WO2007026564A1 - 微細流路を用いた微小液滴の製造装置 - Google Patents
微細流路を用いた微小液滴の製造装置 Download PDFInfo
- Publication number
- WO2007026564A1 WO2007026564A1 PCT/JP2006/316323 JP2006316323W WO2007026564A1 WO 2007026564 A1 WO2007026564 A1 WO 2007026564A1 JP 2006316323 W JP2006316323 W JP 2006316323W WO 2007026564 A1 WO2007026564 A1 WO 2007026564A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- phase liquid
- layer
- microchannel
- microdroplet
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 73
- 239000007788 liquid Substances 0.000 claims abstract description 291
- 239000000463 material Substances 0.000 claims description 11
- 239000006185 dispersion Substances 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 5
- 230000002146 bilateral effect Effects 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 230000014759 maintenance of location Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 40
- 239000002245 particle Substances 0.000 description 22
- 239000000839 emulsion Substances 0.000 description 13
- 239000011521 glass Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 9
- 239000003505 polymerization initiator Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- RIWRBSMFKVOJMN-UHFFFAOYSA-N 2-methyl-1-phenylpropan-2-ol Chemical compound CC(C)(O)CC1=CC=CC=C1 RIWRBSMFKVOJMN-UHFFFAOYSA-N 0.000 description 5
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000004040 coloring Methods 0.000 description 2
- 230000001815 facial effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
- B01F35/712—Feed mechanisms for feeding fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/40—Mixing liquids with liquids; Emulsifying
- B01F23/41—Emulsifying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/30—Micromixers
- B01F33/301—Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
- B01F33/3011—Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions using a sheathing stream of a fluid surrounding a central stream of a different fluid, e.g. for reducing the cross-section of the central stream or to produce droplets from the central stream
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
- B01F35/717—Feed mechanisms characterised by the means for feeding the components to the mixer
- B01F35/71725—Feed mechanisms characterised by the means for feeding the components to the mixer using centrifugal forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/71—Feed mechanisms
- B01F35/717—Feed mechanisms characterised by the means for feeding the components to the mixer
- B01F35/7176—Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
- B01F35/717613—Piston pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F35/00—Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
- B01F35/75—Discharge mechanisms
- B01F35/754—Discharge mechanisms characterised by the means for discharging the components from the mixer
- B01F35/7547—Discharge mechanisms characterised by the means for discharging the components from the mixer using valves, gates, orifices or openings
Definitions
- the present invention relates to an apparatus for producing fine droplets (emulsion and solid fine particles) excellent in monodispersity using a fine channel.
- Patent Document 1 a method for generating emulsion using the intersecting shape of fine grooves.
- This technology makes it possible to generate emulsions of uniform size, and to control the generation speed of emulsion droplets flexibly by manipulating the flow speed in the flow path.
- This technology is applied to the production of multiphase emulsion (see Patent Document 2 below), the preparation of spherical solid particles (see Patent Documents 3 and 4), the preparation of colored solid particles (see Patent Document 5), and the like. Yes.
- Patent Document 1 WO02Z068104 Publication
- Patent Document 2 Japanese Patent Application Laid-Open No. 2004-237177
- Patent Document 3 Japanese Patent Laid-Open No. 2004-059802
- Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-067953
- Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-197083
- the chip structure consists of three layers: (a) a microchannel layer for distributing dispersed liquid, (b) a microchannel layer for distributing continuous liquid, and (c) a Y-shaped microchannel layer for generating droplets. It is a laminate of layers. That is, in this conventional apparatus, three fine flow path substrates must be bonded together for one apparatus, and the structure is complicated. Further, with this conventional apparatus, the inside of the fine channel cannot be observed during operation, and the state inside the channel cannot be grasped optically. Microchannels are inherently prone to clogging, and it is an important factor for production equipment to be able to easily grasp the internal state of the channel during operation.
- an object of the present invention is to provide a microdroplet manufacturing apparatus using a microchannel that can efficiently produce microdroplets at low cost, and in a mass production.
- the present invention provides
- a microdroplet manufacturing apparatus using a microchannel, a microdroplet outlet formed in the center and a microdroplet outlet connected to the microdroplet outlet.
- a plurality of microdroplet generators arranged on a circumference centering on the discharge port, a microchannel for supplying a continuous phase liquid to the plurality of microdroplet generators, and the plurality of microdroplets Between the microchannel that supplies the dispersed phase liquid to the generation unit and the generation unit of the micro droplets adjacent to the generation unit of the plurality of micro droplets, and outside the generation unit of the plurality of micro droplets, And a first liquid delivery outlet disposed on a circumference centering on the microdroplet outlet, and the outer side of the first liquid delivery outlet, the microdroplet outlet.
- the plurality of microdroplet generation units have both-side forces acting on the continuous phase liquid. Dispersed phase liquid merges alternately It is characterized by doing.
- the dispersed phase liquid is composed of a first dispersed phase liquid and a second dispersed phase liquid.
- the first dispersed phase liquid and the second dispersed phase liquid have different material forces.
- the microchannel structure holding holder is a microchannel disposed at a lower portion of the microchannel structure.
- a first layer that discharges droplets, a second layer that is supplied with a dispersed phase liquid disposed under the first layer, and a continuous phase liquid that is disposed under the second layer are supplied. And a third layer.
- the holder for holding the microchannel structure is disposed below the microchannel structure.
- the first layer for discharging the generated microdroplets, the second layer to be supplied with the first dispersed phase liquid disposed under the first layer, and the second layer disposed under the second layer It is characterized by comprising a third layer to which two dispersed phase liquids are supplied, and a fourth layer to be supplied with a continuous phase liquid disposed under the third layer.
- the plurality of microdroplet generation units continuously exert both side forces on the dispersed phase liquid. It is characterized in that the phase liquids merge.
- the holder for holding the microchannel structure is disposed below the microchannel structure.
- the continuous phase liquid includes a first continuous phase liquid and a second continuous phase liquid, and the first The continuous phase liquid and the second continuous phase liquid are characterized by having different types of material.
- the microchannel structure holding holder is a microchannel disposed below the microchannel structure. A first layer that discharges droplets, a second layer that is supplied with a first continuous phase liquid that is disposed under the first layer, and a second continuous that is disposed under the second layer A third layer to which a phase liquid is supplied and a fourth layer to which a dispersed phase liquid is disposed below the third layer are provided.
- the first liquid is a continuous phase liquid and the second liquid is a dispersed phase liquid.
- the phase liquid is a first dispersed phase liquid and a second dispersed phase liquid having different material forces.
- the first dispersed phase liquid and the second dispersed phase liquid are the adjacent second liquids.
- Sending loca is characterized by being sent out sequentially.
- the microchannel structure holding holder is a microchannel disposed below the microchannel structure.
- a first layer that discharges liquid droplets, a second layer that is supplied with a continuous phase liquid disposed under the first layer, and a second dispersed phase that is disposed under the second layer are supplied.
- the first There is one variable flow pump connected to each of the liquid supply port and the second liquid supply port, and the first liquid supply port and the second liquid supply port are equally distributed from the variable flow rate pump. It is characterized by being sent to the outlet.
- the substrate of the microchannel structure is a transparent plate, It is characterized in that the state inside the fine channel can be directly observed through a transparent plate.
- FIG. 1 A microchannel structure (chip) of a microdroplet manufacturing apparatus according to a first embodiment of the present invention.
- FIG. 1 A microchannel structure (chip) of a microdroplet manufacturing apparatus according to a first embodiment of the present invention.
- ⁇ 2 It is a schematic diagram of micro liquid droplet generation in the cross flow channel of the micro liquid droplet manufacturing apparatus showing the first embodiment of the present invention.
- FIG. 3 is a schematic cross-sectional view of a holder for holding a microchannel structure of a microdroplet manufacturing apparatus according to a first embodiment of the present invention.
- FIG. 4 is an exploded perspective view of a holder for holding a microchannel structure of a microdroplet manufacturing apparatus according to a first embodiment of the present invention.
- FIG. 5 is a block diagram of a microdroplet generation system using a microchannel showing an embodiment of the present invention.
- FIG. 6 is a schematic diagram of a microdroplet generation system configuration using a microchannel, showing an embodiment of the present invention.
- FIG. 7 is a diagram showing a state in which the fine droplets of Example 1 of the first embodiment of the present invention are generated.
- FIG. 8 is a view showing a state in which microdroplets are discharged and accumulated in the microdroplet discharge port of the microdroplet manufacturing apparatus that is useful in the present invention.
- FIG. 9 is a diagram (part 1) illustrating the uniformity of microdroplets according to the first embodiment of the present invention.
- FIG. 10 is a diagram (part 2) illustrating the uniformity of microdroplets according to the first embodiment of the present invention.
- FIG. 11 is a top view of a fine channel structure (chip) of a microdroplet producing apparatus showing a specific example 3 of the first embodiment of the present invention.
- FIG. 12 is a schematic cross-sectional view of a holder for holding a microchannel structure of a microdroplet producing apparatus showing a specific example 3 of the first embodiment of the present invention.
- ⁇ 13 It is a diagram showing how the micro droplets of Example 3 of the first embodiment of the present invention are generated.
- FIG. 15 is a top view of a fine channel structure (chip) of a microdroplet production apparatus showing a specific example 4 of the first embodiment of the present invention.
- FIG. 16 is a schematic cross-sectional view of a holder for holding a microchannel structure of a microdroplet production apparatus, showing a specific example 4 of the first embodiment of the present invention.
- FIG. 17 is a diagram showing a state in which the micro droplet of Example 4 of the first embodiment of the present invention is generated.
- FIG. 18 is a view showing the uniformity of the microdroplets of Example 4 of the first embodiment of the present invention.
- FIG. 19 is a top view of a fine channel structure (chip) of a microdroplet production apparatus showing Concrete Example 5 of the first embodiment of the present invention.
- FIG. 20 is a schematic cross-sectional view of a holder for holding a microchannel structure of a microdroplet production apparatus, showing a specific example 5 of the first embodiment of the present invention.
- ⁇ 21] is a diagram showing how the micro droplet of Example 5 of the first embodiment of the present invention is generated.
- FIG. 23 is a top view of the fine channel structure (chip) of the microdroplet production apparatus showing the sixth specific example of the first embodiment of the present invention.
- FIG. 24 is a schematic cross-sectional view of a holder for holding a micro-channel structure of a micro-droplet manufacturing apparatus, showing specific example 6 of the first embodiment of the present invention.
- ⁇ 25 A diagram showing how the micro droplets of Example 6 of the first embodiment of the present invention are generated.
- ⁇ 26 The uniformity of the micro droplets of Example 6 of the first embodiment of the present invention.
- FIG. 27 is a top view of the fine channel structure (chip) of the microdroplet producing apparatus showing the seventh specific example of the first embodiment of the present invention.
- FIG. 28 is a schematic cross-sectional view of a holder for a micro-channel structure of a micro-droplet manufacturing apparatus, showing a specific example 7 of the first embodiment of the present invention.
- FIG. 29 is a top view of a fine channel structure (chip) of a microdroplet producing apparatus showing a second embodiment of the present invention.
- FIG. 30 is a schematic diagram of micro liquid droplet generation in the cross channel of the micro liquid droplet manufacturing apparatus showing the second embodiment of the present invention.
- FIG. 31 is a schematic cross-sectional view of a holder for holding a fine channel structure of a microdroplet producing apparatus showing a second embodiment of the present invention.
- FIG. 32 is a diagram showing a state in which micro droplets of the second embodiment of the present invention are generated.
- Fine channel structure of microdroplet production apparatus showing specific example 8 of second embodiment of the present invention It is a top view of a body (chip).
- FIG. 34 is a schematic cross-sectional view of a holder for a fine channel structure of an apparatus for producing microdroplets, showing Concrete Example 8 of the second embodiment of the present invention.
- FIG. 35 is a top view of a fine channel structure (chip) of a microdroplet producing apparatus according to a third embodiment of the present invention.
- FIG. 36 is a schematic diagram of micro droplet generation in a cross channel of a micro droplet manufacturing apparatus showing a third embodiment of the present invention.
- FIG. 37 is a schematic cross-sectional view of a holder for holding a fine channel structure of a microdroplet producing apparatus according to a third embodiment of the present invention.
- FIG. 38 is a diagram showing a state where micro droplets of the third embodiment of the present invention are generated.
- FIG. 39 is a diagram showing the uniformity of microdroplets according to the third embodiment of the present invention.
- the microdroplet manufacturing apparatus using the microchannel according to the present invention is connected to the microdroplet discharge port formed in the center and the microdroplet discharge port.
- a plurality of microdroplet generators arranged on a circumference centering on the discharge port, a microchannel for supplying a continuous phase liquid to the plurality of microdroplet generators, and the plurality of microdroplets Between the microchannel that supplies the dispersed phase liquid to the generation unit and the generation unit of the micro droplets adjacent to the generation unit of the plurality of micro droplets, and outside the generation unit of the plurality of micro droplets, And a first liquid delivery outlet disposed on a circumference centering on the microdroplet outlet, and the outer side of the first liquid delivery outlet, the microdroplet outlet.
- Holding a fine flow path structure having a hierarchical structure having a second liquid delivery port arranged on a circumference centering on Comprising a holder comprises a variable flow pump connected to said hierarchical structure mosquito ⁇ et consisting outlet and outlet of the second liquid in the micro channel structure a first liquid with a retention holder.
- FIG. 1 is a top view of a fine channel structure (chip) of a microdroplet manufacturing apparatus according to a first embodiment of the present invention
- FIG. 2 is a microchannel in a cross channel of the microdroplet manufacturing apparatus.
