WO2007026588A1 - Optical pickup device and hologram recording/reproducing system - Google Patents

Optical pickup device and hologram recording/reproducing system Download PDF

Info

Publication number
WO2007026588A1
WO2007026588A1 PCT/JP2006/316547 JP2006316547W WO2007026588A1 WO 2007026588 A1 WO2007026588 A1 WO 2007026588A1 JP 2006316547 W JP2006316547 W JP 2006316547W WO 2007026588 A1 WO2007026588 A1 WO 2007026588A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
hologram
liquid crystal
hologram recording
region
Prior art date
Application number
PCT/JP2006/316547
Other languages
French (fr)
Japanese (ja)
Inventor
Masakazu Ogasawara
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2007533195A priority Critical patent/JPWO2007026588A1/en
Publication of WO2007026588A1 publication Critical patent/WO2007026588A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1356Double or multiple prisms, i.e. having two or more prisms in cooperation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1376Collimator lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means

Definitions

  • the present invention relates to a record carrier on which information is recorded or reproduced optically, such as an optical disk and a light field, and more particularly to a hologram record carrier having a hologram recording layer capable of recording or reproducing information by irradiation with a light beam.
  • the present invention relates to an optical pick-up device and a holographic recording / reproducing system. Background technology.
  • a photogram that can record secondary charge data at high density.
  • the feature of this hologram is that the wavefront of light carrying recorded information is recorded as a change in refractive index in volume on a recording medium made of a photosensitive material such as a photorefractive material.
  • a recording medium in which a substrate, an information recording layer, and a reflective layer are formed in this order is known.
  • the object light and reference light are converted into clockwise circularly polarized light and counterclockwise circularly polarized light using a quarter-wave plate, and one polarization hologram is recorded by interference in these recording media.
  • reference light for reading having a wavelength longer than that at the time of recording is used, and reproduction is performed by a separate reproduction optical system.
  • the reproduction optical system a special half-wave plate having a central aperture is provided, and the reproduction light is obtained from the polarization hologram by irradiating the central reference light. Since the reproduction light spreads due to the long-wavelength reference light, it passes through the half-wave plate around the aperture, so that the polarization direction changes and is separated by the polarization beam splitter, and the transmitted reproduction light is detected.
  • JP 200.2-513981 it is necessary to switch between the writing and reading wavelength light sources and the optical system during recording and reproduction, and the reflected light sometimes does not return from the recording medium during recording. Another optical system that performs positioning servo control between the irradiation light and the recording medium is required. Further, in the technique of JP-T-2002-513981, since the reference light is parallel light in the recording medium, shift multiplex recording cannot be performed. -Furthermore, conventionally, the information light is converged and irradiated so as to have the smallest diameter on the boundary surface between the hologram recording layer and the protective layer of the recording medium and reflected by the reflective layer.
  • the recording reference light is protected from the hologram recording layer and the protective layer. Recording was performed on the hologram recording layer by converging so as to be the smallest diameter before the boundary surface of the eyelid and irradiating it with divergent light to cause interference (Japanese Patent Laid-Open No. 11-311938). Issue gazette).
  • the information light is converged on the reflection layer, the recording reference light is defocused on the reflection layer, and the conjugate focal point of the recording reference light is from the boundary surface between the substrate and the information recording layer.
  • the technique for irradiating a recording reference beam so that it is positioned on the substrate side see Japanese Patent Application Laid-Open No. 2004-171611. Disclosure of the invention
  • the diffraction pattern spacing may change due to the shrinkage of the recording medium due to the shrinkage of the recording medium, and the diffraction efficiency during reproduction may decrease.
  • the playback signal contains distortion.
  • Conventional recording media, particularly polymer-based photosensitive materials have a large rate of change in expansion and contraction due to light irradiation, but no countermeasures have been taken in the prior art.
  • FIGS. 1 and 2 examples of objective lens configurations in a mode in which recording and reproduction are performed from one side of the recording layer in the prior art, for example, the techniques disclosed in Japanese Patent Laid-Open Nos. 11-31.1938 and 2004-171611 are shown in FIGS. 1 and 2, respectively. Show.
  • the reference light and the signal light are guided to the objective lens OB so as to overlap each other on the same axis.
  • the reference light and signal light after passing through the objective lens OB are set to have different focal lengths.
  • the signal light is condensed (focal point P) at the position where the reflective layer is to be arranged, and the reference light is condensed before the focal point P (focal point P 1).
  • the signal light is focused (focused) at the position where the reflective layer should be placed, and the reference light is focused before focus P (focused P2).
  • the reference light and signal light collected by the objective lens OB are always in a state of interference on the optical axis. Therefore, as shown in FIGS.
  • the holograms to be specifically recorded are hologram recording A (reflecting reference light and reflected signal light) and hologram recording B (incident reference light and reflected signal light) in any technique. ), Hologram recording C (reflecting reference light and incident signal light), and hologram recording D (incident reference light and incident signal light).
  • the hologram to be reproduced is hologram recording A (read by reflected reference light), hologram recording B (read by incident reference light), hologram recording C (read by incident reference light), hologram recording There are four types, D (read out by the incident reference light).
  • the problem to be solved by the present invention includes an optical pick-up apparatus and a holographic apparatus for hologram recording / reproduction that enable stable recording or reproduction.
  • An example is to provide a video recording / playback system.
  • the optical pick-up apparatus of the present invention is an optical pick-up apparatus for recording or reproducing information on a hologram record carrier having a hologram recording layer that stores therein an optical interference pattern of reference light and signal light as a diffraction grating.
  • a light source that generates interfering light, and a central region disposed on an optical axis of the coherent light and an annular region disposed so as to surround the central region, the coherent light
  • a spatial light modulator that spatially separates the pass component of the central region and the pass component of the annular region to generate a reference light and a signal light and propagates them in the same direction on the same axis;
  • An objective lens optical system that is arranged on an optical axis and irradiates the signal light and the reference light toward the hologram recording layer on the same axis and collects the reference light and the signal light at different focal points;
  • An image detecting means that receives light returning from the hologram recording layer via the objective lens optical system when the hologram recording layer is irradiated with the reference light,
  • a central correction region disposed on the optical axis and an annular peripheral region disposed so as to surround the central correction region, at least one of the central correction region and the annular peripheral region being a phase of a wavefront of a passing light beam
  • an aberration correction device comprising a transmissive liquid crystal device having a plurality of transparent electrodes for correcting wavefront aberration of the passing light flux that partially changes the light flux.
  • the hologram recording / reproducing system of the present invention records or reproduces information on a hologram record carrier that stores therein the optical interference pattern of reference light and signal light as a diffraction grating.
  • a hologram recording / reproducing system
  • Light generating means for generating, from coherent light, reference light, and signal light obtained by modulating the coherent light according to recording information
  • One of the reference light and the signal light is on the optical axis, and the other is annularly formed around the one, spatially separated from each other and propagated coaxially in the same direction, via the objective lens optical system, Interference means for condensing the reference light and the signal light at different focal points on an optical axis, and interfering the reference light and the signal light;
  • a hologram record carrier having a hologram recording layer located on the focal side close to the objective lens optical system among the different focal points;
  • a reflective layer located on the focal side far from the objective lens optical system among the different focal points;
  • An image detecting means disposed on the optical axis and receiving light returning from the hologram recording layer through the objective lens optical system when the hologram recording layer is irradiated with the reference light;
  • a central correction region and an annular peripheral region disposed so as to surround the central correction region, and at least one of the central correction region and the annular peripheral region partially includes the phase of the wavefront of the passing light beam.
  • An aberration correction device comprising a transmission-type liquid crystal device having a plurality of transparent electrodes for correcting wavefront aberration of the passing light flux that is changed in accordance with a correction voltage when information is recorded or reproduced on each of the plurality of transparent electrodes
  • An aberration correction liquid crystal drive circuit for supplying
  • the transparent electrode in the aberration correction device performs correction according to the aberration.
  • the phase difference is suitable for canceling aberrations in the transmitted wavefront because the applied correction voltage can give the liquid crystal a refractive index change according to the divided electrode pattern. (Aberration) can be given.
  • Beration can be given.
  • Holodarum recording Since the appropriate reference beam can be obtained regardless of the physical error of the carrier, holographic recording can be performed well. An error signal obtained by a tilt sensor or the like provided separately can be used for the tilt of the hologram record carrier disk.
  • 1 to 3 are schematic partial sectional views showing a hologram record carrier for explaining conventional hologram recording.
  • FIG. 4 is a configuration diagram showing an outline of a pickup of a hologram apparatus for recording / reproducing information on the hologram record carrier according to the embodiment of the present invention.
  • FIG. 5 is a front view seen from the optical axis of the spatial light modulator of the pick-up according to the embodiment of the present invention. '
  • FIG. 6 is a front view seen from the optical axis of the spatial light modulator of the pick-up according to another embodiment of the present invention.
  • FIG. 7 is a schematic sectional view showing the objective lens module of the pickup according to the embodiment of the present invention.
  • FIG. 8 is a schematic sectional view showing a hologram recording carrier and an objective lens module for explaining hologram recording according to an embodiment of the present invention.
  • FIG. 9 is a schematic partial sectional view showing a hologram recording carrier for explaining the hologram recording of the embodiment according to the present invention.
  • FIG. 10 is a schematic sectional view showing a hologram recording carrier and an objective lens for explaining hologram reproduction according to an embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view showing a hologram record carrier and objective lens module for explaining hologram recording of another embodiment according to the present invention.
  • FIG. 12 is a schematic partial sectional view showing a hologram record carrier for explaining hologram recording of another embodiment according to the present invention.
  • FIG. 13 is a schematic cross-sectional view showing an objective lens module of a pick-up / pump according to another embodiment of the present invention.
  • FIG. 14 and 15 are schematic cross-sectional views showing a bifocal lens of an objective lens of a pickup according to another embodiment of the present invention.
  • FIG. 16 is a schematic sectional view showing an objective lens module of a pickup according to another embodiment of the present invention.
  • FIG. 17 is a schematic sectional view showing a hologram record carrier and an objective lens module for explaining hologram recording of another embodiment according to the present invention.
  • FIG. 18 is a schematic partial sectional view showing a hologram record carrier for explaining hologram recording of another embodiment according to the present invention.
  • FIG. 19 is a schematic cross-sectional view showing a hologram record carrier and objective lens for explaining hologram reproduction according to another embodiment of the present invention.
  • FIG. 20 is a schematic sectional view showing a hologram record carrier and objective lens module for explaining hologram recording of another embodiment according to the present invention.
  • FIG. 21 is a schematic partial sectional view showing a hologram record carrier for explaining hologram recording according to another embodiment of the present invention.
  • FIG. 22 is a schematic sectional view showing an objective lens module of a pick-up according to another embodiment of the present invention.
  • Figure? 3 and 24 are schematic sectional views showing a bifocal lens of an objective lens of a pick-up according to another embodiment of the present invention.
  • FIG. 25 is a perspective view of an aberration correction liquid crystal panel of the pick-up aberration correction apparatus according to the embodiment of the present invention. .
  • FIG. 26 is a perspective view of an aberration correction liquid crystal panel of a pickup aberration correction apparatus according to another embodiment of the present invention. .
  • FIG. 27 is a partial sectional view taken along line XX in FIG.
  • FIG. 28 is a partially cutaway perspective view of an aberration correction apparatus for pick-up according to another embodiment of the present invention. .
  • FIG. 29 is a schematic partial sectional view showing a hologram record carrier according to an embodiment of the present invention.
  • FIG. 30 is a front view as seen from the optical axis of a spatial light modulator of another embodiment according to the present invention.
  • FIG. 31 is a partial cross-sectional view taken along line XX in FIG. 26 illustrating the polarization state.
  • FIG. 32 is a configuration diagram showing an outline of pick-up of a hologram apparatus for recording / reproducing information on a hologram record carrier according to another embodiment of the present invention. .
  • FIG. 33 is a block diagram showing a schematic configuration of the hologram apparatus according to the embodiment of the present invention.
  • FIG. 34 is a configuration diagram showing an outline of a pickup of a hologram apparatus for recording / reproducing information on a hologram record carrier according to another embodiment of the present invention.
  • FIGS. 35 and 36 are schematic cross-sectional views showing a hologram record carrier and an objective lens module in a pickup of a hologram apparatus for recording / reproducing information on a hologram record carrier according to another embodiment of the present invention.
  • FIG. 37 is a flowchart showing a recording method in a hologram apparatus for recording / reproducing information on a hologram record carrier according to another embodiment of the present invention.
  • FIGS. 38 and 39 are flowcharts showing a reproducing method in a hologram apparatus for recording / reproducing information on a hologram record carrier according to another embodiment of the present invention.
  • FIG. 40 is a configuration diagram showing an outline of a pickup of a hologram apparatus for recording / reproducing information on a hologram record carrier of another embodiment according to the present invention.
  • FIG. 41 is a front view seen from the optical axis of the polarization spatial light modulator of the pickup according to another embodiment of the present invention. Detailed Description of the Invention.
  • FIG. 4 shows a schematic configuration of a pickup 23 for recording or reproducing the hologram record carrier 2. .
  • Pickups 2 and 3 consist of a laser light source LD for recording and reproduction of holograms, a collimator-evening lens CL, a transmissive spatial light modulator SLM, a polarization beam splitter PBS, an imaging lens ML, an image sensor IS and its drive system. (Not shown), including transmissive aberration correction liquid crystal panel LCP and objective lens module OBM. Objective lens Yule BM, etc. are placed on the optical axis of the light beam from the laser light source LD in the housing (not shown).
  • the wavelength of the laser light source LD is a wavelength at which a translucent photosensitive material capable of preserving the optical interference pattern of the hologram record carrier 2 reacts.
  • the collimator lens CL converts coherent light from the laser light source LD into parallel light.
  • Fig. 5 is a front view of the spatial light modulator S L M irradiated within the parallel beam diameter as seen from the optical axis.
  • the spatial light modulator S L M is divided into a central region L C C R including the optical axis and an annular region L C P R not including the surrounding optical axis in the vicinity of the optical axis.
  • the penetration loss is made of a transparent material, and no modulation is given to the light beam passing therethrough.
  • the transparent annular region LCPR is a function of electrically shielding a part of incident light for each pixel in a liquid crystal panel with an analyzer having a plurality of pixel electrodes divided into a matrix, or transmitting completely.
  • the annular region L C PR modulates the parallel light from the collimator overnight lens C L according to the recording information. That is, when the light passes through the spatial light modulator SLM, the light beam is concentrically separated into the spatially modulated signal light 'S B and the non-spatial reference light RB.
  • This spatial modulator SLM is connected to the spatial light modulator horse motion circuit 26 and has a distribution based on the page data to be recorded (information pattern of two-dimensional data such as bright and dark dot patterns on a plane).
  • the light beam is modulated and transmitted to generate signal light S ⁇ .
  • the entire spatial light modulator SL is used as a transmissive matrix liquid crystal display device, and its control circuit 26 uses an annular region LCPR for displaying a predetermined pattern of page data to be recorded.
  • annular region LCPR for displaying a predetermined pattern of page data to be recorded.
  • the central region LCCR can also be used as a phase modulation light transmission region, and phase modulation reference light may be generated.
  • the spatial light modulator SLM is composed of the central region LCCR arranged on the optical axis of the coherent light and the annular region LCPR arranged so as to surround the central region LCCR.
  • the reference component and the signal component are generated by spatially separating the passing component and the passing component of the annular region, and propagated coaxially.
  • the central region LCCR and the annular region L C PR generate reference light and signal light, but the central region LCCR can generate signal light and the annular region LC PR can generate reference light. .
  • a reflective liquid crystal panel or a DMD can be used in addition to the transmissive type.
  • the central region LCCR and the surrounding light are also similar to the transmissive type. It includes an annular region LCPR that does not include an axis, and its action separates the light flux from the central region and the annular region.
  • the objective lens module OBM shown in FIG. 4 belongs to an objective lens optical system that irradiates signal light and reference light toward the hologram recording carrier 2 coaxially and collects the reference light RB and the signal light SB at different focal points. .
  • FIG. 7 is a schematic sectional view of an example of the objective lens module 0 BM.
  • the objective lens module OBM is a convex lens optical element CVX that is fixed by a hollow holder (not shown) and has a convex lens with the optical axis as the coaxial and a convex lens with a diameter smaller than that of the objective lens OB. Consists of.
  • the convex lens optical element CVX consists of a central region CR (convex lens) including the optical axis and an annular region PR (transmission parallel plate) around it. Consists of. As shown in Fig.
  • the objective lens module OBM collects the light passing through the central region CR at the near focal point nP on the near side and the light passing through the annular region PR into the far focal point fP far away. Collect light.
  • the short-distance focal point n P is the combined focal point of the objective lens 0 B and the convex lens optical element c VX
  • the long-distance focal point f P is the focal point of the objective lens OB.
  • the reference light RB and the signal light SB around the optical axis from the spatial light modulator SLM are coaxially spaced apart from each other.
  • the objective lens module is guided to OBM.
  • the spatial light modulator propagates the reference light RB to the central region C on the optical axis and the signal light SB having a circular cross section to the annular region PR around the reference light RB spatially separated from each other and transmitted coaxially.
  • the objective lens module 0 B M refracts the reference light RB and the signal light SB in the central region CR and the annular region PR, respectively.
  • the reference light RB and the signal light SB are spatially separated, the reference light RB is collected at the short-distance focal point nP near the objective lens B, and the signal light SB is farther than the short-distance focal point. Since the light is focused on the far focus, interference occurs at a distance farther than the short focus nP.
  • the reflective layer 5 is disposed at the position of the short-distance focal point nP of the reference light RB, and the hologram recording layer 7 is used as a recording medium between the objective lens module BM and the reflective layer 5.
  • the signal light SB having an annular cross section is reflected by the reflection layer 5 and collected at the symmetrical position of the long-distance focal point f P, and the reference light RB is reflected by the reflective layer 5 in front of the long-distance focal point f P (short-distance focal point nP).
  • the hologram recording layer 7 needs to have a film thickness sufficient to generate an optical interference pattern by crossing and interfering with the reflected signal light and reference light.
  • the holograms to be recorded specifically are hologram recording A (reflected and diverging reference light and reflected and converged signal light), hologram recording B (incident converging reference light and Signal light reflected and converged).
  • hologram record A read out with reflected reference light
  • hologram record B read out with incident reference light
  • the reference light RB is supplied to the central region CR of the objective lens module OBM, and the reference light RB is supplied to the short-range focus n.
  • the hologram HG of the hologram recording layer is transmitted while being converged on P. (reflection layer 5)
  • normal reproduction light and phase conjugate wave reproduction light can be generated from the hologram HG.
  • the objective lens which is also a part of the detection means, the reproduction light and the phase conjugate wave can be guided to the photodetector.
  • the reflection layer 5 is not disposed at the position of the short-distance focal point ⁇ ⁇ of the reference beam R ⁇ , but the long-distance focal point of the signal beam SB as shown in FIG.
  • the hologram recording carrier 2 is arranged so that the hologram recording layer 7 is between the objective lens module ⁇ ⁇ ⁇ and the reflection layer 5.
  • the signal light S ⁇ having an annular cross section is focused and reflected by the reflection layer 5, and the reference light; ⁇ is collected and diverged from the reflection layer 5 (near focal point ⁇ ⁇ ) and reflected by the reflection layer 5. Is done. This place In the case of the reflection layer 5, the reference light RB is defocused and the signal light SB is in focus.
  • the hologram recording layer 7 is disposed away from the reflection layer 5 so that only the reflected reference light RB and the signal light SB intersect, the signal light SB and the reference in the opposite propagation directions are arranged.
  • the optical RB component causes interference in an annular region near the optical axis.
  • the holograms that are specifically recorded are hologram record A (reflected and diverged reference light and reflected and diverged signal light), and hologram record C (reflected and diverged reference light). 2 types of signal light that converges on incident light. There are also two types of holograms to be reproduced.
  • the reference light RB is supplied to the central region CR of the objective lens module OBM, and the reference light RB is irradiated to the reflection layer 5 in the same defocused state as during recording, so that the hologram recording layer
  • the hologram HG is transmitted, normal reproduction light and phase conjugate wave reproduction light can be generated from the hologram HG in the same optical path.
  • the objective lens module 0BM of another modified example has a transmissive diffractive optical element DOE having a convex lens function on the optical axis in front of the objective lens OB, instead of the convex lens optical element, as shown in FIG. It can also be configured by arranging them coaxially. Further, as shown in FIG. 14, the objective lens OB and the transmissive diffractive optical element DOE having a convex lens function can be integrated.
  • the objective lens module OBM By constructing the objective lens module OBM as a bifocal lens OB 2 with a Fresnel lens surface or a diffraction grating DOE formed coaxially on the refracting surface (central region CR), the reference beam RB
  • the focal lengths of the signal light SB can be made different from each other.
  • the convex lens portion CVX is integrated with the objective lens so that a step is provided at the boundary between the central region CR and the annular region PR, and the aspherical lenses have different curvatures.
  • the objective lens module OBM may be configured as the bifocal lens OB2.
  • a modification of the bifocal lens is one in which an annular diffraction grating is provided in the central region CR and a convex lens portion is left around it, but conversely, an annular diffraction grating is provided in the annular region PR. It is also possible to leave a convex lens part on the surface.
  • the signal light around the reference light is irradiated so as to be in a defocused state on the reflection layer, when the focus of the signal light is farther than the objective lens than the focus of the reference light.
  • this defocus state can be achieved even when the focus of the signal light is in front of the focus of the reference light.
  • FIG. 16 shows a configuration example of an objective lens optical system according to another embodiment. .
  • the objective lens module of Fig. 16 is a convex lens that is fixed by a hollow holder (not shown) and whose optical axis is the coaxial objective lens OB and a concave lens that is smaller in diameter than the objective lens ⁇ B.
  • Concave lens optical element CCV is composed of a central region CR (concave lens) including the optical axis and a surrounding annular region PR (transmission parallel plate).
  • the objective lens module OBM collects the light passing through the center region CR at the far focal point f P far away, and passes the light passing through the annular region P toward the near focal point P. To collect light.
  • the far focus f P is the composite focus of the objective lens B and the concave lens optical element C C V
  • the short focus n P is the focus of the objective lens OB. .
  • the coherent reference light RB around the optical axis and the reference light RB around the optical axis according to the recording information by the spatial light modulator coaxial with the objective lens module OBM.
  • the signal light SB obtained by the modulation is generated.
  • the reference light RB and the signal light SB are coaxial and are mutually spaced. It is guided to the objective lens module OBM in a state where it is far away.
  • the objective lens module OBM refracts the reference light RB and the signal light SB in the central region CR and the annular region PR, respectively.
  • the reference light RB and the signal light SB are spatially separated, and the signal light SB is collected at the short-distance focal point n P near the objective lens OB, and the reference light RB is far from the short-distance focal point. Focused at the distance focus.
  • a coherent reference light RB and a signal light SB obtained by modulating the reference light RB according to the recording information are generated.
  • the reference light RB and the signal light SB are guided to the objective lens module O B M so as to be coaxially spaced apart from each other. That is, as shown in Fig.1.7 (a), the reference light RB is spatially separated from each other into the central region CR on the optical axis and the signal light SB into the annular region PR around the reference light RB. To propagate coaxially. Even after passing through the objective lens, the reference light RB and the signal light SB are spatially separated, and the signal light SB is collected at the near focus n P close to the objective lens module OBM, and the reference light RB is far away from the near focus. Focused at the focal point fP. '
  • the reflective layer 5 is arranged at the position of the long-distance focal point fP of the reference light RB, and the hologram recording layer 7 is arranged between the objective lens module OBM and the reflective layer 5.
  • the signal light SB having an annular cross-section is collected and diverged before the reflection layer 5 (short-distance focal point n P) and is reflected by the reflection layer 5, and the reference light RB is focused and reflected by the reflection layer 5. . Therefore, since the signal light SB having the annular cross section is condensed before the reflection layer 5, it becomes a defocus in the reflection layer 5, and the reflected signal light SB does not cross the reference light RB and does not interfere with it.
  • the holograms that are specifically recorded are hologram recording C (reflected and divergent reference light and incident convergent signal light), and hologram record D (incident and convergent reference light and incident convergent). Signal light).
  • hologram recording C reflected and divergent reference light and incident convergent signal light
  • hologram record D incident and convergent reference light and incident convergent. Signal light
  • the hologram reproducing system for reproducing information from such a hologram record carrier as shown in FIG. 19, only the reference light RB is supplied to the central region CR of the objective lens module OBM, and the reference light RB is supplied to the reflecting layer 5 (
  • the hologram HG of the hologram recording layer is transmitted while converging to the far-distance focal point (f P)
  • f P far-distance focal point
  • re-normal reproduction light and phase conjugate wave reproduction light can be generated from the hologram HG.
  • the reproduction light and the phase conjugate wave can be guided to the photodetector by the object lens module O B M which is also a part of the detection means.
  • the reflective layer 5 is arranged at the position of the long-distance focal point f P of the reference beam RB, and the hologram recording layer 7 is not arranged between the objective lens module OBM and the reflective layer 5.
  • a reflection layer 5 is arranged at the position of the short-distance focal point nP of the signal light SB that has passed through the annular region PR, and the hologram recording carrier 2 has a hologram recording layer 7 that has an objective lens module. Place it so that it is between the OBM and the reflective layer 5.
  • the signal light SB having an annular cross-section is focused and reflected by the reflection layer 5, and the reference light RB is reflected by the reflection layer 5 and collected at a symmetrical position of the long-distance focal point fP.
  • the reference light RB is defocused and the signal light SB is in focus.
  • hologram recording B ident reference light and reflected signal light
  • hologram recording C ident reference light and incident signal light
  • the reference light RB is supplied to the central region CR of the objective lens module OBM, and the reference light RB is irradiated to the reflection layer 5 in the same defocused state as that during recording, so that the hologram recording layer
  • the hologram HG is transmitted, normal reproduction light and phase conjugate wave reproduction light can be generated from the hologram HG in the same optical path.
  • the bifocal objective lens module OBM has a transmission type diffractive optical element D0E having a concave lens function at the center as shown in FIG.
  • the focal lengths of the reference light RB and the signal light SB can be made different from each other.
  • the objective lens OB and the transmission type diffractive optical element DOE are integrated (Fresnel lens surface or diffraction grating D having a concave lens action formed coaxially in the central region CR of the refractive surface).
  • the bifocal lens OB 2 makes it possible to make the reference light RB and the signal light SB have different focal lengths.
  • the concave lens portion CCV is integrated, and a step is provided at the boundary between the central region CR and the annular region PR.
  • the objective lens module OBM may be configured as the focus lens OB2.
  • the overlap of the reference light and the signal light can be limited to some extent at the time of incidence.
  • the reference light focused on the reflective layer can be used as a light beam for detecting a spot error.
  • the reference light is generated in the center and the signal light is generated in the outer annular region. If this is modified to generate the signal light in the central region and the reference light in the outer annular region, It is possible to use the reference light having an annular cross-section that is focused on the reflective layer as a light beam for detecting a servo error.
  • the interfering signal light and reference light are limited, so that extra holograms are not recorded and reproduced.
  • the reference light RB and the signal light SB are spherical waves propagating in directions opposite to each other, their crossing angle can be made relatively large, so that shift multiplexing is possible, and the multiplexing interval can be reduced. . ,
  • the image sensor I S. is a photoelectric conversion element consisting of an array of C CD (charge coupled device) and CMO S (complementary metal oxide semiconductor device).
  • the transmission type aberration correction liquid crystal panel LCP in FIG. 4 includes a central correction area PLCCR arranged on the optical axis and an annular peripheral area PLCPR arranged so as to surround the central correction area PLCCR, and at least one of them passes through the central correction area PLCCR.
  • This is a transmissive liquid crystal device that includes a plurality of transparent electrodes that partially change the phase of the wavefront of the light beam to correct the wavefront aberration of the passing light beam.
  • Figure 25 shows an aberration-corrected liquid crystal panel LCP consisting of a transmissive liquid crystal device.
  • the liquid crystal panel LCP is connected to the aberration correction liquid crystal drive circuit L CPD, and is composed of an annular peripheral region PLCPR and a central correction region P LCCR therein.
  • a fluid transparent liquid crystal composition 11 is sandwiched between two glass substrates 12a and 12b, and the periphery of the substrate is sealed. It has a stopped structure.
  • transparent electrode layers (1 3 ai, 13 a) (1 3 b) for applying voltage to the liquid crystal made of indium tin oxide, etc.
  • Alignment films 1.4 a and 14 b that define the orientation (orientation) of are stacked in order.
  • the orientation of the liquid crystal changes according to the potential difference generated in the liquid crystal, and the refractive index changes according to the voltage, thereby changing the phase of the wavefront passing through the liquid crystal. Therefore, it tries to cancel out the aberration of the passing light.
  • the central correction area PLCCR through which only the reference light is transmitted has a split electrode shape corresponding to the aberration generated in the reference light.
  • the electrode division shape of the central correction area PLC CR can take a spherical aberration correction pattern, a coma aberration correction pattern, and an astigmatism correction pattern, which will be described later. It can also be configured.
  • at least one of the opposite electrode layers of the central correction region PLCCR is divided into a plurality of transparent electrodes as a phase adjustment unit, and each of the plurality of transparent electrodes corresponds to the distribution shape of the aberration generated in the reference light.
  • FIG. 27 is a plan view of an electrode pattern schematically showing an example of the structure of the central correction area PLCCR of the aberration correction liquid crystal panel LCP for correcting spherical aberration. As shown in Fig.
  • the central correction area PLCCR is divided by a gap within the effective diameter of the incident reference light beam in correspondence with the distribution of spherical aberration generated in the hologram record carrier 2, and A plurality of concentric (annular) transparent electrodes 13 a 1, 13 a 2, 13 a 3, 13 a 4, 13 a 5, 13 a 6 and 13 a 7 are included.
  • the width of each of the transparent electrodes 13 a 1 to 13 a 7 can be varied in order to change the phase of the wavefront corresponding to the distribution of spherical aberration, but may be configured equally.
  • FIG. 27 shows a case where the central correction region PLC CR has seven transparent electrodes, but the number of electrodes may be two or more.
  • the recording layer shrinks due to hologram recording or the refractive index changes.
  • the aberration correction of the reference light is realized by applying a previously stored spherical aberration correction amount or the like as a correction voltage to the aberration correction liquid crystal panel LCP, and a reference having the same wavefront as that at the time of recording. Since it can be reproduced with light, a good reproduction signal can be obtained.
  • -FIG. 28 is a plan view schematically showing an example of the structure of the central correction area PLC CR of the aberration correction liquid crystal panel LCP for correcting coma.
  • Figure 28 (a) shows the transparent electrode pattern for correcting coma in the central correction area PLCCR.
  • Central correction area Four divided transparent electrodes 13 all, 13 a 12, 13 a 13, 13 a 1 4 for changing the phase of the wavefront within the effective diameter of the reference beam incident on the PLCCR Are separated by a gap and are electrically separated.
  • the pairs of the transparent electrodes 13 a 11, 13 a 12 and the transparent electrodes 13 al 3, 13 a 14 are arranged symmetrically with respect to the diameter of the central correction region PL CCR. That is, in the coma aberration correcting transparent electrode pattern, the central correction area PLCCR is arranged as an inner and outer area divided by a gap including the straight line or symmetrical to the diameter perpendicular to the optical axis.
  • the positive liquid crystal driving circuit supplies a correction voltage corresponding to the coma aberration to be corrected.
  • a positive voltage is applied to the divided transparent electrode with respect to the reference voltage
  • a potential difference is generated between the transparent electrode 13 b and the liquid crystal orientation changes according to the potential difference to change the refractive index. Therefore, the phase of the wavefront of the reference light component passing through the transparent electrode is advanced.
  • a negative voltage with respect to the reference voltage is applied to the divided transparent electrode, the phase of the wavefront of the reference light component passing through the transparent electrode is delayed. Therefore, symmetrically arranged transparent electrodes 13 all, 13 a 12 and transparent electrodes 13 al 3, 13 al 4 As shown in Fig.
  • the central correction area PLCCR is tilted with respect to the optical axis by applying a correction voltage having a voltage waveform corresponding to the distribution shape of the coma aberration to be corrected. It is possible to cancel out the coma caused by, and to correct the coma.
  • the aberration of the reference light can be corrected based on the quality of the reproduction signal.
  • the correction voltage By applying the correction voltage to the aberration correction liquid crystal panel L C P, the aberration correction of the reference light is realized, and the reproduction can be performed with the reference light having the same wavefront as that at the time of recording, so that a good reproduction signal can be obtained.
  • the aberration correction liquid crystal panel LCP is connected to the annular peripheral area PLCPR and the central correction area PLCCR in the same state by the connected aberration correction liquid crystal drive circuit LCPD. It can be controlled to have different polarization action states in the region.
  • the aberration correction liquid crystal panel LCP performs a fei rotation of the polarization plane of the signal light that passes through the annular region and the reference light that passes through the central region ′, and switches the rotation angle between hologram recording and playback. It can be controlled by the aberration correction liquid crystal drive circuit LCPD.
