JP2005222587A - Optical apparatus - Google Patents

Optical apparatus Download PDF

Info

Publication number
JP2005222587A
JP2005222587A JP2004027437A JP2004027437A JP2005222587A JP 2005222587 A JP2005222587 A JP 2005222587A JP 2004027437 A JP2004027437 A JP 2004027437A JP 2004027437 A JP2004027437 A JP 2004027437A JP 2005222587 A JP2005222587 A JP 2005222587A
Authority
JP
Japan
Prior art keywords
phase modulation
electrode
optical element
optical
electrode group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004027437A
Other languages
Japanese (ja)
Inventor
Masayuki Iwasaki
正之 岩崎
Masami Kikuchi
正美 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2004027437A priority Critical patent/JP2005222587A/en
Publication of JP2005222587A publication Critical patent/JP2005222587A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical apparatus in which it is prevented that light in which desired phase modulation is not performed is transmitted from a liquid crystal optical element for phase modulation while keeping miniaturization and which is compact and excellent in aberration compensation performance. <P>SOLUTION: This apparatus holds a liquid crystal layer between first and second transparent substrates, the apparatus is provided with the optical element for phase modulation having a first layer in which a plurality of electrode groups for phase modulation are formed with gap and a second layer in which an electrode for compensation for compensating the gap of the electrode for phase modulation is provided at at least one side of the first or the second transparent substrate, and a drive signal of the same potential is supplied to the electrode for compensation and one side of the electrode for phase modulation being overlapped with the electrode for compensation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、位相変調用光学素子を備えた光学装置に関し、特に、光の球面収差、コマ収差、非点収差等の波面収差を補正するための収差補正用光学素子として機能する位相変調用光学素子を備えた光学装置に関する。   The present invention relates to an optical apparatus provided with a phase modulation optical element, and more particularly to a phase modulation optical that functions as an aberration correction optical element for correcting wavefront aberrations such as spherical aberration, coma aberration, and astigmatism of light. The present invention relates to an optical device including an element.

光学装置である、CDあるいはDVD等の光ピックアップ装置における、情報の書き込み、読み出しの際に発生する光の収差補正を行うために、液晶光学素子からなる収差補正用の位相変調用光学素子が用いられている。このような位相変調用光学素子は、CDやDVD等に照射されるレーザー光の光軸が傾くこと等により、DVD等のディスク内に生じるコマ収差や、球面収差や、非点収差を含む波面収差を光学的に補正している。   In order to correct aberrations of light generated during writing and reading of information in an optical pickup device such as a CD or DVD, which is an optical device, a phase modulation optical element made of liquid crystal optical elements is used. It has been. Such a phase modulation optical element has a wavefront including coma aberration, spherical aberration, and astigmatism that occurs in a disk such as a DVD due to an inclination of the optical axis of laser light applied to a CD, DVD, or the like. Aberrations are optically corrected.

ここで従来の位相変調用光学素子について説明する。図8(a)は、球面収差補正用の液晶光学素子の電極パターンを例示したものである。
この位相変調用光学素子は、斜線で示した電極Ea、Eb、Ec、Ed、Eeにそれぞれ異なる電圧を印加することにより、透過する光の位相を変調し、この素子に入射する直線偏光の収差を補正することが出来るようになっている。
しかしながら、電極Ea、Eb、Ec、Ed、Ee間の間隙Sで、この間隙Sを透過した光は位相の変調がなされていないため、特に405nmの波長の光を使用した場合にこれがノイズとして作用し、結果として大きな収差を有してしまうこととなる。
Here, a conventional phase modulation optical element will be described. FIG. 8A illustrates an electrode pattern of a liquid crystal optical element for correcting spherical aberration.
This optical element for phase modulation modulates the phase of transmitted light by applying different voltages to the electrodes Ea, Eb, Ec, Ed, and Ee shown by oblique lines, and the aberration of linearly polarized light incident on this element Can be corrected.
However, in the gap S between the electrodes Ea, Eb, Ec, Ed, and Ee, the light transmitted through the gap S is not phase-modulated, and this acts as noise particularly when light having a wavelength of 405 nm is used. As a result, a large aberration is caused.

図8(b)はこの時の状況を示した図であり、グラフの縦軸が位相変調用の液晶光学素子を透過した光の位相もしくは透過率を示し、横軸が対応する液晶光学素子10の位置を示している。   FIG. 8B is a diagram showing the situation at this time. The vertical axis of the graph indicates the phase or transmittance of light transmitted through the phase modulation liquid crystal optical element, and the horizontal axis indicates the corresponding liquid crystal optical element 10. Indicates the position.

図8(b)において液晶光学素子10の第2の透明基板14上の共通電極Ecomには、例えばGND電位、第1の透明基板12上のE1電極には例えば2.01[V]の交流電位、以下同様にE2には2.02[V]、E3には2.03[V]、E4には2.04[V]、E5には2.05[V]、E6には2.06[V]、E7には2.07[V]、E8には2.08[V]、E9には2.09[V]、E10には2.10[V]の交流電位を与えている。   8B, the common electrode Ecom on the second transparent substrate 14 of the liquid crystal optical element 10 has, for example, a GND potential, and the E1 electrode on the first transparent substrate 12 has an AC of, for example, 2.01 [V]. Similarly, the potential is 2.02 [V] for E2, 2.03 [V] for E3, 2.04 [V] for E4, 2.05 [V] for E5, and 2.5 for E6. An AC potential of 2.07 [V] is applied to 06 [V], E7, 2.08 [V] to E8, 2.09 [V] to E9, and 2.10 [V] to E10. Yes.

これらの電圧は、液晶光学素子10に入射する光の収差を補正するため、収差の大きさに応じて与えるものであるが、図のグラフに示すように電極間の間隙Sにおいては透過光の位相が大きく異なってしまい、この位相の異なりが全体的に精度の良い補正を施せないという問題を生じていた。   These voltages are given according to the magnitude of the aberration in order to correct the aberration of the light incident on the liquid crystal optical element 10, but as shown in the graph of FIG. The phases are greatly different, and this difference in phase causes a problem that correction with high accuracy cannot be performed as a whole.

