiator used is usually 0.01 to 1 part by weight with respect to 100 parts by weight of all monomers.
[0026] また、上述の無機過酸化物開始剤および有機過酸化物開始剤は、還元剤と組み 合せて、レドックス系重合開始剤として使用することができる。このような還元剤として は、特に限定されないが、硫酸第一鉄、ナフテン酸第一銅等の還元状態にある金属 イオンを含有する化合物;メタンスルホン酸ナトリウム等のスルホン酸ィ匕合物;ジメチル ァ-リン等のアミンィ匕合物;などが挙げられる。 [0026] The inorganic peroxide initiator and the organic peroxide initiator described above are combined with a reducing agent. In addition, it can be used as a redox polymerization initiator. Examples of such a reducing agent include, but are not limited to, compounds containing metal ions in a reduced state such as ferrous sulfate and cuprous naphthenate; sulfonic acid compounds such as sodium methanesulfonate; dimethyl And amine compounds such as a phosphorus.
[0027] 乳化重合を行う際には、連鎖移動剤を使用することが好ましい。連鎖移動剤を使用 することにより、共重合体ラテックスを構成する共重合体のトルエン不溶解分の調整 が可能となる。  [0027] When carrying out the emulsion polymerization, it is preferable to use a chain transfer agent. By using a chain transfer agent, it is possible to adjust the toluene-insoluble content of the copolymer constituting the copolymer latex.
連鎖移動剤としては、たとえば、 n—ブチルメルカプタン、 t—ドデシルメルカプタン 等のメルカプタン類;テトラェチルチウラムスルフイド、ジペンタメチレンチウラムへキサ スルフイド等のスルフイド類; aーメチルスチレン 2量体;四塩ィ匕炭素;などが挙げられ る。なかでも、メルカプタン類が好ましぐ tードデシルメルカプタンがより好ましい。こ れらは単独で又は 2種以上を組み合せて使用することができる。連鎖移動剤の使用 量は、全単量体 100重量部に対して、好ましくは 0. 1〜1重量部、より好ましくは 0. 2 〜0. 5重量部である。 Examples of chain transfer agents include mercaptans such as n-butyl mercaptan and t-dodecyl mercaptan; sulfides such as tetraethylthiuramsulfide and dipentamethylenethiuramhexasulfide; a- methylstyrene dimer; tetrasalt匕 匕; and so on. Of these, mercaptans are preferred. Tododecyl mercaptan is more preferred. These can be used alone or in combination of two or more. The amount of the chain transfer agent used is preferably 0.1 to 1 part by weight, more preferably 0.2 to 0.5 part by weight, based on 100 parts by weight of all monomers.
[0028] 乳化重合する際に使用する水の量は、全単量体 100重量部に対して、通常、 80〜 600重量部程度、好ましくは 100〜300重量部である。  [0028] The amount of water used in the emulsion polymerization is usually about 80 to 600 parts by weight, preferably 100 to 300 parts by weight, with respect to 100 parts by weight of the total monomers.
[0029] 上述した各単量体の添加方法は、特に限定されず、各単量体を混合して単量体混 合物とし、この単量体混合物を重合反応器に一括して仕込む方法、単量体混合物を 重合反応器に連続的に添加する方法、単量体のうち一部を重合反応器に仕込み、 残りの単量体を重合反応器に連続的にまたは分割して添加する方法等のいずれを 採用してちょい。  [0029] The method of adding each monomer described above is not particularly limited, and a method of mixing the monomers to form a monomer mixture and charging the monomer mixture into the polymerization reactor all at once. , A method of continuously adding the monomer mixture to the polymerization reactor, charging a part of the monomer into the polymerization reactor, and adding the remaining monomer continuously or divided into the polymerization reactor Use any of these methods.
[0030] 乳化重合に際して、必要に応じて、粒径調整剤、キレート化剤、酸素捕捉剤、分散 剤等の重合副資材を使用することができる。  In the emulsion polymerization, polymerization auxiliary materials such as a particle size adjusting agent, a chelating agent, an oxygen scavenger, and a dispersing agent can be used as necessary.
[0031] 乳化重合は、上記各単量体および各重合副資材を用い、通常、水中で行われる。 [0031] Emulsion polymerization is usually carried out in water using the monomers and polymerization auxiliary materials.
重合温度は特に限定されないが、好ましくは 5〜60°C、より好ましくは 30〜50°Cであ る。また、重合時間は 5〜30時間程度である。  The polymerization temperature is not particularly limited, but is preferably 5 to 60 ° C, more preferably 30 to 50 ° C. The polymerization time is about 5 to 30 hours.
[0032] 以上の条件で乳化重合を行!、、所定の重合転化率に達した時点で、重合系を冷 却する方法、あるいは重合停止剤を加える方法により、重合反応を停止する。重合反 応を停止する際の重合転化率は、好ましくは 90重量%以上、より好ましくは 94重量 %以上である。そして、重合反応を停止した後、所望により、未反応の単量体を除去 し、固形分濃度や pHを調整することにより共重合体ラテックスを得ることができる。 [0032] Emulsion polymerization is performed under the above conditions, and when a predetermined polymerization conversion rate is reached, the polymerization reaction is stopped by a method of cooling the polymerization system or a method of adding a polymerization terminator. Polymerization reaction The polymerization conversion rate when the reaction is stopped is preferably 90% by weight or more, more preferably 94% by weight or more. Then, after stopping the polymerization reaction, a copolymer latex can be obtained by removing unreacted monomers and adjusting the solid content concentration and pH as desired.
[0033] 本発明においては、ディップ成形用組成物に含有されることとなる共重合体ラテック スを構成する各単量体を上記所定量とするとともに、さらに、共重合体ラテックスを構 成する共重合体のトルエン不溶解分を以下の特定範囲とする。このような構成とする ことにより、引張り強度および破断伸びを保ちつつ、成形型からの離型性および耐ェ タノール性の向上を図ることができる。  [0033] In the present invention, each monomer constituting the copolymer latex to be contained in the dip molding composition is set to the above predetermined amount, and further a copolymer latex is constituted. The toluene insoluble content of the copolymer is set to the following specific range. By adopting such a configuration, it is possible to improve mold release properties and ethanol resistance while maintaining tensile strength and elongation at break.
すなわち、トルエン不溶解分を、共重合体ラテックスを構成する共重合体全体 100 重量%に対して、 30重量%以上、好ましくは 40〜95重量%の範囲、より好ましくは 5 0〜90重量%の範囲とする。トルエン不溶解分は、たとえば、共重合体ラテックスから なる乾燥皮膜を、金網のカゴに入れ、温度 20°Cとしたトルエンに 24時間浸漬させ、 その後カゴを引き上げて乾燥し、浸漬前後における乾燥被膜の重量を測定し、その 比率力 算出することができる。なお、トルエン不溶解分は、重合温度、反応時間、 重合開始剤の種類や使用量、架橋性単量体の種類やその使用量、および連鎖移動 剤の種類やその使用量など種々の因子を適宜選択して、調整することができる。  That is, the insoluble content of toluene is 30% by weight or more, preferably in the range of 40 to 95% by weight, more preferably 50 to 90% by weight, based on 100% by weight of the entire copolymer constituting the copolymer latex. The range. For toluene insoluble matter, for example, a dry film made of copolymer latex is placed in a wire mesh cage and immersed in toluene at a temperature of 20 ° C for 24 hours, and then the basket is pulled up and dried, and the dried film before and after immersion The specific force can be calculated. The toluene insoluble matter depends on various factors such as polymerization temperature, reaction time, type and amount of polymerization initiator, type and amount of crosslinkable monomer, and type and amount of chain transfer agent. It can select and adjust suitably.