  • the aberration correction liquid crystal drive circuit LCPD and the aberration correction liquid crystal panel LCP are systems that can rotate the polarization direction of the annular region light beam part of the light beam emitted from the laser light source and the central region light beam part inside it by a predetermined angle, for example 90 degrees. is there.
  • a liquid crystal is a substance that shows an intermediate phase between a solid and a liquid in which the molecule is elongated and the position and the direction of its axis are both regular and irregular.
  • a plurality of liquid crystal molecules are arranged with gentle regularity in the major axis direction.
  • the molecular axis of liquid crystal molecules has a property of changing the alignment along the grooves.
  • the orientation of each micro-groove is 90 degrees, and the two alignments are arranged in parallel at a predetermined interval.
  • the liquid crystal molecules are arranged so that they are gradually twisted from one alignment film to the other alignment film and rotated 90 degrees (helical alignment).
  • light is passed through the liquid crystal from one alignment film to the other alignment film in a state where the liquid crystal molecules are twisted, light is transmitted along the gaps where the liquid crystal molecules are arranged.
  • linearly polarized light parallel to the liquid crystal molecular axis near one alignment film becomes linearly polarized light parallel to the liquid crystal molecular axis near the other alignment film, and its vibration plane (polarization plane) is twisted 90 degrees. (Transmits off without applying voltage J).
  • the liquid crystal molecules change from the direction along the alignment film to the vertical direction and line up along the electric field.
  • the polarization plane of the linearly polarized transmitted light does not rotate. Transmits in a state (ON state with the same voltage applied).
  • an alignment film is set so that liquid crystal molecules are aligned in parallel in the region used for aberration correction, while in the region used for polarization.
  • An alignment film is set so as to achieve TN alignment. For example, in the facing alignment films 14 a and 14 b of the aberration-correcting liquid crystal panel LCP shown in FIG. 26, one alignment film 14 b is placed in a uniform direction (indicated by the broken line in FIG. 25).
  • the circumferential area PLCPR and the central correction area PLCCR are separated from each other, and in the annular surrounding area PLCPR, the direction is 90 degrees with respect to the rubbing direction of the alignment film 14b.
  • the central correction area PLCCR rubbing in parallel to the rubbing direction of the alignment film 14b (indicated by a solid double-directional arrow in Fig. 25)
  • the liquid crystal molecules can be set in parallel in the central correction region PLCCR used for aberration correction
  • the TN alignment can be set in the annular peripheral region PLCPR used for polarization.
  • the hologram record carrier 2 includes a reflective layer 5, a separation layer 6, a hologram recording layer 7, and a protective layer 8 laminated on the substrate 3 in the film thickness direction.
  • the photogram recording layer 7 stores the optical interference pattern by the coherent reference light R B and the signal light S B for recording inside as a diffraction grating (hologram).
  • the hologram recording layer 7 includes, for example, a light-transmitting photosensitive material capable of storing an optical interference pattern such as a photopolymer, a light anisotropic material, a photorefractive material, a hole burning material, or a photochromic material. Used.
  • the substrate 3 supporting each film is made of, for example, glass, or polycarbonate, amorphous polyolefin, polyimide, PET, PEN, PES, or an ultraviolet curable acrylic resin.
  • the separation layer 6 and the protective layer 8 are made of a light transmissive material, and play a role of flattening the laminated structure and protecting the hologram recording layer and the like.
  • the track can be formed spirally or concentrically on the center of the circular substrate, or in the form of a plurality of divided spiral arcs.
  • the track may be formed in parallel on the substrate.
  • the track may be formed in a spiral shape, a spiral arc shape, or a concentric shape on the center of gravity of the substrate, for example.
  • the laser light from the laser light source LD polarized in parallel with the paper is converted into a parallel light beam by the collimator lens CL, and then passes through the spatial light modulator SLM.
  • the light beam including the optical axis is divided into the annular cross-section light flux surrounding the light beam, and the light beam including the optical axis is generated as the reference light RB and the circular cross-section light beam as the signal light SB.
  • the reference light RB and the signal light SB are coaxially passed through the polarization beam splitter PBS and the aberration correction liquid crystal panel LCP, and are converged on the hologram record carrier 2 by the objective lens module BM.
  • the area through which only the reference light RB of the aberration correction LCD panel LCP passes center correction area PLC CR
  • the area through which only the signal light SB passes the annular surrounding area PLCPR0 is turned on, and the signal light SB
  • the polarization state of the reference light RB is set so as to be the same (parallel to the paper surface), so that it is recorded in the hologram recording layer 7 of the hologram record carrier 2 due to the interference of the signal light SB and the reference light RB.
  • the central correction area PLC CR and the annular peripheral area PLC PR are all set to the on state and the aberration correction of the reference light may be performed, but may not be performed. Thus, the effect of aberration is considered to be small.
  • the reproduction operation as shown in FIG. 4 (b), only the light beam including the optical axis (reference light RB) is generated by the spatial light modulator SLM from the light beam in the polarization direction parallel to the paper surface.
  • the reproduction light having the polarization parallel to the paper surface is reconstructed.
  • a correction voltage corresponding to the distribution shape of the aberration generated in the reference light is applied to the plurality of divided transparent electrodes of the phase adjustment section of the aberration correction liquid crystal panel LCP, and the central correction area PLCCR is turned on to make a ring shape.
  • the reproduction light reproduced by the reference light RB is the same divergent and convergent light beam as the signal light at the time of recording and has a polarization direction parallel to the paper surface, but the reproduction light passes through the annular polarization region PLCPR of the polarizing liquid crystal panel LCP. Therefore, the polarizing action of the polarizing liquid crystal panel LCP causes the polarization direction to be perpendicular to the paper surface.
  • the reference light RB is reflected by the reflective layer 5 while being parallel to the paper surface, and is not subjected to the polarization action at the aberration-correcting liquid crystal panel LCP. Therefore, since the polarization direction of the reference light RB reflected by the reflective layer 5 and the reproduced light to be reproduced differs during reproduction, it can be separated by the polarization beam splitter PBS, and the reference light RB is received on the detector that receives the reproduced light. Reproduction SN is improved because no light enters.
  • Aberration correction LCD panel LCP makes polarized light perpendicular to the paper (the aberration correction LCD panel LCP rotates the polarization direction of the transmitted light beam by 90 degrees), and the component reflected by polarization beam splitting PBS enters image sensor IS. To do.
  • the image sensor IS sends an output corresponding to the image formed with the reproduction light to a reproduction signal detection processing circuit (not shown), and performs processing to reproduce the page data.
  • the hologram recording light beam is divided into a light beam including the optical axis in the vicinity of the optical axis (reference light) and an annular cross-section light beam (signal light) surrounding it.
  • the aberration-correcting liquid crystal panel LCP has a central correction area PLCCR and an annular peripheral area PLCPR, and the divided shapes are a light beam (reference light) including the optical axis to be transmitted and an annular cross-section light beam (signal) surrounding it. It substantially matches the cross-sectional shape of (light).
  • the above-mentioned aberration-correcting liquid crystal panel LCP uses the split transparent electrode of the central correction area PLCCR for reference light that should be corrected for wavefront aberration depending on the voltage application state, and the light flux that passes through the annular peripheral area PLCPR is used for signal light.
  • the configuration of the aberration correction liquid crystal panel LCP and the spatial light modulator S LM does not propagate the reference light on the optical axis and the signal light around it, but conversely. It is also possible to propagate the signal light by generating the reference light around the optical axis. In this case, as shown in FIG.
  • the entire spatial light modulator SLM is a transmission matrix liquid crystal display device, and the control circuit 26 controls the central area LCCR for displaying a predetermined pattern of page data to be recorded. It can also be configured to display an unmodulated light transmission region of the annular region LCPR around it.
  • the non-modulated light transmission region of the annular region LCPR can be formed from a transparent material.
  • a spherical electrode for correcting spherical aberration in the annular peripheral region P LCPR of the aberration correction liquid crystal panel LCP, a spherical electrode for correcting spherical aberration, a transparent electrode pattern for correcting coma aberration 13 ai, etc.
  • the transparent electrode pattern 13aa is formed in the central correction area PLCCR for transmission of light. That is, the configuration can be the same as that shown in FIG. 26 except that the transparent electrode patterns in the central correction area PLCRC and the annular surrounding area PLCPR are replaced.
  • the aberration correction liquid crystal panel L CP ensures that the polarization state of the signal light SB and the reference light RB is the same in the hologram recording layer 7 during holographic recording, and is approximately 90 ° between each other during reproduction. It can be different. Therefore, the aberration-correcting liquid crystal panel LCP has the same polarized light transmission state in both areas during hologram recording by the aberration-correcting liquid crystal driving circuit LCPD, or the central correction area PLCCR of the aberration-correcting liquid crystal panel LCP during reproduction, for example. In the annular peripheral region P LCP R, the wavefront aberration correction voltage can be applied and turned on in the annular peripheral region P LCP R, so that both regions can have different polarization action states.
  • the parallel light beam that has passed through the spatial light modulator SLM is divided into the signal light SB (light beam including the optical axis) and the reference light beam RB of the annular cross-section light beam that surrounds it.
  • the reference beam RB of the annular cross section is subjected to wavefront aberration and passes through the polarization beam splitting PBS and the aberration correcting liquid crystal panel LCP.
  • the recording operation (Fig. 32 (a)) and the reproducing operation (Fig. 32 (b)) are the same as the above example except that the propagation position is different between the reference light and the signal light. Even in this modification, the configuration of the objective lens module OBM as shown in FIGS. 8 to 24 can be applied.
  • the servo control is not shown, but for example, a track is provided on the reflective layer 5, and the reference light RB is collected as a spot on the track, and a servo optical system including an objective lens that guides the reflected light to the photodetector is used. This is possible by driving the objective lens optical system overnight according to the detected servo error signal. That is, the reference light RB light beam irradiated from the objective lens is used so as to be in focus when the reflection layer 5 is positioned at the position of the beam waist.
  • a hologram apparatus will be described as a hologram recording / reproducing system of the present invention for recording and reproducing information on a disc-shaped hologram record carrier.
  • FIG. 33 is a block diagram of an example of a hologram device.
  • the hologram device includes a spindle motor 2. 2 that rotates a disk of the hologram record carrier 2 on a turntable, a pickup 2 3 that reads a signal from the hologram record carrier 2 by a light beam, and holds the pickup in a radial direction (X direction).
  • Pickup position detection circuit 31 connected to the pickup drive unit 24 to detect the position signal of the pickup 31, Slider servo circuit 3 2 connected to the pickup drive unit 24 and supplying a predetermined signal thereto,
  • Spindle motor 2 2 is connected to 2 to detect the rotation speed signal of the spindle motor 3 3, the hologram connected to the rotation speed detection section Times to generate a rotational position signal of the recording carrier 2
  • a shift position detection circuit 34, an aberration correction liquid crystal drive circuit LCPD, and a spindle servo circuit 35 connected to the spindle motor 22 and supplying a predetermined signal thereto are provided.
  • the hologram apparatus has a control circuit 37, which includes a light source drive circuit 25, a spatial light modulator drive circuit 26, a reproduction light signal detection circuit 27, a servo signal processing circuit 28, and a focus circuit.
  • a control circuit 37 which includes a light source drive circuit 25, a spatial light modulator drive circuit 26, a reproduction light signal detection circuit 27, a servo signal processing circuit 28, and a focus circuit.
  • Po circuit 29 xy-direction moving support circuit 30, pickup position detection circuit 31, slider service circuit 3 2, speed detector 3 3, rotation position detection circuit 34, aberration correction liquid crystal drive circuit LCPD and spindle service circuit 3 5 It is connected to the.
  • the control circuit 37 is used to control focus servo control related to pick-up, X and y direction movement servo control, and playback position (positions in the X and y directions) via these drive circuits. Control and so on.
  • the control circuit 37 consists of a microcomputer equipped with various memories and controls the entire device. It controls the operation input by the user from the operation unit (not shown) and the current operation status of the device. In response to this, it generates various control signals and is connected to a display (not shown) that displays the operating status to the user.
  • Hologram recording / reproducing laser light source L D 1 The connected light source driving circuit 25 adjusts the output of the laser light source L D 1 so that the intensity of both emitted light beams is strong during hologram recording and weak during reproduction.
  • control circuit 37 executes processing such as encoding of data to be recorded from the outside inputted from outside, and supplies a predetermined signal to the spatial light modulator driving circuit 26 to control the recording sequence of the hologram. .
  • the control circuit 37 is configured to perform demodulation and error correction processing based on the read signal from the reproduction light signal detection circuit 27 connected to the image sensor IS. By doing this, the data recorded on the hologram record carrier is restored. Further, the control circuit 37 reproduces the information data by performing decoding processing on the restored data, and outputs this as reproduction information data.
  • the control circuit 37 includes a convergence correction unit 40 and discriminates the aberration of the reference light based on the signal received from the reproduction light signal detection circuit 27 and according to Z or a predetermined processing procedure.
  • control circuit 37 determines each correction voltage V i of the phase adjustment unit (transparent electrode) of the aberration correction liquid crystal panel LCP based on the aberration of the reference light.
  • the control circuit 37 supplies each control signal representing the correction voltage V i to the aberration correction liquid crystal drive circuit LCPD for driving the aberration correction liquid crystal panel LCP.
  • the aberration correction liquid crystal drive circuit LCPD generates a drive voltage (correction voltage) to be applied to the aberration correction liquid crystal panel LCP according to the control signal, and supplies the drive voltage to the aberration correction liquid crystal panel LCP.
  • control circuit 37 controls to form holograms at predetermined intervals so that holograms to be recorded can be recorded at predetermined intervals (multiple intervals).
  • a focusing drive signal is generated from the focus error signal and is supplied to the focus support circuit 29 via the control circuit 37.
  • the vocus servo circuit 29 drives the focusing part of the objective lens driving part 36 (see Fig. 35) mounted on the pickup 23, and the focusing part is used as a hologram record carrier. Operates to adjust the focal position of the illuminated light spot.
  • X and y direction movement drive signals are generated and supplied to the xy direction movement support circuit 30.
  • the xy direction moving support circuit 30 is mounted on the pickup 23 according to the X and y direction moving drive signals.
  • the objective lens drive unit 3 6 (see Fig. 35) is driven. Therefore, the objective lens is driven by an amount corresponding to the drive current by drive signals in the X, y, and z directions, and the position of the light spot irradiated on the hologram record carrier is displaced.
  • the hologram formation time can be secured while keeping the relative position of the light spot relative to the moving hologram record carrier at the time of recording.
  • the control circuit 37 generates a slider drive signal based on the position signal from the operation unit or pick-up position detection circuit 31 and the X-direction movement error signal from the servo signal processing circuit 28, and generates this slider drive circuit 3 Supply to 2.
  • the slider support circuit 32 moves the pickup 23 in the radial direction of the disk through the pickup drive unit 24 according to the drive current generated by the slider drive signal.
  • the rotation speed detector 33 detects a frequency signal indicating the current rotation frequency of the spindle motor 22 that rotates the hologram record carrier 2 on a turntable, and generates a rotation speed signal indicating the corresponding spindle rotation speed.
  • the rotation position detection circuit 3 4 is supplied.
  • the rotational position detection circuit 3 4 generates a rotational position signal and supplies it to the control circuit 37.
  • the control circuit 37 generates a spindle drive signal, supplies it to the spindle support circuit 35, controls the spindle motor 22 (rotates and drives the hologram record carrier 2).
  • FIG. 34 shows the schematic configuration of the pickup 23.
  • the pickup 23 includes a hologram recording optical system, a hologram reproducing optical system, and a servo control system. These systems are arranged in the housing (not shown) except for the objective lens module BM and its drive system.
  • Laser light source LD for hologram recording / reproduction 1 Collimator overnight lens CL 1
  • Spatial light modulator SLM, Polarization beam splitter PB S, 4 f Lens fd and fe and image sensor IS are arranged in a straight line, mirror MR, 1/4 wavelength plate 1Z4, 4 f Lens fc, polarization beam split PBS, aberration correction liquid crystal panel LCP, objective lens module OBM are arranged on a straight line, and these linear array parts are arranged orthogonally by polarization beam splitter PBS.
  • _ Hologram recording optical system>
  • Hologram recording optical system Hologram recording / reproducing laser light source LD 1, collimator lens.
  • CL transmissive spatial light modulator SLM, polarization beam splitter PBS, aberration correction liquid crystal panel LCP, 4 f lens fc, mirror MR Including 1/4 wavelength plate 1Z4, and objective lens module OBM.
  • the light emitted from the laser light source LD 1 is converted into parallel light by the collimator lens CL 1 and enters the spatial light modulator SLM and the polarization beam splitter PBS in this order.
  • the polarization direction of the parallel light is a direction perpendicular to the paper surface.
  • the spatial light modulator S.LM that displays the page data to be recorded in the central area uses the light beam transmitted through the central area including the optical axis as the unmodulated reference light RB, and the surrounding annular light beam as the signal light SB.
  • the polarization beam splitter PBS is arranged so that the incident spatially separated reference light RB and signal light SB are both reflected by the polarizing film (S-polarized light) and incident on the 4 f lens fc. Yes.
  • This 4 f lens fc is a lens for forming an image at the focal position of the objective lens OB (focal length f ob on the optical axis). Since it is difficult to place the spatial light modulator SLM at the focal position of the objective lens OB, the distance from the spatial light modulator SLM to the 4 f lens c is the focal length of the 4 f lens c.
  • the 4 f lens fc passes through the 1 Z4 wave plate 1 Z4 ⁇ and is converted into circularly polarized light. It is arranged so that it is reflected by the mirror MR and incident on the 1 Z4 wave plate 1/4 ⁇ again.
  • the reference light RB and the signal light SB from the 1/4 wavelength plate 1/4 ⁇ are incident on the polarization beam splitter PBS again with the polarization direction parallel to the paper surface, but the polarization direction is horizontal to the paper surface.
  • (P-polarized light) transmitted through the polarization beam splitter PBS.
  • the reference light RB and the signal light SB are imaged again at the focal position of the 4: f lens: fc, which is equivalent to the presence of the spatial light modulator S.LM at this image position.
  • an aberration correcting liquid crystal panel LCP is placed, and the focal position of the objective lens OB of the objective lens module OBM is matched.
  • the aberration correction liquid crystal panel, LCP has the TN type orientation of the aberration correction liquid crystal panel LCP.
  • the concave lens optical element CCV is arranged so that the concave lens action acts only on the reference light RB, and the reference light RB is combined with the action of the objective lens OB to achieve the original objective. It is set so that the focal point is farther than the focal point of the lens OB, and the signal light SB is focused on the focal point of the objective lens OB without receiving the lens action.
  • the eye-to-eye position of the objective lens module OB with respect to the hologram recording carrier 2 is controlled so that the focal point of the objective lens 0 B of the signal light S B is located on the wavelength selective reflection layer 5 of the hologram recording carrier 2.
  • the hologram reproduction optical system consists of a hologram recording / reproduction laser light source LD1, a collimator lens CL 1, a spatial light modulator SLM, a polarization beam splitter PBS, an aberration correction liquid crystal panel LCP, and an objective lens module OBM.
  • the 4 f lenses fd and fe and the image sensor IS The optical parts except for are common to the hologram recording optical system.
  • the 4 f lens f d of the hologram reproducing optical system is arranged at a position where the focal point coincides with the focal position of the objective lens OB through the polarization beam splitter P B S.
  • a 4 f lens e with the same focal length as the 4 f lens ⁇ d is placed above the optical axis at a distance twice that of the focal point from the 4 f lens ⁇ d. This constitutes the system optical system. Since it is difficult to place the image sensor IS at the focal point of the objective lens OB on which the reproduced image from the reproduced light from the hologram record carrier 2 is formed, the image sensor IS that receives the reproduced light has its light receiving surface. Is positioned at the focal point of the 4 f lens fe, and the reconstructed image is imaged on the light receiving surface of the image sensor IS to obtain a reconstructed signal. By reproducing this, the recorded signal can be reproduced.
  • the hologram record carrier 2 includes a protective layer 8, a hologram recording layer 7, a separation layer 6, a wavelength selective reflection layer 5, a second separation layer 4, as viewed from the reference light incident side.
  • This wavelength-selective reflection layer 5 is made of a dielectric laminate that transmits the support beam SVB ⁇ and reflects only the reflection wavelength band including the wavelengths of the reference light and signal light.
  • a service group or a pin is formed as a service mark T such as a plurality of tracks that extend without being separated from each other.
  • the pitch PX (so-called track pitch) of the servo mark T of the servo guide layer 9 is set as a predetermined distance determined from the multiplicity of the hologram HG recorded above the spot of the signal light and the reference light.
  • the width of the Serpo Mark T is from the optical spot of the SVB SVB It is appropriately set according to the output of the photodetector that receives the reflected light, for example, a push-pull signal.
  • Positioning on the hologram record carrier 2 for performing hologram recording / reproduction by following the servo beam SVB on the support mark T of the support guide layer 9 of the hologram record carrier 2 of the hologram record carrier 2 shown in FIG. 35 focus support, xy Do direction service).
  • the servo control system is also ⁇ for controlling the position of the objective lens module OBM with respect to the hologram record carrier 2 (moving in the xyz direction).
  • the second laser light source that emits the hypobeam SVB Includes LD 2, adjustment lens CL 2, half mirror MR, dichroic prism DP, polarizing beam splitter PBS, objective lens module OBM, force pulling lens AS, and photodetector PD.
  • the second laser light source LD 2 is assumed to have a wavelength different from that of the recording raw laser (suppo beam SVB).
  • the servo beam SVB is light having a wavelength insensitive to the hologram recording layer 7 other than the sensitive wavelength bands of the signal light and the reference light.
  • the servo control system is coupled to the hologram reproducing optical system by a dichroic prism DP disposed between the 4 f lens fc and fe in the 4 ⁇ optical system. That is, the second laser light source LD 2 so that the hypobeam SVB from the second laser light source LD 2 is reflected by the half mirror MR, reflected by the dichroic prism DP, and combined with the light beam of the reproducing optical system. 2, Adjustment lens CL 2, Half mirror MR, Dichroic prism DP are arranged.
  • the control lens CL 2 is combined with the detection system 4 f lens 4 fd, so that the servo beam SVB It is set to be parallel light before BM.
  • the diameter (d a) of the hypobeam S VB is set to be equal to or smaller than the diameter (db) of the light beam of the reference light RB. Therefore, the relationship between the outer diameter (d c) and inner diameter (dd) of the signal light SB and these diameters is d c> dd> db ⁇ d a.
  • the recording guide structure such as recording interval (multiple interval) and track pitch is wider (larger) than that of ordinary optical discs, the aberration of the servo beam SVB and the beam diameter of the hypo beam SVB are small. The lower the numerical aperture NA, the less the reading is affected.
  • the polarization direction of the servo beam S V B is set perpendicular to the paper surface, the servo beam S VB is incident on the objective lens module OBM without being affected by the aberration correcting liquid crystal panel L C P.
  • the servo beam SVB is condensed farther than the wavelength selective reflection layer 5 of the hologram recording carrier 2, that is, It is set together with the hologram recording carrier 2 so as to be focused on the support guide layer 9 that has passed through the wavelength selective reflection layer 5 ′ and formed the servo mark T.
  • the concave lens optical element CCV is not aberration Sapobimu SVB its wavelength in combination with the objective lens OB, so as to focus on the server Pogaido layer 9 is set.
  • the servo beam S V B passes through the wavelength selective reflection layer 5, reaches the service guide layer 9, and is reflected by the service guide layer 9.
  • the reflected light of the SVB is polarized light split PBS or PBS as shown in 34. Then, the dichroic prism DP reaches the half mirror MR through the same optical path as the forward path, and enters the photodetector PD via the servo signal generation optical system.
  • a focus sap signal can be obtained, for example, by an astigmatism method using a cylindrical lens, etc., and a push-pull tracking error signal etc. can be obtained by reading a servo mark T formed on the sap guide layer 9. You can also get It can also read address signals formed by pit trains.
  • the servo control condenses the servo beam SVB as a light spot on the rack on the servo guide layer 9 through the objective lens module OBM, and guides the reflected light to the photodetector PD.
  • the objective lens module OBM is driven by the objective lens drive unit 36 according to the signal detected there.
  • the wavelength selective reflection layer 5 is closer to the objective lens OB side (light irradiation side) than the servo guide layer 9, the signal light and the reference light are reflected. Since signal light and reference light are not diffracted by the servo structure (Servo Mark T), the influence of the diffracted light is reduced, and hologram reproduction with good SN is possible.
  • the light emitted from the laser light source LD 1 is converted into parallel light by the collimator lens CL 1 and is incident on the spatial light modulator SLM and the polarization beam splitter PBS in this order.
  • the page data to be recorded in the annular area is displayed, and the parallel light divided into the reference light RB and the signal light SB by the spatial light modulator SLM that is not modulated in the central area is Each is reflected by the polarization beam splitter PBS, reflected by the 14 wavelength plate 1 Z 4 ⁇ and the mirror MR, and again returns to the polarization beam splitter PBS to be transmitted therethrough.
  • the transmitted reference light RB and signal light SB enter the aberration correction liquid crystal panel LCP.
  • the signal light S B and the reference light RB transmitted through the aberration correction liquid crystal panel L C P are incident on the objective lens module O BM with the same polarization direction. Since the signal light SB is not affected by the concave lens optical element CCV, it is collected at the focal point of the original objective lens OB, and the reference light RB is condensed further away from the focal point due to the concave lens action. -Since the wavelength selective reflection layer 5 of the hologram record carrier 2 is set to reflect the light beam having the wavelength of the recording / reproducing laser, the signal light SB is condensed on the wavelength selective reflection layer 5 and reflected. Is done. On the other hand, the reference light RB is reflected by the wavelength selective reflection layer 5 in a defocused state.
  • the hologram recording layer 7 A region where the signal light SB and the incident reference light RB overlap is generated, and interference between the reference light RB and the signal light SB occurs in this region.
  • the light emitted from the laser light source LD 1 is shielded by the annular region of the spatial light modulator SLM, and only the light beam including the optical axis is transmitted unmodulated in the central region.
  • Illumination RB is generated.
  • an aberration correction liquid crystal panel is applied to a plurality of divided transparent electrodes of the CP phase adjustment unit, and a correction voltage corresponding to the distribution shape of the aberration generated in the reference light is applied, and the annular peripheral region PLCPR is turned off (voltage application is not performed). Do not) and leave the central correction area PLCC on.
  • the reproduced light to be reproduced Since the reference light RB is incident on the hologram recording layer 7 with the polarization direction being parallel to the paper surface, the reproduced light to be reproduced has the same divergence and convergent light beam as the signal light at the time of recording and has a polarization direction parallel to the paper surface. Therefore, the reproduction light is transmitted through the aberration correction liquid and the annular peripheral region PLCPR of the crystal panel LCP, so that the polarization direction is perpendicular to the paper surface due to the polarization effect.
  • the reference light RB is reflected by the wavelength-selective reflection layer 5 while being parallel to the paper surface, but has no polarization action in the liquid crystal, so the polarization direction differs from that of the reproduction light.
  • the polarization of the reproduction light is changed, it is reflected by the polarization beam splitter PBS perpendicular to the paper surface, but the signal light SB is transmitted therethrough.
  • the separated reproduction light forms an image on the light receiving surface of the image sensor IS through the 4 f lenses fd and fe of the detection system to obtain a reproduction image, and the image sensor IS outputs a reproduction signal.
  • Step S 1 Move the pickup to the recording area so that it matches the position (Step S2).
  • Step S3 the position support (y direction) is operated so that the light beam and the recording layer 7 are relatively stationary (step S3).
  • step S 4 when irradiating the hologram recording carrier with the reference light and the signal light, the correction voltage for correcting the reference light aberration is not applied (step S 4), and the central correction region P of the aberration correction liquid crystal panel L CP is applied.
  • the same electric power is applied to the transparent electrodes of the LCC R. and the annular peripheral region P LCP to turn it on (step S5).
  • a predetermined amount of information data to be recorded is supplied to the spatial light modulator, the output of the laser light is increased, and the hologram recording carrier is irradiated with signal light and reference light to perform hologram recording. Open (Step S6).
  • it is determined whether or not the information data has been recorded (step S7). If it is a continuation, the process returns to step S2, and if the recording is completed, the process ends.
  • Step S 1 the focus Z tracking (zx direction) and the spindle support are operated so that the focal point of the objective lens is the predetermined position information on the hologram record carrier. Acquire it (Step S 1 1), and move the pickup to the playback area to match the position (Step S 12).
  • the position support (y direction) is operated so that the light beam and the recording layer 7 are relatively stationary (step S13).
  • a correction voltage for correcting the reference light aberration is applied to correct the aberration in the reference light region (step S14).
  • the central correction area PLCCR of the aberration correction liquid crystal panel LCP is turned on and the annular surrounding area PLCP (signal light area) is turned off (step S 15)
  • the reproduction light can be separated by polarization.
  • the state change caused by the recording / recording of the recording layer 7 is recorded in the memory of the control circuit 37 in advance, and the aberration correction unit 40 drives the aberration correction liquid crystal according to the corresponding aberration correction amount.
  • the aberration correction liquid crystal panel LCP corrects the aberration of the reference light.
  • a problem peculiar to the hologram record carrier for example, aberration due to shrinkage of the hologram record carrier or change in refractive index is corrected. Therefore, it is effective when the amount of change in the refractive index of the recording layer after recording is anticipated depending on the characteristics of the recording layer of the hologram record carrier.
  • step S 16 the output of the laser beam is increased and the hologram record carrier is irradiated with only the reference beam to start hologram reproduction. -Next, it is determined whether or not the reproduction of the information data is continued (step S 1 7).
  • the playback of the hologram is performed according to the flowchart shown in Fig. 39.
  • steps S21 to S23 are executed in the same manner as the recording process shown in FIG.
  • the hologram record carrier is irradiated with only the reference light of the low-power laser beam to Start playback (step S24).
  • step S 25 a correction voltage for correcting the reference light aberration is applied, and aberration correction is performed in the reference light region.
  • the SNR or error rate of the reproduced image is acquired in order to evaluate the quality of the reproduction signal based on the aberration correction amount (step S26).
  • the pixel that transmits the incident light of the spatial light modulator SLM is represented by white level as “1”, and the pixel that blocks the incident light is represented as black by “0”. Since it is recorded as expressed by level, the SNR of the reproduced image is calculated by the following formula. .
  • an optimum correction value search is performed based on whether the SNR 'or error rate of the acquired image exceeds a predetermined value recorded in the memory of the control circuit 37 (step). S 27). If the acquired value is less than the predetermined value, continue to step S24 and
  • step S 28 If the obtained value exceeds the predetermined value, the search ends, and the process proceeds to the next to determine the reference light aberration correction value (step S 28).
  • step S 2 9 while correcting the aberration in the reference light region based on the reference light aberration correction value, the output of the laser light is increased and only the reference light is irradiated onto the hologram record carrier to start hologram reproduction (step S 2 9).
  • step S 3 0 it is determined whether or not playback of the information item is continued (step S 3 0), and If there is, return to step S 2 2, and if playback ends, end.
  • the aberration caused by the shrinkage and the change in refractive index peculiar to the hologram record carrier is corrected according to the recording state of the hologram record carrier, so that it is effective for reproducing various hologram record carriers. Also, if the hologram reading quality is reduced due to the shrinkage of the hologram record carrier, etc., the wavefront control of the reference light seems to be effective. Is expected to occur. Therefore, it is effective to prevent the aberration correction effect of the liquid crystal from acting on the servo beam. .
  • the transparent electrode of the aberration correction liquid crystal panel LCP has a division suitable for performing correction according to the aberration when distortion, thickness error, inclination, etc. occur in a hologram record carrier or the like. Therefore, the aberration correction of the reference light can be performed.
  • the reference light for holographic recording is a parallel light beam.
  • the signal light and the reference light are diverged or converged so as to make the focal point positions different by a specific objective lens module.
  • a specific aberration correction device such as an aberration correction liquid crystal panel is used to switch the polarization state during recording and reproduction.
  • a specific optical element combined with the objective lens is used to collect light with no aberration on the servo layer of the hologram record carrier using a servo beam that uses a wavelength different from the recording / reproducing laser wavelength.
  • the reference beam is a parallel beam
  • shift multiplex recording is not possible.
  • the recording capacity was low.
  • a high-quality reproduction signal can be obtained by making the reference beam RB the convergent beam and enabling shift multiplexing. This is particularly effective when the wavefront of the reference light at the time of recording differs from the wavefront of the reference light at the time of reproduction due to shrinkage of the hologram recording layer or a change in refractive index after recording.
  • the aberration is removed by the combination of the optical element and the objective lens at the wavelength of the hypo beam SVB, the reproduction of the hypo signal can be performed satisfactorily.
  • space can be saved by arranging the combined optical path of the servo beam in the 4f system of the detection system, and a synthetic prism can be arranged in the condensing system, so the effective diameter of the prism, etc. can be reduced. can do.
  • Figure 40 shows the configuration of another pickup. '
  • This pickup removes the mirror MR, the quarter wave plate ⁇ 74 ⁇ , and the 4 f lens fc in the pickup shown in Fig. 34, and instead of the transmissive spatial light modulator SLM at these positions, a reflection type
  • the polarization spatial light modulator PSLM is placed, and the light beam from the hologram light source LD 1 for hologram recording / reproduction is incident on the polarization spatial light modulator PSLM via the polarization beam splitter PB 'S and the reflected light is used.
  • the same as Pickup 2 3 above the same as Pickup 2 3 above. Therefore, the recording / reproducing operation is performed in the same manner as the pickup 23 described above.
  • the polarization spatial light modulator PSLM is divided into a central region A including the optical axis and a spatial light modulation region B not including the surrounding optical axis in the vicinity of the optical axis.
  • LCOS Liquid Crystal On Silicon
  • the reflected light beam is polarized by 90 degrees, and the polarization spatial light modulator PSLM reflects the light beam.
  • the light beam is coaxially separated into the spatially modulated signal light SB in the spatial light modulation region B and the non-spatial reference light RB in the central region A.
  • the polarization spatial light modulator PSLMM has a function of electrically polarizing part of incident light for each pixel in a liquid crystal panel having a plurality of pixel electrodes divided in a matrix.
  • This polarization spatial light modulator PSLM is connected to the spatial light modulator driving circuit 26, and modulates the polarization of the light flux so that it has a distribution based on the page to be recorded from now on—the signal light of the annular cross section. Generate SB.
  • the polarization spatial light modulator PSLM can maintain the same polarization by incidence and reflection, and if it is controlled to be in the reflection state while maintaining the modulation state only in the spatial light modulation region ⁇ , the polarization beam splitter PBS It can function as a shirt evening in combination with the objective lens module OBM.