このような問題点を解消するため、図9(a)に示す様な、内側に電極を有する第1の透明基板12と第2の透明基板14との間に液晶層22を狭持し、この少なくとも一方の第1または第2の透明基板12、14上に、複数の位相変調用電極群16を所定の間隙を持って形成された第1層と、位相変調用電極群16の間隙を補完するための補完用電極群18を第1層とは絶縁膜24を介して離間して設けた第2層とを有する液晶光学素子10を、レーザー光源から出射されるレーザー光を記録媒体に照射する光学部材との間の光路中に配置して、光の収差を補正するという提案が成されている(例えば特許文献1参照)。   In order to solve such a problem, as shown in FIG. 9A, a liquid crystal layer 22 is sandwiched between the first transparent substrate 12 and the second transparent substrate 14 having electrodes inside, On the at least one first or second transparent substrate 12, 14, a plurality of phase modulation electrode groups 16 formed with a predetermined gap and a gap between the phase modulation electrode groups 16 are provided. A liquid crystal optical element 10 having a supplementary electrode group 18 for complementation and a second layer that is spaced apart from the first layer with an insulating film 24 interposed therebetween. The laser light emitted from the laser light source is used as a recording medium. A proposal has been made to correct the aberration of light by arranging it in the optical path between the irradiating optical member (see, for example, Patent Document 1).

このように構成し、補完用電極群18のそれぞれの電極に隣り合う位相変調用電極群1
6の中間の電圧を印加すれば、図8(b)に示したように間隙Sから所望の位相変調がなされていない光が漏れるという問題は解消し、なめらかに収差の補正ができる。
The phase modulation electrode group 1 configured in this way and adjacent to each electrode of the complementary electrode group 18
When the voltage of 6 is applied, the problem of leakage of light that has not undergone the desired phase modulation from the gap S as shown in FIG. 8B is eliminated, and aberrations can be corrected smoothly.

特開2001−176108号公報(第4−5頁、第3−5図)JP 2001-176108 A (page 4-5, FIG. 3-5)

しかしながら、特許文献1の技術には改良すべき問題点が残されている。その第1の問題点は、図9(b)に示す様に、補完用電極群18の幅が位相変調用電極群16の間隙とほぼ同等の幅で形成されているため、製造上の問題で位相変調用電極群16と補完用電極群18とが位置ずれを起こしてしまうことがあり得ることである。   However, the technique of Patent Document 1 still has problems to be improved. The first problem is that, as shown in FIG. 9B, the width of the complementary electrode group 18 is formed with a width substantially equal to the gap of the phase modulation electrode group 16, which is a manufacturing problem. Thus, the phase modulation electrode group 16 and the complementary electrode group 18 may be misaligned.

この様に、位相変調用電極群16と補完用電極群18とが位置ずれを起こしてしまうと、図9(c)に示した位相変調用電極群16もしくは補完用電極群18が存在する領域Lでは入射光Kは、位相変調した光を透過することとなる。ところが、この位置ずれによって位相変調用電極群16も補完用電極群18も存在しない領域Mが存在するため、所望の位相変調が行われない光がそのまま透過してしまうこととなる。   Thus, when the phase modulation electrode group 16 and the complementary electrode group 18 are displaced, the region where the phase modulation electrode group 16 or the complementary electrode group 18 shown in FIG. In L, the incident light K transmits the phase-modulated light. However, since there is a region M in which neither the phase modulation electrode group 16 nor the complementary electrode group 18 exists due to this positional deviation, light that is not subjected to desired phase modulation is transmitted as it is.

この状態を図8(b)に相当する図で表したのが図10で、位相変調用電極群16も補完用電極群18も存在しない領域Mからは、図8(b)に示した位相変調が成されていない光の漏れは少なくなるが、やはり所望の位相変調が成されていない光が透過することとなり、全体的に精度の良い補正を施せないという問題を生じていた。   FIG. 10 shows this state in a diagram corresponding to FIG. 8B. From the region M in which neither the phase modulation electrode group 16 nor the complementary electrode group 18 exists, the phase shown in FIG. Although leakage of light that has not been modulated is reduced, light that is not subjected to desired phase modulation is transmitted, and there has been a problem that accurate correction cannot be performed as a whole.

また、特許文献1に記載された位相変調用光学素子の第2の問題点は、補完電極群18を設けたため電極群の総数が増えてしまい、駆動回路40と位相変調用液晶素子10とを接続するケーブルの導電線数が増加し、液晶光学素子や、それを搭載する光学装置の小型化が難しくなるという点である。   The second problem of the phase modulation optical element described in Patent Document 1 is that the total number of electrode groups increases because the complementary electrode group 18 is provided, and the drive circuit 40 and the phase modulation liquid crystal element 10 are connected. The number of conductive wires of the cable to be connected increases, and it is difficult to reduce the size of the liquid crystal optical element and the optical device on which the liquid crystal optical element is mounted.

本発明の目的は、上記課題を解決して、小型化を維持しつつ位相変調用の液晶光学素子から所望の位相変調が行われていない光が透過してしまうことを防ぎ、かつ小型で収差補正の性能が優れた光学装置を提供することである。   An object of the present invention is to solve the above-mentioned problems, prevent light that is not subjected to desired phase modulation from being transmitted from a liquid crystal optical element for phase modulation while maintaining miniaturization, and is small in size and aberration An optical device having excellent correction performance is provided.