[0034] 共重合体ラテックスの数平均粒子径は、透過型電子顕微鏡で測定した数平均粒子 径で、好ましくは 60〜300nm、より好ましくは 80〜150nmである。なお、この粒子径 は、乳化剤および重合開始剤の使用量を調節するなどの方法により、所望の値に調 整できる。  [0034] The number average particle size of the copolymer latex is a number average particle size measured with a transmission electron microscope, and is preferably 60 to 300 nm, more preferably 80 to 150 nm. The particle size can be adjusted to a desired value by adjusting the amounts of emulsifier and polymerization initiator used.
[0035] 共重合体ラテックスには、さらに所望により、老化防止剤、紫外線吸収剤、防腐剤、 抗菌剤などの副資材を配合することができる。  [0035] If desired, the copolymer latex may further contain auxiliary materials such as an anti-aging agent, an ultraviolet absorber, a preservative, and an antibacterial agent.
[0036] 架橋剤 [0036] Cross-linking agent
本発明のディップ成形用組成物は、上記した共重合体ラテックスを架橋するために 、さらに架橋剤を含有していることが好ましい。  The dip molding composition of the present invention preferably further contains a crosslinking agent in order to crosslink the copolymer latex.
架橋剤としては、特に限定されないが、硫黄、有機過酸化物、ポリアミンなどが挙げ られる。なかでも、硫黄が好ましい。  Although it does not specifically limit as a crosslinking agent, Sulfur, an organic peroxide, a polyamine, etc. are mentioned. Of these, sulfur is preferable.
[0037] 硫黄としては、たとえば、粉末硫黄、硫黄華、沈降硫黄、コロイド硫黄、表面処理硫 黄、不溶性硫黄などが挙げられる。 [0037] Examples of sulfur include powdered sulfur, sulfur white, precipitated sulfur, colloidal sulfur, and surface-treated sulfur. Examples include yellow and insoluble sulfur.
有機過酸ィ匕物としては、たとえば、ジベンゾィルパーオキサイド、ベンゾィル(3—メ チルベンゾィル)パーオキサイド、ジ(4 メチルベンゾィル)パーオキサイド、ジラウ口 ィルパーオキサイド、ジステアロイルパーオキサイド、ジー α タミルパーオキサイド、 1, 1 ビス(t—ブチルパーォキシ)シクロドデカン、サクシニックアシッドパーォキサイ ド、ビス(4— tーブチルシクロへキシル)パーォキシジカーボネート、 t—ブチルパー ォキシマレイツクアシッドなどが挙げられる。  Organic peroxides include, for example, dibenzoyl peroxide, benzoyl (3-methylbenzoyl) peroxide, di (4 methylbenzoyl) peroxide, dilauryl peroxide, distearoyl peroxide, di-α-tamil peroxide 1, 1 bis (t-butylperoxy) cyclododecane, succinic acid peroxide, bis (4-tert-butylcyclohexyl) peroxydicarbonate, t-butylperoxymaleic acid, and the like.
ポリアミンとしては、へキサメチレンジァミン、トリエチレンテトラミン、テトラエチレンべ ンタミンなどが挙げられる。  Examples of the polyamine include hexamethylenediamine, triethylenetetramine, tetraethylenepentamine and the like.
[0038] 架橋剤の配合量は、ディップ成形用組成物中の固形分 (ラテックス固形分) 100重 量部に対して、好ましくは 0. 1〜3重量部、より好ましくは 0. 3〜2. 5重量部、さらに 好ましくは 0. 5〜2重量部である。架橋剤の量が少な過ぎると、引張り強度に劣り、逆 に多過ぎると、破断伸びに劣る。  [0038] The amount of the crosslinking agent is preferably 0.1 to 3 parts by weight, more preferably 0.3 to 2 parts per 100 parts by weight of the solid content (latex solid content) in the dip molding composition. 5 parts by weight, more preferably 0.5 to 2 parts by weight. If the amount of the crosslinking agent is too small, the tensile strength is inferior. On the other hand, if the amount is too large, the elongation at break is inferior.
[0039] 架橋剤として、硫黄を使用する場合には、架橋促進剤 (加硫促進剤)や、酸化亜鉛 を配合することが好ましい。  [0039] When sulfur is used as the crosslinking agent, it is preferable to incorporate a crosslinking accelerator (vulcanization accelerator) or zinc oxide.
[0040] 架橋促進剤 (加硫促進剤)としては、ディップ成形にお!ヽて通常用いられるものが 使用でき、たとえば、ジェチルジチォカルバミン酸、ジブチルジチォカルバミン酸、ジ 2—ェチルへキシルジチォ力ルバミン酸、ジシクロへキシルジチォ力ルバミン酸、ジ フエ-ルジチォカルバミン酸、ジベンジルジチォカルバミン酸などのジチォ力ルバミン 酸類およびそれらの亜鉛塩; 2—メルカプトべンゾチアゾール、 2—メルカプトべンゾ チアゾール亜鉛、 2—メルカプトチアゾリン、ジベンゾチアジル'ジスルフイド、 2- (2, 4ージ-トロフエ-ルチオ)ベンゾチアゾール、 2—(N, N ジェチルチオ'カルバイ ルチオ)ベンゾチアゾール、 2—(2, 6 ジメチルー 4 モルホリノチォ)ベンゾチアゾ ール、 2— (4,—モルホリノ 'ジチォ)ベンゾチアゾール、 4 モルホ-リル— 2 ベン ゾチアジル'ジスルフイド、 1, 3 ビス(2 べンゾチアジル 'メルカプトメチル)ユリアな どが挙げられる。これらは、単独で又は 2種以上を組み合せて用いることができる。 架橋促進剤 (加硫促進剤)の配合量は、ラテックス固形分 100重量部に対して、好 ましくは 0. 1〜2重量部、より好ましくは 0. 2〜1. 5重量部、さらに好ましくは 0. 25〜 1重量部である。この量が少な過ぎると引張り強度が低下し、逆に多過ぎると破断伸 びに劣る。 [0040] As the crosslinking accelerator (vulcanization accelerator), those usually used for dip molding can be used, and examples thereof include decyl dithiocarbamic acid, dibutyldithiocarbamic acid, and di-2-ethyl. Xyldithiocarbamate, dicyclohexyldithiocarbamate, diphenoldithiocarbamate, dibenzyldithiocarbamate and other dithiorubamates and their zinc salts; 2-mercaptobenzothiazole, 2-mercaptobenzo Zinc thiazole, 2-mercaptothiazoline, dibenzothiazyl'disulfide, 2- (2,4-di-trifluorothio) benzothiazole, 2- (N, N jetylthio'carbylthio) benzothiazole, 2- (2, 6 Dimethyl-4-morpholinothio) benzothiazol, 2— (4, -morpholino'dithio) benzothiazole, 4 E - Lil - 2 Ben Zochiajiru 'disulfide, 1, 3-bis (2 base Nzochiajiru' mercaptomethyl) etc. urea which can be mentioned. These can be used alone or in combination of two or more. The amount of the crosslinking accelerator (vulcanization accelerator) is preferably 0.1 to 2 parts by weight, more preferably 0.2 to 1.5 parts by weight, more preferably 100 parts by weight of the latex solid content. Preferably from 0.25 1 part by weight. If this amount is too small, the tensile strength decreases, and if it is too large, the elongation at break is inferior.
[0041] 酸ィ匕亜鉛の配合量は、ラテックス固形分 100重量部に対して、好ましくは 0. 3〜3 重量部、より好ましくは 0. 5〜2重量部、さらに好ましくは 1〜1. 5重量部である。この 量が少な過ぎると引張り強度に劣り、逆に多過ぎると破断伸びに劣る。  [0041] The amount of acid zinc is preferably 0.3 to 3 parts by weight, more preferably 0.5 to 2 parts by weight, and still more preferably 1 to 1. 5 parts by weight. If the amount is too small, the tensile strength is inferior. Conversely, if the amount is too large, the elongation at break is inferior.
[0042] 本発明のディップ成形用組成物には、さらに、必要に応じて、 pH調整剤、増粘剤、 老化防止剤、分散剤、顔料、充填剤、軟化剤などを配合することができる。  [0042] The dip molding composition of the present invention may further contain a pH adjuster, a thickener, an anti-aging agent, a dispersant, a pigment, a filler, a softener, and the like, if necessary. .
[0043] 本発明のディップ成形用組成物の固形分濃度は、好ましくは 10〜60重量%、より 好ましくは 20〜45重量%である。また、本発明のディップ成形用組成物の pHは、好 ましくは 8. 5〜12、より好ましくは 9〜: L1である。  [0043] The solid content concentration of the dip molding composition of the present invention is preferably 10 to 60% by weight, more preferably 20 to 45% by weight. The pH of the dip molding composition of the present invention is preferably 8.5 to 12, more preferably 9 to L1.