- Droplet generation FIG. 3 is a schematic diagram
- FIG. 3 is a schematic cross-sectional view of a holder for holding a fine channel structure of a microdroplet manufacturing apparatus
- FIG. 4 is an exploded perspective view of the holder for holding a fine channel structure.
- 1 is a fine channel structure (fine channel chip)
- 2, 2a, 2b are continuous phases [for example, W (water) phase] liquid supply channel
- 3-6 are continuous phases
- 7-: LO is the continuous phase liquid branch from the continuous phase liquid outlet 3-6
- 11-18 is the continuous phase liquid branched at the continuous phase liquid branch 7-10
- 20, 2 Oa, 20b is a dispersed phase (for example, 0 (oil) phase) liquid supply channel
- 21-28 is a dispersed phase liquid outlet
- 31-38 is a dispersed phase liquid
- Branch portions of the dispersed phase liquid delivered from the outlets 21 to 28, 41 to 56 are dispersed phase microchannels in which the dispersed phase liquid branched by the dispersed phase liquid branches 31 to 38 flows, and 61 to 68 are in the continuous phase liquid.
- a micro-droplet generating unit consisting of a cross channel, 71-78 was generated in the micro-droplet generating unit 61-68 Micro-droplet delivery microchannel that sends out microdroplets, 81 is the microdroplet discharge port where microdroplet delivery microchannels 71-78 merge, 82 is the microdroplet discharge channel, and 100 is the microchannel structure Body holding holder, 101 is a window cover, 111 is a discharge layer, 121 is a first liquid-feeding layer (here, dispersed phase), and 131 is a second liquid-feeding layer (here, continuous phase) .
- microdroplet generators 61 to 68 which are also eight cross flow channels, are formed.
- the holder 100 for holding the micro-channel structure with a hierarchical structure is configured to distribute and supply the flow rate evenly. That is, the continuous phase liquid and the dispersed phase liquid are fed from the respective supply ports to the center of each liquid feed layer, and then fed to a plurality of delivery ports so that the same flow path conditions are obtained.
- the microdroplet is generated in the microdroplet generation unit, and the microdroplet is sent to the microdroplet discharge port in the center of the microchannel structure so that the microdroplet discharge channel force is discharged. It is composed.
- Fig. 2 is an enlarged schematic diagram of the micro droplet generator 61 of Fig. 1, and the continuous phase microchannel 12 through which the continuous phase liquid flows and the dispersed phase microchannels 42 and 43 through which the dispersed phase liquid flows are cross-shaped. It is a schematic diagram which shows a mode that cross
- the micro-droplet with the dispersed-phase liquid force flowing through the dispersed-phase microchannel 42 and the micro-droplet with the dispersed-phase liquid force flowing through the dispersed-phase microchannel 43 are the Karman vortex. Thus, it can be generated alternately.
- the continuous-phase liquid outlets 3 to 6 are arranged on the outermost side, and the dispersed-phase liquid outlet 21 is placed on the inner side thereof.
- ⁇ 28 are arranged at concentric positions around the microdroplet outlet 81, and the dispersed-phase microchannel through which the dispersed-phase liquid branched concentrically at the branching parts 31-38 of the dispersed-phase liquid flows.
- the micro-channel structure 1 is configured by forming 41 to 56 and micro-droplet generating units 61 to 68 that generate micro-droplets and also serve as cross-flow channels.
- peripheral force continuous phase liquid and the dispersed phase liquid are crossed in a cross to generate micro droplets at eight locations, and the generated micro droplets are discharged from the central micro droplet. You will be led to exit 81 and will be taken out.
- the lower part of the discharge layer 111 connected to the cover 101 with window and the discharge port 81 of the microdroplet has a single flow path, and the first connected to the flow path of the dispersed phase liquid.
- a second liquid-feeding layer 131 having a single flow path connected to the continuous-phase liquid flow path.
- FIG. 5 is a block diagram of a microdroplet generation system using microchannels showing an embodiment of the present invention
- FIG. 6 is a schematic configuration diagram thereof.
- 141 is a first variable flow pump
- 142 is a first flow distributor connected to the first variable flow pump 141
- 143 is a second variable flow pump
- 144 is a second variable flow pump.
- Variable flow rate pump Second flow distributor connected to pump 143, 145 controller, 146 first droplet generator module, 147 second droplet generator module, 148 third droplet generator Device module, 149 is a fourth droplet generator module
- 150 is a measurement for measuring the droplet generation rate in each droplet generator module 146-149 Device.
- a microdroplet production apparatus receives a first fluid (for example, a dispersed phase liquid) from a first syringe pump 162 as a first variable flow rate pump.
- a second syringe pump as a second variable flow rate pump 163 force a second fluid (e.g. a continuous phase liquid) is sent through the flow path 2 and, as described above, When micro droplets are generated, they are discharged from the flow channel 82 via the micro droplet outlet 81.
- the droplet generation state can be imaged by a high-speed video camera 172 attached to the optical microscope 171 and monitored by an image processing device (PC) 174.
- Reference numeral 173 denotes a high-speed video camera body.
- FIG. 7 is a diagram showing the state of discharge of microdroplets to the microdroplet discharge port of the microdroplet production apparatus according to the present invention
- FIG. 8 is a diagram showing the state where microdroplets are accumulated. is there.
- the microdroplets generated at eight locations are continuously discharged to the microdroplet outlet, and the microdroplets are efficiently generated in large quantities. Can do.
- FIG. 9 is a diagram showing the uniformity of microdroplets according to the first embodiment of the present invention (part 1)
- FIG. 10 is a diagram showing the uniformity of microdroplets according to the first embodiment of the present invention. (Part 2).
- the number N of droplets is 200.
- the bottle size is 2 ⁇ m and the flow rate Q of the dispersed phase is
- the number of droplets N is 90.
- a plate provided with glass microchannels (minimum part: width 100 m, depth 100 m) as shown in Fig. 1 was prepared. This was set in a stainless steel (SUS304) hierarchical holder as shown in Fig. 3, and a device with the configuration shown in Fig. 6 was prepared.
- a dispersion phase a photopolymerization initiator (DAROCUR1173 made by Ciba Specialty Chemicals) as a polymerization initiator was added, and 1,6-hexanediatalate (AHDN made by Shin-Nakamura Chemical Co., Ltd.) was added to the continuous phase.
- 2% aqueous solution of polybulal alcohol (GL-03, manufactured by Nippon Synthetic Chemical) was used.
- Example 10 The same procedure as in Example 1 was performed, except that the flow rate of the continuous phase fed using the second syringe pump 163 was 20 mlZhr. The average particle size of the obtained resin particles was 106 m, and the coefficient of variation was 2.3% (Fig. 10).
- FIG. 11 is a top view of the fine channel structure (chip) of the microdroplet manufacturing apparatus showing specific example 3 of the first embodiment of the present invention
- FIG. 12 is the microchannel of the microdroplet manufacturing apparatus.
- FIG. 13 is a schematic cross-sectional view of the structure holding holder
- FIG. 13 is a diagram illustrating how the microdroplets are generated
- FIG. 14 is a diagram illustrating the uniformity of the microdroplets.
- microdroplet generating portions having 16 cross flow channels are formed.
- a fine channel structure 1A having the same basic configuration as that of FIG. 1 is used, and as shown in FIG. 12, a fine channel structure having the same basic configuration as that of FIG. Place it on the body holding holder to generate droplets.
- the structure of the holder for holding the fine channel structure in Fig. 12 is basically the same as that in Fig.
- 2A is the supply channel for the continuous phase liquid
- 4A and 6A are the outlets for the continuous phase liquid
- 20A is the dispersion Phase liquid supply channel
- 23A and 27A are dispersed phase liquid outlets
- 81A is a microdroplet outlet where microdroplet delivery microchannels merge
- 82A is a microdroplet discharge channel
- 100A is a microflow Holder for holding the road structure
- 101A is a cover with a window
- 111 A is a discharge layer
- 121A is a first liquid-feeding layer (here, dispersed phase)
- 131A is a second liquid-feeding layer (here, continuous phase) It is.
- a plate provided with a glass microchannel (minimum portion: width 100 m, depth 100 m) as shown in FIG. 11 was produced.
- This is a hierarchical structure made of stainless steel (SUS304).
- SUS304 stainless steel
- Fig. 12 it was set in a built-in holder and a device with the configuration shown in Fig. 6 was prepared.
- As a continuous phase 1, 6-hexanediol ditalylate (Shin-Nakamura Chemical Co., Ltd. A HDN) added with a photoinitiator (DARO CUR1173 from Ciba Specialty Chemicals) as a polymerization initiator was used as a continuous phase.
- Polybulal alcohol GL Synthetic Chemical Co., Ltd.
- FIG. 15 is a top view of the fine channel structure (chip) of the microdroplet manufacturing apparatus showing Concrete Example 4 of the first embodiment of the present invention
- FIG. 16 is the microchannel of the microdroplet manufacturing apparatus.
- FIG. 17 is a schematic cross-sectional view of the structure holding holder
- FIG. 17 is a diagram illustrating how the microdroplets are generated
- FIG. 18 is a diagram illustrating the uniformity of the microdroplets.
- microdroplet generating portions having 32 cross flow channels are formed.
- a fine channel structure 1B having the same basic configuration as that shown in FIG. 1 is used, and as shown in FIG. 16, a fine channel structure having the same basic configuration as that shown in FIG. Place it on the body holding holder to generate droplets.
- the structure of the holder for holding the fine channel structure in Fig. 16 is basically the same as that in Fig. 3, where 2 ⁇ is the supply channel for the continuous phase liquid, 4 ⁇ and 6 ⁇ are the outlets for the continuous phase liquid, and 20 ⁇ is the dispersion.
- Phase liquid supply channel, 23 ⁇ and 27 ⁇ are dispersed phase liquid outlets
- 81B is a microdroplet outlet where microdroplet delivery microchannels join
- 82 ⁇ is a microdroplet discharge channel
- 100B is a microfluidic flow Holder for holding the road structure
- 101B is a cover with window
- 111 ⁇ is the discharge layer
- 121B is the first liquid-feeding layer (here, dispersed phase)
- 131B is the second liquid-feeding layer (here, continuous phase) It is.
- a plate provided with glass microchannels (minimum portion: width 100 / zm, depth 100 m) as shown in FIG. 15 was produced. This was set in a stainless steel (SUS304) hierarchical holder as shown in Fig. 16, and a device with the configuration shown in Fig. 6 was prepared.
- Photopolymerization initiator as polymerization initiator as dispersed phase (DARO manufactured by Ciba Specialty Chemicals) CUR1173) and 1,6-hexanediatalylate (A-HDN made by Shin-Nakamura Igaku Kogyo Co., Ltd.) and polybulal alcohol (GL-03, Nippon Synthetic Chemical Co., Ltd.) 2% aqueous solution were used as the continuous phase. .
- FIG. 19 is a top view of the fine channel structure (chip) of the microdroplet manufacturing apparatus showing Specific Example 5 of the first embodiment of the present invention
- FIG. 20 is the microchannel of the microdroplet manufacturing apparatus.
- FIG. 21 is a schematic cross-sectional view of the structure holding holder
- FIG. 21 is a diagram illustrating how the microdroplets are generated
- FIG. 22 is a diagram illustrating the uniformity of the microdroplets.
- 64 droplet generating portions having 64 cross flow channels are formed.
- a fine channel structure 1C having the same basic configuration as that of FIG. 1 is used.
- a fine channel structure having the same basic configuration as that of FIG. Place it on the body holding holder to generate droplets.
- the structure of the holder for holding the fine channel structure in Fig. 20 is basically the same as that in Fig.
- 2C is the supply channel for the continuous phase liquid
- 4C and 6C are the outlet for the continuous phase liquid
- 20C is the dispersion Phase liquid supply channel
- 23C and 27C are dispersed phase liquid outlets
- 81C is a microdroplet outlet where microdroplet delivery microchannels merge
- 82C is a microdroplet discharge channel
- 100C is a microflow Holder for holding the road structure
- 101C is the cover with window
- 111C is the discharge layer
- 121C is the first liquid-feeding layer (here, dispersed phase)
- 131C is the second liquid-feeding layer (here, continuous phase) It is.
- a plate provided with glass microchannels (minimum portion: width 100 / zm, depth 100 m) as shown in FIG. 19 was produced. This was set in a stainless steel (SUS304) hierarchical structure holder as shown in Fig. 20, and an apparatus with the configuration shown in Fig. 6 was prepared.
- SUS304 stainless steel
- a photoinitiator (DARO CUR1173 from Ciba Specialty Chemicals) as a polymerization initiator was used as a continuous phase.
- Polybulu alcohol GL- 03, Nippon Synthetic Chemical Co., Ltd.
- 2% water-soluble The liquid was used.
- the second syringe pump 163 is used to feed the continuous phase to the microchannel device at 240 mlZhr and the first syringe pump 162 is used to deliver the dispersed phase to the microchannel device, it can be seen that droplets are generated in all branch structures. It was possible to observe as shown in FIG. As shown in FIG. 22, the average particle diameter of the obtained droplets was 95.3 / ⁇ ⁇ , and the variation coefficient was 1.6%.
- FIG. 23 is a top view of the fine channel structure (chip) of the microdroplet manufacturing apparatus showing specific example 6 of the first embodiment of the present invention
- FIG. 24 is the microchannel of the microdroplet manufacturing apparatus.
- 25 is a schematic sectional view of the structure holding holder
- FIG. 25 is a diagram showing how the microdroplets are generated
- FIG. 26 is a diagram showing the uniformity of the microdroplets.
- a fine channel structure 1D having the same basic configuration as that of FIG. 1 is used.
- a fine channel structure having the same basic configuration as that of FIG. Place it on the body holding holder to generate droplets.
