WO2017006385A1 - Dip molding composition and dip molded article - Google Patents

Dip molding composition and dip molded article Download PDF

Info

Publication number
WO2017006385A1
WO2017006385A1 PCT/JP2015/069270 JP2015069270W WO2017006385A1 WO 2017006385 A1 WO2017006385 A1 WO 2017006385A1 JP 2015069270 W JP2015069270 W JP 2015069270W WO 2017006385 A1 WO2017006385 A1 WO 2017006385A1
Authority
WO
WIPO (PCT)
Prior art keywords
dip
weight
latex
conjugated diene
carboxyl group
Prior art date
Application number
PCT/JP2015/069270
Other languages
French (fr)
Japanese (ja)
Inventor
直広 伊賀利
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to PCT/JP2015/069270 priority Critical patent/WO2017006385A1/en
Publication of WO2017006385A1 publication Critical patent/WO2017006385A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/0055Plastic or rubber gloves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • C08L13/02Latex

Definitions

  • the present invention relates to a dip-molding composition and a dip-molded article. More specifically, the dip-molding is excellent in storage stability and suitable for applications such as gloves, has excellent wearing durability, hardly discolors, and has low odor.
  • the present invention relates to a dip-molding composition that gives a product, and a dip-molded product obtained by using such a dip-molding composition.
  • Rubber gloves are widely used in various industrial and medical applications such as housework, food industry and electronic component manufacturing. However, these various types of rubber gloves do not have enough durability to wear, so if they are torn during the work or if you continue to work while moving your fingers while wearing them, micro cracks will occur in the crotch part of the fingers In some cases, the problem of end up occurring.
  • Patent Document 1 discloses dip molding from a dip molding composition containing a specific amount of an acrylonitrile-butadiene copolymer latex containing a carboxyl group, a small amount of zinc oxide, a relatively large amount of sulfur and a vulcanization accelerator.
  • a rubber glove is disclosed. However, when such a glove is worn and the operation is continued, the glove itself may be colored to significantly reduce its commercial value, and the odor due to residual sulfur may be a problem.
  • the present invention has been made in view of such a situation, and is a dip-molded product that is excellent in storage stability and suitable for applications such as gloves, has excellent wearing durability, is resistant to discoloration, and has little odor. It is an object to provide a composition for dip molding. Another object of the present invention is to provide a dip-molded product obtained using such a dip-molding composition.
  • the present inventors have found that a dip molding composition containing a latex of a carboxyl group-containing conjugated diene rubber whose residual carboxylic acid amount is controlled to a specific amount or less, and a carbodiimide compound.
  • the present inventors have found that the above object can be achieved and have completed the present invention.
  • a dip-molding composition comprising a carboxyl group-containing conjugated diene rubber (A) latex and a carbodiimide compound (B), wherein the carboxyl group-containing conjugated diene rubber (A) is in a latex.
  • the amount of residual carboxylic acid is 2200 ppm by weight or less, and a dip molding composition is provided.
  • the carboxyl group-containing conjugated diene rubber (A) latex comprises 30 to 89.5% by weight of a conjugated diene monomer, 10 to 50% by weight of an ethylenically unsaturated nitrile monomer, and an ethylenically unsaturated carboxylic acid monomer. Obtained by polymerizing a monomer mixture containing 0.5 to 20% by weight of a monomer and 0 to 20% by weight of another ethylenically unsaturated monomer copolymerizable with these monomers. Copolymer latex.
  • a dip-molded product obtained by dip-molding the dip-molding composition described above is provided, and the dip-molded product is preferably a glove.
  • ADVANTAGE OF THE INVENTION According to this invention, it is excellent in storage stability and suitable for uses, such as a glove, It provides the dip molding composition which gives the dip molding product which is excellent in wearing durability, is hard to discolor, and has few odors. it can. Moreover, according to the present invention, a dip-molded product obtained using such a dip-molding composition can be provided.
  • the dip molding composition of the present invention contains a latex of carboxyl group-containing conjugated diene rubber (A) and a carbodiimide compound (B), and the amount of residual carboxylic acid in the latex of the carboxyl group-containing conjugated diene rubber (A). Is 2200 ppm by weight or less.
  • Latex of carboxyl group-containing conjugated diene rubber (A) Latex of carboxyl group-containing conjugated diene rubber (A) used in the dip molding composition of the present invention is a copolymer of a conjugated diene monomer and an ethylenically unsaturated carboxylic acid monomer.
  • the latex of the copolymer thus obtained has a residual carboxylic acid content of 2200 ppm by weight or less.
  • conjugated diene monomer examples include conjugated diene monomers having 4 to 6 carbon atoms such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and chloroprene. 1,3-butadiene and isoprene are more preferred, and 1,3-butadiene is particularly preferred.
  • the conjugated diene monomer may be used alone or in combination of two or more.
  • the amount of the conjugated diene monomer used is preferably such that the content of the conjugated diene monomer unit in the carboxyl group-containing conjugated diene rubber (A) is 30 to 89.5% by weight, more preferably The amount is 40 to 84% by weight, more preferably 50 to 78% by weight. If this amount is too small, the resulting dip-molded product is inferior in texture, whereas if it is too much, the tensile strength tends to be inferior.
  • the ethylenically unsaturated carboxylic acid monomer is not particularly limited, and examples thereof include ethylenically unsaturated monocarboxylic acid monomers such as acrylic acid and methacrylic acid; ethylenic unsaturated carboxylic acid monomers such as itaconic acid, maleic acid, and fumaric acid.
  • Saturated polyvalent carboxylic acid monomers ethylenically unsaturated polyvalent carboxylic acid partial ester monomers such as monobutyl fumarate, monobutyl maleate and mono-2-hydroxypropyl maleate; Since a carboxyl group is generated by this, ethylenically unsaturated polyvalent carboxylic acid anhydrides such as maleic anhydride and citraconic anhydride are also ethylenically unsaturated carboxylic acid monomers.
  • the ethylenically unsaturated monocarboxylic acid monomer is preferred and the ethylenically unsaturated carboxylic acid monomer having 3 to 10 carbon atoms because the effects of the present invention become more remarkable.
  • Monocarboxylic acid monomers are more preferred, acrylic acid and methacrylic acid are more preferred, and methacrylic acid is particularly preferred.
  • ethylenically unsaturated carboxylic acid monomers can also be used as alkali metal salts or ammonium salts.
  • these ethylenically unsaturated carboxylic acid monomers may be used alone or in combination of two or more.
  • the amount of the ethylenically unsaturated carboxylic acid monomer used is such that the content of the ethylenically unsaturated carboxylic acid monomer unit in the carboxyl group-containing conjugated diene rubber (A) is 0.5 to 20% by weight.
  • the amount is preferably 1 to 15% by weight, and more preferably 2 to 10% by weight. If this amount is too small, the resulting dip-molded product tends to be inferior in tensile strength, and conversely if it is too much, the texture and the durability of the adhesive state tend to be inferior.
  • the latex of the carboxyl group-containing conjugated diene rubber (A) used in the dip molding composition of the present invention is preferably a copolymer obtained by further copolymerizing an ethylenically unsaturated nitrile monomer from the viewpoint of improving the tensile strength.
  • ethylenically unsaturated nitrile monomer examples include acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ -chloroacrylonitrile, ⁇ -cyanoethylacrylonitrile and the like. Acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is particularly preferable. These ethylenically unsaturated nitrile monomers may be used alone or in combination of two or more.
  • the amount of the ethylenically unsaturated nitrile monomer used is preferably such that the content of the ethylenically unsaturated nitrile monomer unit in the carboxyl group-containing conjugated diene rubber (A) is 10 to 50% by weight.
  • the amount is more preferably 15 to 45% by weight, and still more preferably 20 to 40% by weight. If the amount is too small, the resulting dip-molded product may be inferior in tensile strength.
  • carboxyl group-containing conjugated diene rubber (A) latex used in the dip-molding composition of the present invention is not limited to other ethylenic copolymers that can be copolymerized with the above-mentioned monomers as long as the effects of the present invention are not impaired.
  • Saturated monomers may be copolymerized.
  • examples of such other copolymerizable ethylenically unsaturated monomers include aromatic vinyl monomers, ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester monomers, and ⁇ , ⁇ -ethylenic monomers.
  • Unsaturated monocarboxylic amide, vinyl acetate, vinyl pyrrolidone, vinyl pyridine and the like can be mentioned.
  • the amount of such other copolymerizable monomer used is such that the content of other copolymerizable monomer units in the carboxyl group-containing conjugated diene rubber (A) is 0 to 20% by weight.
  • the amount is 0 to 10% by weight, more preferably 0% by weight.
  • aromatic vinyl monomer examples include styrene, ⁇ -methylstyrene, monochlorostyrene, vinyltoluene and the like.
  • ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester monomers include methyl acrylate, methyl methacrylate, ethyl acrylate, butyl acrylate, ⁇ -hydroxyethyl acrylate, ⁇ -hydroxypropyl acrylate, Examples thereof include ⁇ -hydroxyethyl methacrylate, glycidyl acrylate, glycidyl methacrylate, N, N-dimethylaminoethyl (meth) acrylate, and the like.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid amide monomer include (meth) acrylamide, N-methylol (meth) acrylamide and the like. These monomers may be used alone or in combination of two or more.
  • the carboxyl group-containing conjugated diene rubber (A) latex used in the dip molding composition of the present invention has a residual carboxylic acid content in the latex of 2200 ppm by weight or less, preferably 2100 ppm by weight or less, more preferably 2000 ppm by weight or less.
  • the storage stability can be appropriately improved by setting the amount of residual carboxylic acid in the latex within the above range.
  • the residual carboxylic acid amount is free carboxylic acid that is not copolymerized with the carboxyl group-containing conjugated diene rubber (A), and is usually ethylene used to obtain a latex of the carboxyl group-containing conjugated diene rubber (A).
  • the unsaturated carboxylic acid monomer constitutes the residual carboxylic acid.
  • the residual carboxylic acid in the latex may be a carboxylic acid salt.
  • the carboxylic acid salt is also a residual carboxylic acid. Include in quantity. However, in that case, the amount of residual carboxylic acid is calculated
  • an aqueous hydrochloric acid solution may be added to the latex to convert the carboxylic acid salt into a carboxylic acid, and then measured by gas chromatography.
  • the latex of the carboxyl group-containing conjugated diene rubber (A) used in the present invention is a copolymer latex obtained by polymerizing a monomer mixture containing the above-mentioned monomers. What is obtained is preferred.
  • a conventionally well-known method can be employ
  • polymerization auxiliary materials such as an emulsifier, a polymerization initiator, and a molecular weight modifier can be used.
  • the method for adding these polymerization auxiliary materials is not particularly limited, and any method such as an initial batch addition method, a divided addition method, or a continuous addition method may be used.
  • the emulsifier is not particularly limited, and an anionic emulsifier, a nonionic emulsifier, a cationic emulsifier, and the like can be used.
  • anionic emulsifiers include salts of fatty acids such as myristic acid, palmitic acid, oleic acid and linolenic acid; alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate; higher alcohol sulfates; alkylsulfosuccinates; etc. Can be mentioned.
  • the salt in these anionic emulsifiers include alkali metal salts and ammonium salts.
  • specific examples of the nonionic emulsifier include polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester and the like.
  • the cationic emulsifier examples include alkyltrimethylammonium chloride, dialkylammonium chloride, benzylammonium chloride and the like.
  • the amount of the emulsifier used is usually 0.5 to 10 parts by weight, preferably 1 to 8 parts by weight, more preferably 2 to 5 parts by weight with respect to 100 parts by weight of the total monomers used.
  • the polymerization initiator is not particularly limited, and examples thereof include inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide; t-butyl peroxide, cumene hydroperoxide, p-menthane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, dibenzoyl peroxide, 3,5,5-trimethylhexanoyl Organic peroxides such as peroxide and t-butylperoxyisobutyrate; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, methyl azobisisobutyrate; etc.
  • inorganic peroxides
  • Raised Rukoto can be used alone or in combination of two or more.
  • the peroxide can be used as a redox polymerization initiator in combination with a reducing agent such as sodium bisulfite.
  • a reducing agent such as sodium bisulfite.
  • the polymerization initiator inorganic or organic peroxides are preferable, inorganic peroxides are more preferable, and sodium persulfate and potassium persulfate are particularly preferably used.
  • the amount of the polymerization initiator used is preferably 0.01 to 2 parts by weight, more preferably 0.05 to 1.5 parts by weight with respect to 100 parts by weight of the total monomers used.
  • a molecular weight adjusting agent in order to adjust the methyl ethyl ketone insoluble matter of the carboxyl group-containing conjugated diene rubber (A).
  • the molecular weight modifier include mercaptans such as n-butyl mercaptan and t-dodecyl mercaptan, sulfides such as tetraethylthiuram sulfide and dibentamethylenethiuram hexasulfide, ⁇ -methylstyrene dimer, carbon tetrachloride and the like. Can be mentioned.
  • mercaptans are preferable, and t-dodecyl mercaptan is more preferable. These can be used alone or in combination of two or more.
  • the amount of the molecular weight modifier used may be appropriately determined so that the methyl ethyl ketone insoluble content of the carboxyl group-containing conjugated diene rubber (A) is within a desired range, but is preferably based on 100 parts by weight of all monomers used. 0.3 to 0.8 part by weight.
  • the amount of water used for emulsion polymerization is preferably 80 to 600 parts by weight, particularly preferably 100 to 200 parts by weight, based on 100 parts by weight of all monomers used.
  • Examples of the monomer addition method include a method of adding monomers to be used in a reaction vessel all at once, a method of adding continuously or intermittently as the polymerization proceeds, and a part of the monomer is added. And a method in which the remaining monomer is continuously or intermittently added and polymerized, and any method may be employed.
  • the composition of the mixture may be constant or may be changed.
  • Each monomer may be added to the reaction vessel after previously mixing various monomers to be used, or may be added separately to the reaction vessel.
  • polymerization auxiliary materials such as a chelating agent, a dispersant, a pH adjuster, an oxygen scavenger, and a particle size adjuster can be used, and these are not particularly limited in type and amount used.
  • the polymerization temperature at the time of emulsion polymerization is usually 0 to 95 ° C., and the polymerization time is about 5 to 40 hours.
  • the monomer is emulsion-polymerized, and when the predetermined polymerization conversion rate is reached, the polymerization reaction is stopped by cooling the polymerization system or adding a polymerization terminator.
  • the polymerization conversion rate when stopping the polymerization reaction is preferably 95% by weight or more, more preferably 96% by weight or more.
  • the upper limit of the polymerization conversion rate is not particularly limited, but is preferably 99% by weight or less. In the present invention, by setting the polymerization conversion rate within such a range, among the monomers used for the polymerization, unreacted monomers, specifically, unreacted ethylenically unsaturated carboxylic acid monomers.
  • the amount of the monomer can be reduced, whereby the amount of residual carboxylic acid in the latex of the resulting carboxyl group-containing conjugated diene rubber (A) can be reduced to the above-described range.
  • the polymerization conversion rate is too high, there is a possibility that defects such as cracks during molding and the texture of the resulting dip-molded product may be inferior.
  • polymerization of about 92% by weight is performed. The polymerization was stopped at the conversion rate.
  • unreacted monomers may be removed by a vacuum recovery method or the like. Part of the mass can be removed. However, in such a method, a certain amount of unreacted monomer remains, and in particular, the ethylenically unsaturated carboxylic acid monomer that constitutes the residual carboxylic acid is taken into the polymer particles. In addition, the boiling point is high, so that it is difficult to remove by vacuum recovery. For this reason, it is actually difficult to remove a small amount of residual ethylenically unsaturated carboxylic acid monomer by such a method.
  • the amount of unreacted ethylenically unsaturated carboxylic acid monomer is reduced by setting the polymerization conversion rate within the above predetermined range when the polymerization reaction is stopped, and the residual The amount of carboxylic acid can be appropriately reduced to the above-described range.
  • the polymerization terminator is not particularly limited as long as it is usually used in emulsion polymerization. Specific examples thereof include hydroxylamine, hydroxyamine sulfate, diethylhydroxyamine, hydroxyaminesulfonic acid and alkali metals thereof.
  • Hydroxyamine compounds such as salts; sodium dimethyldithiocarbamate; hydroquinone derivatives; catechol derivatives; aromatic hydroxydithiocarboxylic acids such as hydroxydimethylbenzenethiocarboxylic acid, hydroxydiethylbenzenedithiocarboxylic acid, hydroxydibutylbenzenedithiocarboxylic acid, and alkali metal salts thereof
  • Aromatic hydroxydithiocarboxylic acid compounds such as;
  • the amount of the polymerization terminator used is not particularly limited, but is usually 0.05 to 2 parts by weight with respect to 100 parts by weight of the total monomers used.
  • the unreacted monomer is removed if necessary, and the latex of the carboxyl group-containing conjugated diene rubber (A) is obtained by adjusting the solid content concentration and pH.
  • the latex of the carboxyl group-containing conjugated diene rubber (A) used in the present invention may be appropriately added with an anti-aging agent, an antiseptic, an antibacterial agent, a dispersant, an ultraviolet absorber, a pH adjuster, and the like as necessary. .
  • the number average particle diameter of the latex of the carboxyl group-containing conjugated diene rubber (A) used in the present invention is preferably 60 to 300 nm, more preferably 80 to 150 nm.
  • this particle diameter can be adjusted to a desired value by a method of adjusting the usage-amount of an emulsifier and a polymerization initiator.