Abstract

An optical pickup device for recording or reproducing information in and from a hologram record carrier includes a light source; a spatial light modulator, which is composed of a center area arranged on an optical axis and an annular area arranged to surround the center area, spatially separates components passing through the center area from those passing through the annular area, generates reference beams and signal beams and propagates the beams coaxially in the same direction; an objective lens, which is arranged on an optical axis, projects the signal beams and the reference beams coaxially toward a hologram recording layer, and collects the reference beams and the signal beams at different focal points; an image detecting means which receives beams returned from the hologram recording layer; and an aberration correcting device, which is composed of a center correcting area arranged on an optical axis and an annular peripheral area arranged to surround the center correcting area, and has at least one of the center correcting area and the annular peripheral area composed of a transmissive liquid crystal device provided with a plurality of transparent electrodes which correct the wavefront aberration of a passing luminous flux that partially changes the phase of the wavefront of the passing luminous flux.

Description

明細書 光ピックアツプ装置及びホ口グラム記録再生システム 技術分野 .  Technical field of optical pick-up device and photogram recording / reproducing system
本発明は光ディスク、光力一ドなどの光学的に情報記録又は情報再生が行われ る記録担体に関し、特に光束の照射により情報の記録又は再生可能なホログラム 記録層を有するホ口グラム記録担体のための光ピックァップ装置及びホログラ ム記録再生システムに関する。 . 背景技術 .  The present invention relates to a record carrier on which information is recorded or reproduced optically, such as an optical disk and a light field, and more particularly to a hologram record carrier having a hologram recording layer capable of recording or reproducing information by irradiation with a light beam. The present invention relates to an optical pick-up device and a holographic recording / reproducing system. Background technology.
高密度情報記録のために、 2次充データを高密度記録できるホ口グラムが注目 されている。 このホログラムの特徴は、記録情報を担持する光の波面を、 フォト リフラクティブ材料などの光感応材料からなる記録媒体に体積的に屈折率の'変 化として記録することにある。ホログラム記録担体に多重記録を行うことによつ て食己録容量き飛躍的に増大させることができる。構造としては、基板、 情報記録 層及び反射層がこの順番で形成された記録媒体が知られている。  In order to record high-density information, attention is being paid to a photogram that can record secondary charge data at high density. The feature of this hologram is that the wavefront of light carrying recorded information is recorded as a change in refractive index in volume on a recording medium made of a photosensitive material such as a photorefractive material. By performing multiplex recording on the hologram record carrier, the food recording capacity can be dramatically increased. As a structure, a recording medium in which a substrate, an information recording layer, and a reflective layer are formed in this order is known.
例えば、従来、薄膜記録層上に書込用の短波長の物体光及び参照光を同軸に照 射し干渉を発生させホログラムを記録する情報記録装置において、互いに回転方 向の異なる円偏光の物体光と参照光を同一のレンズで記録媒体に集光させて、偏 光ホログラム記録を行う技術(特表 2 0 0 2 - 5 1 3 9 8 1号公報、参照) があ る。かかる偏光ホログラフィ記録は、相互に直交する偏光を有する 2つの平面波 の物体光と参照光を 1 / 4波長板を用いて右回り円偏光と左回り円偏光とし、そ れらの記録媒体内での干渉で偏光ホログラムが 1 づ記録される。 再生時には、 記録時よりも長い波長の読出用の参照光を用い、 別個の再生光学系で再生する。 再生光学系では中心開口を有する特殊な 1 / 2波長板を設け、中心の参照光照射 で偏光ホログラムから再生光を得る。そして、長波長の参照光に起因して再生光 は広がりをもっため、開口周囲の 1/2波長板部分を透過するので偏光方向が変 わり、 偏光ビームスプリツ夕で分離され、 透過再生光が検出される。 よ.つて、 特 表 200.2— 513981号公報の技術では記録時及び再生時に書込用及び読 出用波長光源と光学系を切り替える必要があり、記録,時には反射光が記録媒体か ら戻らないため、照射光と記録媒体との位置決めサーポ制御を行う別の光学系が 必要である。また、特表 2002-513981号公報の技術では参照光が記録 媒体中で平行光であるのでシフト多重記録を行うことができない。 - さらに、従来では、情報光は記録媒体のホログラム記録層と保護層の境界面上 で最も小径となるように収束照射され反射層で反射され、 同時に、記録用参照光 はホログラム記録層と保護曆の境界面よりも手前側で最も小径となるように収 束して発散光と'して照射して、干渉させるこ^でホログラム記録層に記録を行つ ていた (特開平 11— 311938号公報、 参照)。 For example, conventionally, in an information recording apparatus for recording a hologram by coaxially irradiating a short-wavelength writing object light and a reference light on a thin film recording layer to record a hologram, circularly polarized objects having different rotation directions from each other There is a technique (see Japanese Patent Publication No. 2 0 0 2-5 1 3 9 8 1) that performs polarization hologram recording by condensing light and reference light onto a recording medium with the same lens. Such polarization holographic recording consists of two plane waves with mutually orthogonal polarizations. The object light and reference light are converted into clockwise circularly polarized light and counterclockwise circularly polarized light using a quarter-wave plate, and one polarization hologram is recorded by interference in these recording media. At the time of reproduction, reference light for reading having a wavelength longer than that at the time of recording is used, and reproduction is performed by a separate reproduction optical system. In the reproduction optical system, a special half-wave plate having a central aperture is provided, and the reproduction light is obtained from the polarization hologram by irradiating the central reference light. Since the reproduction light spreads due to the long-wavelength reference light, it passes through the half-wave plate around the aperture, so that the polarization direction changes and is separated by the polarization beam splitter, and the transmitted reproduction light is detected. Is done. Therefore, in the technology disclosed in JP 200.2-513981, it is necessary to switch between the writing and reading wavelength light sources and the optical system during recording and reproduction, and the reflected light sometimes does not return from the recording medium during recording. Another optical system that performs positioning servo control between the irradiation light and the recording medium is required. Further, in the technique of JP-T-2002-513981, since the reference light is parallel light in the recording medium, shift multiplex recording cannot be performed. -Furthermore, conventionally, the information light is converged and irradiated so as to have the smallest diameter on the boundary surface between the hologram recording layer and the protective layer of the recording medium and reflected by the reflective layer. At the same time, the recording reference light is protected from the hologram recording layer and the protective layer. Recording was performed on the hologram recording layer by converging so as to be the smallest diameter before the boundary surface of the eyelid and irradiating it with divergent light to cause interference (Japanese Patent Laid-Open No. 11-311938). Issue gazette).
またさらに、 記録光学系において、情報光を反射層上に収束させ、記録用参照 光が反射層上ではデフォーカスするとともに、記録用参照光の共役焦点が基板と 情報記録層との境界面よりも基板側に位置するように、記録用参照光を照射する 技術もある (特開 2004— 171611号公報、 参照)。 発明の開示 Furthermore, in the recording optical system, the information light is converged on the reflection layer, the recording reference light is defocused on the reflection layer, and the conjugate focal point of the recording reference light is from the boundary surface between the substrate and the information recording layer. There is also a technique for irradiating a recording reference beam so that it is positioned on the substrate side (see Japanese Patent Application Laid-Open No. 2004-171611). Disclosure of the invention
従来技術において記録媒体に体積的に屈折率の変化として記録するために、記 録後に記録媒体の収縮などによって干渉パターンを回折格子の間隔が変化して、 再生時の回折効率が低下しまう場合があり、再生信号に'歪が含まれる問題があつ た。 従来の記録媒体、 特にポリマ系の感光材料においては、 光照射による膨張、 収縮の変化率が大きいが、従来技術においてかかる問題への対策が採られていな い。  In order to record the refractive index as a volume change on the recording medium in the prior art, the diffraction pattern spacing may change due to the shrinkage of the recording medium due to the shrinkage of the recording medium, and the diffraction efficiency during reproduction may decrease. There is a problem that the playback signal contains distortion. Conventional recording media, particularly polymer-based photosensitive materials, have a large rate of change in expansion and contraction due to light irradiation, but no countermeasures have been taken in the prior art.
さらに、従来技術、例えば特開平 11— 31.1938号公報、 特開 2004— 171611号公報に開示された技術における記録層の片側から記録再生され る態様の対物レンズ構成例をそれぞれ図 1及び図 2に示す。  Further, examples of objective lens configurations in a mode in which recording and reproduction are performed from one side of the recording layer in the prior art, for example, the techniques disclosed in Japanese Patent Laid-Open Nos. 11-31.1938 and 2004-171611 are shown in FIGS. 1 and 2, respectively. Show.
いずれの技術においても、 記録時には、 図に示すように、参照光と信号光は同 軸で互いに重なるように対物レンズ OBに導かれる。対物レンズ OB通過後の参 照光と信号光は焦点距離が異なるように設定されている。  In any technique, during recording, as shown in the figure, the reference light and the signal light are guided to the objective lens OB so as to overlap each other on the same axis. The reference light and signal light after passing through the objective lens OB are set to have different focal lengths.
図 1 )では、信号光は反射層が配置されるべき位置に集光(焦点 P)され、 参照光は焦点 Pより手前に集光 (焦点 P 1) されている。 図 2 (a) では、 信号 光は反射層が配置されるべき位置に集光(焦 ^Ρ) され、参照光は焦点 Pより先 に集光 (焦点 P 2) されている。 いずれの場合でも、 対物レンズ OBで集光され る参照光と信号光は光軸上で常に千渉する状態にある。 よって、 図 1 (b) 及び 図 2 (b) に示すように、 信号光の焦点 Pの位置に反射層を配置して記録媒体を 対物レンズ及び反射層の間に配置した場合、参照光及び信号光は記録媒体を往復 で通過してホログラム記録が行われる。再生時にも、参照光は記録媒体を往復で 通過して、 反射した参照光が再生光とともに対物レンズ O Bへ戻ることとなる。 図 3に示すように、具体的に記録されるホログラムは、 いずれの技術において も、 ホログラム記録 A (反射する参照光と反射する信号光)、 ホログラム記録 B (入射する参照光と反射する信号光)、 ホログラム記録 C (反射する参照光と入 射する信号光)、 ホログラム記録 D (入射する参照光と入射する信号光) の 4種 類である。 また、 再生されるホログラムも、 ホログラム記録 A (反射する参照光 で読み出される)、 ホログラム記録 B (入射する参照光で読み出される)、 ホログ ラム記録 C ( 射する参照光で読み出される)、 ホログラム記録 D (入射する参 照光で読み出される) の 4種類である。 In Fig. 1), the signal light is condensed (focal point P) at the position where the reflective layer is to be arranged, and the reference light is condensed before the focal point P (focal point P 1). In Fig. 2 (a), the signal light is focused (focused) at the position where the reflective layer should be placed, and the reference light is focused before focus P (focused P2). In either case, the reference light and signal light collected by the objective lens OB are always in a state of interference on the optical axis. Therefore, as shown in FIGS. 1 (b) and 2 (b), when the reflection layer is arranged at the position of the focal point P of the signal light and the recording medium is arranged between the objective lens and the reflection layer, the reference light and The signal light passes back and forth through the recording medium for hologram recording. During reproduction, the reference light passes back and forth through the recording medium, and the reflected reference light returns to the objective lens OB together with the reproduction light. As shown in FIG. 3, the holograms to be specifically recorded are hologram recording A (reflecting reference light and reflected signal light) and hologram recording B (incident reference light and reflected signal light) in any technique. ), Hologram recording C (reflecting reference light and incident signal light), and hologram recording D (incident reference light and incident signal light). Also, the hologram to be reproduced is hologram recording A (read by reflected reference light), hologram recording B (read by incident reference light), hologram recording C (read by incident reference light), hologram recording There are four types, D (read out by the incident reference light).
したがって、 これらの従来技術においては、 記録層中の全ての光線(参照光の 入射光及び反射光と情報光の入射光及び反 光)が干渉するので、複数のホログ ラムが記録され再生されてしまう。 このことは、例えば特開 2 0 0 4 - 1 7 1 6 1 1号公報の段落 (0 0 9 6 ) ( 0 0 9 7 ) に記載されているとおり、 である。 従来方法では、反射面を有するホログラム記録担体にホログラムを記録する場 合、入射する参照光と信号光と反射する参照光と信号光の 4光束の干渉にょづて 4つのホログラムが記録されてしまうためにホログラム記録層の性能を無用に 使用していた。 よって、 情報の再生時におい 、参照光がホログラム記録担体の 反射層で反射されてしまうため、再現されたホログラムからの再生光との分離が 必要である。 そのため再生信号の読み取り性能が劣化してしまう。  Therefore, in these conventional techniques, all the light rays in the recording layer (incident light and reflected light of the reference light and incident light and reflected light of the information light) interfere with each other, so that a plurality of holograms are recorded and reproduced. End up. This is, for example, as described in paragraph (0 0 9 6) (0 0 9 7) of Japanese Patent Application Laid-Open No. 2 00 4-1 7 1 6 11. In the conventional method, when a hologram is recorded on a hologram record carrier having a reflecting surface, four holograms are recorded due to the interference of the four beams of incident reference light, signal light, reflected reference light, and signal light. Therefore, the performance of the hologram recording layer was used unnecessarily. Therefore, when reproducing information, the reference light is reflected by the reflection layer of the hologram record carrier, so that it is necessary to separate the reproduced light from the reproduced hologram. For this reason, the read performance of the reproduction signal is deteriorated.
また、従来方法では、参照光と信号光の生成及び合流のために多くの光学部品 を要していたので、 装置の小型化が望まれている。  In addition, since the conventional method requires many optical components for generating and merging the reference light and the signal light, it is desired to reduce the size of the apparatus.
そこで、本発明の解決しょうとする課題には、安定的に記録又は再生を行うこ とを可能にするホログラム記録再生のための光ピックアツプ装置及びホログラ ム記録再生システムを提供することがー例として挙げられる。 Therefore, the problem to be solved by the present invention includes an optical pick-up apparatus and a holographic apparatus for hologram recording / reproduction that enable stable recording or reproduction. An example is to provide a video recording / playback system.
本発明の光ピックァップ装置は、参照光及び信号光の光学干渉パターンを回折 格子として内部に保存するホログラム記録層を有するホログラム記録担体へ情 報を記録又は再生する光ピックアツプ装置であつて、 '  The optical pick-up apparatus of the present invention is an optical pick-up apparatus for recording or reproducing information on a hologram record carrier having a hologram recording layer that stores therein an optical interference pattern of reference light and signal light as a diffraction grating.
可于渉性光を発生する光源と、 - 前記可干渉性光の光軸上に配置された中央領域と前記中央領域を囲む'ように 配置された環状領域とからなり、前記可干渉性光の前記中央領域の通過成分と前 記環状領域の通過成分とを空間的に分離して参照光と信号光とを生成して共軸 に同一方向に伝搬させる空間光変調器と、 , · .  A light source that generates interfering light, and a central region disposed on an optical axis of the coherent light and an annular region disposed so as to surround the central region, the coherent light A spatial light modulator that spatially separates the pass component of the central region and the pass component of the annular region to generate a reference light and a signal light and propagates them in the same direction on the same axis;
光軸上に配置されかつ前記信号光及び前記参照光を前記ホログラム記録層へ 向け共軸に照射するとともに、前記参照光及び前記信号光を互いに異なる焦点に 集光させる対物レンズ光学系と、 - 光軸上に配置されかつ前記参照光が前記ホログラム記録層に照射された際に 前記ホログラム記録層から前記対物レンズ光学系を介して戻る光を受光する像 検出手段と、  An objective lens optical system that is arranged on an optical axis and irradiates the signal light and the reference light toward the hologram recording layer on the same axis and collects the reference light and the signal light at different focal points; An image detecting means that receives light returning from the hologram recording layer via the objective lens optical system when the hologram recording layer is irradiated with the reference light,
光軸上に配置された中央補正領域と前記 央補正領域を囲むように配置され た環状周囲領域とからなり、前記中央補正領域及び前記環状周囲領域の少なくと も一方が通過光束の波面の位相を部分的に変化させる前記通過光束の波面収差 を補正する複数の透明電極を備える透過型の液晶装置からなる収差補正装置と、 を含むことを特徴とする。  A central correction region disposed on the optical axis and an annular peripheral region disposed so as to surround the central correction region, at least one of the central correction region and the annular peripheral region being a phase of a wavefront of a passing light beam And an aberration correction device comprising a transmissive liquid crystal device having a plurality of transparent electrodes for correcting wavefront aberration of the passing light flux that partially changes the light flux.
本発明のホログラム記録再生システムは、参照光及び信号光の光学干渉パ夕一 ンを回折格子として内部に保存するホログラム記録担体へ情報を記録又は再生 するホログラム記録再生システムであって、 The hologram recording / reproducing system of the present invention records or reproduces information on a hologram record carrier that stores therein the optical interference pattern of reference light and signal light as a diffraction grating. A hologram recording / reproducing system,
可干渉性光から、参照光と、記録情報に応じて前記可干渉性光を変調した信号 光と、 を生成する光生成手段と、  Light generating means for generating, from coherent light, reference light, and signal light obtained by modulating the coherent light according to recording information,
前記参照光及び前記信号光のいずれか一方を光軸上に、他方を前記一方の周囲 に環状に、互いに空間的に分離して同軸に同一方向に伝搬させ、対物レンズ光学 系を介して、前記参照光及び前記信号光を互いに光軸上の異なる焦点に集光させ、 前記参照光及び信号光を干渉させる干渉手段と、  One of the reference light and the signal light is on the optical axis, and the other is annularly formed around the one, spatially separated from each other and propagated coaxially in the same direction, via the objective lens optical system, Interference means for condensing the reference light and the signal light at different focal points on an optical axis, and interfering the reference light and the signal light;
前記異なる焦点のうち前記対物レンズ光学系に近い焦点側に位置するホ口グ ラム記録層を有するホログラム記録担体と、 ,  A hologram record carrier having a hologram recording layer located on the focal side close to the objective lens optical system among the different focal points;
前記異なる焦点のうち前記対物レンズ光学系に遠い焦点側に位置する反射層 と、  A reflective layer located on the focal side far from the objective lens optical system among the different focal points;
光軸上に配置されかつ前記参照光が前記ホログラム記録層に照射された際に 前記ホログラム記録層から前記対物レンズ光学系を介して戻る光を受光する像 検出手段と、 ' . ' 光軸上に配置された中央補正領域と前記中央補正領域を囲むように配置され た環状周囲 域とからなり、前記中央補正領: 及び前記環状周囲領域の少なくと も一方が通過光束の波面の位相を部分的に変化させる前記通過光束の波面収差 を補正する複数の透明電極を備える透過型の液晶装置からなる収差補正装置と、 前記複数の透明電極の各々へ、情報の記録又は再生の際に補正電圧を供給する 収差補正液晶駆動回路と、 を含むことを特徴とする。  An image detecting means disposed on the optical axis and receiving light returning from the hologram recording layer through the objective lens optical system when the hologram recording layer is irradiated with the reference light; A central correction region and an annular peripheral region disposed so as to surround the central correction region, and at least one of the central correction region and the annular peripheral region partially includes the phase of the wavefront of the passing light beam. An aberration correction device comprising a transmission-type liquid crystal device having a plurality of transparent electrodes for correcting wavefront aberration of the passing light flux that is changed in accordance with a correction voltage when information is recorded or reproduced on each of the plurality of transparent electrodes An aberration correction liquid crystal drive circuit for supplying
以上の構成によれば、ホログラム記録担体などに歪みや厚みの誤差、傾きなど が生じた場合でも、収差補正装置における透明電極がその収差に応じた補正を行 うのに適した分割形状になっているので、印加補正電圧により、液晶に分割電極 パターンに応じた屈折率変化を付与することができるため透過波面に収差を打 ち消すのに適した位相差(収差) を与えることができる。 当該位相差の付与によ つて、 ホログラム記録担体の傾き、厚みの誤差、 ホログラム記録担体の屈折率誤 差などによつて通過光に発生する収差を低減することができる。ホロダラム記録 担体の物理的な誤差に左右されず適切な参照光を得ることができるため、ホログ ラム記録が良好に行える。ホログラム記録担体ディスクの傾きなどは別途設ける チルトセンサなどによつて得られたエラ一信号などを用いることができる。 図面の簡単な説明 According to the above configuration, even when distortion, thickness error, inclination, etc. occur in the hologram record carrier, etc., the transparent electrode in the aberration correction device performs correction according to the aberration. The phase difference is suitable for canceling aberrations in the transmitted wavefront because the applied correction voltage can give the liquid crystal a refractive index change according to the divided electrode pattern. (Aberration) can be given. By providing the phase difference, it is possible to reduce the aberration generated in the passing light due to the tilt and thickness error of the hologram record carrier and the refractive index error of the hologram record carrier. Holodarum recording Since the appropriate reference beam can be obtained regardless of the physical error of the carrier, holographic recording can be performed well. An error signal obtained by a tilt sensor or the like provided separately can be used for the tilt of the hologram record carrier disk. Brief Description of Drawings
図 1〜図 3は、従来のホログラム記録を説明するホログラム記録担体を示す概 略部分断面図である。  1 to 3 are schematic partial sectional views showing a hologram record carrier for explaining conventional hologram recording.
図 4は、本発明による実施形態のホログラム記録担体の情報を記録再生するホ ログラム装置のピックアップの概略を示す構成図である。  FIG. 4 is a configuration diagram showing an outline of a pickup of a hologram apparatus for recording / reproducing information on the hologram record carrier according to the embodiment of the present invention.
図 5は、本発明による実施形態のピックァップの空間光変調器の光軸から見た 正面図である。 '  FIG. 5 is a front view seen from the optical axis of the spatial light modulator of the pick-up according to the embodiment of the present invention. '
' 図 6は、本発明による他の実施形態のピックァップの空間光変調器の光軸から 見た正面図である。  FIG. 6 is a front view seen from the optical axis of the spatial light modulator of the pick-up according to another embodiment of the present invention.
図 7は、本発明による実施形態のピックアップの対物レンズモジュールを示す 概略断面図である。  FIG. 7 is a schematic sectional view showing the objective lens module of the pickup according to the embodiment of the present invention.
図 8は、本発明による実施形態のホログラム記録を説明するホログラム記録担 体及び対物レンズモジュールを示す概略断面図である。 図 9は、本発明による実施形態のホログラム記録を説明するホログラム記録担 体を示す概略部分断面図である。 FIG. 8 is a schematic sectional view showing a hologram recording carrier and an objective lens module for explaining hologram recording according to an embodiment of the present invention. FIG. 9 is a schematic partial sectional view showing a hologram recording carrier for explaining the hologram recording of the embodiment according to the present invention.
図 1 0は、本発明による実施形態のホログラム再生を説明するホログラム記録 担体及び対物レンズを示す概略断面図である。  FIG. 10 is a schematic sectional view showing a hologram recording carrier and an objective lens for explaining hologram reproduction according to an embodiment of the present invention.
図 1 1は、本発明による他の実施形態のホログラム記録を説明するホログラム 記録担体及び対物レンズモジユールを示す概略断面図である。  FIG. 11 is a schematic cross-sectional view showing a hologram record carrier and objective lens module for explaining hologram recording of another embodiment according to the present invention.
図 1 2は、本発明による他の実施形態のホログラム記録を説明するホログラム 記録担体を示す概略部分断面図である。 ,  FIG. 12 is a schematic partial sectional view showing a hologram record carrier for explaining hologram recording of another embodiment according to the present invention. ,
図 1 3は、本発明による他の実施形態のピックァッ,プの対物レンズモジュール を示す概略断面図である。  FIG. 13 is a schematic cross-sectional view showing an objective lens module of a pick-up / pump according to another embodiment of the present invention.
図 1 4及び図 1 5は、本発明による他の実施形態のピックアップの対物レンズ の 2焦点レンズを示す概略断面図である。 - 図 1 6は、本発明による他の実施形態のピックアップの対物レンズモジュール を示す概略断面図である。' ' 図 1 7は、本発明による他の実施形態のホログラム記録を説明するホログラム 記録担体及び対物レンズモジュールを示す 略断面図である。  14 and 15 are schematic cross-sectional views showing a bifocal lens of an objective lens of a pickup according to another embodiment of the present invention. FIG. 16 is a schematic sectional view showing an objective lens module of a pickup according to another embodiment of the present invention. '' FIG. 17 is a schematic sectional view showing a hologram record carrier and an objective lens module for explaining hologram recording of another embodiment according to the present invention.
図 1 8は、本発明による他の実施形態のホログラム記録を説明するホログラム 記録担体を示す概略部分断面図である。  FIG. 18 is a schematic partial sectional view showing a hologram record carrier for explaining hologram recording of another embodiment according to the present invention.
図 1 9は、本発明による他の実施形態のホログラム再生を説明するホログラム 記録担体及び対物レンズを示す概略断面図である。  FIG. 19 is a schematic cross-sectional view showing a hologram record carrier and objective lens for explaining hologram reproduction according to another embodiment of the present invention.
図 2 0は、本発明による他の実施形態のホログラム記録を説明するホログラム 記録担体及び対物レンズモジュールを示す概略断面図である。 図 2 1は、本発明による他の実施形態のホログラム記録を説明するホログラム 記録担体を示す概略部分断面図である。 FIG. 20 is a schematic sectional view showing a hologram record carrier and objective lens module for explaining hologram recording of another embodiment according to the present invention. FIG. 21 is a schematic partial sectional view showing a hologram record carrier for explaining hologram recording according to another embodiment of the present invention.
図 2 2は、本発明による他の実施形態のピックァップの対物レンズモジュール を示す概略断面図である。  FIG. 22 is a schematic sectional view showing an objective lens module of a pick-up according to another embodiment of the present invention.
図? 3及び図 2 4は、本発明による他の実施形態のピックァップの対物レンズ の 2焦点レンズを示す概略断面図である。  Figure? 3 and 24 are schematic sectional views showing a bifocal lens of an objective lens of a pick-up according to another embodiment of the present invention.
図 2 5は、本発明による実施形態のピックアツプの収差補正装置の収差補正液 晶パネルの斜視図である。 .  FIG. 25 is a perspective view of an aberration correction liquid crystal panel of the pick-up aberration correction apparatus according to the embodiment of the present invention. .
図 2 6は、本発明による他の実施形態のピックアツプの収差補正装置の収差補 正液晶パネルの斜視図である。.  FIG. 26 is a perspective view of an aberration correction liquid crystal panel of a pickup aberration correction apparatus according to another embodiment of the present invention. .
図 2 7は、 図 2 6の線 X Xにおける部分断面図である。  FIG. 27 is a partial sectional view taken along line XX in FIG.
図 2 8は、本発明による他の実施形態のピックアツプの収差補正装置の部分切 欠斜視図である。 .  FIG. 28 is a partially cutaway perspective view of an aberration correction apparatus for pick-up according to another embodiment of the present invention. .
図 2 9は、本発明による実施形態のホログラム記録担体を示す概略部分断面図 である。  FIG. 29 is a schematic partial sectional view showing a hologram record carrier according to an embodiment of the present invention.
図 3 0は、本 明による他の実施形態のピ、 クアツプの空間光変調器の光軸か ら見た正面図である。  FIG. 30 is a front view as seen from the optical axis of a spatial light modulator of another embodiment according to the present invention.
図 3 1は、 偏光状態を説明する図 2 6の線 XXにおける部分断面図である。 図 3 2は、本発明による他の実施形態のホログラム記録担体の情報を記録再生 するホログラム装置のピックアツプの概略を示す構成図である。 .  FIG. 31 is a partial cross-sectional view taken along line XX in FIG. 26 illustrating the polarization state. FIG. 32 is a configuration diagram showing an outline of pick-up of a hologram apparatus for recording / reproducing information on a hologram record carrier according to another embodiment of the present invention. .
図 3 3は、本発明による実施形態のホログラム装置の概略構成を示すプロック 図である。 図 3 4は、本発明による他の実施形態のホログラム記録担体の情報を記録再生 するホログラム装置のピックアップの概略を示す構成図である。 FIG. 33 is a block diagram showing a schematic configuration of the hologram apparatus according to the embodiment of the present invention. FIG. 34 is a configuration diagram showing an outline of a pickup of a hologram apparatus for recording / reproducing information on a hologram record carrier according to another embodiment of the present invention.
図 3 5及び図 3 6は、本発明による他の実施形態のホログラム記録担体の情報 を記録再生するホログラム装置のピックアップにおけるホログラム記録担体 ¾ び対物レンズモジュールを示す概略断面図である。 - 図 3 7は、本発明による他の実施形態のホログラム記録担体の情報を記録再生 するホログラム装置における記録方法を示すフローチャートである。  FIGS. 35 and 36 are schematic cross-sectional views showing a hologram record carrier and an objective lens module in a pickup of a hologram apparatus for recording / reproducing information on a hologram record carrier according to another embodiment of the present invention. FIG. 37 is a flowchart showing a recording method in a hologram apparatus for recording / reproducing information on a hologram record carrier according to another embodiment of the present invention.
図 3 8及び図 3 9は、本発明による他の実施形態のホログラム記録担体の情報 を記録再生するホログラム装置における再生方法を示すフローチャートである。 図 4 0は、本発明による他の実施形態のホログラム記録担体の情報を記録再生 するホログラム装置のピックァップの概略を示す構成図である。  FIGS. 38 and 39 are flowcharts showing a reproducing method in a hologram apparatus for recording / reproducing information on a hologram record carrier according to another embodiment of the present invention. FIG. 40 is a configuration diagram showing an outline of a pickup of a hologram apparatus for recording / reproducing information on a hologram record carrier of another embodiment according to the present invention.
図 4 1は、本発明による他の実施形態のピックアップの偏光空間光変調器の光 軸から見た正面図である。 発明の詳細な説明 .  FIG. 41 is a front view seen from the optical axis of the polarization spatial light modulator of the pickup according to another embodiment of the present invention. Detailed Description of the Invention.
以下に本 明の実施の形態を図面を参照 Lつつ説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 4はホログラム記録担体 2の記録又は再生のためのピックアップ 2 3の概 略構成を示す。 .  FIG. 4 shows a schematic configuration of a pickup 23 for recording or reproducing the hologram record carrier 2. .