- the structure of the holder for holding the fine channel structure in Fig. 24 is basically the same as that in Fig.
- 2D is the supply channel for the continuous phase liquid
- 4D and 6D are the outlet for the continuous phase liquid
- 20D is the dispersion Phase liquid supply channel
- 23D and 27D are dispersed phase liquid outlets
- 81D is a microdroplet outlet where microdroplet delivery microchannels merge
- 82D is a microdroplet discharge channel
- 100D is a microfluidic flow Holder for holding the road structure
- 101D is a cover with a window
- 111D is a discharge layer
- 121D is a first liquid-feeding layer (here, dispersed phase)
- 131D is a second liquid-feeding layer (here, continuous phase) It is.
- a plate provided with a glass microchannel (minimum portion: width 100 m, depth 100 m) as shown in FIG. 23 was produced. This was set in a stainless steel (SUS304) hierarchical holder as shown in Fig. 24, and a device with the configuration shown in Fig. 6 was prepared.
- SUS304 stainless steel
- a device with the configuration shown in Fig. 6 was prepared.
- 1, 6-hexanediol ditalylate Shin-Nakamura Chemical Co., Ltd. A HDN
- DARO CUR1173 from Ciba Specialty Chemicals
- Polybulal alcohol GL Synthetic Chemical Co., Ltd. GL-03
- 2% aqueous solution was used as a continuous phase.
- the continuous phase was fed to the microchannel device at 480 mlZhr and the first syringe pump 162 was used! As shown in Fig. 25, it was possible to observe how droplets were generated in all branch structures. As shown in FIG. 26, the average particle diameter of the obtained droplets was 96.4 / ⁇ ⁇ , and the variation coefficient was 1.3%.
- solid fine particles can be produced by performing a heat treatment or a polymerization treatment such as light irradiation.
- the fine droplets thus produced have an average particle diameter in the range of 1 to 500 ⁇ m and a coefficient of variation of 10% or less.
- the inside of the fine channel structure can be optically observed and measured from the outside of the apparatus.
- an abnormality such as clogging occurs in the inside of the fine channel, it is possible to quickly cope with the replacement of the device.
- the measurement result of the droplet generation phenomenon can be fed back to the control of the liquid delivery device.
- variable flow pump connected to the first liquid (dispersed phase) outlet and the second liquid (continuous phase) outlet, and the variable flow pump force is evenly distributed.
- the liquid may be sent to the first liquid delivery port and the second liquid delivery port. Therefore, according to the present invention, the cost of the manufacturing apparatus can be reduced by reducing the number of liquid feeding devices (variable displacement pumps).
- the droplet diameter can be controlled by the flow rates of the dispersed phase and the continuous phase, and minute droplets having various diameters can be generated with a single device.
- the holder for holding the microchannel structure developed in the present invention is not limited to the microchannel structure in which the cross structure described above is arranged in parallel, but also various other shapes. It can be used for the fine channel structure.
- a holder for holding a microchannel structure having a hierarchical structural force can be applied to a microchannel structure for generating microdroplets composed of a plurality of types of dispersed phases.
- the droplet generation unit sequentially generates the same type of droplets.
- different types of dispersed phase liquids are used to sequentially generate different types of droplets.
- Specific Example 7 below shows an example in which a plurality of types of dispersed phase liquids are delivered to generate different types of micro droplets.
- FIG. 27 is a top view of the fine channel structure (chip) of the microdroplet manufacturing apparatus showing specific example 7 of the first embodiment of the present invention
- FIG. 28 is the microchannel of the microdroplet manufacturing apparatus.
- FIG. 3 is a schematic cross-sectional view of a structure holder.
- microdroplet generating portions having eight cross channel forces are formed.
- A is a continuous phase liquid
- B is a first dispersed phase liquid
- C is a second dispersed phase liquid.
- FIG. 27 a fine channel structure 1E having the same basic configuration as that of FIG. 1 is shown, and different first dispersed phase liquids from the outlets of adjacent dispersed phase liquids are shown. Deliver the second dispersed phase liquid.
- a holder for holding a fine channel structure that can feed the first dispersed phase and the second dispersed phase (the structure is the same as FIG. 37 described later) is provided. ing.
- the structure of the holder for holding the fine channel structure in FIG. 28 is as follows: 2E is the supply channel for the continuous phase liquid, 4E and 6E are the outlets for the continuous phase liquid, and 20E is the supply flow for the first dispersed phase liquid , 20F is the second dispersed phase liquid supply channel, 23E and 27E are the first dispersed phase liquid delivery port, 23F and 27F are the second dispersed phase liquid delivery port, and 81E is the microdroplet delivery micro Microdroplet outlet where the channels merge, 82E is the microdroplet discharge channel, 100E is the holder for holding the microchannel structure, 101E is the cover with window, 111E is the drainage layer, 121E is the first solution The layer (here, the first dispersed phase), 121F is the second liquid-feeding layer (here, the second dispersed phase), and 131E is the third liquid-feeding layer (here, the continuous phase).
- the first dispersed phase liquid and the second dispersed phase liquid are different types of materials, and the dispersed phase liquids of these different materials are merged with the continuous phase liquid to generate microdroplets. Can be made.
- FIG. 29 is a top view of a fine channel structure (chip) of a microdroplet production apparatus according to a second embodiment of the present invention
- FIG. 30 is a cross-flow channel of the microdroplet production apparatus.
- FIG. 31 is a schematic cross-sectional view of a microchannel structure holder of the microdroplet production apparatus
- FIG. 32 is a diagram showing how the microdroplets are generated.
- 201 is a fine channel structure (microchannel chip)
- 202, 202a, 202b are dispersed phase supply channels
- 203-206 are dispersed phase liquid outlets
- 207-210 Is a branch part of the dispersed phase liquid delivered from the outlets 203 to 206 of the dispersed phase liquid
- 211 to 218 are dispersed phase microchannels through which the dispersed phase liquid branched by the branched parts of the dispersed phase liquid 207 to 210 flows
- 220 , 220a, 220b are continuous-phase supply passages
- 221 to 228 are continuous-phase liquid delivery ports
- 231 to 238 are continuous-phase liquid delivery ports 221 to 228, and 241 to 256 Is a continuous-phase microchannel in which a continuous-phase liquid that is branched at the bifurcations 231 to 238 of the continuous-phase liquid flows.
- a micro droplet generator 271 to 278 is a micro droplet that sends out micro droplets generated by the micro droplet generators 261 to 268.
- Droplet delivery microchannel, 281 is a microdroplet discharge port where microdroplet delivery microchannels 271 to 278 merge, 282 is a microdroplet discharge channel, 283 is a cover with a window, 284 is a discharge layer, 285 is The first liquid-feeding layer (here, continuous phase), 286 is the second liquid-feeding layer (here, dispersed phase).
- microdroplet generation units 261 to 268 that are also formed as eight cross flow channels are formed.
- FIG. 30 is an enlarged schematic diagram of the micro droplet generating unit 261 in FIG. 29.
- the dispersed phase microchannel 212 through which the dispersed phase liquid flows and the continuous phase microchannels 242 and 243 through which the continuous phase liquid flows are four-forked.
- FIG. 6 is a schematic diagram showing a state in which minute droplets are sequentially generated by intersecting with each other.
- the dispersed-phase liquid outlets 203 to 206 are arranged on the outermost side with the microdroplet outlet 281 as the center, and the continuous-phase liquid outlets 221 to 206 are placed on the inner side.
- 228 are arranged at concentric positions centering on the outlet 281 of the micro droplet, and the continuous-phase micro flow in which the continuous-phase liquid branched in the continuous-phase liquid bifurcations 231 to 238 flows in a substantially concentric shape inside.
- a micro liquid in which channels 241 to 256 intersect with dispersed phase micro channels 211 to 218 through which a dispersed phase liquid flows so as to form a four-fork, and micro droplets are generated.
- Drop generators 261 to 268 are formed to constitute the fine channel structure 201.
- the peripheral force dispersed phase liquid and the continuous phase liquid intersect with each other so as to form a four-forked path to form a microdroplet generation unit, and the microdroplet generation unit has a plurality of locations (here, 8 locations). As shown in FIG. 30, a large number of microdroplets are generated, and the generated microdroplets are guided to the central microdroplet outlet 281 and discharged.
- the holder 200 for holding the fine channel structure has a single channel at the bottom of the discharge layer 284 connected to the cover 283 with window and the discharge port 281 of the fine droplets.
- a first liquid feeding layer 285 connected to the flow path of the phase liquid and a second liquid feeding layer 286 having a single flow path connected to the flow path of the dispersed phase liquid are provided.
- a plate provided with glass microchannels (minimum portion: width 100 m, depth 100 m) as shown in FIG. 29 was produced.
- a device was prepared in which this was set as shown in Fig. 31 in a hierarchical holder made of stainless steel (SUS304).
- 1,6-hexanediol ditalylate (AHDN, Shin-Nakamura Chemical Co., Ltd.) with a photopolymerization initiator (DAROCUR1173 manufactured by Chinoku 'Specialty' Chemicals) added as a polymerization initiator as a dispersed phase, and polyvinyl chloride as a continuous phase.
- AHDN 1,6-hexanediol ditalylate
- DAROCUR1173 manufactured by Chinoku 'Specialty' Chemicals
- liquid was sent to the microchannel device at 128.
- Oml / hr for the continuous phase and 10.
- OmlZhr for the dispersed phase.
- Fig. 32 The obtained dispersion liquid (emulsion) was irradiated with ultraviolet rays to polymerize monomer droplets to obtain resin particles.
- the average particle diameter of the obtained resin particles was 111 ⁇ m, and the coefficient of variation was 2.9%.
- the hierarchical microchannel structure holding holder is configured to distribute and supply the flow rate evenly.
- the fine droplets produced in this way have an average particle diameter in the range of 1 to 500 ⁇ m and a coefficient of variation of 10% or less.
- the inside of the fine channel structure can be optically observed and measured from the outside of the apparatus.
- an abnormality such as clogging occurs in the inside of the fine channel, it is possible to quickly cope with the replacement of the device.
- the measurement result of the droplet generation phenomenon can be fed back to the control of the liquid delivery device.
- variable flow pump connected to the first liquid (continuous phase) outlet and the second liquid (dispersed phase) outlet, and the variable flow pump force is evenly distributed.
- the liquid may be sent to the first liquid delivery port and the second liquid delivery port. Therefore, according to the present invention, the cost of the manufacturing apparatus can be reduced by reducing the number of liquid feeding devices (variable displacement pumps).
- the droplet diameter can be controlled by the flow rates of the dispersed phase and the continuous phase, and minute droplets having various diameters can be generated with a single apparatus.
- Example 8 shows an example in which a plurality of types of continuous phases are joined to a dispersed phase to generate micro droplets.
- FIG. 33 is a top view of a fine channel structure (chip) of a microdroplet production apparatus showing specific example 8 of the second embodiment of the present invention
- FIG. 34 is a microchannel of the microdroplet production apparatus.
- FIG. 3 is a schematic cross-sectional view of a structure holder.
- microdroplet generation units composed of eight cross channels are formed.
- FIG. 33 there is shown a fine channel structure 201A having the same basic configuration as FIG. 29, and the first continuous phase liquid and the first continuous phase liquid different from the adjacent continuous phase liquid delivery port. First Deliver 2 continuous phase liquids.
- a holder for holding a fine channel structure that can feed the first continuous phase and the second continuous phase (the structure is the same as in FIG. 37 described later). I have.
- D is a dispersed phase liquid
- E is a first continuous phase liquid
- F is a second continuous phase liquid.
- the structure of the holder for holding the fine channel structure in FIG. 34 is as follows.
- 220A is a first continuous phase liquid supply channel
- 220B is a second continuous phase liquid supply channel
- 223A and 227A are first channels.
- 223B and 227B are the second continuous-phase liquid outlet
- 202A is the dispersed-phase liquid supply channel
- 204A and 206A are the dispersed-phase liquid outlet
- 281A is the microdroplet.
- 280A is the microdroplet discharge channel
- 201A is the microchannel structure holder
- 283A is the cover with window
- 284A is the discharge layer
- 285A is the first Liquid-feeding layer (here, the first continuous phase)
- 285B is the second liquid-feeding layer (here, the second continuous phase)
- 286A is the third liquid-feeding layer (here, the dispersed phase) is there.
- the first continuous phase liquid and the second continuous phase liquid are different types of materials, and the continuous phase liquids of these different materials are merged with the dispersed phase liquid to produce microdroplets. Can be made.
- each of the flow rate variable pumps connected to the first liquid delivery port and the second liquid delivery port is one unit.
- a variable flow rate pump may be connected to each of the continuous-phase liquid outlet, the second continuous-phase liquid outlet, and the dispersed-phase liquid outlet.
- FIG. 35 is a top view of a fine channel structure (chip) of a microdroplet production apparatus according to a third embodiment of the present invention
- FIG. 36 is a cross-flow channel of the microdroplet production apparatus.
- Fig. 37 is a schematic diagram of a microdroplet generation
- Fig. 37 is a cross-sectional schematic diagram of a holder for holding a microchannel structure of a microdroplet production device
- Fig. 38 is a diagram showing how the microdroplet is generated
- Fig. 39 is a diagram
- FIG. 6 is a diagram showing the uniformity of microdroplets showing a third embodiment of the present invention.
- 301 is a fine channel structure (fine channel chip)
- 302, 302a, 302b are supply channels for the first dispersed phase
- 303, 303a, 303b are the second dispersed phase.
- 30-4 to 319 are dispersed-phase liquid outlets
- 321 to 336 are dispersed-phase liquid outlets 304 to 319
- a branched portion of the dispersed-phase liquid delivered from the force 304 to 319, and 341 to 372 are dispersed-phase liquid outlets.