上記課題を解決するために、本発明の光学装置は、基本的に下記記載の構成を採用するものである。
本発明の光学装置は、レーザー光源と、該レーザー光源から出射されるレーザー光を記録媒体に照射する光学部材との間の光路中に配置され、内側に電極を有する第1、及び第2の透明基板間に液晶層を狭持してなり、少なくとも一方の第1または第2の透明基板に、複数の位相変調用電極群が間隙を持って形成された第1層と、位相変調用電極の間隙を補完するための補完用電極が第1層とは絶縁膜を介して離間して設けられた第2層とを有する位相変調用光学素子と、駆動信号を供給するための駆動回路を備えた光学装置において、補完用電極の一部が位相変調用電極と重なるよう配置されており、補完用電極と補完用電極と重なり合っている位相変調用電極の一方とは、駆動回路により同電位の駆動信号が供給されるように構成されていることを特徴とする。
In order to solve the above problems, the optical apparatus of the present invention basically employs the following configuration.
The optical device of the present invention is arranged in an optical path between a laser light source and an optical member that irradiates a recording medium with laser light emitted from the laser light source, and includes first and second electrodes having electrodes on the inside. A first layer in which a liquid crystal layer is sandwiched between transparent substrates, and a plurality of phase modulation electrode groups are formed on at least one of the first or second transparent substrates with a gap, and a phase modulation electrode A phase modulation optical element having a second layer in which a complementary electrode for complementing the gap of the first layer is provided apart from the first layer via an insulating film, and a drive circuit for supplying a drive signal In the provided optical device, a part of the complementary electrode is arranged so as to overlap the phase modulation electrode, and one of the complementary electrode and the phase modulation electrode overlapping the complementary electrode is set to the same potential by the drive circuit. The drive signal is configured to be supplied And wherein the Rukoto.

また、本発明の光学装置は、少なくとも一方の第1または第2の透明基板には、第2層と第1層が順に積層配置されてなることを特徴とするものである。   The optical device according to the present invention is characterized in that the second layer and the first layer are sequentially laminated on at least one of the first or second transparent substrates.

また、本発明の光学装置は、位相変調用電極が収差補正用電極であり、位相変調用光学素子が収差補正用光学素子であることを特徴とするものである。   In the optical device of the present invention, the phase modulation electrode is an aberration correction electrode, and the phase modulation optical element is an aberration correction optical element.

また、本発明の光学装置は、補完用電極と補完用電極と重なり合っている位相変調用電極の一方とを、位相変調用光学素子上で電気的に短絡することにより、両者に同電位の駆動信号を供給できるようにしたことを特徴とするものである。   Further, the optical device of the present invention is configured such that the complementary electrode and one of the phase modulation electrodes overlapping with the complementary electrode are electrically short-circuited on the phase modulation optical element, thereby driving the same potential to both. It is characterized in that a signal can be supplied.

本発明によれば、小型化を維持しつつ所望の位相変調がなされていない光の透過を防ぐことができるので、小型でかつ情報記録媒体の高密度化に有効な光学装置を提供することができる。   According to the present invention, it is possible to prevent transmission of light that is not subjected to desired phase modulation while maintaining miniaturization. Therefore, it is possible to provide a small optical device that is effective for increasing the density of an information recording medium. it can.

本発明の光学装置に用いる位相変調用光学素子は、基本的に背景技術で示した素子の構成とほぼ同じ構成要件を有しているので、以下の説明においても同じ部材については同符号を用いて説明をする。   Since the optical element for phase modulation used in the optical apparatus of the present invention has basically the same configuration requirements as the configuration of the element shown in the background art, the same reference numerals are used for the same members in the following description. I will explain.

本発明の光学装置は、レーザー光源と、該レーザー光源から出射されるレーザー光を記録媒体に照射する光学部材との間の光路中に配置され、内側に電極を有する第1、及び第2の透明基板間に液晶層を狭持してなり、少なくとも一方の第1または第2の透明基板に、複数の位相変調用電極群が間隙を持って形成された第1層と、位相変調用電極の間隙を補完するための補完用電極が第1層とは絶縁膜を介して離間して設けられた第2層とを有する位相変調用光学素子と、駆動信号を供給するための駆動回路を備えた光学装置において、補完用電極の一部が位相変調用電極と重なるよう配置されており、補完用電極と補完用電極と重なり合っている位相変調用電極の一方とは、駆動回路により同電位の駆動信号が供給されるよう構成してなる装置である。この具体的な構成例について以下に詳述する。   The optical device of the present invention is arranged in an optical path between a laser light source and an optical member that irradiates a recording medium with laser light emitted from the laser light source, and includes first and second electrodes having electrodes on the inside. A first layer in which a liquid crystal layer is sandwiched between transparent substrates, and a plurality of phase modulation electrode groups are formed on at least one of the first or second transparent substrates with a gap, and a phase modulation electrode A phase modulation optical element having a second layer in which a complementary electrode for complementing the gap of the first layer is provided apart from the first layer via an insulating film, and a drive circuit for supplying a drive signal In the provided optical device, a part of the complementary electrode is arranged so as to overlap the phase modulation electrode, and one of the complementary electrode and the phase modulation electrode overlapping the complementary electrode is set to the same potential by the drive circuit. The drive signal is configured to be supplied. It is the location. This specific configuration example will be described in detail below.

図1(a)は、本発明の光学装置に搭載する位相変調用光学素子の構造を示す断面図であり、図1(b)は、位相変調用電極16と補完用電極30との重なり部における要部拡大断面図であり、図1(c)は、図1(a)の変形例を示している。
図1(a)に示す位相変調用光学素子10は、光学装置の一種である光ピックアップ装置において生ずる球面収差やコマ収差等の収差を補正するための収差補正用光学素子として機能する液晶光学素子を示している。
FIG. 1A is a cross-sectional view showing the structure of a phase modulation optical element mounted on the optical device of the present invention, and FIG. 1B shows an overlapping portion of the phase modulation electrode 16 and the complementary electrode 30. Fig. 1 (c) shows a modification of Fig. 1 (a).
A phase modulation optical element 10 shown in FIG. 1A is a liquid crystal optical element that functions as an aberration correction optical element for correcting aberrations such as spherical aberration and coma generated in an optical pickup device that is a kind of optical device. Is shown.