  • Carbodiimide compound (B) The dip molding composition of the present invention contains a carbodiimide compound (B) in addition to the latex of the carboxyl group-containing conjugated diene rubber (A) described above.
  • the carbodiimide compound (B) used in the present invention may be a compound having a carbodiimide group in the molecule, but is preferably a compound having a carbon-carbon double bond in addition to the carbodiimide group.
  • Specific examples of the carbodiimide compound (B) include 1-vinyl-3-ethyl-carbodiimide, 1-vinyl-3-propyl-carbodiimide, 1-vinyl-3-methoxypropyl-carbodiimide, 1-vinyl-3-isobutyl- A carbodiimide having a vinyl group having 5 to 20 carbon atoms such as carbodiimide; 1-propenyl-3-ethyl-carbodiimide, 1-propenyl-3-propyl-carbodiimide, 1-propenyl-3-methoxypropyl-carbodiimide, 1-propenyl- And carbodiimide having a propenyl group having 5 to 20 carbon atoms such as 3-is
  • the carbodiimide compound (B) used in the present invention includes a carbodiimide polymer obtained by polymerizing a compound having a carbodiimide group and a carbon-carbon double bond alone, or a carbodiimide polymer obtained by copolymerizing two or more kinds. Further, a carbodiimide polymer obtained by copolymerizing a compound and a compound having a carbodiimide group and a carbon-carbon double bond and a copolymerizable monomer may be used.
  • copolymerizable monomers examples include aromatic vinyl monomers such as styrene, ⁇ -methylstyrene, monochlorostyrene, vinyltoluene; methyl acrylate, methyl methacrylate, ethyl acrylate, butyl acrylate, ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester monomers such as ⁇ -hydroxyethyl acrylate, ⁇ -hydroxypropyl acrylate, ⁇ -hydroxyethyl methacrylate, glycidyl acrylate, glycidyl methacrylate, etc. Styrene, butyl acrylate and methyl methacrylate are preferred.
  • the content ratio of the carbodiimide monomer unit in the carbodiimide polymer is preferably 5 to 80 mol%, more preferably 10%, based on the total monomer units, since the effects of the present invention become more remarkable. It is ⁇ 70 mol%, particularly preferably 15 to 60 mol%.
  • the weight average molecular weight of the carbodiimide polymer is preferably 500 to 1,000,000, more preferably 1,000 to 500,000.
  • dip molding composition of the present invention comprises the latex of the carboxyl group-containing conjugated diene rubber (A) and the carbodiimide compound (B).
  • the compounding amount of the carbodiimide compound (B) in the dip molding composition of the present invention is such that the effect of the present invention becomes more prominent, so that the carboxyl group-containing conjugated diene rubber (A) in the dip molding composition is 100 weights.
  • the amount is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, and particularly preferably 0.5 to 5 parts by weight with respect to parts.
  • the carbodiimide compound (B) is crosslinked with the carboxyl group-containing conjugated diene rubber (A) to form a crosslinked structure.
  • the dip molding composition of the present invention may contain a vulcanizing agent, a vulcanization accelerator and zinc oxide. From the viewpoint of improving odor due to residual sulfur, the vulcanizing agent and the vulcanization accelerator. It is preferable not to add zinc oxide.
  • the dip molding composition of the present invention may be blended with a pH adjuster, a thickener, an anti-aging agent, a dispersant, a pigment, a filler, a softener and the like, which are usually blended.
  • a pH adjuster e.g., sodium bicarbonate
  • a thickener e.g., sodium bicarbonate
  • an anti-aging agent e.g., sodium bicarbonate
  • a dispersant e.g., sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium
  • the solid concentration of the dip molding composition of the present invention is preferably 10 to 50% by weight, more preferably 15 to 45% by weight.
  • the pH of the dip molding composition of the present invention is usually in the range of 7 to 12, preferably 8 to 11.
  • dip-molded product of the present invention is formed by dip-molding the dip-molding composition of the present invention.
  • a normal method may be employed, and examples thereof include a direct dipping method, an anode adhesion dipping method, and a teag adhesion dipping method.
  • the anode coagulation dipping method is preferred because a dip-molded product having a uniform thickness is easily obtained.
  • a dip-molding mold is immersed in a coagulant solution, the coagulant is attached to the surface of the mold, and then the dip-molding composition is immersed in the dip-molding composition.
  • a dip-formed layer is formed on the substrate.
  • the coagulant examples include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride, and aluminum chloride; nitrates such as barium nitrate, calcium nitrate, and zinc nitrate; acetic acid such as barium acetate, calcium acetate, and zinc acetate. Salts; sulfates such as calcium sulfate, magnesium sulfate, and aluminum sulfate; and the like. Of these, calcium chloride and calcium nitrate are preferable.
  • These coagulants are usually used as a solution of water, alcohol, or a mixture thereof. The concentration of the coagulant is usually 5 to 50% by weight, preferably 10 to 30% by weight.
  • the obtained dip-molded layer is usually subjected to heat treatment to be crosslinked.
  • water-soluble impurities for example, excess emulsifier and coagulant
  • water-soluble impurities may be removed by immersing in water, preferably warm water of 30 to 70 ° C., for about 1 to 60 minutes. This operation may be performed after heat-treating the dip-molded layer, but is preferably performed before the heat treatment from the viewpoint that water-soluble impurities can be more efficiently removed.
  • the dip-molded layer thus obtained is subjected to a heat treatment at a temperature of 80 to 150 ° C. for 10 to 120 minutes for crosslinking.
  • a heating method external heating using infrared rays or hot air or internal heating using high frequency can be employed. Of these, heating with hot air is preferred.
  • the dip-molded product is obtained by detaching the crosslinked dip-molded layer from the dip-molding die.
  • the desorption method it is possible to adopt a method of peeling from the mold by hand, or peeling by water pressure or compressed air pressure.
  • a heat treatment may be performed at a temperature of 60 to 120 ° C. for 10 to 120 minutes.
  • the dip-molded product may further have a surface treatment layer formed on the inner and / or outer surfaces thereof.
  • the dip-molded product of the present invention is obtained by using the above-described dip-molding composition of the present invention, and is suitable for applications such as gloves, is excellent in wearing durability, hardly discolored, and has little odor. is there.
  • the dip molding composition of the present invention described above is excellent in storage stability, according to the present invention, a dip molded product having the above characteristics can be obtained stably regardless of the length of storage period. be able to.
  • Such a dip-formed product of the present invention can have a thickness of about 0.03 to about 3 mm, and can be suitably used for a thin product having a thickness of 0.05 to 0.3 mm.
  • medical supplies such as nipples for baby bottles, syringes, conduits, and water pillows; toys and exercise equipment such as balloons, dolls, and balls; industrial articles such as pressure forming bags and gas storage bags; Examples include household, agricultural, fishery and industrial gloves; finger sack. It is particularly suitable for thin surgical gloves.
  • the amount of residual methacrylic acid latex (about 5 g weight (F)) and ethylene glycol (about 20 ⁇ l weight (G)) were weighed accurately, and these were then added to 1.8 wt% polyoxyethylene alkylene ether (trade name “Emulgen 1150S- 60 "(manufactured by Kao Corporation) in addition to 90 ml of an aqueous solution, and then 1 ml of 0.1 M aqueous hydrochloric acid solution was added and stirred for 15 minutes or more to obtain a sample for measuring the amount of residual methacrylic acid.
  • polyoxyethylene alkylene ether trade name “Emulgen 1150S- 60 "(manufactured by Kao Corporation
  • the correction coefficient (E) is obtained as follows.
  • correction coefficient (E) (p ⁇ r1) / (r ⁇ p1)
  • test subjects wear rubber gloves (dip molded products) obtained from odor, perform light work of keyboard input operation for 1 hour, count the number of people who feel discomfort due to odor after 1 hour work, It was evaluated according to the criteria. None: The number of people who felt discomfort was zero. Yes: One or more people felt uncomfortable.
  • Wearing rubber gloves (dip molded products) obtained by wearing were worn by 10 test subjects, and a light work of keyboard input operation was performed. Every time 10 minutes have passed since the work was started, the crotch portion of the finger of the rubber glove was observed to confirm the presence or absence of microcracks.
  • the wearing endurance time was obtained by arithmetically averaging 8 data (data of 8 people) excluding the shortest and longest time. The wearing durability test was conducted up to 240 minutes. It can be determined that the longer the wearing durability time is, the better the wearing durability is.
  • Wear durability after storage for 7 days and storage for 14 days (storage stability)
  • the wearing durability time was determined in the same manner as above except that the obtained rubber gloves after 7 days storage (dip-molded product) and rubber gloves after 14 days storage (dip-molded product) were used. It can be determined that the longer the wearing durability time, the better the storage stability as a dip molding composition in addition to the wearing durability.
  • Production Example 1 In a polymerization reactor, 29 parts of acrylonitrile, 64 parts of 1,3-butadiene, 7 parts of methacrylic acid, 0.5 part of t-dodecyl mercaptan, 132 parts of ion-exchanged water, 3 parts of sodium dodecylbenzenesulfonate, ⁇ -naphthalenesulfonic acid Formalin condensate sodium salt 0.5 part, potassium persulfate 0.3 part and ethylenediaminetetraacetic acid sodium salt 0.05 part were charged, and the polymerization temperature was maintained at 37 ° C. to initiate the polymerization.
  • the amount of residual methacrylic acid was measured and found to be 2000 ppm by weight. Further, the content ratio of each monomer unit constituting the carboxyl group-containing conjugated diene rubber (a1) was measured and found to be equal to the charged amount (the same applies to Production Examples 2 to 7 described later).
  • Production Example 2 A latex of carboxyl group-containing conjugated diene rubber (a2) having a solid content concentration of 45 wt% and a pH of 8 was obtained in the same manner as in Production Example 1 except that the reaction was carried out until the polymerization conversion reached 98 wt%. With respect to the obtained latex of carboxyl group-containing conjugated diene rubber (a2), the amount of residual methacrylic acid was measured and found to be 1500 ppm by weight.
  • Production Example 3 Except for changing the blending amount of 1,3-butadiene from 64 parts to 65 parts and the blending amount of methacrylic acid from 7 parts to 6 parts, respectively, in the same manner as in Production Example 1, the solid content concentration was 40% by weight, A latex of carboxyl group-containing conjugated diene rubber (a3) having a pH of 8 was obtained. With respect to the obtained latex of carboxyl group-containing conjugated diene rubber (a3), the amount of residual methacrylic acid was measured and found to be 1800 ppm by weight.
  • Production Example 4 A latex of carboxyl group-containing conjugated diene rubber (a4) having a solid concentration of 45% by weight and a pH of 8 was obtained in the same manner as in Production Example 3, except that the reaction was carried out until the polymerization conversion reached 98% by weight. When the amount of residual methacrylic acid was measured about the obtained latex of carboxyl group-containing conjugated diene rubber (a4), it was 1100 ppm by weight.
  • Production Example 5 The solid content concentration was 45% by weight in the same manner as in Production Example 1, except that the amount of 1,3-butadiene was changed from 64 parts to 66 parts and the amount of methacrylic acid was changed from 7 parts to 5 parts.
  • a latex of carboxyl group-containing conjugated diene rubber (a5) having a pH of 8 was obtained. With respect to the obtained latex of the carboxyl group-containing conjugated diene rubber (a5), the amount of residual methacrylic acid was measured and found to be 1600 ppm by weight.
  • Production Example 6 The amount of acrylonitrile was changed from 29 parts to 30 parts, the amount of 1,3-butadiene was changed from 64 parts to 65 parts, the amount of methacrylic acid was changed from 7 parts to 5 parts, and the polymerization reaction was changed.
  • a latex of carboxyl group-containing conjugated diene rubber (a6) having a solid content concentration of 45% by weight and a pH of 8 was obtained in the same manner as in Production Example 1 except that the polymerization conversion was terminated when the polymerization conversion reached 94% by weight. With respect to the obtained latex of carboxyl group-containing conjugated diene rubber (a6), the amount of residual methacrylic acid was measured and found to be 2300 ppm by weight.
  • Production Example 7 Similar to Production Example 6, except that the amount of acrylonitrile was changed from 30 parts to 29 parts and the amount of methacrylic acid was changed from 7 parts to 6 parts, respectively, a carboxyl group having a solid content concentration of 45% by weight and a pH of 8 A latex of the conjugated diene rubber (a7) was obtained. With respect to the obtained latex of carboxyl group-containing conjugated diene rubber (a7), the amount of residual methacrylic acid was measured and found to be 2500 ppm by weight.
  • Example 1 Preparation of Dip Molding Composition
  • carboxyl group-containing conjugated diene rubber (a1) obtained in Production Example 1 carbodiimide compound (B) (trade name “Carbodilite V-02-L2”, manufactured by Nisshinbo Chemical Co., Ltd.) was added.
  • an aqueous ammonia solution and ion-exchanged water were further added to adjust the pH to 10.0 and the solid content concentration to 30% by weight, and the mixture was stirred and uniformly dispersed at a temperature of 20 ° C. to obtain a dip molding composition. It was.
  • the polymer having a carbodiimide structure was added to 2 parts with respect to 100 parts of the carboxyl group-containing conjugated diene rubber (a1) in the latex of the carboxyl group-containing conjugated diene rubber (a1).
  • a rubber glove (dip molded product) was produced by the following method. First, a coagulant aqueous solution in which 20 parts of calcium nitrate, 0.05 part of polyethylene glycol octylphenyl ether and 80 parts of water were mixed was prepared. Next, the glove mold was immersed in this coagulant aqueous solution for 5 seconds, pulled up, and then dried under conditions of a temperature of 50 ° C. for 10 minutes to attach the coagulant to the glove mold. And after immersing the glove mold to which the coagulant is adhered in the dip molding composition obtained above for 8 seconds and then immersing in warm water at 40 ° C.
  • the film was dried at a temperature of 50 ° C. for 10 minutes to form a dip-molded layer in a glove mold. Then, the glove mold on which the dip-molded layer was formed was dried at a temperature of 70 ° C. for 10 minutes, and subsequently the dip-molded layer was crosslinked by heat treatment at a temperature of 125 ° C. for 20 minutes. The dip-molded layer was peeled from the glove mold to obtain a rubber glove (dip-molded product) having a thickness of 0.08 mm. The obtained rubber gloves (dip molded products) were evaluated for copper ion discoloration, odor, and wearing durability by the above methods. The results are shown in Table 1.
  • Example 2 The same procedure as in Example 1 was conducted except that the carboxyl group-containing conjugated diene rubber (a2) latex obtained in Production Example 2 was used instead of the carboxyl group-containing conjugated diene rubber (a1) latex obtained in Production Example 1. Then, a dip molding composition and each rubber glove (dip molded product) were obtained and evaluated in the same manner. The results are shown in Table 1.
  • Example 3 The same procedure as in Example 1 was performed except that the carboxyl group-containing conjugated diene rubber (a3) latex obtained in Production Example 3 was used instead of the carboxyl group-containing conjugated diene rubber (a1) latex obtained in Production Example 1. Then, a dip molding composition and each rubber glove (dip molded product) were obtained and evaluated in the same manner. The results are shown in Table 1.
  • Example 4 The same procedure as in Example 1 was performed except that the carboxyl group-containing conjugated diene rubber (a4) latex obtained in Production Example 4 was used instead of the carboxyl group-containing conjugated diene rubber (a1) latex obtained in Production Example 1. Then, a dip molding composition and each rubber glove (dip molded product) were obtained and evaluated in the same manner. The results are shown in Table 1.
  • Example 5 The same procedure as in Example 1 was performed except that the carboxyl group-containing conjugated diene rubber (a5) latex obtained in Production Example 5 was used instead of the carboxyl group-containing conjugated diene rubber (a1) latex obtained in Production Example 1. Then, a dip molding composition and each rubber glove (dip molded product) were obtained and evaluated in the same manner. The results are shown in Table 1.
  • Comparative Example 1 The same procedure as in Example 1 was performed except that the carboxyl group-containing conjugated diene rubber (a6) latex obtained in Production Example 6 was used instead of the carboxyl group-containing conjugated diene rubber (a1) latex obtained in Production Example 1. Then, a dip molding composition and each rubber glove (dip molded product) were obtained and evaluated in the same manner. The results are shown in Table 1.
  • Comparative Example 2 The same procedure as in Example 1 was performed except that the carboxyl group-containing conjugated diene rubber (a7) latex obtained in Production Example 7 was used instead of the carboxyl group-containing conjugated diene rubber (a1) latex obtained in Production Example 1. Then, a dip molding composition and each rubber glove (dip molded product) were obtained and evaluated in the same manner. The results are shown in Table 1.
  • Comparative Example 3 1 part of sulfur, 0.5 part of zinc dibutylcarbamate, 0.1 part of ⁇ -naphthalenesulfonic acid formalin condensate sodium salt, 0.03 part of potassium hydroxide, and 1.63 parts of water are mixed to give a vulcanizing agent A dispersion was prepared. To the carboxyl group-containing conjugated diene rubber (a1) latex obtained in Production Example 1, the vulcanizing agent dispersion prepared above was added, and then an aqueous ammonia solution and ion-exchanged water were further added to pH 10.0, After adjusting the solid content concentration to 30%, the mixture was stirred and dispersed uniformly at a temperature of 20 ° C. for 24 hours to obtain a dip-molding composition.
  • Comparative Example 4 Except for not blending 2 parts of the polymer having a carbodiimide structure as the carbodiimide compound (B), in the same manner as in Example 1, a dip molding composition and each rubber glove (dip molded product) were obtained. Evaluation was performed in the same manner. The results are shown in Table 1.
  • a dip-molding composition comprising a carboxyl group-containing conjugated diene rubber latex having a residual methacrylic acid amount (residual carboxylic acid amount) of 2200 ppm by weight or less, and a carbodiimide compound added thereto.
  • the dip-molded product obtained by using the dip-molding product is suppressed in discoloration (discoloration due to copper ions), has no odor, and has excellent wearing durability.
  • the dip-molding composition has a temperature of 50 ° C. Even after 7 days of storage under storage and 14 days after storage at 50 ° C., a dip-molded product excellent in wearing durability could be provided, and the storage stability was excellent (Examples 1 to 5).