ピックアップ 2 3は、ホログラムの記録及び再生用のレーザ光源 L D、 コリメ —夕レンズ C L、 透過型の空間光変調器 S L M、 偏光ビ一ムスプリッタ P B S、 結像レンズ ML、 像センサ I S及びその駆動系 (図示せず)、 透過型の収差補正 液晶パネル L C P、並びに対物レンズモジュール O B Mを含む。対物レンズモジ ユール〇B Mなどは筐体内(図示せず)にてレーザ光源 L Dからの光束の光軸上 に配置されている。 レーザ光源 L Dの波長は、ホログラム記録担体 2の光学干渉 パターンを保存できる透光性の光感応材料が反応する波長である。コリメータレ ンズ C Lはレーザ光源 L Dからの発散する可干渉光を平行光に変換する。 Pickups 2 and 3 consist of a laser light source LD for recording and reproduction of holograms, a collimator-evening lens CL, a transmissive spatial light modulator SLM, a polarization beam splitter PBS, an imaging lens ML, an image sensor IS and its drive system. (Not shown), including transmissive aberration correction liquid crystal panel LCP and objective lens module OBM. Objective lens Yule BM, etc. are placed on the optical axis of the light beam from the laser light source LD in the housing (not shown). The wavelength of the laser light source LD is a wavelength at which a translucent photosensitive material capable of preserving the optical interference pattern of the hologram record carrier 2 reacts. The collimator lens CL converts coherent light from the laser light source LD into parallel light.
<空間光変調器 >  <Spatial light modulator>
図 5は平行光束径内で照射される空間光変調器 S L Mを光軸から見た正面で ある。空間光変調器 S L Mは光軸近傍で光軸を含む中央領域 L C C Rとその周囲 の光軸を含まない環状領域 L C P Rとに分割されている。中央領域 L C C Rは貫 通開ロスは透明材料からなり、 ここを透過する光束には変調が与えられない。透 過型の環状領域 L C P Rは、マトリクス状に分割された複数の画素電極を有する 検光子付きの液晶パネルなどで電気的に入射光の一部を画素毎に遮光する機能、 又はすベて透過して無変調状態とする機能を有する。図 4に示すように、環状領 域 L C P Rは、コリメ一夕レンズ C Lからの平行光を記録情報に応じて変調する。 すなわち空間光変調器 S L Mを透過した時点で光束は空間変調された信号光' S Bと空間変調されない参照光 R Bに同心円状に分離される。  Fig. 5 is a front view of the spatial light modulator S L M irradiated within the parallel beam diameter as seen from the optical axis. The spatial light modulator S L M is divided into a central region L C C R including the optical axis and an annular region L C P R not including the surrounding optical axis in the vicinity of the optical axis. In the central region L C C R, the penetration loss is made of a transparent material, and no modulation is given to the light beam passing therethrough. The transparent annular region LCPR is a function of electrically shielding a part of incident light for each pixel in a liquid crystal panel with an analyzer having a plurality of pixel electrodes divided into a matrix, or transmitting completely. Thus, it has a function of making it unmodulated. As shown in FIG. 4, the annular region L C PR modulates the parallel light from the collimator overnight lens C L according to the recording information. That is, when the light passes through the spatial light modulator SLM, the light beam is concentrically separated into the spatially modulated signal light 'S B and the non-spatial reference light RB.
この空間 変調器 S L Mは空間光変調器馬動回路 2 6に接続され、これからの 記録すべきページデータ(平面上の明暗ドットパターンなどの 2次元データの情 報パターン)に基づいた分布を有するように光束を変調かつ透過して、信号光 S Βを生成する。  This spatial modulator SLM is connected to the spatial light modulator horse motion circuit 26 and has a distribution based on the page data to be recorded (information pattern of two-dimensional data such as bright and dark dot patterns on a plane). The light beam is modulated and transmitted to generate signal light S Β.
さらに、図 6に示すように、空間光変調器 S L Μ全体を透過型マトリクス液晶 表示装置として、その制御回路 2 6により、記録すべきページデータの所定パ夕 ーンを表示する環状領域 L C P Rとその内部に中央領域 L C C Rの無変調の光 透過領域とを表示するように、 構成することもできる。なお、 中央領域 LCCR を位相変調の光透過領域として用いることもでき、位相変調参照光を生成しても よい。 Further, as shown in FIG. 6, the entire spatial light modulator SL is used as a transmissive matrix liquid crystal display device, and its control circuit 26 uses an annular region LCPR for displaying a predetermined pattern of page data to be recorded. Inside the center area LCCR unmodulated light It can also be configured to display transparent areas. The central region LCCR can also be used as a phase modulation light transmission region, and phase modulation reference light may be generated.
以上のように、空間光変調器 S L Mは可干渉性光の光軸上に配置された中央領 域 L C C Rとこれを囲むように配置された環状領域 L C P Rとからなり、可干渉 性光の中央領域の通過成分と環状領域の通過成分とを空間的に分離して参照光 と信号光とを生成して共軸に伝搬させる。なお、中央領域 LCCRと環状領域 L C PRで参照光と信号光とを生成するが、中央領域 LCCRで信号光を、環状領 域 LC PRで参照光を生成することも可能である。 .  As described above, the spatial light modulator SLM is composed of the central region LCCR arranged on the optical axis of the coherent light and the annular region LCPR arranged so as to surround the central region LCCR. The reference component and the signal component are generated by spatially separating the passing component and the passing component of the annular region, and propagated coaxially. The central region LCCR and the annular region L C PR generate reference light and signal light, but the central region LCCR can generate signal light and the annular region LC PR can generate reference light. .
空間光変調器の例として透過型のものの他に反射型の液晶パネルや D MDを 用いることもでき、反射型の空間光変調器においても、透過型と同様で中央領域 LCCRとその周囲の光軸を含まない環状領域 L C P Rとを備え、その作用は中 央領域と環状領域の光束の分離を行う。  As an example of the spatial light modulator, a reflective liquid crystal panel or a DMD can be used in addition to the transmissive type. In the reflective spatial light modulator, the central region LCCR and the surrounding light are also similar to the transmissive type. It includes an annular region LCPR that does not include an axis, and its action separates the light flux from the central region and the annular region.
<対物レンズ光学系 > ■  <Objective lens optics> ■
図 4の対物レンズモジュール O B Mは、信号光及び参照光をホログラム記録担 体 2へ向け共軸に照射するとともに、参照光 R B及び信号光 S Bを互いに異なる 焦点に集光させる対物レンズ光学系に属する。  The objective lens module OBM shown in FIG. 4 belongs to an objective lens optical system that irradiates signal light and reference light toward the hologram recording carrier 2 coaxially and collects the reference light RB and the signal light SB at different focal points. .
図 7は対物レンズモジュール〇 B Mの一例の概略断面図である。対物レンズモ ジュール OBMは、 中空ホルダ(図示せず) などにより固定されかつ光軸を共軸 とする凸レンズの対物レンズ O B及び対物レンズ O Bより径の小なる凸レンズ を共軸に配置した凸レンズ光学素子 CVXからなる。凸レンズ光学素子 CVXは、 光軸を含む中央領域 CR (凸レンズ)とその周囲の環状領域 PR (透過平行平板) からなる。 図 8 (a) に示すように、 対物レンズモジュール OBMは、 中央領域 C Rの通過光を手前の近距離焦点 n Pに集光させ、環状領域 P Rの通過光を遠方 の遠距離焦点 f Pに集光させる。近距離焦点 n Pは対物レンズ 0 B及び凸レンズ 光学素子 c V Xの合成焦点であり、遠距離焦点 f Pは対物レンズ O Bの焦点であ る。 FIG. 7 is a schematic sectional view of an example of the objective lens module 0 BM. The objective lens module OBM is a convex lens optical element CVX that is fixed by a hollow holder (not shown) and has a convex lens with the optical axis as the coaxial and a convex lens with a diameter smaller than that of the objective lens OB. Consists of. The convex lens optical element CVX consists of a central region CR (convex lens) including the optical axis and an annular region PR (transmission parallel plate) around it. Consists of. As shown in Fig. 8 (a), the objective lens module OBM collects the light passing through the central region CR at the near focal point nP on the near side and the light passing through the annular region PR into the far focal point fP far away. Collect light. The short-distance focal point n P is the combined focal point of the objective lens 0 B and the convex lens optical element c VX, and the long-distance focal point f P is the focal point of the objective lens OB.
ホログラム記録時において、 図 8 (a) に示すように、 空間光変調器 SLMか らの光軸周りに参照光 R B及びその周りに信号光 S Bは、それぞれ同軸で互いに 空間的に離れた状態で対物レンズモジュール OBMに導かれる。空間光変調器は 参照光 R Bを光軸上にて中央領域 C へ、環状断面の信号光 S Bを参照光 R Bの 周囲の環状領域 PRへ、互いに空間的に分離して同軸に伝搬させている。対物レ ンズモジュール 0 B Mは、参照光 R B及び信号光 S Bをそれぞれ中央領域 C R及 び環状領域 PRで屈折する。よって、対物レンズ通過後も参照光 RBと信号光 S Bは空間的に分離され、参照光 R Bは対物レンズ〇 Bに近い近距離焦点 n Pに集 光され、信号光 SBは近距離焦点より遠い遠距離焦点に集光されるので、近距離 焦点 nPより遠方で、 干渉が生じる。  At the time of hologram recording, as shown in FIG. 8 (a), the reference light RB and the signal light SB around the optical axis from the spatial light modulator SLM are coaxially spaced apart from each other. The objective lens module is guided to OBM. The spatial light modulator propagates the reference light RB to the central region C on the optical axis and the signal light SB having a circular cross section to the annular region PR around the reference light RB spatially separated from each other and transmitted coaxially. . The objective lens module 0 B M refracts the reference light RB and the signal light SB in the central region CR and the annular region PR, respectively. Therefore, even after passing through the objective lens, the reference light RB and the signal light SB are spatially separated, the reference light RB is collected at the short-distance focal point nP near the objective lens B, and the signal light SB is farther than the short-distance focal point. Since the light is focused on the far focus, interference occurs at a distance farther than the short focus nP.
図 8 ( b ) に示すように、参照光 R Bの近距離焦点 n Pの位置に反射層 5を配 置し、記録媒体としてホログラム記録層 7を対物レンズモジュール〇BM及び反 射層 5の間に配置する。環状断面の信号光 S Bは反射層 5で反射され遠距離焦点 f Pの対称位置に集光され、参照光 R Bは遠距離焦点 f Pより手前(近距離焦点 nP) の反射層 5で反射される。 よって、互いに反対向きの伝搬方向の反射され 収束する信号光 S Bと参照光 RBとで光軸近傍の環状領域で干渉する状態にな る。近距離焦点 n P及び遠距離焦点 f Pの間に位置するホログラム記録層を有す るホログラム記録担体を用いれば、参照光 R Bと信号光 S Bが互いに対向する方 向に伝搬する球面波であるので、 それらの交差角度を比較的大きくとれるため、 多重間隔を小さくできる光学干渉パターンがホログラム H Gとして記録される。 よって、ホログラム記録層 7は、反射した信号光と参照光が交差し干渉して光学 干渉パターンを生成するに足りる膜厚を有する必要がある。 、 図 9に示すように、具体的に記録されるホログラムは、 ホログラム記録 A (反 射して発散する参照光と反射して収束する信号光)、 ホログラム記録 B (入射収 束する参照光と反射して収束する信号光) の 2種類である。 また、再生されるホ ログラムも、 ホログラム記録 A (反射する参照光で読み出される)、 ホログラム 記録 B (入射する参照光で読み出される) の 2種類である。 As shown in Fig. 8 (b), the reflective layer 5 is disposed at the position of the short-distance focal point nP of the reference light RB, and the hologram recording layer 7 is used as a recording medium between the objective lens module BM and the reflective layer 5. To place. The signal light SB having an annular cross section is reflected by the reflection layer 5 and collected at the symmetrical position of the long-distance focal point f P, and the reference light RB is reflected by the reflective layer 5 in front of the long-distance focal point f P (short-distance focal point nP). The Therefore, the signal light SB reflected and converged in the opposite propagation directions and the reference light RB interfere with each other in the annular region near the optical axis. Has a hologram recording layer located between the near focus n P and the far focus f P If the holographic record carrier is used, the reference light RB and the signal light SB are spherical waves that propagate in directions opposite to each other. Hologram Recorded as HG. Therefore, the hologram recording layer 7 needs to have a film thickness sufficient to generate an optical interference pattern by crossing and interfering with the reflected signal light and reference light. As shown in FIG. 9, the holograms to be recorded specifically are hologram recording A (reflected and diverging reference light and reflected and converged signal light), hologram recording B (incident converging reference light and Signal light reflected and converged). There are also two types of holograms to be reproduced: hologram record A (read out with reflected reference light) and hologram record B (read out with incident reference light).
したがって、かかるホログラム記録担体から情報を再生するホログラム再生シ ステムでは、図 1 0に示すように、参照光 R Bのみを対物レンズモジュール O B Mの中央領域 C Rに供給し、参照光 R Bを近距離焦点 n P. (反射層 5 ) に収束さ せつつホログラム記録層のホログラム H Gを透過させると、ホログラム H Gから 通常の再生光と位相共役波の再生光が生成できる。検出手段の一部でもある対物 レンズ Ο Β ίςより、 再生光及び位相共役波を光検出器へ導くことができる。 他のホログラム記録再生システムにおいては、参照光 R Βの近距離焦点 η Ρの 位置に反射層 5を配置するのではなく、図 1 1に示すように、信号光 S Bの遠距 離焦点 ί Ρの位置に反射層 5を配置して、ホログラム記録担体 2はホログラム記 録層 7が対物レンズモジュール Ο Β Μ及び反射層 5の間にあるように配置する。 環状断面の信号光 S Βは反射層 5で合焦して反射され、参照光; Βは反射層 5よ り手前(近距離焦点 η Ρ ) で集光して発散しつつ反射層 5で反射される。 この場 合、反射層 5では参照光 R Bがデフォーカス状態で信号光 S Bが合焦となる。よ つて、反射後の参照光 R Bのみと信号光 S Bとが交差する範囲となるように反射 層 5から離れてホログラム記録層 7を配置すれば、互いに反対向きの伝搬方向の 信号光 S B及び参照光 R B成分で光軸近傍の環状領域で干渉する状態になる。図 1 2に示すように、 具体的に記録されるホログラムは、 ホログラム記録 A (反射 して発散する参照光と反射して発散する信号光)、 ホログラム記録 C (反射して 発散する参照光と入射収束する信号光) の 2種類である。 また、再生されるホロ グラムも.同様に 2種類である。 この場合のホログラム再生システムでは、参照光 R Bのみを対物レンズモジュール O B Mの中央領域 C Rに供給し、参照光 R Bを 記録時と同様のデフォーカス状態で反射層 5へ照射して、ホログラム記録層のホ ログラム H Gを透過させると、ホログラム H Gから通常の再生光と位相共役波の 再生光が同一の光路で生成できる。 Therefore, in the hologram reproduction system for reproducing information from such a hologram record carrier, as shown in FIG. 10, only the reference light RB is supplied to the central region CR of the objective lens module OBM, and the reference light RB is supplied to the short-range focus n. When the hologram HG of the hologram recording layer is transmitted while being converged on P. (reflection layer 5), normal reproduction light and phase conjugate wave reproduction light can be generated from the hologram HG. From the objective lens, which is also a part of the detection means, the reproduction light and the phase conjugate wave can be guided to the photodetector. In other hologram recording / reproducing systems, the reflection layer 5 is not disposed at the position of the short-distance focal point η Β of the reference beam R 、, but the long-distance focal point of the signal beam SB as shown in FIG. The hologram recording carrier 2 is arranged so that the hologram recording layer 7 is between the objective lens module Ο Β Μ and the reflection layer 5. The signal light S 環状 having an annular cross section is focused and reflected by the reflection layer 5, and the reference light; Β is collected and diverged from the reflection layer 5 (near focal point η Ρ) and reflected by the reflection layer 5. Is done. This place In the case of the reflection layer 5, the reference light RB is defocused and the signal light SB is in focus. Therefore, if the hologram recording layer 7 is disposed away from the reflection layer 5 so that only the reflected reference light RB and the signal light SB intersect, the signal light SB and the reference in the opposite propagation directions are arranged. The optical RB component causes interference in an annular region near the optical axis. As shown in Fig. 12, the holograms that are specifically recorded are hologram record A (reflected and diverged reference light and reflected and diverged signal light), and hologram record C (reflected and diverged reference light). 2 types of signal light that converges on incident light. There are also two types of holograms to be reproduced. In the hologram reproduction system in this case, only the reference light RB is supplied to the central region CR of the objective lens module OBM, and the reference light RB is irradiated to the reflection layer 5 in the same defocused state as during recording, so that the hologram recording layer When the hologram HG is transmitted, normal reproduction light and phase conjugate wave reproduction light can be generated from the hologram HG in the same optical path.
なお、他の変形例の対物レンズモジュール〇B Mは、凸レンズ光学素子に代え て、図 1 3に示すように光軸上に凸レンズ機能を有する透過型の回折光学素子 D O Eを対物レンズ O Bの直前に同軸に配置することでも、 構成できる。 また、 図 1 4に示す うに対物レンズ O Bと凸レン 機能を有する透過型の回折光学素 子 D O Eとを一体とすることもできる。その屈折面(中央領域 C R) に同軸に形 成された凸レンズ作用を有するフレネルレンズ面若しくは回折格子 D O Eを有 する 2焦点レンズ O B 2として対物レンズモジュール O B Mを構成することよ り、参照光 R Bと信号光 S Bの焦点距離を互いに異なるようにすることもできる。 さらに、図 1 5に示すように凸レンズ部 C V Xを対物レンズと一体として中央領 域 C R及び環状領域 P Rの境に段差を設け互いに曲率の異なるに非球面レンズ の 2焦点レンズ OB 2として対物レンズモジュール OBMを構成してもよい。さ らに、 2焦点レンズの変形例は中央領域 CRに円環状の回折格子を設けその周囲 に凸レンズ部を残すものでも、逆に、環状領域 PRに円環状の回折格子を設けそ の中央領域に凸レンズ部を残すものでもよい。 It should be noted that the objective lens module 0BM of another modified example has a transmissive diffractive optical element DOE having a convex lens function on the optical axis in front of the objective lens OB, instead of the convex lens optical element, as shown in FIG. It can also be configured by arranging them coaxially. Further, as shown in FIG. 14, the objective lens OB and the transmissive diffractive optical element DOE having a convex lens function can be integrated. By constructing the objective lens module OBM as a bifocal lens OB 2 with a Fresnel lens surface or a diffraction grating DOE formed coaxially on the refracting surface (central region CR), the reference beam RB The focal lengths of the signal light SB can be made different from each other. Furthermore, as shown in FIG. 15, the convex lens portion CVX is integrated with the objective lens so that a step is provided at the boundary between the central region CR and the annular region PR, and the aspherical lenses have different curvatures. The objective lens module OBM may be configured as the bifocal lens OB2. Furthermore, a modification of the bifocal lens is one in which an annular diffraction grating is provided in the central region CR and a convex lens portion is left around it, but conversely, an annular diffraction grating is provided in the annular region PR. It is also possible to leave a convex lens part on the surface.
上記実施形態においては、参照光の周りの信号光を反射層上でデフォーカス状 態となるように照射する態様を、信号光の焦点が参照光の焦点よりも対物レンズ よりも遠くにある場合にて説明したが、信号光の焦点が参照光の焦点の手前にあ る場合でも、 かかるデフォーカス状態を達成できる。例えば、 図 16は、 他の実 施形態の対物レンズ光学系の構成例を示す。 .  In the above embodiment, the signal light around the reference light is irradiated so as to be in a defocused state on the reflection layer, when the focus of the signal light is farther than the objective lens than the focus of the reference light. As described above, this defocus state can be achieved even when the focus of the signal light is in front of the focus of the reference light. For example, FIG. 16 shows a configuration example of an objective lens optical system according to another embodiment. .
図 16の対物レンズモジュール. OBMは、 中空ホルダ (図示せず) などにより 固定されかつ光軸を共軸とする凸レンズの対物レンズ O B及び対物レンズ〇 B より径の小なる凹レンズを共軸に配置した凹レンズ光学素子 C C Vからなる。凹 レンズ光学素子 CCVは、光軸を含む中央領域 CR (凹レンズ) とその周囲の環 状領域 PR (透過平行平板) からなる。 対物レンズモジュール OBMは、 図 1'7 ( a)に示すように、中央領域 C Rの通過光を遠方の遠距離焦点 f Pに集光させ、 環状領域 P の通過光を手前の近距離焦点 Pに集光させる。遠距離焦点 f Pは 対物レンズ〇 B及び凹レンズ光学素子 C C Vの合成焦点であり、近距離焦点 n P は対物レンズ OBの焦点である。 .  The objective lens module of Fig. 16. The OBM is a convex lens that is fixed by a hollow holder (not shown) and whose optical axis is the coaxial objective lens OB and a concave lens that is smaller in diameter than the objective lens 〇 B. Concave lens optical element CCV. The concave lens optical element CCV is composed of a central region CR (concave lens) including the optical axis and a surrounding annular region PR (transmission parallel plate). As shown in Fig. 1'7 (a), the objective lens module OBM collects the light passing through the center region CR at the far focal point f P far away, and passes the light passing through the annular region P toward the near focal point P. To collect light. The far focus f P is the composite focus of the objective lens B and the concave lens optical element C C V, and the short focus n P is the focus of the objective lens OB. .
ホログラム記録時には、 まず、対物レンズモジュール OBMに共軸な上記の空 間光変調器などにより、光軸周りに可干渉性の参照光 R Bを、その周りに記録情 報に応じて参照光 RBを変調して得られた信号光 SBを生成する。そして、図 1 7 (a) に示すように、参照光 RB及び信号光 SBはそれぞれ同軸で互いに空間 的に離れた状態で対物レンズモジュール O B Mに導かれる。対物レンズモジュ一 ル O B Mは、参照光 R B及び信号光 S Bをそれぞれ中央領域 C R及び環状領域 P Rで屈折する。よって、対物レンズ通過後も参照光 R Bと信号光 S Bは空間的に 分離され、信号光 S Bは対物レンズ O Bに近い近距離焦点 n Pに集光され、参照 光 R Bは近距離焦点より遠い遠距離焦点に集光される。 、 ホログラム記録時には、まず、可干渉性の参照光 R Bと記録情報に応じて参照 光 R Bを変調して得られた信号光 S Bとを生成する。 At the time of hologram recording, first, the coherent reference light RB around the optical axis and the reference light RB around the optical axis according to the recording information by the spatial light modulator coaxial with the objective lens module OBM. The signal light SB obtained by the modulation is generated. As shown in Fig. 17 (a), the reference light RB and the signal light SB are coaxial and are mutually spaced. It is guided to the objective lens module OBM in a state where it is far away. The objective lens module OBM refracts the reference light RB and the signal light SB in the central region CR and the annular region PR, respectively. Therefore, even after passing through the objective lens, the reference light RB and the signal light SB are spatially separated, and the signal light SB is collected at the short-distance focal point n P near the objective lens OB, and the reference light RB is far from the short-distance focal point. Focused at the distance focus. At the time of hologram recording, first, a coherent reference light RB and a signal light SB obtained by modulating the reference light RB according to the recording information are generated.
そして、参照光 R B及び信号光 S Bは同軸で互いに空間的に離れるように対物 レンズモジュール O B Mに導かれる。 すなわち、 図 1. 7 ( a ) に示すように、 参 照光 R Bを光軸上にて中央領域 C Rへ、信号光 S Bを参照光 R Bの周囲の環状領 域 P Rへ、互いに空間的に分離して同軸に伝搬させる。対物レンズ通過後も参照 光 R Bと信号光 S Bは空間的に分離され、信号光 S Bは対物レンズモジュール O B Mに近い近距離焦点 n Pに集光され、参照光 R Bは近距離焦点より遠い遠距離 焦点 f Pに集光される。 '  Then, the reference light RB and the signal light SB are guided to the objective lens module O B M so as to be coaxially spaced apart from each other. That is, as shown in Fig.1.7 (a), the reference light RB is spatially separated from each other into the central region CR on the optical axis and the signal light SB into the annular region PR around the reference light RB. To propagate coaxially. Even after passing through the objective lens, the reference light RB and the signal light SB are spatially separated, and the signal light SB is collected at the near focus n P close to the objective lens module OBM, and the reference light RB is far away from the near focus. Focused at the focal point fP. '
図 1 7 ( b ) に示すように、参照光 R Bの遠距離焦点 f Pの位置に反射層 5を 配置し、ホロ _グラム記録層 7を対物レンズモジュール O B M及び反射層 5の間に 配置する。環状断面の信号光 S Bはは反射層 5より手前(近距離焦点 n P) で集 光して発散しつつ反射層 5で反射され、参照光 R Bは反射層 5で合焦して反射さ れる。よって、環状断面の信号光 S Bは反射層 5より手前に集光するので反射層 5でデフォ一カスとなり、反射された信号光 S Bは参照光 R Bと交差せず干渉す る状態ではなくなる。入射する信号光 S B及び参照光 R Bの交差角度を比較的大 きくとれるため、 多重間隔を小さくすることができる。 図 1 8に示すように、具体的に記録されるホログラムは、ホログラム記録 C (反 射して発散する参照光と入射収束する信号光)、 ホログラム記録 D (入射収束す る参照光と入射収束する信号光) の 2種類である。 また、 再生されるホログラム も、 同様の 2種類である。 As shown in Fig. 17 (b), the reflective layer 5 is arranged at the position of the long-distance focal point fP of the reference light RB, and the hologram recording layer 7 is arranged between the objective lens module OBM and the reflective layer 5. . The signal light SB having an annular cross-section is collected and diverged before the reflection layer 5 (short-distance focal point n P) and is reflected by the reflection layer 5, and the reference light RB is focused and reflected by the reflection layer 5. . Therefore, since the signal light SB having the annular cross section is condensed before the reflection layer 5, it becomes a defocus in the reflection layer 5, and the reflected signal light SB does not cross the reference light RB and does not interfere with it. Since the intersection angle between the incident signal light SB and the reference light RB can be made relatively large, the multiplexing interval can be reduced. As shown in Fig. 18, the holograms that are specifically recorded are hologram recording C (reflected and divergent reference light and incident convergent signal light), and hologram record D (incident and convergent reference light and incident convergent). Signal light). There are two similar types of holograms to be reproduced.
したがって、かかるホログラム記録担体から情報を再生するホログラム再生シ ステムでは、図 1 9に示すように、参照光 R Bのみを対物レンズモジュール O B Mの中央領域 C Rに供給し、参照光 R Bを反射層 5 (遠距離焦点 f P) に収束さ せつつホログラム記録層のホログラム H Gを透過させると、ホログラム H Gから 再通常の再生光と位相共役波の再生光が生成できる。検出手段の一部でもある対 物レンズモジュール O B Mにより、再生光及び位相共役波を光検出器へ導くこと ができる。  Therefore, in the hologram reproducing system for reproducing information from such a hologram record carrier, as shown in FIG. 19, only the reference light RB is supplied to the central region CR of the objective lens module OBM, and the reference light RB is supplied to the reflecting layer 5 ( When the hologram HG of the hologram recording layer is transmitted while converging to the far-distance focal point (f P), re-normal reproduction light and phase conjugate wave reproduction light can be generated from the hologram HG. The reproduction light and the phase conjugate wave can be guided to the photodetector by the object lens module O B M which is also a part of the detection means.
他のホログラム記録再生システムにおいては、参照光 R Bの遠距離焦点 f Pの 位置に反射層 5を配置し、ホログラム記録層 7を対物レンズモジュール O B M及 び反射層 5の間に配置するのではなく、図 2 0に示すように、環状領域 P R通過 の信号光 S Bの近距離焦点 n Pの位置に反射層 5を配置して、ホログラム記録担 体 2はホロ ラム記録層 7が対物レンズモ ュ一ル O B M及び反射層 5の間に あるように配置する。環状断面の信号光 S Bは反射層 5で合焦して反射され、参 照光 R Bは反射層 5で反射され遠距離焦点 f Pの対称位置に集光される。この場 合、反射層 5では参照光 R Bがデフォーカス状態で信号光 S Bが合焦となる。図 2 1に示すように、 具体的に記録されるホログラムは、 ホログラム記録 B (入射 する参照光と反射する信号光)、 ホログラム記録 C (入射する参照光と入射する 信号光) の 2種類である。 また、 再生されるホログラムも同様に 2種類である。 この場合のホログラム再生システムでは、参照光 R Bのみを対物レンズモジユー ル O B Mの中央領域 C Rに供給し、参照光 R Bを記録時と同様のデフオーカス状 態で反射層 5へ照射して、 ホログラム記録層のホログラム H Gを透過させると、 ホログラム H Gから通常の再生光と位相共役波の再生光が同一の光路で生成で きる。 In other hologram recording / reproducing systems, the reflective layer 5 is arranged at the position of the long-distance focal point f P of the reference beam RB, and the hologram recording layer 7 is not arranged between the objective lens module OBM and the reflective layer 5. As shown in FIG. 20, a reflection layer 5 is arranged at the position of the short-distance focal point nP of the signal light SB that has passed through the annular region PR, and the hologram recording carrier 2 has a hologram recording layer 7 that has an objective lens module. Place it so that it is between the OBM and the reflective layer 5. The signal light SB having an annular cross-section is focused and reflected by the reflection layer 5, and the reference light RB is reflected by the reflection layer 5 and collected at a symmetrical position of the long-distance focal point fP. In this case, in the reflection layer 5, the reference light RB is defocused and the signal light SB is in focus. As shown in Fig. 21, there are two types of holograms that can be specifically recorded: hologram recording B (incident reference light and reflected signal light) and hologram recording C (incident reference light and incident signal light). is there. There are also two types of holograms to be reproduced. In the hologram reproduction system in this case, only the reference light RB is supplied to the central region CR of the objective lens module OBM, and the reference light RB is irradiated to the reflection layer 5 in the same defocused state as that during recording, so that the hologram recording layer When the hologram HG is transmitted, normal reproduction light and phase conjugate wave reproduction light can be generated from the hologram HG in the same optical path.
さらに、 2焦点の対物レンズモジュール O B Mの他の変形例は、図 2 2に示す ように中央に凹レンズ機能を有する透過型の回折光学素子 D〇 Eを、対物レンズ O Bの直前に配置してなる対物レンズモジュールとすることにより、参照光 R B と信号光 S Bの焦点距離を互いに異なるようにする ともできる。.また、図 2 3 に示すように対物レンズ O B及び透過型の回折光学素子 D O Eを一体として(そ の屈折面の中央領域 C Rに同軸に形成された凹レンズ作用を有するフレネルレ ンズ面若しくは回折格子 D〇Eを有する) 2焦点レンズ O B 2とすることより、 参照光 R Bと信号光 S Bの焦点距離を互いに異なるようにすることもできる。ま た、 レンズ一体型の回折格子に代えて、図 2 4に示すように凹レンズ部 C C Vを 一体として中央領域 C R及び環状領域 P Rの境に段差を設け互いに曲率の異な るに非球面レンズの 2焦点レンズ O B 2として対物レンズモジュール O B Mを 構成してもよい。  Furthermore, another modified example of the bifocal objective lens module OBM has a transmission type diffractive optical element D0E having a concave lens function at the center as shown in FIG. By using an objective lens module, the focal lengths of the reference light RB and the signal light SB can be made different from each other. Also, as shown in Fig. 23, the objective lens OB and the transmission type diffractive optical element DOE are integrated (Fresnel lens surface or diffraction grating D having a concave lens action formed coaxially in the central region CR of the refractive surface). (It has E) The bifocal lens OB 2 makes it possible to make the reference light RB and the signal light SB have different focal lengths. Also, instead of the lens-integrated diffraction grating, as shown in Fig. 24, the concave lens portion CCV is integrated, and a step is provided at the boundary between the central region CR and the annular region PR. The objective lens module OBM may be configured as the focus lens OB2.
以上の参照光と信号光のいずれか一方の周り共軸で他方を分離して囲むよう に伝搬させ照射する構成によれば、入射時には参照光と信号光の重なりが或る程 度制限できる。  According to the configuration in which the reference light and the signal light are propagated and irradiated so that the other is separated and surrounded by a coaxial axis, the overlap of the reference light and the signal light can be limited to some extent at the time of incidence.
また、図 8及び図 Γ 7に示す実施形態では、反射層で合焦する参照光をサ一ポ エラー検出用の光束として用いることができる。さらに、図 1 1及び図 2 0に示 す実施形態では中央で参照光をと外周の環状領域で信号光とを生成するが、これ を変形して中央領域で信号光を、外周の環状領域で参照光を生成するようにすれ ば、反射層で合焦する環状断面の参照光をサーポエラー検出用の光束として用い ることが可能である。 In the embodiment shown in FIGS. 8 and Γ 7, the reference light focused on the reflective layer can be used as a light beam for detecting a spot error. In addition, as shown in Figure 11 and Figure 20. In this embodiment, the reference light is generated in the center and the signal light is generated in the outer annular region. If this is modified to generate the signal light in the central region and the reference light in the outer annular region, It is possible to use the reference light having an annular cross-section that is focused on the reflective layer as a light beam for detecting a servo error.