[0044] 本発明のディップ成形用組成物は、金属製板を浸漬させて前記金属製板上にディ ップ成形膜を形成した場合における、このディップ成形膜の 180° 剥離試験の値が、 4. 9 (NZ25mm)以下であり、好ましくは、 3. 4 (NZ25mm)以下である。剥離試験 の値が低いと、ディップ成形する際に成形型からの離型が容易となるため、剥離試験 の値は低いほうが好ましい。なお、剥離試験値は、たとえば、金属製板上に、ディップ 成形用組成物からなるディップ成形層を形成し、次いで、加熱し、共重合体ラテック スを架橋させた後、この成形膜を剥離する際に要する引張荷重を求めることにより測 定することができる。なお、この際に使用する金属製板としては、一般的に接着試験 に用いられる金属製板を用いれば良ぐ特に限定されないが、ステンレス鋼板、アル ミニゥム及びアルミニウム合金板、クロム板などが使用できる。これらのなかでも、ステ ンレス鋼板が好ましく使用できる。  [0044] The dip-forming composition of the present invention has a 180 ° peel test value of the dip-formed film when the dip-formed film is formed on the metal plate by immersing the metal plate. 4. 9 (NZ25mm) or less, preferably 3.4 (NZ25mm) or less. When the value of the peel test is low, it is easy to release from the mold during dip molding. Therefore, the value of the peel test is preferably low. The peel test value is determined by, for example, forming a dip-molded layer made of a dip-molding composition on a metal plate, then heating to crosslink the copolymer latex, and then peeling the molded film. It can be measured by obtaining the tensile load required for this. The metal plate used in this case is not particularly limited as long as a metal plate generally used for adhesion tests is used, but stainless steel plates, aluminum and aluminum alloy plates, chrome plates, etc. can be used. . Among these, a stainless steel plate can be preferably used.
[0045] ディップ成形品  [0045] Dip molding
本発明のディップ成形品は、上述した本発明のディップ成形用組成物をディップ成 形して得られる。ディップ成形方法としては、従来公知の方法を採用することができ、 たとえば、直接浸漬法、アノード凝着浸漬法、ティーグ凝着浸漬法などが挙げられる 。なかでも、均一な厚みを有するディップ成形品が得やすいという点で、アノード凝着 浸漬法が好ましい。以下、一実施形態としてのアノード凝着浸漬法によるディップ成 形方法を説明する。 [0046] まず、ディップ成形型を凝固剤溶液に浸漬して、ディップ成形型の表面に凝固剤を 付着させる。ディップ成形型としては、材質は磁器製、ガラス製、金属製、プラスチッ ク製など種々のものが使用できる。型の形状は最終製品であるディップ成形品の形 状に合わせたものとすれば良 、。 The dip-molded product of the present invention is obtained by dip-forming the above-described dip-molding composition of the present invention. As the dip-molding method, a conventionally known method can be adopted, and examples thereof include a direct dipping method, an anode adhesion dipping method, and a teag adhesion dipping method. Of these, the anode coagulation dipping method is preferable in that a dip-molded product having a uniform thickness is easily obtained. Hereinafter, a dip forming method by an anode adhesion dipping method as one embodiment will be described. [0046] First, the dip mold is immersed in a coagulant solution, and the coagulant is adhered to the surface of the dip mold. Various materials such as porcelain, glass, metal, and plastic can be used as the dip mold. The shape of the mold should be matched to the shape of the final dip-molded product.
[0047] 凝固剤溶液は、塩析剤などの凝固剤を、水やアルコールまたはそれらの混合物に 溶解させた溶液である。塩化バリウム、塩化カルシウム、塩化マグネシウム、塩化亜鈴 、塩ィ匕アルミニウム等のハロゲンィ匕金属;硝酸バリウム、硝酸カルシウム、硝酸亜鉛等 の硝酸塩;酢酸バリウム、酢酸カルシウム、酢酸亜鉛等の酢酸塩;硫酸カルシウム、 硫酸マグネシウム、硫酸アルミニウム等の硫酸塩;などが挙げられる。凝固剤溶液中 の凝固剤濃度は、好ましくは 5〜70重量%、より好ましくは 15〜50重量%である。  [0047] The coagulant solution is a solution in which a coagulant such as a salting-out agent is dissolved in water, alcohol, or a mixture thereof. Halogenated metals such as barium chloride, calcium chloride, magnesium chloride, dumbbell, salt and aluminum; nitrates such as barium nitrate, calcium nitrate, and zinc nitrate; acetates such as barium acetate, calcium acetate, and zinc acetate; calcium sulfate, And sulfates such as magnesium sulfate and aluminum sulfate. The concentration of the coagulant in the coagulant solution is preferably 5 to 70% by weight, more preferably 15 to 50% by weight.
[0048] 次 、で、凝固剤を付着させたディップ成形型を、上述した本発明のディップ成形用 組成物に浸漬し、その後、ディップ成形型を引き上げ、ディップ成形型にディップ成 形層を形成する。  [0048] Next, the dip molding die to which the coagulant is adhered is immersed in the dip molding composition of the present invention described above, and then the dip molding die is pulled up to form a dip molding layer on the dip molding die. To do.
[0049] 次 ヽで、ディップ成形型に形成されたディップ成形層を加熱し、共重合体ラテックス を架橋させる。加熱温度は、好ましくは 100〜150°Cである。温度が低すぎると、架橋 反応に長時間要するため生産性が低下するおそれがある。一方、高すぎると、共重 合体ラテックスの酸ィ匕劣化が促進されて成形品の物性が低下する可能性がある。加 熱処理の時間は、加熱処理温度に応じて適宜選択すれば良いが、通常、 10〜120 分である。また、加熱の方法としては、特に限定されないが、たとえば、赤外線や熱 空気による外部加熱または高周波による内部加熱による方法が採用できる。なかでも 、熱空気による加熱が好ましい。  [0049] Next, the dip-molded layer formed in the dip-molding die is heated to crosslink the copolymer latex. The heating temperature is preferably 100 to 150 ° C. If the temperature is too low, the cross-linking reaction takes a long time, which may reduce productivity. On the other hand, if it is too high, the deterioration of the acidity of the copolymer latex may be accelerated and the physical properties of the molded product may be lowered. The heat treatment time may be appropriately selected according to the heat treatment temperature, but is usually 10 to 120 minutes. The heating method is not particularly limited. For example, an external heating method using infrared rays or hot air or an internal heating method using high frequency can be employed. Of these, heating with hot air is preferred.
[0050] 本発明にお ヽては、ディップ成形層に加熱処理を施す前に、ディップ成形層を、 2 0〜80°Cの温水に 0. 5〜60分程度浸漬して、水溶性不純物(乳化剤、水溶性高分 子、凝固剤など)を除去しておくことが好ましい。  [0050] In the present invention, before the dip-molded layer is subjected to heat treatment, the dip-molded layer is immersed in warm water of 20 to 80 ° C for about 0.5 to 60 minutes to obtain water-soluble impurities. It is preferable to remove (emulsifier, water-soluble polymer, coagulant, etc.).
[0051] 次 ヽで、加熱処理により架橋したディップ成形層を、ディップ成形型から脱型し、デ イッブ成形品を得る。脱型方法は、手で成形型から剥がす方法や、水圧や圧縮空気 の圧力により剥がす方法などが採用できる。  [0051] Next, the dip-molded layer crosslinked by heat treatment is removed from the dip-mold to obtain a dip-molded product. As the demolding method, a method of peeling from the mold by hand or a method of peeling by water pressure or compressed air pressure can be employed.
本発明のディップ成形品は、上記した本発明のディップ成形用組成物 (好ましくは、 180° 剥離試験の値が、 4. 9 (NZ25mm)以下である組成物)をディップ成形して 得られるものであるため、成形型からの離型性に優れている。そのため、成形型への 付着が有効に防止され、その結果、良好かつ容易に、脱型を行うことができる。 The dip-molded article of the present invention comprises the above-described dip-molding composition of the present invention (preferably It is obtained by dip molding a composition having a 180 ° peel test value of 4.9 (NZ25 mm) or less, and is excellent in releasability from the mold. Therefore, the adhesion to the mold is effectively prevented, and as a result, the mold can be removed easily and easily.
[0052] 脱型後には、さらに 60〜120°Cの温度で、 10〜 120分の加熱処理 (後架橋工程) を行ってもよい。 [0052] After demolding, a heat treatment (post-crosslinking step) may be performed at a temperature of 60 to 120 ° C for 10 to 120 minutes.