Abstract

Provided is a dip molding composition containing a latex of a carboxyl-group-containing conjugate diene rubber (A), and a carbodiimide compound (B), the dip molding composition characterized in that the residual carboxylic acid content in the latex of the carboxyl-group-containing conjugated diene rubber (A) is no greater than 2200 ppm by weight.

Description

ディップ成形用組成物およびディップ成形品DIP MOLDING COMPOSITION AND DIP MOLDED ARTICLE
 本発明は、ディップ成形用組成物およびディップ成形品に関し、さらに詳しくは、貯蔵安定性に優れ、かつ、手袋等の用途に好適な、装着耐久性に優れ、変色しにくく、臭気の少ないディップ成形品を与えるディップ成形用組成物、およびこのようなディップ成形用組成物を用いて得られるディップ成形品に関する。 The present invention relates to a dip-molding composition and a dip-molded article. More specifically, the dip-molding is excellent in storage stability and suitable for applications such as gloves, has excellent wearing durability, hardly discolors, and has low odor. The present invention relates to a dip-molding composition that gives a product, and a dip-molded product obtained by using such a dip-molding composition.
 ゴム手袋は、家事用、食品工業や電子部品製造業などの種々の工業用および医療用などに、幅広く使用されている。しかしながら、これら各種用途のゴム手袋においては、装着耐久性が十分でなく、そのため、作業中に破れたり、それを着用して指を動かしながら作業を継続すると、指の股部分に微小亀裂が発生してしまうという問題が発生することがあった。 Rubber gloves are widely used in various industrial and medical applications such as housework, food industry and electronic component manufacturing. However, these various types of rubber gloves do not have enough durability to wear, so if they are torn during the work or if you continue to work while moving your fingers while wearing them, micro cracks will occur in the crotch part of the fingers In some cases, the problem of end up occurring.
 そのため、特許文献1には、特定量のカルボキシル基を含有するアクリロニトリル-ブタジエン共重合体ラテックス、少量の酸化亜鉛、比較的多量の硫黄および加硫促進剤を含有するディップ成形用組成物からディップ成形されたゴム手袋が開示されている。しかしながら、このような手袋を着用して作業を継続した場合、手袋自体が着色して、その商品価値を著しく低下させる場合があり、また残留する硫黄による臭気が問題となる場合があった。 Therefore, Patent Document 1 discloses dip molding from a dip molding composition containing a specific amount of an acrylonitrile-butadiene copolymer latex containing a carboxyl group, a small amount of zinc oxide, a relatively large amount of sulfur and a vulcanization accelerator. A rubber glove is disclosed. However, when such a glove is worn and the operation is continued, the glove itself may be colored to significantly reduce its commercial value, and the odor due to residual sulfur may be a problem.
特表2002-527632号公報Japanese translation of PCT publication No. 2002-527632
 本発明は、このような実状に鑑みてなされたものであり、貯蔵安定性に優れ、かつ、手袋等の用途に好適な、装着耐久性に優れ、変色しにくく、臭気の少ないディップ成形品を与えるディップ成形用組成物を提供することを目的とする。また、本発明は、このようなディップ成形用組成物を用いて得られるディップ成形品を提供することも目的とする。 The present invention has been made in view of such a situation, and is a dip-molded product that is excellent in storage stability and suitable for applications such as gloves, has excellent wearing durability, is resistant to discoloration, and has little odor. It is an object to provide a composition for dip molding. Another object of the present invention is to provide a dip-molded product obtained using such a dip-molding composition.
 本発明者等は、上記目的を達成するために鋭意研究した結果、残留カルボン酸量を特定量以下に制御されたカルボキシル基含有共役ジエンゴムのラテックスと、カルボジイミド化合物とを含むディップ成形用組成物により、上記目的を達成できることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that a dip molding composition containing a latex of a carboxyl group-containing conjugated diene rubber whose residual carboxylic acid amount is controlled to a specific amount or less, and a carbodiimide compound. The present inventors have found that the above object can be achieved and have completed the present invention.
 すなわち、本発明によれば、カルボキシル基含有共役ジエンゴム(A)のラテックスと、カルボジイミド化合物(B)とを含有するディップ成形用組成物であって、前記カルボキシル基含有共役ジエンゴム(A)のラテックス中における、残留カルボン酸量が2200重量ppm以下であることを特徴とするディップ成形用組成物が提供される。 That is, according to the present invention, a dip-molding composition comprising a carboxyl group-containing conjugated diene rubber (A) latex and a carbodiimide compound (B), wherein the carboxyl group-containing conjugated diene rubber (A) is in a latex. The amount of residual carboxylic acid is 2200 ppm by weight or less, and a dip molding composition is provided.
 好ましくは、前記カルボキシル基含有共役ジエンゴム(A)のラテックスが、共役ジエン単量体30~89.5重量%、エチレン性不飽和ニトリル単量体10~50重量%、エチレン性不飽和カルボン酸単量体0.5~20重量%、および、これらの単量体と共重合可能なその他のエチレン性不飽和単量体0~20重量%を含有してなる単量体混合物を重合して得られる共重合体のラテックスである。 Preferably, the carboxyl group-containing conjugated diene rubber (A) latex comprises 30 to 89.5% by weight of a conjugated diene monomer, 10 to 50% by weight of an ethylenically unsaturated nitrile monomer, and an ethylenically unsaturated carboxylic acid monomer. Obtained by polymerizing a monomer mixture containing 0.5 to 20% by weight of a monomer and 0 to 20% by weight of another ethylenically unsaturated monomer copolymerizable with these monomers. Copolymer latex.
 また、本発明によれば、上記に記載のディップ成形用組成物を、ディップ成形して得られるディップ成形品が提供され、該ディップ成形品が手袋であることが好ましい。 Moreover, according to the present invention, a dip-molded product obtained by dip-molding the dip-molding composition described above is provided, and the dip-molded product is preferably a glove.
 本発明によれば、貯蔵安定性に優れ、かつ、手袋等の用途に好適な、装着耐久性に優れ、変色しにくく、臭気の少ないディップ成形品を与えるディップ成形用組成物を提供することができる。また、本発明によれば、このようなディップ成形用組成物を用いて得られるディップ成形品を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, it is excellent in storage stability and suitable for uses, such as a glove, It provides the dip molding composition which gives the dip molding product which is excellent in wearing durability, is hard to discolor, and has few odors. it can. Moreover, according to the present invention, a dip-molded product obtained using such a dip-molding composition can be provided.
 本発明のディップ成形用組成物は、カルボキシル基含有共役ジエンゴム(A)のラテックスと、カルボジイミド化合物(B)とを含有し、前記カルボキシル基含有共役ジエンゴム(A)のラテックス中における、残留カルボン酸量が2200重量ppm以下である。 The dip molding composition of the present invention contains a latex of carboxyl group-containing conjugated diene rubber (A) and a carbodiimide compound (B), and the amount of residual carboxylic acid in the latex of the carboxyl group-containing conjugated diene rubber (A). Is 2200 ppm by weight or less.
 カルボキシル基含有共役ジエンゴム(A)のラテックス
 本発明のディップ成形用組成物に用いるカルボキシル基含有共役ジエンゴム(A)のラテックスは、共役ジエン単量体およびエチレン性不飽和カルボン酸単量体を共重合して得られる共重合体のラテックスであり、該ラテックス中の残留カルボン酸量が2200重量ppm以下のものである。
Latex of carboxyl group-containing conjugated diene rubber (A) Latex of carboxyl group-containing conjugated diene rubber (A) used in the dip molding composition of the present invention is a copolymer of a conjugated diene monomer and an ethylenically unsaturated carboxylic acid monomer. The latex of the copolymer thus obtained has a residual carboxylic acid content of 2200 ppm by weight or less.
 共役ジエン単量体としては、たとえば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、クロロプレンなどの炭素数4~6の共役ジエン単量体が好ましく、1,3-ブタジエンおよびイソプレンがより好ましく、1,3-ブタジエンが特に好ましい。共役ジエン単量体は1種単独でも、2種以上を併用してもよい。 Examples of the conjugated diene monomer include conjugated diene monomers having 4 to 6 carbon atoms such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and chloroprene. 1,3-butadiene and isoprene are more preferred, and 1,3-butadiene is particularly preferred. The conjugated diene monomer may be used alone or in combination of two or more.
 共役ジエン単量体の使用量は、カルボキシル基含有共役ジエンゴム(A)中の共役ジエン単量体単位の含有量が、30~89.5重量%となる量とすることが好ましく、より好ましくは40~84重量%となる量、さらに好ましくは50~78重量%となる量である。この量が少なすぎると得られるディップ成形物の風合いに劣り、逆に多すぎると引張強度に劣る傾向がある。 The amount of the conjugated diene monomer used is preferably such that the content of the conjugated diene monomer unit in the carboxyl group-containing conjugated diene rubber (A) is 30 to 89.5% by weight, more preferably The amount is 40 to 84% by weight, more preferably 50 to 78% by weight. If this amount is too small, the resulting dip-molded product is inferior in texture, whereas if it is too much, the tensile strength tends to be inferior.
 エチレン性不飽和カルボン酸単量体としては、特に限定されず、たとえば、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸単量体;イタコン酸、マレイン酸、フマル酸等のエチレン性不飽和多価カルボン酸単量体;フマル酸モノブチル、マレイン酸モノブチル、マレイン酸モノ-2-ヒドロキシプロピル等のエチレン性不飽和多価カルボン酸部分エステル単量体;などが挙げられ、また、加水分解によりカルボキシル基が生成することから、無水マレイン酸、無水シトラコン酸等のエチレン性不飽和多価カルボン酸無水物もエチレン性不飽和カルボン酸単量体である。 The ethylenically unsaturated carboxylic acid monomer is not particularly limited, and examples thereof include ethylenically unsaturated monocarboxylic acid monomers such as acrylic acid and methacrylic acid; ethylenic unsaturated carboxylic acid monomers such as itaconic acid, maleic acid, and fumaric acid. Saturated polyvalent carboxylic acid monomers; ethylenically unsaturated polyvalent carboxylic acid partial ester monomers such as monobutyl fumarate, monobutyl maleate and mono-2-hydroxypropyl maleate; Since a carboxyl group is generated by this, ethylenically unsaturated polyvalent carboxylic acid anhydrides such as maleic anhydride and citraconic anhydride are also ethylenically unsaturated carboxylic acid monomers.
 これらのエチレン性不飽和カルボン酸単量体の中でも、本発明の効果がより一層顕著になることから、エチレン性不飽和モノカルボン酸単量体が好ましく、炭素数3~10のエチレン性不飽和モノカルボン酸単量体がより好ましく、アクリル酸およびメタクリル酸がさらに好ましく、メタクリル酸が特に好ましい。 Among these ethylenically unsaturated carboxylic acid monomers, the ethylenically unsaturated monocarboxylic acid monomer is preferred and the ethylenically unsaturated carboxylic acid monomer having 3 to 10 carbon atoms because the effects of the present invention become more remarkable. Monocarboxylic acid monomers are more preferred, acrylic acid and methacrylic acid are more preferred, and methacrylic acid is particularly preferred.
 これらのエチレン性不飽和カルボン酸単量体はアルカリ金属塩またはアンモニウム塩として用いることもできる。なお、これらのエチレン性不飽和カルボン酸単量体は、1種を単独でも、2種以上を併用してもよい。 These ethylenically unsaturated carboxylic acid monomers can also be used as alkali metal salts or ammonium salts. In addition, these ethylenically unsaturated carboxylic acid monomers may be used alone or in combination of two or more.
 エチレン性不飽和カルボン酸単量体の使用量は、カルボキシル基含有共役ジエンゴム(A)中のエチレン性不飽和カルボン酸単量体単位の含有量が、0.5~20重量%となる量とすることが好ましく、より好ましくは1~15重量%となる量、さらに好ましくは2~10重量%となる量である。この量が少な過ぎると、得られるディップ成形品が引張強度に劣る傾向があり、逆に多すぎると風合い及び密着状態の持続性に劣る傾向がある。 The amount of the ethylenically unsaturated carboxylic acid monomer used is such that the content of the ethylenically unsaturated carboxylic acid monomer unit in the carboxyl group-containing conjugated diene rubber (A) is 0.5 to 20% by weight. The amount is preferably 1 to 15% by weight, and more preferably 2 to 10% by weight. If this amount is too small, the resulting dip-molded product tends to be inferior in tensile strength, and conversely if it is too much, the texture and the durability of the adhesive state tend to be inferior.
 本発明のディップ成形用組成物に用いるカルボキシル基含有共役ジエンゴム(A)のラテックスは、引張強度改善の観点から、エチレン性不飽和ニトリル単量体をさらに共重合したものであることが好ましい。 The latex of the carboxyl group-containing conjugated diene rubber (A) used in the dip molding composition of the present invention is preferably a copolymer obtained by further copolymerizing an ethylenically unsaturated nitrile monomer from the viewpoint of improving the tensile strength.
 エチレン性不飽和ニトリル単量体の具体例としては、アクリロニトリル、メタクリロニトリル、フマロニトリル、α-クロロアクリロニトリル、α-シアノエチルアクリロニトリル等が挙げられるが、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルが特に好ましい。なお、これらのエチレン性不飽和ニトリル単量体は、1種を単独でも、2種以上を併用してもよい。 Specific examples of the ethylenically unsaturated nitrile monomer include acrylonitrile, methacrylonitrile, fumaronitrile, α-chloroacrylonitrile, α-cyanoethylacrylonitrile and the like. Acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is particularly preferable. These ethylenically unsaturated nitrile monomers may be used alone or in combination of two or more.
 エチレン性不飽和ニトリル単量体の使用量は、カルボキシル基含有共役ジエンゴム(A)中のエチレン性不飽和ニトリル単量体単位の含有量が、10~50重量%となる量とすることが好ましく、より好ましくは15~45重量%となる量、さらに好ましくは20~40重量%となる量である。この量が少なすぎると、得られるディップ成形物の引張強度に劣る場合があり、逆に多すぎると風合いに劣る場合がある。 The amount of the ethylenically unsaturated nitrile monomer used is preferably such that the content of the ethylenically unsaturated nitrile monomer unit in the carboxyl group-containing conjugated diene rubber (A) is 10 to 50% by weight. The amount is more preferably 15 to 45% by weight, and still more preferably 20 to 40% by weight. If the amount is too small, the resulting dip-molded product may be inferior in tensile strength.
 また、本発明のディップ成形用組成物に用いるカルボキシル基含有共役ジエンゴム(A)のラテックスは、本発明の効果を損ねない範囲で、さらに上記の単量体と共重合可能なその他のエチレン性不飽和単量体を共重合してもよい。
 このような共重合可能なその他のエチレン性不飽和単量体としては、たとえば、芳香族ビニル単量体、α,β-エチレン性不飽和モノカルボン酸エステル単量体、α,β-エチレン性不飽和モノカルボン酸アミド、酢酸ビニル、ビニルピロリドン、ビニルピリジンなどが挙げられる。このような共重合可能な他の単量体の使用量は、カルボキシル基含有共役ジエンゴム(A)中の共重合可能な他の単量体の単位の含有量が、0~20重量%となる量とすることが好ましく、より好ましくは0~10重量%となる量、さらに好ましくは0重量%となる量である。
In addition, the carboxyl group-containing conjugated diene rubber (A) latex used in the dip-molding composition of the present invention is not limited to other ethylenic copolymers that can be copolymerized with the above-mentioned monomers as long as the effects of the present invention are not impaired. Saturated monomers may be copolymerized.
Examples of such other copolymerizable ethylenically unsaturated monomers include aromatic vinyl monomers, α, β-ethylenically unsaturated monocarboxylic acid ester monomers, and α, β-ethylenic monomers. Unsaturated monocarboxylic amide, vinyl acetate, vinyl pyrrolidone, vinyl pyridine and the like can be mentioned. The amount of such other copolymerizable monomer used is such that the content of other copolymerizable monomer units in the carboxyl group-containing conjugated diene rubber (A) is 0 to 20% by weight. Preferably, the amount is 0 to 10% by weight, more preferably 0% by weight.
 芳香族ビニル単量体としては、たとえば、スチレン、α-メチルスチレン、モノクロルスチレン、ビニルトルエンなどが挙げられる。
 α,β-エチレン性不飽和モノカルボン酸エステル単量体としては、例えば、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸β-ヒドロキシエチル、アクリル酸β-ヒドロキシプロピル、メタクリル酸β-ヒドロキシエチル、アクリル酸グリシジル、メタクリル酸グリシジル、N,N-ジメチルアミノエチル(メタ)アクリレートなどが挙げられる。
 α,β-エチレン性不飽和モノカルボン酸アミド単量体としては、(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミドなどが挙げられる。
 これらの単量体は、1種単独で、あるいは2種以上を併用してもよい。
Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, monochlorostyrene, vinyltoluene and the like.
Examples of α, β-ethylenically unsaturated monocarboxylic acid ester monomers include methyl acrylate, methyl methacrylate, ethyl acrylate, butyl acrylate, β-hydroxyethyl acrylate, β-hydroxypropyl acrylate, Examples thereof include β-hydroxyethyl methacrylate, glycidyl acrylate, glycidyl methacrylate, N, N-dimethylaminoethyl (meth) acrylate, and the like.
Examples of the α, β-ethylenically unsaturated monocarboxylic acid amide monomer include (meth) acrylamide, N-methylol (meth) acrylamide and the like.
These monomers may be used alone or in combination of two or more.
 また、本発明のディップ成形用組成物に用いるカルボキシル基含有共役ジエンゴム(A)のラテックスは、該ラテックス中の残留カルボン酸量が2200重量ppm以下であり、好ましくは2100重量ppm以下、より好ましくは2000重量ppm以下である。本発明においては、ラテックス中の残留カルボン酸量を上記範囲とすることにより、貯蔵安定性を適切に向上させることができる。なお、残留カルボン酸量とは、カルボキシル基含有共役ジエンゴム(A)に共重合していない、遊離のカルボン酸であり、通常、カルボキシル基含有共役ジエンゴム(A)のラテックスを得る際に用いたエチレン性不飽和カルボン酸単量体が残留カルボン酸を構成することとなる。
 なお、後述するように、重合反応停止後にpHを調整した場合には、ラテックス中の残留カルボン酸がカルボン酸塩になっていることもあるが、その場合には該カルボン酸塩も残留カルボン酸量に含む。ただし、その際には、カルボン酸塩では無く、カルボン酸として残留カルボン酸量を求める。その測定方法としては、例えば、ラテックスに塩酸水溶液を添加し、カルボン酸塩をカルボン酸に変換してから、ガスクロマトグラフィーにて測定すれば良い。
Further, the carboxyl group-containing conjugated diene rubber (A) latex used in the dip molding composition of the present invention has a residual carboxylic acid content in the latex of 2200 ppm by weight or less, preferably 2100 ppm by weight or less, more preferably 2000 ppm by weight or less. In the present invention, the storage stability can be appropriately improved by setting the amount of residual carboxylic acid in the latex within the above range. The residual carboxylic acid amount is free carboxylic acid that is not copolymerized with the carboxyl group-containing conjugated diene rubber (A), and is usually ethylene used to obtain a latex of the carboxyl group-containing conjugated diene rubber (A). The unsaturated carboxylic acid monomer constitutes the residual carboxylic acid.
As will be described later, when the pH is adjusted after stopping the polymerization reaction, the residual carboxylic acid in the latex may be a carboxylic acid salt. In this case, the carboxylic acid salt is also a residual carboxylic acid. Include in quantity. However, in that case, the amount of residual carboxylic acid is calculated | required not as carboxylate but as carboxylic acid. As the measuring method, for example, an aqueous hydrochloric acid solution may be added to the latex to convert the carboxylic acid salt into a carboxylic acid, and then measured by gas chromatography.