この液晶光学素子は、対向して設けられた第1の透明基板12と第2の透明基板14の間に液晶層22が狭持されて構成される。そして、第1の透明基板12と第2の透明基板14の内側である液晶層側の双方の表面には、透明導電体である補完電極群30と、同じく透明導電体である位相変調用電極群16がそれぞれ順に積層配置されている。更に、補完電極群30と位相変調用電極群16とは、絶縁膜24を介して離間して設けられている。また、位相変調用電極群16の液晶層側上面には、液晶分子を配向させるための配向膜26が設けられている。
ここで配向膜26にはポリイミド樹脂を用いており、絶縁膜24には一般的には2酸化珪素を用いるが、この絶縁膜24も同様にポリイミド樹脂を用いることも可能である。絶縁膜の厚さは500Å程度に設定した。
The liquid crystal optical element is configured by sandwiching a liquid crystal layer 22 between a first transparent substrate 12 and a second transparent substrate 14 which are provided to face each other. Then, on both surfaces of the first transparent substrate 12 and the second transparent substrate 14 on the liquid crystal layer side, a complementary electrode group 30 which is a transparent conductor, and a phase modulation electrode which is also a transparent conductor. The groups 16 are stacked in order. Further, the complementary electrode group 30 and the phase modulation electrode group 16 are provided apart from each other with the insulating film 24 interposed therebetween. An alignment film 26 for aligning liquid crystal molecules is provided on the upper surface of the phase modulation electrode group 16 on the liquid crystal layer side.
Here, polyimide resin is used for the alignment film 26, and silicon dioxide is generally used for the insulating film 24. However, it is also possible to use polyimide resin for the insulating film 24 as well. The thickness of the insulating film was set to about 500 mm.

そして、本発明の光学装置に用いる位相変調用光学素子は、位相変調用電極群16の電極と電極との間隙を補完するための補完電極群30が、隣り合う位相変調用電極群16の双方と重なるように配置されており、この重なり部の幅を位相変調用電極の間隙の幅よりも大きくなるよう構成している。   Further, in the phase modulation optical element used in the optical device of the present invention, the complementary electrode group 30 for complementing the gap between the electrodes of the phase modulation electrode group 16 includes both of the adjacent phase modulation electrode groups 16. And the width of the overlapping portion is configured to be larger than the width of the gap between the phase modulation electrodes.

この関係を説明するための図面が図1(b)である。
位相変調用電極群16の電極と電極との間隙Wに対し、補完電極群30は、(1/2)Wよりも大きい幅D分だけ位相変調用電極群16と重なるように設定されている。従って、トータルの重なり幅2Dは、位相変調用電極の間隙の幅Wよりも大きくなるよう、すなわち 2D≧W となるように構成して成る。
FIG. 1B is a drawing for explaining this relationship.
The complementary electrode group 30 is set so as to overlap the phase modulation electrode group 16 by a width D larger than (1/2) W with respect to the gap W between the electrodes of the phase modulation electrode group 16. . Accordingly, the total overlap width 2D is configured to be larger than the width W of the gap between the phase modulation electrodes, that is, 2D ≧ W.

この位相変調用電極の間隙の幅Wは、できるだけ小さいほど好ましいので、本実施例においては製造上の誤差を考慮して、この幅Wを3μm程度に抑えている。用いた透明電極の材質はインジウム錫酸化物(ITO)で、厚さは1000Å以下なので、3μmの間隙を実現するのは容易であった。従って、重なり幅Dは1.5μm以上に設定することとなる。一方、製造ばらつきによる位置ずれは1μm以下であるから、製造過程で位相変調用電極群16も補完用電極群30も存在しない領域(図9(c)のMに相当する領域)が出現する可能性は非常に少ないことが判る。   Since the width W of the gap between the phase modulation electrodes is preferably as small as possible, in this embodiment, the width W is suppressed to about 3 μm in consideration of manufacturing errors. Since the material of the transparent electrode used was indium tin oxide (ITO) and the thickness was 1000 mm or less, it was easy to realize a gap of 3 μm. Therefore, the overlap width D is set to 1.5 μm or more. On the other hand, since the positional deviation due to manufacturing variation is 1 μm or less, a region in which neither the phase modulation electrode group 16 nor the complementary electrode group 30 exists in the manufacturing process (a region corresponding to M in FIG. 9C) can appear. It turns out that sex is very few.

従って、上記構成を取れば、所望の位相変調がなされていない光の透過をほぼ完全に防ぐことが出来、全体的に精度の良い収差補正を実現できる位相変調用光学素子を実現することが出来る。また、本構成を採用することで、製造上のばらつきで歩留まりを大きく低下することがなくなり、位相変調用光学素子を安価に製造することが可能となる。   Therefore, with the above configuration, it is possible to realize a phase modulation optical element that can almost completely prevent transmission of light that is not subjected to desired phase modulation, and that can realize highly accurate aberration correction as a whole. . In addition, by adopting this configuration, the yield is not greatly reduced due to manufacturing variations, and the phase modulation optical element can be manufactured at low cost.

次に、本発明の光学装置に搭載する位相変調用光学素子の変形例について説明をする。
図1(c)は、本発明の光学装置に搭載する位相変調用光学素子の変形例を示した断面図である。本変形例では、第1の透明基板12上にのみ補完電極群30と、位相変調用電極群16が順に積層配置されており、第2の透明基板14上には全面が電極である共通電極34が設けられている。この様に構成しても位相変調用光学素子としての機能させることが出来ることは言うまでもない。
Next, a modification of the phase modulation optical element mounted on the optical device of the present invention will be described.
FIG. 1C is a cross-sectional view showing a modification of the phase modulation optical element mounted on the optical device of the present invention. In this modification, the complementary electrode group 30 and the phase modulation electrode group 16 are sequentially stacked only on the first transparent substrate 12, and the entire surface is a common electrode on the second transparent substrate 14. 34 is provided. It goes without saying that this configuration can also function as a phase modulation optical element.

次に、本発明の光学装置に搭載する位相変調用光学素子を、収差補正用光学素子として機能させるための具体的な構成例について更に詳細に説明をする。
図2(a)は位相変調用電極群16の平面図、図2(b)は補完用電極群30の平面図である。図示の様に補完用電極群30は、位相変調用電極群16の電極間間隙を補完できる様に、位相変調用電極群16よりも幅が小さい電極パターンとなっている。
Next, a specific configuration example for causing the phase modulation optical element mounted on the optical device of the present invention to function as an aberration correction optical element will be described in more detail.
2A is a plan view of the phase modulation electrode group 16, and FIG. 2B is a plan view of the complementary electrode group 30. As shown in the figure, the complementary electrode group 30 is an electrode pattern having a width smaller than that of the phase modulation electrode group 16 so as to complement the inter-electrode gap of the phase modulation electrode group 16.