- Branch 321 ⁇ 336 400, 400a, 400b are continuous phase supply channels, 401 to 416 are continuous phase liquid outlets, 421 to 436 are continuous phase liquid outlets 401 to Branch part of continuous phase liquid delivered from 416, 441 to 472 are continuous phase microchannels through which the continuous phase liquid branched by continuous phase liquid branch parts 421 to 436 flows, and 481 to 496 are continuous in the dispersed phase liquid
- Droplet delivery microchannel 521 is a minute liquid drop delivery microchannel, 501 to 516 merged with a minute droplet discharge port, 522 is a minute liquid droplet discharge passage, 523 is a cover with a window, 524 is a discharge layer, and 525 is the first layer 1 liquid delivery layer (here, continuous phase), 526 is the 2nd liquid delivery layer (he
- Two-color microdroplets 601 are formed in the minute liquid droplet generator 481 where the first dispersed phase flowing through the dispersed phase microchannel 342 and the second dispersed phase flowing through the dispersed phase microchannel 343 merge to intersect the continuous phase.
- the formed two-color microdroplet 601 is discharged to a microdroplet outlet 521-a microdroplet discharge channel 522 via a microdroplet delivery microchannel 502 that sends out microdroplets. .
- a plate provided with a glass microchannel (minimum portion: width 100 m, depth 100 m) as shown in FIG. 35 was produced. This was used by setting it in a stainless steel (SUS304) hierarchical structure holder as shown in FIG.
- the first dispersed phase is prepared by adding black facial (carbon black) to the acrylic monomer and coloring it black
- the second dispersed phase is prepared by adding white facial (titanium oxide) and coloring it white. did.
- a polymerization initiator a thermal polymerization initiator was added to both dispersed phases so as to be 2 wt%.
- As the continuous phase a 2% aqueous solution of polybutyl alcohol (Nippon Synthetic Chemical GL-03) was used.
- the continuous phase was 128.
- Oml / hr and the two dispersed phase liquids were each 8. OmlZhr. It was possible to observe the formation of droplets colored in two colors for each time (Fig. 38). Obtained dispersion
- the liquid (emulsion) was heat-treated to polymerize the monomer droplets to obtain resin particles.
- the average particle diameter of the obtained resin particles was 138 / ⁇ ⁇ , and the coefficient of variation was 3.4% (FIG. 39).
- the bin size is 4 / ⁇ ⁇
- the flow rate Q of the dispersed phase is 8. Oml / h.
- continuous flow rate Q is 128mlZh
- average droplet D is 137.5 / ⁇ ⁇
- coefficient of variation (degree of variation) CV is 3.4%
- number of droplets 99 is 99.
- Example 9 was repeated except that the continuous phase flow rate was 192. Oml / hr, and the dispersed phase flow rate was 12. OmlZhr.
- the average particle diameter of the obtained resin particles was 121 m, and the coefficient of variation was 4.8%.
- the holder for holding the fine channel structure having a hierarchical structure is configured to distribute and supply the flow rate evenly.
- droplet diameter can be controlled by the flow rates of the dispersed phase and the continuous phase, and various droplet diameters can be produced with a single apparatus.
- variable flow pump connected to the continuous phase liquid outlet, the first dispersed phase liquid outlet, and the second dispersed phase liquid outlet, and the flow variable pump It may be configured so that the liquid is uniformly fed to the outlet of the continuous phase liquid, the outlet of the first dispersed phase liquid, and the outlet of the second dispersed phase liquid. Therefore, according to the present invention, the cost of the manufacturing apparatus can be reduced by reducing the number of liquid feeding devices (variable capacity pumps).
- the first dispersed phase liquid and the second dispersed phase liquid may have different material forces.
- solid fine particles can be produced by performing a heat treatment, a polymerization treatment such as light irradiation.
- the fine droplets thus produced have an average particle diameter in the range of 1 to 500 ⁇ m and a coefficient of variation of 10% or less.
- the inside of the fine channel structure can be optically observed and measured from the outside of the apparatus.
- abnormalities such as clogging occur inside the fine channel. If this happens, it can be dealt with quickly, such as by replacing the device.
- the measurement result of the droplet generation phenomenon can be fed back to the control of the liquid delivery device.
- Fine droplets (emulsion and solid fine particles) excellent in monodispersity can be produced in a large amount with a good yield and a simple yield, and the production volume can be increased.
- the flow rate can be evenly distributed to a plurality of dispersed phase or continuous phase supply channels.
- Fine droplets (emulsion and solid fine particles) excellent in monodispersibility can be produced at low cost by a small number of variable displacement pumps.
- the microdroplet production apparatus using the microchannel according to the present invention is suitable as a microdroplet production apparatus suitable for mass production at low cost.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
明 細 書
微細流路を用いた微小液滴の製造装置
技術分野
[0001] 本発明は、微細流路を用いた、単分散性に優れる微小液滴 (エマルシヨンおよび固 体微粒子)の製造装置に関するものである。
背景技術
[0002] エマルシヨンの製造のため従来力 ホモミクサ等の装置による機械的分散法が用い られて ヽるが、作製されるエマルシヨンの液滴サイズの均一性やサイズの精密制御等 の性能は不十分である。また多孔質ガラス膜やシリコン基板に微細加工された微細 溝や貫通孔を用いた膜乳化技術では、均一サイズのエマルシヨンを作製できるが、 液滴径の柔軟な制御は困難である。
[0003] そこで、上記の不具合を無くすため、本願発明者らは、微細溝の交差形状を利用し たエマルシヨンの生成手法を開発している(下記特許文献 1参照)。この技術により、 均一サイズのエマルシヨンを生成することができ、またエマルシヨンの液滴径ゃ生成 速度を流路内の流れの速さを操作することで柔軟に制御できるようになった。そして、 この技術は、多相エマルシヨンの生成(下記特許文献 2参照)、球状固体微粒子の調 製 (特許文献 3, 4参照)、着色固体微粒子の調製 (特許文献 5参照)などに応用され ている。
特許文献 1: WO02Z068104号公報
特許文献 2 :特開 2004— 237177号公報
特許文献 3:特開 2004— 059802号公報
特許文献 4:特開 2004— 067953号公報
特許文献 5 :特開 2004— 197083号公報
発明の開示
[0004] し力しながら、上記の従来技術における 1つの微細流路交差構造では、液滴生成 が行われる流量に上限があるため、処理できる量が少ないという問題がある。
[0005] 液滴生成用の微細流路の分岐構造を多数並べた例として、 Y字構造の微細流路を
同心円状に多数並べたチップの開発事例がある。チップの構造は、(a)分散相液体 分配用微細流路の層、(b)連続相液体分配用微細流路の層、(c)液滴生成用 Y字 微細流路の層、の 3層を貼り合せたものとなっている。すなわち、この従来の装置で は、 1つの装置のために微細流路基板を 3枚貼り合せなければならず、構造が複雑 になっている。また、この従来の装置では運転中に微細流路内部を観察することはで きず、流路内部の状態把握を光学的に行うことができない。微細流路は本質的に目 詰まりを生じやすいものであり、運転時に流路内部の状態把握を容易に行えることは 生産装置として重要な要素である。
[0006] 本発明は、上記状況に鑑みて、微小液滴を低コストで、効率的に、しかも大量生産 することができる微細流路を用いた微小液滴の製造装置を提供することを目的とする
[0007] 本発明は、上記目的を達成するために、
〔1〕微細流路を用いた微小液滴の製造装置にぉ 、て、中央部に形成される微小液 滴の排出口と、この微小液滴の排出口に接続され、この微小液滴の排出口を中心と した円周上に配置される複数の微小液滴の生成部と、該複数の微小液滴の生成部 に連続相液体を供給するマイクロチャンネルと、前記複数の微小液滴の生成部に分 散相液体を供給するマイクロチャンネルと、前記複数の微小液滴の生成部の隣り合う 微小液滴の生成部の間であって前記複数の微小液滴の生成部より外側で、かつ前 記微小液滴の排出口を中心とした円周上に配置される第 1の液体の送出口と、この 第 1の液体の送出口の外側であって、前記微小液滴の排出口を中心とした円周上に 配置される第 2の液体の送出口とを有する階層構造からなる微細流路構造体保持用 ホルダーを備え、前記階層構造カゝらなる微細流路構造体保持用ホルダーの第 1の液 体の送出口と第 2の液体の送出口に接続される流量可変ポンプを具備することを特 徴とする。
[0008] 〔2〕上記〔1〕記載の微細流路を用いた微小液滴の製造装置において、前記第 1の 液体が分散相液体、前記第 2の液体が連続相液体であることを特徴とする。