[0053] また、ディップ成形品が手袋である場合、ディップ成形品同士の接触面における密 着を防止したり、着脱の際の滑りをよくするために、タルク、炭酸カルシウム、澱粉粒 子などの無機微粒子または有機微粒子を手袋表面に散布したり、それらの微粒子を 含有するエラストマ一層を手袋表面に形成したり、手袋の表面層を塩素化したりして ちょい。  [0053] Further, when the dip-formed product is a glove, talc, calcium carbonate, starch particles, etc. are used in order to prevent adhesion at the contact surface between the dip-formed products and to improve slippage during attachment / detachment. Sprinkle inorganic or organic fine particles on the surface of the glove, form an elastomer layer containing these fine particles on the surface of the glove, or chlorinate the surface layer of the glove.
[0054] このようにして得られる本発明のディップ成形品は、引張り強度が 20MPa以上、破 断伸びが 600%以上と良好であり、し力も、通常使用の条件に十分耐え得る耐ェタノ 一ル性を有するものである。すなわち、エタノール浸漬後の破断時の引張り強度が、 好ましくは 16MPa以上、より好ましくは 20MPa以上、さらに好ましくは 25MPa以上と 、優れた耐エタノール性を有するものである。なお、エタノール浸漬後の破断時の引 張り強度は、ディップ成形品を温度 20°Cのエタノール中に、 1時間浸漬し、その後、 浸漬した成形品について、引張試験を行うことにより測定することができる。  [0054] The dip-molded product of the present invention thus obtained has a good tensile strength of 20 MPa or more, a breaking elongation of 600% or more, and a resistance to ethanol that can sufficiently withstand normal use conditions. It has sex. That is, the tensile strength at break after immersion in ethanol is preferably 16 MPa or more, more preferably 20 MPa or more, and further preferably 25 MPa or more, and has excellent ethanol resistance. The tensile strength at break after immersion in ethanol can be measured by immersing the dip-molded product in ethanol at a temperature of 20 ° C for 1 hour, and then performing a tensile test on the immersed molded product. it can.
従来においては、このようなディップ成形品においては、エタノール浸漬後の破断 時の引張り強度が、不十分であったため、たとえば、ディップ成形品をゴム手袋用途 に使用し、エタノール消毒をすると、使用時に手袋が破れ易くなるという不具合があ つた o  Conventionally, in such dip-molded products, the tensile strength at break after immersion in ethanol was insufficient, so for example, when dip-molded products are used for rubber gloves and ethanol disinfection is used, There was a problem that gloves were easily torn o
これに対し、本発明のディップ成形品によると、上記した本発明のディップ成形用組 成物をディップ成形してなるものであるため、このような問題を有効に解決することが できる。  On the other hand, according to the dip-molded product of the present invention, since the dip-molding composition of the present invention is formed by dip molding, such a problem can be effectively solved.
[0055] このような本発明のディップ成形品は、厚みを約 0. 1〜約 3mm、特に 0. 1〜0. 3 mmとすることが可能であるため、このような厚みを有する薄手のものに好適に使用で きる。具体的には、哺乳瓶用乳首、スポイト、導管、水枕などの医療用品;風船、人形 、ボールなどの玩具や運動具;加圧成形用バッグ、ガス貯蔵用バッグなどの工業用 品;医療用、家庭用、農業用、漁業用および工業用の手袋;指サックなどに使用でき 、特に、薄手の医療用手袋に好適である。なお、成形品を手袋とする場合には、サボ ート型であっても、アンサポート型であってもよい。 [0055] Since such a dip-formed product of the present invention can have a thickness of about 0.1 to about 3 mm, particularly 0.1 to 0.3 mm, it is thin with such a thickness. It can be used suitably for things. Specifically, medical supplies such as nipples, syringes, conduits, and water pillows for baby bottles; toys and exercise equipment such as balloons, dolls, and balls; industrial products such as pressure forming bags and gas storage bags Goods: Medical, household, agricultural, fishery and industrial gloves; can be used for finger sack, etc., particularly suitable for thin medical gloves. When the molded product is a glove, it may be a sabot type or an unsupport type.
実施例  Example
[0056] 以下に実施例、比較例を挙げて、本発明を具体的に説明する。これらの例中の〔部 〕および〔%〕は、特に断わりのない限り重量基準である。ただし本発明は、これらの実 施例のみに限定されるものではない。なお、共重合体ラテックス、ディップ成形用組 成物、およびディップ成形品の評価は下記の方法により行った。  [0056] The present invention will be specifically described below with reference to Examples and Comparative Examples. [Part] and [%] in these examples are based on weight unless otherwise specified. However, the present invention is not limited only to these examples. The copolymer latex, the dip molding composition, and the dip molded product were evaluated by the following methods.
[0057] #重合体ラテックスのトルエン不溶解分  [0057] #Toluene insoluble content of polymer latex
まず、共重合体ラテックスを枠つきガラス板に流延し、その後、温度 20°C、相対湿 度 65%の条件下に、 120時間静置し、厚みが lmmの乾燥フィルムを得た。次いで、 この乾燥フィルムから約 0. 2gを精秤して(重量 W )、 80メッシュの金網のカゴに入れ  First, the copolymer latex was cast on a framed glass plate, and then allowed to stand for 120 hours under conditions of a temperature of 20 ° C. and a relative humidity of 65% to obtain a dry film having a thickness of 1 mm. Next, weigh out about 0.2g (weight W) from this dry film and put it in an 80 mesh wire mesh basket.
0  0
て、温度 20°Cとしたトルエン 100mlに 24時間浸漬した。そして、浸漬させた力ゴを引 き上げ、温度 105°Cで乾燥し、トルエンを除去し、トルエンに溶解せずにカゴ内に残 存しているフィルムの量を精秤した (重量 W ) o最後に、得られた重量 W、 W力ゝら、  And immersed in 100 ml of toluene at a temperature of 20 ° C. for 24 hours. Then, the soaked force basket was pulled up, dried at a temperature of 105 ° C, toluene was removed, and the amount of film remaining in the basket without being dissolved in toluene was precisely weighed (weight W) o Finally, the obtained weight W, W force,
1 0 1 下記式(1)に従い、トルエン不溶解分を求めた。  1 0 1 The toluene insoluble matter was determined according to the following formula (1).
トルエン不溶解分 (重量%) = (W /W ) X 100 (1)  Toluene insoluble matter (wt%) = (W / W) X 100 (1)
1 0  Ten
[0058] 180° 剥離試験  [0058] 180 ° peel test
まず、 20%硝酸カルシウム水溶液に、 JIS K6854に準拠した縦 200mmX横 25 111111 厚さ1. 5mmのステンレス鋼板(SUS304)を縦に垂直に立てて、板の最下端 力も 175mmの位置まで浸漬し、その後、引き上げ、 60°Cで 10分間乾燥させた。次 いで、乾燥後の板を、上記と同様の方法で、ディップ成形用組成物に、板の最下端 力 170mmの位置まで浸漬し、その後、引き上げて板の両面に架橋前のディップ成 形層を形成した。そして、ディップ成形層を形成させた板を、 40°Cの蒸留水で 5分間 水洗し、 20°Cで 5分間予備乾燥し、その後、 60°Cで 10分間乾燥させた後に、 120°C で 30分間の条件で架橋させ、ディップ成形膜とし、剥離試験用の試験片を得た。 次いで、 JIS K6854に準拠して、上記にて作製した試験片の片面を用いて、ディ ップ成形膜の一端を縦方向に予め 95mm剥離させた。そして、ステンレス鋼板のディ ップ成形膜が形成されて ヽな 、上端部分を、テンシロン万能試験機の上部つかみに 取り付け、さらに、上記にて予め剥離させたディップ成形膜の一端を、テンシロン万能 試験機の下部つかみに取り付けた。その後、引張り速度 200mmZ分の条件で引つ 張ること〖こより、 180° 剥離試験を行った。そして、剥離試験の結果、ステンレス鋼板 からディップ成形膜 (縦 75mm X横 25mm)を剥離させたときの弓 |張荷重 (剥離抵抗 値、単位: NZ25mm)の最大値を測定した。この剥離試験を 3回行い、その平均値 を剥離抵抗値とした。剥離抵抗値が低いと、ディップ成形する際に成形型からの離型 が容易となるため、剥離抵抗値は低 、ほうが好まし!/、。 