なお本明細書においては、球面収差補正用の液晶光学素子の電極パターンを例にとって説明しているが、コマ収差補正用、または非点収差補正用の位相変調用光学素子においても問題点及び解決法は共通である。   In this specification, the electrode pattern of the liquid crystal optical element for correcting spherical aberration is described as an example. However, problems and solutions are also found in a phase modulation optical element for correcting coma aberration or correcting astigmatism. The law is common.

図3は、補完用電極群30に重なり合っている位相変調用電極の一方と、この補完用電極とに、同電位の駆動信号を印加する手段を示した第1の実施例を示している。図中の点線が駆動回路40と各電極との電気的接続状態を示している。ここで図示した様に位相変調用光学素子を構成すれば、補完用電極群30には重なり合う位相変調用電極群16の何れか一方の電極に与えるのと同一の駆動電圧を駆動回路40が印加して駆動することが出来る。   FIG. 3 shows a first embodiment showing one of the phase modulation electrodes overlapping the complementary electrode group 30 and means for applying a drive signal of the same potential to the complementary electrode. The dotted line in the figure indicates the electrical connection state between the drive circuit 40 and each electrode. If the phase modulation optical element is configured as shown here, the drive circuit 40 applies the same drive voltage to the complementary electrode group 30 as applied to any one of the overlapping phase modulation electrode groups 16. Can be driven.

すなわち、本構成においては、補完用電極群30の各電極に、重なり合う位相変調用電極群16の何れか一方の電極に与えられている電位の中間の電位を与えるのではなく、重なり合う位相変調用電極16の何れか一方の電極と電気的短絡状態にしている。この様に構成すると、印加電圧上は中間の電位を与えたときよりも収差補正が滑らかでなくなるが、実用上は何ら問題のないレベルの補正が可能となる。また、この手段によれば、駆動回路40と位相変調用液晶素子10との接続ケーブルの配線数を減少させることを可能とし、光学装置の小型化に顕著な効果をもたらすものとなる。   In other words, in this configuration, each of the complementary electrode group 30 is not given an intermediate potential between the potentials applied to any one of the electrodes of the overlapping phase modulation electrode group 16, but is used for the overlapping phase modulation. Any one of the electrodes 16 is electrically short-circuited. With such a configuration, although the aberration correction is not smoother than when an intermediate potential is applied in terms of applied voltage, it is possible to perform correction at a level that causes no problem in practice. Further, according to this means, the number of connection cables between the drive circuit 40 and the phase modulation liquid crystal element 10 can be reduced, which brings about a remarkable effect on downsizing of the optical device.

なお、上述した電気的短絡は、駆動回路40内で短絡することも出来るし、駆動回路40と液晶光学素子10を接続するケーブル内で短絡することも出来る。更には、液晶光学素子10内の補完用電極群30と位相変調用電極群16の電極の配置の段階で短絡することも出来るが、光学装置の小型化のためには液晶光学素子10内で行うことが望ましい。   The electrical short circuit described above can be short-circuited in the drive circuit 40 or can be short-circuited in a cable connecting the drive circuit 40 and the liquid crystal optical element 10. Furthermore, a short circuit can be made at the stage of arrangement of the electrodes of the complementary electrode group 30 and the phase modulation electrode group 16 in the liquid crystal optical element 10, but in order to reduce the size of the optical apparatus, It is desirable to do.

図4は本発明による位相変調用光学素子を搭載した光学装置の一例として示す光ピックアップ装置を示した図面である。
図4は本発明による液晶光学素子10を用いた光ピックアップ装置の全体構成を示すブロック図で、レーザー光源50と、コリメータレンズ52と、偏光ビームスプリッタ54と、液晶光学素子10と、該液晶光学素子10に位相変調用の電圧信号を与える駆動回路40と、1/4位相差板66と、対物レンズ56と、集光レンズ60と受光器62とから構成されている。
FIG. 4 is a view showing an optical pickup device as an example of an optical device on which the phase modulation optical element according to the present invention is mounted.
FIG. 4 is a block diagram showing the overall configuration of an optical pickup device using the liquid crystal optical element 10 according to the present invention. The laser light source 50, the collimator lens 52, the polarization beam splitter 54, the liquid crystal optical element 10, and the liquid crystal optical element. The driving circuit 40 for supplying a voltage signal for phase modulation to the element 10, a ¼ phase difference plate 66, an objective lens 56, a condenser lens 60, and a light receiver 62 are included.

図4において、レーザー光源50から出射したレーザー光64は、コリメータレンズ52によってP偏光の平行光とされ、ビームスプリッタ54と液晶光学素子10を通過する。レーザー光64は液晶光学素子10により、入射する平行光のコマ収差または球面収差を含む波面収差を補正された後、1/4位相差板66により円偏光に変換され、対物レンズ56によりディスク58にビームを照射する。   In FIG. 4, laser light 64 emitted from the laser light source 50 is converted into P-polarized parallel light by the collimator lens 52 and passes through the beam splitter 54 and the liquid crystal optical element 10. The laser light 64 is corrected by the liquid crystal optical element 10 for wavefront aberration including coma aberration or spherical aberration of incident parallel light, and then converted into circularly polarized light by the ¼ phase plate 66, and the disc 58 by the objective lens 56. Irradiate the beam.

さらに、ディスク58からの反射されたレーザー光は、対物レンズ56を透過し、位相差板66にてS偏光に変換された後、液晶光学素子10を通過し、ビームスプリッタ54にて光路を変えて集光レンズ60を通過して受光器62にディスク58から反射されたレーザー光を集める。そのデータを基に、ディスク56に記録された情報等を読み取ったり、ディスク面に書き込みをすることができる。   Further, the laser beam reflected from the disk 58 passes through the objective lens 56, is converted into S-polarized light by the phase difference plate 66, passes through the liquid crystal optical element 10, and changes the optical path by the beam splitter 54. Then, the laser beam that has passed through the condenser lens 60 and reflected from the disk 58 is collected on the light receiver 62. Based on the data, information recorded on the disk 56 can be read or written on the disk surface.