[0009] 〔3〕上記〔2〕記載の微細流路を用いた微小液滴の製造装置にお!、て、前記複数の 微小液滴の生成部は、前記連続相液体に対して両側力 分散相液体が交互に合流
することを特徴とする。
[0010] 〔4〕上記〔3〕記載の微細流路を用いた微小液滴の製造装置にお!、て、前記分散 相液体が第 1の分散相液体と第 2の分散相液体からなり、前記第 1の分散相液体と 第 2分散相液体は種類の異なる材料力 なることを特徴とする。
[0011] 〔5〕上記〔2〕記載の微細流路を用いた微小液滴の製造装置において、前記微細 流路構造体保持用ホルダーが、前記微細流路構造体の下部に配置される微小液滴 の排出を行う第 1層と、この第 1層の下部に配置される分散相液体が供給される第 2 層と、この第 2層の下部に配置される連続相液体が供給される第 3層とを具備するこ とを特徴とする。
[0012] 〔6〕上記〔4〕記載の微細流路を用いた微小液滴の製造装置にぉ 、て、前記微細 流路構造体保持用ホルダーが、前記微細流路構造体の下部に配置される微小液滴 の排出を行う第 1層と、この第 1層の下部に配置される第 1の分散相液体が供給され る第 2層と、この第 2層の下部に配置される第 2の分散相液体が供給される第 3層と、 この第 3層の下部に配置される連続相液体が供給される第 4層とを具備することを特 徴とする。
[0013] 〔7〕上記〔1〕記載の微細流路を用いた微小液滴の製造装置において、前記第 1の 液体が連続相液体、前記第 2の液体が分散相液体であることを特徴とする。
[0014] 〔8〕上記〔7〕記載の微細流路を用いた微小液滴の製造装置にぉ 、て、前記複数の 微小液滴の生成部は、前記分散相液体に対して両側力 連続相液体が合流するこ とを特徴とする。
[0015] 〔9〕上記〔7〕記載の微細流路を用いた微小液滴の製造装置にぉ 、て、前記微細 流路構造体保持用ホルダーが、前記微細流路構造体の下部に配置される微小液滴 の排出を行う第 1層と、この第 1層の下部に配置される連続相液体が供給される第 2 層と、この第 2層の下部に配置される分散相液体が供給される第 3層とを具備するこ とを特徴とする。
[0016] 〔10〕上記〔8〕記載の微細流路を用いた微小液滴の製造装置において、前記連続 相液体が第 1の連続相液体と第 2の連続相液体からなり、前記第 1の連続相液体と 第 2の連続相液体は種類の異なる材料カゝらなることを特徴とする。
[0017] 〔11〕上記〔10〕記載の微細流路を用いた微小液滴の製造装置において、前記微 細流路構造体保持用ホルダーが、前記微細流路構造体の下部に配置される微小液 滴の排出を行う第 1層と、この第 1層の下部に配置される第 1の連続相液体が供給さ れる第 2層と、この第 2層の下部に配置される第 2の連続相液体が供給される第 3層と 、この第 3層の下部に配置される分散相液体が供給される第 4層とを具備することを 特徴とする。
[0018] 〔12〕上記〔1〕記載の微細流路を用いた微小液滴の製造装置において、前記第 1 の液体が連続相液体、前記第 2の液体が分散相液体であり、この分散相液体が種類 の異なる材料力 なる第 1の分散相液体と第 2の分散相液体であることを特徴とする
[0019] 〔13〕上記〔12〕記載の微細流路を用いた微小液滴の製造装置において、前記第 1 の分散相液体と第 2の分散相液体は、隣り合う前記第 2の液体の送出ロカ 順次異 ならせて送出されることを特徴とする。
[0020] 〔14〕上記〔13〕記載の微細流路を用いた微小液滴の製造装置において、前記微 細流路構造体保持用ホルダーが、前記微細流路構造体の下部に配置される微小液 滴の排出を行う第 1層と、この第 1層の下部に配置される連続相液体が供給される第 2層と、この第 2層の下部に配置される第 2の分散相が供給される第 3層と、この第 3 層の下部に配置される第 1の分散相が供給される第 4層を具備することを特徴とする
[0021] 〔15〕上記〔1〕〜〔5〕、〔7〕〜〔9〕又は〔14〕の何れか一項記載の微細流路を用いた 微小液滴の製造装置において、前記第 1の液体の送出口と第 2の液体の送出口に 接続される流量可変ポンプは各々 1台であり、この流量可変ポンプから均等に前記 第 1の液体の送出口と前記第 2の液体の送出口とに送液されることを特徴とする。
[0022] 〔16〕上記〔1〕から〔14〕の何れか一項記載の微細流路を用いた微小液滴の製造 装置において、前記微細流路構造体の基板を透明板となし、この透明板を通して微 細流路内部の状態を直接観察可能にすることを特徴とする。
図面の簡単な説明
[0023] [図 1]本発明の第 1実施例を示す微小液滴の製造装置の微細流路構造体 (チップ)
の上面図である。
圆 2]本発明の第 1実施例を示す微小液滴の製造装置の十字流路における微小液 滴生成の模式図である。
[図 3]本発明の第 1実施例を示す微小液滴の製造装置の微細流路構造体保持用ホ ルダ一の断面模式図である。
[図 4]本発明の第 1実施例を示す微小液滴の製造装置の微細流路構造体保持用ホ ルダ一の分解斜視図である。
[図 5]本発明の実施例を示す微細流路を用いた微小液滴の生成システムブロック図 である。
[図 6]本発明の実施例を示す微細流路を用いた微小液滴の生成システム構成模式 図である。
圆 7]本発明の第 1実施例の具体例 1の微小液滴が生成される様子を示す図である。
[図 8]本発明に力かる微小液滴の製造装置の微小液滴の排出口への微小液滴の排 出され、溜まった状態を示す図である。
圆 9]本発明の第 1実施例を示す微小液滴の均一性を示す図(その 1)である。
圆 10]本発明の第 1実施例を示す微小液滴の均一性を示す図(その 2)である。 圆 11]本発明の第 1実施例の具体例 3を示す微小液滴の製造装置の微細流路構造 体 (チップ)の上面図である。
圆 12]本発明の第 1実施例の具体例 3を示す微小液滴の製造装置の微細流路構造 体保持用ホルダーの断面模式図である。
圆 13]本発明の第 1実施例の具体例 3の微小液滴が生成される様子を示す図である 圆 14]本発明の第 1実施例の具体例 3の微小液滴の均一性を示す図である。
圆 15]本発明の第 1実施例の具体例 4を示す微小液滴の製造装置の微細流路構造 体 (チップ)の上面図である。
圆 16]本発明の第 1実施例の具体例 4を示す微小液滴の製造装置の微細流路構造 体保持用ホルダーの断面模式図である。
圆 17]本発明の第 1実施例の具体例 4の微小液滴が生成される様子を示す図である
圆 18]本発明の第 1実施例の具体例 4の微小液滴の均一性を示す図である。
圆 19]本発明の第 1実施例の具体例 5を示す微小液滴の製造装置の微細流路構造 体 (チップ)の上面図である。
圆 20]本発明の第 1実施例の具体例 5を示す微小液滴の製造装置の微細流路構造 体保持用ホルダーの断面模式図である。
圆 21]本発明の第 1実施例の具体例 5の微小液滴が生成される様子を示す図である 圆 22]本発明の第 1実施例の具体例 5の微小液滴の均一性を示す図である。
圆 23]本発明の第 1実施例の具体例 6を示す微小液滴の製造装置の微細流路構造 体 (チップ)の上面図である。
圆 24]本発明の第 1実施例の具体例 6を示す微小液滴の製造装置の微細流路構造 体保持用ホルダーの断面模式図である。
圆 25]本発明の第 1実施例の具体例 6の微小液滴が生成される様子を示す図である 圆 26]本発明の第 1実施例の具体例 6の微小液滴の均一性を示す図である。
圆 27]本発明の第 1実施例の具体例 7を示す微小液滴の製造装置の微細流路構造 体 (チップ)の上面図である。
圆 28]本発明の第 1実施例の具体例 7を示す微小液滴の製造装置の微細流路構造 体用ホルダーの断面模式図である。
圆 29]本発明の第 2実施例を示す微小液滴の製造装置の微細流路構造体 (チップ) の上面図である。
圆 30]本発明の第 2実施例を示す微小液滴の製造装置の交差流路における微小液 滴生成の模式図である。
圆 31]本発明の第 2実施例を示す微小液滴の製造装置の微細流路構造体保持用ホ ルダ一の断面模式図である。
圆 32]本発明の第 2実施例の微小液滴が生成される様子を示す図である。
圆 33]本発明の第 2実施例の具体例 8を示す微小液滴の製造装置の微細流路構造
体 (チップ)の上面図である。
[図 34]本発明の第 2実施例の具体例 8を示す微小液滴の製造装置の微細流路構造 体用ホルダーの断面模式図である。
[図 35]本発明の第 3実施例を示す微小液滴の製造装置の微細流路構造体 (チップ) の上面図である。
[図 36]本発明の第 3実施例を示す微小液滴の製造装置の交差流路における微小液 滴生成の模式図である。
[図 37]本発明の第 3実施例を示す微小液滴の製造装置の微細流路構造体保持用ホ ルダ一の断面模式図である。
[図 38]本発明の第 3実施例の微小液滴が生成される様子を示す図である。
[図 39]本発明の第 3実施例を示す微小液滴の均一性を示す図である。
発明を実施するための最良の形態
[0024] 本発明の微細流路を用いた微小液滴の製造装置は、中央部に形成される微小液 滴の排出口と、この微小液滴の排出口に接続され、この微小液滴の排出口を中心と した円周上に配置される複数の微小液滴の生成部と、該複数の微小液滴の生成部 に連続相液体を供給するマイクロチャンネルと、前記複数の微小液滴の生成部に分 散相液体を供給するマイクロチャンネルと、前記複数の微小液滴の生成部の隣り合う 微小液滴の生成部の間であって前記複数の微小液滴の生成部より外側で、かつ前 記微小液滴の排出口を中心とした円周上に配置される第 1の液体の送出口と、この 第 1の液体の送出口の外側であって、前記微小液滴の排出口を中心とした円周上に 配置される第 2の液体の送出口とを有する階層構造からなる微細流路構造体保持用 ホルダーを備え、前記階層構造カゝらなる微細流路構造体保持用ホルダーの第 1の液 体の送出口と第 2の液体の送出口に接続される流量可変ポンプを具備する。
実施例
[0025] 以下に、本発明を実施例により説明するが、本発明はこれらの実施例に限定される ものではない。
[0026] 図 1は本発明の第 1実施例を示す微小液滴の製造装置の微細流路構造体 (チップ )の上面図、図 2はその微小液滴の製造装置の十字流路における微小液滴生成の
模式図、図 3は微小液滴の製造装置の微細流路構造体保持用ホルダーの断面模式 図、図 4はその微細流路構造体保持用ホルダーの分解斜視図である。
[0027] これらの図において、 1は微細流路構造体 (微細流路チップ)、 2, 2a, 2bは連続相 〔たとえば W (水)相〕液体の供給流路、 3〜6は連続相液体の送出口、 7〜: LOは連続 相液体の送出口 3〜6から送出される連続相液体の分岐部、 11〜18は連続相液体 の分岐部 7〜 10で分岐される連続相液体が流れる連続相マイクロチャンネル、 20, 2 Oa, 20bは分散相〔たとえば 0 (油)相〕液体の供給流路、 21〜28は分散相液体の送 出口、 31〜38は分散相液体の送出口 21〜28から送出される分散相液体の分岐部 、41〜56は分散相液体の分岐部 31〜38で分岐される分散相液体が流れる分散相 マイクロチャンネル、 61〜68は連続相液体中に分散相液体が送出され微小液滴が 生成される、十字流路からなる微小液滴生成部、 71〜78は微小液滴生成部 61〜6 8において生成された微小液滴を送出する微小液滴送出マイクロチャンネル、 81は 微小液滴送出マイクロチャンネル 71〜78が合流する微小液滴の排出口、 82は微小 液滴の排出流路、 100は微細流路構造体保持用ホルダー、 101は窓付カバー、 11 1は排出層、 121は第 1の送液層(ここでは、分散相)、 131は第 2の送液層(ここでは 、連続相)である。ここでは、 8箇所の十字流路カもなる微小液滴生成部 61〜68が形 成されている。
[0028] 図 3から明らかなように、この階層構造の微細流路構造体保持用ホルダー 100は、 均等に流量を配分して供給するように構成されている。つまり、連続相液体及び分散 相液体は、それぞれの供給口から各送液層の中央部まで送液された後、同じ流路条 件となるように、複数の送出口へと送液されて、微小液滴生成部において微小液滴 が生成され、その微小液滴は微細流路構造体中央の微小液滴の排出口へと送られ 、微小液滴の排出流路力 排出されるように構成されて 、る。
[0029] 図 2は図 1の微小液滴生成部 61の拡大模式図であり、連続相液体が流れる連続相 マイクロチャンネル 12と分散相液体が流れる分散相マイクロチャンネル 42と 43が十 字状に交差して、順次微小液滴を生成する様子を示す模式図である。
[0030] ここでは、分散相マイクロチャンネル 42を流れる分散相液体力 なる微小液滴と分 散相マイクロチャンネル 43を流れる分散相液体力 なる微小液滴は、カルマン渦の
ように自発的に交互に生成させることができる。
[0031] 図 1〜図 4から明らかなように、微小液滴の排出口 81を中心として、最も外側に連 続相液体の送出口 3〜6を、その内側に分散相液体の送出口 21〜28を微小液滴の 排出口 81を中心として同心円上の位置にそれぞれ配置し、さらに、同心円状に分散 相液体の分岐部 31〜38で分岐される分散相液体が流れる分散相マイクロチャンネ ル 41〜56と、微小液滴が生成される、十字流路カもなる微小液滴生成部 61〜68を 最も内側に形成して、微細流路構造体 1を構成するようにしている。
[0032] すなわち、周縁部力 連続相液体と分散相液体とを十字に交差させて、 8箇所で微 小液滴を生成し、その生成された微小液滴は、中心の微小液滴の排出口 81に導か れ、 出されること〖こなる。
[0033] このように構成したので、大量の微小液滴を生成することができるとともに、その生 成された微小液滴を微小液滴の排出口 81に導いて、順次排出することができ、大量 に効率的に微小液滴を生成することができる。
[0034] 次に、本発明の実施例を示す微細流路を用いた微小液滴の製造装置の、微細流 路構造体保持用ホルダーの階層構造について、図 3及び図 4を参照しながら詳細に 説明する。
[0035] ここでは、窓付カバー 101、微小液滴の排出口 81と接続される排出層 111の下部 には、単一の流路を有する、分散相液体の流路に接続される第 1の送液層 121と、 連続相液体の流路に接続される単一の流路を有する第 2の送液層 131を設けるよう にしている。
[0036] 図 5は本発明の実施例を示す微細流路を用いた微小液滴の生成システムブロック 図、図 6はその構成模式図である。
[0037] 図 5において、 141は第 1の流量可変ポンプ、 142は第 1の流量可変ポンプ 141に 接続される第 1の流量分配器、 143は第 2の流量可変ポンプ、 144は第 2の流量可変 ポンプ 143に接続される第 2の流量分配器、 145はコントローラ、 146は第 1の液滴 生成装置モジュール、 147は第 2の液滴生成装置モジュール、 148は第 3の液滴生 成装置モジュール、 149は第 4の液滴生成装置モジュール、 150はそれぞれの液滴 生成装置モジュール 146〜149における液滴径ゃ生成速度を測定するための測定
装置である。
[0038] 図 6において、微小液滴の製造装置(マイクロチャンネル装置) 161には、第 1の流 量可変ポンプとしての第 1のシリンジポンプ 162から第 1の流体 (例えば、分散相液体 )を流路 20を介して送出し、第 2の流量可変ポンプとしての第 2のシリンジポンプ 163 力 第 2の流体 (例えば、連続相液体)を流路 2を介して送出し、上記したように、微 小液滴が生成されると、微小液滴の排出口 81を介して流路 82から排出される。