 本発明で用いるカルボキシル基含有共役ジエンゴム(A)のラテックスは、上記の単量体を含有してなる単量体混合物を、重合して得られる共重合体のラテックスであるが、乳化重合して得られるものが好ましい。乳化重合方法としては、従来公知の方法を採用することができる。 The latex of the carboxyl group-containing conjugated diene rubber (A) used in the present invention is a copolymer latex obtained by polymerizing a monomer mixture containing the above-mentioned monomers. What is obtained is preferred. A conventionally well-known method can be employ | adopted as an emulsion polymerization method.
 上記の単量体の混合物を乳化重合するには、通常用いられる、乳化剤、重合開始剤、分子量調整剤等の重合副資材を使用することができる。これら重合副資材の添加方法は特に限定されず、初期一括添加法、分割添加法、連続添加法などいずれの方法でもよい。 In order to emulsion-polymerize a mixture of the above monomers, commonly used polymerization auxiliary materials such as an emulsifier, a polymerization initiator, and a molecular weight modifier can be used. The method for adding these polymerization auxiliary materials is not particularly limited, and any method such as an initial batch addition method, a divided addition method, or a continuous addition method may be used.
 乳化剤としては、特に限定されないが、アニオン性乳化剤、非イオン性乳化剤、カチオン性乳化剤などを用いることができる。 The emulsifier is not particularly limited, and an anionic emulsifier, a nonionic emulsifier, a cationic emulsifier, and the like can be used.
 アニオン性乳化剤の具体例としては、ミリスチン酸、パルミチン酸、オレイン酸、リノレン酸の如き脂肪酸の塩;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;高級アルコール硫酸エステル塩;アルキルスルホコハク酸塩;等を挙げることができる。これらのアニオン性乳化剤における塩としては、アルカリ金属塩又はアンモニウム塩を挙げることができる。
 非イオン性乳化剤の具体例としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等を挙げることができる。
 カチオン性乳化剤の具体例としては、アルキルトリメチルアンモニウムクロライド、ジアルキルアンモニウムクロライド、ベンジルアンモニウムクロライド等を挙げることができる。
 乳化剤の使用量は、使用する全単量体100重量部に対して、通常、0.5~10重量部、好ましくは1~8重量部、より好ましくは2~5重量部である。
Specific examples of anionic emulsifiers include salts of fatty acids such as myristic acid, palmitic acid, oleic acid and linolenic acid; alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate; higher alcohol sulfates; alkylsulfosuccinates; etc. Can be mentioned. Examples of the salt in these anionic emulsifiers include alkali metal salts and ammonium salts.
Specific examples of the nonionic emulsifier include polyoxyethylene alkyl ether, polyoxyethylene alkylphenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester and the like.
Specific examples of the cationic emulsifier include alkyltrimethylammonium chloride, dialkylammonium chloride, benzylammonium chloride and the like.
The amount of the emulsifier used is usually 0.5 to 10 parts by weight, preferably 1 to 8 parts by weight, more preferably 2 to 5 parts by weight with respect to 100 parts by weight of the total monomers used.
 重合開始剤としては、特に限定されないが、たとえば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;t-ブチルパーオキサイド、クメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、オクタノイルパーオキサイド、ジベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシイソブチレート等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル等のアゾ化合物;等を挙げることができる。これらの重合開始剤は、それぞれ単独で、あるいは2種類以上を組み合わせて使用することができる。また、過酸化物は重亜硫酸ナトリウム等の還元剤と組み合わせて、レドックス系重合開始剤として使用することもできる。重合開始剤としては、無機または有機の過酸化物が好ましく、無機過酸化物がより好ましく、過硫酸ナトリウムおよび過硫酸カリウムが特に好ましく使用できる。
 重合開始剤の使用量は、使用する全単量体100重量部に対して、好ましくは0.01~2重量部、より好ましくは0.05~1.5重量部である。
The polymerization initiator is not particularly limited, and examples thereof include inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide; t-butyl peroxide, cumene hydroperoxide, p-menthane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, dibenzoyl peroxide, 3,5,5-trimethylhexanoyl Organic peroxides such as peroxide and t-butylperoxyisobutyrate; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, methyl azobisisobutyrate; etc. Raised Rukoto can. These polymerization initiators can be used alone or in combination of two or more. In addition, the peroxide can be used as a redox polymerization initiator in combination with a reducing agent such as sodium bisulfite. As the polymerization initiator, inorganic or organic peroxides are preferable, inorganic peroxides are more preferable, and sodium persulfate and potassium persulfate are particularly preferably used.
The amount of the polymerization initiator used is preferably 0.01 to 2 parts by weight, more preferably 0.05 to 1.5 parts by weight with respect to 100 parts by weight of the total monomers used.
 乳化重合を行うに際して、カルボキシル基含有共役ジエンゴム(A)のメチルエチルケトン不溶解分を調整するために、分子量調整剤を使用することが好ましい。分子量調整剤としては、たとえば、n-ブチルメルカプタン、t-ドデシルメルカプタン等のメルカプタン類、テトラエチルチウラムスルフィド、ジベンタメチレンチウラムヘキサスルフィド等のスルフィド類、α-メチルスチレン2量体、四塩化炭素等が挙げられる。なかでも、メルカプタン類が好ましく、t-ドデシルメルカプタンがより好ましい。これらは一種もしくは二種以上組み合わせて使用することが可能である。
 分子量調整剤の使用量は、カルボキシル基含有共役ジエンゴム(A)のメチルエチルケトン不溶解分が所望の範囲となるよう適宜決定すればよいが、使用する全単量体100重量部に対して、好ましくは0.3~0.8重量部である。
In carrying out the emulsion polymerization, it is preferable to use a molecular weight adjusting agent in order to adjust the methyl ethyl ketone insoluble matter of the carboxyl group-containing conjugated diene rubber (A). Examples of the molecular weight modifier include mercaptans such as n-butyl mercaptan and t-dodecyl mercaptan, sulfides such as tetraethylthiuram sulfide and dibentamethylenethiuram hexasulfide, α-methylstyrene dimer, carbon tetrachloride and the like. Can be mentioned. Of these, mercaptans are preferable, and t-dodecyl mercaptan is more preferable. These can be used alone or in combination of two or more.
The amount of the molecular weight modifier used may be appropriately determined so that the methyl ethyl ketone insoluble content of the carboxyl group-containing conjugated diene rubber (A) is within a desired range, but is preferably based on 100 parts by weight of all monomers used. 0.3 to 0.8 part by weight.
 乳化重合する際に使用する水の量は、使用する全単量体100重量部に対して、80~600重量部が好ましく、100~200重量部が特に好ましい。 The amount of water used for emulsion polymerization is preferably 80 to 600 parts by weight, particularly preferably 100 to 200 parts by weight, based on 100 parts by weight of all monomers used.
 単量体の添加方法としては、たとえば、反応容器に使用する単量体を一括して添加する方法、重合の進行に従って連続的または断続的に添加する方法、単量体の一部を添加して特定の転化率まで反応させ、その後、残りの単量体を連続的または断続的に添加して重合する方法等が挙げられ、いずれの方法を採用してもよい。単量体を混合して連続的または断続的に添加する場合、混合物の組成は、一定としても、あるいは変化させてもよい。
 また、各単量体は、使用する各種単量体を予め混合してから反応容器に添加しても、あるいは別々に反応容器に添加してもよい。
Examples of the monomer addition method include a method of adding monomers to be used in a reaction vessel all at once, a method of adding continuously or intermittently as the polymerization proceeds, and a part of the monomer is added. And a method in which the remaining monomer is continuously or intermittently added and polymerized, and any method may be employed. When the monomers are mixed and added continuously or intermittently, the composition of the mixture may be constant or may be changed.
Each monomer may be added to the reaction vessel after previously mixing various monomers to be used, or may be added separately to the reaction vessel.
 さらに、必要に応じて、キレート剤、分散剤、pH調整剤、脱酸素剤、粒子径調整剤等の重合副資材を用いることができ、これらは種類、使用量とも特に限定されない。 Furthermore, if necessary, polymerization auxiliary materials such as a chelating agent, a dispersant, a pH adjuster, an oxygen scavenger, and a particle size adjuster can be used, and these are not particularly limited in type and amount used.
 乳化重合する際の重合温度は、通常、0~95℃であり、重合時間は5~40時間程度である。 The polymerization temperature at the time of emulsion polymerization is usually 0 to 95 ° C., and the polymerization time is about 5 to 40 hours.
 以上のように単量体を乳化重合し、所定の重合転化率に達した時点で、重合系を冷却したり、重合停止剤を添加したりして、重合反応を停止する。重合反応を停止する際の重合転化率は、好ましくは95重量%以上、より好ましくは96重量%以上である。また、重合転化率の上限は、特に限定されないが、好ましくは99重量%以下である。本発明においては、重合転化率をこのような範囲とすることにより、重合に用いた単量体のうち、未反応の単量体、具体的には、未反応のエチレン性不飽和カルボン酸単量体の量を低減させることができ、これにより、得られるカルボキシル基含有共役ジエンゴム(A)のラテックス中における、残留カルボン酸の量を上述した範囲に低減することができる。なお、従来は、重合転化率をあまり高くし過ぎると、成形する際の亀裂や得られるディップ成形物の風合いが劣るなどの不具合が生じる可能性があるとされ、通常、92重量%程度の重合転化率で重合を停止させていた。 As described above, the monomer is emulsion-polymerized, and when the predetermined polymerization conversion rate is reached, the polymerization reaction is stopped by cooling the polymerization system or adding a polymerization terminator. The polymerization conversion rate when stopping the polymerization reaction is preferably 95% by weight or more, more preferably 96% by weight or more. The upper limit of the polymerization conversion rate is not particularly limited, but is preferably 99% by weight or less. In the present invention, by setting the polymerization conversion rate within such a range, among the monomers used for the polymerization, unreacted monomers, specifically, unreacted ethylenically unsaturated carboxylic acid monomers. The amount of the monomer can be reduced, whereby the amount of residual carboxylic acid in the latex of the resulting carboxyl group-containing conjugated diene rubber (A) can be reduced to the above-described range. Conventionally, if the polymerization conversion rate is too high, there is a possibility that defects such as cracks during molding and the texture of the resulting dip-molded product may be inferior. Usually, polymerization of about 92% by weight is performed. The polymerization was stopped at the conversion rate.
 なお、ラテックスの製造においては、重合反応停止後、減圧回収の方法などにより、未反応の単量体を除去することが行われる場合もあるが、このような方法によれば、未反応の単量体のうち、一部については除去することが可能である。しかしながら、このような方法では、未反応の単量体が一定量残存することとなり、特に、残留カルボン酸を構成することとなるエチレン性不飽和カルボン酸単量体は、重合体粒子内に取り込まれ易く、また、沸点も高いので減圧回収では除去することが難しい。そのため、このような方法では、微量の残留エチレン性不飽和カルボン酸単量体を除去することが難しいのが実状である。これに対し、上記ように、重合反応を停止する際における、重合転化率を上記所定範囲とすることにより、未反応のエチレン性不飽和カルボン酸単量体の量を低減し、これにより、残留カルボン酸の量を上述した範囲に適切に低減することができるものである。 In the production of latex, after the polymerization reaction is stopped, unreacted monomers may be removed by a vacuum recovery method or the like. Part of the mass can be removed. However, in such a method, a certain amount of unreacted monomer remains, and in particular, the ethylenically unsaturated carboxylic acid monomer that constitutes the residual carboxylic acid is taken into the polymer particles. In addition, the boiling point is high, so that it is difficult to remove by vacuum recovery. For this reason, it is actually difficult to remove a small amount of residual ethylenically unsaturated carboxylic acid monomer by such a method. On the other hand, as described above, the amount of unreacted ethylenically unsaturated carboxylic acid monomer is reduced by setting the polymerization conversion rate within the above predetermined range when the polymerization reaction is stopped, and the residual The amount of carboxylic acid can be appropriately reduced to the above-described range.
 重合停止剤は、通常、乳化重合において使用されているものであれば、特に限定されないが、その具体例としては、ヒドロキシルアミン、ヒドロキシアミン硫酸塩、ジエチルヒドロキシアミン、ヒドロキシアミンスルホン酸及びそのアルカリ金属塩等のヒドロキシアミン化合物;ジメチルジチオカルバミン酸ナトリウム;ハイドロキノン誘導体;カテコール誘導体;ヒドロキシジメチルベンゼンチオカルボン酸、ヒドロキシジエチルベンゼンジチオカルボン酸、ヒドロキシジブチルベンゼンジチオカルボン酸等の芳香族ヒドロキシジチオカルボン酸及びこれらのアルカリ金属塩等の芳香族ヒドロキシジチオカルボン酸化合物;等が挙げられる。
 重合停止剤の使用量は、特に限定されないが、通常、使用する全単量体100重量部に対して、0.05~2重量部である。
The polymerization terminator is not particularly limited as long as it is usually used in emulsion polymerization. Specific examples thereof include hydroxylamine, hydroxyamine sulfate, diethylhydroxyamine, hydroxyaminesulfonic acid and alkali metals thereof. Hydroxyamine compounds such as salts; sodium dimethyldithiocarbamate; hydroquinone derivatives; catechol derivatives; aromatic hydroxydithiocarboxylic acids such as hydroxydimethylbenzenethiocarboxylic acid, hydroxydiethylbenzenedithiocarboxylic acid, hydroxydibutylbenzenedithiocarboxylic acid, and alkali metal salts thereof Aromatic hydroxydithiocarboxylic acid compounds such as;
The amount of the polymerization terminator used is not particularly limited, but is usually 0.05 to 2 parts by weight with respect to 100 parts by weight of the total monomers used.
 重合反応を停止した後、所望により、未反応の単量体を除去し、固形分濃度やpHを調整してカルボキシル基含有共役ジエンゴム(A)のラテックスを得る。 After stopping the polymerization reaction, the unreacted monomer is removed if necessary, and the latex of the carboxyl group-containing conjugated diene rubber (A) is obtained by adjusting the solid content concentration and pH.
 本発明で用いるカルボキシル基含有共役ジエンゴム(A)のラテックスには、必要に応じて、老化防止剤、防腐剤、抗菌剤、分散剤、紫外線吸収剤、pH調整剤などを適宜添加してもよい。 The latex of the carboxyl group-containing conjugated diene rubber (A) used in the present invention may be appropriately added with an anti-aging agent, an antiseptic, an antibacterial agent, a dispersant, an ultraviolet absorber, a pH adjuster, and the like as necessary. .
 本発明で用いるカルボキシル基含有共役ジエンゴム(A)のラテックスの数平均粒子径は、好ましくは60~300nm、より好ましくは80~150nmである。なお、この粒子径は、乳化剤および重合開始剤の使用量を調節する等の方法により、所望の値に調整することができる。 The number average particle diameter of the latex of the carboxyl group-containing conjugated diene rubber (A) used in the present invention is preferably 60 to 300 nm, more preferably 80 to 150 nm. In addition, this particle diameter can be adjusted to a desired value by a method of adjusting the usage-amount of an emulsifier and a polymerization initiator.
 カルボジイミド化合物(B)
 本発明のディップ成形用組成物は、上述したカルボキシル基含有共役ジエンゴム(A)のラテックスに加えて、カルボジイミド化合物(B)を含有する。
Carbodiimide compound (B)
The dip molding composition of the present invention contains a carbodiimide compound (B) in addition to the latex of the carboxyl group-containing conjugated diene rubber (A) described above.
 本発明で用いるカルボジイミド化合物(B)としては、分子中にカルボジイミド基を有する化合物であればよいが、カルボジイミド基に加えて、炭素-炭素二重結合を有する化合物であることが好ましい。カルボジイミド化合物(B)の具体例としては、1-ビニル-3-エチル-カルボジイミド、1-ビニル-3-プロピル-カルボジイミド、1-ビニル-3-メトキシプロピル-カルボジイミド、1-ビニル-3-イソブチル-カルボジイミドなどの炭素数5~20のビニル基を有するカルボジイミド;1-プロペニル-3-エチル-カルボジイミド、1-プロペニル-3-プロピル-カルボジイミド、1-プロペニル-3-メトキシプロピル-カルボジイミド、1-プロペニル-3-イソブチル-カルボジイミドなどの炭素数5~20のプロペニル基を有するカルボジイミド;などが挙げられる。 The carbodiimide compound (B) used in the present invention may be a compound having a carbodiimide group in the molecule, but is preferably a compound having a carbon-carbon double bond in addition to the carbodiimide group. Specific examples of the carbodiimide compound (B) include 1-vinyl-3-ethyl-carbodiimide, 1-vinyl-3-propyl-carbodiimide, 1-vinyl-3-methoxypropyl-carbodiimide, 1-vinyl-3-isobutyl- A carbodiimide having a vinyl group having 5 to 20 carbon atoms such as carbodiimide; 1-propenyl-3-ethyl-carbodiimide, 1-propenyl-3-propyl-carbodiimide, 1-propenyl-3-methoxypropyl-carbodiimide, 1-propenyl- And carbodiimide having a propenyl group having 5 to 20 carbon atoms such as 3-isobutyl-carbodiimide.
 また、本発明で用いるカルボジイミド化合物(B)としては、カルボジイミド基および炭素-炭素二重結合を有する化合物を、単独で重合してなるカルボジイミド重合体、あるいは2種以上を共重合してなるカルボジイミド重合体、さらには、カルボジイミド基および炭素-炭素二重結合を有する化合物と、共重合可能な単量体とを共重合してなるカルボジイミド重合体を用いてもよい。 The carbodiimide compound (B) used in the present invention includes a carbodiimide polymer obtained by polymerizing a compound having a carbodiimide group and a carbon-carbon double bond alone, or a carbodiimide polymer obtained by copolymerizing two or more kinds. Further, a carbodiimide polymer obtained by copolymerizing a compound and a compound having a carbodiimide group and a carbon-carbon double bond and a copolymerizable monomer may be used.
 このような共重合可能な単量体としては、スチレン、α-メチルスチレン、モノクロルスチレン、ビニルトルエンなどの芳香族ビニル単量体;アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸β-ヒドロキシエチル、アクリル酸β-ヒドロキシプロピル、メタクリル酸β-ヒドロキシエチル、アクリル酸グリシジル、メタクリル酸グリシジルなどのα,β-エチレン性不飽和モノカルボン酸エステル単量体;などが挙げられ、スチレン、アクリル酸ブチルおよびメタクリル酸メチルが好適である。 Examples of such copolymerizable monomers include aromatic vinyl monomers such as styrene, α-methylstyrene, monochlorostyrene, vinyltoluene; methyl acrylate, methyl methacrylate, ethyl acrylate, butyl acrylate, Α, β-ethylenically unsaturated monocarboxylic acid ester monomers such as β-hydroxyethyl acrylate, β-hydroxypropyl acrylate, β-hydroxyethyl methacrylate, glycidyl acrylate, glycidyl methacrylate, etc. Styrene, butyl acrylate and methyl methacrylate are preferred.
 カルボジイミド重合体中における、カルボジイミド単量体単位の含有割合は、本発明の効果がより一層顕著になることから、全単量体単位に対して、好ましくは5~80モル%、より好ましくは10~70モル%、特に好ましくは15~60モル%である。
 また、カルボジイミド重合体の重量平均分子量は、好ましくは500~1,000,000、さらに好ましくは1,000~500,000である。
The content ratio of the carbodiimide monomer unit in the carbodiimide polymer is preferably 5 to 80 mol%, more preferably 10%, based on the total monomer units, since the effects of the present invention become more remarkable. It is ˜70 mol%, particularly preferably 15 to 60 mol%.