本光ピックアップ装置は、収差を精度良く補正できる本発明の位相変調用光学素子を用いているため、精度の良い情報の書き込み、読み出しを行うことができ、情報記録媒体の高密度化にも対応し得る。   This optical pickup device uses the optical element for phase modulation according to the present invention capable of correcting aberrations with high accuracy, so that information can be written and read with high accuracy, and the information recording medium can also be increased in density. Can do.

また本光ピックアップ装置を磁気記録等の情報記録装置に応用すれば、同様の効果が期待できる。   If this optical pickup device is applied to an information recording device such as magnetic recording, the same effect can be expected.

図5は本発明の光学装置に搭載する位相変調用光学素子における第2の実施例を示す図である。この位相変調用光学素子は、液晶素子10内の駆動回路40との接続領域44で、補完用電極群30の各電極を重なり合う位相変調用電極群16の電極の何れか一方の電極と電気的短絡状態にする構成例を示している。図5(a)がその断面図を示し、図5(b)がその平面図を示している。   FIG. 5 is a diagram showing a second embodiment of the optical element for phase modulation mounted on the optical apparatus of the present invention. This phase modulation optical element is electrically connected to any one of the electrodes of the phase modulation electrode group 16 that overlaps each electrode of the complementary electrode group 30 in the connection region 44 with the drive circuit 40 in the liquid crystal element 10. The example of a structure which makes a short circuit state is shown. FIG. 5A shows a sectional view thereof, and FIG. 5B shows a plan view thereof.

図5(a)において、接続領域44には絶縁膜24を設けていない。そのため、接続領域44で補完用電極群30の電極と位相変調用電極群16の電極とが重なる様に形成すれば、両電極が電気的に短絡される。   In FIG. 5A, the insulating film 24 is not provided in the connection region 44. Therefore, if the electrodes of the complementary electrode group 30 and the electrodes of the phase modulation electrode group 16 are formed so as to overlap in the connection region 44, both electrodes are electrically short-circuited.

図5(b)において、接続領域44においては補完用電極群30の電極が曲げられ、隣り合う位相変調用電極群16の電極と大部分が重なるように電極パターンが形成されている。従って、接続領域44で補完用電極群30の電極と位相変調用電極群16の電極とが電気的に短絡させることが出来る。   In FIG. 5B, in the connection region 44, the electrodes of the complementary electrode group 30 are bent, and an electrode pattern is formed so as to largely overlap the electrodes of the adjacent phase modulation electrode group 16. Therefore, the electrode of the complementary electrode group 30 and the electrode of the phase modulation electrode group 16 can be electrically short-circuited in the connection region 44.

この様に、液晶光学素子10内で両電極を短絡することが出来れば、駆動回路40から
液晶光学素子10への配線数を減少させることが出来、これにより、光学装置の小型化が可能になるという構造上の効果がある。
Thus, if both electrodes can be short-circuited in the liquid crystal optical element 10, the number of wires from the drive circuit 40 to the liquid crystal optical element 10 can be reduced, thereby enabling a reduction in the size of the optical device. There is a structural effect.

ここで、実施例2で示した位相変調用光学素子の波面収差特性を示す。
図6は本発明の光ピックアップ装置で用いる位相変調用光学素子の透過光位相特性の測定結果を示す図面で、従来技術による特性である図8(b)、図10との比較のために示した。
Here, the wavefront aberration characteristics of the optical element for phase modulation shown in Example 2 are shown.
FIG. 6 is a diagram showing the measurement result of the transmitted light phase characteristic of the optical element for phase modulation used in the optical pickup device of the present invention, and is shown for comparison with FIG. 8B and FIG. It was.

図6から明らかな様に、位相変調用電極群16の間隙部では、多少の位相ずれは認められるものの、補完用電極群30によって位相変調用電極群16の間隙が完全に補完されているため、この位相ずれは従来例に比べて極めて小さく抑えることが出来ていることが判る。そのため、この構造の位相変調用光学素子は、全体として精度の良い補正を行うことが出来るのは、本図から明白である。   As apparent from FIG. 6, although a slight phase shift is recognized in the gap portion of the phase modulation electrode group 16, the gap of the phase modulation electrode group 16 is completely complemented by the complementary electrode group 30. It can be seen that this phase shift can be suppressed to be extremely small as compared with the conventional example. For this reason, it is apparent from this figure that the phase modulation optical element having this structure can perform accurate correction as a whole.

そして、本実施例2に示した位相変調用光学素子を実施例1に示した光学装置である光ピックアップ装置に搭載することで、精度の良い情報の書き込み、読み出しを行うことができ、情報記録媒体の高密度化にも対応し得る構成となる。   By mounting the phase modulation optical element shown in the second embodiment on the optical pickup device that is the optical device shown in the first embodiment, it is possible to write and read information with high accuracy, and to record information. It becomes the structure which can respond also to the high density of a medium.

なお、本実施例では、透明基板上に補完用電極群30、位相変調用電極群16の順に電極群を積層配置した例を示したが、図示はしないが、両者の位置関係を逆にして配置をしても図5に示した特性図と近似した効果が得ることが出来る。   In this embodiment, an example in which the electrode groups 30 and the phase modulation electrode group 16 are stacked in this order on the transparent substrate is shown. However, although not shown, the positional relationship between the two is reversed. Even if it is arranged, an effect similar to the characteristic diagram shown in FIG. 5 can be obtained.