[0039] 液滴の発生状態は、光学式顕微鏡 171に付属する高速度ビデオカメラ 172で撮像 し、それを画像処理装置 (PC) 174でモニターすることができる。なお、 173は高速度 ビデオカメラ本体である。
[0040] 図 7は本発明に力かる微小液滴の製造装置の微小液滴の排出口への微小液滴の 排出状態を示す図、図 8は微小液滴が溜まった状態を示す図である。
[0041] このように、図 1に示したように 8箇所で生成された微小液滴は、微小液滴の排出口 へ連続的に排出され、大量に効率的に微小液滴を生成することができる。
[0042] 図 9は本発明の第 1実施例を示す微小液滴の均一性を示す図(その 1)、図 10は本 発明の第 1実施例を示す微小液滴の均一性を示す図(その 2)である。
[0043] 図 9において、ビンサイズは 2 m、分散相の流量 Qは
d 20mlZh、連続相の流量 Q は 30mlZh、液滴の平均 D は 95. O /z m、変動係数 (バラツキの度合) CVは 2. 2 c avg
%、液滴の個数 Nは 200個である。
[0044] 図 10において、ビンサイズは 2 μ m、分散相の流量 Qは
d 20mlZh、連続相の流量
Qは 20mlZh、液滴の平均 D は 106 /z m、変動係数 (バラツキの度合) CVは
avg 2. 3 c
%、液滴の個数 Nは 90個である。
[0045] 以下、本発明の具体例について説明する。
[0046] (具体例 1)
図 1に示すようなガラス製マイクロチャンネル(最小部:幅 100 m、深さ 100 m) を設けたプレートを作製した。これをステンレス (SUS304)製の階層構造のホルダー に図 3のようにセットし、図 6のような構成の装置を用意した。分散相として重合開始 剤として光重合開始剤(チバ 'スペシャルティ ·ケミカルズ製 DAROCUR1173)を添 加した 1, 6へキサンジォールジアタリレート (新中村ィ匕学工業製 AHDN)を、連続相
としてポリビュルアルコール(日本合成化学製 GL— 03) 2%水溶液を用いた。第 2の シリンジポンプ 163を用いて連続相を 30mlZhr、第 1のシリンジポンプ 162を用いて 分散相を 20mlZhrでマイクロチャンネル装置に送液したところ、全ての分岐構造に ぉ 、て液滴が生成される様子を図 7のように観察することができた。得られた分散液( エマルシヨン)に対して紫外線照射を行い、モノマー液滴を重合することにより榭脂粒 子を得た(図 8)。得られた榭脂粒子の平均粒径は 95 m、変動係数は 2. 2%であつ た(図 9)。
[0047] (具体例 2)
第 2のシリンジポンプ 163を用 ヽて送液する連続相の流量を 20mlZhrとする以外 は具体例 1と同様に行った。得られた榭脂粒子の平均粒径は 106 m、変動係数は 2. 3%であった(図 10)。
[0048] (具体例 3)
図 11は本発明の第 1実施例の具体例 3を示す微小液滴の製造装置の微細流路構 造体 (チップ)の上面図、図 12はその微小液滴の製造装置の微細流路構造体保持 用ホルダーの断面模式図、図 13はその微小液滴が生成される様子を示す図、図 14 はその微小液滴の均一性を示す図である。ここでは、図 11から明らかなように、 16箇 所の十字流路カもなる微小液滴生成部が形成されている。
[0049] 図 11に示すように、図 1とその基本的構成を同じくする微細流路構造体 1Aを、図 1 2に示すように、図 3とその基本的構成を同じくする微細流路構造体保持用ホルダー に配置して液滴を生成する。図 12の微細流路構造体保持用ホルダーの構造は、基 本的に図 3と同様であり、 2Aは連続相液体の供給流路、 4A, 6Aは連続相液体の送 出口、 20Aは分散相液体の供給流路、 23A, 27Aは分散相液体の送出口、 81Aは 微小液滴送出マイクロチャンネルが合流する微小液滴の排出口、 82Aは微小液滴 の排出流路、 100Aは微細流路構造体保持用ホルダー、 101Aは窓付カバー、 111 Aは排出層、 121Aは第 1の送液層(ここでは、分散相)、 131Aは第 2の送液層(ここ では、連続相)である。
[0050] ここでは、図 11に示すようなガラス製のマイクロチャンネル(最小部:幅 100 m、深 さ 100 m)を設けたプレートを作製した。これをステンレス(SUS304)製の階層構
造のホルダーに図 12のようにセットし、図 6に示すような構成の装置を用意した。分散 相として重合開始剤として光重合開始剤(チバ 'スペシャルティ ·ケミカルズ製 DARO CUR1173)を添加した 1, 6へキサンジォールジアタリレート (新中村ィ匕学工業製 A HDN)を、連続相としてポリビュルアルコール(日本合成化学製 GL— 03) 2%水溶 液を用いた。第 2のシリンジポンプ 163を用いて連続相を 60mlZhr、第 1のシリンジ ポンプ 162を用いて分散相を 40mlZhrでマイクロチャンネル装置に送液したところ、 全ての分岐構造において液滴が生成される様子を、図 13に示すように観察すること ができた。図 14に示されるように、得られた液滴の平均粒径は 94. 5 /ζ πι、変動係数 は 2. 0%であった。
[0051] (具体例 4)
図 15は本発明の第 1実施例の具体例 4を示す微小液滴の製造装置の微細流路構 造体 (チップ)の上面図、図 16はその微小液滴の製造装置の微細流路構造体保持 用ホルダーの断面模式図、図 17はその微小液滴が生成される様子を示す図、図 18 はその微小液滴の均一性を示す図である。ここでは、図 15から明らかなように、 32箇 所の十字流路カもなる微小液滴生成部が形成されている。
[0052] 図 15に示すように、図 1とその基本的構成を同じくする微細流路構造体 1Bを、図 1 6に示すように、図 3とその基本的構成を同じくする微細流路構造体保持用ホルダー に配置して液滴を生成する。図 16の微細流路構造体保持用ホルダーの構造は、基 本的に図 3と同様であり、 2Βは連続相液体の供給流路、 4Β, 6Βは連続相液体の送 出口、 20Βは分散相液体の供給流路、 23Β, 27Βは分散相液体の送出口、 81Bは 微小液滴送出マイクロチャンネルが合流する微小液滴の排出口、 82Βは微小液滴 の排出流路、 100Bは微細流路構造体保持用ホルダー、 101Bは窓付カバー、 111 Βは排出層、 121Bは第 1の送液層(ここでは、分散相)、 131Bは第 2の送液層(ここ では、連続相)である。
[0053] ここでは、図 15に示すようなガラス製のマイクロチャンネル(最小部:幅 100 /z m、深 さ 100 m)を設けたプレートを作製した。これをステンレス(SUS304)製の階層構 造のホルダーに図 16のようにセットし、図 6に示すような構成の装置を用意した。分散 相として重合開始剤として光重合開始剤(チバ 'スペシャルティ ·ケミカルズ製 DARO
CUR1173)を添加した 1, 6へキサンジォールジアタリレート (新中村ィ匕学工業製 A HDN)を、連続相としてポリビュルアルコール(日本合成化学製 GL— 03) 2%水溶 液を用いた。第 2のシリンジポンプ 163を用いて連続相を 120mlZhr、第 1のシリンジ ポンプ 162を用いて分散相を 80mlZhrでマイクロチャンネル装置に送液したところ、 全ての分岐構造において液滴が生成される様子を、図 17に示すように観察すること ができた。図 18に示されるように、得られた液滴の平均粒径は 93. 9 /ζ πι、変動係数 は 2. 2%であった。
[0054] (具体例 5)
図 19は本発明の第 1実施例の具体例 5を示す微小液滴の製造装置の微細流路構 造体 (チップ)の上面図、図 20はその微小液滴の製造装置の微細流路構造体保持 用ホルダーの断面模式図、図 21はその微小液滴が生成される様子を示す図、図 22 はその微小液滴の均一性を示す図である。ここでは、図 19から明らかなように、 64箇 所の十字流路カもなる微小液滴生成部が形成されている。
[0055] 図 19に示すように、図 1とその基本的構成を同じくする微細流路構造体 1Cを、図 2 0に示すように、図 3とその基本的構成を同じくする微細流路構造体保持用ホルダー に配置して液滴を生成する。図 20の微細流路構造体保持用ホルダーの構造は、基 本的に図 3と同様であり、 2Cは連続相液体の供給流路、 4C, 6Cは連続相液体の送 出口、 20Cは分散相液体の供給流路、 23C, 27Cは分散相液体の送出口、 81Cは 微小液滴送出マイクロチャンネルが合流する微小液滴の排出口、 82Cは微小液滴 の排出流路、 100Cは微細流路構造体保持用ホルダー、 101Cは窓付カバー、 111 Cは排出層、 121Cは第 1の送液層(ここでは、分散相)、 131Cは第 2の送液層(ここ では、連続相)である。
[0056] ここでは、図 19に示すようなガラス製のマイクロチャンネル(最小部:幅 100 /z m、深 さ 100 m)を設けたプレートを作製した。これをステンレス(SUS304)製の階層構 造のホルダーに図 20のようにセットし、図 6に示すような構成の装置を用意した。分散 相として重合開始剤として光重合開始剤(チバ 'スペシャルティ ·ケミカルズ製 DARO CUR1173)を添加した 1, 6へキサンジォールジアタリレート (新中村ィ匕学工業製 A HDN)を、連続相としてポリビュルアルコール(日本合成化学製 GL— 03) 2%水溶
液を用いた。第 2のシリンジポンプ 163を用いて連続相を 240mlZhr、第 1のシリンジ ポンプ 162を用いて分散相を 160mlZhrでマイクロチャンネル装置に送液したところ 、全ての分岐構造において液滴が生成される様子を、図 21に示すように観察するこ とができた。図 22に示されるように、得られた液滴の平均粒径は 95. 3 /ζ πι、変動係 数は 1. 6%であった。
[0057] (具体例 6)
図 23は本発明の第 1実施例の具体例 6を示す微小液滴の製造装置の微細流路構 造体 (チップ)の上面図、図 24はその微小液滴の製造装置の微細流路構造体保持 用ホルダーの断面模式図、図 25はその微小液滴が生成される様子を示す図、図 26 はその微小液滴の均一性を示す図である。ここでは、図 19から明らかなように、 128 箇所の十字流路力 なる微小液滴生成部が形成されている。
[0058] 図 23に示すように、図 1とその基本的構成を同じくする微細流路構造体 1Dを、図 2 4に示すように、図 3とその基本的構成を同じくする微細流路構造体保持用ホルダー に配置して液滴を生成する。図 24の微細流路構造体保持用ホルダーの構造は、基 本的に図 3と同様であり、 2Dは連続相液体の供給流路、 4D, 6Dは連続相液体の送 出口、 20Dは分散相液体の供給流路、 23D, 27Dは分散相液体の送出口、 81Dは 微小液滴送出マイクロチャンネルが合流する微小液滴の排出口、 82Dは微小液滴 の排出流路、 100Dは微細流路構造体保持用ホルダー、 101Dは窓付カバー、 111 Dは排出層、 121Dは第 1の送液層(ここでは、分散相)、 131Dは第 2の送液層(ここ では、連続相)である。
[0059] ここでは、図 23に示すようなガラス製のマイクロチャンネル(最小部:幅 100 m、深 さ 100 m)を設けたプレートを作製した。これをステンレス(SUS304)製の階層構 造のホルダーに図 24のようにセットし、図 6に示すような構成の装置を用意した。分散 相として重合開始剤として光重合開始剤(チバ 'スペシャルティ ·ケミカルズ製 DARO CUR1173)を添加した 1, 6へキサンジォールジアタリレート (新中村ィ匕学工業製 A HDN)を、連続相としてポリビュルアルコール(日本合成化学製 GL— 03) 2%水溶 液を用いた。第 2のシリンジポンプ 163を用いて連続相を 480mlZhr、第 1のシリンジ ポンプ 162を用!、て分散相を 320mlZhrでマイクロチャンネル装置に送液したところ
、全ての分岐構造において液滴が生成される様子を、図 25に示すように観察するこ とができた。図 26に示されるように、得られた液滴の平均粒径は 96. 4 /ζ πι、変動係 数は 1. 3%であった。
[0060] 上記したように、生成された微小液滴の分散相が重合性成分から成る場合、熱処 理ゃ光照射等による重合処理を行うことで固体微粒子を製造することができる。
[0061] また、本発明によれば、このようにして製造される微小液滴は、平均粒子径 1〜500 μ mの範囲にあり、変動係数は 10%以下である。
[0062] また、本発明によれば、微細流路構造体内部を装置外部から光学的に観察および 測定することができる。これにより、例えば、微細流路内部に目詰まり等の異常が生じ た場合、装置の交換など迅速に対処することができる。また、液滴生成現象の測定結 果を送液装置の制御にフィードバックすることができる。
[0063] また、第 1の液体 (分散相)の送出口と第 2の液体 (連続相)の送出口に接続される 流量可変ポンプは各々 1台となし、該流量可変ポンプ力 均等に第 1の液体の送出 口と第 2の液体の送出口とに送液されるように構成してもよい。したがって、本発明に よれば、送液装置 (可変容量型ポンプ)の個数を低減することにより、製造装置のコス トダウンを図ることができる。
[0064] また、マイクロチャンネルの基板として透明板 (ガラス)を用いれば、より容易に実施 することができ、透明板を通して微細流路内部の状態を直接観察することができ、微 小液滴の製造の制御を的確に実施することができる。
[0065] なお、分散相および連続相の流量により、液滴径の制御が可能であり、単一の装 置で様々な径の微小液滴を生成させることができる。
[0066] 後の実施例に示すように、本発明で開発した微細流路構造体保持用ホルダーは、 上述した十字構造を並列化した微細流路構造体のみに限らず、他のさまざまな形状 の微細流路構造体に用いることができる。また、複数種類の分散相から構成される微 小液滴の生成用微細流路構造体に階層構造力 なる微細流路構造体保持用ホル ダーを適応させることができる。
[0067] 上記実施例では、液滴生成部にぉ 、て、順次、同じ種類の液滴を生成するようにし たが、分散相液体の種類を異ならせて、順次種類が異なった液滴を生成するようにし
てもよい。以下に具体例 7として、複数種類の分散相液体を送出し、種類の異なる微 小液滴を生成する例を示す。
[0068] (具体例 7)
図 27は本発明の第 1実施例の具体例 7を示す微小液滴の製造装置の微細流路構 造体 (チップ)の上面図、図 28はその微小液滴の製造装置の微細流路構造体用ホ ルダ一の断面模式図である。ここでは、図 27から明らかなように、 8箇所の十字流路 力もなる微小液滴生成部が形成されている。図 27において、 Aは連続相液体、 Bは 第 1の分散相液体、 Cは第 2の分散相液体である。
[0069] 図 27に示すように、図 1とその基本的構成を同じくする微細流路構造体 1Eが示さ れており、隣り合う分散相液体の送出口より互いに異なる第 1の分散相液体と第 2の 分散相液体を送出する。また、図 28に示すように、第 1の分散相と第 2の分散相とを 送液可能な微細流路構造体保持用ホルダー (構造としては、後述する図 37と同じで ある)を備えている。
[0070] 図 28の微細流路構造体保持用ホルダーの構造は、 2Eは連続相液体の供給流路 、 4E, 6Eは連続相液体の送出口、 20Eは第 1の分散相液体の供給流路、 20Fは第 2の分散相液体の供給流路、 23E, 27Eは第 1の分散相液体の送出口、 23F, 27F は第 2の分散相液体の送出口、 81Eは微小液滴送出マイクロチャンネルが合流する 微小液滴の排出口、 82Eは微小液滴の排出流路、 100Eは微細流路構造体保持用 ホルダー、 101Eは窓付カバー、 111Eは排出層、 121Eは第 1の送液層(ここでは、 第 1の分散相)、 121Fは第 2の送液層(ここでは、第 2の分散相)、 131Eは第 3の送 液層(ここでは、連続相)である。