The weight average molecular weight of the carbodiimide polymer is preferably 500 to 1,000,000, more preferably 1,000 to 500,000.
 ディップ成形用組成物
 本発明のディップ成形用組成物は、上述したカルボキシル基含有共役ジエンゴム(A)のラテックス、およびカルボジイミド化合物(B)を含んでなるものである。
Dip molding composition The dip molding composition of the present invention comprises the latex of the carboxyl group-containing conjugated diene rubber (A) and the carbodiimide compound (B).
 本発明のディップ成形用組成物中におけるカルボジイミド化合物(B)の配合量は、本発明の効果がより一層顕著になることから、ディップ成形用組成物中のカルボキシル基含有共役ジエンゴム(A)100重量部に対して、好ましくは0.01~20重量部、より好ましくは0.1~10重量部、特に好ましくは0.5~5重量部である。なお、カルボジイミド化合物(B)は、カルボキシル基含有共役ジエンゴム(A)と架橋反応することにより、架橋構造が形成される。 The compounding amount of the carbodiimide compound (B) in the dip molding composition of the present invention is such that the effect of the present invention becomes more prominent, so that the carboxyl group-containing conjugated diene rubber (A) in the dip molding composition is 100 weights. The amount is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, and particularly preferably 0.5 to 5 parts by weight with respect to parts. The carbodiimide compound (B) is crosslinked with the carboxyl group-containing conjugated diene rubber (A) to form a crosslinked structure.
 また、本発明のディップ成形用組成物には、加硫剤、加硫促進剤および酸化亜鉛を配合しても良いが、残留する硫黄による臭気改善の観点から、加硫剤、加硫促進剤および酸化亜鉛を配合しないことが好ましい。 Further, the dip molding composition of the present invention may contain a vulcanizing agent, a vulcanization accelerator and zinc oxide. From the viewpoint of improving odor due to residual sulfur, the vulcanizing agent and the vulcanization accelerator. It is preferable not to add zinc oxide.
 本発明のディップ成形用組成物には、所望により、通常配合される、pH調整剤、増粘剤、老化防止剤、分散剤、顔料、充填剤、軟化剤等を配合してもよい。
 また、本発明の目的を損なわない限り、天然ゴムラテックス、イソプレンゴムラテックス等のその他のラテックスを併用することもできる。
If necessary, the dip molding composition of the present invention may be blended with a pH adjuster, a thickener, an anti-aging agent, a dispersant, a pigment, a filler, a softener and the like, which are usually blended.
Further, other latexes such as natural rubber latex and isoprene rubber latex can be used in combination as long as the object of the present invention is not impaired.
 本発明のディップ成形用組成物の固形分濃度は、好ましくは10~50重量%、より好ましくは15~45重量%である。
 本発明のディップ成形用組成物のpHは、通常、7~12、好ましくは8~11の範囲である。
The solid concentration of the dip molding composition of the present invention is preferably 10 to 50% by weight, more preferably 15 to 45% by weight.
The pH of the dip molding composition of the present invention is usually in the range of 7 to 12, preferably 8 to 11.
 ディップ成形品
 本発明のディップ成形品は、上記本発明のディップ成形用組成物をディップ成形してなる。
 ディップ成形法としては、通常の方法を採用すればよく、たとえば、直接浸漬法、アノード凝着浸漬法、ティーグ凝着浸漬法等が挙げられる。なかでも、均一な厚みを有するディップ成形物が得られやすい点で、アノード凝着浸漬法が好ましい。
Dip-molded product The dip-molded product of the present invention is formed by dip-molding the dip-molding composition of the present invention.
As the dip molding method, a normal method may be employed, and examples thereof include a direct dipping method, an anode adhesion dipping method, and a teag adhesion dipping method. Of these, the anode coagulation dipping method is preferred because a dip-molded product having a uniform thickness is easily obtained.
 アノード凝着浸漬法の場合、たとえば、ディップ成形用型を凝固剤溶液に浸漬して、該型表面に凝固剤を付着させた後、それをディップ成形用組成物に浸漬して、該型表面にディップ成形層を形成する。 In the case of the anode adhesion dipping method, for example, a dip-molding mold is immersed in a coagulant solution, the coagulant is attached to the surface of the mold, and then the dip-molding composition is immersed in the dip-molding composition. A dip-formed layer is formed on the substrate.
 凝固剤としては、たとえば、塩化バリウム、塩化カルシウム、塩化マグネシウム、塩化亜鉛、塩化アルミニウム等のハロゲン化金属;硝酸バリウム、硝酸カルシウム、硝酸亜鉛等の硝酸塩;酢酸バリウム、酢酸カルシウム、酢酸亜鉛等の酢酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウム等の硫酸塩;等が挙げられる。なかでも、塩化カルシウム及び硝酸カルシウムが好ましい。
 これら凝固剤は、通常、水、アルコール、又はそれらの混合物の溶液として使用する。凝固剤濃度は、通常、5~50重量%、好ましくは10~30重量%である。
Examples of the coagulant include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride, and aluminum chloride; nitrates such as barium nitrate, calcium nitrate, and zinc nitrate; acetic acid such as barium acetate, calcium acetate, and zinc acetate. Salts; sulfates such as calcium sulfate, magnesium sulfate, and aluminum sulfate; and the like. Of these, calcium chloride and calcium nitrate are preferable.
These coagulants are usually used as a solution of water, alcohol, or a mixture thereof. The concentration of the coagulant is usually 5 to 50% by weight, preferably 10 to 30% by weight.
 得られたディップ成形層は、通常、加熱処理を施し架橋する。加熱処理を施す前に、水、好ましくは30~70℃の温水、に、1~60分程度浸漬し、水溶性不純物(例えば、余剰の乳化剤や凝固剤等)を除去してもよい。この操作は、ディップ成形層を加熱処理した後に行なってもよいが、より効率的に水溶性不純物を除去できる点から、加熱処理前に行なうのが好ましい。 The obtained dip-molded layer is usually subjected to heat treatment to be crosslinked. Prior to the heat treatment, water-soluble impurities (for example, excess emulsifier and coagulant) may be removed by immersing in water, preferably warm water of 30 to 70 ° C., for about 1 to 60 minutes. This operation may be performed after heat-treating the dip-molded layer, but is preferably performed before the heat treatment from the viewpoint that water-soluble impurities can be more efficiently removed.
 そして、このようにして得られたディップ成形層は、80~150℃の温度で、10~120分の加熱処理を行い、架橋する。加熱の方法としては、赤外線や熱空気による外部加熱または高周波による内部加熱による方法が採用できる。なかでも、熱空気による加熱が好ましい。 The dip-molded layer thus obtained is subjected to a heat treatment at a temperature of 80 to 150 ° C. for 10 to 120 minutes for crosslinking. As a heating method, external heating using infrared rays or hot air or internal heating using high frequency can be employed. Of these, heating with hot air is preferred.
 次いで、架橋したディップ成形層をディップ成形用型から脱着することによって、ディップ成形品が得られる。脱着方法としては、手で成形用型から剥したり、水圧や圧縮空気の圧力により剥したりする方法を採用することができる。 Next, the dip-molded product is obtained by detaching the crosslinked dip-molded layer from the dip-molding die. As the desorption method, it is possible to adopt a method of peeling from the mold by hand, or peeling by water pressure or compressed air pressure.
 なお、脱着後、さらに60~120℃の温度で、10~120分の加熱処理を行なってもよい。 In addition, after the desorption, a heat treatment may be performed at a temperature of 60 to 120 ° C. for 10 to 120 minutes.
 また、ディップ成形品は、さらに、その内側および/または外側の表面に、表面処理層が形成されていてもよい。 Further, the dip-molded product may further have a surface treatment layer formed on the inner and / or outer surfaces thereof.
 本発明のディップ成形品は、上述した本発明のディップ成形用組成物を用いて得られるものであり、手袋等の用途に好適な、装着耐久性に優れ、変色しにくく、臭気の少ないものである。また、上述した本発明のディップ成形用組成物は、貯蔵安定性に優れるものであるため、本発明によれば、貯蔵期間の長短に拘わらず、安定して上記特性を有するディップ成形品を得ることができる。 The dip-molded product of the present invention is obtained by using the above-described dip-molding composition of the present invention, and is suitable for applications such as gloves, is excellent in wearing durability, hardly discolored, and has little odor. is there. In addition, since the dip molding composition of the present invention described above is excellent in storage stability, according to the present invention, a dip molded product having the above characteristics can be obtained stably regardless of the length of storage period. be able to.
 このような本発明のディップ成形品は、厚みを約0.03~約3ミリとすることができ、特に厚みが0.05~0.3ミリの薄手のものに好適に使用できる。具体的には、哺乳瓶用乳首、スポイト、導管、水枕等の医療用品;風船、人形、ボール等の玩具や運動具;加圧成形用バッグ、ガス貯蔵用バッグ等の工業用品;手術用、家庭用、農業用、漁業用及び工業用の手袋;指サック等が挙げられる。特に、薄手の手術用手袋に好適である。 Such a dip-formed product of the present invention can have a thickness of about 0.03 to about 3 mm, and can be suitably used for a thin product having a thickness of 0.05 to 0.3 mm. Specifically, medical supplies such as nipples for baby bottles, syringes, conduits, and water pillows; toys and exercise equipment such as balloons, dolls, and balls; industrial articles such as pressure forming bags and gas storage bags; Examples include household, agricultural, fishery and industrial gloves; finger sack. It is particularly suitable for thin surgical gloves.
 以下に、実施例および比較例を挙げて、本発明についてより具体的に説明するが、本発明はこの実施例に限られるものではない。以下において、特記しない限り、「部」は重量基準である。物性および特性の試験または評価方法は以下のとおりである。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. In the following, “part” is based on weight unless otherwise specified. Tests or evaluation methods for physical properties and characteristics are as follows.
 残留メタクリル酸量
 ラテックス約5gの重量(F)、エチレングリコール約20μlの重量(G)をそれぞれ精秤した後、これらを、1.8重量%のポリオキシエチレンアルキレンエーテル(商品名「エマルゲン1150S-60」、花王社製)水溶液90mlに加え、次いで、0.1M塩酸水溶液1mlを加えて、15分以上攪拌し、残留メタクリル酸量測定用のサンプルを得た。このサンプルについて、キャピラリガスクロマトグラフィーにて測定を行い、得られたチャートよりメタクリル酸の積算値(H)、および、エチレングリコールの積算値(I)を求め、上記にて精秤した重量(F)、重量(G)、および装置固有の補正係数(E)を用いて、下記計算式にしたがって、残留メタクリル酸量(重量ppm)を求めた。
  残留メタクリル酸量(重量ppm)=〔(H×G×E)/(F×I)〕×10
 なお、上記補正係数(E)は、以下のようにして求める。
 すなわち、メタクリル酸単量体約20μlの重量(p)、エチレングリコール約20μlの重量(r)をそれぞれ精秤した後、1.8重量%のポリオキシエチレンアルキレンエーテル(商品名「エマルゲン1150S-60」、花王社製)水溶液100mlに加え、そこに0.1M塩酸水溶液1mlを加え約5分間攪拌し補正係数測定用のサンプルを得た後、このサンプルをキャピラリガスクロマトグラフィーで測定し、得られたチャートよりメタクリル酸単量体の積算値(p1)、エチレングリコールの積算値(r1)を求め、下記計算式により補正係数(E)を算出する。
  補正係数(E)=(p×r1)/(r×p1)
The amount of residual methacrylic acid latex (about 5 g weight (F)) and ethylene glycol (about 20 μl weight (G)) were weighed accurately, and these were then added to 1.8 wt% polyoxyethylene alkylene ether (trade name “Emulgen 1150S- 60 "(manufactured by Kao Corporation) in addition to 90 ml of an aqueous solution, and then 1 ml of 0.1 M aqueous hydrochloric acid solution was added and stirred for 15 minutes or more to obtain a sample for measuring the amount of residual methacrylic acid. The sample was measured by capillary gas chromatography, and the integrated value (H) of methacrylic acid and the integrated value (I) of ethylene glycol were determined from the obtained chart. ), Weight (G), and correction coefficient (E) specific to the apparatus, the amount of residual methacrylic acid (weight ppm) was determined according to the following formula.
Residual methacrylic acid amount (ppm by weight) = [(H × G × E) / (F × I)] × 10 6
The correction coefficient (E) is obtained as follows.
Specifically, after weighing about 20 μl of methacrylic acid monomer (p) and about 20 μl of ethylene glycol (r), 1.8% by weight of polyoxyethylene alkylene ether (trade name “Emulgen 1150S-60” ”, Manufactured by Kao Co., Ltd.) In addition to 100 ml of an aqueous solution, 1 ml of 0.1 M hydrochloric acid aqueous solution was added thereto and stirred for about 5 minutes to obtain a sample for measuring a correction coefficient, and this sample was then measured by capillary gas chromatography. The integrated value (p1) of methacrylic acid monomer and the integrated value (r1) of ethylene glycol are obtained from the chart, and the correction coefficient (E) is calculated by the following formula.
Correction coefficient (E) = (p × r1) / (r × p1)
 銅イオン変色性
 得られたゴム手袋(ディップ成形品)を、3%硫酸銅水溶液に30秒間浸漬し、1時間後のゴム手袋の変色度合いを目視にて判定し、以下の基準で評価した。
  ○:ゴム手袋の変色が確認されなかった。
  ×:ゴム手袋の変色が見られた。
 なお、上記試験で変色が認められるゴム手袋は、それを長時間に亘り着用して作業した際に、ゴム手袋自体が変色し易いことを示す。
Copper ion discoloration The obtained rubber glove (dip-molded product) was immersed in a 3% aqueous solution of copper sulfate for 30 seconds, and the degree of discoloration of the rubber glove after 1 hour was visually determined and evaluated according to the following criteria.
○: Discoloration of rubber gloves was not confirmed.
X: Discoloration of rubber gloves was observed.
In addition, the rubber glove which discoloration is recognized by the said test shows that a rubber glove itself is easy to discolor, when it wears and works for a long time.
 臭気
 得られたゴム手袋(ディップ成形品)を被験者10人が着用し、キーボード入力操作の軽作業を1時間行ない、1時間の作業後に臭気による不快感を感じた人の人数をカウントし、以下の基準により評価した。
  無し:不快感を感じた人数が0人であった。
  有り:不快感を感じた人数が1人以上であった。
10 test subjects wear rubber gloves (dip molded products) obtained from odor, perform light work of keyboard input operation for 1 hour, count the number of people who feel discomfort due to odor after 1 hour work, It was evaluated according to the criteria.
None: The number of people who felt discomfort was zero.
Yes: One or more people felt uncomfortable.
 装着耐久性
 得られたゴム手袋(ディップ成形品)を、被験者10人が着用し、キーボード入力操作の軽作業を行なった。作業を開始して10分経過する毎に、ゴム手袋の指の股部分を観察し、微小亀裂の発生の有無を確認した。各試験においてゴム手袋に微小亀裂が発生するまでの時間を測定した後、最短および最長の時間を除いた8つのデータ(8人のデータ)を算術平均することで、装着耐久時間を求めた。なお、装着耐久試験は、最大240分まで行なった。この装着耐久時間が長い程、装着耐久性に優れていると判断できる。
Wearing rubber gloves (dip molded products) obtained by wearing were worn by 10 test subjects, and a light work of keyboard input operation was performed. Every time 10 minutes have passed since the work was started, the crotch portion of the finger of the rubber glove was observed to confirm the presence or absence of microcracks. In each test, after measuring the time until a microcrack occurred in a rubber glove, the wearing endurance time was obtained by arithmetically averaging 8 data (data of 8 people) excluding the shortest and longest time. The wearing durability test was conducted up to 240 minutes. It can be determined that the longer the wearing durability time is, the better the wearing durability is.
 7日貯蔵後、14日貯蔵後の装着耐久性(貯蔵安定性)
 得られた7日貯蔵後のゴム手袋(ディップ成形品)、および14日貯蔵後のゴム手袋(ディップ成形品)を用いた以外は、上記と同様にして、装着耐久時間を求めた。装着耐久時間が長いほど、装着耐久性に加えて、ディップ成形用組成物としての貯蔵安定性に優れていると判断できる。
Wear durability after storage for 7 days and storage for 14 days (storage stability)
The wearing durability time was determined in the same manner as above except that the obtained rubber gloves after 7 days storage (dip-molded product) and rubber gloves after 14 days storage (dip-molded product) were used. It can be determined that the longer the wearing durability time, the better the storage stability as a dip molding composition in addition to the wearing durability.
 製造例1
 重合反応器に、アクリロニトリル29部、1,3-ブタジエン64部、メタクリル酸7部、t-ドデシルメルカプタン0.5部、イオン交換水132部、ドデシルベンゼンスルホン酸ナトリウム3部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム塩0.5部、過硫酸カリウム0.3部およびエチレンジアミン四酢酸ナトリウム塩0.05部を仕込み、重合温度を37℃に保持して重合を開始した。重合転化率が60重量%になった時点で、t-ドデシルメルカプタン0.2部を添加して、重合温度を40℃に昇温し、重合転化率が96重量%に達するまで反応させた。その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。得られた共重合体ラテックスから、減圧回収の方法により未反応単量体を除去した後、共重合体ラテックスのpHおよび固形分濃度を調整して、固形分濃度45重量%、pH8のカルボキシル基含有共役ジエンゴム(a1)のラテックスを得た。得られたカルボキシル基含有共役ジエンゴム(a1)のラテックスについて、残留メタクリル酸量を測定したところ、2000重量ppmであった。また、カルボキシル基含有共役ジエンゴム(a1)を構成する各単量体の単位の含有割合を測定したところ、仕込み量と同等であった(後述する製造例2~7も同様。)。
Production Example 1
In a polymerization reactor, 29 parts of acrylonitrile, 64 parts of 1,3-butadiene, 7 parts of methacrylic acid, 0.5 part of t-dodecyl mercaptan, 132 parts of ion-exchanged water, 3 parts of sodium dodecylbenzenesulfonate, β-naphthalenesulfonic acid Formalin condensate sodium salt 0.5 part, potassium persulfate 0.3 part and ethylenediaminetetraacetic acid sodium salt 0.05 part were charged, and the polymerization temperature was maintained at 37 ° C. to initiate the polymerization. When the polymerization conversion reached 60% by weight, 0.2 part of t-dodecyl mercaptan was added, the polymerization temperature was raised to 40 ° C., and the reaction was continued until the polymerization conversion reached 96% by weight. Thereafter, 0.1 part of sodium dimethyldithiocarbamate was added as a polymerization terminator to terminate the polymerization reaction. After removing unreacted monomers from the obtained copolymer latex by the method of vacuum recovery, the pH and solid content concentration of the copolymer latex are adjusted to obtain a carboxyl group having a solid content concentration of 45% by weight and pH 8. A latex of the conjugated diene rubber (a1) was obtained. With respect to the obtained latex of carboxyl group-containing conjugated diene rubber (a1), the amount of residual methacrylic acid was measured and found to be 2000 ppm by weight. Further, the content ratio of each monomer unit constituting the carboxyl group-containing conjugated diene rubber (a1) was measured and found to be equal to the charged amount (the same applies to Production Examples 2 to 7 described later).
 製造例2
 重合転化率が98重量%に達するまで反応を行った以外は、製造例1と同様にして、固形分濃度45重量%、pH8のカルボキシル基含有共役ジエンゴム(a2)のラテックスを得た。得られたカルボキシル基含有共役ジエンゴム(a2)のラテックスについて、残留メタクリル酸量を測定したところ、1500重量ppmであった。
Production Example 2
A latex of carboxyl group-containing conjugated diene rubber (a2) having a solid content concentration of 45 wt% and a pH of 8 was obtained in the same manner as in Production Example 1 except that the reaction was carried out until the polymerization conversion reached 98 wt%. With respect to the obtained latex of carboxyl group-containing conjugated diene rubber (a2), the amount of residual methacrylic acid was measured and found to be 1500 ppm by weight.