First, in a 20% aqueous calcium nitrate solution, a stainless steel plate (SUS304) with a length of 200mm x width 25 111111 according to JIS K6854 is vertically placed vertically, and the bottom edge of the plate is immersed to a position of 175mm. Then, it pulled up and dried at 60 degreeC for 10 minutes. Next, the dried plate is dipped in the dip molding composition in the same manner as described above to the position where the bottom end force of the plate is 170 mm, and then pulled up to dip forming layer before crosslinking on both sides of the plate. Formed. Then, the plate on which the dip-formed layer was formed was washed with distilled water at 40 ° C for 5 minutes, pre-dried at 20 ° C for 5 minutes, then dried at 60 ° C for 10 minutes, and then 120 ° C. And were cross-linked for 30 minutes to obtain a dip-formed film, and a test piece for a peel test was obtained. Next, in accordance with JIS K6854, one end of the dip-formed film was peeled in advance in the vertical direction by 95 mm using one side of the test piece prepared above. And stainless steel plate Attach the upper end to the upper grip of the Tensilon universal testing machine, and then attach one end of the dip molding film previously peeled off to the lower grip of the Tensilon universal testing machine. It was. Thereafter, a 180 ° peel test was conducted from the point of pulling under the condition of a pulling speed of 200 mmZ. As a result of the peeling test, the maximum value of the bow | tension load (peeling resistance value, unit: NZ25 mm) when the dip-formed film (length 75 mm x width 25 mm) was peeled from the stainless steel plate was measured. This peel test was performed three times, and the average value was taken as the peel resistance value. If the peel resistance value is low, it is easy to release from the mold during dip molding, so a low peel resistance value is preferable!
[0059] 手袋型 (成形型)からの離型件 [0059] Release from glove mold (molding mold)
手袋型 (成形型)表面に形成した架橋後のディップ成形膜を、手袋型から剥がす際 の剥がし易さ (離型性)を、次の基準により評価した。  The ease with which the dip-formed film after crosslinking formed on the surface of the glove mold (mold) was peeled off from the glove mold (releasability) was evaluated according to the following criteria.
A:ディップ成形膜が手袋型に密着しておらず、容易に脱離できる。  A: The dip-formed film is not in close contact with the glove mold and can be easily detached.
B :ディップ成形膜が手袋型に部分的に密着しており、脱離がやや困難である。 C :ディップ成形層が手袋型に密着しており、脱離が困難である。  B: The dip-molded film is partially adhered to the glove mold, and is somewhat difficult to remove. C: The dip-formed layer is in close contact with the glove mold and is difficult to remove.
[0060] 引張強度、破断伸び [0060] Tensile strength, elongation at break
得られたゴム手袋(ディップ成形品)から、 ASTM D— 412に準じてダンベル(Die — C)を用いて、ダンベル形状の試験片を作製した。次いで、この試験片を、テンシロ ン万能試験機で、引張速度 500mmZ分で引っ張り、破断時の引張強度 (MPa)お よび破断時の伸び(%)を測定した。  A dumbbell-shaped test piece was produced from the obtained rubber glove (dip-formed product) using a dumbbell (Die — C) according to ASTM D-412. Next, the test piece was pulled with a Tensilon universal testing machine at a tensile speed of 500 mmZ, and the tensile strength at break (MPa) and the elongation at break (%) were measured.
[0061] エタノール浔清後の引張り強度 (耐エタノール件) [0061] Tensile strength after ethanol cleaning (ethanol resistance)
まず、引張強度および破断伸びの測定に使用した試験片と同様の試験片を、温度 20°Cとしたエタノール (試薬特級)中に 1時間浸潰した。そして、浸漬後の試験片を、 テンシロン万能試験機で、引張速度 500mmZ分で引っ張り、破断時の引張強度( エタノール浸漬後の引張り強度)を測定した。  First, a test piece similar to that used for measurement of tensile strength and elongation at break was immersed for 1 hour in ethanol (special grade reagent) at a temperature of 20 ° C. Then, the test piece after immersion was pulled with a Tensilon universal tester at a tensile speed of 500 mmZ, and the tensile strength at break (tensile strength after ethanol immersion) was measured.
[0062] 実施例 1 [0062] Example 1
共重合体ラテックスの製造  Production of copolymer latex
まず、耐圧重合反応器に、スチレン 47部、メタクリル酸 3部、 1, 3—ブタジエン 50部 、連鎖移動剤として tードデシルメルカプタン 0. 3部、脱イオン水 150部、ドデシルべ ンゼンスルホン酸ナトリウム 2. 5部、過硫酸カリウム 0. 3部およびエチレンジァミン四 酢酸ナトリウム 0. 1部を仕込んだ後、系内温度を 45°Cにして重合反応を開始した。 そして、重合転ィ匕率が 95%になるまで重合反応を継続し、その後、ジェチルヒドロキ シルァミン 0. 1部を添加して重合反応を停止した。そして、未反応単量体を除去した 後、固形分濃度と pHを調整し、固形分濃度 45%、 pH8. 5の共重合体ラテックスを 得た。なお、 pHの測定には、 pHメーター(M12 :HORIBA社製)を使用した。 First, in a pressure-resistant polymerization reactor, 47 parts of styrene, 3 parts of methacrylic acid, 50 parts of 1,3-butadiene, 0.3 part of tododecyl mercaptan as a chain transfer agent, 150 parts of deionized water, After charging 2.5 parts of sodium benzenesulfonate, 0.3 part of potassium persulfate, and 0.1 part of sodium ethylenediamine tetraacetate, the temperature in the system was changed to 45 ° C. to initiate the polymerization reaction. Then, the polymerization reaction was continued until the polymerization conversion rate reached 95%, and then 0.1 part of jetylhydroxylamine was added to stop the polymerization reaction. Then, after removing the unreacted monomer, the solid content concentration and the pH were adjusted to obtain a copolymer latex having a solid content concentration of 45% and a pH of 8.5. A pH meter (M12: manufactured by HORIBA) was used for pH measurement.
[0063] ディップ成形用組成物の調製 [0063] Preparation of dip molding composition
まず、硫黄 1. 0部、ジェチルジチォカルバミン酸亜鉛 0. 5部、酸化亜鉛 1. 0部、酸 化チタン 1. 5部、水酸化カリウム 0. 03部および水 5. 63部を混合することにより、加 硫剤 (架橋剤)分散液を得た。そして、上記にて製造した共重合体ラテックス 222. 2 部(固形分としては 100部)に、この加硫剤分散液 9. 16部を加え、混合した。その後 、適量の脱イオン水を加えて、固形分濃度 30%、 pH9. 0に調整し、さらに 1日間熟 成することにより、ディップ成形用組成物を得た。  First, 1.0 part of sulfur, 0.5 part zinc diethyldithiocarbamate, 1.0 part zinc oxide, 1.5 parts titanium oxide, 0.03 part potassium hydroxide and 5.63 parts water are mixed. Thus, a vulcanizing agent (crosslinking agent) dispersion was obtained. Then, 9.16 parts of this vulcanizing agent dispersion was added to 222.2 parts of the copolymer latex produced above (100 parts as the solid content) and mixed. Thereafter, an appropriate amount of deionized water was added to adjust the solid content concentration to 30% and pH 9.0, and further ripened for 1 day to obtain a dip molding composition.
[0064] ゴム丰 (ディップ成形品) [0064] Rubber bowl (dip molded product)
次いで、上記にて得られたディップ成形用組成物を使用して、ゴム手袋 (ディップ成 形品)を、以下の方法により製造した。  Next, a rubber glove (dip molded product) was produced by the following method using the dip molding composition obtained above.