[0071] このように構成したので、第 1の分散相液体と第 2分散相液体は種類の異なる材料 として、これらの異なった材料の分散相液体を連続相液体に合流させ微小液滴を生 成することができる。
[0072] なお、上記具体例 1〜6においては、第 1の液体の送出口と第 2の液体の送出口に 接続される流量可変ポンプを各々 1台としたが、具体例 7においては、第 1の分散相 液体の送出口、第 2の分散相液体の送出口、連続相液体の送出口の各々に流量可 変ポンプを接続してもよ!/、。
[0073] 図 29は本発明の第 2実施例を示す微小液滴の製造装置の微細流路構造体 (チッ プ)の上面図、図 30はその微小液滴の製造装置の交差流路における微小液滴生成 の模式図、図 31はその微小液滴の製造装置の微細流路構造体用ホルダーの断面 模式図、図 32はその微小液滴が生成される様子を示す図である。
[0074] これらの図において、 201は微細流路構造体 (微細流路チップ)、 202, 202a, 20 2bは分散相の供給流路、 203〜206は分散相液体の送出口、 207〜210は分散相 液体の送出口 203〜206から送出される分散相液体の分岐部、 211〜218は分散 相液体の分岐部 207〜210で分岐される分散相液体が流れる分散相マイクロチャン ネル、 220, 220a, 220bは連続相の供給流路、 221〜228は連続相液体の送出口 、 231〜238は連続相液体の送出口 221〜228から送出される連続相液体の分岐 部、 241〜256は連続相液体の分岐部 231〜238で分岐される連続相液体が流れ る連続相マイクロチャンネル、 261〜268は分散相液体中に連続相液体が送出され 微小液滴が生成される、交差流路からなる微小液滴生成部、 271〜278は微小液滴 生成部 261〜268において生成された微小液滴を送出する微小液滴送出マイクロ チャンネル、 281は微小液滴送出マイクロチャンネル 271〜278が合流する微小液 滴の排出口、 282は微小液滴の排出流路、 283は窓付カバー、 284は排出層、 285 は第 1の送液層(ここでは、連続相)、 286は第 2の送液層(ここでは、分散相)である 。ここでは、図 29から明らかなように、 8箇所の十字流路カもなる微小液滴生成部 26 1〜268が形成されている。
[0075] 図 30は図 29の微小液滴生成部 261の拡大模式図であり、分散相液体が流れる分 散相マイクロチャンネル 212と連続相液体が流れる連続相マイクロチャンネル 242と 243が四叉路状に交差して、順次微小液滴を生成する様子を示す模式図である。
[0076] 図 29〜図 32から明らかなように、微小液滴の排出口 281を中心として、最も外側に 分散相液体の送出口 203〜206を、その内側に連続相液体の送出口 221〜228を 微小液滴の排出口 281を中心として同心円上の位置にそれぞれ配置し、さらにその 内側の略同心円状に連続相液体の分岐部 231〜238で分岐される連続相液体が 流れる連続相マイクロチャンネル 241〜256が分散相液体が流れる分散相マイクロ チャンネル 211〜 218と四叉路となるように交差させ、微小液滴が生成される微小液
滴生成部 261〜268を形成して、微細流路構造体 201を構成するようにしている。
[0077] すなわち、周縁部力 分散相液体と連続相液体とを四叉路となるように交差させて 微小液滴生成部とし、その微小液滴生成部を複数箇所 (ここでは 8箇所)として図 30 に示すように多量の微小液滴を生成し、その生成された微小液滴は、中心の微小液 滴の排出口 281に導かれ、排出されることになる。
[0078] このように構成したので、大量の微小液滴を生成することができるとともに、その生 成された微小液滴を微小液滴の排出口 281に導いて、順次排出することができ、効 率的に微小液滴を生成することができる。
[0079] 次に、本発明の実施例を示す微細流路を用いた微小液滴の製造装置の、微細流 路構造体保持用ホルダーの階層構造について、図 31を参照しながら詳細に説明す る。
[0080] ここでは、微細流路構造体保持用ホルダー 200は、窓付カバー 283、微小液滴の 排出口 281と接続される排出層 284の下部には、単一の流路を有する、連続相液体 の流路に接続される第 1の送液層 285と、分散相液体の流路に接続される単一の流 路を有する第 2の送液層 286を設けるようにして 、る。
[0081] 図 29に示すようなガラス製のマイクロチャンネル(最小部:幅 100 m、深さ 100 m)を設けたプレートを作製した。これをステンレス(SUS304)製の階層構造のホル ダ一に図 31のようにセットした装置を用意した。分散相として重合開始剤として光重 合開始剤(チノく'スペシャルティ'ケミカルズ製 DAROCUR1173)を添加した 1, 6へ キサンジオールジアタリレート (新中村ィ匕学工業製 AHDN)を、連続相としてポリビ- ルアルコール(日本合成化学製 GL— 03) 2%水溶液を用いた。シリンジポンプ(図示 なし)を用いて連続相を 128. Oml/hr,分散相を 10. OmlZhrでマイクロチャンネ ル装置に送液したところ、全ての分岐路にて液滴が生成される様子を観察することが できた (図 32)。得られた分散液 (エマルシヨン)に対して紫外線照射を行い、モノマ 一液滴を重合することにより榭脂粒子を得た。得られた榭脂粒子の平均粒径は 111 μ m、変動係数は 2. 9%であった。
[0082] 上記した第 2実施例においても、第 1実施例と同様に、階層構造の微細流路構造 体保持用ホルダーは、均等に流量を配分して供給するように構成されている。 上記
したように、生成された微小液滴の分散相が重合性成分から成る場合、熱処理や光 照射等による重合処理を行うことで固体微粒子を製造することができる。
[0083] また、本発明によれば、このようにして製造される微小液滴は、平均粒子径 1〜500 μ mの範囲にあり、変動係数は 10%以下である。
[0084] また、本発明によれば、微細流路構造体内部を装置外部から光学的に観察および 測定することができる。これにより、例えば、微細流路内部に目詰まり等の異常が生じ た場合、装置の交換など迅速に対処することができる。また、液滴生成現象の測定結 果を送液装置の制御にフィードバックすることができる。
[0085] また、第 1の液体 (連続相)の送出口と第 2の液体 (分散相)の送出口に接続される 流量可変ポンプは各々 1台となし、該流量可変ポンプ力 均等に第 1の液体の送出 口と第 2の液体の送出口とに送液されるように構成してもよい。したがって、本発明に よれば、送液装置 (可変容量型ポンプ)の個数を低減することにより、製造装置のコス トダウンを図ることができる。
[0086] また、マイクロチャンネルの基板として透明板 (ガラス)を用いれば、より容易に実施 することができ、透明板を通して微細流路内部の状態を直接観察することができ、微 小液滴の製造の制御を的確に実施することができる。
[0087] また、分散相および連続相の流量により、液滴径の制御が可能であり、単一の装置 で様々な径の微小液滴を生成させることができる。
[0088] なお、上記実施例では、液滴生成部にぉ 、て同じ種類の連続相を送出するように したが、異なる種類の連続相を分散相に合流させるようにしてもよい。以下に具体例 8として複数種類の連続相を分散相に合流させ、微小液滴を生成する例を示す。
[0089] (具体例 8)
図 33は本発明の第 2実施例の具体例 8を示す微小液滴の製造装置の微細流路構 造体 (チップ)の上面図、図 34はその微小液滴の製造装置の微細流路構造体用ホ ルダ一の断面模式図である。ここでは、図 33から明らかなように、 8箇所の十字流路 からなる微小液滴生成部が形成されて 、る。
[0090] 図 33に示すように、図 29とその基本的構成を同じくする微細流路構造体 201Aが 示されており、隣り合う連続相液体の送出口より互いに異なる第 1の連続相液体と第
2の連続相液体を送出する。また、図 34に示すように、第 1の連続相と第 2の連続相 とを送液可能な微細流路構造体保持用ホルダー (構造としては、後述する図 37と同 じである)を備えている。図 33において、 Dは分散相液体、 Eは第 1の連続相液体、 F は第 2の連続相液体である。
[0091] 図 34の微細流路構造体保持用ホルダーの構造は、 220Aは第 1の連続相液体の 供給流路、 220Bは第 2の連続相液体の供給流路、 223A, 227Aは第 1の連続相液 体の送出口、 223B, 227Bは第 2の連続相液体の送出口、 202Aは分散相液体の 供給流路、 204A, 206Aは分散相液体の送出口、 281 Aは微小液滴送出マイクロ チャンネルが合流する微小液滴の排出口、 282Aは微小液滴の排出流路、 201Aは 微細流路構造体保持用ホルダー、 283Aは窓付カバー、 284Aは排出層、 285Aは 第 1の送液層(ここでは、第 1の連続相)、 285Bは第 2の送液層(ここでは、第 2の連 続相)、 286Aは第 3の送液層(ここでは、分散相)である。
[0092] このように構成したので、第 1の連続相液体と第 2連続相液体は種類の異なる材料 として、これらの異なった材料の連続相液体を分散相液体と合流させ微小液滴を生 成することができる。
[0093] なお、上記第 2実施例では第 1の液体の送出口と第 2の液体の送出口に接続され る流量可変ポンプを各々 1台としたが、具体例 8においては、第 1の連続相液体の送 出口、第 2の連続相液体の送出口、分散相液体の送出口の各々に流量可変ポンプ を接続してもよい。
[0094] 図 35は本発明の第 3実施例を示す微小液滴の製造装置の微細流路構造体 (チッ プ)の上面図、図 36はその微小液滴の製造装置の交差流路における微小液滴生成 の模式図、図 37は微小液滴の製造装置の微細流路構造体保持用ホルダーの断面 模式図、図 38はその微小液滴が生成される様子を示す図、図 39は本発明の第 3実 施例を示す微小液滴の均一性を示す図である。
[0095] これらの図において、 301は微細流路構造体 (微細流路チップ)、 302, 302a, 30 2bは第 1の分散相の供給流路、 303, 303a, 303bは第 2の分散相の供給流路、 30 4〜319は分散相液体の送出口、 321〜336は分散相液体の送出口 304〜319力 ら送出される分散相液体の分岐部、 341〜372は分散相液体の分岐部 321〜336
で分岐される分散相液体が流れる分散相マイクロチャンネル、 400, 400a, 400bは 連続相の供給流路、 401〜416は連続相液体の送出口、 421〜436は連続相液体 の送出口 401〜416から送出される連続相液体の分岐部、 441〜472は連続相液 体の分岐部 421〜436で分岐される連続相液体が流れる連続相マイクロチャンネル 、 481〜496は分散相液体中に連続相液体が送出され微小液滴が生成される、交 差流路からなる微小液滴生成部、 501〜516は微小液滴生成部 481〜496におい て生成された微小液滴を送出する微小液滴送出マイクロチャンネル、 521は微小液 滴送出マイクロチャンネル 501〜516が合流する微小液滴の排出口、 522は微小液 滴の排出流路、 523は窓付カバー、 524は排出層、 525は第 1の送液層(ここでは、 連続相)、 526は第 2の送液層(ここでは、第 2の分散相)、 527は第 3の送液層(ここ では、第 1の分散相)である。ここでは、図 35から明らかなように、 16箇所の十字流路 力 なる微小液滴生成部 481〜496が形成されている。
図 36に示すように、分散相マイクロチャンネル 342を流れる第 1の分散相と分散相 マイクロチャンネル 343を流れる第 2の分散相が合流して、連続相と交差する微小液 滴生成部 481において、 2色の微小液滴 601が形成される。なお、形成された 2色の 微小液滴 601は微小液滴を送出する微小液滴送出マイクロチャンネル 502を介して 微小液滴の排出口 521—微小液滴の排出流路 522へと排出される。
(具体例 9)
図 35に示すようなガラス製のマイクロチャンネル(最小部:幅 100 m、深さ 100 m)を設けたプレートを作製した。これをステンレス(SUS304)製の階層構造のホル ダ一に図 37に示すようにセットして用いた。第 1の分散相としてアクリルモノマーに黒 顔科 (カーボンブラック)を添加して黒色に着色したもの、第 2の分散相として白顔科 ( 酸化チタン)を添加して白色に着色したものを用意した。重合開始剤として熱重合開 始剤を両分散相にともに 2wt%になるよう添加した。連続相としてポリビュルアルコー ル(日本合成化学 GL— 03) 2%水溶液を用いた。シリンジポンプ(図示なし)を用い て連続相を 128. Oml/hr, 2つの分散相液体をそれぞれ 8. OmlZhrでマイクロチ ヤンネル装置に送液したところ、全ての分岐路にて両分散相からなる半球ごとに二色 に着色された液滴が生成される様子を観察することができた (図 38)。得られた分散
液 (エマルシヨン)に対して熱処理を行い、モノマー液滴を重合することにより、榭脂 粒子を得た。得られた榭脂粒子の平均粒径は 138 /ζ πι、変動係数は 3. 4%であった (図 39)。なお、図 39において、ビンサイズは 4 /ζ πι、分散相の流量 Qは 8. Oml/h
d
X 2、連続相の流量 Qは 128mlZh、液滴の平均 Dは 137. 5 /ζ πι、変動係数 (バラ ツキの度合) CVは 3. 4%、液滴の個数 Νは 99個である。
(具体例 10)
連続相の流量を 192. Oml/hr,分散相の流量を 12. OmlZhrとする以外は具体 例 9と同様に行った。得られた榭脂粒子の平均粒径は 121 m、変動係数は 4. 8% であった。
[0097] 上記した第 3実施例においても、第 1又は第 2実施例と同様に、階層構造の微細流 路構造体保持用ホルダーは、均等に流量を配分して供給するように構成されて ヽる
[0098] なお、分散相および連続相の流量により液滴径の制御が可能であり、単一の装置 で様々な液滴径のものが作製できる。
[0099] また、連続相液体の送出口、第 1の分散相液体の送出口、第 2の分散相液体の送 出口に接続される流量可変ポンプは各々 1台となし、該流量可変ポンプから均等に 連続相液体の送出口、第 1の分散相液体の送出口、第 2の分散相液体の送出口と に送液されるように構成してもよい。したがって、本発明によれば、送液装置(可変容 量型ポンプ)の個数を低減することにより、製造装置のコストダウンを図ることができる
[0100] また、第 1の分散相液体と第 2分散相液体は種類の異なる材料力 なるようにしても よい。
[0101] 上記したように、生成された微小液滴の分散相が重合性成分から成る場合、熱処 理ゃ光照射等による重合処理を行うことで固体微粒子を製造することができる。
[0102] また、本発明によれば、このようにして製造される微小液滴は、平均粒子径 1〜500 μ mの範囲にあり、変動係数は 10%以下である。
[0103] また、本発明によれば、微細流路構造体内部を装置外部から光学的に観察および 測定することができる。これにより、例えば、微細流路内部に目詰まり等の異常が生じ
た場合、装置の交換など迅速に対処することができる。また、液滴生成現象の測定結 果を送液装置の制御にフィードバックすることができる。
[0104] また、マイクロチャンネルの基板として透明板 (ガラス)を用いれば、より容易に実施 することができ、透明板を通して微細流路内部の状態を直接観察することができ、微 小液滴の製造の制御を的確に実施することができる。