 製造例3
 1,3-ブタジエンの配合量を64部から65部に、メタクリル酸の配合量を7部から6部に、それぞれ変更した以外は、製造例1と同様にして、固形分濃度40重量%、pH8のカルボキシル基含有共役ジエンゴム(a3)のラテックスを得た。得られたカルボキシル基含有共役ジエンゴム(a3)のラテックスについて、残留メタクリル酸量を測定したところ、1800重量ppmであった。
Production Example 3
Except for changing the blending amount of 1,3-butadiene from 64 parts to 65 parts and the blending amount of methacrylic acid from 7 parts to 6 parts, respectively, in the same manner as in Production Example 1, the solid content concentration was 40% by weight, A latex of carboxyl group-containing conjugated diene rubber (a3) having a pH of 8 was obtained. With respect to the obtained latex of carboxyl group-containing conjugated diene rubber (a3), the amount of residual methacrylic acid was measured and found to be 1800 ppm by weight.
 製造例4
 重合転化率が98重量%に達するまで反応を行った以外は、製造例3と同様にして、固形分濃度45重量%、pH8のカルボキシル基含有共役ジエンゴム(a4)のラテックスを得た。得られたカルボキシル基含有共役ジエンゴム(a4)のラテックスについて、残留メタクリル酸量を測定したところ、1100重量ppmであった。
Production Example 4
A latex of carboxyl group-containing conjugated diene rubber (a4) having a solid concentration of 45% by weight and a pH of 8 was obtained in the same manner as in Production Example 3, except that the reaction was carried out until the polymerization conversion reached 98% by weight. When the amount of residual methacrylic acid was measured about the obtained latex of carboxyl group-containing conjugated diene rubber (a4), it was 1100 ppm by weight.
 製造例5
 1,3-ブタジエンの配合量を64部から66部に、メタクリル酸の配合量を7部から5部に、それぞれ変更した以外は、製造例1と同様にして、固形分濃度45重量%、pH8のカルボキシル基含有共役ジエンゴム(a5)のラテックスを得た。得られたカルボキシル基含有共役ジエンゴム(a5)のラテックスについて、残留メタクリル酸量を測定したところ、1600重量ppmであった。
Production Example 5
The solid content concentration was 45% by weight in the same manner as in Production Example 1, except that the amount of 1,3-butadiene was changed from 64 parts to 66 parts and the amount of methacrylic acid was changed from 7 parts to 5 parts. A latex of carboxyl group-containing conjugated diene rubber (a5) having a pH of 8 was obtained. With respect to the obtained latex of the carboxyl group-containing conjugated diene rubber (a5), the amount of residual methacrylic acid was measured and found to be 1600 ppm by weight.
 製造例6
 アクリロニトリルの配合量を29部から30部に、1,3-ブタジエンの配合量を64部から65部に、メタクリル酸の配合量を7部から5部に、それぞれ変更するとともに、重合反応を、重合転化率が94重量%に達した時点で終了した以外は、製造例1と同様にして、固形分濃度45重量%、pH8のカルボキシル基含有共役ジエンゴム(a6)のラテックスを得た。得られたカルボキシル基含有共役ジエンゴム(a6)のラテックスについて、残留メタクリル酸量を測定したところ、2300重量ppmであった。
Production Example 6
The amount of acrylonitrile was changed from 29 parts to 30 parts, the amount of 1,3-butadiene was changed from 64 parts to 65 parts, the amount of methacrylic acid was changed from 7 parts to 5 parts, and the polymerization reaction was changed. A latex of carboxyl group-containing conjugated diene rubber (a6) having a solid content concentration of 45% by weight and a pH of 8 was obtained in the same manner as in Production Example 1 except that the polymerization conversion was terminated when the polymerization conversion reached 94% by weight. With respect to the obtained latex of carboxyl group-containing conjugated diene rubber (a6), the amount of residual methacrylic acid was measured and found to be 2300 ppm by weight.
 製造例7
 アクリロニトリルの配合量を30部から29部に、メタクリル酸の配合量を7部から6部に、それぞれ変更した以外は、製造例6と同様にして、固形分濃度45重量%、pH8のカルボキシル基含有共役ジエンゴム(a7)のラテックスを得た。得られたカルボキシル基含有共役ジエンゴム(a7)のラテックスについて、残留メタクリル酸量を測定したところ、2500重量ppmであった。
Production Example 7
Similar to Production Example 6, except that the amount of acrylonitrile was changed from 30 parts to 29 parts and the amount of methacrylic acid was changed from 7 parts to 6 parts, respectively, a carboxyl group having a solid content concentration of 45% by weight and a pH of 8 A latex of the conjugated diene rubber (a7) was obtained. With respect to the obtained latex of carboxyl group-containing conjugated diene rubber (a7), the amount of residual methacrylic acid was measured and found to be 2500 ppm by weight.
 実施例1
 ディップ成形用組成物の調製
 製造例1で得られたカルボキシル基含有共役ジエンゴム(a1)のラテックスに、カルボジイミド化合物(B)(商品名「カルボジライトV-02-L2」、日清紡ケミカル社製)を添加し、次いで、アンモニア水溶液、イオン交換水をさらに添加してpH10.0、固形分濃度を30重量%に調整した後に、温度20℃で攪拌して均一に分散させ、ディップ成形用組成物を得た。
 なお、本実施例においては、カルボキシル基含有共役ジエンゴム(a1)のラテックス中のカルボキシル基含有共役ジエンゴム(a1)100部に対して、カルボジイミド構造を有する重合体が2部となるように添加した。
Example 1
Preparation of Dip Molding Composition To the latex of carboxyl group-containing conjugated diene rubber (a1) obtained in Production Example 1, carbodiimide compound (B) (trade name “Carbodilite V-02-L2”, manufactured by Nisshinbo Chemical Co., Ltd.) was added. Next, an aqueous ammonia solution and ion-exchanged water were further added to adjust the pH to 10.0 and the solid content concentration to 30% by weight, and the mixture was stirred and uniformly dispersed at a temperature of 20 ° C. to obtain a dip molding composition. It was.
In this example, the polymer having a carbodiimide structure was added to 2 parts with respect to 100 parts of the carboxyl group-containing conjugated diene rubber (a1) in the latex of the carboxyl group-containing conjugated diene rubber (a1).
 ゴム手袋(ディップ成形品)の製造
 次いで、上記にて得られたディップ成形用組成物を使用して、ゴム手袋(ディップ成形品)を、以下の方法により製造した。
 まず、硝酸カルシウム20部、ポリエチレングリコールオクチルフェニルエーテル0.05部および水80部を混合した凝固剤水溶液を準備した。
 次いで、この凝固剤水溶液に、手袋型を5秒間浸漬し、引上げた後、温度50℃、10分間の条件で乾燥して、凝固剤を手袋型に付着させた。そして、凝固剤を付着させた手袋型を、上記にて得られたディップ成形用組成物に8秒間浸漬し、その後40℃の温水に3分間浸漬して、水溶性不純物を溶出させた後、温度50℃、10分間の条件で乾燥し手袋型にディップ成形層を形成した。
 そして、ディップ成形層を形成した手袋型を、温度70℃、10分間の条件で乾燥し、引続いて、温度125℃、20分間の条件で加熱処理してディップ成形層を架橋させ、架橋したディップ成形層を手袋型から剥し、厚みが0.08mmのゴム手袋(ディップ成形品)を得た。得られたゴム手袋(ディップ成形品)について、上記方法により、銅イオン変色性、臭気、および、装着耐久性の各評価を行った。結果を表1に示す。
Production of Rubber Gloves (Dip Molded Product) Next, using the dip molding composition obtained above, a rubber glove (dip molded product) was produced by the following method.
First, a coagulant aqueous solution in which 20 parts of calcium nitrate, 0.05 part of polyethylene glycol octylphenyl ether and 80 parts of water were mixed was prepared.
Next, the glove mold was immersed in this coagulant aqueous solution for 5 seconds, pulled up, and then dried under conditions of a temperature of 50 ° C. for 10 minutes to attach the coagulant to the glove mold. And after immersing the glove mold to which the coagulant is adhered in the dip molding composition obtained above for 8 seconds and then immersing in warm water at 40 ° C. for 3 minutes to elute water-soluble impurities, The film was dried at a temperature of 50 ° C. for 10 minutes to form a dip-molded layer in a glove mold.
Then, the glove mold on which the dip-molded layer was formed was dried at a temperature of 70 ° C. for 10 minutes, and subsequently the dip-molded layer was crosslinked by heat treatment at a temperature of 125 ° C. for 20 minutes. The dip-molded layer was peeled from the glove mold to obtain a rubber glove (dip-molded product) having a thickness of 0.08 mm. The obtained rubber gloves (dip molded products) were evaluated for copper ion discoloration, odor, and wearing durability by the above methods. The results are shown in Table 1.
 7日貯蔵後、14日貯蔵後のゴム手袋(ディップ成形品)の製造
 上記と同様にして得られたディップ成形用組成物を、50℃で7日間貯蔵した後、この7日間貯蔵したディップ成形用組成物を使用した以外は、上記と同様にして、7日貯蔵後のゴム手袋(ディップ成形品)を得た。
 また、同様に、上記と同様にして得られたディップ成形用組成物を、50℃で14日間貯蔵した後、この14日間貯蔵したディップ成形用組成物を使用した以外は、上記と同様にして、14日貯蔵後のゴム手袋(ディップ成形品)を得た。
 そして、得られた7日貯蔵後のゴム手袋(ディップ成形品)、および14日貯蔵後のゴム手袋(ディップ成形品)を用いて、上記方法にしたがい、7日貯蔵後、14日貯蔵後の装着耐久性の評価を行った。結果を表1に示す。
Production of rubber gloves (dip-molded article) after storage for 7 days and storage for 14 days The composition for dip-molding obtained in the same manner as described above was stored at 50 ° C. for 7 days and then stored for 7 days. A rubber glove (dip molded product) after storage for 7 days was obtained in the same manner as above except that the composition for use was used.
Similarly, the dip molding composition obtained in the same manner as described above was stored at 50 ° C. for 14 days, and then the dip molding composition stored for 14 days was used in the same manner as described above. The rubber gloves (dip-molded product) after storage for 14 days were obtained.
Then, using the obtained rubber gloves after 7 days storage (dip molded products) and rubber gloves after 14 days storage (dip molded products), according to the above method, after 7 days storage, after 14 days storage The wearing durability was evaluated. The results are shown in Table 1.
 実施例2
 製造例1で得られたカルボキシル基含有共役ジエンゴム(a1)のラテックスの代わりに、製造例2で得られたカルボキシル基含有共役ジエンゴム(a2)のラテックスを使用した以外は、実施例1と同様にして、ディップ成形用組成物、および各ゴム手袋(ディップ成形品)を得て、同様に評価を行った。結果を表1に示す。
Example 2
The same procedure as in Example 1 was conducted except that the carboxyl group-containing conjugated diene rubber (a2) latex obtained in Production Example 2 was used instead of the carboxyl group-containing conjugated diene rubber (a1) latex obtained in Production Example 1. Then, a dip molding composition and each rubber glove (dip molded product) were obtained and evaluated in the same manner. The results are shown in Table 1.
 実施例3
 製造例1で得られたカルボキシル基含有共役ジエンゴム(a1)のラテックスの代わりに、製造例3で得られたカルボキシル基含有共役ジエンゴム(a3)のラテックスを使用した以外は、実施例1と同様にして、ディップ成形用組成物、および各ゴム手袋(ディップ成形品)を得て、同様に評価を行った。結果を表1に示す。
Example 3
The same procedure as in Example 1 was performed except that the carboxyl group-containing conjugated diene rubber (a3) latex obtained in Production Example 3 was used instead of the carboxyl group-containing conjugated diene rubber (a1) latex obtained in Production Example 1. Then, a dip molding composition and each rubber glove (dip molded product) were obtained and evaluated in the same manner. The results are shown in Table 1.
 実施例4
 製造例1で得られたカルボキシル基含有共役ジエンゴム(a1)のラテックスの代わりに、製造例4で得られたカルボキシル基含有共役ジエンゴム(a4)のラテックスを使用した以外は、実施例1と同様にして、ディップ成形用組成物、および各ゴム手袋(ディップ成形品)を得て、同様に評価を行った。結果を表1に示す。
Example 4
The same procedure as in Example 1 was performed except that the carboxyl group-containing conjugated diene rubber (a4) latex obtained in Production Example 4 was used instead of the carboxyl group-containing conjugated diene rubber (a1) latex obtained in Production Example 1. Then, a dip molding composition and each rubber glove (dip molded product) were obtained and evaluated in the same manner. The results are shown in Table 1.
 実施例5
 製造例1で得られたカルボキシル基含有共役ジエンゴム(a1)のラテックスの代わりに、製造例5で得られたカルボキシル基含有共役ジエンゴム(a5)のラテックスを使用した以外は、実施例1と同様にして、ディップ成形用組成物、および各ゴム手袋(ディップ成形品)を得て、同様に評価を行った。結果を表1に示す。
Example 5
The same procedure as in Example 1 was performed except that the carboxyl group-containing conjugated diene rubber (a5) latex obtained in Production Example 5 was used instead of the carboxyl group-containing conjugated diene rubber (a1) latex obtained in Production Example 1. Then, a dip molding composition and each rubber glove (dip molded product) were obtained and evaluated in the same manner. The results are shown in Table 1.
 比較例1
 製造例1で得られたカルボキシル基含有共役ジエンゴム(a1)のラテックスの代わりに、製造例6で得られたカルボキシル基含有共役ジエンゴム(a6)のラテックスを使用した以外は、実施例1と同様にして、ディップ成形用組成物、および各ゴム手袋(ディップ成形品)を得て、同様に評価を行った。結果を表1に示す。
Comparative Example 1
The same procedure as in Example 1 was performed except that the carboxyl group-containing conjugated diene rubber (a6) latex obtained in Production Example 6 was used instead of the carboxyl group-containing conjugated diene rubber (a1) latex obtained in Production Example 1. Then, a dip molding composition and each rubber glove (dip molded product) were obtained and evaluated in the same manner. The results are shown in Table 1.
 比較例2
 製造例1で得られたカルボキシル基含有共役ジエンゴム(a1)のラテックスの代わりに、製造例7で得られたカルボキシル基含有共役ジエンゴム(a7)のラテックスを使用した以外は、実施例1と同様にして、ディップ成形用組成物、および各ゴム手袋(ディップ成形品)を得て、同様に評価を行った。結果を表1に示す。
Comparative Example 2
The same procedure as in Example 1 was performed except that the carboxyl group-containing conjugated diene rubber (a7) latex obtained in Production Example 7 was used instead of the carboxyl group-containing conjugated diene rubber (a1) latex obtained in Production Example 1. Then, a dip molding composition and each rubber glove (dip molded product) were obtained and evaluated in the same manner. The results are shown in Table 1.
 比較例3
 硫黄1部、ジブチルカルバミン酸亜鉛0.5部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム塩0.1部、水酸化カリウム0.03部、および水1.63部を混合して、加硫剤分散液を調製した。
 製造例1で得られたカルボキシル基含有共役ジエンゴム(a1)のラテックスに、上記にて調製した加硫剤分散液を添加し、次いで、アンモニア水溶液、イオン交換水をさらに添加してpH10.0、固形分濃度を30%に調整した後に、温度20℃、24時間の条件で攪拌して均一に分散させ、ディップ成形用組成物を得た。
 なお、比較例3においては、カルボキシル基含有共役ジエンゴム(a1)のラテックス中のカルボキシル基含有共役ジエンゴム(a1)100部に対して、上記加硫剤分散液が3.26部となるように添加した。
 そして、このようにして得られたディップ成形用組成物を用いた以外は、実施例1と同様にして、各ゴム手袋(ディップ成形品)を得て、同様に評価を行った。結果を表1に示す。
Comparative Example 3
1 part of sulfur, 0.5 part of zinc dibutylcarbamate, 0.1 part of β-naphthalenesulfonic acid formalin condensate sodium salt, 0.03 part of potassium hydroxide, and 1.63 parts of water are mixed to give a vulcanizing agent A dispersion was prepared.
To the carboxyl group-containing conjugated diene rubber (a1) latex obtained in Production Example 1, the vulcanizing agent dispersion prepared above was added, and then an aqueous ammonia solution and ion-exchanged water were further added to pH 10.0, After adjusting the solid content concentration to 30%, the mixture was stirred and dispersed uniformly at a temperature of 20 ° C. for 24 hours to obtain a dip-molding composition.
In Comparative Example 3, the vulcanizing agent dispersion was added to 3.26 parts with respect to 100 parts of the carboxyl group-containing conjugated diene rubber (a1) in the latex of the carboxyl group-containing conjugated diene rubber (a1). did.
Each rubber glove (dip-molded product) was obtained and evaluated in the same manner as in Example 1 except that the dip-molding composition thus obtained was used. The results are shown in Table 1.
 比較例4
 カルボジイミド化合物(B)としてのカルボジイミド構造を有する重合体2部を配合しなかった以外は、実施例1と同様にして、ディップ成形用組成物、および各ゴム手袋(ディップ成形品)を得て、同様に評価を行った。結果を表1に示す。
Comparative Example 4
Except for not blending 2 parts of the polymer having a carbodiimide structure as the carbodiimide compound (B), in the same manner as in Example 1, a dip molding composition and each rubber glove (dip molded product) were obtained. Evaluation was performed in the same manner. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、カルボキシル基含有共役ジエンゴムのラテックスとして、残留メタクリル酸量(残留カルボン酸量)が2200重量ppm以下であるものを用い、かつ、これにカルボジイミド化合物を配合してなるディップ成形用組成物を用いて得られるディップ成形品は、変色が抑えられ(銅イオンによる変色が抑えられ)、臭気がなく、装着耐久性に優れるものであり、さらには、該ディップ成形用組成物は、50℃下貯蔵7日後、50℃下貯蔵14日後においても、装着耐久性に優れたディップ成形品を与えることができ、貯蔵安定性に優れるものであった(実施例1~5)。
 一方、カルボキシル基含有共役ジエンゴムのラテックスとして、残留メタクリル酸量(残留カルボン酸量)が2200重量ppmを超えるものを用いた場合には、50℃下貯蔵7日後や、50℃下貯蔵14日後において、得られるディップ成形品の装着耐久性が劣るものなってしまい、貯蔵安定性に劣るものであった(比較例1,2)。
 また、カルボジイミド化合物の代わりに、硫黄を用いた場合には、得られるディップ成形品は、着色が見られ、さらには、硫黄に起因する臭気も感じられるものであった(比較例3)。
 さらに、カルボジイミド化合物を配合しない場合には、得られるディップ成形品は、装着耐久性に劣るものであった(比較例4)。
From Table 1, a dip-molding composition comprising a carboxyl group-containing conjugated diene rubber latex having a residual methacrylic acid amount (residual carboxylic acid amount) of 2200 ppm by weight or less, and a carbodiimide compound added thereto. The dip-molded product obtained by using the dip-molding product is suppressed in discoloration (discoloration due to copper ions), has no odor, and has excellent wearing durability. Furthermore, the dip-molding composition has a temperature of 50 ° C. Even after 7 days of storage under storage and 14 days after storage at 50 ° C., a dip-molded product excellent in wearing durability could be provided, and the storage stability was excellent (Examples 1 to 5).
On the other hand, when a latex of carboxyl group-containing conjugated diene rubber having a residual methacrylic acid amount (residual carboxylic acid amount) exceeding 2200 ppm by weight is used after 7 days of storage at 50 ° C. or 14 days after storage at 50 ° C. The resulting dip-molded product was inferior in mounting durability and inferior in storage stability (Comparative Examples 1 and 2).
Further, when sulfur was used instead of the carbodiimide compound, the resulting dip-molded product was colored, and furthermore, odor due to sulfur was also felt (Comparative Example 3).
Furthermore, when no carbodiimide compound was blended, the resulting dip-formed product was inferior in mounting durability (Comparative Example 4).