まず、硝酸カルシウム 20部、非イオン性乳化剤のポリエチレングリコールオタチルフ ェニルエーテル 0. 05部および水 80部を混合した凝固剤水溶液を準備した。次いで 、この凝固剤水溶液に、 60°Cに加温した手袋型を 10秒間浸漬し、引上げた後、温度 60°C、 10分間の条件で乾燥して、凝固剤を手袋型に付着させた。次いで、凝固剤を 付着させた手袋型を、上記にて得られたディップ成形用組成物に 15秒間浸潰し、引 上げて、手袋型表面にディップ成形層を形成した。形成したディップ成形層を 40°C の蒸留水に 5分間浸潰して水溶性不純物を除去した後、 20°Cで 5分間予備乾燥し、 さらに、 60°Cで 10分間乾燥後、 120°Cで 30分間の条件で加硫を行った。最後に、 加硫後のディップ成形層を、手袋型からはがし、厚みが 0. 1mmのゴム手袋 (デイツ プ成形品)を得た。  First, an aqueous coagulant solution was prepared by mixing 20 parts of calcium nitrate, 0.05 part of polyethylene glycol octyl phenyl ether as a nonionic emulsifier and 80 parts of water. Next, a glove mold heated to 60 ° C. was immersed in this coagulant aqueous solution for 10 seconds, pulled up, and then dried under conditions of a temperature of 60 ° C. for 10 minutes to attach the coagulant to the glove mold . Next, the glove mold to which the coagulant was adhered was immersed in the dip molding composition obtained above for 15 seconds and pulled up to form a dip molding layer on the surface of the glove mold. The formed dip-formed layer is immersed in distilled water at 40 ° C for 5 minutes to remove water-soluble impurities, then pre-dried at 20 ° C for 5 minutes, further dried at 60 ° C for 10 minutes, and then 120 ° C. Vulcanization was performed for 30 minutes. Finally, the dip-formed layer after vulcanization was peeled off from the glove mold to obtain a rubber glove (date-formed product) having a thickness of 0.1 mm.
[0065] 上記にて得られた共重合体ラテックスについてトルエン不溶解分を、ディップ成形 用組成物について 180° 剥離試験を、また、ディップ成形品について成形型からの 剥離性、引張り強度、破断伸びおよびエタノール浸漬後の引張強度の各評価を、そ れぞれ、上記方法により行った。結果を表 1に示す。 [0065] The copolymer latex obtained above was subjected to a toluene-insoluble matter, a 180 ° peel test for the dip molding composition, and a dip molded product from the mold. Each evaluation of peelability, tensile strength, elongation at break and tensile strength after immersion in ethanol was performed by the above methods. The results are shown in Table 1.
[0066] 実施例 2〜4、比較例 1〜5  [0066] Examples 2 to 4, Comparative Examples 1 to 5
共重合体ラテックスを製造する際の単量体組成を、表 1に示すように変更するととも に、共重合体ラテックスを構成する共重合体のトルエン不溶解分を変化させた以外 は、実施例 1と同様にして、共重合体ラテックス、ディップ成形用組成物、およびディ ップ成形品を作製し、実施例 1と同様に評価を行った。結果を表 1に示す。  Except that the monomer composition used in the production of the copolymer latex was changed as shown in Table 1, and the toluene-insoluble content of the copolymer constituting the copolymer latex was changed. A copolymer latex, a dip-molding composition, and a dip-molded product were prepared in the same manner as in Example 1, and evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0067] なお、実施例 2〜4、比較例 1〜5においては、連鎖移動剤の添加量と、添加方法と の条件を変更することにより、ディップ成形用組成物に含有させる共重合体ラテックス を構成する共重合体のトルエン不溶解分を調整した。具体的には、実施例 2, 4にお いては、表 1に示す量の tードデシルメルカプタンを重合開始時に、それぞれ添加し た。また、実施例 3においては、重合開始時における tードデシルメルカプタンの添カロ 量を 0. 2部とし、重合転ィ匕率が 60%となった時に tードデシルメルカプタンを 0. 1部 追加添加した。また、比較例 1〜3においても、同様に、重合開始時における t—ドデ シルメルカブタンを表 1に示す量 (表 1中、「重合開始時」 )とし、重合転化率が 60%と なった時に表 1に示す量の tードデシルメルカプタンを追カ卩添カ卩した (表 1中、「後添 カロ」)。  [0067] In Examples 2 to 4 and Comparative Examples 1 to 5, copolymer latex contained in the dip molding composition by changing the addition amount of the chain transfer agent and the conditions of the addition method. The toluene-insoluble content of the copolymer constituting was adjusted. Specifically, in Examples 2 and 4, tododecyl mercaptan in the amount shown in Table 1 was added at the start of polymerization. In Example 3, the amount of t-decyl mercaptan added at the start of polymerization was 0.2 parts, and 0.1 part of t-decyl mercaptan was added when the polymerization conversion was 60%. did. Similarly, in Comparative Examples 1 to 3, the amount of t-dodecyl mercaptan at the start of polymerization was set to the amount shown in Table 1 (in Table 1, “at the start of polymerization”), and the polymerization conversion rate was 60%. The amount of t-decyl mercaptan shown in Table 1 was added as a supplement (in Table 1, “Post-added Caro”).
[0068] [表 1] [0068] [Table 1]
Figure imgf000020_0001
Figure imgf000020_0001
伹し、表中、 t ドデシルメルカブタンの添加量において、「後添加」は、重合転化率 60¾時における添加量を意味する。 In the table, in the amount of t-decyl mercaptan added, “post-addition” means the amount added at a polymerization conversion rate of 60¾.
[0069] 表 1から以下のことが確認できる。 [0069] From Table 1, the following can be confirmed.
芳香族ビニル単量体としてのスチレンを含有させな 、場合には、成形型からの離型 性が悪ぐエタノール浸漬後の引張強度が低ぐ耐ェタノール性が不十分となった( 比較例 1, 5)。なお、この比較例 1は、一般に市販されている手袋用の合成 NBRに 相当する。  In the case of not containing styrene as the aromatic vinyl monomer, the releasability from the mold was poor, the tensile strength after ethanol immersion was low, and the ethanol resistance was insufficient (Comparative Example 1). , Five). This Comparative Example 1 corresponds to a synthetic NBR for gloves that is generally commercially available.
共重合体ラテックスを構成する共重合体のトルエン不溶解分が低すぎる場合には、 成形型からの離型性が悪ぐ耐エタノール性が不十分となった (比較例 2)。  When the toluene insoluble content of the copolymer constituting the copolymer latex was too low, the releasability from the mold was poor and the ethanol resistance was insufficient (Comparative Example 2).
[0070] 共役ジェン単量体としての 1、 3—ブタジエンの含有量と、芳香族ビュル単量体とし てのスチレンの含有量と、が本発明の範囲外であり、さら〖こ、トルエン不溶解分が低 すぎる場合には、成形型からの離型性が悪ぐ引張り強度が不十分となった (比較例 3)。 [0070] The content of 1,3-butadiene as the conjugation monomer and the content of styrene as the aromatic butyl monomer are outside the scope of the present invention. When the dissolved content was too low, the releasability from the mold was poor and the tensile strength was insufficient (Comparative Example 3).
共役ジェン単量体としての 1、 3—ブタジエンの含有量と、芳香族ビニル単量体とし てのスチレンの含有量と、が本発明の範囲外である場合には、トルエン不溶解分を 本発明の範囲内とした場合でも、耐エタノール性が不十分であった (比較例 4)。  When the content of 1,3-butadiene as the conjugation monomer and the content of styrene as the aromatic vinyl monomer are outside the scope of the present invention, the toluene-insoluble matter is reduced. Even within the scope of the invention, ethanol resistance was insufficient (Comparative Example 4).
[0071] これらの比較例に対して、本発明所定のディップ成形用組成物を使用して、得られ たゴム手袋 (ディップ成形品)は、いずれも、成形型からの離型性が良ぐ引張り強度 および破断伸びが十分であり、しかも、エタノール浸漬後の引張強度が高ぐ耐エタ ノール性に優れる結果となった (実施例 1〜4)。すなわち、これら実施例 1〜4によれ ば、成形型に対する密着性が低いため、成形型力もの脱離を良好に行うことができ、 し力も、エタノール消毒して使用されるような手袋用途に好適に用いることができる。 [0071] In comparison with these comparative examples, the rubber gloves (dip-molded products) obtained using the dip-molding composition according to the present invention have good release properties from the mold. The tensile strength and elongation at break were sufficient, and the tensile strength after immersion in ethanol was high, resulting in excellent ethanol resistance (Examples 1 to 4). That is, according to these Examples 1 to 4, since the adhesion to the mold is low, it is possible to perform the detachment of the mold force well, and the force is also suitable for glove use that is used after being disinfected with ethanol. It can be used suitably.