[0105] なお、本発明は上記実施例に限定されるものではなぐ本発明の趣旨に基づき種 々の変形が可能であり、これらを本発明の範囲から排除するものではない。
[0106] 本発明によれば、以下のような効果を奏することができる。
[0107] (1)単分散性に優れる微小液滴 (エマルシヨンおよび固体微粒子)を、簡便にし力も 、歩溜まりよく大量に製造でき、生産量を増大させることができる。
[0108] (2)階層構造力 なる微細流路構造体保持用ホルダーを設けることにより、複数の 分散相あるいは連続相の供給流路に対し、均等に流量を分配することができる。
[0109] (3)単分散性に優れる微小液滴 (エマルシヨンおよび固体微粒子)を、個数の少な い可変容量型ポンプにより低コストで製造することができる。
産業上の利用可能性
[0110] 本発明の微細流路を用いた微小液滴の製造装置は、低コストで、大量生産向きの 微小液滴の製造装置として好適である。
Claims
[1] (a)中央部に形成される微小液滴の排出口と、該微小液滴の排出口に接続され、該 微小液滴の排出口を中心とした円周上に配置される複数の微小液滴の生成部と、該 複数の微小液滴の生成部に連続相液体を供給するマイクロチャンネルと、前記複数 の微小液滴の生成部に分散相液体を供給するマイクロチャンネルと、前記複数の微 小液滴の生成部の隣り合う微小液滴の生成部の間であって前記複数の微小液滴の 生成部より外側で、かつ前記微小液滴の排出口を中心とした円周上に配置される第 1の液体の送出口と、該第 1の液体の送出口の外側であって、前記微小液滴の排出 口を中心とした円周上に配置される第 2の液体の送出口とを有する微細流路構造体 と、
(b)前記微小液滴の排出口、第 1の液体の送出口及び第 2の液体の送出口に接続さ れ、均等に流量を配分して供給する階層構造からなる微細流路構造体保持用ホル ダーを備え、
(c)前記階層構造力 なる微細流路構造体保持用ホルダーの第 1の液体の送出口と 第 2の液体の送出口に接続される流量可変ポンプを具備することを特徴とする微細 流路を用いた微小液滴の製造装置。
[2] 請求項 1記載の微細流路を用いた微小液滴の製造装置にお!、て、前記第 1の液体 が分散相液体、前記第 2の液体が連続相液体であることを特徴とする微小液滴の製 造装置。
[3] 請求項 2記載の微細流路を用いた微小液滴の製造装置にお 、て、前記複数の微 小液滴の生成部は、前記連続相液体に対して両側力 分散相液体が交互に合流す ることを特徴とする微小液滴の製造装置。
[4] 請求項 3記載の微細流路を用いた微小液滴の製造装置にお 、て、前記分散相液 体が第 1の分散相液体と第 2の分散相液体力 なり、前記第 1の分散相液体と第 2分 散相液体は種類の異なる材料力 なることを特徴とする微小液滴の製造装置。
[5] 請求項 2記載の微細流路を用いた微小液滴の製造装置にお 、て、前記微細流路 構造体保持用ホルダーが、前記微細流路構造体の下部に配置される微小液滴の排 出を行う第 1層と、該第 1層の下部に配置される分散相液体が供給される第 2層と、
該第 2層の下部に配置される連続相液体が供給される第 3層とを具備することを特徴 とする微小液滴の製造装置。
[6] 請求項 4記載の微細流路を用いた微小液滴の製造装置にお 、て、前記微細流路 構造体保持用ホルダーが、前記微細流路構造体の下部に配置される微小液滴の排 出を行う第 1層と、該第 1層の下部に配置される第 1の分散相液体が供給される第 2 層と、該第 2層の下部に配置される第 2の分散相液体が供給される第 3層と、該第 3 層の下部に配置される連続相液体が供給される第 4層とを具備することを特徴とする 微小液滴の製造装置。
[7] 請求項 1記載の微細流路を用いた微小液滴の製造装置において、前記第 1の液体 が連続相液体、前記第 2の液体が分散相液体であることを特徴とする微小液滴の製 造装置。
[8] 請求項 7記載の微細流路を用いた微小液滴の製造装置にお 、て、前記複数の微 小液滴の生成部は、前記分散相液体に対して両側力 連続相液体が合流すること を特徴とする微小液滴の製造装置。
[9] 請求項 7記載の微細流路を用いた微小液滴の製造装置にお 、て、前記微細流路 構造体保持用ホルダーが、前記微細流路構造体の下部に配置される微小液滴の排 出を行う第 1層と、該第 1層の下部に配置される連続相液体が供給される第 2層と、 該第 2層の下部に配置される分散相液体が供給される第 3層とを具備することを特徴 とする微小液滴の製造装置。
[10] 請求項 8記載の微細流路を用いた微小液滴の製造装置にお 、て、前記連続相液 体が第 1の連続相液体と第 2の連続相液体力 なり、前記第 1の連続相液体と第 2の 連続相液体は種類の異なる材料カゝらなることを特徴とする微小液滴の製造装置。
[11] 請求項 10記載の微細流路を用いた微小液滴の製造装置において、前記微細流 路構造体保持用ホルダーが、前記微細流路構造体の下部に配置される微小液滴の 排出を行う第 1層と、該第 1層の下部に配置される第 1の連続相液体が供給される第 2層と、該第 2層の下部に配置される第 2の連続相液体が供給される第 3層と、該第 3 層の下部に配置される分散相液体が供給される第 4層とを具備することを特徴とする 微小液滴の製造装置。
[12] 請求項 1記載の微細流路を用いた微小液滴の製造装置にお!、て、前記第 1の液体 が連続相液体、前記第 2の液体が分散相液体であり、該分散相液体が種類の異なる 材料力 なる第 1の分散相液体と第 2の分散相液体であることを特徴とする微小液滴 の製造装置。
[13] 請求項 12記載の微細流路を用いた微小液滴の製造装置において、前記第 1の分 散相液体と第 2の分散相液体は、隣り合う前記第 2の液体の送出口から順次異なら せて送出されることを特徴とする微小液滴の製造装置。
[14] 請求項 13記載の微細流路を用いた微小液滴の製造装置にお 、て、前記微細流 路構造体保持用ホルダーが、前記微細流路構造体の下部に配置される微小液滴の 排出を行う第 1層と、該第 1層の下部に配置される連続相液体が供給される第 2層と 、該第 2層の下部に配置される第 2の分散相が供給される第 3層と、該第 3層の下部 に配置される第 1の分散相が供給される第 4層を具備することを特徴とする微小液滴 の製造装置。
[15] 請求項 1〜5、 7〜9、又は 14の何れか一項記載の微細流路を用いた微小液滴の 製造装置において、前記第 1の液体の送出口と第 2の液体の送出口に接続される流 量可変ポンプは各々 1台であり、該流量可変ポンプから均等に前記第 1の液体の送 出口と前記第 2の液体の送出口とに送液されることを特徴とする微小液滴の製造装 置。
[16] 請求項 1から 14の何れか一項記載の微細流路を用いた微小液滴の製造装置にお いて、前記微細流路構造体の基板を透明板となし、該透明板を通して微細流路内部 の状態を直接観察可能にすることを特徴とする微小液滴の製造装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007533184A JP4892743B2 (ja) | 2005-08-31 | 2006-08-21 | 微細流路を用いた微小液滴の製造装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005251636 | 2005-08-31 | ||
JP2005-251636 | 2005-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007026564A1 true WO2007026564A1 (ja) | 2007-03-08 |
Family
ID=37808662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/316323 WO2007026564A1 (ja) | 2005-08-31 | 2006-08-21 | 微細流路を用いた微小液滴の製造装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4892743B2 (ja) |
WO (1) | WO2007026564A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012008497A1 (ja) | 2010-07-13 | 2012-01-19 | 国立大学法人東京工業大学 | 微小液滴の製造装置 |
JP2012020217A (ja) * | 2010-07-13 | 2012-02-02 | Tokyo Institute Of Technology | 2色性微小液滴の製造方法 |
JP2012166125A (ja) * | 2011-02-10 | 2012-09-06 | Tokyo Institute Of Technology | 2色性微小液滴の製造方法およびその装置 |
WO2013146897A1 (ja) * | 2012-03-29 | 2013-10-03 | 日東電工株式会社 | 液滴生成モジュール |
EP3068526A2 (en) * | 2013-11-11 | 2016-09-21 | King Abdullah University Of Science And Technology | Microfluidic device for high-volume production and processing of monodisperse emulsions |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004243308A (ja) * | 2002-08-01 | 2004-09-02 | Tosoh Corp | 微小流路構造体、構成されるデスクサイズ型化学プラント及びそれらを用いた微粒子製造装置 |
-
2006
- 2006-08-21 JP JP2007533184A patent/JP4892743B2/ja active Active
- 2006-08-21 WO PCT/JP2006/316323 patent/WO2007026564A1/ja active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004243308A (ja) * | 2002-08-01 | 2004-09-02 | Tosoh Corp | 微小流路構造体、構成されるデスクサイズ型化学プラント及びそれらを用いた微粒子製造装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012008497A1 (ja) | 2010-07-13 | 2012-01-19 | 国立大学法人東京工業大学 | 微小液滴の製造装置 |
JP2012020217A (ja) * | 2010-07-13 | 2012-02-02 | Tokyo Institute Of Technology | 2色性微小液滴の製造方法 |
JP5665061B2 (ja) * | 2010-07-13 | 2015-02-04 | 国立大学法人東京工業大学 | 微小液滴の製造装置 |
US9200938B2 (en) | 2010-07-13 | 2015-12-01 | Toyota Institute of Technology | Microdroplet-producing apparatus |
JP2012166125A (ja) * | 2011-02-10 | 2012-09-06 | Tokyo Institute Of Technology | 2色性微小液滴の製造方法およびその装置 |
WO2013146897A1 (ja) * | 2012-03-29 | 2013-10-03 | 日東電工株式会社 | 液滴生成モジュール |
JP2013202555A (ja) * | 2012-03-29 | 2013-10-07 | Nitto Denko Corp | 液滴生成モジュール |
EP3068526A2 (en) * | 2013-11-11 | 2016-09-21 | King Abdullah University Of Science And Technology | Microfluidic device for high-volume production and processing of monodisperse emulsions |
EP3068526B1 (en) * | 2013-11-11 | 2021-05-05 | King Abdullah University Of Science And Technology | Microfluidic device for high-volume production and processing of monodisperse emulsions and method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2007026564A1 (ja) | 2009-03-05 |
JP4892743B2 (ja) | 2012-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10159979B2 (en) | Microfluidic device for high-volume production of monodisperse emulsions | |
JP4339163B2 (ja) | マイクロデバイスおよび流体の合流方法 | |
JP5665061B2 (ja) | 微小液滴の製造装置 | |
KR20050085326A (ko) | 정적 적층 마이크로 혼합기 | |
JP4892743B2 (ja) | 微細流路を用いた微小液滴の製造装置 | |
JP5470642B2 (ja) | 微小液滴調製装置 | |
CN111701627B (zh) | 一种基于声表面波微流控的核壳液滴快速生成装置及方法 | |
CN107405633A (zh) | 基于高深宽比诱导生成液滴的液滴发生器 | |
JP7568312B2 (ja) | マイクロ液滴・気泡生成デバイス | |
WO2022107898A1 (ja) | マイクロ二相液滴生成デバイス | |
JP4166590B2 (ja) | ダブルエマルション・マイクロカプセル生成装置 | |
CN113304790A (zh) | 以并行化设计实现微液滴高通量制备的三维微流控芯片 | |
US9358512B2 (en) | Fluid control device and fluid mixer | |
JP7390078B2 (ja) | マイクロ液滴・気泡生成デバイス | |
JP4417361B2 (ja) | ダブルエマルション・マイクロカプセル生成装置 | |
JP2004195338A (ja) | 粒子製造方法及びそのための微小流路構造体 | |
US20240181453A1 (en) | Microfluidic chip | |
JP2004195337A (ja) | 粒子製造方法及びそのための微小流路構造体 | |
JP2005297150A (ja) | 微小流路構造体及びそれを用いた液滴生成方法 | |
JP2006263694A (ja) | 液滴分割構造及び方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2007533184 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06796586 Country of ref document: EP Kind code of ref document: A1 |