図7は本発明の光学装置に搭載する位相変調用光学素子の第3の実施例を示す図である。なお、本図面における液晶光学素子10内の位相変調領域内、すなわち球面収差補正素子においては、位相変調用電極群16がほぼ円形状である領域で、補完用電極群30の各電極を重なり合う位相変調用電極群16の電極の何れか一方の電極と電気的短絡状態にした構成例を採用している。   FIG. 7 is a diagram showing a third embodiment of the phase modulation optical element mounted on the optical apparatus of the present invention. In the phase modulation region in the liquid crystal optical element 10 in the drawing, that is, in the spherical aberration correction element, the phase modulation electrode group 16 is a region having a substantially circular shape, and the phases of the electrodes of the complementary electrode group 30 overlapping each other. A configuration example in which one of the electrodes of the modulation electrode group 16 is electrically short-circuited is employed.

図7において、補完用電極群30の各電極と位相変調用電極群16の各電極間は位相変調領域内で、電極の両側で重なり合っているが、絶縁膜24はその一方の側のみ取り除かれている。そして、絶縁膜24が取り除かれている部分で補完用電極群30の各電極と位相変調用電極群16の各電極が電気的に短絡されている。   In FIG. 7, each electrode of the complementary electrode group 30 and each electrode of the phase modulation electrode group 16 are overlapped on both sides of the electrode in the phase modulation region, but the insulating film 24 is removed only on one side thereof. ing. Then, each electrode of the complementary electrode group 30 and each electrode of the phase modulation electrode group 16 are electrically short-circuited at a portion where the insulating film 24 is removed.

この短絡方法によれば、絶縁膜の除去を精密に行う必要があるためコストはかかるが、補完用電極群30の各電極と位相変調用電極群16の各電極の電気的短絡を、より位相変調を行う電極の近傍で行えるため、透明電極の抵抗による電圧降下等の影響で補完用電極群30に与える電圧が所望の値からずれてしまうという可能性を小さくすることが出来、更には液晶光学素子10でのより精度の良い補正が可能となる。   According to this short-circuiting method, it is necessary to precisely remove the insulating film, which is costly. However, the electrical short-circuit between each electrode of the complementary electrode group 30 and each electrode of the phase modulation electrode group 16 is more phase-controlled. Since it can be performed in the vicinity of the electrode to be modulated, it is possible to reduce the possibility that the voltage applied to the complementary electrode group 30 will deviate from a desired value due to the influence of a voltage drop due to the resistance of the transparent electrode. More accurate correction with the optical element 10 is possible.

そして、本実施例3に示した位相変調用光学素子を実施例1、2に示した光学装置である光ピックアップ装置に搭載することで、精度の良い情報の書き込み、読み出しを行うことができ、情報記録媒体の高密度化にも対応し得る構成となる。   And by mounting the optical element for phase modulation shown in the third embodiment on the optical pickup device which is the optical device shown in the first and second embodiments, it is possible to write and read information with high accuracy, It becomes a structure which can respond also to the high density of an information recording medium.

本発明の光学装置に搭載する位相変調用光学素子の構造を示す断面図である。(実施例1)It is sectional drawing which shows the structure of the optical element for phase modulation mounted in the optical apparatus of this invention. (Example 1) 本発明の光学装置に搭載する位相変調用光学素子を構成する、位相変調用電極群と補完用電極群との関係を説明するための図面である。(実施例1)It is drawing for demonstrating the relationship between the electrode group for phase modulation and the electrode group for complementation which comprises the optical element for phase modulation mounted in the optical apparatus of this invention. (Example 1) 本発明の光学装置に搭載する位相変調用光学素子の一構成例を示す図面である。(実施例1)It is drawing which shows one structural example of the optical element for phase modulation mounted in the optical apparatus of this invention. (Example 1) 本発明の光学装置の構成例を示す概略図である。(実施例1)It is the schematic which shows the structural example of the optical apparatus of this invention. (Example 1) 本発明の光学装置に搭載する位相変調用光学素子の他の構成例を示す図面である。(実施例2)It is drawing which shows the other structural example of the optical element for phase modulation mounted in the optical apparatus of this invention. (Example 2) 本発明の光学装置に搭載する位相変調用光学素子における透過光位相特性測定図である。(実施例2)It is a transmitted light phase characteristic measurement figure in the optical element for phase modulation mounted in the optical apparatus of this invention. (Example 2) 本発明の光学装置に搭載する位相変調用光学素子の更に他の構成例を示す図面である。(実施例3)It is drawing which shows the further another structural example of the optical element for phase modulation mounted in the optical apparatus of this invention. Example 3 従来の位相変調光学素子の電極パターン及びその位相変調用光学素子の透過光位相特性を示す図面である。It is drawing which shows the transmitted light phase characteristic of the electrode pattern of the conventional phase modulation optical element, and its phase modulation optical element. 従来の位相変調用光学素子を示す図面ある。1 is a diagram illustrating a conventional phase modulation optical element. 従来の位相変調用光学素子の透過光位相特性図面である。It is a transmitted light phase characteristic drawing of the conventional optical element for phase modulation.

符号の説明Explanation of symbols

16 位相変調用電極群
30 補完用電極群
12 第1の透明基板
14 第2の透明基板
10 位相変調用光学素子
22 液晶層
50 レーザー光源
58 記録媒体
16 Phase modulation electrode group 30 Complementary electrode group 12 First transparent substrate 14 Second transparent substrate 10 Phase modulation optical element 22 Liquid crystal layer 50 Laser light source 58 Recording medium

Claims (4)