Claims

請求の範囲 The scope of the claims
[1] 共役ジェン単量体 34〜60重量部と、芳香族ビニル単量体 39〜65重量部と、ェチ レン性不飽和酸単量体 1〜: L0重量部と、を含む単量体混合物 100重量部を、共重 合して得られる共重合体ラテックスを有するディップ成形用組成物であって、 前記共重合体ラテックスを構成する共重合体を、温度 20°Cのトルエン中に、 24時 間浸漬した場合における、前記共重合体のトルエン不溶解分が、共重合体全体 100 重量%に対して、 30重量%以上であるディップ成形用組成物。  [1] Monomer comprising 34 to 60 parts by weight of a conjugation monomer, 39 to 65 parts by weight of an aromatic vinyl monomer, and 1 to L0 part by weight of an ethylenically unsaturated acid monomer A dip-molding composition having a copolymer latex obtained by copolymerizing 100 parts by weight of a body mixture, wherein the copolymer constituting the copolymer latex is placed in toluene at a temperature of 20 ° C. The composition for dip molding, wherein the toluene-insoluble content of the copolymer when immersed for 24 hours is 30% by weight or more with respect to 100% by weight of the whole copolymer.
[2] 前記共役ジェン単量体が、 1, 3 ブタジエン、イソプレン、 2—メチルー 1, 3 ブタ ジェン、 2, 3 ジメチルー 1, 3 ブタジエン、 2 ェチルー 1, 3 ブタジエン、 1, 3 —ペンタジェンおよびクロ口プレンよりなる群力も選ばれる少なくとも一種である、請 求項 1に記載のディップ成形用組成物。  [2] The conjugation monomer is 1,3 butadiene, isoprene, 2-methyl-1,3 butadiene, 2,3 dimethyl-1,3 butadiene, 2 ethyl 1,3 butadiene, 1,3 2. The dip-forming composition according to claim 1, wherein the composition is at least one kind selected from a group power consisting of a mouth plane.
[3] 前記共役ジェン単量体が、 1, 3 ブタジエンおよび Zまたはイソプレンである、請 求項 1に記載のディップ成形用組成物。  [3] The dip molding composition according to claim 1, wherein the conjugation monomer is 1,3 butadiene and Z or isoprene.
[4] 前記共役ジェン単量体が、 1, 3 ブタジエンである、請求項 1に記載のディップ成 形用組成物。  [4] The dip forming composition according to claim 1, wherein the conjugation monomer is 1,3 butadiene.
[5] 前記芳香族ビュル単量体が、スチレン、 α—メチルスチレン、 p—メチルスチレン、 p フエニノレスチレン、 ρ—メトキシスチレン、クロロメチルスチレン、 m—フルォロスチレ ンおよびビュルナフタレンよりなる群力も選ばれる少なくとも一種である、請求項 1〜4 の!、ずれかに記載のディップ成形用組成物。  [5] The aromatic bur monomer may be selected from the group consisting of styrene, α-methyl styrene, p-methyl styrene, p phenylol styrene, ρ-methoxy styrene, chloromethyl styrene, m-fluoro styrene, and urnaphthalene. The composition for dip molding according to any one of claims 1 to 4, which is at least one of the above.
[6] 前記芳香族ピ ル単量体が、スチレンである、請求項 1〜4の 、ずれかに記載のデ イッブ成形用組成物。  [6] The composition for die molding according to any one of claims 1 to 4, wherein the aromatic pill monomer is styrene.
[7] 前記エチレン性不飽和酸単量体が、エチレン性不飽和モノカルボン酸単量体、ェ チレン性不飽和多価カルボン酸単量体、エチレン性不飽和多価カルボン酸無水物、 エチレン性不飽和多価カルボン酸部分エステル単量体およびエチレン性不飽和ス ルホン酸単量体よりなる群力 選ばれる少なくとも一種である、請求項 1〜6のいずれ かに記載のディップ成形用組成物。  [7] The ethylenically unsaturated acid monomer is an ethylenically unsaturated monocarboxylic acid monomer, an ethylenically unsaturated polyvalent carboxylic acid monomer, an ethylenically unsaturated polyvalent carboxylic acid anhydride, ethylene The composition for dip molding according to any one of claims 1 to 6, wherein the composition is at least one selected from the group consisting of a polymerizable unsaturated polycarboxylic acid partial ester monomer and an ethylenically unsaturated sulfonic acid monomer. .
[8] 前記エチレン性不飽和酸単量体が、エチレン性不飽和モノカルボン酸である、請 求項 1〜6のいずれか〖こ記載のディップ成形用組成物。 前記エチレン性不飽和酸単量体が、メタクリル酸である、請求項 1〜6のいずれか に記載のディップ成形用組成物。 [8] The dip molding composition according to any one of claims 1 to 6, wherein the ethylenically unsaturated acid monomer is an ethylenically unsaturated monocarboxylic acid. The composition for dip molding according to any one of claims 1 to 6, wherein the ethylenically unsaturated acid monomer is methacrylic acid.
さらに架橋剤を含有している、請求項 1〜9のいずれかに記載のディップ成形用組 成物。  Furthermore, the composition for dip molding in any one of Claims 1-9 containing the crosslinking agent.
前記架橋剤が、硫黄、有機過酸ィ匕物およびポリアミンよりなる群力 選ばれる少なく とも一種である、請求項 10に記載のディップ成形用組成物。  11. The dip molding composition according to claim 10, wherein the crosslinking agent is at least one selected from the group power consisting of sulfur, an organic peroxide, and a polyamine.
前記架橋剤が硫黄である、請求項 10に記載のディップ成形用組成物。  The dip-forming composition according to claim 10, wherein the crosslinking agent is sulfur.
前記架橋剤の配合量力 ディップ成形用組成物中の固形分 100重量部に対して、 Compounding power of the crosslinking agent 100 parts by weight of solid content in the dip molding composition
0. 1〜3重量部である、請求項 10〜12のいずれかに記載のディップ成形用組成物 さらに架橋促進剤を含有している、請求項 12または 13に記載のディップ成形用組 成物。 The composition for dip molding according to any one of claims 10 to 12, which is 0.1 to 3 parts by weight, and further comprises a crosslinking accelerator. .
前記架橋促進剤の配合量が、ディップ成形用組成物中の固形分 100重量部に対 して 0. 1〜2重量部である、請求項 14に記載のディップ成形用組成物。  15. The dip molding composition according to claim 14, wherein the amount of the crosslinking accelerator is 0.1 to 2 parts by weight with respect to 100 parts by weight of the solid content in the dip molding composition.
さらに酸ィ匕亜鉛を含有して 、る、請求項 12に記載のディップ成形用組成物。  The dip molding composition according to claim 12, further comprising acid zinc.
前記酸ィ匕亜鉛の配合量力 ディップ成形用組成物中の固形分 100重量部に対し て 0. 3〜3重量部である、請求項 16に記載のディップ成形用組成物。  17. The composition for dip molding according to claim 16, which is 0.3 to 3 parts by weight based on 100 parts by weight of the solid content in the dip molding composition.
ρΗが 8. 5〜12である、請求項 1〜17のいずれかに記載のディップ成形用組成物 前記ディップ成形用組成物に、金属製板を浸漬させて前記金属製板上にディップ 成形膜を形成した場合における、前記ディップ成形膜の 180° 剥離試験の値が、 4. 9 (N/25mm)以下である請求項 1〜18のいずれか〖こ記載のディップ成形用組成 物。  The dip-forming composition according to any one of claims 1 to 17, wherein ρΗ is 8.5 to 12. A dip-forming film is formed on the metal plate by immersing a metal plate in the dip-forming composition. The composition for dip molding according to any one of claims 1 to 18, wherein the dip-molded film has a 180 ° peel test value of 4.9 (N / 25 mm) or less.
請求項 1〜19の ヽずれかに記載のディップ成形用組成物を、ディップ成形して得ら れるディップ成形品。  A dip-molded product obtained by dip-molding the dip-molding composition according to any one of claims 1 to 19.
ASTM D— 412に準拠して測定した引張り強度が 20MPa以上、かつ破断伸び が 600%以上である、請求項 20に記載のディップ成形品。  21. The dip-molded product according to claim 20, wherein the tensile strength measured in accordance with ASTM D-412 is 20 MPa or more and the elongation at break is 600% or more.
温度 20°Cのエタノール中に 1時間浸漬した後の、引張速度 500mmZ分にて測定 した引張り強度が 16MPa以上である、請求項 20または 21に記載のディップ成形品 Measured at a tensile speed of 500 mmZ after being immersed in ethanol at a temperature of 20 ° C for 1 hour The dip-formed product according to claim 20 or 21, wherein the tensile strength is 16 MPa or more.
PCT/JP2006/316996 2005-08-31 2006-08-29 Composition for dip molding and dip molded product WO2007026704A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007533260A JP5380839B2 (en) 2005-08-31 2006-08-29 DIP MOLDING COMPOSITION AND DIP MOLDED ARTICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-252599 2005-08-31
JP2005252599 2005-08-31