Claims (4)

  1.  カルボキシル基含有共役ジエンゴム(A)のラテックスと、カルボジイミド化合物(B)とを含有するディップ成形用組成物であって、
     前記カルボキシル基含有共役ジエンゴム(A)のラテックス中における、残留カルボン酸量が2200重量ppm以下であることを特徴とするディップ成形用組成物。
    A dip-molding composition comprising a carboxyl group-containing conjugated diene rubber (A) latex and a carbodiimide compound (B),
    The composition for dip molding, wherein the amount of residual carboxylic acid in the latex of the carboxyl group-containing conjugated diene rubber (A) is 2200 ppm by weight or less.
  2.  前記カルボキシル基含有共役ジエンゴム(A)のラテックスが、共役ジエン単量体30~89.5重量%、エチレン性不飽和ニトリル単量体10~50重量%、エチレン性不飽和カルボン酸単量体0.5~20重量%、および、これらの単量体と共重合可能なその他のエチレン性不飽和単量体0~20重量%を含有してなる単量体混合物を重合して得られる共重合体のラテックスである請求項1に記載のディップ成形用組成物。 The latex of the carboxyl group-containing conjugated diene rubber (A) comprises 30 to 89.5% by weight of a conjugated diene monomer, 10 to 50% by weight of an ethylenically unsaturated nitrile monomer, and 0% of an ethylenically unsaturated carboxylic acid monomer. Copolymer weight obtained by polymerizing a monomer mixture containing 5 to 20% by weight and 0 to 20% by weight of other ethylenically unsaturated monomers copolymerizable with these monomers The dip-forming composition according to claim 1, which is a united latex.
  3.  請求項1または2に記載のディップ成形用組成物を、ディップ成形して得られるディップ成形品。 A dip-molded product obtained by dip-molding the dip-molding composition according to claim 1 or 2.
  4.  手袋である請求項3に記載のディップ成形品。 4. The dip-formed product according to claim 3, wherein the product is a glove.
PCT/JP2015/069270 2015-07-03 2015-07-03 Dip molding composition and dip molded article WO2017006385A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069270 WO2017006385A1 (en) 2015-07-03 2015-07-03 Dip molding composition and dip molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069270 WO2017006385A1 (en) 2015-07-03 2015-07-03 Dip molding composition and dip molded article