以上の実施形態及び変形例によれば、ホログラム記録時には、干渉する信号光 及び参照光が制限されるため余分なホログラムが記録再生されることがない。ま た、参照光 R Bと信号光 S Bが互いに対向する方向に伝搬する球面波であるので、 それらの交差角度を比較的大きくとれるため、 シフト多重が可能となり、多重間 隔を小さくすることができる。 ,  According to the embodiment and the modification described above, during hologram recording, the interfering signal light and reference light are limited, so that extra holograms are not recorded and reproduced. In addition, since the reference light RB and the signal light SB are spherical waves propagating in directions opposite to each other, their crossing angle can be made relatively large, so that shift multiplexing is possible, and the multiplexing interval can be reduced. . ,
<像検出手段 >  <Image detection means>
図 4の光軸上に配置された偏光ビームスプリツ夕 P B S、結像レンズ ML、像 センサ I Sは、参照光がホログラム記録層に照射された際にホログラム記録担体 2から対物レンズモジュール O B Mを介して戻る光を受光する像検出手段とし て機能する。 像センサ I S.は C C D (電荷結合素子) や CMO S (相補型金属酸 化膜半導体装置) などのアレイからなる光電変換素子である。  Polarized beam splitter PBS, imaging lens ML, and image sensor IS placed on the optical axis in Fig. 4 return from the hologram record carrier 2 through the objective lens module OBM when the hologram recording layer is irradiated with the reference light. It functions as an image detection means that receives light. The image sensor I S. is a photoelectric conversion element consisting of an array of C CD (charge coupled device) and CMO S (complementary metal oxide semiconductor device).
<収差補正液晶パネル >  <Aberration correction LCD panel>
図 4の透過型の収差補正液晶パネル L C Pは、光軸上に配置された中央補正領 域 P L C C Rとこれを囲むように配置された環状周囲領域 P L C P Rとを含み かつ、それらの少なくとも一方がその通過光束の波面の位相を部分的に変化させ て、通過光束の波面収差を補正する複数の透明電極を備える透過型の液晶装置で ある。  The transmission type aberration correction liquid crystal panel LCP in FIG. 4 includes a central correction area PLCCR arranged on the optical axis and an annular peripheral area PLCPR arranged so as to surround the central correction area PLCCR, and at least one of them passes through the central correction area PLCCR. This is a transmissive liquid crystal device that includes a plurality of transparent electrodes that partially change the phase of the wavefront of the light beam to correct the wavefront aberration of the passing light beam.
図 2 5は透過型液晶装置からなる収差補正液晶パネル L C Pを示す。収差補正 液晶パネル L C Pは、収差補正液晶駆動回路 L CPDに接続され、環状周囲領域 PLCPRとその内部に中央補正領域 P LCCRとで構成される。 Figure 25 shows an aberration-corrected liquid crystal panel LCP consisting of a transmissive liquid crystal device. Aberration correction The liquid crystal panel LCP is connected to the aberration correction liquid crystal drive circuit L CPD, and is composed of an annular peripheral region PLCPR and a central correction region P LCCR therein.
図 25及び図 26に示すように、収差補正液晶パネル L CPにおいては、流動 状の透明な液晶組成物 1 1が 2枚のガラス基板 12 a, 12 b間に挟持され、該 基板周りが封止された構造を有している。両ガラス基板 12 a, 12 bの内面に は、インジウムスズ酸化物などからなる液晶に電圧を印加する透明電極層(1 3 a i, 13 a) (1 3 b) と、 近接する液晶分子の軸の向き (配向) を規定する 配向膜 1.4 a, 14 bと、 が順に積層されている。収差補正液晶パネル L C Pで は、液晶に生じる電位差に応じて液晶の配向性が変化し、電圧に応じて屈折率が 変化することを利用して、液晶を通過する波面の位相を変化させ、それによつて 通過光の収差を相殺しょうとするものである。  As shown in FIGS. 25 and 26, in the aberration-correcting liquid crystal panel LCP, a fluid transparent liquid crystal composition 11 is sandwiched between two glass substrates 12a and 12b, and the periphery of the substrate is sealed. It has a stopped structure. On the inner surfaces of both glass substrates 12a and 12b, there are transparent electrode layers (1 3 ai, 13 a) (1 3 b) for applying voltage to the liquid crystal made of indium tin oxide, etc. Alignment films 1.4 a and 14 b that define the orientation (orientation) of are stacked in order. In the aberration-corrected liquid crystal panel LCP, the orientation of the liquid crystal changes according to the potential difference generated in the liquid crystal, and the refractive index changes according to the voltage, thereby changing the phase of the wavefront passing through the liquid crystal. Therefore, it tries to cancel out the aberration of the passing light.
参照光のみが透過する中央補正領域 P L C C Rは参照光に発生する収差に応 じた電極分割形状を有している。中央補正領域 PLC CRの電極分割形状は、後 述する球面収差補正用のパターン及びコマ収差捕正用のパターンや、非点収差補 正用のパターンなどを取ることができ、またそれらを複合的に構成することもで きる。たとえば、中央補正領域 PLCCRの対 ^向する電極層の少なくとも一方を、 位相調整部として複数の透明電極に分割し、当該複数の透明電極の各々に参照光 に生じた収差の分布形状に応じた電圧を印加する構成とすることによって、収差 補正液晶パネル L C Pを透過する参照光の収差を補正できる。図 26では透明電 極 13 bは共通電極であるが、環状周囲領域 P L C P Rの透明電極 13 aと、そ の内部に中央補正領域 PLC Cの複数の透明電極 13 a i ( i = l, 2, 3,—') と、 は収差補正液晶駆動回路 L C PDにより独立して補正電圧が印加される。 図 27は、球面収差を補正するための収差補正液晶パネル L C Pの中央補正領 域 P L C C Rの構造の一例を模式的に示した電極パターンの平面図である。図 2 7 (a) に示すように、 中央補正領域 PLCCRは、 入射される参照光光束の有 効径内において、 ホログラム記録担体 2で生じる球面収差の分布に対応付けて、 間隙によって区画され電気的に分離された同心円状(円環状)の複数の透明電極 13 a 1, 13 a 2, ,13 a 3 , 13 a 4, 13 a 5, 13 a 6, 13 a 7を含 む。透明電極 13 a 1— 13 a 7それぞれの幅は、球面収差の分布に対応して波 面の位相を変化させるため異ならせることができるが、 均等に構成してもよい。 なお、図 27においては、中央補正領域 PLC CRが, 7つの透明電極を有する場 合を示しているが、電極数は 2以上あればよい。透明電極 13 a l_13 a 7に 補正電圧 V i (i = l, 2, 3, 4, 5, 6, 7 ) がリードラインを介して印加 されると、その補正電圧 V iによって生じる電界に応じて液晶層 11内の各部の 液晶分子の屈折率配向が変化する。 その結果、 液晶層 11中を通る光の波面は、 液晶層 1 1の複屈折を受けて位相が変化する。すなわち、通過する参照光の波面 は、 液晶層 11に印加される補正電圧 V iによって制御することができる。 図 27 (b) に示すように、 中央補正領域 LCCRの直径上において透明電 極 13 a l _ 13 a 7に印加される基準電圧からの補正電圧 V iの電圧波形を 示す。このような補正すべき球面収差の分布形状に応じた補正電圧が電極パター ンに印加されることによって、ホログラム記録担体の光透過保護層の厚みムラ等 に起因する球面収差を打ち消すことができ、球面収差が抑制されるように補正さ れる。 The central correction area PLCCR through which only the reference light is transmitted has a split electrode shape corresponding to the aberration generated in the reference light. The electrode division shape of the central correction area PLC CR can take a spherical aberration correction pattern, a coma aberration correction pattern, and an astigmatism correction pattern, which will be described later. It can also be configured. For example, at least one of the opposite electrode layers of the central correction region PLCCR is divided into a plurality of transparent electrodes as a phase adjustment unit, and each of the plurality of transparent electrodes corresponds to the distribution shape of the aberration generated in the reference light. By adopting a configuration in which a voltage is applied, the aberration of the reference light transmitted through the aberration-correcting liquid crystal panel LCP can be corrected. In Fig. 26, the transparent electrode 13b is a common electrode, but the transparent electrode 13a in the annular peripheral region PLCPR and the multiple transparent electrodes 13ai (i = l, 2, 3) in the central correction region PLC C inside it , — ′) And are applied independently by the aberration correction liquid crystal drive circuit LC PD. FIG. 27 is a plan view of an electrode pattern schematically showing an example of the structure of the central correction area PLCCR of the aberration correction liquid crystal panel LCP for correcting spherical aberration. As shown in Fig. 27 (a), the central correction area PLCCR is divided by a gap within the effective diameter of the incident reference light beam in correspondence with the distribution of spherical aberration generated in the hologram record carrier 2, and A plurality of concentric (annular) transparent electrodes 13 a 1, 13 a 2, 13 a 3, 13 a 4, 13 a 5, 13 a 6 and 13 a 7 are included. The width of each of the transparent electrodes 13 a 1 to 13 a 7 can be varied in order to change the phase of the wavefront corresponding to the distribution of spherical aberration, but may be configured equally. FIG. 27 shows a case where the central correction region PLC CR has seven transparent electrodes, but the number of electrodes may be two or more. When the correction voltage V i (i = l, 2, 3, 4, 5, 6, 7) is applied to the transparent electrode 13 a l_13 a 7 via the lead line, it depends on the electric field generated by the correction voltage V i. Thus, the refractive index alignment of the liquid crystal molecules in each part in the liquid crystal layer 11 changes. As a result, the phase of the wavefront of light passing through the liquid crystal layer 11 changes due to the birefringence of the liquid crystal layer 11. In other words, the wavefront of the reference light passing through can be controlled by the correction voltage V i applied to the liquid crystal layer 11. As shown in Fig. 27 (b), the voltage waveform of the correction voltage V i from the reference voltage applied to the transparent electrode 13 al — 13 a 7 on the diameter of the central correction region LCCR is shown. By applying a correction voltage according to the distribution shape of the spherical aberration to be corrected to the electrode pattern, it is possible to cancel the spherical aberration caused by the thickness non-uniformity of the light transmission protective layer of the hologram record carrier. Correction is made to suppress spherical aberration.
従って、ホログラム記録によって記録層が収縮する場合や屈折率が変化する場 合には、軸対称な収差が発生すると考えられ、その場合には球面収差やデフォー カス収差が発生すると思われる。そのような場合には、あらかじめ保存しておい た球面収差補正量などを収差補正液晶パネル L C Pに補正電圧として印加する ことで参照光の収差補正が実現され、記録時と同一の波面を有する参照光で再生 することができるので良好な再生信号を得ることができる。 - 図 28は、コマ収差を補正するための収差補正液晶パネル L C Pの中央補正領 域 PLC CRの構造の一例を模式的に示した平面図である。 図 28 (a) に、 中 央補正領域 P L C C Rのコマ収差補正用の透明電極パターンを示す。中央補正領 域 P L C C Rに入射される参照光光束の有効径内に、,波面の位相を変化させるた めの 4つの分割された透明電極 13 a l l, 13 a 12, 13 a 13, 13 a 1 4が間隙によって区画され電気的に分離されて配置されている。透明電極 13 a 11, 13 a 12と透明電極 13 a l 3, 13 a 14との組は中央補正領域 P L CCRの直径に関して対称に配章されている。すなわち、コマ収差補正用透明電 極パターンは、央補正領域 P L C C Rは光軸に垂直なその直径に対称でか 当該 直線を含む間隙で分割された内側及び外側の領域として配置され、これに収差補 正液晶駆動回路が補正すべきコマ収差に応 ϋ'た補正電圧を供給するのである。 分割された透明電極に基準電圧に対して正の電圧を印加すると、対向透明電極 13 bとの間に電位差を生じ、その間の液晶の配向性が電位差に応じて変化し屈 折率が変化するので、この透明電極を通過する参照光成分の波面はその位相が進 められる。逆に、分割された透明電極に基準電圧に対して負の電圧を印加すると、 この透明電極を通過する参照光成分の波面はその位相が遅れる。よって、対称配 置の透明電極 13 a l l, 13 a 12及び透明電極 13 a l 3, 13 a l 4に、 図 2 8 ( b ) に示すように、補正すべきコマ収差の分布形状に応じた電圧波形の 補正電圧を印加することによって、中央補正領域 P L C C Rは、ホログラム記録 担体が光軸に対して傾くことによって発生するコマ収差を打ち消すことができ、 コマ収差が抑制されるように補正される。 · Therefore, when the recording layer shrinks due to hologram recording or the refractive index changes. In this case, it is considered that an axially symmetric aberration is generated, and in that case, spherical aberration and defocus aberration are generated. In such a case, the aberration correction of the reference light is realized by applying a previously stored spherical aberration correction amount or the like as a correction voltage to the aberration correction liquid crystal panel LCP, and a reference having the same wavefront as that at the time of recording. Since it can be reproduced with light, a good reproduction signal can be obtained. -FIG. 28 is a plan view schematically showing an example of the structure of the central correction area PLC CR of the aberration correction liquid crystal panel LCP for correcting coma. Figure 28 (a) shows the transparent electrode pattern for correcting coma in the central correction area PLCCR. Central correction area Four divided transparent electrodes 13 all, 13 a 12, 13 a 13, 13 a 1 4 for changing the phase of the wavefront within the effective diameter of the reference beam incident on the PLCCR Are separated by a gap and are electrically separated. The pairs of the transparent electrodes 13 a 11, 13 a 12 and the transparent electrodes 13 al 3, 13 a 14 are arranged symmetrically with respect to the diameter of the central correction region PL CCR. That is, in the coma aberration correcting transparent electrode pattern, the central correction area PLCCR is arranged as an inner and outer area divided by a gap including the straight line or symmetrical to the diameter perpendicular to the optical axis. The positive liquid crystal driving circuit supplies a correction voltage corresponding to the coma aberration to be corrected. When a positive voltage is applied to the divided transparent electrode with respect to the reference voltage, a potential difference is generated between the transparent electrode 13 b and the liquid crystal orientation changes according to the potential difference to change the refractive index. Therefore, the phase of the wavefront of the reference light component passing through the transparent electrode is advanced. Conversely, when a negative voltage with respect to the reference voltage is applied to the divided transparent electrode, the phase of the wavefront of the reference light component passing through the transparent electrode is delayed. Therefore, symmetrically arranged transparent electrodes 13 all, 13 a 12 and transparent electrodes 13 al 3, 13 al 4 As shown in Fig. 28 (b), the central correction area PLCCR is tilted with respect to the optical axis by applying a correction voltage having a voltage waveform corresponding to the distribution shape of the coma aberration to be corrected. It is possible to cancel out the coma caused by, and to correct the coma. ·
従って、ホログラム記録によって記録層が光ビームに対して傾く場合には、..再 生信号の品位に基づいて参照光の収差補正を行うことができる。再生信号の品位 は再生像の S N Rもしくはエラーレートにより評価しそれらが最も良好になる ように補; E電圧を決める。補正電圧を収差補正液晶パネル L C Pに印加すること で参照光の収差補正が実現され、記録時と同一の波面,を有する参照光で再生する ことができるので良好な再生信号を得ることができる。  Therefore, when the recording layer is inclined with respect to the light beam by hologram recording, the aberration of the reference light can be corrected based on the quality of the reproduction signal. Evaluate the quality of the reproduced signal based on the SNR or error rate of the reproduced image and compensate for the best result; determine the E voltage. By applying the correction voltage to the aberration correction liquid crystal panel L C P, the aberration correction of the reference light is realized, and the reproduction can be performed with the reference light having the same wavefront as that at the time of recording, so that a good reproduction signal can be obtained.
さらに、収差補正液晶パネル L C Pは、接続された収差補正液晶駆動回路 L C P Dにより、ホログラム記録時に環状周囲領域 P L C P Rとその内部に中央補正 領域 P L C C Rとで同一の偏光付与の透光状態として、再生時に両領域において 異なる偏光作用状態とするように制御できる。  In addition, the aberration correction liquid crystal panel LCP is connected to the annular peripheral area PLCPR and the central correction area PLCCR in the same state by the connected aberration correction liquid crystal drive circuit LCPD. It can be controlled to have different polarization action states in the region.
収差補正液晶パネル L C Pは、たとえば、環状領域を透過する信号光及びその 内部の中央領域'を透過する参照光の偏光面を fei転し、その回転角度をホログラム 記録時から再生時にて切り替えるように、収差補正液晶駆動回路 L C P Dにより 制御され得る。収差補正液晶駆動回路 L C P D及び収差補正液晶パネル L C Pは、 レーザ光源から射出した光束の環状領域光束部分とその内部の中央領域光束部 分の偏光方向を所定角度、 例えば 9 0度回転ができるシステムである。  The aberration correction liquid crystal panel LCP, for example, performs a fei rotation of the polarization plane of the signal light that passes through the annular region and the reference light that passes through the central region ′, and switches the rotation angle between hologram recording and playback. It can be controlled by the aberration correction liquid crystal drive circuit LCPD. The aberration correction liquid crystal drive circuit LCPD and the aberration correction liquid crystal panel LCP are systems that can rotate the polarization direction of the annular region light beam part of the light beam emitted from the laser light source and the central region light beam part inside it by a predetermined angle, for example 90 degrees. is there.
液晶はその分子が細長く、その位置及びその軸の方向が規則性及び不規則性の 両面を有する固体及び液体の中間の相を示す物質である。一般に自然状態(無印 加電界)において複数の液晶分子はその長軸方向にゆるやかな規則性を持って並 んでいる。ラビングなどにより一定方向の複数の微小溝を刻んだ配向膜に液晶分 子を接触させると、 液晶分子の分子軸が溝に沿って並び方を変える性質がある。 よって、 T N (Tw i s t e d N e m a t i c )型液晶において、 それぞれの 微小溝の向きが 9 0度となるように所定間隔で平行に配置された 2枚の配向.膜 間に液晶が充填されていると、 液晶分子は一方の配向膜から他方の配向膜へと 徐々にねじれて 9 0度回転するように配列(螺旋配列) される。 この液晶分子が ツイスト状に配向する状態で、一方の配向膜か,ら他方の配向膜へ光を液晶中を通 過させると、液晶分子の並ぶ隙間に沿って、光が透竭する。例えば一方の配向膜 近傍の液晶分子軸に平行な直線偏光の光は、他方の配向膜近傍の液晶分子軸に平 行な直線偏光となって、 その振動面 (偏光面) が 9 0度ねじれて透過する (電圧 を印加をしないオフ状 J)。 A liquid crystal is a substance that shows an intermediate phase between a solid and a liquid in which the molecule is elongated and the position and the direction of its axis are both regular and irregular. Generally natural (no mark In the applied electric field), a plurality of liquid crystal molecules are arranged with gentle regularity in the major axis direction. When a liquid crystal molecule is brought into contact with an alignment film in which a plurality of micro grooves in a certain direction are carved by rubbing or the like, the molecular axis of liquid crystal molecules has a property of changing the alignment along the grooves. Therefore, in a TN (Twisted Nematic) type liquid crystal, the orientation of each micro-groove is 90 degrees, and the two alignments are arranged in parallel at a predetermined interval. The liquid crystal molecules are arranged so that they are gradually twisted from one alignment film to the other alignment film and rotated 90 degrees (helical alignment). When light is passed through the liquid crystal from one alignment film to the other alignment film in a state where the liquid crystal molecules are twisted, light is transmitted along the gaps where the liquid crystal molecules are arranged. For example, linearly polarized light parallel to the liquid crystal molecular axis near one alignment film becomes linearly polarized light parallel to the liquid crystal molecular axis near the other alignment film, and its vibration plane (polarization plane) is twisted 90 degrees. (Transmits off without applying voltage J).
一方、液晶を挟む対向透明電極間に電圧を印加すると、液晶分子は配向膜に沿 つた方向からその軸が垂直方向に変化し電界に沿つて並ぶ。液晶分子が配向膜か ら直立して液晶分子の配向が変化するので、図 2 6に示すように、例えば直線偏 光の透過光の偏光面 (紙面平行)が回転せずに'そのままの偏光状態で透過する(同 一電圧を印加したオン状態)。  On the other hand, when a voltage is applied between the opposing transparent electrodes sandwiching the liquid crystal, the liquid crystal molecules change from the direction along the alignment film to the vertical direction and line up along the electric field. As the liquid crystal molecules stand upright from the alignment film and the orientation of the liquid crystal molecules changes, as shown in Fig. 26, for example, the polarization plane of the linearly polarized transmitted light (parallel to the plane of the paper) does not rotate. Transmits in a state (ON state with the same voltage applied).
以上のような複数の機能を複合する液晶パネルを得るためには、収差補正に用 いる領域では液晶分子が平行に配向されるように配向膜を設定し、一方で偏光作 用に用いる領域では T N配向になるように配向膜を設定する。たとえば、図 2 6 に示す収差補正液晶パネル L C Pの対向する配向膜 1 4 a, 1 4 bにおいて、一 方の配向膜 1 4 bを一様に一定方向に(図 2 5に破線の双方向矢印にて示す) ラ ビングして、他方の配向膜 1 4 aにおいては 状周囲領域 P L C P Rと中央補正 領域 P L C C Rとで分離して環状周囲領域 P L C P Rでは配向膜 1 4 bのラビ ング方向に対して 9 0度をなす方向(図 2 5に実線の双方向矢印にて示す)にラ ビングしかつ中央補正領域 P L C C Rでは配向膜 1 4 bのラビング方向に平行 (図 2 5に実線の双方向矢印にて示す) にラビングする。 このようにして、収差 補正に用いる中央補正領域 P L C C Rでは液晶分子が平行に配向され、一方で偏 光作用に用いる環状周囲領域 P L C P Rでは T N配向になるように設定するこ とができる。 , In order to obtain a liquid crystal panel that combines multiple functions as described above, an alignment film is set so that liquid crystal molecules are aligned in parallel in the region used for aberration correction, while in the region used for polarization. An alignment film is set so as to achieve TN alignment. For example, in the facing alignment films 14 a and 14 b of the aberration-correcting liquid crystal panel LCP shown in FIG. 26, one alignment film 14 b is placed in a uniform direction (indicated by the broken line in FIG. 25). (Indicated by arrows) In the other alignment film 14a, the circumferential area PLCPR and the central correction area PLCCR are separated from each other, and in the annular surrounding area PLCPR, the direction is 90 degrees with respect to the rubbing direction of the alignment film 14b. (Indicated by a solid double-directional arrow in Fig. 25) and in the central correction area PLCCR rubbing in parallel to the rubbing direction of the alignment film 14b (indicated by a solid double-directional arrow in Fig. 25) To do. In this way, the liquid crystal molecules can be set in parallel in the central correction region PLCCR used for aberration correction, while the TN alignment can be set in the annular peripheral region PLCPR used for polarization. ,
ぐホログラム記録担体 >  Holographic record carrier>
図 4のホロダラム記録担体 2の一例を図 2 9に示す。ホログラム記録担体 2は、 基板 3上にその膜厚方向に積層された、 反射層 5、 分離層 6、 ホログラム記録層 7及び保護層 8からなる。  An example of the Holodaram record carrier 2 in FIG. 4 is shown in FIG. The hologram record carrier 2 includes a reflective layer 5, a separation layer 6, a hologram recording layer 7, and a protective layer 8 laminated on the substrate 3 in the film thickness direction.
ホ口グラム記録層 7は、記録用の可干渉性の参照光 R B及び信号光 S Bによる 光学干渉パターンを、 回折格子(ホログラム) として内部に保存する。 ホロダラ ム記録層 7には、 例えば、 フォトポリマや、 光異方性材料や、 フォトリフラクテ イブ材料や、ホールバーニング材料、 フォトクロミック材料など光学干渉パター ンを保存できる透光性の光感応材料が用いられる。  The photogram recording layer 7 stores the optical interference pattern by the coherent reference light R B and the signal light S B for recording inside as a diffraction grating (hologram). The hologram recording layer 7 includes, for example, a light-transmitting photosensitive material capable of storing an optical interference pattern such as a photopolymer, a light anisotropic material, a photorefractive material, a hole burning material, or a photochromic material. Used.
上記の各膜を担持する基板 3は、 例えば、 ガラス、,或いはポリカーボネート、 アモルファスポリオレフイン、 ポリイミド、 P E T、 P E N, P E Sなどのプラ スチック、.紫外線硬化型アクリル樹脂などからなる。  The substrate 3 supporting each film is made of, for example, glass, or polycarbonate, amorphous polyolefin, polyimide, PET, PEN, PES, or an ultraviolet curable acrylic resin.
分離層 6及び保護層 8は光透過性材料からなり、積層構造の平坦化や、ホログ ラム記録層などの保護の機能を担う。 基板 3が円板の場合、 トラックを、 円基板の中心に関してその上に螺旋状又は 同心円状、或いは複数の分断された螺旋弧状に形成され得る。なお、 基板 3が力 ード状であった場合トラックが基板上に平行に形成されていてもよい。また、矩 形カード基板 3であってもトラックは基板の例えば重心に関してその上に螺旋 状もしくは螺旋弧状又は同心円状に形成されもよい。 The separation layer 6 and the protective layer 8 are made of a light transmissive material, and play a role of flattening the laminated structure and protecting the hologram recording layer and the like. When the substrate 3 is a disc, the track can be formed spirally or concentrically on the center of the circular substrate, or in the form of a plurality of divided spiral arcs. When the substrate 3 is in the shape of a force, the track may be formed in parallel on the substrate. Further, even in the case of the rectangular card substrate 3, the track may be formed in a spiral shape, a spiral arc shape, or a concentric shape on the center of gravity of the substrate, for example.
く記録再生動作〉  <Recording / playback operation>
図 4の本実施形態の記録再生動作を説明する。  The recording / reproducing operation of this embodiment shown in FIG. 4 will be described.
記録動作において、 図 4 (a) に示すように、 紙面に平行な偏光のレーザ光源 L Dからのレーザ光はコリメータレンズ C Lにより平行光束に変換された後、空 間光変調器 S LMを通過し、これで光軸を含む光束とそれを取り囲む環状断面光 束とに分割されて、光軸を含む光束を参照光 RBと環状断面光束を信号光 S Bと して生成される。参照光 R Bと信号光 S Bは共軸で偏光ビームスプリッタ P B S 及び収差補正液晶パネル L C Pを経て、対物レンズモジュール〇 B Mによってホ ログラム記録担体 2に集光される。ホログラム記録時、収差補正液晶パネル L C Pの参照光 RBのみが通過する領域(中央補正領域 PLC CR) と信号光 SBの みが通過する領域(環状周囲領域 PLCPR0 はすべてオン状態として、 信号光 SBと参照光 RBの偏光状態が同一 (紙面平行方向) になるように設定される。 よって、信号光 S B及び参照光 R Bの干渉によりホログラム記録担体 2のホログ ラム記録層 7に記録される。 ここで、 中央補正領域 PLC CR及び環状周囲領域 PLC P Rのすべてがオン状態と設定されるとともに参照光の収差補正を行つ てもよいが、行わないこととしてもよい。未記録状態の媒体への照射では収差の 影響は少ないと考えられる。 再生動作において、 図 4 (b) に示すように、 紙面に平行な偏光方向の光束か ら空間光変調器 SLMで光軸を含む光束(参照光 RB) のみが生成され、 かかる 参照光 RBが偏光ビームスプリッタ P B S及び収差補正液晶パネル L C Pを経 て対物レンズモジュール O B Mを介してホログラム記録担体 2に集光されると、 紙面に平行な偏光の再生光が再構築される。再生時には、収差補正液晶パネル L C Pの位相調整部の複数の分割透明電極へ、参照光に生じる収差の分布形状に応 じた補正電圧を印加するとともに、中央補正領域 PLCCRをオン状態とし、環 状周囲領域 P L C P Rを透過する通過光と中央補正領域 P L C CRを透過する 透過光の偏光状態が略 90° 異なるように設定する。,参照光 RBで再生される再 生光は記録時の信号光と同じ発散及び収束する光束でかつ紙面平行の偏光方向 であるが、再生光は偏光液晶パネル L C Pの環状偏光領域 P L C P Rを透過する ので偏光液晶パネル L C Pによる偏光作用を受け、その偏光方向が紙面垂直とな る。一方、参照光 RBは紙面平行のまま反射層 5で反射され収差補正液晶パネル L C Pでの偏光作用を受けない。よって再生時に反射層 5で反射する参照光 R B と再生される再生光の偏光方向が異なるため偏光ビームスプリッタ PB Sとで 分離することが可能となり、再生光を受光す 検出器上に参照光 R Bが入射しな いため再生 SNが向上する。 In the recording operation, as shown in FIG. 4 (a), the laser light from the laser light source LD polarized in parallel with the paper is converted into a parallel light beam by the collimator lens CL, and then passes through the spatial light modulator SLM. Thus, the light beam including the optical axis is divided into the annular cross-section light flux surrounding the light beam, and the light beam including the optical axis is generated as the reference light RB and the circular cross-section light beam as the signal light SB. The reference light RB and the signal light SB are coaxially passed through the polarization beam splitter PBS and the aberration correction liquid crystal panel LCP, and are converged on the hologram record carrier 2 by the objective lens module BM. During hologram recording, the area through which only the reference light RB of the aberration correction LCD panel LCP passes (center correction area PLC CR) and the area through which only the signal light SB passes (the annular surrounding area PLCPR0 is turned on, and the signal light SB The polarization state of the reference light RB is set so as to be the same (parallel to the paper surface), so that it is recorded in the hologram recording layer 7 of the hologram record carrier 2 due to the interference of the signal light SB and the reference light RB. The central correction area PLC CR and the annular peripheral area PLC PR are all set to the on state and the aberration correction of the reference light may be performed, but may not be performed. Thus, the effect of aberration is considered to be small. In the reproduction operation, as shown in FIG. 4 (b), only the light beam including the optical axis (reference light RB) is generated by the spatial light modulator SLM from the light beam in the polarization direction parallel to the paper surface. When the light is condensed on the hologram record carrier 2 via the polarizing beam splitter PBS and the aberration correction liquid crystal panel LCP via the objective lens module OBM, the reproduction light having the polarization parallel to the paper surface is reconstructed. During reproduction, a correction voltage corresponding to the distribution shape of the aberration generated in the reference light is applied to the plurality of divided transparent electrodes of the phase adjustment section of the aberration correction liquid crystal panel LCP, and the central correction area PLCCR is turned on to make a ring shape. Set so that the polarization state of the transmitted light that passes through the surrounding area PLCPR and the transmitted light that passes through the central correction area PLC CR differ by approximately 90 °. The reproduction light reproduced by the reference light RB is the same divergent and convergent light beam as the signal light at the time of recording and has a polarization direction parallel to the paper surface, but the reproduction light passes through the annular polarization region PLCPR of the polarizing liquid crystal panel LCP. Therefore, the polarizing action of the polarizing liquid crystal panel LCP causes the polarization direction to be perpendicular to the paper surface. On the other hand, the reference light RB is reflected by the reflective layer 5 while being parallel to the paper surface, and is not subjected to the polarization action at the aberration-correcting liquid crystal panel LCP. Therefore, since the polarization direction of the reference light RB reflected by the reflective layer 5 and the reproduced light to be reproduced differs during reproduction, it can be separated by the polarization beam splitter PBS, and the reference light RB is received on the detector that receives the reproduced light. Reproduction SN is improved because no light enters.
収差補正液晶パネル L C Pで紙面に垂直な偏光とされ(収差補正液晶パネル L CPにより透過光束の偏光方向を 90度回転させる)、 偏光ビームスプリッ夕 P BSで反射された成分が像センサ I Sに入射する。像センサ I Sは再生光で結像 された像に対応する出力を再生信号検出処理回路(図示せず) に送出して、処理 を施してページデータが再生される。 このように、ホログラム記録に用いるピックアップにおいて、ホログラム記録 光束は光軸近傍の光軸を含む光束(参照光) とそれを取り囲む環状断面光束(信 号光) とに分割されており、 ピックアップは信号光と参照光とで焦点距離の異な る対物レンズ光学系 (レンズ群) を有し、 さらに、 空間光変調器 SLMと対物レ ンズ OBの間に配置された収差補正液晶パネル L CPを有する。そして、収差補 正液晶パネル L C Pは中央補正領域 P LCCRと環状周囲領域 P L C P Rを有 し、 その分割形状はそれぞれ透過すべき光軸を含む光束(参照光) とそれを取り 囲む環状断面光束 (信号光) の横断面形状に略一致している。 Aberration correction LCD panel LCP makes polarized light perpendicular to the paper (the aberration correction LCD panel LCP rotates the polarization direction of the transmitted light beam by 90 degrees), and the component reflected by polarization beam splitting PBS enters image sensor IS. To do. The image sensor IS sends an output corresponding to the image formed with the reproduction light to a reproduction signal detection processing circuit (not shown), and performs processing to reproduce the page data. Thus, in a pickup used for hologram recording, the hologram recording light beam is divided into a light beam including the optical axis in the vicinity of the optical axis (reference light) and an annular cross-section light beam (signal light) surrounding it. It has an objective lens optical system (lens group) having different focal lengths for the light and the reference light, and further has an aberration correction liquid crystal panel LCP arranged between the spatial light modulator SLM and the objective lens OB. The aberration-correcting liquid crystal panel LCP has a central correction area PLCCR and an annular peripheral area PLCPR, and the divided shapes are a light beam (reference light) including the optical axis to be transmitted and an annular cross-section light beam (signal) surrounding it. It substantially matches the cross-sectional shape of (light).
<変形例 >  <Modification>
上記の収差補正液晶パネル L C Pは、中央補正領域 P L C C Rの分割透明電極 をその電圧印加状態によって波面収差補正すべき参照光用として用い、環状周囲 領域 P L C P Rに透過する光束を信号光用として用いる場合を説明しているが、 変形例としては、収差補正液晶パネル L C P及び空間光変調器 S LMの構成によ つて、参照光を光軸でかつ信号光をその周囲で伝搬させるのではなく、逆に信号 光を光軸で参照光をその周囲で生成して伝搬させることもできる。 この場合、図 30に示すように、空間光変調器 S LM全体 ¾透過型マトリクス液晶表示装置と して、その制御回路 26により、記録すべきページデ一夕の所定パターンを表示 する中央領域 LCCRとその周囲に環状領域 LCPRの無変調の光透過領域と を表示するように、構成することもできる。 なお、環状領域 LCPRの無変調の 光透過領域を透明材料から形成できる。 さらに、 図 31に示すように、 収差補正 液晶パネル L C Pの環状周囲領域 P LCPRにおいて参照光通過用として球面 収差補正用透明電極パターンやコマ収差補正用透明電極パターン 13 a iなど を作り込み、中央補正領域 P LCCRには信 ^光通過用として透明電極パターン 13 a aを形成する。すなわち、中央補正領域 P LCC R及び環状周囲領域 P L C P Rの透明電極パターンを入れ替えた以外、図 26に示す構成と同一とするこ ともできる。 The above-mentioned aberration-correcting liquid crystal panel LCP uses the split transparent electrode of the central correction area PLCCR for reference light that should be corrected for wavefront aberration depending on the voltage application state, and the light flux that passes through the annular peripheral area PLCPR is used for signal light. Although described, as a modification, the configuration of the aberration correction liquid crystal panel LCP and the spatial light modulator S LM does not propagate the reference light on the optical axis and the signal light around it, but conversely. It is also possible to propagate the signal light by generating the reference light around the optical axis. In this case, as shown in FIG. 30, the entire spatial light modulator SLM is a transmission matrix liquid crystal display device, and the control circuit 26 controls the central area LCCR for displaying a predetermined pattern of page data to be recorded. It can also be configured to display an unmodulated light transmission region of the annular region LCPR around it. The non-modulated light transmission region of the annular region LCPR can be formed from a transparent material. Furthermore, as shown in FIG. 31, in the annular peripheral region P LCPR of the aberration correction liquid crystal panel LCP, a spherical electrode for correcting spherical aberration, a transparent electrode pattern for correcting coma aberration 13 ai, etc. The transparent electrode pattern 13aa is formed in the central correction area PLCCR for transmission of light. That is, the configuration can be the same as that shown in FIG. 26 except that the transparent electrode patterns in the central correction area PLCRC and the annular surrounding area PLCPR are replaced.
また、 この変形例においても、収差補正液晶パネル L CPにより、 ホログラ.ム 記録時には信号光 S Bと参照光 R Bの偏光状態がホログラム記録層 7中で同一 になるようにし、再生時には互いに略 90° 異なるようにすることもできる。 し たがつて、収差補正液晶パネル L C Pは、収差補正液晶駆動回路 L C P Dにより、 ホログラム記録時に両領域の同一の偏光付与の透光状態としたり、たとえば再生 時に収差補正液晶パネル L C Pの中央補正領域 P L C C Rをオフ状態とし、環状 周囲領域 P LCP Rでは波面収差用補正電圧を印加するとともにオン状態とし て、 両領域を異なる偏光作用状態とすることができる。 この場合、 図 32 (a) に示すように空間光変調器 SLMを通過した平行光束は、信号光 SB (光軸を含 む光束) とそれを取り囲む環状断面光束の参照光 RBとに分割、 生成されて、 'さ らに環状断面光束の参照光 R Bには波面収差がなされ、偏光ビームスプリッ夕 P BS及び収差補正液晶パネル L CPを通過ずる。 記録動作 (図 32 (a)) 及び 再生動作 (図 32 (b)) は参照光及び信号光が内外で伝搬位置が異なる以外上 記例と同様である。この変形例の場合でも図 8〜図 24に示すような対物レンズ モジュール OBMの構成を適用できる。  Also in this modified example, the aberration correction liquid crystal panel L CP ensures that the polarization state of the signal light SB and the reference light RB is the same in the hologram recording layer 7 during holographic recording, and is approximately 90 ° between each other during reproduction. It can be different. Therefore, the aberration-correcting liquid crystal panel LCP has the same polarized light transmission state in both areas during hologram recording by the aberration-correcting liquid crystal driving circuit LCPD, or the central correction area PLCCR of the aberration-correcting liquid crystal panel LCP during reproduction, for example. In the annular peripheral region P LCP R, the wavefront aberration correction voltage can be applied and turned on in the annular peripheral region P LCP R, so that both regions can have different polarization action states. In this case, as shown in FIG. 32 (a), the parallel light beam that has passed through the spatial light modulator SLM is divided into the signal light SB (light beam including the optical axis) and the reference light beam RB of the annular cross-section light beam that surrounds it. As a result, the reference beam RB of the annular cross section is subjected to wavefront aberration and passes through the polarization beam splitting PBS and the aberration correcting liquid crystal panel LCP. The recording operation (Fig. 32 (a)) and the reproducing operation (Fig. 32 (b)) are the same as the above example except that the propagation position is different between the reference light and the signal light. Even in this modification, the configuration of the objective lens module OBM as shown in FIGS. 8 to 24 can be applied.
以上の本実施形態によれば、再生時に反射した参照光 RBが分離され、又は結 像しないので、参照光 RBが像センサ I Sに至らないために信号再生に必要なホ ログラムからの再生光のみを受光できる。その結果、再生 SNが向上し安定な再 生を行うことができる。 According to the present embodiment described above, since the reference light RB reflected at the time of reproduction is separated or does not form an image, only the reproduction light from the program necessary for signal reproduction because the reference light RB does not reach the image sensor IS. Can be received. As a result, regeneration SN is improved and stable Can do life.
サーポ制御は、 図示しないが、例えば反射層 5上にトラックを設け、参照光 R Bを当該トラックにスポットとして集光させ、その反射光を光検出器へ導く対物 レンズを含むサーポ光学系を用いて、検出されたサーポエラー信号に応じて対物 レンズ光学系をァクチユエ一夕で駆動することにより、 可能である。 すなわち、 対物レンズから照射される参照光 R B光束は、そのビームウェストの位置に反射 層 5が位置するときに合焦となるように、 使用される。  The servo control is not shown, but for example, a track is provided on the reflective layer 5, and the reference light RB is collected as a spot on the track, and a servo optical system including an objective lens that guides the reflected light to the photodetector is used. This is possible by driving the objective lens optical system overnight according to the detected servo error signal. That is, the reference light RB light beam irradiated from the objective lens is used so as to be in focus when the reflection layer 5 is positioned at the position of the beam waist.
<ホログラム装置 >  <Hologram device>
他の本実施形態としてディスク形状のホログラム 録担体の情報を記録及び 再生する本発明のホログラム記録再生システムとしてホログラム装置を説明す る。  As another embodiment, a hologram apparatus will be described as a hologram recording / reproducing system of the present invention for recording and reproducing information on a disc-shaped hologram record carrier.
図 3 3はホログラム装置の一例のブロック図である。  FIG. 33 is a block diagram of an example of a hologram device.
ホログラム装置は、ホログラム記録担体 2のディスクをターンテーブルで回転 させるスピンドルモータ 2· 2、ホログラム記録担体 2から光束によって信号を読 み出すピックアップ 2 3、 該ピックアップを保持し半径方向(X方向) に移動さ せるピックアップ駆動部 2 4、 光源駆動回路2 5、 空間光変調器駆動回路 2 6、 再生光信号検出回路 2 7、サーポ信号処理回路 2 8、フォーカスサーポ回路 2 9、 x y方向移動サーボ回路 3 0、ピックアップ駆動部 2 4に接続されピックアップ の位置信号を検出するピックァップ位置検出回路 3 1、ピックアツプ駆動部 2 4 に接続されこれに所定信号を供給するスライダサーポ回路 3 2、スピンドルモー 夕 2 2に接続されスピンドルモータの回転数信号を検出する回転数検出部 3 3、 該回転数検出部に接続されホログラム記録担体 2の回転位置信号を生成する回 転位置検出回路 3 4、収差補正液晶駆動回路 L C P D並びにスピンドルモ一夕 2 2に接続されこれに所定信号を供給するスピンドルサーポ回路 3 5を備えてい る。 The hologram device includes a spindle motor 2. 2 that rotates a disk of the hologram record carrier 2 on a turntable, a pickup 2 3 that reads a signal from the hologram record carrier 2 by a light beam, and holds the pickup in a radial direction (X direction). Moved pickup drive unit 24, light source drive circuit 25, spatial light modulator drive circuit 26, reproduction light signal detection circuit 27, servo signal processing circuit 28, focus servo circuit 29, xy direction movement servo Circuit 30, Pickup position detection circuit 31 connected to the pickup drive unit 24 to detect the position signal of the pickup 31, Slider servo circuit 3 2 connected to the pickup drive unit 24 and supplying a predetermined signal thereto, Spindle motor 2 2 is connected to 2 to detect the rotation speed signal of the spindle motor 3 3, the hologram connected to the rotation speed detection section Times to generate a rotational position signal of the recording carrier 2 A shift position detection circuit 34, an aberration correction liquid crystal drive circuit LCPD, and a spindle servo circuit 35 connected to the spindle motor 22 and supplying a predetermined signal thereto are provided.
ホログラム装置は制御回路 3 7を有しており、制御回路 3 7は光源駆動回路 2 5、 空間光変調器駆動回路 2 6、再生光信号検出回路 2 7、 サーポ信号処理回路 2 8、 フォーカスサーポ回路 2 9、 x y方向移動サーポ回路 3 0、 ピックアップ 位置検出回路 3 1、 スライダサーポ回路 3 2、 回転数検出部 3 3、 回転位置検出 回路 3 4、収差補正液晶駆動回路 L C P D並びにスビンドルサーポ回路 3 5に接 続されている。制御回路 3 7はこれら回路からの信 に基づいて、 .これら駆動回 路を介してピックアツプに関するフォーカスサーポ制御、. X及び y方向移動サー ポ制御、 再生位置 (X及び y方向の位置) の制御などを行う。 制御回路 3 7は、 各種メモリを搭載したマイクロコンピュー夕からなり装置全体の制御をなすも のであり、 操作部(図示せず)からの使用者による操作入力及び現在の装置の動 作状況に応じて各種の制御信号を生成するとともに、使用者に動作状況などを表 示する表示部 (図示せず) に接続されている。  The hologram apparatus has a control circuit 37, which includes a light source drive circuit 25, a spatial light modulator drive circuit 26, a reproduction light signal detection circuit 27, a servo signal processing circuit 28, and a focus circuit. Po circuit 29, xy-direction moving support circuit 30, pickup position detection circuit 31, slider service circuit 3 2, speed detector 3 3, rotation position detection circuit 34, aberration correction liquid crystal drive circuit LCPD and spindle service circuit 3 5 It is connected to the. Based on the signals from these circuits, the control circuit 37 is used to control focus servo control related to pick-up, X and y direction movement servo control, and playback position (positions in the X and y directions) via these drive circuits. Control and so on. The control circuit 37 consists of a microcomputer equipped with various memories and controls the entire device. It controls the operation input by the user from the operation unit (not shown) and the current operation status of the device. In response to this, it generates various control signals and is connected to a display (not shown) that displays the operating status to the user.
ホログラム記録再生用レーザ光源 L D 1 ί 接続された光源駆動回路 2 5は、射 出する両光束の強度をホログラム記録時には強く再生時には弱くするように、レ 一ザ光源 L D 1の出力調整を行う。  Hologram recording / reproducing laser light source L D 1 ί The connected light source driving circuit 25 adjusts the output of the laser light source L D 1 so that the intensity of both emitted light beams is strong during hologram recording and weak during reproduction.
また、制御回路 3 7は外部から入力されたホログラム記録すべきデータの符号 化などの処理を実行し、所定信号を空間光変調器駆動回路 2 6に供給してホログ ラムの記録シーケンスを制御する。制御回路 3 7は、像センサ I Sに接続された 再生光信号検出回路 2 7からの読み取り信号に基づいて復調及び誤り訂正処理 をなすことにより、ホログラム記録担体に記録されていたデータを復元する。更 に、 制御回路 3 7は、復元したデータに対して復号処理を施すことにより、情報 データの再生を行い、 これを再生情報データとして出力する。制御回路 3 7は収 差補正部 4 0を含み、再生光信号検出回路 2 7から受信した信号に基づいて、及 び Z又は予め定められた処理手順に従って、 参照光の収差を判別する。 さらに、 制御回路 3 7は、当該参照光の収差に基づいて、収差補正液晶パネル L C Pの位 相調整部 (透明電極) の各々の補正電圧 V iを確定する。 制御回路 3 7は、 当該 補正電圧 V iを表す各制御信号を、収差補正液晶パネル L C Pを駆動するための 収差補正液晶駆動回路 L C P Dへ供給する。 収差補正液晶駆動回路 L C P Dは、 当該制御信号に応じて収差補正液晶パネル L C Pに印加すべき駆動電圧 (補正電 圧) を生成し、 収差補正液晶パネル L C Pに供給する。 Further, the control circuit 37 executes processing such as encoding of data to be recorded from the outside inputted from outside, and supplies a predetermined signal to the spatial light modulator driving circuit 26 to control the recording sequence of the hologram. . The control circuit 37 is configured to perform demodulation and error correction processing based on the read signal from the reproduction light signal detection circuit 27 connected to the image sensor IS. By doing this, the data recorded on the hologram record carrier is restored. Further, the control circuit 37 reproduces the information data by performing decoding processing on the restored data, and outputs this as reproduction information data. The control circuit 37 includes a convergence correction unit 40 and discriminates the aberration of the reference light based on the signal received from the reproduction light signal detection circuit 27 and according to Z or a predetermined processing procedure. Further, the control circuit 37 determines each correction voltage V i of the phase adjustment unit (transparent electrode) of the aberration correction liquid crystal panel LCP based on the aberration of the reference light. The control circuit 37 supplies each control signal representing the correction voltage V i to the aberration correction liquid crystal drive circuit LCPD for driving the aberration correction liquid crystal panel LCP. The aberration correction liquid crystal drive circuit LCPD generates a drive voltage (correction voltage) to be applied to the aberration correction liquid crystal panel LCP according to the control signal, and supplies the drive voltage to the aberration correction liquid crystal panel LCP.
更にまた、 制御回路 3 7は、 記録すべきホログラムを所定間隔(多重間隔) で 記録できるようにホログラムを所定間隔で形成するように制御する。  Furthermore, the control circuit 37 controls to form holograms at predetermined intervals so that holograms to be recorded can be recorded at predetermined intervals (multiple intervals).
サ一ポ信号処理回路 2 8.においては、フォーカスエラ一信号からフォーカシン グ駆動信号が生成され、これが制御回路 3 7を介してフォーカスサ一ポ回路 2 9 に供給される。ブォ一カスサーポ回路 2 9は I区動信号に応じて、 ピックアップ 2 3に搭載されている対物レンズ駆動部 3 6 (図 3 5参照)のフォーカシング部分 を駆動し、そのフォーカシング部分はホログラム記録担体に照射される光スポッ トの焦点位置を調整するように動作する。  In the support signal processing circuit 28, a focusing drive signal is generated from the focus error signal and is supplied to the focus support circuit 29 via the control circuit 37. In response to the I-segment motion signal, the vocus servo circuit 29 drives the focusing part of the objective lens driving part 36 (see Fig. 35) mounted on the pickup 23, and the focusing part is used as a hologram record carrier. Operates to adjust the focal position of the illuminated light spot.
更に、サ一ポ信号処理回路 2 8においては、 X及び y方向移動駆動信号が発生 され、 これらが x y方向移動サーポ回路 3 0に供給される。 x y方向移動サーポ 回路 3 0は、 X及び y方向移動駆動信号に応じてピックアップ 2 3に搭載されて いる対物レンズ駆動部 3 6 (図 3 5参照)を駆動する。よって、対物レンズは X、 y及び z方向の駆動信号による駆動電流に応じた分だけ駆動され、ホログラム記 録担体に照射される光スポットの位置が変位する。 これにより、記録時の運動し ているホログラム記録担体に対する光スポットの相対位置を一定としてホログ ラムの形成時間を確保できる。 · Further, in the support signal processing circuit 28, X and y direction movement drive signals are generated and supplied to the xy direction movement support circuit 30. The xy direction moving support circuit 30 is mounted on the pickup 23 according to the X and y direction moving drive signals. The objective lens drive unit 3 6 (see Fig. 35) is driven. Therefore, the objective lens is driven by an amount corresponding to the drive current by drive signals in the X, y, and z directions, and the position of the light spot irradiated on the hologram record carrier is displaced. As a result, the hologram formation time can be secured while keeping the relative position of the light spot relative to the moving hologram record carrier at the time of recording. ·
制御回路 3 7は、操作部又はピックァップ位置検出回路 3 1からの位置信号及 びサーポ信号処理回路 2 8からの X方向移動エラー信号に基づいてスライダ駆 動信号を生成し、 これをスライダサーポ回路 3. 2に供給する。スライダサ一ポ回 路 3 2はピックアップ駆動部 2 4を介して、そのスライダ駆動信号による駆動電 流に応じピックアップ 2 3をディスク半径方向に移送せしめる。  The control circuit 37 generates a slider drive signal based on the position signal from the operation unit or pick-up position detection circuit 31 and the X-direction movement error signal from the servo signal processing circuit 28, and generates this slider drive circuit 3 Supply to 2. The slider support circuit 32 moves the pickup 23 in the radial direction of the disk through the pickup drive unit 24 according to the drive current generated by the slider drive signal.
回転数検出部 3 3は、ホログラム記録担体 2をターンテーブルで回転させるス ピンドルモー夕 2 2の現回転周波数を示す周波数信号を検出し、これに対応する スピンドル回転数を示す回転数信号を生成し、回転位置検出回路 3 4に供給する。 回転位置検出回路 3 4は回転位置信号を生成し、それを制御回路 3 7に供給する。 制御回路 3 7はスピンドル駆動信号を生成し、それをスピンドルサーポ回路 3 5 に供給し、スピンドルモータ 2 2を制御して(ホログラム記録担体 2を回転駆動 する。  The rotation speed detector 33 detects a frequency signal indicating the current rotation frequency of the spindle motor 22 that rotates the hologram record carrier 2 on a turntable, and generates a rotation speed signal indicating the corresponding spindle rotation speed. The rotation position detection circuit 3 4 is supplied. The rotational position detection circuit 3 4 generates a rotational position signal and supplies it to the control circuit 37. The control circuit 37 generates a spindle drive signal, supplies it to the spindle support circuit 35, controls the spindle motor 22 (rotates and drives the hologram record carrier 2).
く光ピックアップ〉  Kukou Pickup>
図 3 4はピックアップ 2 3の概略構成を示す。  FIG. 34 shows the schematic configuration of the pickup 23.
ピックアップ 2 3は、 ホログラム記録光学系、 ホログラム再生光学系、 サーポ 制御系を含む。これらの系は対物レンズモジユール〇 B M及びその駆動系を除い て筐体内(図示せず) に配置されている。ホログラム記録再生用レーザ光源 L D 1、 コリメ一夕レンズ CL 1、 空間光変調器 SLM、偏光ピームスプリッタ PB S、 4 f レンズ f d及び f e及び像センサ I Sが直線上に配置され、ミラー MR、 1/4波長板 1Z4え、 4 f レンズ f c,偏光ビームスプリツ夕 PBS、 収差補 正液晶パネル LCP、対物レンズモジュール OBMが直線上に配置され、 これら 直線状配列部品は偏光ビームスプリッタ P B Sで直交して配列されている。 _ <ホログラム記録光学系 > The pickup 23 includes a hologram recording optical system, a hologram reproducing optical system, and a servo control system. These systems are arranged in the housing (not shown) except for the objective lens module BM and its drive system. Laser light source LD for hologram recording / reproduction 1, Collimator overnight lens CL 1, Spatial light modulator SLM, Polarization beam splitter PB S, 4 f Lens fd and fe and image sensor IS are arranged in a straight line, mirror MR, 1/4 wavelength plate 1Z4, 4 f Lens fc, polarization beam split PBS, aberration correction liquid crystal panel LCP, objective lens module OBM are arranged on a straight line, and these linear array parts are arranged orthogonally by polarization beam splitter PBS. _ <Hologram recording optical system>
ホログラム記録光学系は、ホログラム記録再生用レーザ光源 LD 1、 コリメ一 夕レンズ. CL 1、 透過型の空間光変調器 SLM、 偏光ビームスプリツ夕 PBS、 収差補正液晶パネル LCP、 4 f レンズ f c、 ミラー MR、 1/4波長板 1Z4 入、 並びに、 対物レンズモジ ール OBMを含む。  Hologram recording optical system: Hologram recording / reproducing laser light source LD 1, collimator lens. CL 1, transmissive spatial light modulator SLM, polarization beam splitter PBS, aberration correction liquid crystal panel LCP, 4 f lens fc, mirror MR Including 1/4 wavelength plate 1Z4, and objective lens module OBM.
レーザ光源 L D 1の射出光がコリメ一夕レンズ C L 1により平行光に変換さ れ、 これが空間光変調器 SLM、 偏光ビームスプリッタ PBSに順に入射する。 平行光の偏光方向は紙面垂直な方向とする。記録したいページデータを中央領域 に表示する空間光変調器 S.LMは、光軸を含む中央領域を透過する光束を無変調 の参照光 RBとし、 この周囲の環状光束を信号光 SBとする。偏光ビームスプリ ッ夕 P B Sは、入射する空間的に分離された参照光 R Bと信号光 S Bをともその 偏光膜により反射して (S偏光)、 4 f レンズ f cに入射するように、 配置され ている。 この 4 f レンズ f cは、 対物レンズ OBの焦点位置(光軸上の焦点距離 f ob)に像を結像させるためのレンズである。空間光変調器 SLMを対物レン ズ O Bの焦点位置に配置するのが困難であるため、空間光変調器 S L Mから 4 f レンズ cまでの距離はこの 4 f レンズ cの焦点距離とする。 4 f レンズ f c は、これに入射した光束が 1 Z4波長板 1 Z4 λを透過し円偏光に変換された後、 ミラー MRで反射し再び 1 Z4波長板 1 /4 λに入射するように、配置されてい る。その結果、 1ノ4波長板 1/4 λからの参照光 RBと信号光 SBは、偏光方 向が紙面平行となり再び偏光ビームスプリッタ P B Sに入射するが、偏光方向が 紙面水平になっているので(P偏光)、偏光ビ一ムスプリッタ PB Sを透過する。 参照光 R B及び信号光 SBは 4 :f レンズ: f cの焦点位置に再び結像し、この結.像 位置に空間光変調器 S .LMが存在するのと等価となる。 この焦点位置に、収差補 正液晶パネル L C Pを配置し、さらに対物レンズモジュール O B Mの対物レンズ O Bの焦^位置を一致させる。収差補正液晶パ,ネル L C Pは収差補正液晶パネル L CPの配向方向は TN型になっている。 , The light emitted from the laser light source LD 1 is converted into parallel light by the collimator lens CL 1 and enters the spatial light modulator SLM and the polarization beam splitter PBS in this order. The polarization direction of the parallel light is a direction perpendicular to the paper surface. The spatial light modulator S.LM that displays the page data to be recorded in the central area uses the light beam transmitted through the central area including the optical axis as the unmodulated reference light RB, and the surrounding annular light beam as the signal light SB. The polarization beam splitter PBS is arranged so that the incident spatially separated reference light RB and signal light SB are both reflected by the polarizing film (S-polarized light) and incident on the 4 f lens fc. Yes. This 4 f lens fc is a lens for forming an image at the focal position of the objective lens OB (focal length f ob on the optical axis). Since it is difficult to place the spatial light modulator SLM at the focal position of the objective lens OB, the distance from the spatial light modulator SLM to the 4 f lens c is the focal length of the 4 f lens c. The 4 f lens fc passes through the 1 Z4 wave plate 1 Z4 λ and is converted into circularly polarized light. It is arranged so that it is reflected by the mirror MR and incident on the 1 Z4 wave plate 1/4 λ again. As a result, the reference light RB and the signal light SB from the 1/4 wavelength plate 1/4 λ are incident on the polarization beam splitter PBS again with the polarization direction parallel to the paper surface, but the polarization direction is horizontal to the paper surface. (P-polarized light), transmitted through the polarization beam splitter PBS. The reference light RB and the signal light SB are imaged again at the focal position of the 4: f lens: fc, which is equivalent to the presence of the spatial light modulator S.LM at this image position. At this focal position, an aberration correcting liquid crystal panel LCP is placed, and the focal position of the objective lens OB of the objective lens module OBM is matched. The aberration correction liquid crystal panel, LCP, has the TN type orientation of the aberration correction liquid crystal panel LCP. ,
図 35に示すように、対物レンズモジュール OBMにおいて、凹レンズ光学素 子 C C Vが参照光 R Bにのみ凹レンズ作用が働くように配置されており、参照光 R Bが対物レンズ OBの作用と組み合わせて本来の対物レンズ OBの焦点より も遠方に焦点を結び、かつ信号光. S Bがレンズ作用を受けず対物レンズ O Bの焦 点に集光するように設定されている。信号光 S Bの対物レンズ〇 Bの焦点がホロ グラム記録担体 2の波長選択性反射層 5上に位置するように、ホログラム記録担 体 2に対する対物レンズモジュール O BMの目対位置が制御される。  As shown in FIG. 35, in the objective lens module OBM, the concave lens optical element CCV is arranged so that the concave lens action acts only on the reference light RB, and the reference light RB is combined with the action of the objective lens OB to achieve the original objective. It is set so that the focal point is farther than the focal point of the lens OB, and the signal light SB is focused on the focal point of the objective lens OB without receiving the lens action. The eye-to-eye position of the objective lens module OB with respect to the hologram recording carrier 2 is controlled so that the focal point of the objective lens 0 B of the signal light S B is located on the wavelength selective reflection layer 5 of the hologram recording carrier 2.
<ホログラム再生光学系 >  <Hologram reproduction optical system>
ホログラム再生光学系は、図 34に示すように、ホログラム記録再生用レーザ 光源 LD1、 コリメータレンズ CL 1、 空間光変調器 SLM、偏光ビ一ムスプリ ッ夕 PBS、 収差補正液晶パネル LCP、対物レンズモジュール OBM、 4 f レ ンズ f c、 f d及び f e、 ミラー MR、 1/4波長板 1Z4 λ、 並びに像センサ I Sを含む。 この光学系において、 4 f レンズ f d及び f e並びに像センサ I S を除く光学部品は上記ホログラム記録光学系と共通である。 As shown in Fig. 34, the hologram reproduction optical system consists of a hologram recording / reproduction laser light source LD1, a collimator lens CL 1, a spatial light modulator SLM, a polarization beam splitter PBS, an aberration correction liquid crystal panel LCP, and an objective lens module OBM. 4 f lens fc, fd and fe, mirror MR, quarter wave plate 1Z4 λ, and image sensor IS. In this optical system, the 4 f lenses fd and fe and the image sensor IS The optical parts except for are common to the hologram recording optical system.
図 3 4に示すように、ホログラム再生光学系の 4 f レンズ f dは偏光ビ一ムス プリッタ P B Sを介して対物レンズ O Bの焦点位置にその焦点が一致する位置 に配置されている。さらに 4 f レンズ ί dからその焦点の 2倍の距離の光軸上位 置に、 4 f レンズ ί dと同様の焦点距離を有する 4 f レンズ eが配置され、 -こ れらは、いわゆる 4 f系光学系を構成している。ホログラム記録担体 2からの再 生光による再生像が結像する対物レンズ O Bの焦点の位置に像センサ I Sを配 置することが困難なため、再生光を受光する像センサ I Sは、その受光面が 4 f レンズ f eの焦点に位置するように配置され、再生像,が像センサ I Sの受光面で 結像して、再生信号が得られる。 これを再生することで記録信号を再生すること ができる。  As shown in FIG. 34, the 4 f lens f d of the hologram reproducing optical system is arranged at a position where the focal point coincides with the focal position of the objective lens OB through the polarization beam splitter P B S. In addition, a 4 f lens e with the same focal length as the 4 f lens ί d is placed above the optical axis at a distance twice that of the focal point from the 4 f lens ί d. This constitutes the system optical system. Since it is difficult to place the image sensor IS at the focal point of the objective lens OB on which the reproduced image from the reproduced light from the hologram record carrier 2 is formed, the image sensor IS that receives the reproduced light has its light receiving surface. Is positioned at the focal point of the 4 f lens fe, and the reconstructed image is imaged on the light receiving surface of the image sensor IS to obtain a reconstructed signal. By reproducing this, the recorded signal can be reproduced.
くホログラム記録担体 >  Hologram record carrier>
ホログラム記録担体 2は、図 3. 5に示すように、参照光の入射側から見て保護 層 8、 ホログラム記録層 7、 分離層 6、 波長選択性反射層 5、 第 2分離層 4、 'サ —ポガイド層 9及びァドレスやトラック構造が転写された基板 3からなる。この 波長選択性反射層 5は、サ一ポビーム S V B ^透過しかつ参照光及び信号光の波 長を含む反射波長帯域のみ反射する誘電体積層体などからなる。サーポガイド層 9には、離れて交わることなく延在する複数のトラックなどのサーポマーク Tと してサーポ用グループ又はピッ卜が形成されている。また、サーポガイド層 9の サーポマーク Tのピッチ P X (いわゆるトラックピッチ) は、 信号光及び参照光 のスポット上方に記録されるホログラム H Gの多重度から決まる所定距離とし て設定される。サーポマーク Tの幅は、サ一ポビ一ム S V Bの光スポッ卜からの 反射光を受光する光検出器の出力、例えばプッシュプル信号に応じて適宜設定さ れる。図 35に示すホログラム記録担体 2のサ一ポガイド層 9のサーポマーク T 上へのサ一ポビーム SVBの追従によって、ホログラム記録再生を行うためのホ ログラム記録担体 2上の位置決め(フォーカスサ一ポ、 xy方向サーポ)を行う。 フォーカスサ一ポや予め記録されたグループゃピットなどのガイドトラック、信 号を再生することでトラツキンダサ一ポなどを行うことができる。 As shown in FIG. 3.5, the hologram record carrier 2 includes a protective layer 8, a hologram recording layer 7, a separation layer 6, a wavelength selective reflection layer 5, a second separation layer 4, as viewed from the reference light incident side. The support guide layer 9 and the substrate 3 onto which the address and track structure are transferred. This wavelength-selective reflection layer 5 is made of a dielectric laminate that transmits the support beam SVB ^ and reflects only the reflection wavelength band including the wavelengths of the reference light and signal light. In the service guide layer 9, a service group or a pin is formed as a service mark T such as a plurality of tracks that extend without being separated from each other. Further, the pitch PX (so-called track pitch) of the servo mark T of the servo guide layer 9 is set as a predetermined distance determined from the multiplicity of the hologram HG recorded above the spot of the signal light and the reference light. The width of the Serpo Mark T is from the optical spot of the SVB SVB It is appropriately set according to the output of the photodetector that receives the reflected light, for example, a push-pull signal. Positioning on the hologram record carrier 2 for performing hologram recording / reproduction by following the servo beam SVB on the support mark T of the support guide layer 9 of the hologram record carrier 2 of the hologram record carrier 2 shown in FIG. 35 (focus support, xy Do direction service). By playing back a focus track, a pre-recorded guide track such as a group or pit, and a signal, you can perform a track spot support.
ぐサーポ制御系 >  Servo control system>
サーポ制御系はホログラム記録担体 2に対する対物レンズモジュール O B M の位置をサ一ポ制御(xy z方向移動)するためのも φで、図 34に示すように、 サ一ポビーム SVBを発する第 2レーザ光源 LD 2、調節レンズ CL 2、ハーフ ミラ一 MR、 ダイクロイツクプリズム DP、偏光ビームスプリッタ PB S、対物 レンズモジュール O BM、力ップリングレンズ A S、並びに光検出器 P Dを含む。 第 2レーザ光源 LD 2は記録 生レーザの波長とは異なる波長 (サ一ポビーム SVB) とする。サーボビ^ "ム SVBは、信号光及び参照光の感応波長帯域以外 のホログラム記録層 7に非感応な波長の光である。  The servo control system is also φ for controlling the position of the objective lens module OBM with respect to the hologram record carrier 2 (moving in the xyz direction). As shown in Fig. 34, the second laser light source that emits the hypobeam SVB Includes LD 2, adjustment lens CL 2, half mirror MR, dichroic prism DP, polarizing beam splitter PBS, objective lens module OBM, force pulling lens AS, and photodetector PD. The second laser light source LD 2 is assumed to have a wavelength different from that of the recording raw laser (suppo beam SVB). The servo beam SVB is light having a wavelength insensitive to the hologram recording layer 7 other than the sensitive wavelength bands of the signal light and the reference light.
サーポ制御系は、 4 ί系光学系中の 4 f レ ズ f c、 f e間に配置したダイク ロイックプリズム DPによりホログラム再生光学系に結合される。すなわち、第 2レーザ光源 LD 2からのサ一ポビーム SVBがハーフミラー MRにより反射 され、ダイクロイツクプリズム DPにより反射されて、再生光学系の光束に合成 されるように、 第 2レ一ザ光源 LD 2、 調節レンズ CL 2、 ハーフミラー MR、 ダイクロイツクプリズム D Pは配置されている。調節レンズ C L 2は検出系 4 f レンズ 4 f dと合成することでサーポビーム SVBが対物レンズモジュール O BM前には平行光となるように、 設定されている。 The servo control system is coupled to the hologram reproducing optical system by a dichroic prism DP disposed between the 4 f lens fc and fe in the 4 ί optical system. That is, the second laser light source LD 2 so that the hypobeam SVB from the second laser light source LD 2 is reflected by the half mirror MR, reflected by the dichroic prism DP, and combined with the light beam of the reproducing optical system. 2, Adjustment lens CL 2, Half mirror MR, Dichroic prism DP are arranged. The control lens CL 2 is combined with the detection system 4 f lens 4 fd, so that the servo beam SVB It is set to be parallel light before BM.
図 35に示すように、対物レンズモジュール OBMにおいて、サ一ポビーム S VBの径 (d a) は参照光 RBの光束の径 (db) 径以下に設定されている。 し たがって、 信号光 SBの外径 (d c) 及び内径(dd) とこれらの径の関係は d c>dd>db≥d aとなる。 ここで記録間隔(多重間隔)やトラックピッチな ど記録ガイドとなる構造が通常の光ディスクのそれらよりも広い(大きい)構成 とした場合、サーポビーム SVBの収差や、サ一ポビーム SVBの光束径は小さ くなり開口数 N Aが低くなることは、 読み取りにあまり影響を及ぼさない。 図 34に示すように、サーボビ一ム S V Bの偏光方向は紙面垂直に設定されて いるため、サ一ボビーム S VBは収差補正液晶パネル L C Pの作用を受けること なく対物レンズモジュール OBMに入射する。  As shown in FIG. 35, in the objective lens module OBM, the diameter (d a) of the hypobeam S VB is set to be equal to or smaller than the diameter (db) of the light beam of the reference light RB. Therefore, the relationship between the outer diameter (d c) and inner diameter (dd) of the signal light SB and these diameters is d c> dd> db≥d a. Here, if the recording guide structure such as recording interval (multiple interval) and track pitch is wider (larger) than that of ordinary optical discs, the aberration of the servo beam SVB and the beam diameter of the hypo beam SVB are small. The lower the numerical aperture NA, the less the reading is affected. As shown in FIG. 34, since the polarization direction of the servo beam S V B is set perpendicular to the paper surface, the servo beam S VB is incident on the objective lens module OBM without being affected by the aberration correcting liquid crystal panel L C P.
図 35に示すように、対物レンズモジュール OBMは、凹レンズ光学素子 CC V及び対物レンズ O.Bと組み合わせてサーポビーム S V Bがホログラム記録担 体 2の波長選択性反射層 5·よりも遠方に集光、すなわち、波長選択性反射層 5'を 透過しサーポマーク Tを形成したサ一ポガイド層 9に集光するように、ホロダラ ム記録担体 2とともに、 設定されている。 こ fこで、 凹レンズ光学素子 CCVは、 対物レンズ O Bと組み合わせてサーポビーム S V Bがその波長で収差無く、サー ポガイド層 9上に焦点を結ぶように、 設定されている。 As shown in FIG. 35, in the objective lens module OBM, in combination with the concave lens optical element CC V and the objective lens OB, the servo beam SVB is condensed farther than the wavelength selective reflection layer 5 of the hologram recording carrier 2, that is, It is set together with the hologram recording carrier 2 so as to be focused on the support guide layer 9 that has passed through the wavelength selective reflection layer 5 ′ and formed the servo mark T. In this f this, the concave lens optical element CCV is not aberration Sapobimu SVB its wavelength in combination with the objective lens OB, so as to focus on the server Pogaido layer 9 is set.
サーポビーム S V Bは波長選択性反射層 5を透過し、サーポガイド層 9に到達 して、 サーポガイド層 9により反射される。  The servo beam S V B passes through the wavelength selective reflection layer 5, reaches the service guide layer 9, and is reflected by the service guide layer 9.
サ一ポガイド層 9で反射され対物レンズモジュール OBMを介して戻るサー ポビーム SVBの反射光は、 34に示すように、偏光ビームスプリツ夕 PBSか らダイクロイツクプリズム D Pへと往路と同一の光路によりハーフミラー MR に到達し、 サーポ信号生成光学系を経て光検出器 P Dに入射する。 Servo beam reflected by the support guide layer 9 and returned via the objective lens module OBM The reflected light of the SVB is polarized light split PBS or PBS as shown in 34. Then, the dichroic prism DP reaches the half mirror MR through the same optical path as the forward path, and enters the photodetector PD via the servo signal generation optical system.
光検出器 P Dにおいては例えばシリンドリカルレンズなどによる非点収差法 によりフォーカスサーポ信号を得ることができ、またサーポガイド層 9上に形成 されたサーポマーク Tを読み取ることによってプッシュプル方式のトラツキン グエラ一信号などを得.ることもできる。また、 ピット列などで形成されたァドレ ス信号なども読み取ることができる。  In the photodetector PD, a focus sap signal can be obtained, for example, by an astigmatism method using a cylindrical lens, etc., and a push-pull tracking error signal etc. can be obtained by reading a servo mark T formed on the sap guide layer 9. You can also get It can also read address signals formed by pit trains.
このように、 サーポ制御は、対物レンズモジュール O B Mを介して、サーポビ —ム S V Bをサーポガイド層 9上の卜ラックに光ス ットとして集光させ、かつ、 その反射光を光検出器 P Dへ導き、そこで検出された信号に応じて対物レンズモ ジュール O B Mを対物レンズ駆動部 3 6のァクチユエ一夕で駆動することによ り、 行われる。  In this way, the servo control condenses the servo beam SVB as a light spot on the rack on the servo guide layer 9 through the objective lens module OBM, and guides the reflected light to the photodetector PD. The objective lens module OBM is driven by the objective lens drive unit 36 according to the signal detected there.
図 3 5に示すように、波長選択性反射層 5がサーポガイド層 9よりも対物レン ズ O B側(光照射側) にあるため信号光及び参照光が反射されるので、 サーポガ ィド層 9のサーポ構造(サーポマーク T)による信号光及び参照光の回折光が生 じないため、 これにより回折光の影響が低減 れ、 S Nのよいホログラム再生が 可能である。  As shown in FIG. 35, since the wavelength selective reflection layer 5 is closer to the objective lens OB side (light irradiation side) than the servo guide layer 9, the signal light and the reference light are reflected. Since signal light and reference light are not diffracted by the servo structure (Servo Mark T), the influence of the diffracted light is reduced, and hologram reproduction with good SN is possible.
<記録再生動作 >  <Recording / playback operation>
レーザ光源 L D 1の射出光がコリメ一夕レンズ C L 1により平行光に変換さ れ、 これが空間光変調器 S L M、 偏光ビ一ムスプリッタ P B Sに順に入射する。 記録時には環状領域で記録すべきページデータを表示し中央領域で無変調とし た空間光変調器 S L Mで分割され参照光 R B及び信号光 S Bとなった平行光は、 それぞれ偏光ビ一ムスプリッ夕 P B Sで反射され 1 4波長板 1 Z 4 λ及びミ ラー MRで反射され、 再び偏光ビームスプリッタ P B Sに戻りこれを透過する。 透過した参照光 R B及び信号光 S Bは収差補正液晶パネル L C Pへ入射する。 記録時には、図 35に示す収差補正液晶パネル L C Pの中央補正領域 P LCC R及び環状周囲領域 P LCPの透明電極に同一電圧を印加することで、ともにを オン状態とする。よって収差補正液晶パネル L CPでの偏光作用が発生せず、透 過する信号光 SB及び参照光 RBは偏光作用を受けず、それらの偏光方向(紙面 平行) は変わらない。 , The light emitted from the laser light source LD 1 is converted into parallel light by the collimator lens CL 1 and is incident on the spatial light modulator SLM and the polarization beam splitter PBS in this order. At the time of recording, the page data to be recorded in the annular area is displayed, and the parallel light divided into the reference light RB and the signal light SB by the spatial light modulator SLM that is not modulated in the central area is Each is reflected by the polarization beam splitter PBS, reflected by the 14 wavelength plate 1 Z 4 λ and the mirror MR, and again returns to the polarization beam splitter PBS to be transmitted therethrough. The transmitted reference light RB and signal light SB enter the aberration correction liquid crystal panel LCP. During recording, the same voltage is applied to the transparent electrodes of the central correction area P LCC R and the annular peripheral area P LCP of the aberration correction liquid crystal panel LCP shown in FIG. Therefore, no polarization action occurs in the aberration-correcting liquid crystal panel LCP, the transmitted signal light SB and reference light RB do not receive the polarization action, and their polarization directions (parallel to the paper surface) do not change. ,
収差補正液晶パネル L C Pを透過した信号光 S B及び参照光 RBは互いに偏 光方向が同一のまま対物レンズモジュール O BMに入射する。信号光 S Bは凹レ ンズ光学素子 CCVの作用を受けないために本来の対物レンズ OBの焦点に集 光し、 参照光 RBは凹レンズ作用を受け当該焦点より更に遠方に集光する。 - ホログラム記録担体 2の波長選択性反射層 5は記録再生用レーザの波長の光 線を反射するように設定されているので、信号光 S Bは波長選択性反射層 5上に 集光して反射される。一方、参照光 RBはデフォ一カスした状態にて波長選択性 反射層 5で反射される。信号光 S Bと入射する参照光 RBとで重なる領域が生じ、 この領域で参照光 RBと信号光 SBの干渉が発生する。 この領域(信号光 SBの 焦点より対物レンズ側でかつ、入射する参照光 R Bと信号光 S Bとがオーバ一ラ ップしている領域)にホログラム記録層 7を配置することで、ホログラム記録層 7にホログラムが記録される。  The signal light S B and the reference light RB transmitted through the aberration correction liquid crystal panel L C P are incident on the objective lens module O BM with the same polarization direction. Since the signal light SB is not affected by the concave lens optical element CCV, it is collected at the focal point of the original objective lens OB, and the reference light RB is condensed further away from the focal point due to the concave lens action. -Since the wavelength selective reflection layer 5 of the hologram record carrier 2 is set to reflect the light beam having the wavelength of the recording / reproducing laser, the signal light SB is condensed on the wavelength selective reflection layer 5 and reflected. Is done. On the other hand, the reference light RB is reflected by the wavelength selective reflection layer 5 in a defocused state. A region where the signal light SB and the incident reference light RB overlap is generated, and interference between the reference light RB and the signal light SB occurs in this region. By arranging the hologram recording layer 7 in this region (region where the reference light RB and the signal light SB overlap with each other on the objective lens side from the focal point of the signal light SB), the hologram recording layer 7 A hologram is recorded in 7.
再生時には図 36に示すように、 レーザ光源 LD 1の射出光を、空間光変調器 SLMの環状領域で遮光し中央領域で光軸を含む光束のみ無変調で透過させ、参 照光 R Bを生成する。記録時と同様の光路をたどつて参照光 R Bを収差補正液晶 パネル C Pの中央補正領域 P L C C Rに到達せしめる。ここで収差補正液晶パ ネルし C Pの位相調整部の複数の分割透明電極へ参照光に生じる収差の分布形 状に応じた補正電圧を印加するとともに、 環状周囲領域 P L C P Rをオフ状態 (電圧印加をしない) とし、 中央補正領域 P L C Cをオン状態のままにする。 .参 照光 R Bは偏光方向が紙面平行のままホログラム記録層 7に入射するので、再生 される再生光も記録時の信号光と同じ発散及び収束する光束でかつ紙面平行の 偏光方向となる。よって、再生光は収差補正液,晶パネル L C Pの環状周囲領域 P L C P Rを透過するため偏光作用を受け偏光方向が紙面垂直となる。一方、参照 光 R Bは紙面平行のまま波長選択性反射層 5で反射されるが液晶での偏光作用 がないので再生光とは偏光方向が異なることになる。よって再生光の偏光を変え るので、紙面垂直なた 偏光ビームスプリッタ P B Sで反射されるが、信号光 S Bはこれを透過される。分離された再生光は検出系の 4 f レンズ f d及び f eを 介して像センサ I Sの受光面で結像して、再生像が得られ、像センサ I Sが再生 信号を出力する。 During reproduction, as shown in FIG. 36, the light emitted from the laser light source LD 1 is shielded by the annular region of the spatial light modulator SLM, and only the light beam including the optical axis is transmitted unmodulated in the central region. Illumination RB is generated. Follow the same optical path as when recording, and let the reference beam RB reach the central correction area PLCCR of the aberration correction LCD panel CP. Here, an aberration correction liquid crystal panel is applied to a plurality of divided transparent electrodes of the CP phase adjustment unit, and a correction voltage corresponding to the distribution shape of the aberration generated in the reference light is applied, and the annular peripheral region PLCPR is turned off (voltage application is not performed). Do not) and leave the central correction area PLCC on. Since the reference light RB is incident on the hologram recording layer 7 with the polarization direction being parallel to the paper surface, the reproduced light to be reproduced has the same divergence and convergent light beam as the signal light at the time of recording and has a polarization direction parallel to the paper surface. Therefore, the reproduction light is transmitted through the aberration correction liquid and the annular peripheral region PLCPR of the crystal panel LCP, so that the polarization direction is perpendicular to the paper surface due to the polarization effect. On the other hand, the reference light RB is reflected by the wavelength-selective reflection layer 5 while being parallel to the paper surface, but has no polarization action in the liquid crystal, so the polarization direction differs from that of the reproduction light. Therefore, since the polarization of the reproduction light is changed, it is reflected by the polarization beam splitter PBS perpendicular to the paper surface, but the signal light SB is transmitted therethrough. The separated reproduction light forms an image on the light receiving surface of the image sensor IS through the 4 f lenses fd and fe of the detection system to obtain a reproduction image, and the image sensor IS outputs a reproduction signal.
ぐホログラム記録再生方法 > ' · · 図 3 4の本実施形態において、 ホログラム記録再生方法について説明する。 ホログラム記録時で決まった収差補正量であり再生光の偏光を変える場合、ホ ログラムの記録は図 3 7に示すフローチャートに従って行われる。  Hologram Recording / Reproducing Method> In the present embodiment of FIG. 34, a hologram recording / reproducing method will be described. When the aberration correction amount determined at the time of hologram recording and the polarization of the reproduction light is changed, hologram recording is performed according to the flowchart shown in FIG.
先ず、ホログラム記録担体が装置に装填された後、 フォーカス /トラッキング (zx方向) サーポ及びスピンドルサーポを動作せしめて、 対物レンズの焦点が ホログラム記録担体の所定のサ一ボマ一ク位置情報を取得して(ステップ S 1 )、 位置に合うように記録エリアへピックアップを移動せしめる (ステップ S 2)。 次に、 ポジションサーポ (y方向) を動作せしめて、 光ビームと記録層 7とを 相対的に静止した状態とする (ステップ S 3)。 First, after the hologram record carrier is loaded in the device, the focus / tracking (zx direction) and spindle spindles are operated, and the focal point of the objective lens acquires the predetermined servo mark position information of the hologram record carrier. (Step S 1) Move the pickup to the recording area so that it matches the position (Step S2). Next, the position support (y direction) is operated so that the light beam and the recording layer 7 are relatively stationary (step S3).
次に、参照光及び信号光をホログラム記録担体に照射する際に、参照光収差補 正用の補正電圧は印加せずに (ステップ S 4)、 収差補正液晶パネル L CPの中 央補正領域 P LCC R.及び環状周囲領域 P LCPの透明電極に同一電 j£を印加 してオン状態とする (ステップ S 5),。'そして、 所定量の記録されるべき情報デ —夕を空間光変調器に供給し、レ一ザ光の出力,を上昇させて信号光及び参照光を ホログラム記録担体に照射してホログラム記録を開 する (ステップ S 6)。 次に、 情報データの記録継辕又は終了を判別して (ステップ S 7)、 継続であ ればステップ S 2へ戻り、 記録終了であれば終了する。  Next, when irradiating the hologram recording carrier with the reference light and the signal light, the correction voltage for correcting the reference light aberration is not applied (step S 4), and the central correction region P of the aberration correction liquid crystal panel L CP is applied. The same electric power is applied to the transparent electrodes of the LCC R. and the annular peripheral region P LCP to turn it on (step S5). 'Then, a predetermined amount of information data to be recorded is supplied to the spatial light modulator, the output of the laser light is increased, and the hologram recording carrier is irradiated with signal light and reference light to perform hologram recording. Open (Step S6). Next, it is determined whether or not the information data has been recorded (step S7). If it is a continuation, the process returns to step S2, and if the recording is completed, the process ends.
ホログラム再生時で決まった収差補正量であり再生光の偏光を変える場合、ホ ログラムの再生は図.38に示す: 口一チャートに従って行われる。  If the aberration correction amount is fixed at the time of hologram reproduction and the polarization of the reproduction light is changed, the hologram is reproduced as shown in Fig. 38:
先ず、ホログラム記録担.体が装置に装填された後、 フォーカス Zトラッキング (zx方向) サーポ及びスピンドルサ一ポを動作せしめて、 対物レンズの焦点が ホログラム記録担体の所定のサ一ポマーク位置情報を取得して (ステップ S 1 1)、 位置に合うように再生エリアへピックアップを移動せしめる (ステップ S 12)。  First, after the hologram recording carrier is loaded into the apparatus, the focus Z tracking (zx direction) and the spindle support are operated so that the focal point of the objective lens is the predetermined position information on the hologram record carrier. Acquire it (Step S 1 1), and move the pickup to the playback area to match the position (Step S 12).
次に、 ポジションサーポ (y方向) を動作せしめて、 光ビームと記録層 7とを 相対的に静止した状態とする (ステップ S 13)。  Next, the position support (y direction) is operated so that the light beam and the recording layer 7 are relatively stationary (step S13).
次に、参照光のみをホログラム記録担体に照射する際に、参照光収差補正用の 補正電圧は印加して、 参照光領域では収差補正を行う (ステップ S 14)。 同時 に、収差補正液晶パネル L C Pの中央補正領域 P L C C Rをオン状態とし環状周 囲領域 P L C P (信号光領域) をオフ状態とする (ステップ S 1 5 ) ので、 再生 光が偏光により分離可能となる。 この参照光の収差補正においては、記録層 7の 耒記録/記録による状態変化はあらかじめ制御回路 3 7のメモリに記録されて いてそれに応じた収差補正量を収差補正部 4 0が収差補正液晶駆動回路 L C P Dへ出力し、 これにより収差補正液晶パネル L C Pが参照光の収差補正を行う。 ここでは特にホログラム記録担体特有の問題、例えばホログラム記録担体の収縮 や屈折率の変化による収差を補正する。よって、ホログラム記録担体の記録層の 特性によって記録後に記録層の屈折率などが変化する量があらか,じめ見込まれ ている場合に有効である。 Next, when the hologram recording carrier is irradiated with only the reference light, a correction voltage for correcting the reference light aberration is applied to correct the aberration in the reference light region (step S14). simultaneous In addition, since the central correction area PLCCR of the aberration correction liquid crystal panel LCP is turned on and the annular surrounding area PLCP (signal light area) is turned off (step S 15), the reproduction light can be separated by polarization. In this reference light aberration correction, the state change caused by the recording / recording of the recording layer 7 is recorded in the memory of the control circuit 37 in advance, and the aberration correction unit 40 drives the aberration correction liquid crystal according to the corresponding aberration correction amount. This is output to the circuit LCPD, and the aberration correction liquid crystal panel LCP corrects the aberration of the reference light. Here, in particular, a problem peculiar to the hologram record carrier, for example, aberration due to shrinkage of the hologram record carrier or change in refractive index is corrected. Therefore, it is effective when the amount of change in the refractive index of the recording layer after recording is anticipated depending on the characteristics of the recording layer of the hologram record carrier.
次に、レ一ザ光の出力を上昇させて参照光のみをホログラム記録担体に照射し てホログラム再生を開始する (ステップ S 1 6 )。 - 次に、 情報データの再生継続又は終了を判別して (ステップ S 1 7 )、 継続で あればステップ S 1 2へ戻り、 再生終了であれば終了する。  Next, the output of the laser beam is increased and the hologram record carrier is irradiated with only the reference beam to start hologram reproduction (step S 16). -Next, it is determined whether or not the reproduction of the information data is continued (step S 1 7).
なお、図 3 7及び図 3 8に示すプロセスにおいて、再生光の偏光を変える必要 のない場合は、ステップ S 5及びステップ S l 5の工程を省き、収差補正液晶パ ネル L C Pすべてオン状態に維持しておけばよい。  If it is not necessary to change the polarization of the reproduction light in the processes shown in FIGS. 37 and 38, the steps S5 and S15 are omitted, and all the aberration correction liquid crystal panels LCP are kept on. You just have to.
ポログラム再生時に収差補正量を再生信号の品質で決める場合、ホログラムの 再生は図 3 9に示すフロ一チャートに従って行われる。  When the aberration correction amount is determined by the quality of the playback signal during playback of the program, the playback of the hologram is performed according to the flowchart shown in Fig. 39.
先ず、ステップ S 2 1〜ステップ S 2 3までは図 3 8に示す記録プロセスと同 様に実行する。  First, steps S21 to S23 are executed in the same manner as the recording process shown in FIG.
次に、低出力レーザ光の参照光のみをホログラム記録担体に照射してホロダラ ム再生を開始する (ステップ S 24)。 Next, the hologram record carrier is irradiated with only the reference light of the low-power laser beam to Start playback (step S24).
次に、参照光収差補正用の補正電圧は印加して、参照光領域では収差補正を行 う状態とする (ステップ S 2 5)。  Next, a correction voltage for correcting the reference light aberration is applied, and aberration correction is performed in the reference light region (step S 25).
次に、収差補正量を再生信号の品質を評価するために、再生された画像の SN R又はエラ一レートを取得する (ステップ S 26)。 たとえば、 記録層 7に記録 されているページデータは、空間光変調器 S L Mの入射光を透過せしめるピクセ ルを "1" として白レベルで表し、 入射光を遮蔽せしめるピクセルを "0" とし て黒レベルで表すこととして記録されているので、再生された画像の S NRは下 記式で算出される。 . .  Next, the SNR or error rate of the reproduced image is acquired in order to evaluate the quality of the reproduction signal based on the aberration correction amount (step S26). For example, in the page data recorded on the recording layer 7, the pixel that transmits the incident light of the spatial light modulator SLM is represented by white level as “1”, and the pixel that blocks the incident light is represented as black by “0”. Since it is recorded as expressed by level, the SNR of the reproduced image is calculated by the following formula. .
SNR- ( SNR- (
ψ{十び 2 ) ψ {10 2 )
(式中、 mlは黒レベルの平均光量を、 m 2は白レベルの平均光量を、 σ 1は黒 レベルの標準偏差を、 σ 2は白レベルの標準偏差を、 それぞれ示す。)  (Where ml is the average light intensity at the black level, m 2 is the average light intensity at the white level, σ 1 is the standard deviation of the black level, and σ 2 is the standard deviation of the white level.)
次に、取得された ®像の SNR'又はエラ一レートが制御回路 3 7のメモリにあ らかじめ記録されている所定値を超えるか否かで、最適補正値探索を行う (ステ ップ S 27)。 取得値が所定値未満であれば継続してステップ S 24に戻り、 取  Next, an optimum correction value search is performed based on whether the SNR 'or error rate of the acquired image exceeds a predetermined value recorded in the memory of the control circuit 37 (step). S 27). If the acquired value is less than the predetermined value, continue to step S24 and
(  (
得値が所定値を超えれば探索終了として、次へ移行し、参照光収差補正値を決定 する (ステップ S 2 8)。 If the obtained value exceeds the predetermined value, the search ends, and the process proceeds to the next to determine the reference light aberration correction value (step S 28).
次に、参照光収差補正値に基づき参照光領域で収差'補正を行いつつ、 レーザ光 の出力を上昇させて参照光のみをホログラム記録担体に照射してホログラム再 生を開始する (ステップ S 2 9)。  Next, while correcting the aberration in the reference light region based on the reference light aberration correction value, the output of the laser light is increased and only the reference light is irradiated onto the hologram record carrier to start hologram reproduction (step S 2 9).
次に、 情報デ一夕の再生継続又は終了を判別して (ステップ S 3 0)、 継続で あればステップ S 2 2へ戻り、 再生終了であれば終了する。 Next, it is determined whether or not playback of the information item is continued (step S 3 0), and If there is, return to step S 2 2, and if playback ends, end.
ここでは特にホログラム記録担体特有の収縮や屈折率の変化による収差をホ ログラム記録担体の記録状態に応じて補正するので、種々のホログラム記録担体 の再生に有効である。 また、ホログラム記録担体の収縮などによってホログラム の読み取り品位が低下する場合には参照光の波面制御が効果的と思われるが、そ れを実施した場合にサ一ポビームまでもその作用を受けると不具合が生じるこ とが予想される。そのためにサーポビームには液晶の収差補正効果が作用しない ようにすることは効果がある。 .  Here, the aberration caused by the shrinkage and the change in refractive index peculiar to the hologram record carrier is corrected according to the recording state of the hologram record carrier, so that it is effective for reproducing various hologram record carriers. Also, if the hologram reading quality is reduced due to the shrinkage of the hologram record carrier, etc., the wavefront control of the reference light seems to be effective. Is expected to occur. Therefore, it is effective to prevent the aberration correction effect of the liquid crystal from acting on the servo beam. .
以上のように、収差補正液晶パネル L C Pの透明電極はホログラム記録担体な どに歪みや厚みの誤差、傾きなどが生じた場合にその収差に応じた補正を行うの に適した分割になっているので、 参照光の収差補正を行うことができる。  As described above, the transparent electrode of the aberration correction liquid crystal panel LCP has a division suitable for performing correction according to the aberration when distortion, thickness error, inclination, etc. occur in a hologram record carrier or the like. Therefore, the aberration correction of the reference light can be performed.
このように、先行技術ではホログラム記録用の参照光は平行光束であるが、本 実施形態では、特定の対物レンズモジュールにより信号光及び参照光をそれら焦 点位置を異ならすように発散又は収束光とするとともに、収差補正液晶パネルな どの特定の収差補正装置を用いて記録時と再生時に行う偏光状態の切り替える 構成としている。また、 この対物レンズモジ Lールにおいては対物レンズとの組 み合わせる特定光学素子により、記録再生のレーザ波長とは異なる波長を用いる サーポビームにおいて、ホログラム記録担体のサーポ イド層上で収差無く集光 するように設定されている。さらに、従来技術では記録再生で光学系を変更する 必要があつたが、本実施形態では収差補正液晶パネルに印加する電圧をコント口 —ルすることで同一の効果を得ることができる。  As described above, in the prior art, the reference light for holographic recording is a parallel light beam. However, in this embodiment, the signal light and the reference light are diverged or converged so as to make the focal point positions different by a specific objective lens module. In addition, a specific aberration correction device such as an aberration correction liquid crystal panel is used to switch the polarization state during recording and reproduction. Also, in this objective lens module, a specific optical element combined with the objective lens is used to collect light with no aberration on the servo layer of the hologram record carrier using a servo beam that uses a wavelength different from the recording / reproducing laser wavelength. Is set to Furthermore, in the prior art, it is necessary to change the optical system for recording and reproduction, but in this embodiment, the same effect can be obtained by controlling the voltage applied to the aberration correction liquid crystal panel.
また従来技術では参照光が平行光であるため、シフト多重記録が不可能であり 記録容量が少なかった。しかしながら本実施形態では参照光 R Bを収束光にして シフト多重可能にしたことで高品位な再生信号を得ることができる。このことは、 記録後にホログラム記録層の収縮や屈折率変化などによって記録時の参照光の 波面と再生時の参照光の波面が異なってしまう場合などに特に有効である。また、 サ一ポビーム S V Bの波長において光学素子と対物レンズの組み合わせによ、つ て収差が除去されてい.るので、 サ一ポ信号の再生が良好に行える。 In the prior art, since the reference beam is a parallel beam, shift multiplex recording is not possible. The recording capacity was low. However, in this embodiment, a high-quality reproduction signal can be obtained by making the reference beam RB the convergent beam and enabling shift multiplexing. This is particularly effective when the wavefront of the reference light at the time of recording differs from the wavefront of the reference light at the time of reproduction due to shrinkage of the hologram recording layer or a change in refractive index after recording. In addition, since the aberration is removed by the combination of the optical element and the objective lens at the wavelength of the hypo beam SVB, the reproduction of the hypo signal can be performed satisfactorily.
さらに、サーボビームの合成光路を検出系の 4 f系内に配置することで省スぺ ース化を.実現でき、集光系中に合成プリズムを配置できるのでプリズムなどの有 効径を小さくすることができる。  Furthermore, space can be saved by arranging the combined optical path of the servo beam in the 4f system of the detection system, and a synthetic prism can be arranged in the condensing system, so the effective diameter of the prism, etc. can be reduced. can do.
く他のピックァップ変形例 >  Other Pickup Variations>
図 4 0に他のピックアップの構成を示す。 '  Figure 40 shows the configuration of another pickup. '
このピックアップは、図 3 4に示すピックアップにおけるミラー M R、 1 / 4 波長板 Ι 74 λ及び 4 f レンズ f cを取り除き、 これらの位置に、透過型の空間 光変調器 S L Mに代えて、 .反射型の偏光空間光変調器 P S L Mを配置して、ホロ グラム記録再生用レ一ザ光源 L D 1からの光束を偏光ビームスプリッ夕 P B' S を経て偏光空間光変調器 P S L Mへ入射し その反射光を用いる以外、上記ピッ クアップ 2 3と同一である。よって、記録再生動作も上記ピックアップ 2 3と同 様に行われる。  This pickup removes the mirror MR, the quarter wave plate Ι 74 λ, and the 4 f lens fc in the pickup shown in Fig. 34, and instead of the transmissive spatial light modulator SLM at these positions, a reflection type The polarization spatial light modulator PSLM is placed, and the light beam from the hologram light source LD 1 for hologram recording / reproduction is incident on the polarization spatial light modulator PSLM via the polarization beam splitter PB 'S and the reflected light is used. Other than the above, the same as Pickup 2 3 above. Therefore, the recording / reproducing operation is performed in the same manner as the pickup 23 described above.
偏光空間光変調器 P S L Mは、図 4 1に示すように、光軸近傍で光軸を含む中 央領域 Aとその周囲の光軸を含まない空間光変調領域 Bとに分割されているい わゆる L C O S (Liquid Crystal On Silicon) 装置である。 反射される光束に 9 0度回転する偏光の変調が与えられ、偏光空間光変調器 P S L Mが光束を反射し た時点で光束は空間光変調領域 Bの空間変調された信号光 S Bと中央領域 Aの 空間変調されない参照光 R Bに同軸上にて分離される。 As shown in FIG. 41, the polarization spatial light modulator PSLM is divided into a central region A including the optical axis and a spatial light modulation region B not including the surrounding optical axis in the vicinity of the optical axis. LCOS (Liquid Crystal On Silicon) equipment. The reflected light beam is polarized by 90 degrees, and the polarization spatial light modulator PSLM reflects the light beam. At that time, the light beam is coaxially separated into the spatially modulated signal light SB in the spatial light modulation region B and the non-spatial reference light RB in the central region A.
偏光空間光変調器 P S L Mは、マトリクス状に分割された複数の画素電極を有 する液晶パネルなどで電気的に入射光の一部を画素毎に偏光する機能を有する。 この偏光空間光変調器 P S L Mは空間光変調器駆動回路 2 6に接続され、これか らの記録すべきページ —夕に基づいた分布を有するように光束偏光を変調し て、環状断面の信号光 S Bを生成する。 また、 偏光空間光変調器 P S L Mは入射 及び反射で同一偏光を維持することもできる φで、空間光変調領域 Βのみで変調 状態を維持したまま反射状態とする制御を行えば、偏光ビームスプリッタ P B S との組み合わせでシャツ夕として機能して、中央領域 Αの空間変調されない参照 光のみを対物レンズモジュール O B Mへ供給できる  The polarization spatial light modulator PSLMM has a function of electrically polarizing part of incident light for each pixel in a liquid crystal panel having a plurality of pixel electrodes divided in a matrix. This polarization spatial light modulator PSLM is connected to the spatial light modulator driving circuit 26, and modulates the polarization of the light flux so that it has a distribution based on the page to be recorded from now on—the signal light of the annular cross section. Generate SB. In addition, the polarization spatial light modulator PSLM can maintain the same polarization by incidence and reflection, and if it is controlled to be in the reflection state while maintaining the modulation state only in the spatial light modulation region Β, the polarization beam splitter PBS It can function as a shirt evening in combination with the objective lens module OBM.

Claims

請求の範囲 The scope of the claims
1 . 参照光及び信号光の光学干渉パターンを回折格子として内部に保存する ホログラム記録層を有するホログラム記録担体へ情報を記録又は再生する光ピ ックアップ装置であって、 1. An optical pickup device that records or reproduces information on a hologram record carrier having a hologram recording layer that stores therein an optical interference pattern of reference light and signal light as a diffraction grating,
可干渉性光を発生す ¾光源と、  ¾ a light source that generates coherent light,
前記可干渉性光の光軸上に配置された中央領域と前記中央領域を囲むように 配置された環状領域とからなり、前記可干渉性,光の前記中央領域の通過成分と前 記環状領域の通過成分とを空間的に分離して参照光と信号光とを生成して共軸 に同一方向に伝搬させる空間光変調器と、  The center region disposed on the optical axis of the coherent light and the annular region disposed so as to surround the center region, the coherent light passing component of the center region and the annular region A spatial light modulator that spatially separates the passing component of the signal to generate reference light and signal light and propagates them in the same direction on the same axis;
光軸上に配置されかつ前記信号光及び前記参照光を前記ホログラム記録層へ 向け共軸に照射するとともに、前記参照光及び前記信号光を互いに異なる焦点に 集光させる対物レンズ光学系と、  An objective lens optical system that is disposed on an optical axis and irradiates the signal light and the reference light toward the hologram recording layer on the same axis and collects the reference light and the signal light at different focal points;
光軸上に配置されかつ前記参照光が前記ホログラム記録層に照射された際に 前記ホログラム記録層から前記対物レンズ光学系を介して戻る光を受光する像 検出手段と、 (  An image detecting means for receiving light returning from the hologram recording layer via the objective lens optical system when the hologram recording layer is irradiated with the reference light,
' 光軸上に配置された中央補正領域と前記中央補正領域を囲むように配置され た環状周囲領域とからなり、前記中央補正領域及び前記環状周囲領域の少なくと も一方が通過光束の波面の位相を部分的に変化させる前記通過光束の波面収差 を補正する複数の透明電極を備える透過型の液晶装置からなる収差補正装置と、 を含むことを特徴とする光ピックアツプ装置。  '' It consists of a central correction region arranged on the optical axis and an annular peripheral region arranged so as to surround the central correction region, and at least one of the central correction region and the annular peripheral region is the wavefront of the passing light flux. And an aberration correction device comprising a transmissive liquid crystal device including a plurality of transparent electrodes for correcting wavefront aberration of the passing light flux that partially changes the phase.
2 . 前記空間光変調器が透過型のマトリクス液晶表示装置からなり、前記中 央領域は貫通開口又は透明材料からなることを特徴とする請求項 1記載の光ピ ックアップ装置。 2. The spatial light modulator comprises a transmissive matrix liquid crystal display device, 2. The optical pick-up device according to claim 1, wherein the central region is made of a through opening or a transparent material.
3 . 前記空間光変調器が透過型のマトリクス液晶表示装置からなり、前記中 央領域も透過型のマトリクス液晶表示装置からなり、記録時に前記中央領域が透 光状態であることを特徴とする請求項 1記載の光ピックァップ装置。  3. The spatial light modulator comprises a transmissive matrix liquid crystal display device, the central region also comprises a transmissive matrix liquid crystal display device, and the central region is in a transmissive state during recording. Item 1. An optical pick-up device according to item 1.
4 . 前記中央補正領域は前記透過型の液晶装置からなり、記録時及び再生時 の少なくとも一方に前記通過光束の波面収差を補正することを特徴とする請求 項 2〜 3のいずれかに記載の光ピックァップ装置。  4. The center correction region is composed of the transmissive liquid crystal device, and corrects wavefront aberration of the passing light beam at least during recording and during reproduction. Optical pick-up device.
5 . 再生時のみに前記通過光束の波面収差を補正することを特徴とする請求 項 4記載の光ピックァップ装辱。  5. The optical pick-up humiliation according to claim 4, wherein the wavefront aberration of the passing light beam is corrected only during reproduction.
6 . 前記空間光変調器が透過型のマトリクス液晶表示 ¾置からなり、前記環 状領域は貫通開口又は透明材料からなることを特徴とする請求項 1記載の光ピ ックアツプ装置。  6. The optical pick-up device according to claim 1, wherein the spatial light modulator is formed of a transmissive matrix liquid crystal display device, and the annular region is formed of a through opening or a transparent material.
7 . 前記空間光変調器が透過型のマトリクス液晶表示装置からなり、前記環 状領域も透過型のマトリクス液晶表示装置からなり、記録時に前記環状領域が透 光状態であることを特徴とする請求項 1記載の光ピックァップ装置。  7. The spatial light modulator is formed of a transmissive matrix liquid crystal display device, the annular region is also formed of a transmissive matrix liquid crystal display device, and the annular region is in a light transmissive state during recording. Item 1. An optical pick-up device according to item 1.
8 . 前記環状周囲領域は前記透過型の液晶装置からなり、記録時及び再生時 の少なくとも一方に前記通過光束の波面収差を補正することを特徴とする請求 項 6〜 7のいずれかに記載の光ピックァップ装置。  8. The annular peripheral region is composed of the transmissive liquid crystal device, and corrects wavefront aberration of the passing light beam at least during recording and during reproduction. Optical pick-up device.
9 . 再生時のみに前記通過光束の波面収差を補正することを特徴とする請求 項 8記載の光ピックァップ装置。  9. The optical pick-up device according to claim 8, wherein the wavefront aberration of the passing light beam is corrected only during reproduction.
1 0 . 前記収差補正装置は前記中央補正領域及び前記環状周囲領域の通過成 分の偏光面の回転角度を互いに異ならしめることを特徴とする請求項 1〜 9の いずれかに記載の光ピックアップ装置。 ' 1 0. The aberration correction device passes through the central correction region and the annular peripheral region. The optical pickup device according to any one of claims 1 to 9, wherein the rotation angles of the polarization planes are made different from each other. '
1 1 . 前記対物レンズ光学系は、集光レンズに一体となってその屈折面に同 軸に形成された凸若しくは凹レンズ又は凸若しくは凹レンズ作用を有するフレ ネルレンズ面若しくは回折格子を有する 2焦点レンズであることを特徴とする 請求項 1〜 1 0のいずれかに記載の光ピックアツプ装置。  1 1. The objective lens optical system is a bifocal lens having a convex or concave lens, a Fresnel lens surface having a convex or concave lens action, or a diffraction grating, which is formed integrally with a condensing lens and coaxially formed on a refractive surface thereof. The optical pick-up device according to claim 1, wherein the optical pick-up device is provided.
1 2 . 前記対物レンズ光学系は、.集光レンズと前記集光レンズと同軸に配置 された凸若しくは凹レンズ又は凸若しくは凹 ,レンズ作用を有するフレネルレン ズ面若しくは回折格子を有する透過型の光学素子であることを特徴とする請求 項 1〜 1 0のいずれかに記載の光ピックアツプ装置。  1 2. The objective lens optical system comprises: a condensing lens and a convex or concave lens arranged coaxially with the condensing lens, or a transmissive optical element having a convex or concave, Fresnel lens surface or diffraction grating having a lens action. The optical pick-up device according to claim 1, wherein
1 3 . 前記複数の透明電極は、前記光軸を中心に同心円のパターンで配置さ' れていることを特徴とする請求項 1〜1 2のいずれかに記載の光ピックアップ 装置。  13. The optical pickup device according to claim 1, wherein the plurality of transparent electrodes are arranged in a concentric pattern around the optical axis.
1 4. 前記複数の透明電極は、前記光軸に垂直な直線に対称でかつ当該直線 を含む間隙で分割された内側及び外側の領域のパターンで配置されていること を特徴とする請求項 1〜 1 2のいずれかに記 '載の光ピックアツプ装置。  1 4. The plurality of transparent electrodes are arranged in a pattern of inner and outer regions that are symmetrical with respect to a straight line perpendicular to the optical axis and divided by a gap including the straight line. ~ 1 Optical pick-up device described in 2
1 5 . 参照光及び信号光の光学干渉パターンを回折格子として内部に保存す るホログラム記録担体へ情報を記録又は再生するホログラム記録再生システム であって、  15. A hologram recording / reproducing system for recording / reproducing information on / from a hologram recording carrier that stores therein an optical interference pattern of reference light and signal light as a diffraction grating.
可干渉性光から、'参照光と、記録情報に応じて前記可干渉性光を変調した信号 光と、 を生成する光生成手段と、  From the coherent light, a reference light, a signal light obtained by modulating the coherent light according to the recording information, and a light generating means for generating
前記参照光及び前記信号光のいずれか一方を光軸上に、他方を前記一方の周囲 に環状に、互いに空間的に分離して同軸に同一方向に伝搬させ、対物レンズ光学 系を介して、前記参照光及び前記信号光を互いに光軸上の異なる焦点に集光させ、 前記参照光及び信号光を干渉させる干渉手段と、 Either the reference light or the signal light is on the optical axis, and the other is around the one The reference light and the signal light are condensed at different focal points on the optical axis via the objective lens optical system, and are spatially separated from each other and transmitted coaxially in the same direction. And interference means for interfering with the signal light,
前記異なる焦点のうち前記対物レンズ光学系に近い焦点側に位置するホログ ラム記録層を有するホログラム記録担体と、  A hologram recording carrier having a hologram recording layer located on the focal side near the objective lens optical system among the different focal points;
前記異なる焦点のう.ち前記対物レンズ光学系に遠い焦点側に位置する反射層 と、  A reflection layer located on the focal side far from the objective lens optical system;
光軸上に配置されかつ前記参照光が前記ホ卩グラム記録層に照射された際に 前記ホログラム記録層から前記対物レンズ光学系を介して戻る光耷受光する像 検出手段と、  An image detecting means disposed on the optical axis and receiving light from the hologram recording layer via the objective lens optical system when the hologram recording layer is irradiated with the reference light; and
光軸上に配置された中央補正領域と前記中央補正領域を囲むように配置され た環状周囲領域とからなり、前記中央補正領域及び前記環状周囲領域の少なくと も一方が通過光束の.波面の位相を部分的に変化させる前記通過光束の波面収差 を補正する複数の透明電極を備える透過型の液晶装置からなる収差補正装置と、 前記複数の透明電極の各々へ、情報の記録又は再生の際に補正電圧を供給する 収差補正液晶駆動回路と、を含むことを特徴とするホログラム記録再生システム。  A central correction region disposed on the optical axis and an annular peripheral region disposed so as to surround the central correction region, and at least one of the central correction region and the annular peripheral region is a wavefront of a passing light flux. An aberration correction device including a transmission type liquid crystal device including a plurality of transparent electrodes for correcting wavefront aberration of the passing light flux that partially changes the phase; and when information is recorded on or reproduced from each of the plurality of transparent electrodes And a aberration correction liquid crystal driving circuit for supplying a correction voltage to the hologram recording / reproducing system.
1 6 . 前記ホログラム記録層は、前記参照光及び前記信号光のいずれか一方 が前記反射層上でデフォーカス状態となりかつ反射されて前記他方と交差し千 渉して回折格子を生成するに足りる膜厚を、有することを特徴とする請求項 1 5 記載のホログラム記録再生システム。  16. The hologram recording layer is sufficient that either one of the reference light or the signal light is defocused on the reflection layer and reflected so as to intersect with the other to generate a diffraction grating. 16. The hologram recording / reproducing system according to claim 15, wherein the hologram recording / reproducing system has a film thickness.
1 7 . 前記ホログラム記録担体は、前記ホログラム記録層及び前記反射層の 間に分離層を積層した一体物として形成されたことを特徴とする請求項 1 5〜 1 6のいずれかに記載のホログラム記録再生システム。 17. The hologram record carrier is formed as an integrated body in which a separation layer is laminated between the hologram recording layer and the reflective layer. 16. The hologram recording / reproducing system according to any one of 6 above.
1 8 . 前記収差補正装置は情報の記録又は再生の際に前記偏光面の回転角度 を互いに異ならしめる機能を有し、前記収差補正液晶駆動回路は、前記収差補正 装置に対して前記中央補正領域及び前記環状周囲領域の通過成分の偏光面の回 転角度を互いに異ならしめる制御をなすことを特徴とする請求項 1 5〜1 の いずれかに記載のホロ.グラム記録再生システム。  18. The aberration correction device has a function of making the rotation angles of the polarization planes different at the time of recording or reproducing information, and the aberration correction liquid crystal driving circuit is connected to the central correction region with respect to the aberration correction device. 2. The hologram recording / reproducing system according to claim 1, wherein the rotation angle of the polarization plane of the passing component in the annular peripheral region is controlled to be different from each other.
1 9 . 前記複数の透明電極は、前記光軸を中心に同心円のパターンで配置さ れ、前記収差補正液晶駆動回路は、補正すべき球面収差に応じた補正電圧を供給 することを特徴とする請求項 1 5〜1 8のいずれかに記載のホログラム記録再 生システム。  19. The plurality of transparent electrodes are arranged in a concentric pattern around the optical axis, and the aberration correction liquid crystal driving circuit supplies a correction voltage corresponding to the spherical aberration to be corrected. The hologram recording / reproducing system according to any one of claims 15 to 18.
2 0 . 前記複数の透明電極は、前記光軸に垂直な直線に対称でかつ当該直線 を含む間隙で分割された内側及び外側の領域のパターンで配置され、前記収差補 正液晶駆動回路は、補正すべきコマ収差に応じた補正電圧を供給することを特徴 とする請求項 1 5〜1 8のいずれかに記載のホログラム記録再生システム。 '  The plurality of transparent electrodes are arranged in a pattern of inner and outer regions that are symmetrical with respect to a straight line perpendicular to the optical axis and divided by a gap including the straight line, and the aberration correction liquid crystal driving circuit includes: The hologram recording / reproducing system according to claim 15, wherein a correction voltage corresponding to coma aberration to be corrected is supplied. '
PCT/JP2006/316547 2005-08-30 2006-08-17 Optical pickup device and hologram recording/reproducing system WO2007026588A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007533195A JPWO2007026588A1 (en) 2005-08-30 2006-08-17 Optical pickup device and hologram recording / reproducing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005249260 2005-08-30
JP2005-249260 2005-08-30

Publications (1)

Publication Number Publication Date
WO2007026588A1 true WO2007026588A1 (en) 2007-03-08

Family

ID=37808684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316547 WO2007026588A1 (en) 2005-08-30 2006-08-17 Optical pickup device and hologram recording/reproducing system

Country Status (2)

Country Link
JP (1) JPWO2007026588A1 (en)
WO (1) WO2007026588A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067017A (en) * 2012-09-10 2014-04-17 Nippon Hoso Kyokai <Nhk> Hologram reproduction device and hologram deformation compensation method
US11107851B2 (en) * 2018-08-10 2021-08-31 X-Fab Semiconductor Foundries Gmbh Lens layers for semiconductor devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335044A (en) * 2003-05-12 2004-11-25 Optware:Kk Holographic recording apparatus and reproducing apparatus
JP2005122867A (en) * 2003-10-15 2005-05-12 Takeshi Aoki Holographic optical information recorder by objective lens having two focal points in which optical axes of information light and reference light for recording are not separated from each other
JP2005222587A (en) * 2004-02-04 2005-08-18 Citizen Watch Co Ltd Optical apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005293630A (en) * 2004-03-31 2005-10-20 Sony Corp Hologram recording device, hologram reproducing device, hologram recording method, hologram reproducing method, and hologram recording medium
JP2005322382A (en) * 2004-04-06 2005-11-17 Sony Corp Hologram recording device and hologram recording method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335044A (en) * 2003-05-12 2004-11-25 Optware:Kk Holographic recording apparatus and reproducing apparatus
JP2005122867A (en) * 2003-10-15 2005-05-12 Takeshi Aoki Holographic optical information recorder by objective lens having two focal points in which optical axes of information light and reference light for recording are not separated from each other
JP2005222587A (en) * 2004-02-04 2005-08-18 Citizen Watch Co Ltd Optical apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067017A (en) * 2012-09-10 2014-04-17 Nippon Hoso Kyokai <Nhk> Hologram reproduction device and hologram deformation compensation method
US11107851B2 (en) * 2018-08-10 2021-08-31 X-Fab Semiconductor Foundries Gmbh Lens layers for semiconductor devices

Also Published As

Publication number Publication date
JPWO2007026588A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
US7307769B2 (en) Hologram recording medium, recording/reproducing method and recording/reproducing apparatus
JP4445963B2 (en) Hologram record carrier and recording / reproducing method and apparatus
JP4482565B2 (en) Hologram recording / reproducing method, apparatus and system
JP2006024351A (en) Optical pickup and optical recording and/or reproduction equipment which adopts the same
JP4439512B2 (en) Hologram record carrier
US20080037082A1 (en) Hologram Record Carrier, Hologram Apparatus and Recording Method
JP2005174401A (en) Hologram recording medium and recording and reproducing system
KR100965890B1 (en) Apparatus and method of recording/ reproducing holographic information
JP4382811B2 (en) Hologram record carrier, recording / reproducing method and system
JP4521055B2 (en) Recording / reproducing method, recording medium, and recording / reproducing apparatus
WO2007026521A1 (en) Optical pickup device and hologram recording/reproducing system
US20070121469A1 (en) Holographic optical pickup apparatus
JP2005228415A (en) Hologram recording method
WO2007026539A1 (en) Hologram recording/reproducing system
EP1760705B1 (en) Compatible optical pickup and optical recording and/or reproducing apparatus employing the same
US20080123506A1 (en) Optical information recording/reproducing apparatus
US8213287B2 (en) Apparatus and method for recording/reproducing holographic data
WO2007026588A1 (en) Optical pickup device and hologram recording/reproducing system
JP2010135054A (en) Holographic information recording method and holographic information recording/reproducing apparatus
JP2005025906A (en) Device and method for recording/reproducing optical information
JPWO2007000800A1 (en) Optical information recording medium
JP2004348856A (en) Device and method for recording/reproducing optical information, optical information recording medium, device and method for recording optical information, and device and method for reproducing optical information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007533195

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796710

Country of ref document: EP

Kind code of ref document: A1