Publications (1)

Publication Number Publication Date
WO2007026704A1 true WO2007026704A1 (en) 2007-03-08

Family

ID=37808791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316996 WO2007026704A1 (en) 2005-08-31 2006-08-29 Composition for dip molding and dip molded product

Country Status (2)

Country Link
JP (1) JP5380839B2 (en)
WO (1) WO2007026704A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049651A1 (en) * 2010-10-14 2012-04-19 Basf Se Styrene-based copolymers having acid monomer units, dispersions, preparation and use thereof
JP2013203914A (en) * 2012-03-29 2013-10-07 Nippon Zeon Co Ltd Dip molding composition and dip molding
US10344158B2 (en) 2013-07-16 2019-07-09 Skinprotect Corporation Sdn Bhd Elastomeric film-forming compositions and articles made from the elastomeric film
WO2023176699A1 (en) * 2022-03-16 2023-09-21 日本ゼオン株式会社 Conjugated diene polymer latex and dip molded body
EP4083133A4 (en) * 2019-12-24 2023-11-22 Resonac Corporation Chloroprene copolymer latex composition and molded article of same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102112590B1 (en) * 2018-10-11 2020-05-19 금호석유화학 주식회사 Composition For Dip-forming comprising carboxylic acid modified latex and method of manufacturing dip-formed article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527092A (en) * 1997-08-04 2001-12-25 ライクホールド・ケミカルズ,インコーポレイテッド Elastomer materials for rubber articles
JP2002500696A (en) * 1997-05-28 2002-01-08 ライクホールド・ケミカルズ,インコーポレイテッド Elastomer substances for rubber products
JP2004352901A (en) * 2003-05-30 2004-12-16 Nippon Zeon Co Ltd Composition for dip forming and dip-formed article

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2347755B2 (en) * 1973-09-22 1978-12-07 Bayer Ag, 5090 Leverkusen Use of rubber latices for the production of dipping articles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002500696A (en) * 1997-05-28 2002-01-08 ライクホールド・ケミカルズ,インコーポレイテッド Elastomer substances for rubber products
JP2001527092A (en) * 1997-08-04 2001-12-25 ライクホールド・ケミカルズ,インコーポレイテッド Elastomer materials for rubber articles
JP2004352901A (en) * 2003-05-30 2004-12-16 Nippon Zeon Co Ltd Composition for dip forming and dip-formed article

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8952092B2 (en) 2010-10-14 2015-02-10 Basf Se Non-carboxylated styrene-butadiene copolymers, preparation method and use thereof
US9365707B2 (en) 2010-10-14 2016-06-14 Basf Se Non-carboxylated styrene-butadiene copolymers, preparation method and use thereof
US9815984B2 (en) 2010-10-14 2017-11-14 Basf Se Non-carboxylated styrene-butadiene copolymers, preparation method and use thereof
US20130289172A1 (en) * 2010-10-14 2013-10-31 Basf Se Non-carboxylated styrene-butadiene copolymers, preparation method and use thereof
US20130289173A1 (en) * 2010-10-14 2013-10-31 Basf Se Styrene-based copolymers having acid monomer units and dispersions thereof
US20140378603A1 (en) * 2010-10-14 2014-12-25 Basf Se Non-carboxylated styrene-butadiene copolymers, preparation method and use thereof
CN103261245A (en) * 2010-10-14 2013-08-21 巴斯夫欧洲公司 Styrene-based copolymers having acid monomer units, dispersions, preparation and use thereof
US9139720B2 (en) 2010-10-14 2015-09-22 Basf Se Styrene-based copolymers having acid monomer units and dispersions thereof
WO2012049651A1 (en) * 2010-10-14 2012-04-19 Basf Se Styrene-based copolymers having acid monomer units, dispersions, preparation and use thereof
US20160289451A1 (en) * 2010-10-14 2016-10-06 Basf Se Non-carboxylated styrene-butadiene copolymers, preparation method and use thereof
JP2013203914A (en) * 2012-03-29 2013-10-07 Nippon Zeon Co Ltd Dip molding composition and dip molding
US10344158B2 (en) 2013-07-16 2019-07-09 Skinprotect Corporation Sdn Bhd Elastomeric film-forming compositions and articles made from the elastomeric film
US10377893B2 (en) 2013-07-16 2019-08-13 Skinprotect Corporation Sdn Bhd Elastomeric film-forming compositions and articles made from the elastomeric film
EP4083133A4 (en) * 2019-12-24 2023-11-22 Resonac Corporation Chloroprene copolymer latex composition and molded article of same
WO2023176699A1 (en) * 2022-03-16 2023-09-21 日本ゼオン株式会社 Conjugated diene polymer latex and dip molded body

Also Published As

Publication number Publication date
JPWO2007026704A1 (en) 2009-03-12
JP5380839B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
US7183347B2 (en) Dip moldings, composition for dip molding and method for producing dip moldings
US7662890B2 (en) Composition for dip forming and molding obtained by dip forming
JP3852356B2 (en) DIP MOLDING COMPOSITION, DIP MOLDED ARTICLE AND METHOD FOR PRODUCING THE SAME
JP3915489B2 (en) DIP MOLDING LATEX, PROCESS FOR PRODUCING THE SAME, DIP MOLDING COMPOSITION AND DIP MOLDED PRODUCT
JP6028362B2 (en) DIP MOLDING COMPOSITION AND DIP MOLDED ARTICLE
JP5594207B2 (en) Method for producing dip molding latex, dip molding latex, dip molding composition and dip molding
JP4404053B2 (en) Copolymer latex for dip molding
JP6349850B2 (en) DIP MOLDING COMPOSITION AND DIP MOLDED ARTICLE
JP6984607B2 (en) Latex composition
JP6493391B2 (en) DIP MOLDED PRODUCT AND METHOD FOR PRODUCING DIP MOLDED PRODUCT
JP5380839B2 (en) DIP MOLDING COMPOSITION AND DIP MOLDED ARTICLE
JP2015105281A (en) Composition for dip molding, and dip molded object
JP4196590B2 (en) Dip molding latex, dip molding composition and dip molding
JP4134577B2 (en) Dip molding latex, dip molding composition and dip molding
WO2007004459A1 (en) Latex for dip molding, latex composition for dip molding, and dip-molded article
JP2003165870A (en) Composition for dip-molding, dip-molded product and method for producing the same
WO2017006385A1 (en) Dip molding composition and dip molded article
JP2021515069A (en) Carboxylic acid-modified nitrile copolymer latex composition, latex composition for dip molding containing the same, and molded products formed thereby.
JP2001040141A (en) Latex for dip forming and dip-formed product
JP2004277471A (en) Coagulant composition for dip molding, dip molded article and method for producing the same
JP2004285220A (en) Coating agent composition and dip-molded product
JP2003192993A (en) Coating agent for dip-molded article and dip-molded article
JP2019034982A (en) Latex composition
JPWO2019044654A1 (en) Manufacturing method of dip molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007533260

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796973

Country of ref document: EP

Kind code of ref document: A1