レーザー光源と、該レーザー光源から出射されるレーザー光を記録媒体に照射する光学部材との間の光路中に配置され、内側に電極を有する第1、及び第2の透明基板間に液晶層を狭持してなり、前記少なくとも一方の第1または第2の透明基板に、複数の位相変調用電極群が間隙を持って形成された第1層と、前記位相変調用電極の間隙を補完するための補完用電極が前記第1層とは絶縁膜を介して離間して設けられた第2層とを有する位相変調用光学素子と、駆動信号を供給するための駆動回路を備えた光ピックアップ装置において、
前記補完用電極の一部が前記位相変調用電極と重なるよう配置されており、
前記補完用電極と前記補完用電極と重なり合っている前記位相変調用電極の一方とは、前記駆動回路により同電位の駆動信号が供給されるよう構成されていることを特徴とする光学装置。
A liquid crystal layer is disposed between the first and second transparent substrates disposed in the optical path between the laser light source and an optical member that irradiates the recording medium with laser light emitted from the laser light source. A first layer in which a plurality of phase modulation electrode groups are formed on the at least one first or second transparent substrate with gaps therebetween, and the gap between the phase modulation electrodes is complemented. Optical modulator including a phase modulation optical element having a second electrode provided with a supplementary electrode spaced apart from the first layer via an insulating film, and a drive circuit for supplying a drive signal In the device
A portion of the complementary electrode is arranged to overlap the phase modulation electrode;
An optical apparatus, wherein the complementary electrode and one of the phase modulation electrodes overlapping with the complementary electrode are configured to be supplied with a drive signal having the same potential by the drive circuit.
少なくとも一方の前記第1または前記第2の透明基板には、前記第2層と前記第1層が順に積層配置されてなることを特徴とする請求項1に記載の光学装置。   2. The optical device according to claim 1, wherein the second layer and the first layer are sequentially stacked on at least one of the first and second transparent substrates. 前記位相変調用電極は収差補正用電極であり、前記位相変調用光学素子は収差補正用光学素子であることを特徴とする請求項1または2に記載の光学装置。   The optical apparatus according to claim 1, wherein the phase modulation electrode is an aberration correction electrode, and the phase modulation optical element is an aberration correction optical element. 前記補完用電極と前記補完用電極とが重なり合っている前記位相変調用電極の一方とを、前記位相変調用光学素子上で電気的に短絡することにより、両者に同電位の駆動信号を供給できるようにしたことを特徴とする請求項1から3のいずれか一項に記載の光学装置。   By electrically short-circuiting the complementary electrode and one of the complementary electrodes for the phase modulation on the optical element for phase modulation, a drive signal having the same potential can be supplied to both. The optical apparatus according to claim 1, wherein the optical apparatus is configured as described above.
JP2004027437A 2004-02-04 2004-02-04 Optical apparatus Pending JP2005222587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004027437A JP2005222587A (en) 2004-02-04 2004-02-04 Optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004027437A JP2005222587A (en) 2004-02-04 2004-02-04 Optical apparatus

Publications (1)

Publication Number Publication Date
JP2005222587A true JP2005222587A (en) 2005-08-18

Family

ID=34998107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004027437A Pending JP2005222587A (en) 2004-02-04 2004-02-04 Optical apparatus

Country Status (1)

Country Link
JP (1) JP2005222587A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026588A1 (en) * 2005-08-30 2007-03-08 Pioneer Corporation Optical pickup device and hologram recording/reproducing system
WO2007055188A1 (en) * 2005-11-11 2007-05-18 Pioneer Corporation Aberration correcting element, aberration correcting device and optical pickup
KR101224710B1 (en) 2010-12-27 2013-01-21 가부시끼가이샤 도시바 Refractive index distribution type liquid crystal optical device and image display device
KR101407812B1 (en) 2012-02-16 2014-06-17 가부시끼가이샤 도시바 Liquid crystal optical apparatus and image display device
JP2016071073A (en) * 2014-09-29 2016-05-09 株式会社ジャパンディスプレイ Display device and electronic apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026588A1 (en) * 2005-08-30 2007-03-08 Pioneer Corporation Optical pickup device and hologram recording/reproducing system
WO2007055188A1 (en) * 2005-11-11 2007-05-18 Pioneer Corporation Aberration correcting element, aberration correcting device and optical pickup
KR101224710B1 (en) 2010-12-27 2013-01-21 가부시끼가이샤 도시바 Refractive index distribution type liquid crystal optical device and image display device
US8675148B2 (en) 2010-12-27 2014-03-18 Kabushiki Kaisha Toshiba Gradient refractive index liquid crystal optical apparatus and image display apparatus
US9036101B2 (en) 2010-12-27 2015-05-19 Kabushiki Kaisha Toshiba Gradient refractive index liquid crystal optical apparatus and image display apparatus
US9176349B2 (en) 2010-12-27 2015-11-03 Kabushiki Kaisha Toshiba Gradient refractive index liquid crystal optical apparatus and image display apparatus
KR101407812B1 (en) 2012-02-16 2014-06-17 가부시끼가이샤 도시바 Liquid crystal optical apparatus and image display device
JP2016071073A (en) * 2014-09-29 2016-05-09 株式会社ジャパンディスプレイ Display device and electronic apparatus
US9983444B2 (en) 2014-09-29 2018-05-29 Japan Display Inc. Display device and electronic device

Similar Documents

Publication Publication Date Title
NL1030890C2 (en) LCD with birefringence compensation, optical pick-up element and optical pick-up and / or reproducing device that uses it.
US20070115767A1 (en) Optical pickup device
US20060012847A1 (en) Aberration correction element, optical pickup, and information equipment
JP2005222587A (en) Optical apparatus
US7126901B2 (en) Device and unit for correcting aberration of light beam
JP4436070B2 (en) Liquid crystal optical element and optical device
JP2005222586A (en) Optical element for phase modulation and optical apparatus
JP4436069B2 (en) Liquid crystal optical element and optical device
JP4082072B2 (en) Optical head device
JP4082085B2 (en) Optical head device
JP4008945B2 (en) Liquid crystal aberration correction element and manufacturing method thereof
JP2001084631A (en) Optical head device
JP4490842B2 (en) Optical pickup device
CN1967682A (en) Optical pickup device
JP4241739B2 (en) Liquid crystal element and optical pickup device having the same
JP2005353208A (en) Objective lens driver and optical head device
JP4254455B2 (en) Optical head device
WO2007099948A1 (en) Aberration correction element, aberration correction device and optical pickup
JP2002148581A (en) Aberration correction element and aberration correction device
JP2008010062A (en) Optical element and optical pickup
JP4878761B2 (en) Optical head and optical information device
JP4459651B2 (en) Optical pickup device and optical information recording / reproducing device
KR100619400B1 (en) Liquid device
JP4882737B2 (en) Liquid crystal element and optical head device
JP2010267353A (en) Liquid crystal optical device and optical pickup device including the same