Publications (1)

Publication Number Publication Date
WO2017006385A1 true WO2017006385A1 (en) 2017-01-12

Family

ID=57685260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069270 WO2017006385A1 (en) 2015-07-03 2015-07-03 Dip molding composition and dip molded article

Country Status (1)

Country Link
WO (1) WO2017006385A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159779A1 (en) * 2018-02-16 2019-08-22 日本ゼオン株式会社 Production method for dip-molded article
EP3473121A4 (en) * 2016-06-16 2019-11-27 Midori Anzen Co., Ltd. Method of manufacturing gloves, glove, and emulsion composition for gloves

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257902A (en) * 1986-05-02 1987-11-10 Sumitomo Naugatuck Co Ltd Removal of volatile matter in polymer latex
JP2003165870A (en) * 2001-11-28 2003-06-10 Nippon Zeon Co Ltd Composition for dip-molding, dip-molded product and method for producing the same
JP2003277544A (en) * 2002-03-27 2003-10-02 Jsr Corp Copolymer latex
JP2005187544A (en) * 2003-12-24 2005-07-14 Nippon A & L Kk Copolymer latex for use in dip molding, composition for use in dip molding, and dip-molded product
JP2005200559A (en) * 2004-01-16 2005-07-28 Nippon A & L Kk Latex for dip molding, composition for dip molding and dip molding product
JP2006089539A (en) * 2004-09-22 2006-04-06 Toagosei Co Ltd Method for continuously removing volatile organic compound
JP2007177091A (en) * 2005-12-28 2007-07-12 Nippon Zeon Co Ltd Latex for dip molding and dip molded article
JP2013203914A (en) * 2012-03-29 2013-10-07 Nippon Zeon Co Ltd Dip molding composition and dip molding

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62257902A (en) * 1986-05-02 1987-11-10 Sumitomo Naugatuck Co Ltd Removal of volatile matter in polymer latex
JP2003165870A (en) * 2001-11-28 2003-06-10 Nippon Zeon Co Ltd Composition for dip-molding, dip-molded product and method for producing the same
JP2003277544A (en) * 2002-03-27 2003-10-02 Jsr Corp Copolymer latex
JP2005187544A (en) * 2003-12-24 2005-07-14 Nippon A & L Kk Copolymer latex for use in dip molding, composition for use in dip molding, and dip-molded product
JP2005200559A (en) * 2004-01-16 2005-07-28 Nippon A & L Kk Latex for dip molding, composition for dip molding and dip molding product
JP2006089539A (en) * 2004-09-22 2006-04-06 Toagosei Co Ltd Method for continuously removing volatile organic compound
JP2007177091A (en) * 2005-12-28 2007-07-12 Nippon Zeon Co Ltd Latex for dip molding and dip molded article
JP2013203914A (en) * 2012-03-29 2013-10-07 Nippon Zeon Co Ltd Dip molding composition and dip molding

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3473121A4 (en) * 2016-06-16 2019-11-27 Midori Anzen Co., Ltd. Method of manufacturing gloves, glove, and emulsion composition for gloves
US11179908B2 (en) 2016-06-16 2021-11-23 Midori Anzen Co., Ltd. Method of manufacturing gloves, glove, and emulsion composition for gloves
WO2019159779A1 (en) * 2018-02-16 2019-08-22 日本ゼオン株式会社 Production method for dip-molded article
US20210001521A1 (en) * 2018-02-16 2021-01-07 Zeon Corporation Production method for dip-molded article
JPWO2019159779A1 (en) * 2018-02-16 2021-01-28 日本ゼオン株式会社 Manufacturing method of dip molded product
JP7238879B2 (en) 2018-02-16 2023-03-14 日本ゼオン株式会社 Method for manufacturing dip molded body

Similar Documents

Publication Publication Date Title
JP6028362B2 (en) DIP MOLDING COMPOSITION AND DIP MOLDED ARTICLE
JP6349850B2 (en) DIP MOLDING COMPOSITION AND DIP MOLDED ARTICLE
JP6801506B2 (en) Latex composition and film molding
JP5272226B2 (en) Carboxylic acid-modified nitrile copolymer latex and latex composition for dip molding containing the same
JP3852356B2 (en) DIP MOLDING COMPOSITION, DIP MOLDED ARTICLE AND METHOD FOR PRODUCING THE SAME
JP3915489B2 (en) DIP MOLDING LATEX, PROCESS FOR PRODUCING THE SAME, DIP MOLDING COMPOSITION AND DIP MOLDED PRODUCT
JP3900530B2 (en) DIP MOLDED ARTICLE, DIP MOLDING COMPOSITION AND METHOD FOR PRODUCING DIP MOLDED ARTICLE
EP1731562B1 (en) Composition for dip forming and molding obtained by dip forming
US20080255314A1 (en) Dip-forming latex, dip-forming composition and dip-formed article
JP4404053B2 (en) Copolymer latex for dip molding
JP6984607B2 (en) Latex composition
JP4196590B2 (en) Dip molding latex, dip molding composition and dip molding
JP5380839B2 (en) DIP MOLDING COMPOSITION AND DIP MOLDED ARTICLE
WO2005049725A1 (en) Dip forming composition and dip formed article
JP4839676B2 (en) Dip molded product
JP4134577B2 (en) Dip molding latex, dip molding composition and dip molding
WO2017006385A1 (en) Dip molding composition and dip molded article
JPWO2007004459A1 (en) DIP MOLDING LATEX, DIP MOLDING LATEX COMPOSITION AND DIP MOLDED ARTICLE
JP6891717B2 (en) Latex composition
JP2001139871A (en) Coating agent composition and coated item
JPWO2019044654A1 (en) Manufacturing method of dip molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP