WO2007023945A1 - Discharge plasma generation auxiliary device - Google Patents

Discharge plasma generation auxiliary device Download PDF

Info

Publication number
WO2007023945A1
WO2007023945A1 PCT/JP2006/316729 JP2006316729W WO2007023945A1 WO 2007023945 A1 WO2007023945 A1 WO 2007023945A1 JP 2006316729 W JP2006316729 W JP 2006316729W WO 2007023945 A1 WO2007023945 A1 WO 2007023945A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
electrode
electron source
potential
discharge plasma
Prior art date
Application number
PCT/JP2006/316729
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Hatai
Koichi Aizawa
Tsutomu Ichihara
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005246801A external-priority patent/JP5102442B2/en
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Publication of WO2007023945A1 publication Critical patent/WO2007023945A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/54Igniting arrangements, e.g. promoting ionisation for starting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/30Igniting arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/16Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies
    • H05B41/20Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies having no starting switch
    • H05B41/22Circuit arrangements in which the lamp is fed by dc or by low-frequency ac, e.g. by 50 cycles/sec ac, or with network frequencies having no starting switch for lamps having an auxiliary starting electrode

Definitions

  • the present invention relates to a discharge plasma apparatus using a discharge plasma, such as a fluorescent lamp, an ultraviolet lamp, a plasma display panel, or the like, or a discharge plasma generation assisting apparatus used in a light emitting device.
  • a discharge plasma such as a fluorescent lamp, an ultraviolet lamp, a plasma display panel, or the like
  • a discharge plasma generation assisting apparatus used in a light emitting device.
  • discharge gas t ⁇ ⁇
  • discharge electrodes a pair of discharge electrodes arranged in the airtight container and applying an electric field to the discharge gas
  • the pair of discharge electrodes function as an energy supply unit that supplies energy for generating discharge plasma.
  • a discharge medium containing mercury enclosed in a light-transmitting hermetic container is excited by discharge to generate ultraviolet rays, and is deposited on the inner surface of the hermetic container.
  • the phosphor layer is excited to emit light.
  • rare gas fluorescent lamps anhydrous silver fluorescent lamps
  • the rare gas fluorescent lamp has a problem that its efficiency is lower than that of a conventional fluorescent lamp using mercury, and in order to obtain a luminance equivalent to that of the conventional fluorescent lamp, it is higher between the discharge electrodes.
  • voltage must be applied.
  • a field emission electron source (hereinafter referred to as “electron source”) that supplies electrons into the discharge gas in the hermetic container is used as a discharge plasma generation assist device (hereinafter referred to as “electron source”).
  • electron source Providing a discharge plasma device or light-emitting device that reduces the discharge starting voltage, reduces the sustaining voltage of the discharge plasma, and stabilizes the discharge plasma.
  • a discharge plasma device or light-emitting device that reduces the discharge starting voltage, reduces the sustaining voltage of the discharge plasma, and stabilizes the discharge plasma.
  • Patent Document 1 In other words, in an airtight container filled with xenon gas, a discharge plasm between a pair of discharge electrodes. Place the electron source outside the generator space and drive the electron source at the same time as applying the voltage between the discharge electrodes or before applying the voltage to reduce the discharge start voltage. Yes.
  • the discharge start voltage is reduced by operating the electron source as an igniter. In this way, it is known that the discharge start voltage can be
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2002-150944
  • a discharge plasma apparatus equipped with such an electron source or a light-emitting apparatus is supplied with a discharge plasma. It is preferable to arrange it as close as possible to the generation space.
  • the electron source since the electron source is exposed to the discharge plasma, there is a problem when it deteriorates due to damage (damage) due to ion bombardment or the like.
  • the discharge plasma may reach the electron emission surface of the electron source or a discharge may occur between the discharge electrode and the electron source. Ions collide with the electron emission surface of the electron source, and the electron source is damaged. For this reason, there is a problem that the lifetime of the electron source is shortened and, as a result, the lifetime of the discharge plasma device or the light emitting device is shortened and its reliability is lowered.
  • a ballistic electron surface emission type electron source (hereinafter referred to as “BSD (Ballistic electron Surface-emitting Device)”) MIM (Met
  • BSD Ballistic electron Surface-emitting Device
  • MIM Metal
  • a planar electron source such as an aHnsulator-Metal type electron source
  • V ⁇ ⁇ gas such as argon gas or xenon gas
  • ions collide with the surface electrode of the planar electron source the planar electron source is also damaged by ion bombardment.
  • the present invention has been made to solve the above-described conventional problems, and provides an electron source for reducing the discharge start voltage by supplying electrons into a discharge gas filled in an airtight container. It is an object of the present invention to provide means for enabling the discharge plasma apparatus or light emitting apparatus provided to extend the life of the electron source and thus the apparatus and improve the reliability. Means for solving the problem
  • a discharge plasma apparatus having a discharge plasma generation auxiliary device (hereinafter referred to as "auxiliary device" t ⁇ ⁇ ) according to the present invention is a hermetic container in which a discharge gas as a discharge medium is enclosed. It has. Further, the discharge plasma apparatus or the light emitting apparatus includes an energy supply unit that is disposed in at least one of the inside and the outside of the hermetic container and supplies energy for generating discharge plasma by discharging the discharge gas. Speak.
  • the auxiliary device according to the present invention can be used in a lighting device or the like, and assists the generation of discharge plasma.
  • This auxiliary device includes an electron source that supplies electrons into the discharge gas (field emission type electron source), and protective means for protecting the electron source such as an ion source of discharge plasma generated in the hermetic container. Basic features.
  • the auxiliary device includes a discharge detector that detects discharge of the discharge gas, and positive ions in the discharge plasma collide with the electron source when the discharge start of the discharge gas is detected. And a control means for controlling the potential of the electron source so as to suppress this.
  • the discharge detector detects the start of discharge of the discharge gas based on a change in impedance, current, or voltage between the pair of discharge electrodes. Is preferred. Further, it is preferable that the control means controls the potential of the electron source to be higher than the potential before detecting the start of discharge after detecting the start of discharge of the discharge gas.
  • the protection means includes a protection member that has an electron passage portion for allowing electrons to pass therethrough and also protects the surface electrode of the electron source by the ion force of the discharge plasma.
  • a protection member that has an electron passage portion for allowing electrons to pass therethrough and also protects the surface electrode of the electron source by the ion force of the discharge plasma.
  • at least a portion of the protective member facing the surface electrode is made of a conductive material and has an electron passage portion.
  • the protective member may be formed in a net shape.
  • the protection member may be a secondary electron emission member. Further, at least one of the inner side and the outer side of the protective member may include a secondary electron emission member.
  • the potential of the protective member may be controlled to be the same or higher than the potential of the electron emission portion of the electron source. The potential difference between the protective member and the electron emission portion of the electron source may be controlled to be smaller than the discharge start voltage.
  • the potential of the protective member is higher than the potential of the force sword electrode, and the potential of the anode electrode You may control so that it may become lower. Further, the potential difference between the potential of the anode electrode and the potential of the protective member may be controlled to be smaller than the discharge start voltage.
  • the protective member may be formed of a material that satisfies the relationship represented by the following formula.
  • d is the distance between the protective member and the cathode electrode
  • is the electron multiplication factor in the space between the protective member and the cathode electrode
  • y is the secondary electron emission coefficient due to the ions of the discharge plasma. It is.
  • the protective member may be composed of a first protective member close to the electron source and a second protective member remote from the electron source.
  • the potential of the first protective member is controlled to be higher than that of the electron source, and the potential of the first protective member and the potential of the second protective member are different from each other. You may control so that it may become.
  • the potential of the second protective member may be controlled to be lower than the potential of the anode electrode and higher than the potential of the force sword electrode.
  • the potential of the second protective member is lower than the potential of the first protective member. You may control so that it may become.
  • the aperture ratio of the second protective member is preferably lower than the aperture ratio of the first protective member.
  • the electron source is disposed so as not to be directly exposed to the discharge plasma, while the secondary electron emission portion may be disposed obliquely in front of the electron emission surface of the electron source.
  • the electron source may be a ballistic electron surface emission electron source.
  • an electron source and thus a light emitting device including an electron source for supplying electrons into a discharge gas filled in an airtight container to reduce a discharge start voltage is provided.
  • the life of the device can be extended and the reliability can be improved.
  • FIG. 1A is a schematic diagram showing a schematic configuration of a discharge device including an auxiliary device according to Embodiment 1.
  • FIG. 1B is a schematic diagram showing a schematic configuration of a discharge device including the auxiliary device according to Embodiment 1.
  • FIG. 1C is a diagram showing a relationship between current and voltage in the discharge device according to Embodiment 1.
  • FIG. 2A is a cross-sectional view showing a schematic configuration of an electron source of the discharge device according to Embodiment 1.
  • FIG. 2A is a cross-sectional view showing a schematic configuration of an electron source of the discharge device according to Embodiment 1.
  • FIG. 2B is a cross-sectional view showing a schematic structure of a draft layer of the electron source shown in FIG. 2A.
  • FIG. 3A is a schematic diagram showing the operation of the discharge device according to Embodiment 1.
  • FIG. 3B is a schematic diagram showing the operation of the discharge device according to Embodiment 1.
  • FIG. 4A is a schematic diagram showing an operation of the discharge device including the auxiliary device according to the second embodiment.
  • FIG. 4B is a schematic diagram showing the operation of the discharge device including the auxiliary device according to Embodiment 2.
  • FIG. 4C is a schematic diagram showing an operation of the discharge device including the auxiliary device according to the second embodiment.
  • FIG. 5 is a schematic diagram showing a schematic configuration of a discharge device including an auxiliary device according to a third embodiment.
  • FIG. 6A is a cross-sectional view showing a schematic configuration of an auxiliary device of the discharge device shown in FIG.
  • FIG. 6B is a plan view of the auxiliary device shown in FIG. 6A.
  • FIG. 7 is a sectional view showing a schematic configuration of an auxiliary device according to a fourth embodiment.
  • FIG. 8A is a cross-sectional view showing a schematic configuration of the auxiliary device according to the fifth embodiment.
  • FIG. 8B is a plan view of the auxiliary device shown in FIG. 8A.
  • FIG. 9 is a cross-sectional view showing a schematic configuration of an auxiliary device according to a sixth embodiment.
  • FIG. 10 is a schematic diagram showing a schematic configuration of a discharge device including the auxiliary device according to the seventh embodiment.
  • FIG. 11 is a schematic diagram showing a schematic configuration of a discharge device including the auxiliary device according to the eighth embodiment.
  • FIG. 12 is a schematic diagram showing the configuration of the base material of the secondary electron emission portion in the discharge device shown in FIG.
  • FIG. 12B is a schematic diagram showing the configuration of the base material of the secondary electron emission portion in the discharge device shown in FIG.
  • FIG. 12C is a schematic diagram showing the configuration of the base material of the secondary electron emission portion in the discharge device shown in FIG.
  • FIG. 13A is a schematic diagram showing a configuration of a base material of a secondary electron emission portion in the discharge device shown in FIG.
  • FIG. 13B is a schematic diagram showing the configuration of the base material of the secondary electron emission portion in the discharge device shown in FIG.
  • FIG. 13C is a schematic diagram showing the configuration of the base material of the secondary electron emission portion in the discharge device shown in FIG.
  • FIG. 14 is a schematic diagram showing a schematic configuration of a discharge device including the auxiliary device according to the ninth embodiment.
  • FIG. 16 is a schematic diagram showing a schematic configuration of a discharge device provided with an auxiliary device according to an eleventh embodiment.
  • FIG. 19A is a schematic diagram showing the configuration of the energy supply means of the discharge device.
  • ⁇ 19B A schematic diagram showing the configuration of the energy supply means of the discharge device.
  • FIG. 19C is a schematic diagram showing the configuration of the energy supply means of the discharge device.
  • FIG. 19D is a schematic diagram showing the configuration of the energy supply means of the discharge device.
  • ⁇ 19E A schematic diagram showing the configuration of the energy supply means of the discharge device.
  • FIG. 19F is a schematic diagram showing the configuration of the energy supply means of the discharge device.
  • FIG. 19G is a schematic diagram showing a configuration of energy supply means of the discharge device.
  • FIG. 19H is a schematic diagram showing the configuration of the energy supply means of the discharge device.
  • FIG. 20A is a schematic diagram showing the configuration of the energy supply means of the discharge device.
  • FIG. 20B is a graph showing changes in voltage over time.
  • FIG. 20C is a graph showing a change with time of voltage.
  • 21A A schematic diagram showing the configuration of the energy supply means of the discharge device.
  • FIG. 21B is a graph showing a change with time of voltage.
  • FIG. 21C is a graph showing a change with time of voltage.
  • FIG. 22 is a schematic cross-sectional view showing a schematic configuration of a modified example of the discharge device.
  • ⁇ 23 A schematic cross-sectional view showing a schematic configuration of a modified example of the discharge device.
  • FIG. 24 is a schematic cross-sectional view showing a schematic configuration of a modified example of the discharge device.
  • FIG. 25 is a schematic cross-sectional view showing a schematic configuration of a modified example of the discharge device.
  • FIG. 26 is a schematic diagram showing a schematic configuration of a discharge device including the auxiliary device according to the fourteenth embodiment.
  • FIG. 27A is a schematic diagram showing a schematic configuration of a discharge device including the auxiliary device according to the fifteenth embodiment.
  • FIG. 27B A schematic cross-sectional view showing a schematic structure of the auxiliary device of the discharge device according to Embodiment 15.
  • FIG. 28 is a schematic diagram showing a schematic configuration of a discharge device including the auxiliary device according to the sixteenth embodiment.
  • FIG. 29 is a schematic cross-sectional view showing a schematic configuration of an auxiliary device of the discharge device shown in FIG. 28.
  • FIG. 30 is a schematic diagram showing a schematic configuration of another discharge device including the auxiliary device according to the sixteenth embodiment. Explanation of symbols
  • a discharge plasma apparatus or a light emitting apparatus (hereinafter collectively referred to as “discharge apparatus”) provided with an auxiliary apparatus (discharge plasma generation auxiliary apparatus) according to Embodiment 1 is a discharge tube A. It has.
  • the discharge tube A includes an airtight container 1 in which a gas (discharge gas) as a discharge medium is enclosed.
  • a pair of plasma discharge electrodes 2a and 2b, an electron source 3 (field emission electron source) for supplying electrons into the discharge gas, and an electron emission surface of the electron source 3 are provided.
  • Opposing grid electrodes 4 are accommodated.
  • the discharge device includes a power source 5 that applies a voltage between the discharge electrodes 2a and 2b, a discharge detection means 6 that detects a discharge state of the discharge tube A, and a discharge detection means 6 that discharges the discharge tube A.
  • Control means 7 is provided for controlling the potential of the electron source 3 so as to suppress the collision of positive ions with the electron source 3 when the start is detected.
  • the grid electrode 4 has an opening (not shown) for allowing electrons emitted from the electron source 3 to pass therethrough.
  • the electron source 3 and the grid electrode 4 constitute an auxiliary device (idanator)! / Speak.
  • the electron source 3 is driven to discharge from the electron source 3.
  • the electron force that has passed through the opening of the grid electrode 4 is supplied to the space between the discharge electrodes 2a and 2b.
  • the arrow in FIG. 1A indicates the flow of electrons e ⁇ emitted from the electron source 3 and passing through the opening of the grid electrode 4.
  • discharge start voltage the voltage required to start plasma discharge
  • power consumption can be reduced. If the electron source 3 is driven even after the start of discharge, the discharge plasma can be stabilized, the sustaining voltage can be reduced, and the power consumption can be further reduced.
  • the discharge tube A is a straight tube type rare gas fluorescent lamp.
  • the hermetic container 1 is made of a translucent material such as quartz glass or translucent ceramics. In the airtight container 1, xenon gas is sealed as a discharge gas. A phosphor layer (not shown) that emits light by being excited by ultraviolet rays generated by the excitation of xenon gas is provided on the inner surface of the hermetic container 1.
  • the discharge device discharges discharge tube A by applying a DC voltage from power supply 5 to both discharge electrodes 2a and 2b when a power switch (not shown) is turned on. It has become to let you. That is, the discharge tube A is lit by direct current.
  • the discharge electrode 2a arranged at one end in the longitudinal direction of the hermetic container 1 is an anode electrode, and the other end (FIG. 1A).
  • the discharge electrode 2b arranged on the right side is a force sword electrode (in the first and second embodiments, the “discharge electrode 2a” and the “discharge electrode 2b” are appropriately replaced with the “anode electrode 2a” and the “force electrode”, respectively. Sword electrode 2b ”).
  • the electron source 3 is disposed in the vicinity of the anode electrode 2a on the side opposite to the force sword electrode 2b with respect to the anode electrode 2a.
  • the power source 5 is a pulse power source that outputs a DC pulse voltage.
  • the electron source 3 includes a rectangular plate-like insulating substrate 14 having a force such as an insulating glass substrate or an insulating ceramic substrate.
  • a lower electrode 15 made of a metal film such as a tungsten film is formed on one surface of the insulating substrate 14.
  • a strong electric field drift layer 16 (hereinafter referred to as “drift layer 16” for short) is formed.
  • drift layer 16 On the drift layer 16, a surface electrode 17 made of a metal thin film such as a gold thin film is formed.
  • the drift layer 16 constitutes an electron passage layer.
  • the lower electrode 15, the drift layer 16, and the surface electrode 17 constitute an electron source element 3 a that emits electrons through the surface electrode 17.
  • the surface of the surface electrode 17 constitutes an electron emission surface.
  • the drift layer 16 is formed at least on the surface of the grain 51 of columnar polycrystalline silicon grains (semiconductor crystals) 51 arranged on the surface side of the lower electrode 15.
  • Each grain 51 extends in the thickness direction of the lower electrode 15, that is, in the thickness direction of the insulating substrate 14.
  • the electron source element 3a In the electron source element 3a according to Embodiment 1, electrons can be emitted even when the drive voltage applied between the surface electrode 17 and the lower electrode 15 is a low voltage of about 10 to 20V.
  • the electron source element 3a is less dependent on the degree of vacuum of the electron emission characteristics and does not generate a pobbing phenomenon during electron emission, and can stably emit electrons with high electron emission efficiency.
  • the basic configuration of the electron source element 3a is well known, it is considered that electron emission occurs in the following model. That is, when a voltage is applied between the surface electrode 17 and the lower electrode 15 such that the surface electrode 17 has a high potential, electrons e ⁇ are injected from the lower electrode 15 into the drift layer 16. Further, most of the electric field applied to the drift layer 16 is applied to the silicon oxide film 64. Therefore, the injected electron e ⁇ is accelerated by the strong electric field applied to the silicon oxide film 64. These electrons e ⁇ drift in the region 65 between the grains 51 in the drift layer 16 toward the surface in the direction indicated by the arrow in FIG. 2B, and are emitted by tunneling through the surface electrode 17.
  • the drift layer 16 electrons injected from the lower electrode 15 are converted into silicon microcrystals 63. Drifted by the electric field applied to the silicon oxide film 64 that is hardly scattered by the. These electrons e ⁇ are emitted through the surface electrode 17 (ballistic electron emission phenomenon). Heat generated in the drift layer 16 is released through the grains 51. Therefore, no pobbing phenomenon occurs when electrons are emitted, and electrons can be stably emitted.
  • the silicon oxide film 64 that is an insulating film is formed by an acid process.
  • a nitriding process or an oxynitriding process may be used instead of the acid process.
  • the nitridation process all of the insulating films are silicon nitride films.
  • the oxynitridation process is used, the insulating film is a silicon oxynitride film.
  • the grid electrode 4 is disposed opposite to the electron emission surface of the electron source 3. Therefore, when a driving voltage is applied to the electron source 3 and a voltage of, for example, about 100 V is applied between the grid electrode 4 and the surface electrode 17 so that the grid electrode 4 has a high potential, the electron source 3 The electrons emitted from 3 are attracted to the grid electrode 4. Since the grid electrode 4 has the opening as described above, electrons can be supplied to the space between the anode electrode 2a and the cathode electrode 2b through the opening.
  • the grid electrode 4 for example, a grid electrode made of a conductive material such as nickel, aluminum, or stainless steel, and each mesh opening is used.
  • a plate-like member made of a conductive material may be used in which a plurality of circular or rectangular holes are formed as openings.
  • the current-voltage characteristics between the anode electrode 2a and the force sword electrode 2b change greatly before and after the start of discharge.
  • point P1 in Fig. 1C shows the current-voltage characteristics before discharge, but in this case, almost no current flows.
  • Point P2 is a force indicating the current-voltage characteristics after discharge. In this case, the current increases while the voltage decreases. That is, in the discharge tube A, when the discharge is started, the impedance, current, and voltage between the discharge electrodes 2a and 2b change rapidly.
  • the discharge detection means 6 detects the discharge state of the discharge tube A based on a change in impedance between the discharge electrodes 2a, 2b. Therefore, discharge of discharge tube A is caused by impedance change.
  • the start of electricity can be detected.
  • the discharge detection means 6 may detect the start of discharge of the discharge tube A based on a change in current or a change in voltage that is not a change in impedance between the discharge electrodes 2a and 2b. . In either case, the discharge start of the discharge tube A can be reliably detected by the change in the electrical characteristics between the discharge electrodes 2a and 2b.
  • the discharge device has the electron source so as to suppress the collision of positive ions with the electron source 3 when the discharge detection means 6 detects the start of discharge of the discharge tube A.
  • Control means 7 for controlling the potential of 3 is provided. Then, as shown in FIG. 1B, after the discharge is started, the driving of the electron source 3 is stopped, and positive ions from the discharge plasma 10 are prevented from colliding with the electron source 3.
  • a drive voltage is applied between the surface electrode 17 and the lower electrode 15, a grid voltage is applied between the grid electrode 4 and the surface electrode 17, and the anode electrode 2a and the force sword electrode 2b
  • the surface electrode 17 has a low potential with respect to the anode electrode 2a in order to efficiently supply the electrons emitted from the electron source 3 to the space between the discharge electrodes 2a and 2b. I prefer to be! /.
  • any one of the grid electrode 4, the surface electrode 17 and the lower electrode 15 has the same potential as the anode electrode 2a, the control of the potential by the control means 7 becomes easy. However, in order to increase the electron emission efficiency, it is desirable that the grid electrode 4 and the anode electrode 2a have the same potential.
  • “surface potential”, “lower potential”, “grid potential”, “anode potential”, and “force sword potential” are the surface electrode 17, the lower electrode 15, the grid electrode 4, and the anode potential, respectively. Show the potential of pole 2a and force sword electrode 2b!
  • the control means 7 determines that the potential of the electron source 3 and the potential of the grid electrode 4 are The potentials of the surface electrode 17, the lower electrode 15 and the grid electrode 4 are controlled so as to be higher than the potential of the electrode 2a (positive noise). That is, when the discharge detection means 6 detects the start of discharge, the control means 7 controls the potential of the electron source 3 to be higher than the potential before the detection. In the example shown in FIG. 3B, the surface electrode 17, the lower electrode 15, and the grid electrode 4 are at the same potential.
  • the control means 7 may be configured by a microcomputer or the like.
  • the control means 7 stops driving the electron source 3 when the discharge detection means 6 detects the start of discharge of the discharge tube A, and
  • the potential of the electron source 3 is controlled so as to suppress the collision of positive ions with the electron source 3. For this reason, collision of positive ions to the electron source 3 can be suppressed without providing a protective member, the discharge start voltage can be reduced, and the life of the electron source 3 can be extended.
  • the opening area of the opening of the grid electrode 4 can be made sufficiently larger than the opening area of the mesh when a mesh body is used as a protective member for the purpose of preventing the entry of positive ions. For this reason, the electron emission efficiency of the auxiliary device (idanator) is increased, and the discharge start voltage can be further reduced.
  • Embodiment 2 of the present invention will be described below.
  • the basic configuration of the discharge device including the auxiliary device according to the second embodiment is the same as that of the discharge device according to the first embodiment, and only the operation of the control means 7 is different. Therefore, the operation of the control means 7 will be mainly described below with reference to FIGS. 4A to 4C.
  • the auxiliary device including the electron source 3 and the grid electrode 4 has a force sword electrode 2b with respect to the anode electrode 2a in the vicinity of the anode electrode 2a. It is arranged on the opposite side. For this reason, depending on the form of the electric field, electrons emitted from the auxiliary device are absorbed by the anode electrode 2a, and the amount of electrons supplied to the space between the anode electrode 2a and the force sword electrode 2b decreases. There are things to do.
  • the potential of the grid electrode 4 is first set higher than that of the anode electrode 2a before discharging, so that the auxiliary device cap
  • the emission of electrons is started, thereby preventing the absorption of electrons at the anode electrode 2a.
  • the life in the airtight container 1 of the electron which has also released the auxiliary device force is on the order of milliseconds.
  • the control means 7 detects the potential of the anode electrode 2a before the millisecond time elapses, that is, before it recombines with the electron force S ions and disappears. Increase discharge to start discharging.
  • the potential of the anode electrode 2a is increased to the same potential as that of the grid electrode 4.
  • the control means 7 detects the start of discharge by the discharge detection means 6 (that is, after the start of discharge).
  • the potentials of the surface electrode 17, the lower electrode 15, and the grid electrode 4 are controlled so that the potential and the potential of the grid electrode 4 become higher (positively biased) than the potential of the anode electrode 2a.
  • control means 7 controls the potential of the electron source 3 to be higher than the potential of the anode electrode 2a when the discharge detection means 6 detects the start of discharge. However, it may be controlled so as to have the same potential as the anode electrode 2a.
  • Control means 7 Force When the voltage source is applied between the anode electrode 2a and the force sword electrode 2b after driving the electron source 3, the voltage is applied between the anode electrode 2a and the force sword electrode 2b. Thus, the delay time until power discharge is started can be shortened.
  • control means 7 restarts the electron source 3 when an abnormal discharge is detected by the discharge detection means 6 after the discharge detection means 6 detects the start of discharge, an abnormal discharge occurs.
  • the electron source 3 is re-driven to supply electrons. This facilitates the transition from abnormal discharge to normal discharge.
  • the auxiliary device including the electron source 3 and the grid electrode 4 is disposed in the vicinity of the anode electrode 2a.
  • the auxiliary device may be disposed on the side opposite to the anode electrode 2a with respect to the force sword electrode 2b in the vicinity of the force sword electrode 2b, rather than being disposed in the vicinity of the anode electrode 2a.
  • the control means 7 detects the start of discharge by the discharge detection means 6, the potential of the electron source 3 and the potential of the grid electrode 4 are set to the potential of the anode electrode 2a and the force sword electrode 2b.
  • the collision of positive ions with the electron source 3 disposed in the vicinity of the force sword electrode 2b can be suppressed.
  • the auxiliary device may be disposed between the anode electrode 2a and the force sword electrode 2b.
  • the control means 7 detects the start of discharge by the discharge detection means 6, the potential of the electron source 3 and the potential of the grid electrode 4 are changed between the potential of the anode electrode 2a and the potential of the force sword electrode 2b. If the potential is controlled between them, the collision of positive ions to the electron source 3 disposed between the anode electrode 2a and the force sword electrode 2b can be suppressed.
  • the phosphor layer is provided on the inner surface of the hermetic container 1 of the discharge tube A, but the discharge tube A may be an ultraviolet lamp without providing the phosphor layer.
  • the lower electrode 15 is formed on one surface side of the insulating substrate 14.
  • a semiconductor substrate such as a silicon substrate is used, and the lower electrode is composed of the semiconductor substrate and a conductive layer (for example, an ohmic electrode) stacked on the back side of the semiconductor substrate. Even so.
  • the electron source 3 is a BS D (ballistic electron surface emission electron source) that emits electrons by a ballistic electron emission phenomenon.
  • the electron source 3 is not limited to BSD, and other types of electron sources may be used.
  • an MIM type electron source using an insulator layer as an electron passage layer instead of the drift layer 16 passing electrons between the semiconductor layer on the lower electrode 15 side and the insulator layer on the surface electrode 17 side instead of the drift layer 16
  • the MIS (Metal-Insulator-Semiconductor) type electron source used as the layer, etc. may be used as well as those that can be used at low vacuum like BSD.
  • the life of the electron source 3 can be extended and the reliability can be improved as compared with the case where a Spindt-type electrode is used.
  • BSD is advantageous in terms of reducing the discharge start voltage and the discharge sustain voltage because the energy of the emitted electrons is relatively large! /.
  • Embodiment 3 of the present invention will be described below.
  • the discharge device (light emitting device) according to Embodiment 3 is an ultraviolet lamp.
  • the discharge device including the auxiliary device according to the third embodiment includes an airtight container 1 in which a discharge gas (for example, a rare gas such as xenon) as a discharge medium is sealed, and an airtight container 1 is disposed in 1 and discharge plasma is generated in the plasma generation space 8 in the hermetic vessel 1 by discharge of the discharge gas 1 A pair of discharge electrodes 2a and 2b and an electron in the discharge gas placed in the hermetic vessel 1 And an electron source 3 to be supplied.
  • This discharge device (ultraviolet lamp) emits ultraviolet rays by discharging the discharge gas in the hermetic vessel 1.
  • the discharge device further includes a protective member 20 that protects the surface electrode 17 of the electron source 3 from the ion source of the discharge plasma generated in the hermetic vessel 1.
  • the protective member 20 has a plurality of openings 22a through which electrons emitted from the electron source 3 are passed.
  • the discharge device according to Embodiment 3 is a straight tube type ultraviolet lamp.
  • the hermetic container 1 is formed in a cylindrical shape from a light-transmitting material such as glass or light-transmitting ceramic.
  • Discharge electrodes 2a and 2b are disposed in the airtight container 1 in the vicinity of both ends in the longitudinal direction, respectively. In the vicinity of the discharge electrode 2a, the electron source 3 is disposed at a position where the space force between the discharge electrodes 2a and 2b is separated.
  • the electrons emitted from the electron source 3 are supplied into the discharge gas.
  • the arrows in FIG. 5 indicate the flow of electrons emitted from the electron source 3.
  • a pair of discharge electrodes 2a and 2b arranged inside the hermetic vessel 1 constitutes energy supply means for supplying energy for generating discharge plasma by discharging the discharge gas.
  • the electron source 3 and the protective member 20 constitute an auxiliary device (discharge plasma generation auxiliary device) that assists the generation of discharge plasma.
  • the configuration and function of the electron source 3 according to Embodiment 3 are basically the same as the configuration and function of the electron source 3 according to Embodiment 1.
  • the configuration and function of the drift layer 16 of the electron source element 3a according to Embodiment 3 are the same as the configuration and function of the drift layer 16 according to Embodiment 1. (See Figure 2B).
  • the drive voltage applied to the electron source 3 may be a constant DC voltage or a pulsed voltage. If the drive voltage is a pulsed voltage, apply a drive voltage, and sometimes apply a reverse bias voltage.
  • Electron emission in the electron source element 3a according to the third embodiment also occurs in the same model as the electron emission in the electron source element 3a according to the first embodiment.
  • the insulating film can be formed using an acid process, a nitriding process, or an oxynitriding process.
  • the protective member 20 includes an insulating protective member 21 formed of an insulating material (for example, an insulating resin such as a fluorine-based resin, an insulating ceramic), and a conductive material (for example, nickel, And conductive protection member 22 made of aluminum, stainless steel, or the like.
  • the insulating protection member 21 is formed in a rectangular parallelepiped shape, and one surface (lower surface) of the insulating protection member 21 is fully open.
  • the insulating protective member 21 has a front wall facing the electron emission surface of the electron source 3.
  • a rectangular window hole 21a is provided in the front wall forming a part of the insulating protective member 21, and the conductive protective member 22 is disposed in the window hole 21a.
  • the conductive protection member 22 has a plurality of openings 22a for allowing electrons emitted from the electron source 3 to pass therethrough.
  • the portion of the protective member 20 that faces the surface electrode 17 of the electron source 3 includes the conductive protective member 22 that has the opening 22a and is formed of a conductive material.
  • the conductive protection member 22 is formed in a mesh shape or a lattice shape, and the mesh-shaped mesh portion or the lattice-shaped hole portion forms a square opening 22a.
  • the conductive protection member 22 is generally called 30 mesh, and one side of the square mesh portion is 0.6 mm, and the diameter of the wire is 0.25 mm. -A net made of nickel is used.
  • the size of the mesh that is, the size of the opening 22a is not limited to this, and electrons emitted from the electron source 3 can pass therethrough and are generated in the plasma generation space 8. Any material can be used as long as it can suppress the entry of ions having a discharge plasma power.
  • the length of one side of the square opening 22a is 0. lmn! It can be appropriately set within a range of about 2 mm.
  • the conductive protection member 22 is formed in a net shape, the production of the conductive protection member 22 is easy.
  • a part of the electrons emitted from the electron source 3 is supplied into the discharge gas in the plasma generation space 8 through the opening 22a.
  • the discharge start voltage and the discharge sustain voltage can be reduced.
  • the driving of the electron source 3 is started to supply electrons, and the supply of electrons is continued even after the discharge plasma is generated.
  • Both the discharge start voltage and the discharge sustain voltage can be reduced.
  • the discharge start voltage is usually higher than the discharge sustain voltage, so it may be possible to stop supplying electrons after the discharge has started.
  • the auxiliary device according to Embodiment 3 has an opening 22a through which electrons emitted from the electron source 3 pass, and the surface electrode of the electron source 3 from the ion plasma of the discharge plasma generated in the hermetic vessel 1 1 Protective member 20 for protecting 7 is provided. For this reason, the number of ions colliding with the surface electrode 17 can be reduced, and the life of the electron source 3 can be extended and the reliability can be improved.
  • the portion of the protective member 20 that faces the surface electrode 17 has an opening 22a and is formed from the conductive protective member 22 formed of a conductive material. Become. Therefore, at least a portion of the protective member 20 that faces the surface electrode 17 can be prevented from being charged by electrons. For this reason, it is possible to prevent a problem that electrons emitted from the electron source 3 cannot pass through the opening 22a due to charging.
  • the electron source element 3a is formed on the insulating substrate 14, and the protective member 20 has a shape that does not cover part of the insulating substrate 14.
  • the protective member 20 may have a shape surrounding the entire electron source 3 or a shape surrounding only the electron source element 3a. Further, it may be a shape that covers only the front portion of the electron source 3.
  • the shape of the protective member 20 may be appropriately designed according to the shape of the airtight container 1, the arrangement of the discharge electrodes 2a and 2b, the arrangement of the electron source 3, and the like.
  • the protective member 20 when the protective member 20 is provided in the plasma generation space 8, the discharge plasma tends to spread along the conductive portion of the protective member 20. For this reason, the state of the discharge plasma may be disturbed by the provision of the protective member 20.
  • the conductive protection member 22 is electrically insulated from other parts. For this reason, even if the discharge plasma is in contact with the conductive protection member 22, it is possible to prevent the discharge plasma from being unnecessarily widened.
  • the conductive protection member 22 and the surface electrode 17 are short-circuited outside the hermetic container 1, so that the conductive protection member 22 and the surface electrode 17 have the same potential. Yes. Therefore, it is possible to increase the amount of electrons emitted from the electron source 3 and passing through the opening 22a of the conductive protection member 22 while suppressing the entry of negative ions and positive ions into the protection member 20.
  • the potential of the conductive protection member 22 is kept higher than the potential of the surface electrode 17, electrons emitted from the electron source 3 are accelerated. For this reason, the amount of electrons emitted from the electron source 3 and passing through the opening 22a of the conductive protection member 22 can be increased.
  • the planar shape of the surface electrode 17 and the opening shape of the opening 22a are made the same, or the surface electrode If the size of the opening 22a is made slightly larger than the size of the pole 17, the amount of emitted electrons can be increased while reducing the power consumption. In this case, if the potential difference between the conductive protection member 22 and the surface electrode 17 is too small, the electrons are not accelerated so much, and if it is too large, the electrons are strongly attracted to the conductive protection member 22 and the amount of electrons passing through the opening 22a. Less. Therefore, the potential difference between the conductive protection member 22 and the surface electrode 17 is preferably set so that, for example, the electric field strength between the conductive protection member 22 and the surface electrode 17 is about lkVZcm.
  • Embodiment 4 of the present invention will be described below.
  • the basic configuration of the auxiliary device of the discharge device according to the fourth embodiment is almost the same as that of the auxiliary device according to the third embodiment, and FIG.
  • the only difference is that it includes an extraction electrode 30 made of a metal plate (for example, a nickel plate) disposed outside the protective member 20 and facing the surface electrode 17. Therefore, hereinafter, differences from the third embodiment will be mainly described with reference to FIG.
  • the auxiliary device according to the fourth embodiment includes an extraction electrode 30 that is disposed outside the protective member 20 and faces the surface electrode 34. Therefore, it is possible to accelerate the electrons by keeping the potential of the extraction electrode 30 higher than the potential of the surface electrode 17, and to increase the amount of the electrons emitted from the electron source 3 through the opening 22a. it can.
  • the extraction electrode 30 is disposed away from the conductive protection member 22 so that a gas exists between the protection member 20 and the extraction electrode 30.
  • Embodiment 5 of the present invention will be described below.
  • the basic configuration of the auxiliary device of the discharge device according to the fifth embodiment is substantially the same as that of the auxiliary device according to the third embodiment, and only the differences are described below. Therefore, hereinafter, differences from Embodiment 3 will be mainly described with reference to FIGS. 8A and 8B.
  • the planar shape of the surface electrode 17 of the electron source 3 is formed in a stripe shape, and the planar shape of the surface electrode 17 is an opening shape of the opening 22a.
  • the planar shape of the conductive protection member 22 is a stripe shape so as to be the same.
  • the surface electrode 17 is located in the projection area
  • Embodiment 5 it is possible to reduce the amount of electrons that collide with the peripheral portion of the opening 22a of the protective member 20, that is, electrons that do not pass through the opening 22a (useless electrons). At the same time, the power consumption of the electron source 3 can be reduced.
  • the electron source 3 according to the fifth embodiment is a BSD having the same operation principle as that of the third embodiment, except that the shape of the surface electrode 17 is different. Therefore, compared with the Spindt type electron source, the electron emission angle is small and the straightness of the emitted electrons is good, so the above effect is particularly remarkable.
  • the extraction electrode 30 may be provided as in the fourth embodiment.
  • the sixth embodiment of the present invention will be described below.
  • the discharge according to Embodiment 6 The basic configuration of the auxiliary device of the apparatus is almost the same as that of the auxiliary device according to the third embodiment.
  • the electron emitted from the electron source 3 is disposed between the protective member 20 and the surface electrode 17.
  • the only difference is that it has a secondary electron emission member 40 that emits secondary electrons upon collision. Therefore, the differences from Embodiment 3 will be mainly described below with reference to FIG.
  • the secondary electron emission member 40 has a secondary material that also has a material force for emitting secondary electrons to a base material in which holes for allowing electrons to pass through a flat plate material are provided. It is formed by applying an electron emission film.
  • MgO is used as the material that emits secondary electrons.
  • this material is not limited to MgO, and other materials such as Cs, Ag, BaO, MgO, amorphous carbon, and diamond may be used.
  • the secondary electrons emitted from the secondary electron emitting member 40 which is not only the electrons emitted from the electron source 3, are also supplied to the discharge gas. As a result, the amount of electrons supplied to the discharge gas can be increased.
  • the extraction electrode 30 may be provided. Further, the secondary electron emission member 40 similar to that of the sixth embodiment may be provided in other embodiments.
  • Embodiment 7 of the present invention will be described below.
  • the basic configuration of the auxiliary device of the discharge device according to the seventh embodiment is almost the same as that of the auxiliary device according to the third embodiment, and as shown in FIG. 10, the electron source 3 and the protection member 20 are made of an airtight container. The only difference is that it is arranged in the vicinity of the inner wall surface of the hermetic container 1 in the middle part in the longitudinal direction of 1. Other points are the same as in the third embodiment.
  • the shape of the hermetic container 1 is cylindrical, but the hermetic container 1 is not limited to a cylindrical one.
  • it may be a spherical shape such as a light bulb, or may be a rectangular parallelepiped shape or a cubic shape.
  • it may be a flat type airtight container composed of a pair of flat plates and a frame interposed between the flat plates.
  • a pair of discharge electrodes 2a and 2b are arranged in the cylindrical hermetic vessel 1 as energy supply means so as to be separated from each other in the longitudinal direction of the hermetic vessel 1.
  • the arrangement and configuration of the energy supply means are not limited to this.
  • the voltage applied to the energy supply means may be appropriately selected from DC voltage, AC voltage, pulse voltage, and the like.
  • an ultraviolet lamp is exemplified as the discharge device.
  • the discharge device is not limited to an ultraviolet lamp, but may be a fluorescent lamp for illumination, a plasma display panel, or the like.
  • a phosphor layer that emits light by being excited by ultraviolet rays may be provided at an appropriate site on the inner surface of the hermetic container 1.
  • xenon gas is used as the discharge gas sealed in the hermetic container 1.
  • the discharge gas is not limited to xenon gas. Any gas that causes discharge by supplying energy can be used.
  • the lower electrode 15 is formed on one surface side of the insulating substrate 14.
  • a semiconductor substrate such as a silicon substrate is used, and the lower electrode is configured by the semiconductor substrate and the conductive layer laminated on the back side of the semiconductor substrate. May be.
  • the electron source 3 according to Embodiments 3 to 6 is BSD.
  • other types of electron sources such as MIM type electron sources and MIS type electron sources may be used instead of BSD.
  • Embodiment 8 of the present invention will be described below.
  • the discharge device (light emitting device) according to Embodiment 8 is an ultraviolet lamp.
  • the discharge device including the auxiliary device according to the eighth embodiment includes an airtight container 1 in which a discharge gas (for example, a rare gas such as xenon) as a discharge medium is enclosed, and an airtight container 1 A plasma generation space in the hermetic vessel 1 is discharged by discharging the discharge gas inside the gas chamber 8 ⁇ This generates a discharge plasma A pair of discharge electrodes 2a, 2b and an electron in the discharge gas placed in the hermetic vessel 1 And an electron source 3 for supplying This discharge device (ultraviolet lamp) emits ultraviolet rays by discharging the discharge gas in the hermetic vessel 1.
  • a discharge gas for example, a rare gas such as xenon
  • the discharge device is a material (for example, Cs, Ag, BaO, MgO, and the like) that is disposed in the hermetic vessel 1 and emits secondary electrons into the discharge gas by collision of electrons emitted from the electron source 3. It has a secondary electron emission part 25 containing morphous carbon, diamond, etc.).
  • the discharge device according to Embodiment 8 is a straight tube type ultraviolet lamp.
  • the hermetic container 1 is formed in a cylindrical shape with a material having translucency, such as glass and translucent ceramic.
  • Discharge electrodes 2a and 2b are disposed in the airtight container 1 in the vicinity of both ends in the longitudinal direction.
  • the secondary electron emission portion 25 is disposed on the side of one discharge electrode 2a.
  • the electron source 3 is arranged at a position farther from the plasma generation space 8 than the secondary electron emission unit 25.
  • the discharge device when the electron source 3 is driven, electrons emitted from the electron source 3 are supplied into the discharge gas.
  • the arrow on the right side of the electron source 3 indicates the flow of electrons emitted from the electron source 3.
  • the arrow on the right side of the secondary electron emitter 25 indicates the electrons emitted from the electron source 3 and passed through the secondary electron emitter 25 and the secondary electrons emitted from the secondary electron emitter 25. It shows the flow of electrons.
  • the electron source 3 Before the voltage is applied between the discharge electrodes 2a and 2b, the electron source 3 is started to supply electrons to the discharge gas, thereby reducing the discharge start voltage between the discharge electrodes 2a and 2b. Can. Further, if the electron source 3 is driven even after a voltage is applied between the discharge electrodes 2a and 2b, the stability of the discharge plasma can be improved and the discharge sustaining voltage can be reduced. , Power consumption can be reduced.
  • a pair of discharge electrodes 2a, 2b arranged inside the hermetic container 1 constitutes energy supply means for supplying energy for discharging discharge gas to generate discharge plasma.
  • the electron source 3 and the secondary electron emission unit 25 may constitute an auxiliary device that assists the generation of discharge plasma.
  • the configuration and function of the electron source 3 according to Embodiment 8 are basically the same as the configuration and function of the electron source 3 according to Embodiment 1.
  • the configuration and function of the drift layer 16 of the electron source element 3a according to Embodiment 8 are also the same as the configuration and function of the drift layer 16 according to Embodiment 1 (see FIG. 2B).
  • the drive voltage applied to the electron source 3 may be a constant DC voltage or a pulsed voltage. Also, if the drive voltage is a pulse voltage, the drive Apply a dynamic voltage, and sometimes apply a reverse bias voltage.
  • Electron emission in the electron source element 3a according to the eighth embodiment occurs in the same model as the electron emission in the electron source element 3a according to the first embodiment.
  • the insulating film can be formed using an acid process, a nitriding process, or an oxynitriding process.
  • the secondary electron emission unit 25 is disposed in the plasma generation space 8 in which discharge plasma is generated in the hermetic vessel 1.
  • the secondary electron emission section 25 has a structure in which a secondary electron emission film having a material force for emitting secondary electrons is installed on the substrate 26 shown in FIG. 12A.
  • the base material 21 shown in FIG. 12A is not limited to the form of the force base material 26 in which a large number of circular holes 26b are formed in a flat plate member 26a.
  • a flat plate member 26a may be formed with a number of rectangular holes 26b. Further, as shown in FIG. 12C, a mesh shape may be used. If a secondary electron emission film is deposited on the side facing the electron source 3 at least, the electrons emitted from the electron source 3 and the secondary electrons emitted from the secondary electron emission film are separated. Electrons can be supplied to the space opposite to the electron source 3 with respect to the base material 26.
  • a base material 26 shown in FIG. 12A is obtained by forming a hole 26b in a flat plate member 26a as shown in FIG. 13A.
  • the hole 26b may be formed in the curved plate member 26a as shown in FIG. 13B, or the hole 26b may be formed in the spherical plate member 26a as shown in FIG. 13C. It ’s good.
  • the discharge gas contains electrons. Not only the electrons emitted from the source 3 but also the secondary electrons emitted from the secondary electron emission unit 25 are supplied. For this reason, the electron source 3 can be driven under relatively gentle driving conditions with a smaller amount of emitted electrons than when only the electron source 3 supplies strong electrons.
  • the secondary electron emission unit 25 is disposed in the space where the discharge plasma is generated in the hermetic container 1, the secondary electron emission unit 25 collides with electrons in the discharge plasma. Secondary electrons are also emitted. This can also reduce the electron emission amount of the electron source 3. Therefore, the electric As a result, the life of the discharge device 3 and the discharge device can be extended, and the reliability can be improved.
  • the base material 26 is formed of a conductive material (for example, nickel, stainless steel, aluminum, etc.), a driving voltage is applied to the electron source element 3a, and the base material 26 is applied to the surface electrode 17. If an acceleration voltage is applied between the base material 26 and the surface electrode 17 so as to be on the high potential side, the electron source element 3a is driven by the driving voltage and emits electrons through the surface electrode 17. Then, the electrons emitted through the surface electrode 17 are accelerated by the acceleration voltage and irradiated to the secondary electron emission film. Therefore, by appropriately setting the acceleration voltage, the secondary electron efficiency can be increased and the amount of secondary electrons emitted can be increased. For this reason, the amount of electrons emitted from the electron source 3 can be reduced, and the life of the electron source 3 and thus the discharge device can be extended and the reliability can be improved.
  • a driving voltage is applied to the electron source element 3a
  • the base material 26 is applied to the surface electrode 17. If an acceleration voltage is applied between the base material 26 and the surface electrode 17 so as
  • Embodiment 9 of the present invention will be described below.
  • the basic configuration of the discharge device according to the ninth embodiment or the auxiliary device thereof is almost the same as that of the auxiliary device according to the eighth embodiment, and as shown in FIG. 14, the secondary electron emission unit 25 is a pair. The only difference is that it also serves as one of the discharge electrodes 2a and 2b.
  • the basic configuration of the discharge device according to the tenth embodiment or the auxiliary device thereof is substantially the same as that of the auxiliary device according to the eighth embodiment, and is disposed so as to surround the electron source 3 as shown in FIG.
  • the plasma ion force also differs only in that a protective cover 27 is provided to protect the electron source 3.
  • the protective cover 27 is formed in a rectangular parallelepiped shape with an insulating material (for example, insulating grease such as fluorine-based grease, insulating ceramic, etc.), and one surface thereof ( The lower surface is fully open.
  • the protective cover 27 faces the electron emission surface of the electron source 3. It has a front wall.
  • the front wall of the protective cover 27 is provided with an opening 28 for allowing electrons emitted from the electron source 3 to pass therethrough.
  • the secondary electron emission part 25 is arranged so as to overlap the front wall part of the protective cover 27. Therefore, the secondary electron emission unit 25 can be exposed to the discharge plasma while preventing the electron source 3 from being exposed to the discharge plasma.
  • a mesh-like base material 26 (see FIG. 12C) according to the eighth embodiment may be used. In this case, by appropriately setting the mesh size, the electrons emitted from the electron source 3 can be passed, and the ion force of the discharge plasma can protect the electron source 3.
  • the secondary electron emitting portion 25 preferably has its base material 26 formed of a conductive material.
  • the potential of the substrate 26 is appropriately set so as to be the same potential as the surface electrode 17 (see FIG. 2A) or a high potential with respect to the surface electrode 17.
  • the plasma passes through the mesh-like secondary electron emission part 25 while allowing the electrons emitted from the electron source 3 to pass sufficiently. It is possible to prevent the electron source 3 from being struck and damaged (damaged).
  • the electron source 3 can be protected from the ion source of the discharge plasma by the protective cover 27, and the lifetime can be further improved and the reliability can be improved. Can be achieved.
  • Embodiment 11 of the present invention is almost the same as that of the auxiliary device according to the tenth embodiment, and as shown in FIG. The only difference is that it is disposed in the opening portion 28 of 27 and also serves as one of the pair of discharge electrodes 2a, 2b.
  • the secondary electron emission portion 25 also serves as the negative discharge electrode 2a, the number of parts of the discharge device is reduced and the structure is simplified. In addition, the manufacturing process can be simplified, and as a result, the cost of the discharge device can be reduced.
  • the secondary electron emission member 25 is formed on the base material 26.
  • the substrate 26 may be partially or entirely formed of a secondary electron emission material.
  • Embodiment 12 of the present invention is substantially the same as that of the discharge device or the auxiliary device according to the tenth embodiment, and is different only in the following points.
  • the secondary electron emission portion 25 is arranged so that the front wall force of the protective cover 27 is also separated.
  • An opening 28 is formed on the front wall of the protective cover 27.
  • a mesh-like protective member 29 having a conductive material force is disposed on the front wall of the protective cover 27 facing the electron source 3. Other points are the first embodiment.
  • the secondary electron emitter 25 can be more reliably exposed to the discharge plasma.
  • a voltage is applied to the secondary electron emitter 25 so as to have a higher potential than that of the protective member 29, and this voltage is applied so that the secondary electron emission efficiency of the secondary electron emitter 25 is almost the maximum value. If set to, secondary electrons can be generated efficiently, and the amount of electrons emitted from the electron source 3 can be more effectively reduced.
  • the potential of the protective member 29 is set to the same potential as that of the electron source 3, or the potential of the protective member 29 is set higher than the surface electrode 17 of the electron source 3.
  • the thirteenth embodiment of the present invention will be described below.
  • the basic configuration of the discharge device (light emitting device) or the auxiliary device according to the thirteenth embodiment is almost the same as that of the auxiliary device according to the twelfth embodiment, and only the following points are different. .
  • a plurality of secondary electron emission portions 25 are provided.
  • three mesh-like secondary electron emission portions 25 are arranged in series in a direction (normal direction) perpendicular to the electron emission surface (the upper surface in FIG. 18) of the electron source 3. .
  • the other points are the same as in the twelfth embodiment.
  • the auxiliary device according to Embodiment 13 can increase the amount of secondary electrons supplied to the discharge gas. Therefore, the amount of electrons emitted from the electron source 3 can be further reduced, and the life of the electron source 3 or the discharge device can be extended and the reliability can be improved more effectively.
  • a plurality of secondary electron emission portions 25 are arranged in series in a direction perpendicular to the electron emission surface of the electron source 3. You may arrange
  • the hermetic container 1 is cylindrical, but the shape of the hermetic container 1 is not limited to a cylindrical shape.
  • it may be a spherical shape like a light bulb, a rectangular parallelepiped shape or a cubic shape.
  • it may be a flat type airtight container composed of a pair of flat plates and a frame located between both flat plates.
  • Embodiments 8 to 13 as shown in FIG. 19A, as an energy supply means, a pair of discharge electrodes 2a disposed in the cylindrical airtight container 1 so as to be spaced apart from each other in the longitudinal direction. 2b is provided.
  • the arrangement or configuration of the energy supply means is not limited to this.
  • 19B to 19J show the configuration of other energy supply means.
  • an induction coil 23 wound around the airtight container 1 is provided outside the cylindrical airtight container 1.
  • a pair of planar discharge electrodes 2c arranged along the longitudinal direction is provided outside the cylindrical airtight container 1.
  • FIG. 19E two discharge electrodes 2a and 2b arranged one by one in the vicinity of both ends in the longitudinal direction inside the cylindrical airtight container 1, and outside the airtight container 1
  • One or a plurality of discharge electrodes 2c arranged in an annular shape are provided.
  • FIG. 19G two pairs of discharge electrodes 2a and 2b arranged inside a cylindrical airtight container 1 are provided.
  • Discharge electrode 2c is provided.
  • a pair of discharge electrodes 2a and 2b arranged in a perpendicular direction to each other are provided inside a rectangular parallelepiped hermetic container 1.
  • a pair of discharge electrodes 2a and 2b arranged in parallel with each other are provided inside the hermetic container 1.
  • the voltage applied to the energy supply means may be appropriately selected from DC voltage, AC voltage, pulse voltage, and the like.
  • a plurality of discharge electrodes 2c are connected so that adjacent discharge electrodes 2c belong to different electrode groups, and two sets of electrodes Divide into groups.
  • FIGS. 20B and 20C if the rectangular wave AC voltage VI applied to one electrode group and the rectangular wave AC voltage V2 applied to the other electrode group are in opposite phases, The length of the airtight container 1 in the longitudinal direction is relatively long! Even in a case, discharge plasma can be generated over almost the entire length of the hermetic vessel 1.
  • the energy supply means shown in FIG. 19H for example, as shown in FIG. 21A, a plurality of discharge electrodes 2c are connected so that adjacent discharge electrodes 2c belong to different electrode groups. However, it can be divided into two electrode groups. In this case, as shown in FIGS. 21B and 21C, the rectangular wave AC voltage VI applied to one electrode group and the rectangular wave AC voltage V2 applied to the other electrode group should be in opposite phases. ,.
  • an ultraviolet lamp is exemplified as the discharge device, but the discharge device is not limited to the ultraviolet lamp.
  • a fluorescent lamp for lighting or a plasma display panel may be used.
  • a phosphor layer 24 that emits light by being excited by ultraviolet rays may be provided at an appropriate portion of the inner surface of the hermetic container 1.
  • the auxiliary device is not shown.
  • the hermetic container 1 of the discharge device (ultraviolet lamp) is entirely formed of a translucent material. However, as shown in FIG. 23 or FIG.
  • the hermetic container 1 may be formed of a translucent plate lb made of a translucent material (for example, glass).
  • a translucent plate lb made of a translucent material (for example, glass).
  • ultraviolet rays are radiated to the outside of the airtight container 1 through the light transmitting plate lb.
  • the light is emitted to the outside of the hermetic vessel 1 through the visible light transmitting plate lb emitted from the phosphor layer 24.
  • the shape of the airtight container 1 is cylindrical. However, for example, as shown in FIG. 25, the airtight container 1 may have a rectangular parallelepiped shape.
  • the electron source 3 is disposed at a position away from the plasma generation space 8, and the electron emission surface of the electron source 3 is disposed so as not to be exposed to the discharge plasma generated in the plasma generation space 8. can do. Therefore, the electron source 3 can be prevented from being damaged by the ions of the discharge plasma, and the life of the electron source 3 and thus the discharge device can be extended and the reliability can be improved.
  • xenon gas is used as the discharge gas sealed in the hermetic container 1.
  • the discharge gas is not limited to xenon gas. Any gas may be used as long as it causes discharge by supplying energy, for example, Ar gas, He gas, Ne gas, Kr gas, N gas, CO gas, Hg vapor
  • the electron source 3 according to the eighth to thirteenth embodiments as described in the second embodiment, a semiconductor substrate such as a silicon substrate is used instead of the insulating substrate 14, and the semiconductor substrate and the semiconductor substrate You may comprise a lower electrode with the electroconductive layer laminated
  • the electron source 3 according to the eighth to thirteenth embodiments may use other types of electron sources, for example, MIM type electron source, MIS type electron source, etc. instead of the force BSD which is BSD!
  • Embodiment 14 of the present invention will be described below.
  • the basic configuration of the discharge device or the auxiliary device according to the fourteenth embodiment is almost the same as that of the auxiliary device according to the eighth embodiment.
  • the electron source 3 is arranged so that the electron emission surface (surface electrode 17) faces the inner peripheral surface of the airtight container 1 with a slight inclination. Have been. That is, the electron source 3 is arranged such that its electron emission surface is not directly exposed to the discharge plasma. Further, the secondary electron emission portion 25 is disposed on the inner peripheral surface of the hermetic container 1 so as to be positioned obliquely in front of the electron emission surface of the electron source 3. Other points are the same as in the eighth embodiment. In FIG. 26, an arrow R1 indicates an electron emitted from the electron source 3, and an arrow R2 indicates a secondary electron emitted from the secondary electron emission unit 25.
  • the discharge starting voltage or the sustaining voltage is reduced by the secondary electrons emitted from secondary electron emitting portion 25.
  • the electron emission surface (surface electrode) of the electron source 3 is opposite to the discharge plasma 10 between the discharge electrodes 2a and 2b, it is effective to cause damage to the electron source 3 due to the discharge plasma. Can be prevented or suppressed.
  • the secondary electron emission unit 25 prevents the ion source 3 from being damaged by preventing the intrusion of ions.
  • the electron source 3 is turned away from the discharge plasma 10. This prevents the electron source 3 from being damaged by ions.
  • the discharge device according to Embodiment 15 is a discharge lamp La.
  • the discharge lamp La has an airtight container 1 in which a discharge gas (here, xenon gas) is sealed, and a pair of discharge electrodes 2a and 2b arranged in the airtight container 1.
  • Discharge electrode 2a is an anode electrode
  • discharge electrode 2b is a force sword electrode (in Embodiment 15, “discharge electrode 2a” and “discharge electrode 2b” are appropriately referred to as “annode electrode 2a”, respectively.
  • Power Sword Electrode 2b.” the discharge gas is not limited to xenon gas, for example, Ar gas, He gas, Ne gas, Kr gas, N gas, CO gas, H
  • gVapor or a mixed gas having two or more of these can be used as appropriate depending on the application of the discharge device.
  • the discharge device according to Embodiment 15 is an auxiliary device that assists the generation of discharge plasma, and an electron source 3 that supplies electrons into the discharge gas, and an electron source 3 First and second protective members 31 and 32 are provided.
  • Electron source 3 is airtight In the vessel 1, it is disposed outside the desired discharge plasma generation space 8 between the anode electrode 2 a and the force sword electrode 2 b and in the vicinity of the force sword electrode 2 b.
  • Both protective members 31 and 32 are spaced apart from the electron source 3 on the electron emission side of the electron source 3, and electrons are generated from the ions of the discharge plasma generated in the discharge plasma generation space 8 in the hermetic vessel 1.
  • Both protective members 31 and 32 also serve as grid electrodes for accelerating electrons emitted from the electron source 3.
  • the protective members 31 and 32 are formed with a plurality of openings 31a and 32a for passing electrons emitted from the electron source 3, respectively.
  • the discharge lamp La is a straight tube type discharge lamp, and the hermetic vessel 1 is formed in a cylindrical shape with a translucent material (for example, glass, translucent ceramic, etc.).
  • the anode 2a is disposed near one end of the hermetic container 1 in the longitudinal direction (left side in FIG. 27A), and the force sword electrode 2b is disposed near the other end (right side in FIG. 27A).
  • the auxiliary device composed of the electron source 3 and the two protection members 31 and 32 is disposed in the vicinity of the force sword electrode 2b on the side opposite to the anode electrode 2a with respect to the force sword electrode 2b.
  • the electron source 3 and the protective members 31 and 32 are disposed outside the discharge plasma generation space 8 in the hermetic vessel 1.
  • the configuration and function of the electron source 3 according to Embodiment 15 are basically the same as the configuration and function of the electron source 3 according to Embodiment 1.
  • the film thickness of the conductive thin film constituting the surface electrode 17 is preferably set to about 10 to 15 nm.
  • the conductive thin film may be either a single layer film or a multilayer film.
  • the configuration and function of the drift layer 16 of the electron source element 3a according to Embodiment 15 are also the same as the configuration and function of the drift layer 16 according to Embodiment 1 (see FIG. 2B).
  • Electron emission in the electron source element 3a according to the fifteenth embodiment also occurs in the same model as the electron emission in the electron source element 3a according to the first embodiment.
  • the insulating film can be formed using an acid process, a nitridation process, or an oxynitridation process.
  • Both protective members 31, 32 are each formed in a net shape from a conductive material (eg, nickel, aluminum, stainless steel, etc.), and each net portion of the net shape is emitted from the electron source 3. Openings 31a and 32a are formed for passing the generated electrons.
  • both the protective members 31 and 32 have a net shape, but the shape of the protective members 31 and 32 is not limited to the net shape.
  • a flat conductive substrate provided with openings 31a and 32a may be used.
  • the driving method of the auxiliary device according to the fifteenth embodiment is as follows. That is, for example, a DC voltage of about 14 V is applied between the surface electrode 17 and the lower electrode 15 from the drive power supply. At the same time, a DC voltage of about 100 V is applied between the first protective member 31 and the surface electrode 17 from the first acceleration power source (not shown), while the second acceleration power source. A DC voltage of about 90 V, for example, is applied between the second protective member 32 and the surface electrode 17 (not shown). As a result, electrons emitted from the electron source 3 are accelerated by the first protective member 31 and the second protective member 32, and enter the discharge plasma generation space 8 between the anode electrode 2a and the force sword electrode 2b. Supplied.
  • the potential of each component when the auxiliary device is driven is set as follows. That is, the potential relationship between the first protection member 31 and the second protection member 32 is set so that the potential of the first protection member 31 and the potential of the second protection member 32 are different from each other.
  • the potential of the second protective member 32 is set to a potential lower than that of the anode electrode 2a and higher than that of the force sword electrode 2b.
  • the potential of the second protective member 32 is such that the potential difference between the second protective member 32 and the anode electrode 2a (hereinafter referred to as “first potential difference”) is the second protective member 32 and the anode electrode.
  • second potential difference t the potential difference between the second protective member 32 and the force sword electrode 2b
  • second potential difference t the potential difference between the second protective member 32 and the force sword electrode 2b
  • the output voltage of the power source V that applies a voltage between the anode electrode 2a and the force sword electrode 2b, the output voltage of the drive power source, the output voltage of the first acceleration power source, and the second
  • the output voltage of the acceleration power source is controlled by a control unit (not shown) having a microcomputer power, for example.
  • the control unit controls the potentials of the protective members 31, 32, the potential of the anode electrode 2a, and the potential of the force sword electrode 2b so that the above-described potential relationship is established.
  • both protection members 31, 32 have openings 31a, 32a for allowing electrons emitted from the electron source 3 to pass through, respectively. Yes.
  • the respective aperture ratios of the protective members 31 and 32 appropriately, the electrons emitted from the electron source 3 can be prevented from colliding with the electron source 3 while the ions emitted from the electron source 3 are suppressed. It is possible to suppress the collision with 2 and to be captured, and to reduce the discharge start voltage.
  • the second protective member 32 is lower than the potential of the anode electrode 2a and higher than the potential of the cathode electrode 2b, the second protective member 32 and the anode electrode 2a or force sword It is possible to prevent unnecessary discharge plasma from occurring between the electrode 2b. For this reason, the occurrence of damage to the electron source 3 can be suppressed, and the life of the electron source 3 can be extended.
  • the potential relationship is set so that the potential of the second protective member 32 is lower than the potential of the first protective member 31. For this reason, while suppressing the electrons that have passed through the opening 31a of the first protective member 31 from being captured by the second protective member 32, the air gap between the anode electrode 2a and the force sword electrode 2b in the hermetic container 1 is reduced. It is possible to reduce damage to the electron source 3 due to the ions of the discharge plasma generated in the plasma.
  • the aperture ratio of the second protection member 32 is smaller than the aperture ratio of the first protection member 31. For this reason, it is possible to more effectively reduce damage to the electron source 3 caused by ions of the discharge plasma generated between the anode electrode 2a and the force sword electrode 2b in the hermetic container 1.
  • the opening 31a of the first protective member 31 is formed in a shape corresponding to the electron emission surface of the electron source 3, the electrons emitted from the electron source 3 are transferred to the first protective member 31 and the electron source. The probability that electrons emitted from the electron source 3 are captured by the first protective member 31 can be reduced while accelerating by the electric field between the first and second electrons.
  • the discharge plasma is generated between the anode electrode 2a and the force sword electrode 2b when the relationship represented by the following formula 1 is satisfied. It should be noted that the discharge between the anode electrode 2a and the force sword electrode 2b is maintained by the collision of ions with the force sword electrode 2b to generate secondary electrons. This principle is the same as that of the force sword electrode 2b. The same applies to the second protective member 32. y> l / (e ad -l) Equation 1 d: Distance between the anode and force sword electrodes
  • a material having a low secondary electron emission efficiency for ions may be used.
  • Desirable materials of this type include, for example, Fe, Co, Ni, Cu, Zn, Ga, Ge, C, Si ⁇ Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te , Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi or Po, or oxides, nitrides, and carbides thereof.
  • the second protective member 32 preferably has a low secondary electron emission efficiency with respect to ions, but in order to improve the electron emission efficiency of the auxiliary device force, it is preferable that the secondary electron emission efficiency with respect to the electron is high. desirable.
  • the electron source 3 according to Embodiment 15 is a BS D that emits electrons by a ballistic electron emission phenomenon.
  • electron source 3 is not limited to BSD.
  • MIM Type electron sources MIM Type electron sources, MIS type electron sources, Spindt type electron sources, SCE (Surface Conduction Electronitter) type electron sources, electron sources using carbon nanotube emitters, and more! ⁇ .
  • SCE Surface Conduction Electronitter
  • electron sources using carbon nanotube emitters and more! ⁇ .
  • BSD Surface Conduction Electronitter
  • the discharge device is a discharge lamp.
  • This discharge lamp includes a hermetic container 1 in which a discharge gas (for example, a rare gas such as argon) as a discharge medium is sealed, a pair of discharge electrodes 2a and 2b disposed in the hermetic container 1, and an airtight container. 1 is provided with an electron source 3 that is disposed in 1 and supplies electrons into the discharge gas, and a grid electrode 35 that is disposed in the airtight container 1 so as to face the electron source 3.
  • This discharge lamp emits visible light by causing the discharge electrodes 2a and 2b to discharge in the discharge gas in the hermetic vessel 1.
  • Both discharge electrodes 2 a and 2 b apply an electric field to the discharge gas in the hermetic vessel 1 to generate a discharge plasma in a desired discharge plasma generation space 8 in the hermetic vessel 1.
  • the grid electrode 35 has a plurality of openings 35a for allowing electrons emitted from the electron source 3 to pass therethrough.
  • the grid electrode 35 is provided to accelerate the electrons emitted from the electron source 3.
  • the electron source 3 and the grid electrode 35 constitute an auxiliary device that assists the generation of discharge plasma in the discharge plasma generation space 8.
  • the discharge device according to Embodiment 16 is a straight tube type discharge lamp.
  • the airtight container 1 is formed in a cylindrical shape from a light-transmitting material (for example, glass, light-transmitting ceramic, etc.).
  • Discharge electrode 2a arranged near one end of the hermetic container 1 in the longitudinal direction (left side in FIG. 28) constitutes an anode electrode, and discharge arranged near the other end (right side in FIG. 28)
  • the electrode 2b constitutes a force sword electrode (in the sixteenth embodiment, “discharge electrode 2 aj and“ discharge electrode 2b ”are appropriately referred to as“ anode electrode 2a ”and“ force sword electrode 2b ”t, respectively)
  • the electron source 3 and the grid electrode 35 and the auxiliary device that also has a force are arranged in the vicinity of the force sword electrode 2b on the side opposite to the anode 2a. In short, electric The child source 3 and the grid electrode 35 are arranged outside the discharge plasma generation space 8 in the hermetic vessel 1.
  • the electrons emitted from the electron source 3 can be supplied into the discharge gas. Therefore, before applying a voltage from the electric field application voltage source V to the anode electrode 2a and the force sword electrode 2b,
  • the configuration and function of the electron source 3 according to Embodiment 16 are basically the same as the configuration and function of the electron source 3 according to Embodiment 1.
  • the film thickness of the conductive thin film constituting the surface electrode 17 is preferably set to about 10 to 15 nm.
  • the conductive thin film may be either a single layer film or a multilayer film.
  • the configuration and function of the drift layer 16 of the electron source element 3a according to Embodiment 16 are the same as the configuration and function of the drift layer 16 according to Embodiment 1 (see FIG. 2B).
  • the driving voltage applied to the electron source 3 may be a constant DC voltage or a pulsed voltage. Also, if the drive voltage is a pulse voltage, it may be possible to apply a reverse bias voltage after applying the drive voltage!
  • Electron emission in the electron source element 3a according to the sixteenth embodiment also occurs in the same model as the electron emission in the electron source element 3a according to the first embodiment.
  • the insulating film can be formed using an acid process, a nitridation process, or an oxynitridation process.
  • the grid electrode 35 is made of a conductive material (for example, nickel, aluminum, stainless steel, etc.) in a net shape. Each mesh-shaped mesh portion constitutes an opening 35a for allowing electrons emitted from the electron source 3 to pass through.
  • a nickel mesh having a side of a square mesh of 0.6 mm and a wire diameter of 0.25 mm, which is called 30 mesh, is used. Yes.
  • the mesh size That is, the size of the opening 35a is not limited to this. Any size can be used as long as the electrons emitted from the electron source 3 can pass through and the intrusion of ions of the discharge plasma power generated in the discharge plasma generation space 8 can be suppressed! / ⁇ .
  • the length of one side of the square opening 35a is 0. lmn! It may be set appropriately within a range of about 2 mm.
  • the grid electrode 35 is formed in a net shape, but the grid electrode 35 is not limited to the net shape.
  • an opening having the same shape as the surface electrode 17 may be provided in a portion of the flat conductive substrate facing the surface electrode 17.
  • the potential relational force between grid electrode 35, force sword electrode 2b, and anode electrode 2a is greater than the potential of force sword electrode 2b.
  • an output voltage of an electric field applying voltage source V that applies a voltage between the anode electrode 2a and the force sword electrode 2b, and a driving voltage is applied between the surface electrode 17 and the lower electrode 15.
  • the above potential relationship is satisfied by appropriately setting the output voltage of the child acceleration power source Vc and the output voltage of the power source V that applies a voltage between the grid electrode 35 and the force sword electrode 2b.
  • control unit including a computer (not shown).
  • discharge gas pressure the pressure of argon gas sealed in the hermetic container 1
  • electrode distance The distance between the anode electrode 2a and the force sword electrode 2b (hereinafter referred to as “interelectrode distance”) is set to 10 cm.
  • the distance between the grid electrode 35 and the force sword electrode 2b is set to 5 mm.
  • the distance between the grid electrode 35 and the surface electrode 17 is set to 5 mm.
  • the voltage applied between the anode electrode 2a and the force sword electrode 2b is set to a voltage lower than 200V.
  • the voltage between the anode electrode 2a and the force sword electrode 2b reaches 200V, a discharge plasma is generated in the discharge plasma generation space 8 between the anode electrode 2a and the force sword electrode 2b. Is done.
  • the potential difference between the anode electrode 2a and the grid electrode 35 is 100V, and the distance between the anode electrode 2a and the grid electrode 35 is greater than the distance between the anode electrode 2a and the force sword electrode 2b. Since it is somewhat long, the voltage between the anode electrode 2a and the grid electrode 20 does not reach the discharge start voltage. Therefore, no unnecessary discharge plasma is generated between the anode 2a and the grid electrode 20!
  • the potential difference between anode electrode 2a and grid electrode 20 is smaller than the potential difference between anode electrode 2a and force sword electrode 2b.
  • a voltage is applied between the anode electrode 2a and the force sword electrode 2b to generate a discharge plasma in a desired discharge plasma generation space 8
  • unnecessary discharge plasma is generated between the anode electrode 2a and the grid electrode 35.
  • the above potential relationship is set so as to be smaller than the potential difference force between the potential of the anode electrode 2a and the potential of the grid electrode 35 and the discharge start voltage between the anode electrode 2a and the grid electrode 35.
  • the potential of the grid electrode 35 is increased in order to reduce the potential difference between the anode electrode 2a and the grid electrode 35, unnecessary discharge plasma is generated between the grid electrode 35 and the surface electrode 17 to generate electrons.
  • Source 3 can be prevented from being damaged.
  • Embodiment 16 when the voltage of anode electrode 2a is increased in order to increase the luminance of the discharge device (discharge lamp), the potential difference between anode electrode 2a and grid electrode 35 starts to discharge. There is a possibility that unnecessary discharge plasma is generated due to the voltage exceeding the voltage.
  • the potential of the anode electrode 2a when the potential of the anode electrode 2a is increased to 300V, the potential difference between the anode electrode 2a and the grid electrode 35 becomes 200V.
  • the discharge start voltage force between the anode electrode 2a and the grid electrode 35 is the same as the discharge start voltage between the anode electrode 2a and the force sword electrode 2b, then the anode electrode 2a and the grid electrode 35 Unnecessary discharge plasma may be generated between them.
  • the discharge start voltage between the anode electrode 2a and the grid electrode 35 is between the anode electrode 2a and the force sword electrode 2b. It is slightly higher than the discharge start voltage.
  • the potential of the grid electrode 35 may be increased.
  • the discharge gas pressure argon gas pressure
  • the discharge gas pressure is about lOPa
  • the discharge gas pressure is about lOOPa ⁇ : LkPa
  • unnecessary discharge plasma may be generated in the space between the grid electrode 35 and the surface electrode 17. Arise.
  • the surface electrode 17 and the lower part of the electron source 3 are adjusted in accordance with the increase in the potential of the grid electrode 35.
  • the potential of the electrode 15 may be increased.
  • force electron source 3 using BSD as electron source 3 is not limited to BSD.
  • an MIM type electron source, a Spindt type electron source, or an electron source using a carbon nanotube may be used.
  • the upper electrode (surface electrode) constitutes the electron emission portion.
  • a Spindt-type electron source a conical emitter forms the electron emission section.
  • the carbon nanotubes constitute an electron emission portion.
  • the auxiliary device having the electron source 3 and the grid electrode 35 is disposed in the airtight container 1 in the vicinity of the force sword electrode 2b.
  • the auxiliary device may be arranged in the vicinity of the anode electrode 2a, not in the vicinity of the force sword electrode 2b.
  • the auxiliary device has the anode electrode 2a in the hermetic vessel 1 outside the plasma generation space 8 between the anode electrode 2a and the force sword electrode 2b. Located nearby.
  • the grid electrode 35 is arranged closer to the anode electrode 2a than the electron source 3. In this way, the auxiliary device is placed outside the plasma generation space 8. Therefore, the auxiliary device can be prevented from being exposed to the discharge plasma generated in the plasma generation space 8. Further, since the auxiliary device is disposed near the anode electrode 2a and the grid electrode 35 is disposed closer to the anode electrode 2a than the electron source 3, it is emitted from the electron source 3 and enters the plasma generation space 8. Can increase the amount of electrons reaching
  • the shape of the hermetic container 1 is cylindrical, but the shape of the hermetic container 1 is not limited to this.
  • the airtight container 1 may have a spherical shape like a light bulb, or may have a rectangular parallelepiped shape or a cubic shape.
  • the airtight container 1 may be a flat type constituted by a pair of flat plates and a frame interposed between the flat plates.
  • the energy supply means is disposed in the cylindrical airtight container 1 so as to be separated in the longitudinal direction of the pair of discharge electrodes 2a, 2b force hermetic container 1.
  • one of the pair of discharge electrodes 2a and 2b may be arranged outside the hermetic container 1.
  • a plurality of pairs of discharge electrodes 2a and 2b may be provided.
  • a discharge lamp using argon gas will be exemplified as a discharge device.
  • the discharge device is not limited to a discharge lamp, and may be a fluorescent lamp for illumination, a plasma display panel, or the like.
  • a fluorescent lamp a phosphor layer that emits light by being excited by ultraviolet rays or the like may be provided at an appropriate part of the inner surface of the hermetic container 1.
  • argon gas is used as the discharge gas sealed in the hermetic container 1.
  • the discharge gas sealed in the hermetic vessel 1 is not limited to argon gas, and any gas may be used as long as it causes discharge by supplying energy.
  • discharge gas He gas, Ne gas, Xe gas, Kr gas, N gas, CO gas
  • Sm, Hg vapor, or a mixed gas thereof may be used.
  • the discharge plasma generation auxiliary device reduces the discharge start voltage, discharge sustain voltage, etc. of the discharge plasma device or the light emitting device and stabilizes the discharge plasma while suppressing damage caused by ion bombardment. It is useful as a means for making it suitable for use in fluorescent lamps, ultraviolet lamps, plasma display panels and the like.

Abstract

A discharge plasma device includes a discharge tube (A). The discharge tube (A) has a hermetic vessel (1) filled with a discharge gas. The hermetic device (1) contains a pair of discharge electrodes (2a, 2b), an electron source (3) for supplying electrons into the discharge gas, and a grid electrode (4) opposing the electron emitting surface of the electron source (3). The discharge plasma device includes power source (5) for applying voltage across the discharge electrodes (2a, 2b), discharge detection means (6) for detecting a discharge state of the discharge tube (A), and control means (7) for controlling the potential of the electron source (3) so as to suppress collision of plus ions to the electron source (3) when discharge start of the discharge tube (A) is detected by the discharge detection means (6). The grid electrode (4) has an opening for passing electrons emitted from the electron source (3). The electron source (3) and the grid electrode (4) constitute a discharge plasma generation auxiliary device.

Description

明 細 書  Specification
放電プラズマ生成補助装置  Discharge plasma generation auxiliary device
技術分野  Technical field
[0001] 本発明は、例えば蛍光ランプ、紫外線ランプ、プラズマディスプレイパネルなどと!/ヽ つた放電プラズマを利用する放電プラズマ装置な 、しは発光装置に用いられる放電 プラズマ生成補助装置に関するものである。  [0001] The present invention relates to a discharge plasma apparatus using a discharge plasma, such as a fluorescent lamp, an ultraviolet lamp, a plasma display panel, or the like, or a discharge plasma generation assisting apparatus used in a light emitting device.
背景技術  Background art
[0002] 従来、放電媒体であるガス(以下「放電ガス」 t ヽぅ。)が封入された気密容器と、気 密容器内に配置され放電ガスに電界を印加する 1対の放電用の電極 (以下「放電電 極」という。)とを備えた放電プラズマ装置ないしは発光装置は、蛍光ランプ、紫外線 ランプ、プラズマディスプレイパネルなどとして広く用いられている。なお、 1対の放電 電極は、放電プラズマを生成するためのエネルギを供給するエネルギ供給部として 機能する。  Conventionally, an airtight container in which a gas as a discharge medium (hereinafter referred to as “discharge gas” t ヽ ぅ) is sealed, and a pair of discharge electrodes arranged in the airtight container and applying an electric field to the discharge gas (Hereinafter referred to as “discharge electrodes”) are widely used as fluorescent lamps, ultraviolet lamps, plasma display panels, and the like. The pair of discharge electrodes function as an energy supply unit that supplies energy for generating discharge plasma.
[0003] 具体的には、例えば蛍光ランプでは、透光性の気密容器内に封入された水銀を含 む放電媒体を放電により励起させて紫外線を発生させ、気密容器の内面に被着され た蛍光体層を励起させて発光させるようにしている。他方、近年、地球の環境問題に 対する関心が高まるにつれて、水銀を用いず、キセノンガスなどの希ガスを放電媒体 として用いた希ガス蛍光ランプ (無水銀蛍光ランプ)などが各所で研究開発されて!/、 る。し力しながら、希ガス蛍光ランプは、水銀を用いた従来の蛍光ランプに比べて効 率が低いといった問題があり、また従来の蛍光ランプと同等の輝度を得るには放電電 極間により高 、電圧を印加しなければならな ヽと 、つた問題がある。  [0003] Specifically, in a fluorescent lamp, for example, a discharge medium containing mercury enclosed in a light-transmitting hermetic container is excited by discharge to generate ultraviolet rays, and is deposited on the inner surface of the hermetic container. The phosphor layer is excited to emit light. On the other hand, in recent years, as interest in global environmental issues has increased, rare gas fluorescent lamps (anhydrous silver fluorescent lamps) that use rare gases such as xenon gas as a discharge medium have been researched and developed in various places. ! / However, the rare gas fluorescent lamp has a problem that its efficiency is lower than that of a conventional fluorescent lamp using mercury, and in order to obtain a luminance equivalent to that of the conventional fluorescent lamp, it is higher between the discharge electrodes. There is another problem that voltage must be applied.
[0004] そこで、気密容器内に、放電ガス中に電子を供給する電界放射型電子源 (以下「電 子源」という。)を、放電プラズマの生成を補助する放電プラズマ生成補助装置 (以下 「補助装置」という。)として設けることにより、放電開始電圧の低減を図るとともに、放 電プラズマの維持電圧の低減や放電プラズマの安定ィ匕などを図るようにした放電プ ラズマ装置ないしは発光装置が提案されている (例えば、特許文献 1参照)。すなわ ち、キセノンガスが封入された気密容器内において、 1対の放電電極間の放電プラズ マ生成空間の外側に電子源を配置し、放電電極間に電圧を印加するのと同時に又 は電圧を印加する前に電子源を駆動することにより、放電開始電圧を低減するよう〖こ している。つまり、電子源をィグナイタとして動作させることにより、放電開始電圧を低 減するようにしている。このようにすれば、電子源を設けない場合に比べて、放電開 始電圧を半分程度にまで低減することができると 、うことが知られて 、る。 [0004] Therefore, a field emission electron source (hereinafter referred to as "electron source") that supplies electrons into the discharge gas in the hermetic container is used as a discharge plasma generation assist device (hereinafter referred to as "electron source"). Providing a discharge plasma device or light-emitting device that reduces the discharge starting voltage, reduces the sustaining voltage of the discharge plasma, and stabilizes the discharge plasma. (For example, see Patent Document 1). In other words, in an airtight container filled with xenon gas, a discharge plasm between a pair of discharge electrodes. Place the electron source outside the generator space and drive the electron source at the same time as applying the voltage between the discharge electrodes or before applying the voltage to reduce the discharge start voltage. Yes. In other words, the discharge start voltage is reduced by operating the electron source as an igniter. In this way, it is known that the discharge start voltage can be reduced to about half compared to the case where no electron source is provided.
特許文献 1 :日本特開 2002— 150944号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2002-150944
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところで、このような電子源を備えた放電プラズマ装置な 、しは発光装置にぉ 、て、 高工ネルギの電子を有効に放電プラズマ生成空間に供給するには、電子源を放電 プラズマ生成空間にできるだけ近づけて配置するのが好ましい。し力しながら、この 場合、電子源は、放電プラズマに曝されるので、イオン衝撃などによる損傷 (ダメージ )を受けて劣化するといつた問題がある。例えば、放電開始電圧を低減するためによ り大きな電流を流すと、放電プラズマが電子源の電子放出面に到達したり、放電電極 と電子源との間で放電が起こったりして、電子源の電子放出面にイオンが衝突し、電 子源が損傷を受ける。このため、電子源の寿命が短くなり、ひいては放電プラズマ装 置ないしは発光装置の寿命が短くなり、その信頼性が低下するといつた問題がある。  [0005] By the way, in order to effectively supply high-engineering energy electrons to a discharge plasma generation space, a discharge plasma apparatus equipped with such an electron source or a light-emitting apparatus is supplied with a discharge plasma. It is preferable to arrange it as close as possible to the generation space. However, in this case, since the electron source is exposed to the discharge plasma, there is a problem when it deteriorates due to damage (damage) due to ion bombardment or the like. For example, if a larger current is applied to reduce the discharge start voltage, the discharge plasma may reach the electron emission surface of the electron source or a discharge may occur between the discharge electrode and the electron source. Ions collide with the electron emission surface of the electron source, and the electron source is damaged. For this reason, there is a problem that the lifetime of the electron source is shortened and, as a result, the lifetime of the discharge plasma device or the light emitting device is shortened and its reliability is lowered.
[0006] また、例えば特許文献 1に記載された放電プラズマ装置な 、しは発光装置にぉ 、 て、放電プラズマの開始や放電安定ィ匕を確実にするためには、放電ガス中に十分な 量の電子を供給する必要がある。他方、電子源力も放電ガス中への電子の供給量を 増加させるには、電子源の電子放出量を増加させる必要があるので、電子源の駆動 電圧を高くしたり、駆動期間を長くしたりする必要がある。このため、例えば直管形の 紫外線ランプや蛍光ランプなどのように、気密容器が長寸で放電経路が長ぐ長時 間にわたつて放電プラズマを安定ィ匕する必要がある放電プラズマ装置な 、しは発光 装置の場合は、電子源をより厳しい条件で駆動する必要があり、電子源の寿命及び 信頼性の低下がとくに問題となる。  [0006] Further, for example, in the discharge plasma apparatus or the light emitting apparatus described in Patent Document 1, a sufficient amount in the discharge gas is required to ensure the start of the discharge plasma and the discharge stability. It is necessary to supply a quantity of electrons. On the other hand, in order to increase the amount of electrons supplied to the discharge gas, it is necessary to increase the amount of electrons emitted from the electron source, so that the driving voltage of the electron source is increased or the driving period is extended. There is a need to. For this reason, for example, a discharge plasma apparatus that needs to stabilize the discharge plasma over a long period of time, such as a straight tube type ultraviolet lamp or fluorescent lamp, which has a long hermetic container and a long discharge path. However, in the case of a light emitting device, it is necessary to drive the electron source under more severe conditions, and the lifetime and reliability of the electron source are particularly problematic.
[0007] なお、特許文献 1にも記載されて 、るように、電子源として、弾道電子面放出型電 子源(以下「BSD (Ballistic electron Surface-emitting Device)」という。) MIM (Met aHnsulator-Metal)型電子源などの平面型電子源を用いる場合は、スピント型電子 源などの非平面型電子源を用いる場合に比べて、イオン衝撃の影響を受けに《す ることができる。しかし、アルゴンガスやキセノンガスなどのような分子量の比較的大き Vヽガスが気密容器内に封入されて 、る場合や、放電プラズマ装置な 、しは発光装置 の構造の関係で、加速されたイオンが平面型電子源の表面電極に衝突する場合は 、平面型電子源でもイオン衝撃による損傷を受けることになる。 [0007] As described in Patent Document 1, as an electron source, a ballistic electron surface emission type electron source (hereinafter referred to as “BSD (Ballistic electron Surface-emitting Device)”) MIM (Met When a planar electron source such as an aHnsulator-Metal type electron source is used, it can be affected by the impact of ion bombardment compared to a non-planar electron source such as a Spindt type electron source. However, a relatively large molecular weight V 比較 的 gas such as argon gas or xenon gas is sealed in an airtight container, or is accelerated due to the structure of a discharge plasma device or light emitting device. When ions collide with the surface electrode of the planar electron source, the planar electron source is also damaged by ion bombardment.
[0008] 本発明は、上記従来の問題を解決するためになされたものであって、気密容器内 に充填されて ヽる放電ガス中に電子を供給して放電開始電圧を低減する電子源を 備えた放電プラズマ装置ないしは発光装置に対して、電子源ひいては該装置の長 寿命化及び信頼性の向上を図ることを可能にする手段を提供することを目的とする。 課題を解決するための手段 [0008] The present invention has been made to solve the above-described conventional problems, and provides an electron source for reducing the discharge start voltage by supplying electrons into a discharge gas filled in an airtight container. It is an object of the present invention to provide means for enabling the discharge plasma apparatus or light emitting apparatus provided to extend the life of the electron source and thus the apparatus and improve the reliability. Means for solving the problem
[0009] 本発明に係る放電プラズマ生成補助装置 (以下「補助装置」 t ヽぅ。 )を有する放電 プラズマ装置な!/ヽしは発光装置は、放電媒体である放電ガスが封入された気密容器 を備えている。さらに、放電プラズマ装置ないしは発光装置は、気密容器の内部と外 部とのうちの少なくとも一方に配置され放電ガスを放電させて放電プラズマを生成す るためのエネルギを供給するエネルギ供給部を備えて ヽる。本発明に係る補助装置 は、照明装置などに用いることができ、放電プラズマの生成を補助する。この補助装 置は、放電ガス中に電子を供給する電子源 (電界放射型電子源)と、気密容器内で 生成された放電プラズマのイオンカゝら電子源を保護する保護手段とを含むことを基本 的な特徴とする。 [0009] A discharge plasma apparatus having a discharge plasma generation auxiliary device (hereinafter referred to as "auxiliary device" t ヽ ぅ) according to the present invention is a hermetic container in which a discharge gas as a discharge medium is enclosed. It has. Further, the discharge plasma apparatus or the light emitting apparatus includes an energy supply unit that is disposed in at least one of the inside and the outside of the hermetic container and supplies energy for generating discharge plasma by discharging the discharge gas. Speak. The auxiliary device according to the present invention can be used in a lighting device or the like, and assists the generation of discharge plasma. This auxiliary device includes an electron source that supplies electrons into the discharge gas (field emission type electron source), and protective means for protecting the electron source such as an ion source of discharge plasma generated in the hermetic container. Basic features.
[0010] 本発明においては、補助装置は、さら〖こ、放電ガスの放電を検出する放電検出器と 、放電ガスの放電開始が検出されたときに放電プラズマ中のプラスイオンが電子源に 衝突するのを抑制するように電子源の電位を制御する制御手段とをさらに含んで ヽ る。ここで、エネルギ供給部が、少なくとも 1対の放電電極を含んでいる場合、放電検 出器は、放電電極対間のインピーダンス、電流又は電圧の変化に基づいて放電ガス の放電開始を検出するのが好ましい。また、制御手段は、放電ガスの放電開始検出 後は、電子源の電位を、放電開始検出前の電位より高い電位となるように制御するの が好ましい。 [0011] 本発明においては、保護手段が、電子を通すための電子通過部を有し放電プラズ マのイオン力も電子源の表面電極を保護する保護部材を含んで 、るのが好まし 、。 この場合、保護部材の部位のうち少なくとも前記表面電極に対向する部位は、導電 性材料で形成され、かつ電子通過部を有しているのが好ましい。保護部材は、網形 状に形成されていてもよい。 [0010] In the present invention, the auxiliary device includes a discharge detector that detects discharge of the discharge gas, and positive ions in the discharge plasma collide with the electron source when the discharge start of the discharge gas is detected. And a control means for controlling the potential of the electron source so as to suppress this. Here, when the energy supply unit includes at least one pair of discharge electrodes, the discharge detector detects the start of discharge of the discharge gas based on a change in impedance, current, or voltage between the pair of discharge electrodes. Is preferred. Further, it is preferable that the control means controls the potential of the electron source to be higher than the potential before detecting the start of discharge after detecting the start of discharge of the discharge gas. In the present invention, it is preferable that the protection means includes a protection member that has an electron passage portion for allowing electrons to pass therethrough and also protects the surface electrode of the electron source by the ion force of the discharge plasma. In this case, it is preferable that at least a portion of the protective member facing the surface electrode is made of a conductive material and has an electron passage portion. The protective member may be formed in a net shape.
[0012] 本発明においては、保護部材は二次電子放出部材であってもよい。また、保護部 材の内側と外側とのうちの少なくとも一方が二次電子放出部材を備えていてもよい。 保護部材の電位は、電子源の電子放出部の電位に対して同電位又は高電位となる ように制御してもよい。保護部材と電子源の電子放出部との間の電位差は、放電開 始電圧より小さくなるように制御してもよい。  In the present invention, the protection member may be a secondary electron emission member. Further, at least one of the inner side and the outer side of the protective member may include a secondary electron emission member. The potential of the protective member may be controlled to be the same or higher than the potential of the electron emission portion of the electron source. The potential difference between the protective member and the electron emission portion of the electron source may be controlled to be smaller than the discharge start voltage.
[0013] 本発明にお 、て、エネルギ供給部が力ソード電極とアノード電極とを有して 、る場 合、保護部材の電位は、力ソード電極の電位よりも高くなり、アノード電極の電位より も低くなるように制御してもよい。また、アノード電極の電位と保護部材の電位との間 の電位差は、放電開始電圧よりも小さくなるように制御してもよ 、。  [0013] In the present invention, when the energy supply unit includes a force sword electrode and an anode electrode, the potential of the protective member is higher than the potential of the force sword electrode, and the potential of the anode electrode You may control so that it may become lower. Further, the potential difference between the potential of the anode electrode and the potential of the protective member may be controlled to be smaller than the discharge start voltage.
[0014] 本発明にお ヽては、保護部材は、下記の式で示す関係を満たす材料で形成しても よい。  [0014] In the present invention, the protective member may be formed of a material that satisfies the relationship represented by the following formula.
y≤l/ (ea d- l) y≤l / (e ad -l)
また、保護部材の電位は、下記の式で示す関係を満たすように制御してもよい。  Moreover, you may control the electric potential of a protection member so that the relationship shown by the following formula | equation may be satisfy | filled.
α≤1η{ (1/ γ ) + 1}/ά  α≤1η {(1 / γ) + 1} / ά
上記式において、 dは保護部材とカソード電極との距離であり、 αは保護部材とカソ ード電極との間の空間における電子増倍率であり、 yは放電プラズマのイオンによる 二次電子放出係数である。  In the above formula, d is the distance between the protective member and the cathode electrode, α is the electron multiplication factor in the space between the protective member and the cathode electrode, and y is the secondary electron emission coefficient due to the ions of the discharge plasma. It is.
[0015] 本発明においては、保護部材は、電子源に近い第 1の保護部材と、電子源から遠 い第 2の保護部材とで構成されていてもよい。この場合、第 1の保護部材の電位を、 電子源よりも高電位となるように制御し、かつ、第 1の保護部材の電位と第 2の保護部 材の電位とを、互いに異なる電位となるように制御してもよい。また、第 2の保護部材 の電位を、アノード電極の電位よりも低くなり、力ソード電極の電位よりも高くなるように 制御してもよい。第 2の保護部材の電位は、第 1の保護部材の電位よりも低い電位と なるように制御してもよい。第 2の保護部材の開口率は第 1の保護部材の開口率より 低いのが好ましい。 [0015] In the present invention, the protective member may be composed of a first protective member close to the electron source and a second protective member remote from the electron source. In this case, the potential of the first protective member is controlled to be higher than that of the electron source, and the potential of the first protective member and the potential of the second protective member are different from each other. You may control so that it may become. Further, the potential of the second protective member may be controlled to be lower than the potential of the anode electrode and higher than the potential of the force sword electrode. The potential of the second protective member is lower than the potential of the first protective member. You may control so that it may become. The aperture ratio of the second protective member is preferably lower than the aperture ratio of the first protective member.
[0016] 本発明においては、電子源が放電プラズマに直接さらされないように配置される一 方、二次電子放出部が電子源の電子放出面の斜め前方に配置されて 、てもよ 、。 電子源は、弾道電子面放出型電子源であってもよい。  In the present invention, the electron source is disposed so as not to be directly exposed to the discharge plasma, while the secondary electron emission portion may be disposed obliquely in front of the electron emission surface of the electron source. The electron source may be a ballistic electron surface emission electron source.
発明の効果  The invention's effect
[0017] 本発明によれば、気密容器内に充填されている放電ガス中に電子を供給して放電 開始電圧を低減する電子源を備えた放電プラズマ装置ないしは発光装置に対して、 電子源ひいては該装置の長寿命化及び信頼性の向上を図ることができる。  [0017] According to the present invention, an electron source and thus a light emitting device including an electron source for supplying electrons into a discharge gas filled in an airtight container to reduce a discharge start voltage is provided. The life of the device can be extended and the reliability can be improved.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1A]実施の形態 1に係る補助装置を備えた放電装置の概略構成を示す模式図で ある。  FIG. 1A is a schematic diagram showing a schematic configuration of a discharge device including an auxiliary device according to Embodiment 1.
[図 1B]実施の形態 1に係る補助装置を備えた放電装置の概略構成を示す模式図で ある。  FIG. 1B is a schematic diagram showing a schematic configuration of a discharge device including the auxiliary device according to Embodiment 1.
[図 1C]実施の形態 1に係る放電装置における電流と電圧の関係を示す図である。  FIG. 1C is a diagram showing a relationship between current and voltage in the discharge device according to Embodiment 1.
[図 2A]実施の形態 1に係る放電装置の電子源の概略構成を示す断面図である。  2A is a cross-sectional view showing a schematic configuration of an electron source of the discharge device according to Embodiment 1. FIG.
[図 2B]図 2Aに示す電子源のドラフト層の模式的な構造を示す断面図である。  2B is a cross-sectional view showing a schematic structure of a draft layer of the electron source shown in FIG. 2A.
[図 3A]実施の形態 1に係る放電装置の動作を示す模式図である。  FIG. 3A is a schematic diagram showing the operation of the discharge device according to Embodiment 1.
[図 3B]実施の形態 1に係る放電装置の動作を示す模式図である。  FIG. 3B is a schematic diagram showing the operation of the discharge device according to Embodiment 1.
[図 4A]実施の形態 2に係る補助装置を備えた放電装置の動作を示す模式図である。  FIG. 4A is a schematic diagram showing an operation of the discharge device including the auxiliary device according to the second embodiment.
[図 4B]実施の形態 2に係る補助装置を備えた放電装置の動作を示す模式図である。  FIG. 4B is a schematic diagram showing the operation of the discharge device including the auxiliary device according to Embodiment 2.
[図 4C]実施の形態 2に係る補助装置を備えた放電装置の動作を示す模式図である。  FIG. 4C is a schematic diagram showing an operation of the discharge device including the auxiliary device according to the second embodiment.
[図 5]実施の形態 3に係る補助装置を備えた放電装置の概略構成を示す模式図であ る。  FIG. 5 is a schematic diagram showing a schematic configuration of a discharge device including an auxiliary device according to a third embodiment.
[図 6A]図 5に示す放電装置の補助装置の概略構成を示す断面図である。  6A is a cross-sectional view showing a schematic configuration of an auxiliary device of the discharge device shown in FIG.
[図 6B]図 6Aに示す補助装置の平面図である。  6B is a plan view of the auxiliary device shown in FIG. 6A.
[図 7]実施の形態 4に係る補助装置の概略構成を示す断面図である。  FIG. 7 is a sectional view showing a schematic configuration of an auxiliary device according to a fourth embodiment.
[図 8A]実施の形態 5に係る補助装置の概略構成を示す断面図である。 [図 8B]図 8Aに示す補助装置の平面図である。 FIG. 8A is a cross-sectional view showing a schematic configuration of the auxiliary device according to the fifth embodiment. FIG. 8B is a plan view of the auxiliary device shown in FIG. 8A.
[図 9]実施の形態 6に係る補助装置の概略構成を示す断面図である。  FIG. 9 is a cross-sectional view showing a schematic configuration of an auxiliary device according to a sixth embodiment.
圆 10]実施の形態 7に係る補助装置を備えた放電装置の概略構成を示す模式図で ある。 [10] FIG. 10 is a schematic diagram showing a schematic configuration of a discharge device including the auxiliary device according to the seventh embodiment.
圆 11]実施の形態 8に係る補助装置を備えた放電装置の概略構成を示す模式図で ある。 [11] FIG. 11 is a schematic diagram showing a schematic configuration of a discharge device including the auxiliary device according to the eighth embodiment.
圆 12A]図 11に示す放電装置における二次電子放出部の基材の構成を示す模式図 である。 [12A] FIG. 12 is a schematic diagram showing the configuration of the base material of the secondary electron emission portion in the discharge device shown in FIG.
圆 12B]図 11に示す放電装置における二次電子放出部の基材の構成を示す模式図 である。 FIG. 12B is a schematic diagram showing the configuration of the base material of the secondary electron emission portion in the discharge device shown in FIG.
圆 12C]図 11に示す放電装置における二次電子放出部の基材の構成を示す模式 図である。 [12C] FIG. 12C is a schematic diagram showing the configuration of the base material of the secondary electron emission portion in the discharge device shown in FIG.
圆 13A]図 11に示す放電装置における二次電子放出部の基材の構成を示す模式図 である。 [13A] FIG. 13A is a schematic diagram showing a configuration of a base material of a secondary electron emission portion in the discharge device shown in FIG.
圆 13B]図 11に示す放電装置における二次電子放出部の基材の構成を示す模式図 である。 [13B] FIG. 13B is a schematic diagram showing the configuration of the base material of the secondary electron emission portion in the discharge device shown in FIG.
圆 13C]図 11に示す放電装置における二次電子放出部の基材の構成を示す模式 図である。 [13C] FIG. 13C is a schematic diagram showing the configuration of the base material of the secondary electron emission portion in the discharge device shown in FIG.
圆 14]実施の形態 9に係る補助装置を備えた放電装置の概略構成を示す模式図で ある。 FIG. 14 is a schematic diagram showing a schematic configuration of a discharge device including the auxiliary device according to the ninth embodiment.
圆 15]実施の形態 10に係る補助装置の概略構成を示す模式的な断面図である。 15] A schematic cross-sectional view showing a schematic configuration of the auxiliary device according to the tenth embodiment.
[図 16]実施の形態 11に係る補助装置を備えた放電装置の概略構成を示す模式図 である。 FIG. 16 is a schematic diagram showing a schematic configuration of a discharge device provided with an auxiliary device according to an eleventh embodiment.
圆 17]実施の形態 12に係る補助装置の概略構成を示す模式的な断面図である。 圆 18]実施の形態 13に係る補助装置の概略構成を示す模式的な断面図である。 圆 19A]放電装置のエネルギ供給手段の構成を示す模式図である。 圆 17] A schematic cross-sectional view showing a schematic configuration of the auxiliary device according to the twelfth embodiment. 18] A schematic cross-sectional view showing a schematic configuration of the auxiliary device according to the thirteenth embodiment. FIG. 19A is a schematic diagram showing the configuration of the energy supply means of the discharge device.
圆 19B]放電装置のエネルギ供給手段の構成を示す模式図である。 圆 19B] A schematic diagram showing the configuration of the energy supply means of the discharge device.
圆 19C]放電装置のエネルギ供給手段の構成を示す模式図である。 圆 19D]放電装置のエネルギ供給手段の構成を示す模式図である。 FIG. 19C is a schematic diagram showing the configuration of the energy supply means of the discharge device. FIG. 19D is a schematic diagram showing the configuration of the energy supply means of the discharge device.
圆 19E]放電装置のエネルギ供給手段の構成を示す模式図である。 圆 19E] A schematic diagram showing the configuration of the energy supply means of the discharge device.
圆 19F]放電装置のエネルギ供給手段の構成を示す模式図である。 FIG. 19F is a schematic diagram showing the configuration of the energy supply means of the discharge device.
圆 19G]放電装置のエネルギ供給手段の構成を示す模式図である。 FIG. 19G is a schematic diagram showing a configuration of energy supply means of the discharge device.
圆 19H]放電装置のエネルギ供給手段の構成を示す模式図である。 FIG. 19H is a schematic diagram showing the configuration of the energy supply means of the discharge device.
圆 191]放電装置のエネルギ供給手段の構成を示す模式図である。 191] A schematic diagram showing the configuration of the energy supply means of the discharge device.
圆 19J]放電装置のエネルギ供給手段の構成を示す模式図である。 [19J] A schematic view showing the configuration of the energy supply means of the discharge device.
圆 20A]放電装置のエネルギ供給手段の構成を示す模式図である。 FIG. 20A is a schematic diagram showing the configuration of the energy supply means of the discharge device.
[図 20B]電圧の経時変化を示すグラフである。 FIG. 20B is a graph showing changes in voltage over time.
[図 20C]電圧の経時変化を示すグラフである。 FIG. 20C is a graph showing a change with time of voltage.
圆 21A]放電装置のエネルギ供給手段の構成を示す模式図である。 21A] A schematic diagram showing the configuration of the energy supply means of the discharge device.
[図 21B]電圧の経時変化を示すグラフである。 FIG. 21B is a graph showing a change with time of voltage.
[図 21C]電圧の経時変化を示すグラフである。 FIG. 21C is a graph showing a change with time of voltage.
圆 22]放電装置の変形例の概略構成を示す模式的な断面図である。 [22] FIG. 22 is a schematic cross-sectional view showing a schematic configuration of a modified example of the discharge device.
圆 23]放電装置の変形例の概略構成を示す模式的な断面図である。 圆 23] A schematic cross-sectional view showing a schematic configuration of a modified example of the discharge device.
圆 24]放電装置の変形例の概略構成を示す模式的な断面図である。 FIG. 24 is a schematic cross-sectional view showing a schematic configuration of a modified example of the discharge device.
圆 25]放電装置の変形例の概略構成を示す模式的な断面図である。 FIG. 25 is a schematic cross-sectional view showing a schematic configuration of a modified example of the discharge device.
圆 26]実施の形態 14に係る補助装置を備えた放電装置の概略構成を示す模式図 である。 [26] FIG. 26 is a schematic diagram showing a schematic configuration of a discharge device including the auxiliary device according to the fourteenth embodiment.
圆 27A]実施の形態 15に係る補助装置を備えた放電装置の概略構成を示す模式図 である。 FIG. 27A is a schematic diagram showing a schematic configuration of a discharge device including the auxiliary device according to the fifteenth embodiment.
圆 27B]実施の形態 15に係る放電装置の補助装置の概略的な構造を示す模式的な 断面図である。 27B] A schematic cross-sectional view showing a schematic structure of the auxiliary device of the discharge device according to Embodiment 15.
圆 28]実施の形態 16に係る補助装置を備えた放電装置の概略構成を示す模式図 である。 [28] FIG. 28 is a schematic diagram showing a schematic configuration of a discharge device including the auxiliary device according to the sixteenth embodiment.
[図 29]図 28に示す放電装置の補助装置の概略構成を示す模式的な断面図である。 圆 30]実施の形態 16に係る補助装置を備えたもう 1つの放電装置の概略構成を示 す模式図である。 符号の説明 29 is a schematic cross-sectional view showing a schematic configuration of an auxiliary device of the discharge device shown in FIG. 28. 30] FIG. 30 is a schematic diagram showing a schematic configuration of another discharge device including the auxiliary device according to the sixteenth embodiment. Explanation of symbols
[0019] 1 気密容器、 2a 放電電極、 2b 放電電極、 2c 放電電極、 3 電界放射型電子 源、 3a 電子源素子、 4 グリッド電極、 5 電源、 6 放電検出手段、 7 制御手段、 8 放電プラズマ生成空間、 10 放電プラズマ、 14 絶縁性基板、 15 下部電極、 16 強電界ドリフト層、 17 表面電極、 20 保護部材、 21 絶縁性保護部材、 21a 窓 孔、 22 導電性保護部材、 22a 開口部、 25 二次電子放出部、 30 引出し用電極 、 31 第 1の保護部材、 31a 開口部、 32 第 2の保護部材、 32a 開口部、 40 二 次電子放出部材、 51 グレイン、 52 シリコン酸ィ匕膜、 63 シリコン微結晶、 64 シリ コン酸化膜。  [0019] 1 airtight container, 2a discharge electrode, 2b discharge electrode, 2c discharge electrode, 3 field emission electron source, 3a electron source element, 4 grid electrode, 5 power supply, 6 discharge detection means, 7 control means, 8 discharge plasma Production space, 10 discharge plasma, 14 insulating substrate, 15 lower electrode, 16 strong electric field drift layer, 17 surface electrode, 20 protective member, 21 insulating protective member, 21a window hole, 22 conductive protective member, 22a opening, 25 Secondary electron emitter, 30 Extraction electrode, 31 First protective member, 31a opening, 32 Second protective member, 32a opening, 40 Secondary electron emitting member, 51 Grain, 52 Silicon oxide film , 63 Silicon microcrystal, 64 silicon oxide film.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 本願は、曰本国で出願された特願 2005— 246800号及び特願 2005— 246801 号に基づくものであり、その内容はここに全面的に組み込まれている。以下、添付の 図面を参照しつつ、本発明の実施の形態を具体的に説明する。なお、添付の図面に ぉ 、て、共通する構成要素には同一の参照番号が付されて 、る。  [0020] This application is based on Japanese Patent Application No. 2005-246800 and Japanese Patent Application No. 2005-246801 filed in Japan, the contents of which are fully incorporated herein. Embodiments of the present invention will be specifically described below with reference to the accompanying drawings. In the accompanying drawings, common components are denoted by the same reference numerals.
[0021] (実施の形態 1)  [0021] (Embodiment 1)
図 1 Aに示すように、実施の形態 1に係る補助装置 (放電プラズマ生成補助装置)を 備えた放電プラズマ装置な 、しは発光装置 (以下「放電装置」と総称する。 )は放電 管 Aを備えている。放電管 Aは、放電媒体であるガス (放電ガス)が内部に封入された 気密容器 1を備えている。気密容器 1内には、 1対のプラズマ放電用の放電電極 2a、 2bと、放電ガス中に電子を供給する電子源 3 (電界放射型電子源)と、電子源 3の電 子放出面に対向するグリッド電極 4とが収容されている。  As shown in FIG. 1A, a discharge plasma apparatus or a light emitting apparatus (hereinafter collectively referred to as “discharge apparatus”) provided with an auxiliary apparatus (discharge plasma generation auxiliary apparatus) according to Embodiment 1 is a discharge tube A. It has. The discharge tube A includes an airtight container 1 in which a gas (discharge gas) as a discharge medium is enclosed. In the airtight container 1, a pair of plasma discharge electrodes 2a and 2b, an electron source 3 (field emission electron source) for supplying electrons into the discharge gas, and an electron emission surface of the electron source 3 are provided. Opposing grid electrodes 4 are accommodated.
[0022] さらに、放電装置は、両放電電極 2a、 2b間に電圧を印加する電源 5と、放電管 Aの 放電状態を検出する放電検出手段 6と、放電検出手段 6によって放電管 Aの放電開 始が検出されたときに電子源 3へのプラスイオンの衝突を抑制するように電子源 3の 電位を制御する制御手段 7とを備えている。グリッド電極 4は、電子源 3から放出され た電子を通過させるための開口部(図示せず)を有している。実施の形態 1では、電 子源 3とグリッド電極 4とで補助装置 (ィダナイタ)を構成して!/ヽる。  Further, the discharge device includes a power source 5 that applies a voltage between the discharge electrodes 2a and 2b, a discharge detection means 6 that detects a discharge state of the discharge tube A, and a discharge detection means 6 that discharges the discharge tube A. Control means 7 is provided for controlling the potential of the electron source 3 so as to suppress the collision of positive ions with the electron source 3 when the start is detected. The grid electrode 4 has an opening (not shown) for allowing electrons emitted from the electron source 3 to pass therethrough. In Embodiment 1, the electron source 3 and the grid electrode 4 constitute an auxiliary device (idanator)! / Speak.
[0023] 実施の形態 1に係る放電装置では、電子源 3を駆動することにより、電子源 3から放 出されグリッド電極 4の開口部を通過した電子力 両放電電極 2a、 2b間の空間に供 給される。なお、図 1A中の矢印は、電子源 3から放出されグリッド電極 4の開口部を 通過した電子 e—の流れを示している。これにより、プラズマ放電を開始させるのに必 要な電圧 (以下「放電開始電圧」という。)を低減することができ、消費電力を低減する ことができる。なお、放電開始後も電子源 3を駆動すれば、放電プラズマを安定させ ることができるとともに、放電維持電圧を低減することができ、消費電力を一層低減す ることがでさる。 [0023] In the discharge device according to Embodiment 1, the electron source 3 is driven to discharge from the electron source 3. The electron force that has passed through the opening of the grid electrode 4 is supplied to the space between the discharge electrodes 2a and 2b. The arrow in FIG. 1A indicates the flow of electrons e− emitted from the electron source 3 and passing through the opening of the grid electrode 4. As a result, the voltage required to start plasma discharge (hereinafter referred to as “discharge start voltage”) can be reduced, and power consumption can be reduced. If the electron source 3 is driven even after the start of discharge, the discharge plasma can be stabilized, the sustaining voltage can be reduced, and the power consumption can be further reduced.
[0024] 放電管 Aは、直管形の希ガス蛍光ランプである。気密容器 1は、例えば石英ガラス 、透光性セラミックスなどの透光性材料で形成されている。気密容器 1内には、放電 ガスとしてキセノンガスが封入されている。気密容器 1の内面には、キセノンガスの励 起により発生した紫外線により励起されて発光する蛍光体層(図示せず)が設けられ ている。  The discharge tube A is a straight tube type rare gas fluorescent lamp. The hermetic container 1 is made of a translucent material such as quartz glass or translucent ceramics. In the airtight container 1, xenon gas is sealed as a discharge gas. A phosphor layer (not shown) that emits light by being excited by ultraviolet rays generated by the excitation of xenon gas is provided on the inner surface of the hermetic container 1.
[0025] 実施の形態 1に係る放電装置は、電源スィッチ(図示せず)を投入したときに、電源 5から両放電電極 2a、 2b間に直流電圧を印加することにより、放電管 Aを放電させる ようになつている。すなわち、放電管 Aを直流点灯させるようになつている。 1対の放 電電極 2a、 2bのうち、気密容器 1の長手方向の一方の端部(図 1Aでは左側)に配置 された放電電極 2aはアノード電極であり、他方の端部(図 1 Aでは右側)に配置され た放電電極 2bは力ソード電極である(実施の形態 1、 2では、適宜、「放電電極 2a」及 び「放電電極 2b」を、それぞれ「アノード電極 2a」及び「力ソード電極 2b」という。 )。電 子源 3は、アノード電極 2aの近傍において、アノード電極 2aに対して、力ソード電極 2 bと反対側に配置されている。なお、実施の形態 1では、電源 5として、直流のパルス 電圧を出力するパルス電源を用いて 、る。  [0025] The discharge device according to Embodiment 1 discharges discharge tube A by applying a DC voltage from power supply 5 to both discharge electrodes 2a and 2b when a power switch (not shown) is turned on. It has become to let you. That is, the discharge tube A is lit by direct current. Of the pair of discharge electrodes 2a and 2b, the discharge electrode 2a arranged at one end in the longitudinal direction of the hermetic container 1 (left side in FIG. 1A) is an anode electrode, and the other end (FIG. 1A). The discharge electrode 2b arranged on the right side is a force sword electrode (in the first and second embodiments, the “discharge electrode 2a” and the “discharge electrode 2b” are appropriately replaced with the “anode electrode 2a” and the “force electrode”, respectively. Sword electrode 2b ”). The electron source 3 is disposed in the vicinity of the anode electrode 2a on the side opposite to the force sword electrode 2b with respect to the anode electrode 2a. In the first embodiment, the power source 5 is a pulse power source that outputs a DC pulse voltage.
[0026] 図 2Aに示すように、電子源 3は、例えば、絶縁性を有するガラス基板や絶縁性を有 するセラミック基板など力もなる矩形板状の絶縁性基板 14を備えて 、る。絶縁性基 板 14の一方の表面上には、例えば、タングステン膜などの金属膜からなる下部電極 15が形成されている。下部電極 15の上には、強電界ドリフト層 16 (以下、略して「ドリ フト層 16」という。)が形成されている。ドリフト層 16の上には、例えば金薄膜などの金 属薄膜からなる表面電極 17が形成されている。 [0027] 電子源 3では、ドリフト層 16が電子通過層を構成している。そして、下部電極 15とド リフト層 16と表面電極 17とは、表面電極 17を通して電子を放出する電子源素子 3a を構成して 、る。表面電極 17の表面は電子放出面を構成して 、る。 As shown in FIG. 2A, the electron source 3 includes a rectangular plate-like insulating substrate 14 having a force such as an insulating glass substrate or an insulating ceramic substrate. A lower electrode 15 made of a metal film such as a tungsten film is formed on one surface of the insulating substrate 14. On the lower electrode 15, a strong electric field drift layer 16 (hereinafter referred to as “drift layer 16” for short) is formed. On the drift layer 16, a surface electrode 17 made of a metal thin film such as a gold thin film is formed. In the electron source 3, the drift layer 16 constitutes an electron passage layer. The lower electrode 15, the drift layer 16, and the surface electrode 17 constitute an electron source element 3 a that emits electrons through the surface electrode 17. The surface of the surface electrode 17 constitutes an electron emission surface.
[0028] 図 2Bに示すように、ドリフト層 16は、少なくとも、下部電極 15の表面側に列設され た柱状の多結晶シリコンのグレイン(半導体結晶) 51と、グレイン 51の表面に形成さ れた薄いシリコン酸ィ匕膜 52と、グレイン 51間に位置する多数のナノメータオーダのシ リコン微結晶(半導体微結晶) 63と、各シリコン微結晶 63の表面に形成されシリコン 微結晶 63の結晶粒径よりも小さい膜厚の酸ィ匕膜である多数のシリコン酸ィ匕膜 (絶縁 膜) 64とで構成されている。各グレイン 51は、下部電極 15の厚み方向、つまり絶縁 性基板 14の厚み方向に延びて 、る。  As shown in FIG. 2B, the drift layer 16 is formed at least on the surface of the grain 51 of columnar polycrystalline silicon grains (semiconductor crystals) 51 arranged on the surface side of the lower electrode 15. Thin silicon oxide film 52, a number of nanometer-order silicon microcrystals (semiconductor microcrystals) 63 located between grains 51, and crystal grains of silicon microcrystals 63 formed on the surface of each silicon microcrystal 63 It is composed of a large number of silicon oxide films (insulating films) 64 which are oxide films having a film thickness smaller than the diameter. Each grain 51 extends in the thickness direction of the lower electrode 15, that is, in the thickness direction of the insulating substrate 14.
[0029] 電子源素子 3aから電子を放出させる際には、表面電極 17が下部電極 15に対して 高電位となるように、駆動電源により表面電極 17と下部電極 15との間に駆動電圧を 印加する。これにより、下部電極 15からドリフト層 16に注入された電子がドリフト層 16 をドリフトし、表面電極 17を通って放出される。  [0029] When electrons are emitted from the electron source element 3a, a driving voltage is applied between the surface electrode 17 and the lower electrode 15 by a driving power source so that the surface electrode 17 is at a higher potential than the lower electrode 15. Apply. As a result, electrons injected from the lower electrode 15 into the drift layer 16 drift through the drift layer 16 and are emitted through the surface electrode 17.
[0030] 実施の形態 1に係る電子源素子 3aでは、表面電極 17と下部電極 15との間に印加 する駆動電圧を 10〜20V程度の低電圧としても、電子を放出させることができる。な お、電子源素子 3aは、電子放出特性の真空度依存性が小さぐかつ電子放出時に ポッビング現象が発生せず、電子を高 、電子放出効率で安定して放出することがで きる。  [0030] In the electron source element 3a according to Embodiment 1, electrons can be emitted even when the drive voltage applied between the surface electrode 17 and the lower electrode 15 is a low voltage of about 10 to 20V. The electron source element 3a is less dependent on the degree of vacuum of the electron emission characteristics and does not generate a pobbing phenomenon during electron emission, and can stably emit electrons with high electron emission efficiency.
[0031] 電子源素子 3aの基本構成は周知であるが、次のようなモデルで電子放出が起こる と考えられる。すなわち、表面電極 17と下部電極 15との間に、表面電極 17が高電位 となるように電圧が印加されると、下部電極 15からドリフト層 16に電子 e—が注入され る。また、ドリフト層 16に印加された電界の大部分はシリコン酸ィ匕膜 64にかかる。この ため、注入された電子 e—は、シリコン酸ィ匕膜 64にかかっている強電界により加速され る。これらの電子 e—は、ドリフト層 16内においてグレイン 51間の領域 65を、表面に向 力つて図 2B中の矢印で示す方向にドリフトし、表面電極 17をトンネルして放出される  [0031] Although the basic configuration of the electron source element 3a is well known, it is considered that electron emission occurs in the following model. That is, when a voltage is applied between the surface electrode 17 and the lower electrode 15 such that the surface electrode 17 has a high potential, electrons e− are injected from the lower electrode 15 into the drift layer 16. Further, most of the electric field applied to the drift layer 16 is applied to the silicon oxide film 64. Therefore, the injected electron e− is accelerated by the strong electric field applied to the silicon oxide film 64. These electrons e− drift in the region 65 between the grains 51 in the drift layer 16 toward the surface in the direction indicated by the arrow in FIG. 2B, and are emitted by tunneling through the surface electrode 17.
[0032] 力べして、ドリフト層 16では、下部電極 15から注入された電子がシリコン微結晶 63 によってほとんど散乱されることなぐシリコン酸ィ匕膜 64にかかっている電界によりカロ 速されてドリフトする。そして、これらの電子 e—は、表面電極 17を通して放出される( 弾道型電子放出現象)。ドリフト層 16で発生した熱は、グレイン 51を通して放出され る。このため、電子放出時にポッビング現象が発生せず、安定して電子を放出するこ とがでさる。 In addition, in the drift layer 16, electrons injected from the lower electrode 15 are converted into silicon microcrystals 63. Drifted by the electric field applied to the silicon oxide film 64 that is hardly scattered by the. These electrons e− are emitted through the surface electrode 17 (ballistic electron emission phenomenon). Heat generated in the drift layer 16 is released through the grains 51. Therefore, no pobbing phenomenon occurs when electrons are emitted, and electrons can be stably emitted.
[0033] 実施の形態 1に係る電子源のドリフト層 16においては、絶縁膜であるシリコン酸ィ匕 膜 64は酸ィ匕プロセスにより形成される。しかし、酸ィ匕プロセスに代えて窒化プロセス 又は酸窒化プロセスを用いてもよい。窒化プロセスを用いる場合は、絶縁膜はいずれ もシリコン窒化膜となる。酸窒化プロセスを用いる場合は、絶縁膜はいずれもシリコン 酸窒化膜となる。  In the drift layer 16 of the electron source according to Embodiment 1, the silicon oxide film 64 that is an insulating film is formed by an acid process. However, a nitriding process or an oxynitriding process may be used instead of the acid process. When the nitridation process is used, all of the insulating films are silicon nitride films. When the oxynitridation process is used, the insulating film is a silicon oxynitride film.
[0034] 前記のとおり、電子源 3の電子放出面にはグリッド電極 4が対向して配置されている 。このため、電子源 3に駆動電圧を印加しているときに、グリッド電極 4と表面電極 17 との間に、グリッド電極 4が高電位となるように例えば 100V程度の電圧を印加すると 、電子源 3から放出された電子がグリッド電極 4に引き寄せられる。前記のとおりグリツ ド電極 4は開口部を有しているので、電子を、開口部を通してアノード電極 2aとカソ ード電極 2bとの間の空間へ供給することができる。  As described above, the grid electrode 4 is disposed opposite to the electron emission surface of the electron source 3. Therefore, when a driving voltage is applied to the electron source 3 and a voltage of, for example, about 100 V is applied between the grid electrode 4 and the surface electrode 17 so that the grid electrode 4 has a high potential, the electron source 3 The electrons emitted from 3 are attracted to the grid electrode 4. Since the grid electrode 4 has the opening as described above, electrons can be supplied to the space between the anode electrode 2a and the cathode electrode 2b through the opening.
[0035] グリッド電極 4としては、例えば、ニッケル、アルミニウム、ステンレスなどの導電性材 料で網状に形成され、各網目が開口部となっているものを用いることができる。また、 導電性材料により形成された板状部材に開口部として複数の円形状又は矩形状の 穴を形成したものを用いてもょ 、。  [0035] As the grid electrode 4, for example, a grid electrode made of a conductive material such as nickel, aluminum, or stainless steel, and each mesh opening is used. Alternatively, a plate-like member made of a conductive material may be used in which a plurality of circular or rectangular holes are formed as openings.
[0036] 図 1Cに示すように、実施の形態 1に係る放電装置では、アノード電極 2aと力ソード 電極 2bとの間の電流—電圧特性が、放電開始前後で大きく変化する。なお、図 1C 中の点 P1は、放電前の電流 電圧特性を示しているが、この場合は電流はほとんど 流れていない。点 P2は、放電後の電流 電圧特性を示している力 この場合は電流 が増加する一方電圧が低下している。つまり、放電管 Aは、放電が開始されると、両 放電電極 2a、 2b間のインピーダンス、電流及び電圧が、それぞれ急激に変化する。  As shown in FIG. 1C, in the discharge device according to Embodiment 1, the current-voltage characteristics between the anode electrode 2a and the force sword electrode 2b change greatly before and after the start of discharge. Note that point P1 in Fig. 1C shows the current-voltage characteristics before discharge, but in this case, almost no current flows. Point P2 is a force indicating the current-voltage characteristics after discharge. In this case, the current increases while the voltage decreases. That is, in the discharge tube A, when the discharge is started, the impedance, current, and voltage between the discharge electrodes 2a and 2b change rapidly.
[0037] 放電検出手段 6は、両放電電極 2a、 2b間のインピーダンスの変化に基づいて放電 管 Aの放電状態を検出する。したがって、インピーダンスの変化により、放電管 Aの放 電開始を検出することができる。なお、放電検出手段 6は、両放電電極 2a、 2b間のィ ンピーダンスの変化ではなぐ電流の変化又は電圧の変化に基づ 、て放電管 Aの放 電開始を検出するものであってもよい。いずれの場合も、両放電電極 2a、 2b間の電 気的特性の変化により、放電管 Aの放電開始を確実に検出することができる。 [0037] The discharge detection means 6 detects the discharge state of the discharge tube A based on a change in impedance between the discharge electrodes 2a, 2b. Therefore, discharge of discharge tube A is caused by impedance change. The start of electricity can be detected. The discharge detection means 6 may detect the start of discharge of the discharge tube A based on a change in current or a change in voltage that is not a change in impedance between the discharge electrodes 2a and 2b. . In either case, the discharge start of the discharge tube A can be reliably detected by the change in the electrical characteristics between the discharge electrodes 2a and 2b.
[0038] 前記のとおり、実施の形態 1に係る放電装置は、放電検出手段 6により放電管 Aの 放電開始が検出されたときに電子源 3へのプラスイオンの衝突を抑制するように電子 源 3の電位を制御する制御手段 7を備えている。そして、図 1Bに示すように、放電開 始後は、電子源 3の駆動を停止し、放電プラズマ 10からのプラスイオンが電子源 3〖こ 衝突するのを抑制する。  [0038] As described above, the discharge device according to Embodiment 1 has the electron source so as to suppress the collision of positive ions with the electron source 3 when the discharge detection means 6 detects the start of discharge of the discharge tube A. Control means 7 for controlling the potential of 3 is provided. Then, as shown in FIG. 1B, after the discharge is started, the driving of the electron source 3 is stopped, and positive ions from the discharge plasma 10 are prevented from colliding with the electron source 3.
[0039] 表面電極 17と下部電極 15との間に駆動電圧を印加し、グリッド電極 4と表面電極 1 7との間にグリッド電圧を印加し、かつ、アノード電極 2aと力ソード電極 2bとの間に放 電開始電圧を印加したときにぉ 、て、放電管 Aの放電前の状態における電位分布が 図 3Aに示すようになつているとする。この場合、放電管 Aの放電前は、電子源 3から 放出された電子を両放電電極 2a、 2b間の空間に効率良く供給するために、アノード 電極 2aに対して表面電極 17が低電位となるようにするのが好まし!/、。  [0039] A drive voltage is applied between the surface electrode 17 and the lower electrode 15, a grid voltage is applied between the grid electrode 4 and the surface electrode 17, and the anode electrode 2a and the force sword electrode 2b Assume that the potential distribution in the state before the discharge of the discharge tube A is as shown in FIG. 3A when the discharge start voltage is applied in the meantime. In this case, before the discharge of the discharge tube A, the surface electrode 17 has a low potential with respect to the anode electrode 2a in order to efficiently supply the electrons emitted from the electron source 3 to the space between the discharge electrodes 2a and 2b. I prefer to be! /.
[0040] グリッド電極 4、表面電極 17又は下部電極 15のいずれかをアノード電極 2aと同じ電 位とすれば、制御手段 7による電位の制御が容易になる。しかし、電子放出効率を高 くするには、グリッド電極 4とアノード電極 2aとを同じ電位にするのが望ましい。なお、 図 3A中において、「表面電位」、「下部電位」、「グリッド電位」、「アノード電位」及び「 力ソード電位」は、それぞれ、表面電極 17、下部電極 15、グリッド電極 4、アノード電 極 2a及び力ソード電極 2bの電位を示して!/、る。  [0040] If any one of the grid electrode 4, the surface electrode 17 and the lower electrode 15 has the same potential as the anode electrode 2a, the control of the potential by the control means 7 becomes easy. However, in order to increase the electron emission efficiency, it is desirable that the grid electrode 4 and the anode electrode 2a have the same potential. In FIG. 3A, “surface potential”, “lower potential”, “grid potential”, “anode potential”, and “force sword potential” are the surface electrode 17, the lower electrode 15, the grid electrode 4, and the anode potential, respectively. Show the potential of pole 2a and force sword electrode 2b!
[0041] 図 3Bに示すように、制御手段 7は、放電検出手段 6によって放電開始が検出される と(すなわち、放電開始後には)、電子源 3の電位及びグリッド電極 4の電位がァノー ド電極 2aの電位よりも高くなるように(正ノィァスする)、表面電極 17、下部電極 15及 びグリッド電極 4の電位を制御する。すなわち、制御手段 7は、放電検出手段 6によつ て放電開始が検出されると、電子源 3の電位を該検出前の電位よりも高い電位に制 御する。なお、図 3Bに示す例では、表面電極 17と下部電極 15とグリッド電極 4とを同 電位としている。制御手段 7は、マイクロコンピュータなどにより構成すればよい。 [0042] 前記のとおり、実施の形態 1に係る放電装置においては、制御手段 7は、放電検出 手段 6によって放電管 Aの放電開始が検出されたときに電子源 3の駆動を停止し、か つ電子源 3へのプラスイオンの衝突を抑制するように電子源 3の電位を制御する。こ のため、保護部材を設けることなく電子源 3へのプラスイオンの衝突を抑制することが でき、放電開始電圧を低減することができ、かつ電子源 3の寿命を長くすることができ る。グリッド電極 4の開口部の開口面積は、プラスイオンの侵入を防止する目的で保 護部材として網状体を使用する場合における網目の開口面積に比べて、十分に大き くすることができる。このため、補助装置 (ィダナイタ)の電子放出効率が高くなり、放 電開始電圧を一層低減することができる。 [0041] As shown in FIG. 3B, when the discharge detection means 6 detects the start of discharge (that is, after the start of discharge), the control means 7 determines that the potential of the electron source 3 and the potential of the grid electrode 4 are The potentials of the surface electrode 17, the lower electrode 15 and the grid electrode 4 are controlled so as to be higher than the potential of the electrode 2a (positive noise). That is, when the discharge detection means 6 detects the start of discharge, the control means 7 controls the potential of the electron source 3 to be higher than the potential before the detection. In the example shown in FIG. 3B, the surface electrode 17, the lower electrode 15, and the grid electrode 4 are at the same potential. The control means 7 may be configured by a microcomputer or the like. [0042] As described above, in the discharge device according to Embodiment 1, the control means 7 stops driving the electron source 3 when the discharge detection means 6 detects the start of discharge of the discharge tube A, and The potential of the electron source 3 is controlled so as to suppress the collision of positive ions with the electron source 3. For this reason, collision of positive ions to the electron source 3 can be suppressed without providing a protective member, the discharge start voltage can be reduced, and the life of the electron source 3 can be extended. The opening area of the opening of the grid electrode 4 can be made sufficiently larger than the opening area of the mesh when a mesh body is used as a protective member for the purpose of preventing the entry of positive ions. For this reason, the electron emission efficiency of the auxiliary device (idanator) is increased, and the discharge start voltage can be further reduced.
[0043] (実施の形態 2)  [Embodiment 2]
以下、本発明の実施の形態 2を説明する。しかしながら、実施の形態 2に係る補助 装置を備えた放電装置の基本構成は、実施の形態 1に係る放電装置と同様であり、 制御手段 7の動作が異なるだけである。そこで、以下では、図 4A〜図 4Cを参照しつ つ、主として制御手段 7の動作を説明する。  Embodiment 2 of the present invention will be described below. However, the basic configuration of the discharge device including the auxiliary device according to the second embodiment is the same as that of the discharge device according to the first embodiment, and only the operation of the control means 7 is different. Therefore, the operation of the control means 7 will be mainly described below with reference to FIGS. 4A to 4C.
[0044] 前記のとおり、実施の形態 1に係る放電装置では、電子源 3とグリッド電極 4とを備え た補助装置が、アノード電極 2aの近傍において、アノード電極 2aに対して、力ソード 電極 2bと反対側に配置されている。このため、電界の態様によっては、補助装置から 放出された電子がアノード電極 2aに吸収されてしま 、、アノード電極 2aと力ソード電 極 2bとの間の空間に供給される電子の量が減少することがある。  [0044] As described above, in the discharge device according to the first embodiment, the auxiliary device including the electron source 3 and the grid electrode 4 has a force sword electrode 2b with respect to the anode electrode 2a in the vicinity of the anode electrode 2a. It is arranged on the opposite side. For this reason, depending on the form of the electric field, electrons emitted from the auxiliary device are absorbed by the anode electrode 2a, and the amount of electrons supplied to the space between the anode electrode 2a and the force sword electrode 2b decreases. There are things to do.
[0045] そこで、図 4Aに示すように、実施の形態 2に係る制御手段 7では、放電前にまずグ リツド電極 4の電位がアノード電極 2aよりも高電位となるようにして、補助装置カも電 子の放出を開始させ、これによりアノード電極 2aでの電子の吸収を防止するようにし て 、る。補助装置力も放出された電子の気密容器 1内での寿命はミリ秒オーダである  Therefore, as shown in FIG. 4A, in the control means 7 according to the second embodiment, the potential of the grid electrode 4 is first set higher than that of the anode electrode 2a before discharging, so that the auxiliary device cap In addition, the emission of electrons is started, thereby preventing the absorption of electrons at the anode electrode 2a. The life in the airtight container 1 of the electron which has also released the auxiliary device force is on the order of milliseconds.
[0046] このため、図 4Bに示すように、制御手段 7は、このミリ秒オーダの時間が経過する前 、つまり電子力 Sイオンなどと再結合して消滅する前に、アノード電極 2aの電位を高め ること〖こより放電を開始させる。なお、図 4Bに示す例では、アノード電極 2aの電位を 、グリッド電極 4の電位と同電位まで高めている。 [0047] 図 4Cに示すように、制御手段 7は、実施の形態 1の場合と同様に、放電検出手段 6 によって放電開始が検出されると (すなわち、放電開始後には)、電子源 3の電位及 びグリッド電極 4の電位がアノード電極 2aの電位よりも高くなるように(正バイアスする )、表面電極 17、下部電極 15及びグリッド電極 4の電位を制御する。 [0046] Therefore, as shown in FIG. 4B, the control means 7 detects the potential of the anode electrode 2a before the millisecond time elapses, that is, before it recombines with the electron force S ions and disappears. Increase discharge to start discharging. In the example shown in FIG. 4B, the potential of the anode electrode 2a is increased to the same potential as that of the grid electrode 4. [0047] As shown in FIG. 4C, as in the case of Embodiment 1, the control means 7 detects the start of discharge by the discharge detection means 6 (that is, after the start of discharge). The potentials of the surface electrode 17, the lower electrode 15, and the grid electrode 4 are controlled so that the potential and the potential of the grid electrode 4 become higher (positively biased) than the potential of the anode electrode 2a.
[0048] 実施の形態 1、 2では、制御手段 7は、放電検出手段 6によって放電開始が検出さ れると、電子源 3の電位を、アノード電極 2aの電位よりも高い電位となるように制御し ているが、アノード電極 2aと同電位になるように制御するようにしてもよい。制御手段 7力 電子源 3の駆動を開始させた後に、アノード電極 2aと力ソード電極 2bとの間に 電圧を印加させる場合は、アノード電極 2aと力ソード電極 2bとの間に電圧を印加して 力 放電が開始されるまでの遅れ時間を短縮することができる。「 (電子源から電子を 放出)→ (放電用電極に電圧印加)→ (放電発生)→ (電子源を保護電位に切替) Jと いう手順の場合、又は、「(放電用電極に電圧印加)→ (電子源から電子を放出)→( 放電発生)→ (電子源を保護電位に切替) J h ヽぅ手順の場合は、放電が発生した瞬 間ではまだ電子源の電位が保護電位に切替わって ヽな 、ため、電子源がダメージを 受ける可能性がある。そこで、電子源力も放出された電子がエネルギーを失うまでの 間に、「 (電子源から電子を放出)→ (電子源を保護電位に切替)→ (放電用電極に電 圧印加)→ (放電発生)」と!、う操作を行えば、放電が発生する瞬間にはすでに電子 源は保護電位に切替わっているため、ダメージを防止することができる。  [0048] In Embodiments 1 and 2, the control means 7 controls the potential of the electron source 3 to be higher than the potential of the anode electrode 2a when the discharge detection means 6 detects the start of discharge. However, it may be controlled so as to have the same potential as the anode electrode 2a. Control means 7 Force When the voltage source is applied between the anode electrode 2a and the force sword electrode 2b after driving the electron source 3, the voltage is applied between the anode electrode 2a and the force sword electrode 2b. Thus, the delay time until power discharge is started can be shortened. In the procedure of `` (Emitting electrons from the electron source) → (Apply voltage to the discharge electrode) → (Discharge generation) → (Switch the electron source to the protective potential) J '' or `` (Apply voltage to the discharge electrode ) → (Emitting electrons from the electron source) → (Discharge generation) → (Switch the electron source to the protective potential) J h In the procedure, the potential of the electron source is still at the protective potential in the instant the discharge occurs. Therefore, there is a possibility that the electron source may be damaged because of the switchover, so that the electron source power is also released until the emitted electron loses energy. If the operation is performed, the electron source is already switched to the protective potential at the moment when the discharge occurs. , Can prevent damage.
[0049] 制御手段 7が、放電検出手段 6によって放電開始が検出された後において、放電 検出手段 6によって異常放電が検出されたときに電子源 3を再駆動させる場合は、異 常放電が起こったときに電子源 3が再駆動されて電子が供給される。このため、異常 放電から正常放電への移行が容易となる。  [0049] If the control means 7 restarts the electron source 3 when an abnormal discharge is detected by the discharge detection means 6 after the discharge detection means 6 detects the start of discharge, an abnormal discharge occurs. The electron source 3 is re-driven to supply electrons. This facilitates the transition from abnormal discharge to normal discharge.
[0050] 実施の形態 1、 2では、電子源 3とグリッド電極 4とで構成される補助装置を、アノード 電極 2aの近傍に配置している。しかし、補助装置を、アノード電極 2aの近傍に配置 するのではなぐ力ソード電極 2bの近傍において、力ソード電極 2bに対してアノード 電極 2aと反対側に配置してもよい。この場合、制御手段 7が、放電検出手段 6によつ て放電開始が検出されたときに、電子源 3の電位及びグリッド電極 4の電位を、ァノー ド電極 2aの電位と力ソード電極 2bの電位との間の電位に制御するようになって!/ヽれ ば、力ソード電極 2bの近傍に配置された電子源 3へのプラスイオンの衝突を抑制す ることがでさる。 [0050] In the first and second embodiments, the auxiliary device including the electron source 3 and the grid electrode 4 is disposed in the vicinity of the anode electrode 2a. However, the auxiliary device may be disposed on the side opposite to the anode electrode 2a with respect to the force sword electrode 2b in the vicinity of the force sword electrode 2b, rather than being disposed in the vicinity of the anode electrode 2a. In this case, when the control means 7 detects the start of discharge by the discharge detection means 6, the potential of the electron source 3 and the potential of the grid electrode 4 are set to the potential of the anode electrode 2a and the force sword electrode 2b. Come to control the potential between the potential! For example, the collision of positive ions with the electron source 3 disposed in the vicinity of the force sword electrode 2b can be suppressed.
[0051] また、補助装置を、アノード電極 2aと力ソード電極 2bとの間に配置してもよい。この 場合、制御手段 7が、放電検出手段 6によって放電開始が検出されたときに、電子源 3の電位及びグリッド電極 4の電位を、アノード電極 2aの電位と力ソード電極 2bの電 位との間の電位に制御するようになっていれば、アノード電極 2aと力ソード電極 2bと の間に配置された電子源 3へのプラスイオンの衝突を抑制することができる。  [0051] Further, the auxiliary device may be disposed between the anode electrode 2a and the force sword electrode 2b. In this case, when the control means 7 detects the start of discharge by the discharge detection means 6, the potential of the electron source 3 and the potential of the grid electrode 4 are changed between the potential of the anode electrode 2a and the potential of the force sword electrode 2b. If the potential is controlled between them, the collision of positive ions to the electron source 3 disposed between the anode electrode 2a and the force sword electrode 2b can be suppressed.
[0052] 実施の形態 1、 2では、放電管 Aの気密容器 1の内面に蛍光体層を設けているが、 蛍光体層を設けずに、放電管 Aを紫外線ランプとしてもよい。  In the first and second embodiments, the phosphor layer is provided on the inner surface of the hermetic container 1 of the discharge tube A, but the discharge tube A may be an ultraviolet lamp without providing the phosphor layer.
[0053] 実施の形態 1、 2に係る電子源 3では、絶縁性基板 14の一方の表面側に下部電極 15を形成している。し力しながら、絶縁性基板 14に代えてシリコン基板などの半導体 基板を用い、半導体基板と該半導体基板の裏面側に積層した導電性層(例えば、ォ 一ミック電極)とで下部電極を構成してもよ 、。  In the electron source 3 according to the first and second embodiments, the lower electrode 15 is formed on one surface side of the insulating substrate 14. However, instead of the insulating substrate 14, a semiconductor substrate such as a silicon substrate is used, and the lower electrode is composed of the semiconductor substrate and a conductive layer (for example, an ohmic electrode) stacked on the back side of the semiconductor substrate. Even so.
[0054] 実施の形態 1、 2に係る電子源 3は、弾道型電子放出現象により電子を放出する BS D (弾道電子面放出型電子源)である。しかし、電子源 3は BSDに限定されるわけで はなぐその他の種類の電子源を用いてもよい。例えば、ドリフト層 16に代えて絶縁 体層を電子通過層として用 、た MIM型電子源、ドリフト層 16に代えて下部電極 15 側の半導体層と表面電極 17側の絶縁体層とを電子通過層として用いた MIS (Metal -Insulator-Semiconductor)型電子源などと!/、つた、 BSDと同様に低真空度でも使用 可能なものを用いてもよい。この場合、スピント型電極を用いる場合に比べて、電子 源 3の長寿命化及び信頼性の向上を図ることができる。なお、 BSDは、放出電子の エネルギが比較的大き!/、ので、放電開始電圧の低減や放電維持電圧の低減の点で 有利である。  [0054] The electron source 3 according to the first and second embodiments is a BS D (ballistic electron surface emission electron source) that emits electrons by a ballistic electron emission phenomenon. However, the electron source 3 is not limited to BSD, and other types of electron sources may be used. For example, an MIM type electron source using an insulator layer as an electron passage layer instead of the drift layer 16, passing electrons between the semiconductor layer on the lower electrode 15 side and the insulator layer on the surface electrode 17 side instead of the drift layer 16 The MIS (Metal-Insulator-Semiconductor) type electron source used as the layer, etc. may be used as well as those that can be used at low vacuum like BSD. In this case, the life of the electron source 3 can be extended and the reliability can be improved as compared with the case where a Spindt-type electrode is used. BSD is advantageous in terms of reducing the discharge start voltage and the discharge sustain voltage because the energy of the emitted electrons is relatively large! /.
[0055] (実施の形態 3)  [Embodiment 3]
以下、本発明の実施の形態 3を説明する。なお、実施の形態 3に係る放電装置 (発 光装置)は紫外線ランプである。  Embodiment 3 of the present invention will be described below. The discharge device (light emitting device) according to Embodiment 3 is an ultraviolet lamp.
図 5に示すように、実施の形態 3に係る補助装置を備えた放電装置は、放電媒体で ある放電ガス (例えば、キセノンなどの希ガス)が封入された気密容器 1と、気密容器 1内に配置され放電ガスの放電により気密容器 1内のプラズマ生成空間 8に放電ブラ ズマを生成する 1対の放電電極 2a、 2bと、気密容器 1内に配置され放電ガス中に電 子を供給する電子源 3とを備えている。この放電装置 (紫外線ランプ)は、気密容器 1 内の放電ガスを放電させることにより紫外線を放射する。 As shown in FIG. 5, the discharge device including the auxiliary device according to the third embodiment includes an airtight container 1 in which a discharge gas (for example, a rare gas such as xenon) as a discharge medium is sealed, and an airtight container 1 is disposed in 1 and discharge plasma is generated in the plasma generation space 8 in the hermetic vessel 1 by discharge of the discharge gas 1 A pair of discharge electrodes 2a and 2b and an electron in the discharge gas placed in the hermetic vessel 1 And an electron source 3 to be supplied. This discharge device (ultraviolet lamp) emits ultraviolet rays by discharging the discharge gas in the hermetic vessel 1.
[0056] 図 6A及び図 6Bに示すように、放電装置はさらに、気密容器 1内で生成された放電 プラズマのイオンカゝら電子源 3の表面電極 17を保護する保護部材 20を備えている。 保護部材 20には、電子源 3から放出された電子を通すための複数の開口部 22aが 形成されている。 As shown in FIGS. 6A and 6B, the discharge device further includes a protective member 20 that protects the surface electrode 17 of the electron source 3 from the ion source of the discharge plasma generated in the hermetic vessel 1. The protective member 20 has a plurality of openings 22a through which electrons emitted from the electron source 3 are passed.
[0057] 実施の形態 3に係る放電装置は、直管形の紫外線ランプである。気密容器 1は、例 えばガラス、透光性セラミックなどの透光性を有する材料により円筒状に形成されて いる。気密容器 1内においてその長手方向の両端部近傍に、それぞれ、放電電極 2a 、 2bが配置されている。そして、放電電極 2aの近傍において、両放電電極 2a、 2b間 の空間部力 離間した位置に、電子源 3が配置されている。  [0057] The discharge device according to Embodiment 3 is a straight tube type ultraviolet lamp. The hermetic container 1 is formed in a cylindrical shape from a light-transmitting material such as glass or light-transmitting ceramic. Discharge electrodes 2a and 2b are disposed in the airtight container 1 in the vicinity of both ends in the longitudinal direction, respectively. In the vicinity of the discharge electrode 2a, the electron source 3 is disposed at a position where the space force between the discharge electrodes 2a and 2b is separated.
[0058] 実施の形態 3に係る放電装置では、電子源 3が駆動されると、電子源 3から放出さ れた電子が放電ガス中に供給される。なお、図 5中の矢印は、電子源 3から放出され た電子の流れを示している。このように、両放電電極 2a、 2b間に電圧を印加する前 に電子源 3の駆動を開始して放電ガス中に電子を供給しておくことにより、両放電電 極 2a、 2b間の放電開始電圧を低減することができる。また、両放電電極 2a、 2b間に 電圧を印加した後も電子源 3を駆動するようにすれば、放電プラズマの安定ィ匕を図る ことができるとともに、放電維持電圧を低減することができ、消費電力を低減すること ができる。  In the discharge device according to Embodiment 3, when the electron source 3 is driven, the electrons emitted from the electron source 3 are supplied into the discharge gas. Note that the arrows in FIG. 5 indicate the flow of electrons emitted from the electron source 3. As described above, by starting driving of the electron source 3 and supplying electrons into the discharge gas before applying a voltage between the discharge electrodes 2a and 2b, the discharge between the discharge electrodes 2a and 2b is started. The starting voltage can be reduced. Further, if the electron source 3 is driven even after a voltage is applied between both the discharge electrodes 2a and 2b, the stability of the discharge plasma can be improved and the discharge sustaining voltage can be reduced. Power consumption can be reduced.
[0059] 実施の形態 3では、気密容器 1の内部に配置された 1対の放電電極 2a、 2bが放電 ガスを放電させて放電プラズマを生成するためのエネルギを供給するエネルギ供給 手段を構成している。また、電子源 3及び保護部材 20は、放電プラズマの生成を補 助する補助装置 (放電プラズマ生成補助装置)を構成して!/ヽる。  [0059] In the third embodiment, a pair of discharge electrodes 2a and 2b arranged inside the hermetic vessel 1 constitutes energy supply means for supplying energy for generating discharge plasma by discharging the discharge gas. ing. Further, the electron source 3 and the protective member 20 constitute an auxiliary device (discharge plasma generation auxiliary device) that assists the generation of discharge plasma.
[0060] 実施の形態 3に係る電子源 3の構成及び機能は、基本的には、実施の形態 1に係 る電子源 3の構成及び機能と同様である。また、実施の形態 3に係る電子源素子 3a のドリフト層 16の構成及び機能も、実施の形態 1に係るドリフト層 16の構成及び機能 と同様である(図 2B参照)。なお、電子源 3に印加する駆動電圧は、一定の直流電圧 でもよぐパルス状の電圧でもよい。また、駆動電圧をパルス状の電圧とした場合、駆 動電圧を印加して ヽな 、ときに逆バイアスの電圧を印加するようにしてもょ 、。 [0060] The configuration and function of the electron source 3 according to Embodiment 3 are basically the same as the configuration and function of the electron source 3 according to Embodiment 1. The configuration and function of the drift layer 16 of the electron source element 3a according to Embodiment 3 are the same as the configuration and function of the drift layer 16 according to Embodiment 1. (See Figure 2B). The drive voltage applied to the electron source 3 may be a constant DC voltage or a pulsed voltage. If the drive voltage is a pulsed voltage, apply a drive voltage, and sometimes apply a reverse bias voltage.
[0061] 実施の形態 3に係る電子源素子 3aにおける電子放出も、実施の形態 1に係る電子 源素子 3aにおける電子放出と同様のモデルで起こる。また、実施の形態 3でも、実施 の形態 1の場合と同様に、絶縁膜の形成を、酸ィ匕プロセス、窒化プロセス又は酸窒化 プロセスを用いて行うことができる。  [0061] Electron emission in the electron source element 3a according to the third embodiment also occurs in the same model as the electron emission in the electron source element 3a according to the first embodiment. In the third embodiment, as in the first embodiment, the insulating film can be formed using an acid process, a nitriding process, or an oxynitriding process.
[0062] 保護部材 20は、絶縁性材料 (例えば、フッ素系榭脂などの絶縁性榭脂、絶縁性セ ラミック等)で形成された絶縁性保護部材 21と、導電性材料 (例えば、ニッケル、アル ミニゥム、ステンレス等)で形成された導電性保護部材 22とで構成されている。絶縁 性保護部材 21は、直方体状に形成され、その 1つの面(下面)が全面的に開口して いる。また、絶縁性保護部材 21は、電子源 3の電子放出面と対向する前壁を有して いる。この絶縁性保護部材 21の一部をなす前壁には矩形状の窓孔 21aが設けられ 、この窓孔 21a内に導電性保護部材 22が配置されている。導電性保護部材 22は、 電子源 3から放出された電子を通すための複数の開口部 22aを有して 、る。  [0062] The protective member 20 includes an insulating protective member 21 formed of an insulating material (for example, an insulating resin such as a fluorine-based resin, an insulating ceramic), and a conductive material (for example, nickel, And conductive protection member 22 made of aluminum, stainless steel, or the like. The insulating protection member 21 is formed in a rectangular parallelepiped shape, and one surface (lower surface) of the insulating protection member 21 is fully open. The insulating protective member 21 has a front wall facing the electron emission surface of the electron source 3. A rectangular window hole 21a is provided in the front wall forming a part of the insulating protective member 21, and the conductive protective member 22 is disposed in the window hole 21a. The conductive protection member 22 has a plurality of openings 22a for allowing electrons emitted from the electron source 3 to pass therethrough.
[0063] このように、保護部材 20の、電子源 3の表面電極 17と対向する部位は、開口部 22a を有し導電性材料により形成された導電性保護部材 22で構成されて 、る。ここで、 導電性保護部材 22は、網形状ないしは格子形状に形成され、該網形状の網目の部 分な 、しは格子形状の穴の部分が正方形の開口部 22aとなって 、る。  As described above, the portion of the protective member 20 that faces the surface electrode 17 of the electron source 3 includes the conductive protective member 22 that has the opening 22a and is formed of a conductive material. Here, the conductive protection member 22 is formed in a mesh shape or a lattice shape, and the mesh-shaped mesh portion or the lattice-shaped hole portion forms a square opening 22a.
[0064] 実施の形態 3では、導電性保護部材 22として、一般に 30メッシュと呼ばれている、 正方形状の網目の部分の 1辺が 0. 6mmであり、線材の直径が 0. 25mmである-ッ ケル製の網状体を用いている。し力しながら、網目のサイズ、すなわち開口部 22aの サイズは、これに限定されるものではなぐ電子源 3から放出された電子が通過するこ とができ、かつプラズマ生成空間 8で生成された放電プラズマ力ものイオンの侵入を 抑制できればどのようなものでもよい。例えば、正方形の開口部 22aの 1辺の長さは、 0. lmn!〜 2mm程度の範囲内で適宜に設定することができる。実施の形態 3では、 導電性保護部材 22が網形状に形成されて ヽるので、導電性保護部材 22の製作が 容易である。 [0065] 前記のとおり、実施の形態 3に係る補助装置では、電子源 3から放出された電子の 一部が開口部 22aを通ってプラズマ生成空間 8の放電ガス中に供給され、放電ガス 中の電子密度が増加するので、放電開始電圧及び放電維持電圧を低減することが できる。ここで、両放電電極 2a、 2b間に電圧を印加する前に電子源 3の駆動を開始 して電子を供給し、かつ放電プラズマが生成された後も電子の供給を続けるようにす れば、放電開始電圧及び放電維持電圧の両方を低減することができる。なお、通常 は放電維持電圧よりも放電開始電圧の方が高いので、放電が開始された後は電子 の供給を停止するようにしてもょ 、。 [0064] In Embodiment 3, the conductive protection member 22 is generally called 30 mesh, and one side of the square mesh portion is 0.6 mm, and the diameter of the wire is 0.25 mm. -A net made of nickel is used. However, the size of the mesh, that is, the size of the opening 22a is not limited to this, and electrons emitted from the electron source 3 can pass therethrough and are generated in the plasma generation space 8. Any material can be used as long as it can suppress the entry of ions having a discharge plasma power. For example, the length of one side of the square opening 22a is 0. lmn! It can be appropriately set within a range of about 2 mm. In Embodiment 3, since the conductive protection member 22 is formed in a net shape, the production of the conductive protection member 22 is easy. [0065] As described above, in the auxiliary device according to the third embodiment, a part of the electrons emitted from the electron source 3 is supplied into the discharge gas in the plasma generation space 8 through the opening 22a. As the electron density increases, the discharge start voltage and the discharge sustain voltage can be reduced. Here, before the voltage is applied between the discharge electrodes 2a and 2b, the driving of the electron source 3 is started to supply electrons, and the supply of electrons is continued even after the discharge plasma is generated. Both the discharge start voltage and the discharge sustain voltage can be reduced. Note that the discharge start voltage is usually higher than the discharge sustain voltage, so it may be possible to stop supplying electrons after the discharge has started.
[0066] 実施の形態 3に係る補助装置は、電子源 3から放出された電子が通る開口部 22aを 有しかつ気密容器 1内で生成された放電プラズマのイオンカゝら電子源 3の表面電極 1 7を保護する保護部材 20を備えている。このため、表面電極 17に衝突するイオンの 数を低減することができ、電子源 3の長寿命化及び信頼性の向上を図ることができる  [0066] The auxiliary device according to Embodiment 3 has an opening 22a through which electrons emitted from the electron source 3 pass, and the surface electrode of the electron source 3 from the ion plasma of the discharge plasma generated in the hermetic vessel 1 1 Protective member 20 for protecting 7 is provided. For this reason, the number of ions colliding with the surface electrode 17 can be reduced, and the life of the electron source 3 can be extended and the reliability can be improved.
[0067] また、実施の形態 3に係る補助装置では、保護部材 20の、表面電極 17と対向する 部位は、開口部 22aを有し、かつ導電性材料で形成された導電性保護部材 22から なる。したがって、保護部材 20のうち少なくとも表面電極 17と対向する部位が電子に よって帯電するのを防止することができる。このため、電子源 3から放出された電子が 、帯電により開口部 22aを通過できなくなるといった不具合が生じるのを防止すること ができる。 [0067] In the auxiliary device according to the third embodiment, the portion of the protective member 20 that faces the surface electrode 17 has an opening 22a and is formed from the conductive protective member 22 formed of a conductive material. Become. Therefore, at least a portion of the protective member 20 that faces the surface electrode 17 can be prevented from being charged by electrons. For this reason, it is possible to prevent a problem that electrons emitted from the electron source 3 cannot pass through the opening 22a due to charging.
[0068] 実施の形態 3では、電子源素子 3aが絶縁性基板 14上に形成され、保護部材 20は 絶縁性基板 14の一部を覆わない形状となっている。し力しながら、保護部材 20は、 電子源 3全体を囲む形状としてもよぐまた電子源素子 3aのみを囲む形状としてもよ い。また、電子源 3の前面部のみを覆う形状としてもよい。保護部材 20の形状は、気 密容器 1の形状、放電電極 2a、 2bの配置形態、電子源 3の配置形態などに応じて適 宜に設計すればよい。  In Embodiment 3, the electron source element 3a is formed on the insulating substrate 14, and the protective member 20 has a shape that does not cover part of the insulating substrate 14. However, the protective member 20 may have a shape surrounding the entire electron source 3 or a shape surrounding only the electron source element 3a. Further, it may be a shape that covers only the front portion of the electron source 3. The shape of the protective member 20 may be appropriately designed according to the shape of the airtight container 1, the arrangement of the discharge electrodes 2a and 2b, the arrangement of the electron source 3, and the like.
[0069] 一般に、プラズマ生成空間 8中に保護部材 20を設けると、放電プラズマが保護部 材 20の導電性を有する部分に沿って広がる傾向がある。このため、保護部材 20を設 けたことにより、放電プラズマの状態が乱れる可能性がある。し力しながら、実施の形 態 3では、保護部材 22の全部を導電性材料により形成するのではなぐ導電性保護 部材 22のみを導電性材料により形成し、導電性保護部材 22以外の部位を絶縁性材 料で形成し、導電性保護部材 22を他の部位と電気的に絶縁するようにしている。こ のため、放電プラズマが導電性保護部材 22に接しても、放電プラズマが不必要に広 力 のを防止することができる。 In general, when the protective member 20 is provided in the plasma generation space 8, the discharge plasma tends to spread along the conductive portion of the protective member 20. For this reason, the state of the discharge plasma may be disturbed by the provision of the protective member 20. The form of implementation In state 3, not all of the protective member 22 is formed of a conductive material, but only the conductive protective member 22 is formed of a conductive material, and a portion other than the conductive protective member 22 is formed of an insulating material. The conductive protection member 22 is electrically insulated from other parts. For this reason, even if the discharge plasma is in contact with the conductive protection member 22, it is possible to prevent the discharge plasma from being unnecessarily widened.
[0070] 実施の形態 3では、導電性保護部材 22と表面電極 17とを気密容器 1の外部で短 絡させ、これにより導電性保護部材 22と表面電極 17とが同電位となるようにしている 。このため、保護部材 20内へのマイナスイオン及びプラスイオンの侵入を抑制しつつ 、電子源 3から放出されて導電性保護部材 22の開口部 22aを通る電子の量を増加さ せることができる。 [0070] In Embodiment 3, the conductive protection member 22 and the surface electrode 17 are short-circuited outside the hermetic container 1, so that the conductive protection member 22 and the surface electrode 17 have the same potential. Yes. Therefore, it is possible to increase the amount of electrons emitted from the electron source 3 and passing through the opening 22a of the conductive protection member 22 while suppressing the entry of negative ions and positive ions into the protection member 20.
[0071] また、電子源 3と保護部材 20とを放電プラズマに曝されない場所に配置する場合、 導電性保護部材 22が表面電極 17に対して高電位となるように電圧を印加する電位 調整手段を設け、導電性保護部材 22の電位を表面電極 17の電位よりも高電位に保 つておけば、電子源 3から放出された電子が加速される。このため、電子源 3から放 出されて導電性保護部材 22の開口部 22aを通る電子の量を増加させることができる  [0071] Further, when the electron source 3 and the protection member 20 are arranged in a place where they are not exposed to the discharge plasma, a potential adjusting means for applying a voltage so that the conductive protection member 22 is at a high potential with respect to the surface electrode 17. When the potential of the conductive protection member 22 is kept higher than the potential of the surface electrode 17, electrons emitted from the electron source 3 are accelerated. For this reason, the amount of electrons emitted from the electron source 3 and passing through the opening 22a of the conductive protection member 22 can be increased.
[0072] 導電性保護部材 22の電位を表面電極 17の電位よりも高電位にする場合、表面電 極 17の平面形状と開口部 22aの開口形状とを同一にしておくか、あるいは、表面電 極 17のサイズよりも開口部 22aのサイズをやや大きくしておけば、消費電力を低減し つつ電子の放出量を増カロさせることができる。この場合、導電性保護部材 22と表面 電極 17との電位差が小さ過ぎると電子はあまり加速されず、大き過ぎると電子が導電 性保護部材 22に強く引き付けられて開口部 22aを通過する電子の量が少なくなる。 したがって、導電性保護部材 22と表面電極 17との間の電位差は、例えば導電性保 護部材 22と表面電極 17との間の電界強度が lkVZcm程度となるように設定するの が望ましい。 [0072] When the electric potential of the conductive protection member 22 is set higher than the electric potential of the surface electrode 17, the planar shape of the surface electrode 17 and the opening shape of the opening 22a are made the same, or the surface electrode If the size of the opening 22a is made slightly larger than the size of the pole 17, the amount of emitted electrons can be increased while reducing the power consumption. In this case, if the potential difference between the conductive protection member 22 and the surface electrode 17 is too small, the electrons are not accelerated so much, and if it is too large, the electrons are strongly attracted to the conductive protection member 22 and the amount of electrons passing through the opening 22a. Less. Therefore, the potential difference between the conductive protection member 22 and the surface electrode 17 is preferably set so that, for example, the electric field strength between the conductive protection member 22 and the surface electrode 17 is about lkVZcm.
[0073] (実施の形態 4)  [0073] (Embodiment 4)
以下、本発明の実施の形態 4を説明する。しかしながら、実施の形態 4に係る放電 装置の補助装置の基本構成は、実施の形態 3に係る補助装置とほぼ同様あり、図 7 に示すように、保護部材 20の外側に配置され表面電極 17と対向する金属板 (例え ば、ニッケル板)からなる引出し用電極 30を備えている点が相違するだけである。そ こで、以下では、図 7を参照しつつ、主として実施の形態 3との相違点を説明する。 Embodiment 4 of the present invention will be described below. However, the basic configuration of the auxiliary device of the discharge device according to the fourth embodiment is almost the same as that of the auxiliary device according to the third embodiment, and FIG. As shown in FIG. 5, the only difference is that it includes an extraction electrode 30 made of a metal plate (for example, a nickel plate) disposed outside the protective member 20 and facing the surface electrode 17. Therefore, hereinafter, differences from the third embodiment will be mainly described with reference to FIG.
[0074] 図 7に示すように、実施の形態 4に係る補助装置は、保護部材 20の外側に配置さ れ表面電極 34に対向する引出し用電極 30を備えている。このため、引出し用電極 3 0の電位を表面電極 17の電位よりも高く保つことにより電子を加速させ、電子源 3から 放出された電子のうち開口部 22aを通る電子の量を増加させることができる。なお、 実施の形態 4では、保護部材 20と引出し用電極 30との間にガスが存在するように、 引出し用電極 30を導電性保護部材 22から離間させて配置している。  As shown in FIG. 7, the auxiliary device according to the fourth embodiment includes an extraction electrode 30 that is disposed outside the protective member 20 and faces the surface electrode 34. Therefore, it is possible to accelerate the electrons by keeping the potential of the extraction electrode 30 higher than the potential of the surface electrode 17, and to increase the amount of the electrons emitted from the electron source 3 through the opening 22a. it can. In the fourth embodiment, the extraction electrode 30 is disposed away from the conductive protection member 22 so that a gas exists between the protection member 20 and the extraction electrode 30.
[0075] (実施の形態 5)  [0075] (Embodiment 5)
以下、本発明の実施の形態 5を説明する。しかしながら、実施の形態 5に係る放電 装置の補助装置の基本構成は、実施の形態 3に係る補助装置とほぼ同様あり、後記 の点で相違するだけである。そこで、以下では、図 8A及び図 8Bを参照しつつ、主と して実施の形態 3との相違点を説明する。  Embodiment 5 of the present invention will be described below. However, the basic configuration of the auxiliary device of the discharge device according to the fifth embodiment is substantially the same as that of the auxiliary device according to the third embodiment, and only the differences are described below. Therefore, hereinafter, differences from Embodiment 3 will be mainly described with reference to FIGS. 8A and 8B.
[0076] 図 8A及び図 8Bに示すように、実施の形態 5では、電子源 3の表面電極 17の平面 形状をストライプ状にするとともに、表面電極 17の平面形状が開口部 22aの開口形 状と同一となるように、導電性保護部材 22の平面形状をストライプ状としている。そし て、表面電極 17は、開口部 22aの電子源 3側への投影領域に位置している。その他 の点は、実施の形態 3と同様である。  As shown in FIGS. 8A and 8B, in Embodiment 5, the planar shape of the surface electrode 17 of the electron source 3 is formed in a stripe shape, and the planar shape of the surface electrode 17 is an opening shape of the opening 22a. The planar shape of the conductive protection member 22 is a stripe shape so as to be the same. And the surface electrode 17 is located in the projection area | region to the electron source 3 side of the opening part 22a. Other points are the same as in the third embodiment.
[0077] 力べして、実施の形態 5では、保護部材 20の開口部 22aの周部に衝突する電子、 すなわち開口部 22aを通過しない電子 (無駄な電子)の量を低減することができるとと もに、電子源 3の消費電力を低減することができる。なお、実施の形態 5に係る電子 源 3は、表面電極 17の形状が相違するだけで、実施の形態 3と動作原理が同様の B SDである。したがって、スピント型電子源に比べて、電子放出角が小さく放出電子の 直進性が良いので、とくに上記効果が顕著である。なお、実施の形態 5においても、 実施の形態 4と同様に引出し用電極 30を設けてもよい。  [0077] By comparison, in Embodiment 5, it is possible to reduce the amount of electrons that collide with the peripheral portion of the opening 22a of the protective member 20, that is, electrons that do not pass through the opening 22a (useless electrons). At the same time, the power consumption of the electron source 3 can be reduced. The electron source 3 according to the fifth embodiment is a BSD having the same operation principle as that of the third embodiment, except that the shape of the surface electrode 17 is different. Therefore, compared with the Spindt type electron source, the electron emission angle is small and the straightness of the emitted electrons is good, so the above effect is particularly remarkable. In the fifth embodiment, the extraction electrode 30 may be provided as in the fourth embodiment.
[0078] (実施の形態 6)  [0078] (Embodiment 6)
以下、本発明の実施の形態 6を説明する。しかしながら、実施の形態 6に係る放電 装置の補助装置の基本構成は、実施の形態 3に係る補助装置とほぼ同様あり、図 9 に示すように、保護部材 20と表面電極 17との間に配置され電子源 3から放出された 電子の衝突により二次電子を放出する二次電子放出部材 40を備えている点が相違 するだけである。そこで、以下では、図 9を参照しつつ、主として実施の形態 3との相 違点を説明する。 The sixth embodiment of the present invention will be described below. However, the discharge according to Embodiment 6 The basic configuration of the auxiliary device of the apparatus is almost the same as that of the auxiliary device according to the third embodiment. As shown in FIG. 9, the electron emitted from the electron source 3 is disposed between the protective member 20 and the surface electrode 17. The only difference is that it has a secondary electron emission member 40 that emits secondary electrons upon collision. Therefore, the differences from Embodiment 3 will be mainly described below with reference to FIG.
[0079] 図 9に示すように、二次電子放出部材 40は、平板状の板材に電子を通すためのる 穴が設けられてなる基材に、二次電子を放出する材料力もなる二次電子放出膜を被 着すること〖こより形成されている。実施の形態 6では、二次電子を放出する材料として は、 MgOを用いている。しかしながら、この材料は MgOに限定されるわけではなぐ その他の材料、例えば Cs、 Ag、 BaO、 MgO、アモルファスカーボン、ダイヤモンドな どを用いてもよい。  [0079] As shown in FIG. 9, the secondary electron emission member 40 has a secondary material that also has a material force for emitting secondary electrons to a base material in which holes for allowing electrons to pass through a flat plate material are provided. It is formed by applying an electron emission film. In Embodiment 6, MgO is used as the material that emits secondary electrons. However, this material is not limited to MgO, and other materials such as Cs, Ag, BaO, MgO, amorphous carbon, and diamond may be used.
[0080] カゝくして、実施の形態 6に係る補助装置では、放電ガス中には電子源 3から放出さ れた電子だけでなぐ二次電子放出部材 40から放出された二次電子も供給されるの で、放電ガス中に供給される電子の量を増加させることができる。なお、実施の形態 6 においても、実施の形態 4と同様に、引出し用電極 30を設けてもよい。また、他の実 施の形態に、実施の形態 6と同様の二次電子放出部材 40を設けてもよい。  [0080] Fortunately, in the auxiliary device according to the sixth embodiment, the secondary electrons emitted from the secondary electron emitting member 40, which is not only the electrons emitted from the electron source 3, are also supplied to the discharge gas. As a result, the amount of electrons supplied to the discharge gas can be increased. In the sixth embodiment, as in the fourth embodiment, the extraction electrode 30 may be provided. Further, the secondary electron emission member 40 similar to that of the sixth embodiment may be provided in other embodiments.
[0081] (実施の形態 7)  [0081] (Embodiment 7)
以下、本発明の実施の形態 7を説明する。しかしながら、実施の形態 7に係る放電 装置の補助装置の基本構成は、実施の形態 3に係る補助装置とほぼ同様あり、図 10 に示すように、電子源 3と保護部材 20とが、気密容器 1の長手方向の中間部におい て気密容器 1の内壁面の近傍に配置されている点で相違するだけである。その他の 点については、実施の形態 3と同様である。  Embodiment 7 of the present invention will be described below. However, the basic configuration of the auxiliary device of the discharge device according to the seventh embodiment is almost the same as that of the auxiliary device according to the third embodiment, and as shown in FIG. 10, the electron source 3 and the protection member 20 are made of an airtight container. The only difference is that it is arranged in the vicinity of the inner wall surface of the hermetic container 1 in the middle part in the longitudinal direction of 1. Other points are the same as in the third embodiment.
[0082] 実施の形態 3〜6では、気密容器 1の形状は円筒状であるが、気密容器 1は円筒状 のものに限定されるわけではない。例えば、電球のような球状の形状であってもよぐ 直方体状又は立方体状の形状などであってもよい。また、 1対の平板と、両平板との 間に介在するフレームとで構成される平板型の気密容器であってもよい。  In Embodiments 3 to 6, the shape of the hermetic container 1 is cylindrical, but the hermetic container 1 is not limited to a cylindrical one. For example, it may be a spherical shape such as a light bulb, or may be a rectangular parallelepiped shape or a cubic shape. Further, it may be a flat type airtight container composed of a pair of flat plates and a frame interposed between the flat plates.
[0083] 実施の形態 3〜6では、エネルギ供給手段として、円筒状の気密容器 1の内部に 1 対の放電電極 2a、 2bを、気密容器 1の長手方向に離間させて配置している。しかし、 エネルギ供給手段の配置や構成は、これに限定されるわけではない。なお、ェネル ギ供給手段に印加する電圧は、直流電圧、交流電圧、パルス電圧などから適宜に選 択すればよい。 In Embodiments 3 to 6, a pair of discharge electrodes 2a and 2b are arranged in the cylindrical hermetic vessel 1 as energy supply means so as to be separated from each other in the longitudinal direction of the hermetic vessel 1. But, The arrangement and configuration of the energy supply means are not limited to this. The voltage applied to the energy supply means may be appropriately selected from DC voltage, AC voltage, pulse voltage, and the like.
[0084] 実施の形態 3〜6では、放電装置として紫外線ランプを例示して 、る。しかし、放電 装置は、紫外線ランプに限定されるわけではなぐ例えば照明用の蛍光ランプやブラ ズマディスプレイパネルなどでもよい。蛍光ランプの場合は、気密容器 1の内面の適 宜部位に、紫外線により励起されて発光する蛍光体層を設ければよい。  In the third to sixth embodiments, an ultraviolet lamp is exemplified as the discharge device. However, the discharge device is not limited to an ultraviolet lamp, but may be a fluorescent lamp for illumination, a plasma display panel, or the like. In the case of a fluorescent lamp, a phosphor layer that emits light by being excited by ultraviolet rays may be provided at an appropriate site on the inner surface of the hermetic container 1.
[0085] 実施の形態 3〜6に係る放電装置では、気密容器 1内に封入する放電ガスとしてキ セノンガスを用いている。し力し、放電ガスはキセノンガスに限定されるわけではなぐ エネルギを供給することにより放電を起こすガスであればよぐ例えば、 Arガス、 He ガス、 Neガス、 Krガス、 Nガス、 COガス、 Hg蒸気、あるいはこれらの混合ガスなど  In the discharge devices according to Embodiments 3 to 6, xenon gas is used as the discharge gas sealed in the hermetic container 1. However, the discharge gas is not limited to xenon gas. Any gas that causes discharge by supplying energy can be used. For example, Ar gas, He gas, Ne gas, Kr gas, N gas, CO gas , Hg vapor, or a mixture of these
2  2
であってもよい。  It may be.
[0086] 実施の形態 3〜6に係る電子源 3では、絶縁性基板 14の一方の表面側に下部電極 15が形成されている。しかし、実施の形態 2で説明したように、絶縁性基板 14に代え て、シリコン基板などの半導体基板を用い、半導体基板と当該半導体基板の裏面側 に積層した導電性層とで下部電極を構成してもよい。また、実施の形態 3〜6に係る 電子源 3は BSDである。し力し実施の形態 2で説明したように、 BSDに代えて、その 他の種類の電子源、例えば MIM型の電子源や、 MIS型の電子源などを用いてもよ い。  In the electron source 3 according to Embodiments 3 to 6, the lower electrode 15 is formed on one surface side of the insulating substrate 14. However, as described in Embodiment 2, instead of the insulating substrate 14, a semiconductor substrate such as a silicon substrate is used, and the lower electrode is configured by the semiconductor substrate and the conductive layer laminated on the back side of the semiconductor substrate. May be. Further, the electron source 3 according to Embodiments 3 to 6 is BSD. However, as described in the second embodiment, other types of electron sources such as MIM type electron sources and MIS type electron sources may be used instead of BSD.
[0087] (実施の形態 8)  (Embodiment 8)
以下、本発明の実施の形態 8を説明する。なお、実施の形態 8に係る放電装置 (発 光装置)は紫外線ランプである。  Embodiment 8 of the present invention will be described below. The discharge device (light emitting device) according to Embodiment 8 is an ultraviolet lamp.
図 11に示すように、実施の形態 8に係る補助装置を備えた放電装置は、放電媒体 である放電ガス (例えば、キセノンなどの希ガス)が封入された気密容器 1と、気密容 器 1の内部に配置され放電ガスを放電させて気密容器 1内のプラズマ生成空間 8〖こ 放電プラズマを生成する 1対の放電電極 2a、 2bと、気密容器 1内に配置され放電ガ ス中に電子を供給する電子源 3とを備えている。この放電装置 (紫外線ランプ)は、気 密容器 1内の放電ガスを放電させることにより紫外線を放射する。 [0088] さらに、放電装置は、気密容器 1内に配置され電子源 3から放出された電子の衝突 により放電ガス中に二次電子を放出する材料 (例えば、 Cs、 Ag、 BaO、 MgO、ァモ ルファスカーボン、ダイヤモンドなど)を含む二次電子放出部 25を備えている。 As shown in FIG. 11, the discharge device including the auxiliary device according to the eighth embodiment includes an airtight container 1 in which a discharge gas (for example, a rare gas such as xenon) as a discharge medium is enclosed, and an airtight container 1 A plasma generation space in the hermetic vessel 1 is discharged by discharging the discharge gas inside the gas chamber 8 〖This generates a discharge plasma A pair of discharge electrodes 2a, 2b and an electron in the discharge gas placed in the hermetic vessel 1 And an electron source 3 for supplying This discharge device (ultraviolet lamp) emits ultraviolet rays by discharging the discharge gas in the hermetic vessel 1. [0088] Further, the discharge device is a material (for example, Cs, Ag, BaO, MgO, and the like) that is disposed in the hermetic vessel 1 and emits secondary electrons into the discharge gas by collision of electrons emitted from the electron source 3. It has a secondary electron emission part 25 containing morphous carbon, diamond, etc.).
[0089] 実施の形態 8に係る放電装置は直管形の紫外線ランプである。気密容器 1は、例え ばガラス、透光性セラミックなどと ヽつた透光性を有する材料で円筒状に形成されて いる。気密容器 1内においてその長手方向の両端部近傍に、それぞれ放電電極 2a、 2bが配設されている。ここで、二次電子放出部 25は、一方の放電電極 2aの側方に 配置されている。電子源 3は、二次電子放出部 25よりもプラズマ生成空間 8から離れ た位置に配置されている。  [0089] The discharge device according to Embodiment 8 is a straight tube type ultraviolet lamp. The hermetic container 1 is formed in a cylindrical shape with a material having translucency, such as glass and translucent ceramic. Discharge electrodes 2a and 2b are disposed in the airtight container 1 in the vicinity of both ends in the longitudinal direction. Here, the secondary electron emission portion 25 is disposed on the side of one discharge electrode 2a. The electron source 3 is arranged at a position farther from the plasma generation space 8 than the secondary electron emission unit 25.
[0090] 実施の形態 8に係る放電装置 (発光装置)では、電子源 3が駆動されると、電子源 3 力 放出された電子が放電ガス中に供給される。なお、図 11中において、電子源 3 の右側の矢印は電子源 3から放出された電子の流れを示して 、る。図 11中にお ヽて 、二次電子放出部 25の右側の矢印は、電子源 3から放出されて二次電子放出部 25 を通過した電子及び二次電子放出部 25から放出された二次電子の流れを示してい る。両放電電極 2a、 2b間に電圧を印加する前に電子源 3の駆動を開始して放電ガス 中に電子を供給しておくことにより、両放電電極 2a、 2b間の放電開始電圧を低減す ることができる。また、両放電電極 2a、 2b間に電圧を印加した後も電子源 3を駆動す るようにすれば、放電プラズマの安定ィ匕を図ることができるとともに、放電維持電圧を 低減することができ、消費電力を低減することができる。  In the discharge device (light-emitting device) according to Embodiment 8, when the electron source 3 is driven, electrons emitted from the electron source 3 are supplied into the discharge gas. In FIG. 11, the arrow on the right side of the electron source 3 indicates the flow of electrons emitted from the electron source 3. In FIG. 11, the arrow on the right side of the secondary electron emitter 25 indicates the electrons emitted from the electron source 3 and passed through the secondary electron emitter 25 and the secondary electrons emitted from the secondary electron emitter 25. It shows the flow of electrons. Before the voltage is applied between the discharge electrodes 2a and 2b, the electron source 3 is started to supply electrons to the discharge gas, thereby reducing the discharge start voltage between the discharge electrodes 2a and 2b. Can. Further, if the electron source 3 is driven even after a voltage is applied between the discharge electrodes 2a and 2b, the stability of the discharge plasma can be improved and the discharge sustaining voltage can be reduced. , Power consumption can be reduced.
[0091] 実施の形態 8では、気密容器 1の内部に配置された 1対の放電電極 2a、 2bが放電 ガスを放電させて放電プラズマを生成するためのエネルギを供給するエネルギ供給 手段を構成している。また、電子源 3及び二次電子放出部 25は、放電プラズマの生 成を補助する補助装置を構成して ヽる。  [0091] In Embodiment 8, a pair of discharge electrodes 2a, 2b arranged inside the hermetic container 1 constitutes energy supply means for supplying energy for discharging discharge gas to generate discharge plasma. ing. Further, the electron source 3 and the secondary electron emission unit 25 may constitute an auxiliary device that assists the generation of discharge plasma.
[0092] 実施の形態 8に係る電子源 3の構成及び機能は、基本的には、実施の形態 1に係 る電子源 3の構成及び機能と同様である。また、実施の形態 8に係る電子源素子 3a のドリフト層 16の構成及び機能も、実施の形態 1に係るドリフト層 16の構成及び機能 と同様である(図 2B参照)。なお、電子源 3に印加する駆動電圧は、一定の直流電圧 でもよぐパルス状の電圧でもよい。また、駆動電圧をパルス状の電圧とした場合、駆 動電圧を印加して ヽな 、時に逆バイアスの電圧を印加するようにしてもょ 、。 The configuration and function of the electron source 3 according to Embodiment 8 are basically the same as the configuration and function of the electron source 3 according to Embodiment 1. The configuration and function of the drift layer 16 of the electron source element 3a according to Embodiment 8 are also the same as the configuration and function of the drift layer 16 according to Embodiment 1 (see FIG. 2B). The drive voltage applied to the electron source 3 may be a constant DC voltage or a pulsed voltage. Also, if the drive voltage is a pulse voltage, the drive Apply a dynamic voltage, and sometimes apply a reverse bias voltage.
[0093] 実施の形態 8に係る電子源素子 3aにおける電子放出も、実施の形態 1に係る電子 源素子 3aにおける電子放出と同様のモデルで起こる。また、実施の形態 8でも、実施 の形態 1の場合と同様に、絶縁膜の形成を、酸ィ匕プロセス、窒化プロセス又は酸窒化 プロセスを用いて行うことができる。  [0093] Electron emission in the electron source element 3a according to the eighth embodiment occurs in the same model as the electron emission in the electron source element 3a according to the first embodiment. In the eighth embodiment, as in the case of the first embodiment, the insulating film can be formed using an acid process, a nitriding process, or an oxynitriding process.
[0094] 実施の形態 8では、前記のとおり、二次電子放出部 25は、気密容器 1内において 放電プラズマが生成されるプラズマ生成空間 8に配置されている。そして、二次電子 放出部 25は、二次電子を放出する材料力もなる二次電子放出膜が、図 12Aに示す 基材 26に設置された構造を有している。なお、図 12Aに示す基材 21は、平板状の 板部材 26aに多数の円形状の穴 26bが形成されたものである力 基材 26の形態はこ れに限定されるわけではな 、。  In the eighth embodiment, as described above, the secondary electron emission unit 25 is disposed in the plasma generation space 8 in which discharge plasma is generated in the hermetic vessel 1. The secondary electron emission section 25 has a structure in which a secondary electron emission film having a material force for emitting secondary electrons is installed on the substrate 26 shown in FIG. 12A. The base material 21 shown in FIG. 12A is not limited to the form of the force base material 26 in which a large number of circular holes 26b are formed in a flat plate member 26a.
[0095] 例えば、図 12Bに示すように、平板状の板部材 26aに多数の矩形状の穴 26bが形 成されたものでもよい。また、図 12Cに示すように、メッシュ状のものでもよい。少なくと も電子源 3との対向面側に二次電子放出膜を被着しておけば、電子源 3から放出さ れた電子と、二次電子放出膜から放出された二次電子とを、基材 26に対して電子源 3と反対側の空間へ電子を供給することができる。  [0095] For example, as shown in FIG. 12B, a flat plate member 26a may be formed with a number of rectangular holes 26b. Further, as shown in FIG. 12C, a mesh shape may be used. If a secondary electron emission film is deposited on the side facing the electron source 3 at least, the electrons emitted from the electron source 3 and the secondary electrons emitted from the secondary electron emission film are separated. Electrons can be supplied to the space opposite to the electron source 3 with respect to the base material 26.
[0096] 図 12Aに示す基材 26は、図 13Aに示すような平板状の板部材 26aに穴 26bが形 成されたものである。し力しながら、図 13Bに示すような曲面状の板部材 26aに穴 26 bが形成されたものでもよい、また、図 13Cに示すような球面状の板部材 26aに穴 26 bが形成されたものでもよ 、。  [0096] A base material 26 shown in FIG. 12A is obtained by forming a hole 26b in a flat plate member 26a as shown in FIG. 13A. However, the hole 26b may be formed in the curved plate member 26a as shown in FIG. 13B, or the hole 26b may be formed in the spherical plate member 26a as shown in FIG. 13C. It ’s good.
[0097] カゝくして、実施の形態 8に係る補助装置では、気密容器 1内に、電子源 3と二次電 子放出部 25とが設けられているので、放電ガス中には、電子源 3から放出された電 子だけでなく二次電子放出部 25から放出された二次電子も供給される。このため、 電子源 3のみ力 電子を供給する場合に比べて、放出電子量が少な 、比較的緩や 力な駆動条件で電子源 3を駆動することができる。また、二次電子放出部 25が、気密 容器 1内にお 、て放電プラズマが生成される空間に配置されて 、るので、二次電子 放出部 25では、放電プラズマ中の電子が衝突することによつても二次電子が放出さ れる。これによつても、電子源 3の電子放出量を低減することができる。したがって、電 子源 3ひいては放電装置の長寿命化を図ることができるとともに、信頼性の向上を図 ることがでさる。 [0097] Fortunately, in the auxiliary device according to the eighth embodiment, since the electron source 3 and the secondary electron emission unit 25 are provided in the hermetic container 1, the discharge gas contains electrons. Not only the electrons emitted from the source 3 but also the secondary electrons emitted from the secondary electron emission unit 25 are supplied. For this reason, the electron source 3 can be driven under relatively gentle driving conditions with a smaller amount of emitted electrons than when only the electron source 3 supplies strong electrons. In addition, since the secondary electron emission unit 25 is disposed in the space where the discharge plasma is generated in the hermetic container 1, the secondary electron emission unit 25 collides with electrons in the discharge plasma. Secondary electrons are also emitted. This can also reduce the electron emission amount of the electron source 3. Therefore, the electric As a result, the life of the discharge device 3 and the discharge device can be extended, and the reliability can be improved.
[0098] ここで、基材 26を導電性材料 (例えば、ニッケル、ステンレス、アルミニウムなど)で 形成し、電子源素子 3aに駆動電圧を印加するとともに、基材 26が表面電極 17に対 して高電位側となるように基材 26と表面電極 17との間に加速電圧を印加すれば、電 子源素子 3aは、駆動電圧により駆動されて表面電極 17を通して電子を放出させる。 そして、表面電極 17を通して放出された電子が加速電圧により加速されて二次電子 放出膜に照射される。したがって、加速電圧を適宜に設定することにより、二次電子 効率を高めることができ、二次電子の放出量を増加させることができる。このため、電 子源 3の電子放出量を低減することができ、電子源 3ひ 、ては放電装置の長寿命化 及び信頼性の向上を図ることができる。  Here, the base material 26 is formed of a conductive material (for example, nickel, stainless steel, aluminum, etc.), a driving voltage is applied to the electron source element 3a, and the base material 26 is applied to the surface electrode 17. If an acceleration voltage is applied between the base material 26 and the surface electrode 17 so as to be on the high potential side, the electron source element 3a is driven by the driving voltage and emits electrons through the surface electrode 17. Then, the electrons emitted through the surface electrode 17 are accelerated by the acceleration voltage and irradiated to the secondary electron emission film. Therefore, by appropriately setting the acceleration voltage, the secondary electron efficiency can be increased and the amount of secondary electrons emitted can be increased. For this reason, the amount of electrons emitted from the electron source 3 can be reduced, and the life of the electron source 3 and thus the discharge device can be extended and the reliability can be improved.
[0099] (実施の形態 9)  [0099] (Embodiment 9)
以下、本発明の実施の形態 9を説明する。しかしながら、実施の形態 9に係る放電 装置ないしはその補助装置の基本構成は、実施の形態 8に係る補助装置とほぼ同 様あり、図 14に示すように、二次電子放出部 25が 1対の放電電極 2a、 2bのうちの一 方の電極 2aを兼ねている点で相違するだけである。  Embodiment 9 of the present invention will be described below. However, the basic configuration of the discharge device according to the ninth embodiment or the auxiliary device thereof is almost the same as that of the auxiliary device according to the eighth embodiment, and as shown in FIG. 14, the secondary electron emission unit 25 is a pair. The only difference is that it also serves as one of the discharge electrodes 2a and 2b.
[0100] 力べして、実施の形態 9に係る放電装置では、二次電子放出部 25がー方の放電電 極 2aを兼ねているので、放電装置の部品点数の削減、構造の簡略化及び製造プロ セスの簡略ィ匕を図ることができる。その結果、放電装置のコストを低減することができ る。  [0100] As a matter of fact, in the discharge device according to Embodiment 9, since the secondary electron emission portion 25 also serves as the negative discharge electrode 2a, the number of parts of the discharge device is reduced, the structure is simplified, Simplify the manufacturing process. As a result, the cost of the discharge device can be reduced.
[0101] (実施の形態 10)  [0101] (Embodiment 10)
以下、本発明の実施の形態 10を説明する。しかしながら、実施の形態 10に係る放 電装置ないしはその補助装置の基本構成は、実施の形態 8に係る補助装置とほぼ 同様あり、図 15に示すように、電子源 3を囲むように配置され放電プラズマのイオン 力も電子源 3を保護する保護カバー 27を備えている点で相違するだけである。  The tenth embodiment of the present invention will be described below. However, the basic configuration of the discharge device according to the tenth embodiment or the auxiliary device thereof is substantially the same as that of the auxiliary device according to the eighth embodiment, and is disposed so as to surround the electron source 3 as shown in FIG. The plasma ion force also differs only in that a protective cover 27 is provided to protect the electron source 3.
[0102] 実施の形態 10では、保護カバー 27は、絶縁性材料 (例えば、フッ素系榭脂などの 絶縁性榭脂、絶縁性セラミックなど)で直方体状に形成されており、その 1つの面(下 面)は全面的に開口している。また、保護カバー 27は、電子源 3の電子放出面と対向 する前壁を有している。この保護カバー 27の前壁には、電子源 3から放出された電 子を通過させるための開孔部 28が設けられている。 [0102] In the tenth embodiment, the protective cover 27 is formed in a rectangular parallelepiped shape with an insulating material (for example, insulating grease such as fluorine-based grease, insulating ceramic, etc.), and one surface thereof ( The lower surface is fully open. The protective cover 27 faces the electron emission surface of the electron source 3. It has a front wall. The front wall of the protective cover 27 is provided with an opening 28 for allowing electrons emitted from the electron source 3 to pass therethrough.
[0103] 実施の形態 10では、二次電子放出部 25が保護カバー 27の前壁部に重なるように 配置されている。このため、電子源 3が放電プラズマに曝されないようにしつつ、二次 電子放出部 25を放電プラズマに曝すことができる。二次電子放出部 25は、例えば実 施の形態 8におけるメッシュ状の基材 26 (図 12C)に二次電子放出膜を被着したもの を用いればよい。この場合、メッシュサイズを適宜に設定することにより、電子源 3から 放出された電子を通過させることができ、かつ、放電プラズマのイオン力も電子源 3を 保護することができる。 In the tenth embodiment, the secondary electron emission part 25 is arranged so as to overlap the front wall part of the protective cover 27. Therefore, the secondary electron emission unit 25 can be exposed to the discharge plasma while preventing the electron source 3 from being exposed to the discharge plasma. As the secondary electron emission unit 25, for example, a mesh-like base material 26 (see FIG. 12C) according to the eighth embodiment may be used. In this case, by appropriately setting the mesh size, the electrons emitted from the electron source 3 can be passed, and the ion force of the discharge plasma can protect the electron source 3.
[0104] 二次電子放出部 25は、その基材 26を導電性材料で形成するのが好ま 、。この 場合、基材 26の電位は、表面電極 17 (図 2A参照)と同電位カゝ、又は表面電極 17〖こ 対して高電位となるように適宜に設定するのが好ま 、。二次電子放出部 25を表面 電極 17と同電位とすることにより、電子源 3から放出された電子を十分に通過させつ つ、メッシュ状の二次電子放出部 25を通してプラズマが保護カバー 27内に侵入して 電子源 3に衝撃 (ダメージ)を与えるのを防止することができる。  [0104] The secondary electron emitting portion 25 preferably has its base material 26 formed of a conductive material. In this case, it is preferable that the potential of the substrate 26 is appropriately set so as to be the same potential as the surface electrode 17 (see FIG. 2A) or a high potential with respect to the surface electrode 17. By setting the secondary electron emission part 25 to the same potential as the surface electrode 17, the plasma passes through the mesh-like secondary electron emission part 25 while allowing the electrons emitted from the electron source 3 to pass sufficiently. It is possible to prevent the electron source 3 from being struck and damaged (damaged).
[0105] 力べして、実施の形態 10に係る補助装置によれば、保護カバー 27によって電子源 3を放電プラズマのイオンカゝら保護することができ、より一層の長寿命化及び信頼性 の向上を図ることができる。  [0105] By comparison, according to the auxiliary device according to the tenth embodiment, the electron source 3 can be protected from the ion source of the discharge plasma by the protective cover 27, and the lifetime can be further improved and the reliability can be improved. Can be achieved.
[0106] (実施の形態 11)  [Embodiment 11]
以下、本発明の実施の形態 11を説明する。しかしながら、実施の形態 11に係る放 電装置ないしはその補助装置の基本構成は、実施の形態 10に係る補助装置とほぼ 同様あり、図 16に示すように、二次電子放出部 25が、保護カバー 27の開孔部 28内 に配置され、かつ 1対の放電電極 2a、 2bの一方を兼ねている点で相違するだけであ る。  The following describes Embodiment 11 of the present invention. However, the basic configuration of the discharge device according to the eleventh embodiment or the auxiliary device thereof is almost the same as that of the auxiliary device according to the tenth embodiment, and as shown in FIG. The only difference is that it is disposed in the opening portion 28 of 27 and also serves as one of the pair of discharge electrodes 2a, 2b.
[0107] 力べして、実施の形態 11に係る放電装置によれば、二次電子放出部 25がー方の 放電電極 2aを兼ねているので、放電装置の部品点数の削減、構造の簡略化、製造 プロセスの簡略ィ匕を図ることができ、その結果、放電装置のコストを低減することがで きる。実施の形態 8〜11では、基材 26に二次電子放出部材 25が形成されているが 、基材 26の一部又は全部が二次電子放出材料で形成されて 、てもよ 、。 [0107] By comparison, according to the discharge device according to the eleventh embodiment, since the secondary electron emission portion 25 also serves as the negative discharge electrode 2a, the number of parts of the discharge device is reduced and the structure is simplified. In addition, the manufacturing process can be simplified, and as a result, the cost of the discharge device can be reduced. In Embodiments 8 to 11, the secondary electron emission member 25 is formed on the base material 26. The substrate 26 may be partially or entirely formed of a secondary electron emission material.
[0108] (実施の形態 12) [Embodiment 12]
以下、本発明の実施の形態 12を説明する。しかしながら、実施の形態 12に係る放 電装置ないしはその補助装置の基本構成は、実施の形態 10に係る放電装置ないし は補助装置とほぼ同様あり、以下の点で相違するだけである。  The following describes Embodiment 12 of the present invention. However, the basic configuration of the discharge device or the auxiliary device according to the twelfth embodiment is substantially the same as that of the discharge device or the auxiliary device according to the tenth embodiment, and is different only in the following points.
[0109] 図 17に示すように、実施の形態 12では、二次電子放出部 25が、保護カバー 27の 前壁力も離間して配置されている。なお、保護カバー 27の前壁には、開孔部 28が形 成されている。また、保護カバー 27の前壁の、電子源 3との対向面側には、導電性材 料力もなるメッシュ状の保護部材 29が配設されている。その他の点は、実施の形態 1As shown in FIG. 17, in the twelfth embodiment, the secondary electron emission portion 25 is arranged so that the front wall force of the protective cover 27 is also separated. An opening 28 is formed on the front wall of the protective cover 27. Further, a mesh-like protective member 29 having a conductive material force is disposed on the front wall of the protective cover 27 facing the electron source 3. Other points are the first embodiment.
0と同様である。 Same as 0.
[0110] 力べして、実施の形態 12によれば、二次電子放出部 25を、より確実に放電プラズマ に曝すことができる。ここで、保護部材 29よりも高電位となるように二次電子放出部 2 5に電圧を印加し、この電圧を、二次電子放出部 25の二次電子放出効率がほぼ最 高値となるように設定すれば、効率良く二次電子を生成することができ、電子源 3の 放出電子量をより有効に低減することができる。  [0110] In summary, according to the twelfth embodiment, the secondary electron emitter 25 can be more reliably exposed to the discharge plasma. Here, a voltage is applied to the secondary electron emitter 25 so as to have a higher potential than that of the protective member 29, and this voltage is applied so that the secondary electron emission efficiency of the secondary electron emitter 25 is almost the maximum value. If set to, secondary electrons can be generated efficiently, and the amount of electrons emitted from the electron source 3 can be more effectively reduced.
[0111] また、実施の形態 12に係る補助装置において、保護部材 29の電位を電子源 3と同 電位に設定するか、又は保護部材 29の電位を電子源 3の表面電極 17に対して高電 位となるように適宜設定することにより、電子源 3から放出された電子を十分に通過さ せるようにしつつ、メッシュ状の保護部材 29を通してプラズマが保護カバー 27内に侵 入して電子源 3に衝撃を与えるのを防止することができる。  [0111] In the auxiliary device according to the twelfth embodiment, the potential of the protective member 29 is set to the same potential as that of the electron source 3, or the potential of the protective member 29 is set higher than the surface electrode 17 of the electron source 3. By appropriately setting the electric potential to be sufficient, the electrons emitted from the electron source 3 are allowed to pass sufficiently, while the plasma penetrates into the protective cover 27 through the mesh-shaped protective member 29, and the electron source. 3 can be prevented from giving an impact.
[0112] (実施の形態 13)  [Embodiment 13]
以下、本発明の実施の形態 13を説明する。しかしながら、実施の形態 13に係る放 電装置 (発光装置)な ヽしはその補助装置の基本構成は、実施の形態 12に係る補 助装置とほぼ同様あり、以下の点が相違するだけである。  The thirteenth embodiment of the present invention will be described below. However, the basic configuration of the discharge device (light emitting device) or the auxiliary device according to the thirteenth embodiment is almost the same as that of the auxiliary device according to the twelfth embodiment, and only the following points are different. .
[0113] 図 18に示すように、実施の形態 13では、二次電子放出部 25が複数設けられてい る。図 18に示す例では、 3個のメッシュ状の二次電子放出部 25が、電子源 3の電子 放出面(図 18では上面)と垂直な方向(法線方向)に直列に配列されている。その他 の点は、実施の形態 12と同様である。 [0114] 力べして、実施の形態 13に係る補助装置によれば、放電ガス中に供給される二次 電子の量を増カロさせることができる。このため、電子源 3からの放出電子量をより低減 することができ、電子源 3ないしは放電装置の長寿命化及び信頼性の向上をより有 効に図ることができる。なお、実施の形態 13では、複数の二次電子放出部 25を電子 源 3の電子放出面と垂直な方向に直列に配列している力 複数の二次電子放出部 2 5を電子放出面と平行な面内に並列に配置してもよい。 As shown in FIG. 18, in the thirteenth embodiment, a plurality of secondary electron emission portions 25 are provided. In the example shown in FIG. 18, three mesh-like secondary electron emission portions 25 are arranged in series in a direction (normal direction) perpendicular to the electron emission surface (the upper surface in FIG. 18) of the electron source 3. . The other points are the same as in the twelfth embodiment. [0114] By comparison, the auxiliary device according to Embodiment 13 can increase the amount of secondary electrons supplied to the discharge gas. Therefore, the amount of electrons emitted from the electron source 3 can be further reduced, and the life of the electron source 3 or the discharge device can be extended and the reliability can be improved more effectively. In the thirteenth embodiment, a plurality of secondary electron emission portions 25 are arranged in series in a direction perpendicular to the electron emission surface of the electron source 3. You may arrange | position in parallel in a parallel surface.
[0115] ここで、電子放出面と垂直な方向に直列に配列された複数の二次電子放出部 25 の電位を、電子源 3から離れるほど高電位となるように設定すれば、二次電子放出の 増倍効果が生じる。このため、二次電子の放出量をより多くすることができ、電子源 3 力もの放出電子量をより低減することができる。なお、他の実施の形態において、二 次電子放出部 25を複数設けてもよい。  [0115] Here, if the potentials of the plurality of secondary electron emission portions 25 arranged in series in the direction perpendicular to the electron emission surface are set so as to become higher as the distance from the electron source 3 increases, secondary electrons can be obtained. A release multiplication effect occurs. As a result, the amount of secondary electrons emitted can be increased, and the amount of electrons emitted by three electron sources can be further reduced. In other embodiments, a plurality of secondary electron emission portions 25 may be provided.
[0116] ところで、実施の形態 8〜13では、気密容器 1は円筒形であるが、気密容器 1の形 状は円筒形に限定されるものではない。例えば、電球のような球形状であっても、直 方体状又は立方体状であってもよい。また、 1対の平板と、両平板の間に位置するフ レームとで構成される平面型の気密容器であってもよ 、。  Incidentally, in Embodiments 8 to 13, the hermetic container 1 is cylindrical, but the shape of the hermetic container 1 is not limited to a cylindrical shape. For example, it may be a spherical shape like a light bulb, a rectangular parallelepiped shape or a cubic shape. Further, it may be a flat type airtight container composed of a pair of flat plates and a frame located between both flat plates.
[0117] 実施の形態 8〜13では、図 19Aに示すように、エネルギ供給手段として、円筒状の 気密容器 1の内部に、その長手方向に離間して配置された 1対の放電電極 2a、 2bが 設けられている。しかし、エネルギ供給手段の配置ないしは構成は、これに限定され るわけではない。図 19B〜図 19Jに、その他のエネルギ供給手段の構成を示す。  In Embodiments 8 to 13, as shown in FIG. 19A, as an energy supply means, a pair of discharge electrodes 2a disposed in the cylindrical airtight container 1 so as to be spaced apart from each other in the longitudinal direction. 2b is provided. However, the arrangement or configuration of the energy supply means is not limited to this. 19B to 19J show the configuration of other energy supply means.
[0118] 例えば、図 19Bに示す例では、円筒状の気密容器 1の外部に、気密容器 1に近接 して巻きかけられた誘導コイル 23が設けられている。図 19Cに示す例では、円筒状 の気密容器 1の外部に、その長手方向に沿って配置された 1対の面状の放電電極 2 cが設けられている。図 19Dに示す例では、気密容器 1の内部においてその長手方 向の一方の端部近傍に配置された放電電極 2aと、気密容器 1の外部においてその 長手方向に沿って配置された面状の放電電極 2cとが設けられて ヽる。  For example, in the example shown in FIG. 19B, an induction coil 23 wound around the airtight container 1 is provided outside the cylindrical airtight container 1. In the example shown in FIG. 19C, a pair of planar discharge electrodes 2c arranged along the longitudinal direction is provided outside the cylindrical airtight container 1. In the example shown in FIG. 19D, the discharge electrode 2a arranged in the vicinity of one end in the longitudinal direction inside the hermetic container 1, and the planar shape arranged along the longitudinal direction outside the hermetic container 1. Discharge electrode 2c is provided.
[0119] 図 19Eに示す例では、円筒状の気密容器 1の内部でその長手方向の両端部近傍 にそれぞれに 1つずつ配置された 2つの放電電極 2a、 2bと、気密容器 1の外部に配 置された円環状の、 1つ又は複数の放電電極 2cとが設けられている。図 19Fに示す 例では、円筒状の気密容器 1の内部に配置された 2対の放電電極 2a、 2bが設けられ ている。図 19Gに示す例では、円筒状の気密容器 1の外部に、気密容器 1の長手方 向に所定間隔を隔てて配置された複数(図 19Gに示す例では 5つ)の円環状の放電 電極 2cが設けられている。 [0119] In the example shown in Fig. 19E, two discharge electrodes 2a and 2b arranged one by one in the vicinity of both ends in the longitudinal direction inside the cylindrical airtight container 1, and outside the airtight container 1 One or a plurality of discharge electrodes 2c arranged in an annular shape are provided. As shown in Figure 19F In the example, two pairs of discharge electrodes 2a and 2b arranged inside a cylindrical airtight container 1 are provided. In the example shown in FIG. 19G, a plurality of (five in the example shown in FIG. 19G) annular discharge electrodes arranged at predetermined intervals in the longitudinal direction of the hermetic container 1 outside the cylindrical hermetic container 1. 2c is provided.
[0120] 図 19Hに示す例では、円筒状の気密容器 1の外部に、気密容器 1の長手方向に所 定間隔ずつ離れて配置された複数(図 19Hに示す例では 5つ)の面状の放電電極 2 cが設けられている。図 191に示す例では、直方体状の気密容器 1の内部に互いに垂 直な向きに配置された 1対の放電電極 2a、 2bが設けられている。図 19Jに示す例で は、気密容器 1の内部に互いに並列に配置された 1対の放電電極 2a、 2bが設けられ ている。 [0120] In the example shown in Fig. 19H, a plurality of (five in the example shown in Fig. 19H) planar surfaces arranged at predetermined intervals in the longitudinal direction of the hermetic vessel 1 outside the cylindrical hermetic vessel 1. Discharge electrode 2c is provided. In the example shown in FIG. 191, a pair of discharge electrodes 2a and 2b arranged in a perpendicular direction to each other are provided inside a rectangular parallelepiped hermetic container 1. In the example shown in FIG. 19J, a pair of discharge electrodes 2a and 2b arranged in parallel with each other are provided inside the hermetic container 1.
[0121] エネルギ供給手段に印加する電圧は、直流電圧、交流電圧、パルス電圧などから 適宜選択すればよい。例えば、図 19Gに示すエネルギ供給手段を設ける場合は、図 20Aに示すように、複数の放電電極 2cを、隣り合う放電電極 2c同士が互いに異なる 電極群に属するように結線し、 2組の電極群に分ければよい。この場合、図 20B及び 図 20Cに示すように、一方の電極群に印加する矩形波の交流電圧 VIと、他方の電 極群に印加する矩形波の交流電圧 V2とを逆位相にすれば、気密容器 1の長手方向 の寸法が比較的長!ヽ場合でも、気密容器 1内のほぼ全長にわたって放電プラズマを 生成することができる。  [0121] The voltage applied to the energy supply means may be appropriately selected from DC voltage, AC voltage, pulse voltage, and the like. For example, when the energy supply means shown in FIG. 19G is provided, as shown in FIG. 20A, a plurality of discharge electrodes 2c are connected so that adjacent discharge electrodes 2c belong to different electrode groups, and two sets of electrodes Divide into groups. In this case, as shown in FIGS. 20B and 20C, if the rectangular wave AC voltage VI applied to one electrode group and the rectangular wave AC voltage V2 applied to the other electrode group are in opposite phases, The length of the airtight container 1 in the longitudinal direction is relatively long! Even in a case, discharge plasma can be generated over almost the entire length of the hermetic vessel 1.
[0122] 同様に、図 19Hに示すエネルギ供給手段を設ける場合は、例えば図 21Aに示すよ うに、複数の放電電極 2cを、隣り合う放電電極 2c同士が互いに異なる電極群に属す るように結線し、 2組の電極群に分ければよい。この場合、図 21B及び図 21Cに示す ように、一方の電極群に印加する矩形波の交流電圧 VIと、他方の電極群に印加す る矩形波の交流電圧 V2とを逆位相にすればょ 、。  Similarly, when the energy supply means shown in FIG. 19H is provided, for example, as shown in FIG. 21A, a plurality of discharge electrodes 2c are connected so that adjacent discharge electrodes 2c belong to different electrode groups. However, it can be divided into two electrode groups. In this case, as shown in FIGS. 21B and 21C, the rectangular wave AC voltage VI applied to one electrode group and the rectangular wave AC voltage V2 applied to the other electrode group should be in opposite phases. ,.
[0123] 実施の形態 8〜13では、放電装置として紫外線ランプを例示しているが、放電装置 は紫外線ランプに限定されるわけではない。例えば、照明用の蛍光ランプやプラズマ ディスプレイパネルなどでもよい。蛍光ランプの場合には、図 22に示すように、気密 容器 1の内面の適切な部位に、紫外線により励起されて発光する蛍光体層 24を設け ればよい。なお、図 22では、補助装置の図示は省略されている。 [0124] 実施の形態 8〜 13では、放電装置 (紫外線ランプ)の気密容器 1は全面的に透光 性材料で形成されている。しかし、図 23又は図 24に示すように、気密容器 1の一部 のみを透光性材料 (例えば、ガラスなど)からなる透光板 lbで形成してもよい。図 23 に示す放電装置では、紫外線が、透光板 lbを通して気密容器 1の外部に放射される 。図 24に示す放電装置では、蛍光体層 24で発光した可視光力 透光板 lbを通して 気密容器 1の外部に放射される。 [0123] In Embodiments 8 to 13, an ultraviolet lamp is exemplified as the discharge device, but the discharge device is not limited to the ultraviolet lamp. For example, a fluorescent lamp for lighting or a plasma display panel may be used. In the case of a fluorescent lamp, as shown in FIG. 22, a phosphor layer 24 that emits light by being excited by ultraviolet rays may be provided at an appropriate portion of the inner surface of the hermetic container 1. In FIG. 22, the auxiliary device is not shown. [0124] In Embodiments 8 to 13, the hermetic container 1 of the discharge device (ultraviolet lamp) is entirely formed of a translucent material. However, as shown in FIG. 23 or FIG. 24, only a part of the hermetic container 1 may be formed of a translucent plate lb made of a translucent material (for example, glass). In the discharge device shown in FIG. 23, ultraviolet rays are radiated to the outside of the airtight container 1 through the light transmitting plate lb. In the discharge device shown in FIG. 24, the light is emitted to the outside of the hermetic vessel 1 through the visible light transmitting plate lb emitted from the phosphor layer 24.
[0125] 実施の形態 8〜13では、気密容器 1の形状は円筒状である。しかし、例えば図 25 に示すように、気密容器 1の形状を直方体状としてもよい。ここで、二次電子放出部 2 5を電子源 3の電子放出面(図 25では下面)の斜め方向に配置すれば、二次電子放 出部 25のみがプラズマ生成空間 8に曝される。この気密容器 1では、電子源 3をブラ ズマ生成空間 8から離れた位置に配置するとともに、電子源 3の電子放出面をプラズ マ生成空間 8で生成された放電プラズマに曝されにくいように配置することができる。 したがって、放電プラズマのイオンにより電子源 3が損傷を受けるのを抑制することが でき、電子源 3ひいては放電装置の長寿命化及び信頼性の向上を図ることができる  [0125] In Embodiments 8 to 13, the shape of the airtight container 1 is cylindrical. However, for example, as shown in FIG. 25, the airtight container 1 may have a rectangular parallelepiped shape. Here, if the secondary electron emission portion 25 is disposed in an oblique direction with respect to the electron emission surface (the lower surface in FIG. 25) of the electron source 3, only the secondary electron emission portion 25 is exposed to the plasma generation space 8. In this hermetic container 1, the electron source 3 is disposed at a position away from the plasma generation space 8, and the electron emission surface of the electron source 3 is disposed so as not to be exposed to the discharge plasma generated in the plasma generation space 8. can do. Therefore, the electron source 3 can be prevented from being damaged by the ions of the discharge plasma, and the life of the electron source 3 and thus the discharge device can be extended and the reliability can be improved.
[0126] 実施の形態 8〜 13に係る放電装置 (発光装置)では、気密容器 1内に封入する放 電ガスとしてキセノンガスを用いている。し力し、放電ガスはキセノンガスに限定される わけではない。エネルギを供給することにより放電を起こすガスであれば、どのような ものでもよく、例えば、 Arガス、 Heガス、 Neガス、 Krガス、 Nガス、 COガス、 Hg蒸気 In the discharge devices (light-emitting devices) according to Embodiments 8 to 13, xenon gas is used as the discharge gas sealed in the hermetic container 1. However, the discharge gas is not limited to xenon gas. Any gas may be used as long as it causes discharge by supplying energy, for example, Ar gas, He gas, Ne gas, Kr gas, N gas, CO gas, Hg vapor
2  2
、又はこれらの混合ガスなどを用いてもよい。  Alternatively, or a mixed gas thereof may be used.
[0127] 実施の形態 8〜13に係る電子源 3でも、実施の形態 2で説明したように、絶縁性基 板 14に代えてシリコン基板などの半導体基板を用い、半導体基板と該半導体基板 の裏面側に積層した導電性層とで下部電極を構成してもよい。また、実施の形態 8〜 13に係る電子源 3は BSDである力 BSDに代えて、その他の種類の電子源、例え ば MIM型電子源や MIS型電子源などを用いてもよ!、。  [0127] Also in the electron source 3 according to the eighth to thirteenth embodiments, as described in the second embodiment, a semiconductor substrate such as a silicon substrate is used instead of the insulating substrate 14, and the semiconductor substrate and the semiconductor substrate You may comprise a lower electrode with the electroconductive layer laminated | stacked on the back side. In addition, the electron source 3 according to the eighth to thirteenth embodiments may use other types of electron sources, for example, MIM type electron source, MIS type electron source, etc. instead of the force BSD which is BSD!
[0128] (実施の形態 14)  [Embodiment 14]
以下、本発明の実施の形態 14を説明する。しかしながら、実施の形態 14に係る放 電装置ないしはその補助装置の基本構成は、実施の形態 8に係る補助装置とほぼ 同様あり、下記の点で相違するだけである。 Embodiment 14 of the present invention will be described below. However, the basic configuration of the discharge device or the auxiliary device according to the fourteenth embodiment is almost the same as that of the auxiliary device according to the eighth embodiment. There are similarities, only differing in the following points.
[0129] すなわち、図 26に示すように、実施の形態 14では、電子源 3は、その電子放出面( 表面電極 17)が気密容器 1の内周面にやや傾斜して対向するように配置されている 。すなわち、電子源 3はその電子放出面が放電プラズマに直接には曝されないように 配置されている。また、二次電子放出部 25は、電子源 3の電子放出面の斜め前方に 位置するようにして、気密容器 1の内周面に配置されている。その他の点は、実施の 形態 8と同様である。なお、図 26中の矢印 R1は、電子源 3から放射された電子を示し 、矢印 R2は二次電子放出部 25から放出された二次電子を示して 、る。  That is, as shown in FIG. 26, in Embodiment 14, the electron source 3 is arranged so that the electron emission surface (surface electrode 17) faces the inner peripheral surface of the airtight container 1 with a slight inclination. Have been. That is, the electron source 3 is arranged such that its electron emission surface is not directly exposed to the discharge plasma. Further, the secondary electron emission portion 25 is disposed on the inner peripheral surface of the hermetic container 1 so as to be positioned obliquely in front of the electron emission surface of the electron source 3. Other points are the same as in the eighth embodiment. In FIG. 26, an arrow R1 indicates an electron emitted from the electron source 3, and an arrow R2 indicates a secondary electron emitted from the secondary electron emission unit 25.
[0130] 力べして、実施の形態 14では、二次電子放出部 25から放出された二次電子によつ て、放電開始電圧ないしは放電維持電圧が低減される。また、電子源 3の電子放出 面(表面電極)が両放電電極 2a、 2b間の放電プラズマ 10と背向しているので、放電 プラズマに起因して電子源 3に損傷が生じるのを有効に防止ないしは抑制することが できる。実施の形態 8では、二次電子放出部 25がイオンの侵入を防ぐことによって電 子源 3の損傷を防止しているが、実施の形態 14では、電子源 3を放電プラズマ 10に 背向させることによって、イオンによる電子源 3の損傷を防止している。  In comparison, in Embodiment 14, the discharge starting voltage or the sustaining voltage is reduced by the secondary electrons emitted from secondary electron emitting portion 25. In addition, since the electron emission surface (surface electrode) of the electron source 3 is opposite to the discharge plasma 10 between the discharge electrodes 2a and 2b, it is effective to cause damage to the electron source 3 due to the discharge plasma. Can be prevented or suppressed. In the eighth embodiment, the secondary electron emission unit 25 prevents the ion source 3 from being damaged by preventing the intrusion of ions. However, in the fourteenth embodiment, the electron source 3 is turned away from the discharge plasma 10. This prevents the electron source 3 from being damaged by ions.
[0131] (実施の形態 15)  [Embodiment 15]
以下、本発明の実施の形態 15を説明する。図 27Aに示すように、実施の形態 15に 係る放電装置は放電ランプ Laである。放電ランプ Laは、放電ガス(ここでは、キセノン ガス)が封入された気密容器 1と、気密容器 1内に配置された 1対の放電電極 2a、 2b とを有している。放電電極 2aはアノード電極であり、放電電極 2bは力ソード電極であ る(実施の形態 15では、適宜、「放電電極 2a」及び「放電電極 2b」を、それぞれ「ァノ ード電極 2a」及び「力ソード電極 2b」という。 ) oなお、放電ガスはキセノンガスに限定 されるわけではなぐ例えば Arガス、 Heガス、 Neガス、 Krガス、 Nガス、 COガス、 H  The fifteenth embodiment of the present invention will be described below. As shown in FIG. 27A, the discharge device according to Embodiment 15 is a discharge lamp La. The discharge lamp La has an airtight container 1 in which a discharge gas (here, xenon gas) is sealed, and a pair of discharge electrodes 2a and 2b arranged in the airtight container 1. Discharge electrode 2a is an anode electrode, and discharge electrode 2b is a force sword electrode (in Embodiment 15, “discharge electrode 2a” and “discharge electrode 2b” are appropriately referred to as “annode electrode 2a”, respectively. And “Power Sword Electrode 2b.”) Note that the discharge gas is not limited to xenon gas, for example, Ar gas, He gas, Ne gas, Kr gas, N gas, CO gas, H
2  2
g蒸気、又はこれらのうちの 2種以上のもの力 なる混合ガスなどを、放電装置の用途 などに応じて適宜に用いることができる。  gVapor or a mixed gas having two or more of these can be used as appropriate depending on the application of the discharge device.
[0132] 図 27A及び図 27Bに示すように、実施の形態 15に係る放電装置は、放電プラズマ の生成を補助する補助装置として、放電ガス中に電子を供給する電子源 3と、電子 源 3を保護する第 1及び第 2の保護部材 31、 32とを備えている。電子源 3は、気密容 器 1内において、アノード電極 2aと力ソード電極 2bとの間の所望の放電プラズマ生成 空間 8の外側で、力ソード電極 2bの近傍に配置されて 、る。 As shown in FIG. 27A and FIG. 27B, the discharge device according to Embodiment 15 is an auxiliary device that assists the generation of discharge plasma, and an electron source 3 that supplies electrons into the discharge gas, and an electron source 3 First and second protective members 31 and 32 are provided. Electron source 3 is airtight In the vessel 1, it is disposed outside the desired discharge plasma generation space 8 between the anode electrode 2 a and the force sword electrode 2 b and in the vicinity of the force sword electrode 2 b.
[0133] 両保護部材 31、 32は、電子源 3の電子放出側において電子源 3と離間して配置さ れ、気密容器 1内の放電プラズマ生成空間 8で生成された放電プラズマのイオンから 電子源 3を保護する。なお、両保護部材 31、 32は、それぞれ、電子源 3から放出され た電子を加速するためのグリッド電極を兼ねている。また、両保護部材 31、 32には、 それぞれ、電子源 3から放出された電子を通すための複数の開口部 31a、 32aが形 成されている。 [0133] Both protective members 31 and 32 are spaced apart from the electron source 3 on the electron emission side of the electron source 3, and electrons are generated from the ions of the discharge plasma generated in the discharge plasma generation space 8 in the hermetic vessel 1. Protect source 3. Both protective members 31 and 32 also serve as grid electrodes for accelerating electrons emitted from the electron source 3. The protective members 31 and 32 are formed with a plurality of openings 31a and 32a for passing electrons emitted from the electron source 3, respectively.
[0134] 放電ランプ Laは直管形の放電ランプであり、気密容器 1は、透光性材料 (例えば、 ガラス、透光性セラミックなど)で円筒状に形成されている。アノード電極 2aは、気密 容器 1の長手方向の一方の端部の近傍(図 27Aでは左側)に配置され、力ソード電 極 2bは他方の端部の近傍(図 27Aでは右側)に配置されている。電子源 3と両保護 部材 31、 32とからなる補助装置は、力ソード電極 2bの近傍において、力ソード電極 2 bに対して、アノード電極 2aと反対側に配置されている。要するに、電子源 3及び両 保護部材 31、 32は、気密容器 1内において放電プラズマ生成空間 8の外に配置さ れている。  [0134] The discharge lamp La is a straight tube type discharge lamp, and the hermetic vessel 1 is formed in a cylindrical shape with a translucent material (for example, glass, translucent ceramic, etc.). The anode 2a is disposed near one end of the hermetic container 1 in the longitudinal direction (left side in FIG. 27A), and the force sword electrode 2b is disposed near the other end (right side in FIG. 27A). Yes. The auxiliary device composed of the electron source 3 and the two protection members 31 and 32 is disposed in the vicinity of the force sword electrode 2b on the side opposite to the anode electrode 2a with respect to the force sword electrode 2b. In short, the electron source 3 and the protective members 31 and 32 are disposed outside the discharge plasma generation space 8 in the hermetic vessel 1.
[0135] 実施の形態 15に係る電子源 3の構成及び機能は、基本的には、実施の形態 1に係 る電子源 3の構成及び機能と同様である。なお、表面電極 17を構成する導電性薄膜 の膜厚は 10〜15nm程度に設定するのが望ましい。導電性薄膜は、単層膜、多層 膜のいずれであってもよい。また、実施の形態 15に係る電子源素子 3aのドリフト層 1 6の構成及び機能も、実施の形態 1に係るドリフト層 16の構成及び機能と同様である (図 2B参照)。  The configuration and function of the electron source 3 according to Embodiment 15 are basically the same as the configuration and function of the electron source 3 according to Embodiment 1. The film thickness of the conductive thin film constituting the surface electrode 17 is preferably set to about 10 to 15 nm. The conductive thin film may be either a single layer film or a multilayer film. The configuration and function of the drift layer 16 of the electron source element 3a according to Embodiment 15 are also the same as the configuration and function of the drift layer 16 according to Embodiment 1 (see FIG. 2B).
[0136] 実施の形態 15に係る電子源素子 3aにおける電子放出も、実施の形態 1に係る電 子源素子 3aにおける電子放出と同様のモデルで起こる。また、実施の形態 15でも、 実施の形態 1の場合と同様に、絶縁膜の形成を、酸ィ匕プロセス、窒化プロセス又は酸 窒化プロセスを用いて行うことができる。  [0136] Electron emission in the electron source element 3a according to the fifteenth embodiment also occurs in the same model as the electron emission in the electron source element 3a according to the first embodiment. In the fifteenth embodiment, as in the first embodiment, the insulating film can be formed using an acid process, a nitridation process, or an oxynitridation process.
[0137] 両保護部材 31、 32は、それぞれ、導電性材料 (例えば、ニッケル、アルミニウム、ス テンレスなど)で網形状に形成され、該網形状の各網目の部分が、電子源 3から放出 された電子を通すための開口部 31a、 32aとなっている。なお、実施の形態 15では、 両保護部材 31、 32は網形状のものであるが、保護部材 31、 32の形状は網形状に 限定されるわけではない。例えば、平板状の導電性基材に開口部 31a、 32aが設け られたものでもよい。 [0137] Both protective members 31, 32 are each formed in a net shape from a conductive material (eg, nickel, aluminum, stainless steel, etc.), and each net portion of the net shape is emitted from the electron source 3. Openings 31a and 32a are formed for passing the generated electrons. In the fifteenth embodiment, both the protective members 31 and 32 have a net shape, but the shape of the protective members 31 and 32 is not limited to the net shape. For example, a flat conductive substrate provided with openings 31a and 32a may be used.
[0138] 実施の形態 15に係る補助装置の駆動方法は、以下のとおりである。すなわち、駆 動電源から、表面電極 17と下部電極 15との間に、例えば 14V程度の直流電圧を印 加する。これととも〖こ、第 1の加速用電源(図示せず)から第 1の保護部材 31と表面電 極 17との間に例えば 100V程度の直流電圧を印加する一方、第 2の加速用電源(図 示せず)から第 2の保護部材 32と表面電極 17との間に例えば 90V程度の直流電圧 を印加する。これにより、電子源 3から放出された電子が、第 1の保護部材 31と第 2の 保護部材 32とによって加速され、アノード電極 2aと力ソード電極 2bとの間の放電プラ ズマ生成空間 8に供給される。  [0138] The driving method of the auxiliary device according to the fifteenth embodiment is as follows. That is, for example, a DC voltage of about 14 V is applied between the surface electrode 17 and the lower electrode 15 from the drive power supply. At the same time, a DC voltage of about 100 V is applied between the first protective member 31 and the surface electrode 17 from the first acceleration power source (not shown), while the second acceleration power source. A DC voltage of about 90 V, for example, is applied between the second protective member 32 and the surface electrode 17 (not shown). As a result, electrons emitted from the electron source 3 are accelerated by the first protective member 31 and the second protective member 32, and enter the discharge plasma generation space 8 between the anode electrode 2a and the force sword electrode 2b. Supplied.
[0139] 補助装置を駆動する際の各構成要素の電位は、次のように設定される。すなわち、 第 1の保護部材 31の電位と第 2の保護部材 32の電位とが互いに異なるように、第 1 の保護部材 31と第 2の保護部材 32との間の電位関係が設定される。そして、第 2の 保護部材 32の電位は、アノード電極 2aの電位よりも低くかつ力ソード電極 2bの電位 よりも高い電位に設定される。この場合、第 2の保護部材 32の電位は、第 2の保護部 材 32とアノード電極 2aとの間の電位差 (以下「第 1の電位差」という。)が第 2の保護 部材 32とアノード電極 2aとの間の放電開始電圧よりも小さぐかつ、第 2の保護部材 32と力ソード電極 2bとの間の電位差 (以下「第 2の電位差」 t 、う。)が第 2の保護部 材 32と力ソード電極 2bとの間の放電開始電圧よりも小さくなるように設定するのが望 ましい。なお、上記各電位差を、放電開始電圧より低ぐかつ放電維持電圧より小さく なるように設定するの力 より望ましい。  [0139] The potential of each component when the auxiliary device is driven is set as follows. That is, the potential relationship between the first protection member 31 and the second protection member 32 is set so that the potential of the first protection member 31 and the potential of the second protection member 32 are different from each other. The potential of the second protective member 32 is set to a potential lower than that of the anode electrode 2a and higher than that of the force sword electrode 2b. In this case, the potential of the second protective member 32 is such that the potential difference between the second protective member 32 and the anode electrode 2a (hereinafter referred to as “first potential difference”) is the second protective member 32 and the anode electrode. 2a, and the potential difference between the second protective member 32 and the force sword electrode 2b (hereinafter referred to as “second potential difference” t) is the second protective member. It is desirable to set it to be smaller than the discharge start voltage between 32 and the force sword electrode 2b. It is more desirable to set each potential difference to be lower than the discharge start voltage and lower than the discharge sustain voltage.
[0140] 実施の形態 15では、アノード電極 2aと力ソード電極 2bとの間に電圧を印加する電 源 V の出力電圧、駆動電源の出力電圧、第 1の加速用電源の出力電圧及び第 2 [0140] In the fifteenth embodiment, the output voltage of the power source V that applies a voltage between the anode electrode 2a and the force sword electrode 2b, the output voltage of the drive power source, the output voltage of the first acceleration power source, and the second
AK AK
の加速用電源の出力電圧は、例えばマイクロコンピュータ力もなる制御部(図示せず )によって制御される。制御部は、上記電位関係が成立するように、両保護部材 31、 32の電位と、アノード電極 2aの電位と、力ソード電極 2bの電位とを制御する。 [0141] 前記のとおり、実施の形態 15に係る補助装置では、両保護部材 31、 32が、それぞ れ、電子源 3から放出された電子を通すための開口部 31a、 32aを有している。この ため、両保護部材 31、 32のそれぞれの開口率を適宜に設定することにより、電子源 3へのイオンの衝突を抑制しつつ、電子源 3から放出された電子が両保護部材 31、 3 2に衝突したり捕らえられたりするのを抑制することができ、放電開始電圧を低減する ことができる。 The output voltage of the acceleration power source is controlled by a control unit (not shown) having a microcomputer power, for example. The control unit controls the potentials of the protective members 31, 32, the potential of the anode electrode 2a, and the potential of the force sword electrode 2b so that the above-described potential relationship is established. [0141] As described above, in the auxiliary device according to the fifteenth embodiment, both protection members 31, 32 have openings 31a, 32a for allowing electrons emitted from the electron source 3 to pass through, respectively. Yes. For this reason, by setting the respective aperture ratios of the protective members 31 and 32 appropriately, the electrons emitted from the electron source 3 can be prevented from colliding with the electron source 3 while the ions emitted from the electron source 3 are suppressed. It is possible to suppress the collision with 2 and to be captured, and to reduce the discharge start voltage.
[0142] さらに、第 2の保護部材 32の電位は、アノード電極 2aの電位よりも低ぐかつカソー ド電極 2bの電位よりも高いので、第 2の保護部材 32と、アノード電極 2a又は力ソード 電極 2bとの間に不必要な放電プラズマが起こるのを防止することができる。このため 、電子源 3に損傷が発生するのを抑制することができ、電子源 3の長寿命化を図るこ とがでさる。  [0142] Furthermore, since the potential of the second protective member 32 is lower than the potential of the anode electrode 2a and higher than the potential of the cathode electrode 2b, the second protective member 32 and the anode electrode 2a or force sword It is possible to prevent unnecessary discharge plasma from occurring between the electrode 2b. For this reason, the occurrence of damage to the electron source 3 can be suppressed, and the life of the electron source 3 can be extended.
[0143] また、上記電位関係は、第 2の保護部材 32の電位が第 1の保護部材 31の電位より も低くなるように設定されている。このため、第 1の保護部材 31の開口部 31aを通った 電子が第 2の保護部材 32に捕らえられるのを抑制しつつ、気密容器 1内においてァ ノード電極 2aと力ソード電極 2bとの間に発生する放電プラズマのイオンに起因する 電子源 3の損傷を低減することができる。  Further, the potential relationship is set so that the potential of the second protective member 32 is lower than the potential of the first protective member 31. For this reason, while suppressing the electrons that have passed through the opening 31a of the first protective member 31 from being captured by the second protective member 32, the air gap between the anode electrode 2a and the force sword electrode 2b in the hermetic container 1 is reduced. It is possible to reduce damage to the electron source 3 due to the ions of the discharge plasma generated in the plasma.
[0144] 実施の形態 15に係る補助装置では、第 2の保護部材 32の開口率は、第 1の保護 部材 31の開口率よりも小さい。このため、気密容器 1内においてアノード電極 2aと力 ソード電極 2bとの間で発生する放電プラズマのイオンに起因する電子源 3の損傷を より有効に低減することができる。ここで、第 1の保護部材 31の開口部 31aを、電子源 3の電子放出面に対応する形状に形成すれば、電子源 3から放出された電子を、第 1の保護部材 31と電子源 3との間の電界により加速しつつ、電子源 3から放出された 電子が第 1の保護部材 31に捕獲される確率を低減することができる。  In the auxiliary device according to the fifteenth embodiment, the aperture ratio of the second protection member 32 is smaller than the aperture ratio of the first protection member 31. For this reason, it is possible to more effectively reduce damage to the electron source 3 caused by ions of the discharge plasma generated between the anode electrode 2a and the force sword electrode 2b in the hermetic container 1. Here, if the opening 31a of the first protective member 31 is formed in a shape corresponding to the electron emission surface of the electron source 3, the electrons emitted from the electron source 3 are transferred to the first protective member 31 and the electron source. The probability that electrons emitted from the electron source 3 are captured by the first protective member 31 can be reduced while accelerating by the electric field between the first and second electrons.
[0145] ところで、アノード電極 2aと力ソード電極 2bとの間に放電プラズマが発生するのは、 下記の式 1で示す関係が満たされたときである。なお、力ソード電極 2bにイオンが衝 突して二次電子を発生させることにより、アノード電極 2aと力ソード電極 2bとの間での 放電が維持されるが、この原理は力ソード電極 2bと第 2の保護部材 32との間でも同 様である。 y > l/ (e a d- l) 式 1 d:アノード電極と力ソード電極との間の距離 By the way, the discharge plasma is generated between the anode electrode 2a and the force sword electrode 2b when the relationship represented by the following formula 1 is satisfied. It should be noted that the discharge between the anode electrode 2a and the force sword electrode 2b is maintained by the collision of ions with the force sword electrode 2b to generate secondary electrons. This principle is the same as that of the force sword electrode 2b. The same applies to the second protective member 32. y> l / (e ad -l) Equation 1 d: Distance between the anode and force sword electrodes
電子増倍率  Electronic multiplication factor
γ:カソード電極のイオンによる二次電子放出係数  γ: Secondary electron emission coefficient due to ions at the cathode electrode
[0146] そこで、第 2の保護部材 32の材料を、下記の式 2で示す関係を満たす材料で形成 すれば、第 2の保護部材 32と力ソード電極 2bとの間で不必要な放電プラズマが発生 するのを防止することができ、電子源 3の長寿命化を図ることができる。 [0146] Therefore, if the material of the second protective member 32 is formed of a material satisfying the relationship expressed by the following formula 2, unnecessary discharge plasma is generated between the second protective member 32 and the force sword electrode 2b. Can be prevented, and the life of the electron source 3 can be extended.
y≤l/ (e a d- l) 式 2 d:第 2の保護部材とカソード電極との距離 y≤l / (e ad -l) Formula 2 d: Distance between the second protective member and the cathode electrode
α:第 2の保護部材とカソード電極との間の空間での電子増倍率  α: Electron multiplication factor in the space between the second protective member and the cathode electrode
Ύ:気密容器内の放電プラズマのイオンによる二次電子放出係数  Ύ: Secondary electron emission coefficient by ions of discharge plasma in hermetic vessel
[0147] ここで、二次電子放出係数 γを低くするには、イオンに対する二次電子放出効率が 低い材料を用いればよい。望ましいこの種の材料としては、例えば、 Fe、 Co、 Ni、 C u、 Zn、 Ga、 Ge、 C、 Siゝ Mo、 Tc、 Ru、 Rh、 Pd、 Ag、 Cd、 In、 Sn、 Sb、 Te、 Re、 O s、 Ir、 Pt、 Au、 Hg、 Tl、 Pb、 Biもしくは Po、又は、これらの酸化物、窒化物、炭化物 などがあげられる。 Here, in order to lower the secondary electron emission coefficient γ, a material having a low secondary electron emission efficiency for ions may be used. Desirable materials of this type include, for example, Fe, Co, Ni, Cu, Zn, Ga, Ge, C, Si ゝ Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te , Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi or Po, or oxides, nitrides, and carbides thereof.
[0148] また、第 2の保護部材 32に上記材料以外の材料を用いても、 αが下記の式 3で示 す関係を満たすように第 2の保護部材 32の電位を設定すれば、第 2の保護部材 32と 力ソード電極 2bとの間に不必要な放電プラズマが発生するのを防止することができ、 電子源 3の長寿命化を図ることができる。なお、第 2の保護部材 32は、イオンに対す る二次電子放出効率が低い方が望ましいが、補助装置力 の電子放出効率を向上 させるには、電子に対する二次電子放出効率が高い方が望ましい。  [0148] Even if a material other than the above materials is used for the second protective member 32, if the potential of the second protective member 32 is set so that α satisfies the relationship represented by the following Equation 3, It is possible to prevent unnecessary discharge plasma from being generated between the protective member 32 of 2 and the force sword electrode 2b, and to extend the life of the electron source 3. The second protective member 32 preferably has a low secondary electron emission efficiency with respect to ions, but in order to improve the electron emission efficiency of the auxiliary device force, it is preferable that the secondary electron emission efficiency with respect to the electron is high. desirable.
α≤1η{(1/ γ ) + 1}/ά 式 3 d:第 2の保護部材とカソード電極との距離  α≤1η {(1 / γ) + 1} / ά Equation 3 d: Distance between second protective member and cathode electrode
α:第 2の保護部材とカソード電極との間の空間での電子増倍率  α: Electron multiplication factor in the space between the second protective member and the cathode electrode
Ύ:気密容器内の放電プラズマのイオンによる二次電子放出係数  Ύ: Secondary electron emission coefficient by ions of discharge plasma in hermetic vessel
[0149] 実施の形態 15に係る電子源 3は、弾道型電子放出現象により電子を放出する BS Dである。しかしながら、電子源 3は BSDに限定されるわけではない。例えば、 MIM 型電子源、 MIS型電子源、スピント型電子源、 SCE (Surface Conduction Electron e mitter)型電子源、カーボンナノチューブェミッタを用いた電子源などを用いてもよ!ヽ 。しカゝしながら、電子源 3として BSDを用いれば、放電ガス中でも安定して電子を放 出することができるので、電子源 3として BSDを用いるのが望まし 、。 [0149] The electron source 3 according to Embodiment 15 is a BS D that emits electrons by a ballistic electron emission phenomenon. However, electron source 3 is not limited to BSD. For example, MIM Type electron sources, MIS type electron sources, Spindt type electron sources, SCE (Surface Conduction Electronitter) type electron sources, electron sources using carbon nanotube emitters, and more!ヽ. However, if BSD is used as the electron source 3, electrons can be emitted stably even in the discharge gas, so it is desirable to use BSD as the electron source 3.
[0150] (実施の形態 16) [Embodiment 16]
以下、本発明の実施の形態 16を説明する。  The sixteenth embodiment of the present invention will be described below.
図 28に示すように、実施の形態 16に係る放電装置は放電ランプである。この放電 ランプは、放電媒体である放電ガス (例えば、アルゴンなどの希ガス)が封入された気 密容器 1と、気密容器 1内に配置された 1対の放電電極 2a、 2bと、気密容器 1内に配 置され放電ガス中に電子を供給する電子源 3と、気密容器 1内にお 、て電子源 3に 対向して配置されたグリッド電極 35とを備えている。この放電ランプは、気密容器 1内 の放電ガス中で放電電極 2a、 2bに放電を行わせることにより可視光を放射する。両 放電電極 2a、 2bは、気密容器 1内の放電ガスに電界を印加して気密容器 1内の所 望の放電プラズマ生成空間 8に放電プラズマを生成させる。  As shown in FIG. 28, the discharge device according to Embodiment 16 is a discharge lamp. This discharge lamp includes a hermetic container 1 in which a discharge gas (for example, a rare gas such as argon) as a discharge medium is sealed, a pair of discharge electrodes 2a and 2b disposed in the hermetic container 1, and an airtight container. 1 is provided with an electron source 3 that is disposed in 1 and supplies electrons into the discharge gas, and a grid electrode 35 that is disposed in the airtight container 1 so as to face the electron source 3. This discharge lamp emits visible light by causing the discharge electrodes 2a and 2b to discharge in the discharge gas in the hermetic vessel 1. Both discharge electrodes 2 a and 2 b apply an electric field to the discharge gas in the hermetic vessel 1 to generate a discharge plasma in a desired discharge plasma generation space 8 in the hermetic vessel 1.
[0151] 図 29に示すように、グリッド電極 35は、電子源 3から放出された電子を通過させるた めの複数の開口部 35aを有している。なお、グリッド電極 35は、電子源 3から放出さ れた電子を加速するために設けられている。実施の形態 16では、電子源 3とグリッド 電極 35とが、放電プラズマ生成空間 8における放電プラズマの生成を補助する補助 装置を構成している。 [0151] As shown in Fig. 29, the grid electrode 35 has a plurality of openings 35a for allowing electrons emitted from the electron source 3 to pass therethrough. The grid electrode 35 is provided to accelerate the electrons emitted from the electron source 3. In the sixteenth embodiment, the electron source 3 and the grid electrode 35 constitute an auxiliary device that assists the generation of discharge plasma in the discharge plasma generation space 8.
[0152] 実施の形態 16に係る放電装置は直管形の放電ランプである。気密容器 1は、透光 性を有する材料 (例えば、ガラス、透光性セラミックなど)により円筒状に形成されてい る。気密容器 1の長手方向の一方の端部の近傍(図 28では左側)に配置された放電 電極 2aはアノード電極を構成し、他方の端部の近傍(図 28では右側)に配置された 放電電極 2bは力ソード電極を構成している(実施の形態 16では、適宜、「放電電極 2 aj及び「放電電極 2b」を、それぞれ「アノード電極 2a」及び「力ソード電極 2b」 t 、う)  [0152] The discharge device according to Embodiment 16 is a straight tube type discharge lamp. The airtight container 1 is formed in a cylindrical shape from a light-transmitting material (for example, glass, light-transmitting ceramic, etc.). Discharge electrode 2a arranged near one end of the hermetic container 1 in the longitudinal direction (left side in FIG. 28) constitutes an anode electrode, and discharge arranged near the other end (right side in FIG. 28) The electrode 2b constitutes a force sword electrode (in the sixteenth embodiment, “discharge electrode 2 aj and“ discharge electrode 2b ”are appropriately referred to as“ anode electrode 2a ”and“ force sword electrode 2b ”t, respectively)
[0153] 電子源 3とグリッド電極 35と力もなる補助装置は、力ソード電極 2bの近傍において、 力ソード電極 2bに対して、アノード電極 2aと反対側に配置されている。要するに、電 子源 3及びグリッド電極 35は、気密容器 1内において放電プラズマ生成空間 8の外に 配置されている。 [0153] The electron source 3 and the grid electrode 35 and the auxiliary device that also has a force are arranged in the vicinity of the force sword electrode 2b on the side opposite to the anode 2a. In short, electric The child source 3 and the grid electrode 35 are arranged outside the discharge plasma generation space 8 in the hermetic vessel 1.
[0154] 実施の形態 16に係る放電装置では、電子源 3を駆動することにより、電子源 3から 放出された電子を放電ガス中に供給することができる。このため、電界印加用電圧源 V からアノード電極 2aと力ソード電極 2bとの間に電圧を印加する前に、駆動電源 V In the discharge device according to the sixteenth embodiment, by driving the electron source 3, the electrons emitted from the electron source 3 can be supplied into the discharge gas. Therefore, before applying a voltage from the electric field application voltage source V to the anode electrode 2a and the force sword electrode 2b,
AK AK
カゝら電子源 3に電圧を印加し、電子源 3の駆動を開始して放電ガス中に電子を供 Then, a voltage is applied to the electron source 3, and the driving of the electron source 3 is started to supply electrons into the discharge gas.
PS PS
給しておくことにより、放電を開始させるのに必要なアノード電極 2aと力ソード電極 2b との間の放電開始電圧を低減することができる。なお、アノード電極 2aと力ソード電極 2bとの間に電圧を印加した後も電子源 3を駆動すれば、放電プラズマの安定化を図 ることができるとともに、放電維持電圧を低減することができ、消費電力を低減するこ とがでさる。  By supplying it, it is possible to reduce the discharge start voltage between the anode electrode 2a and the force sword electrode 2b necessary for starting the discharge. If the electron source 3 is driven even after a voltage is applied between the anode electrode 2a and the force sword electrode 2b, the discharge plasma can be stabilized and the discharge sustaining voltage can be reduced. Therefore, power consumption can be reduced.
[0155] 実施の形態 16に係る電子源 3の構成及び機能は、基本的には、実施の形態 1に係 る電子源 3の構成及び機能と同様である。なお、表面電極 17を構成する導電性薄膜 の膜厚は 10〜15nm程度に設定するのが望ましい。導電性薄膜は、単層膜、多層 膜のいずれであってもよい。また、実施の形態 16に係る電子源素子 3aのドリフト層 1 6の構成及び機能も、実施の形態 1に係るドリフト層 16の構成及び機能と同様である (図 2B参照)。なお、電子源 3に印加する駆動電圧は、一定の直流電圧でもよぐパ ルス状の電圧でもよい。また、駆動電圧をパルス状の電圧とした場合、駆動電圧を印 加して 、な 、時に逆バイアスの電圧を印加するようにしてもよ!、。  [0155] The configuration and function of the electron source 3 according to Embodiment 16 are basically the same as the configuration and function of the electron source 3 according to Embodiment 1. The film thickness of the conductive thin film constituting the surface electrode 17 is preferably set to about 10 to 15 nm. The conductive thin film may be either a single layer film or a multilayer film. Further, the configuration and function of the drift layer 16 of the electron source element 3a according to Embodiment 16 are the same as the configuration and function of the drift layer 16 according to Embodiment 1 (see FIG. 2B). The driving voltage applied to the electron source 3 may be a constant DC voltage or a pulsed voltage. Also, if the drive voltage is a pulse voltage, it may be possible to apply a reverse bias voltage after applying the drive voltage!
[0156] 実施の形態 16に係る電子源素子 3aにおける電子放出も、実施の形態 1に係る電 子源素子 3aにおける電子放出と同様のモデルで起こる。また、実施の形態 16でも、 実施の形態 1の場合と同様に、絶縁膜の形成を、酸ィ匕プロセス、窒化プロセス又は酸 窒化プロセスを用いて行うことができる。  [0156] Electron emission in the electron source element 3a according to the sixteenth embodiment also occurs in the same model as the electron emission in the electron source element 3a according to the first embodiment. In the sixteenth embodiment, as in the first embodiment, the insulating film can be formed using an acid process, a nitridation process, or an oxynitridation process.
[0157] グリッド電極 35は、導電性材料 (例えば、ニッケル、アルミニウム、ステンレスなど)で 網形状に形成されている。該網形状の各網目の部分は、電子源 3から放出された電 子を通すための開口部 35aを構成している。実施の形態 16では、グリッド電極 35とし て、 30メッシュと呼ばれる、正方形状の網目の部分の 1辺が 0. 6mmであり、線材の 径が 0. 25mmであるニッケル製の網状体を用いている。しかし、網目の部分のサイ ズ、すなわち開口部 35aのサイズは、これに限定されるわけではない。電子源 3から 放出された電子が通過することができ、かつ放電プラズマ生成空間 8で生成された放 電プラズマ力ものイオンの侵入を抑制することができれば、どのようなサイズでもよ!/ヽ 。例えば、正方形状の開口部 35aの 1辺の長さを、 0. lmn!〜 2mm程度の範囲内で 適宜に設定してもよい。 [0157] The grid electrode 35 is made of a conductive material (for example, nickel, aluminum, stainless steel, etc.) in a net shape. Each mesh-shaped mesh portion constitutes an opening 35a for allowing electrons emitted from the electron source 3 to pass through. In the sixteenth embodiment, as the grid electrode 35, a nickel mesh having a side of a square mesh of 0.6 mm and a wire diameter of 0.25 mm, which is called 30 mesh, is used. Yes. However, the mesh size That is, the size of the opening 35a is not limited to this. Any size can be used as long as the electrons emitted from the electron source 3 can pass through and the intrusion of ions of the discharge plasma power generated in the discharge plasma generation space 8 can be suppressed! / ヽ. For example, if the length of one side of the square opening 35a is 0. lmn! It may be set appropriately within a range of about 2 mm.
[0158] なお、実施の形態 16では、グリッド電極 35を網形状に形成しているが、グリッド電極 35は網形状のものに限定されるわけではない。例えば、平板状の導電性基材の、表 面電極 17と対向する部分に、表面電極 17と同一形状の開口部を設けたものであつ てもよい。  [0158] In Embodiment 16, the grid electrode 35 is formed in a net shape, but the grid electrode 35 is not limited to the net shape. For example, an opening having the same shape as the surface electrode 17 may be provided in a portion of the flat conductive substrate facing the surface electrode 17.
[0159] 実施の形態 16に係る放電装置 (放電ランプ)では、グリッド電極 35と力ソード電極 2 bとアノード電極 2aとの間の電位関係力 グリッド電極 35の電位が力ソード電極 2bの 電位よりは高ぐかつアノード電極 2aの電位よりは低くなるように設定されている。具 体的には、アノード電極 2aと力ソード電極 2bとの間に電圧を印加する電界印加用電 圧源 V の出力電圧と、表面電極 17と下部電極 15との間に駆動電圧を印加する駆 In the discharge device (discharge lamp) according to Embodiment 16, the potential relational force between grid electrode 35, force sword electrode 2b, and anode electrode 2a is greater than the potential of force sword electrode 2b. Is set to be higher and lower than the potential of the anode electrode 2a. Specifically, an output voltage of an electric field applying voltage source V that applies a voltage between the anode electrode 2a and the force sword electrode 2b, and a driving voltage is applied between the surface electrode 17 and the lower electrode 15. Driving
AK AK
動電源 V の出力電圧と、グリッド電極 35と表面電極 17との間に電圧を印加する電  The output voltage of the dynamic power source V and the voltage applied between the grid electrode 35 and the surface electrode 17
PS  PS
子加速用電源 Vcの出力電圧と、グリッド電極 35と力ソード電極 2bとの間に電圧を印 加する電源 V の出力電圧とを適宜に設定することにより、上記の電位関係を満足さ  The above potential relationship is satisfied by appropriately setting the output voltage of the child acceleration power source Vc and the output voltage of the power source V that applies a voltage between the grid electrode 35 and the force sword electrode 2b.
GK  GK
せるようにしている。なお、各電源 V 、V 、Vc及び V の出力電圧は、マイクロコン  I try to make it. The output voltage of each power supply V, V, Vc and V
AK PS GK  AK PS GK
ピュータ(図示せず)などで構成される制御部によって適宜に制御される。  It is appropriately controlled by a control unit including a computer (not shown).
[0160] 以下、実施の形態 16に係る放電装置 (放電ランプ)の 1つの具体的な実施例を説 明する。本実施例においては、気密容器 1内に封入されているアルゴンガスの圧力( 以下「放電ガス圧」という。)は lOPaである。アノード電極 2aと力ソード電極 2bとの間 の距離 (以下「電極間距離」という。)は 10cmに設定されている。グリッド電極 35と力 ソード電極 2bとの間の距離は 5mmに設定されている。グリッド電極 35と表面電極 17 との間の距離は 5mmに設定されている。 [0160] Hereinafter, one specific example of the discharge device (discharge lamp) according to Embodiment 16 will be described. In this embodiment, the pressure of argon gas sealed in the hermetic container 1 (hereinafter referred to as “discharge gas pressure”) is lOPa. The distance between the anode electrode 2a and the force sword electrode 2b (hereinafter referred to as “interelectrode distance”) is set to 10 cm. The distance between the grid electrode 35 and the force sword electrode 2b is set to 5 mm. The distance between the grid electrode 35 and the surface electrode 17 is set to 5 mm.
[0161] ノ ッシェンの法則によれば、最も放電プラズマが発生しやすいのは、放電ガス圧 と 電極間距離 dの積が lOOPa ' cmのときである(p X d= 100Pa' cm)。したがって、本 実施例に係る放電ガス圧が lOPaである放電装置では、アノード電極 2aと力ソード電 極 2bとの間、及び、アノード電極 2aとグリッド電極 35との間の両方で放電が発生しや すくなる。本実施例では、電子源 3から供給される電子の量や電子のエネルギにもよ る力 アノード電極 2aと力ソード電極 2bとの間に約 200Vの電圧を印加すれば、放電 プラズマ生成空間 8に放電プラズマを生成することができる。 [0161] According to Noschen's law, discharge plasma is most likely to occur when the product of discharge gas pressure and inter-electrode distance d is lOOPa'cm (pXd = 100Pa'cm). Therefore, in the discharge device having a discharge gas pressure of lOPa according to this example, the anode electrode 2a and the force sword Discharge easily occurs both between the electrode 2b and between the anode electrode 2a and the grid electrode 35. In this embodiment, if a voltage of about 200 V is applied between the force anode electrode 2a and the force sword electrode 2b depending on the amount of electrons supplied from the electron source 3 and the energy of the electrons, the discharge plasma generation space 8 It is possible to generate a discharge plasma.
[0162] そこで、力ソード電極 2bの電位を OVとし、グリッド電極 35の電位を 100Vとした上で 、アノード電極 2aと力ソード電極 2bとの間に印加する電圧を 200Vよりも低い電圧か ら上昇させてゆくと、アノード電極 2aと力ソード電極 2bとの間の電圧が 200Vになった 時点で、アノード電極 2aと力ソード電極 2bとの間の放電プラズマ生成空間 8に放電プ ラズマが生成される。この時点で、アノード電極 2aとグリッド電極 35との間の電位差は 100Vであり、アノード電極 2aとグリッド電極 35との間の距離は、アノード電極 2aと力 ソード電極 2bとの間の距離よりもやや長いので、アノード電極 2aとグリッド電極 20との 間の電圧は放電開始電圧に達していない。したがって、アノード電極 2aとグリッド電 極 20との間に不必要な放電プラズマは発生しな!、。  [0162] Therefore, with the potential of the force sword electrode 2b set to OV and the potential of the grid electrode 35 set to 100V, the voltage applied between the anode electrode 2a and the force sword electrode 2b is set to a voltage lower than 200V. When the voltage is raised, when the voltage between the anode electrode 2a and the force sword electrode 2b reaches 200V, a discharge plasma is generated in the discharge plasma generation space 8 between the anode electrode 2a and the force sword electrode 2b. Is done. At this point, the potential difference between the anode electrode 2a and the grid electrode 35 is 100V, and the distance between the anode electrode 2a and the grid electrode 35 is greater than the distance between the anode electrode 2a and the force sword electrode 2b. Since it is somewhat long, the voltage between the anode electrode 2a and the grid electrode 20 does not reach the discharge start voltage. Therefore, no unnecessary discharge plasma is generated between the anode 2a and the grid electrode 20!
[0163] 力べして、実施の形態 16に係る放電装置では、アノード電極 2aと力ソード電極 2bと の間の電位差に比べて、アノード電極 2aとグリッド電極 20との間の電位差が小さいの で、アノード電極 2aと力ソード電極 2bとの間に電圧を印加して所望の放電プラズマ生 成空間 8に放電プラズマを発生させる場合、アノード電極 2aとグリッド電極 35との間 に不必要な放電プラズマが発生するのを抑制することができる。さらに、グリッド電極 35より電子源 3側に放電プラズマのイオンが侵入するのを防止することができ、電子 源 3の長寿命化及び信頼性の向上を図ることができる。  [0163] In comparison, in the discharge device according to Embodiment 16, the potential difference between anode electrode 2a and grid electrode 20 is smaller than the potential difference between anode electrode 2a and force sword electrode 2b. When a voltage is applied between the anode electrode 2a and the force sword electrode 2b to generate a discharge plasma in a desired discharge plasma generation space 8, unnecessary discharge plasma is generated between the anode electrode 2a and the grid electrode 35. Can be suppressed. Furthermore, it is possible to prevent ions of the discharge plasma from entering the electron source 3 side from the grid electrode 35, so that the life of the electron source 3 can be extended and the reliability can be improved.
[0164] ところで、アノード電極 2aとグリッド電極 35との間の電位差を小さくするためにグリツ ド電極 35の電位を高めてゆくと、グリッド電極 35と表面電極 17との電位差が大きくな る。このため、グリッド電極 35と電子源 3との間の空間や、グリッド電極 35と力ソード電 極 2bとの間の空間に、不必要な放電プラズマが発生する可能性がある。  Incidentally, when the potential of the grid electrode 35 is increased in order to reduce the potential difference between the anode electrode 2a and the grid electrode 35, the potential difference between the grid electrode 35 and the surface electrode 17 increases. For this reason, unnecessary discharge plasma may be generated in the space between the grid electrode 35 and the electron source 3 and in the space between the grid electrode 35 and the force sword electrode 2b.
[0165] 上記実施例では、放電ガス圧 pが lOPaであるので、最も放電が発生しやす!/、電極 間距離 dは 10cmである(すなわち、 p X d= 100 (Pa' cm)のとき)。これに対して、グ リツド電極 35と力ソード電極 2bとの間の距離、及び、グリッド電極 35と表面電極 17と の間の距離は 5mmであるので、通常は、 kVのオーダの電位差がない限り放電プラ ズマは発生しない。したがって、グリッド電極 35と力ソード電極 2bとの間や、グリッド電 極 35と表面電極 17との間に、アノード電極 2aと力ソード電極 2bとの間の放電(以下「 主放電」と 、う。 )とは無関係な異常放電 (不要な放電プラズマ)が発生し電子源 3が 損傷を受けると 、つた現象は、あまり考慮する必要はな 、。 In the above embodiment, since the discharge gas pressure p is lOPa, discharge is most likely to occur! /, And the inter-electrode distance d is 10 cm (ie, p X d = 100 (Pa ′ cm)) ). On the other hand, since the distance between the grid electrode 35 and the force sword electrode 2b and the distance between the grid electrode 35 and the surface electrode 17 are 5 mm, there is usually no potential difference on the order of kV. As long as discharge plastic Zuma does not occur. Therefore, the discharge between the grid electrode 35 and the force sword electrode 2b, or between the grid electrode 35 and the surface electrode 17 and between the anode electrode 2a and the force sword electrode 2b (hereinafter referred to as “main discharge”). When an abnormal discharge (unnecessary discharge plasma) unrelated to) occurs and the electron source 3 is damaged, the above phenomenon should not be considered much.
[0166] ただし、放電ガス圧(アルゴンの圧力)が lOOPa〜: LkPa程度の放電装置の場合は 、電極間距離 dが lmn!〜 lcmのときに放電が最も発生しやすくなる。このため、グリツ ド電極 35と力ソード電極 2bとの電位差や、グリッド電極 35と電子源 3の表面電極 17と の電位差が 200V程度になると、グリッド電極 35と力ソード電極 2bとの間や、グリッド 電極 35と表面電極 17との間で異常放電 (不必要な放電プラズマ)が発生する。  [0166] However, in the case of a discharge device whose discharge gas pressure (argon pressure) is lOOPa ~: LkPa, the inter-electrode distance d is lmn! Discharge is most likely to occur at ~ lcm. For this reason, when the potential difference between the grid electrode 35 and the force sword electrode 2b, or the potential difference between the grid electrode 35 and the surface electrode 17 of the electron source 3 is about 200 V, Abnormal discharge (unnecessary discharge plasma) is generated between the grid electrode 35 and the surface electrode 17.
[0167] そこで、上記の電位関係を、アノード電極 2aの電位とグリッド電極 35の電位との間 の電位差力 アノード電極 2aとグリッド電極 35との間の放電開始電圧よりも小さくなる ように設定すれば、アノード電極 2aとグリッド電極 35との電位差を小さくするためにグ リツド電極 35の電位を高くしたときに、グリッド電極 35と表面電極 17との間に不必要 な放電プラズマが発生して電子源 3が損傷を受けるのを防止することができる。  [0167] Therefore, the above potential relationship is set so as to be smaller than the potential difference force between the potential of the anode electrode 2a and the potential of the grid electrode 35 and the discharge start voltage between the anode electrode 2a and the grid electrode 35. For example, when the potential of the grid electrode 35 is increased in order to reduce the potential difference between the anode electrode 2a and the grid electrode 35, unnecessary discharge plasma is generated between the grid electrode 35 and the surface electrode 17 to generate electrons. Source 3 can be prevented from being damaged.
[0168] また、実施の形態 16では、放電装置 (放電ランプ)の輝度を高めるためにアノード 電極 2aの電圧を高めてゆくと、アノード電極 2aとグリッド電極 35との間の電位差が放 電開始電圧よりも大きくなり、不必要な放電プラズマが発生する可能性がある。上記 実施例に即して説明すれば、アノード電極 2aの電位を 300Vまで高めると、アノード 電極 2aとグリッド電極 35との間の電位差が 200Vとなる。ここで、アノード電極 2aとグ リツド電極 35との間の放電開始電圧力 アノード電極 2aと力ソード電極 2bとの間の放 電開始電圧と同じであるとすれば、アノード電極 2aとグリッド電極 35との間で、不必 要な放電プラズマが発生するおそれがある。ただし、実施の形態 16におけるアノード 電極 2aと力ソード電極 2bとグリッド電極 35の位置関係では、アノード電極 2aとグリッド 電極 35との間の放電開始電圧は、アノード電極 2aと力ソード電極 2bとの間の放電開 始電圧よりもやや高い。  In Embodiment 16, when the voltage of anode electrode 2a is increased in order to increase the luminance of the discharge device (discharge lamp), the potential difference between anode electrode 2a and grid electrode 35 starts to discharge. There is a possibility that unnecessary discharge plasma is generated due to the voltage exceeding the voltage. Explaining in accordance with the above embodiment, when the potential of the anode electrode 2a is increased to 300V, the potential difference between the anode electrode 2a and the grid electrode 35 becomes 200V. Here, if the discharge start voltage force between the anode electrode 2a and the grid electrode 35 is the same as the discharge start voltage between the anode electrode 2a and the force sword electrode 2b, then the anode electrode 2a and the grid electrode 35 Unnecessary discharge plasma may be generated between them. However, in the positional relationship among the anode electrode 2a, the force sword electrode 2b, and the grid electrode 35 in the embodiment 16, the discharge start voltage between the anode electrode 2a and the grid electrode 35 is between the anode electrode 2a and the force sword electrode 2b. It is slightly higher than the discharge start voltage.
[0169] したがって、前記のようにアノード電極 2aの電位を高める場合は、グリッド電極 35の 電位も高めればよい。前記のとおり、放電ガス圧 (アルゴンガスの圧力)が lOPa程度 の場合は、グリッド電極 35と力ソード電極 2bとの間や、グリッド電極 35と表面電極 17 との間の放電開始電圧は kVオーダの電圧であり、不必要な放電プラズマは発生し にくい。し力し、放電ガス圧が lOOPa〜: LkPa程度の場合は、グリッド電極 35の電位 を高くすると、グリッド電極 35と表面電極 17との間の空間に不必要な放電プラズマが 発生する可能性が生じる。 Therefore, when the potential of the anode electrode 2a is increased as described above, the potential of the grid electrode 35 may be increased. As described above, when the discharge gas pressure (argon gas pressure) is about lOPa, between the grid electrode 35 and the force sword electrode 2b, or between the grid electrode 35 and the surface electrode 17 The discharge start voltage between and is in the order of kV, and unnecessary discharge plasma is unlikely to occur. However, if the discharge gas pressure is about lOOPa ~: LkPa, if the potential of the grid electrode 35 is increased, unnecessary discharge plasma may be generated in the space between the grid electrode 35 and the surface electrode 17. Arise.
[0170] そこで、グリッド電極 35と表面電極 17との間の空間での放電プラズマの発生を防止 するには、グリッド電極 35の電位の上昇に合わせて、電子源 3の表面電極 17及び下 部電極 15の電位を上昇させればよい。例えば、グリッド電極 35の電位を 150Vとする 場合は、表面電極 17の電位を 90Vにし、下部電極 15の電位を 75Vにすれば、グリツ ド電極 35と表面電極 17との電位差は 60Vとなる。したがって、グリッド電極 35と表面 電極 17との間の空間に放電プラズマが発生するのを抑制することができる。なお、こ の場合、電子源 3の駆動電圧は 15V ( = 90— 75 = 15 (V) )となる。  [0170] Therefore, in order to prevent the generation of discharge plasma in the space between the grid electrode 35 and the surface electrode 17, the surface electrode 17 and the lower part of the electron source 3 are adjusted in accordance with the increase in the potential of the grid electrode 35. The potential of the electrode 15 may be increased. For example, when the potential of the grid electrode 35 is 150V, the potential difference between the grid electrode 35 and the surface electrode 17 is 60V when the potential of the surface electrode 17 is 90V and the potential of the lower electrode 15 is 75V. Therefore, it is possible to suppress the generation of discharge plasma in the space between the grid electrode 35 and the surface electrode 17. In this case, the driving voltage of the electron source 3 is 15V (= 90−75 = 15 (V)).
[0171] 実施の形態 16では、電子源 3として BSDを用いている力 電子源 3は BSDに限定 されるわけではない。例えば、 MIM型電子源や、スピント型の電子源や、カーボンナ ノチューブを用いた電子源などを用いてもよい。なお、 MIM型電子源の場合は、上 部電極 (表面電極)が電子放出部を構成する。スピント型の電子源の場合は、円錐状 のェミッタが電子放出部を構成する。カーボンナノチューブを用いた電子源の場合は In Embodiment 16, force electron source 3 using BSD as electron source 3 is not limited to BSD. For example, an MIM type electron source, a Spindt type electron source, or an electron source using a carbon nanotube may be used. In the case of the MIM type electron source, the upper electrode (surface electrode) constitutes the electron emission portion. In the case of a Spindt-type electron source, a conical emitter forms the electron emission section. For electron sources using carbon nanotubes
、カーボンナノチューブが電子放出部を構成する。 The carbon nanotubes constitute an electron emission portion.
[0172] 図 28に示す放電装置では、電子源 3とグリッド電極 35とを有する補助装置は、気密 容器 1内で力ソード電極 2bの近傍に配置されている。し力しながら、図 30に示すよう に、補助装置を、力ソード電極 2bの近傍ではなぐアノード電極 2aの近傍に配置して もよい。ところで、補助装置をプラズマ生成空間 8内に配置すると、アノード電極 2aと グリッド電極 35との間に放電プラズマが発生しないときでも、補助装置は放電プラズ マに曝される。このため、グリッド電極 35から電子源 3側にイオンが侵入するおそれが ある。 In the discharge device shown in FIG. 28, the auxiliary device having the electron source 3 and the grid electrode 35 is disposed in the airtight container 1 in the vicinity of the force sword electrode 2b. However, as shown in FIG. 30, the auxiliary device may be arranged in the vicinity of the anode electrode 2a, not in the vicinity of the force sword electrode 2b. By the way, when the auxiliary device is arranged in the plasma generation space 8, the auxiliary device is exposed to the discharge plasma even when the discharge plasma is not generated between the anode electrode 2a and the grid electrode 35. Therefore, ions may enter from the grid electrode 35 to the electron source 3 side.
[0173] これに対して、図 30に示す放電装置では、補助装置は、気密容器 1内においてァ ノード電極 2aと力ソード電極 2bとの間のプラズマ生成空間 8の外で、アノード電極 2a の近くに配置されている。かつ、グリッド電極 35は、電子源 3よりもアノード電極 2aに 近づけて配置されている。このように、補助装置がプラズマ生成空間 8の外に配置さ れて ヽるので、補助装置がプラズマ生成空間 8に生成された放電プラズマに曝される のを防止することができる。また、補助装置がアノード電極 2aの近くに配置され、かつ 、グリッド電極 35が電子源 3よりもアノード電極 2aに近づけて配置されているので、電 子源 3から放出されてプラズマ生成空間 8に到達する電子の量を増やすことができる On the other hand, in the discharge device shown in FIG. 30, the auxiliary device has the anode electrode 2a in the hermetic vessel 1 outside the plasma generation space 8 between the anode electrode 2a and the force sword electrode 2b. Located nearby. The grid electrode 35 is arranged closer to the anode electrode 2a than the electron source 3. In this way, the auxiliary device is placed outside the plasma generation space 8. Therefore, the auxiliary device can be prevented from being exposed to the discharge plasma generated in the plasma generation space 8. Further, since the auxiliary device is disposed near the anode electrode 2a and the grid electrode 35 is disposed closer to the anode electrode 2a than the electron source 3, it is emitted from the electron source 3 and enters the plasma generation space 8. Can increase the amount of electrons reaching
[0174] 実施の形態 16では、気密容器 1の形状は円筒形であるが、気密容器 1の形状はこ れに限定されるわけではない。例えば、気密容器 1は電球のような球形状のものであ つてもよく、直方体形状又は立方体形状のものであってもよい。また、気密容器 1は、 1対の平板と両平板間に介在するフレームとで構成される平面型のものであってもよ い。 [0174] In Embodiment 16, the shape of the hermetic container 1 is cylindrical, but the shape of the hermetic container 1 is not limited to this. For example, the airtight container 1 may have a spherical shape like a light bulb, or may have a rectangular parallelepiped shape or a cubic shape. Further, the airtight container 1 may be a flat type constituted by a pair of flat plates and a frame interposed between the flat plates.
[0175] 実施の形態 16では、エネルギ供給手段として、円筒状の気密容器 1内に 1対の放 電電極 2a、 2b力 気密容器 1の長手方向に離間して配置されている。し力し、このよ うにせず、 1対の放電電極 2a、 2bの一方を気密容器 1の外部に配置してもよい。また 、すべての放電用電極 2a、 2bを気密容器 1内に配置する場合、複数対の放電電極 2a、 2bを設けてもよい。  In the sixteenth embodiment, the energy supply means is disposed in the cylindrical airtight container 1 so as to be separated in the longitudinal direction of the pair of discharge electrodes 2a, 2b force hermetic container 1. However, instead of doing this, one of the pair of discharge electrodes 2a and 2b may be arranged outside the hermetic container 1. Further, when all the discharge electrodes 2a and 2b are arranged in the hermetic container 1, a plurality of pairs of discharge electrodes 2a and 2b may be provided.
[0176] 実施の形態 16では、放電装置としてアルゴンガスを用いた放電ランプを例示して!/ヽ る。しかし、放電装置は放電ランプに限定されるわけではなぐ例えば、照明用の蛍 光ランプやプラズマディスプレイパネルなどでもよい。なお、蛍光ランプの場合は、気 密容器 1の内面の適当な部位に、紫外線などにより励起されて発光する蛍光体層を 設ければよい。  [0176] In the sixteenth embodiment, a discharge lamp using argon gas will be exemplified as a discharge device. However, the discharge device is not limited to a discharge lamp, and may be a fluorescent lamp for illumination, a plasma display panel, or the like. In the case of a fluorescent lamp, a phosphor layer that emits light by being excited by ultraviolet rays or the like may be provided at an appropriate part of the inner surface of the hermetic container 1.
[0177] 実施の形態 16では、気密容器 1内に封入する放電ガスとしてアルゴンガスを用い ている。しかし、気密容器 1内に封入する放電ガスはアルゴンガスに限定されるわけ ではなぐエネルギを供給することにより放電を起こすガスであればどのようなもので もよい。例えば、放電ガスとして、 Heガス、 Neガス、 Xeガス、 Krガス、 Nガス、 COガ  In the sixteenth embodiment, argon gas is used as the discharge gas sealed in the hermetic container 1. However, the discharge gas sealed in the hermetic vessel 1 is not limited to argon gas, and any gas may be used as long as it causes discharge by supplying energy. For example, as discharge gas, He gas, Ne gas, Xe gas, Kr gas, N gas, CO gas
2  2
ス、 Hg蒸気、あるいはこれらの混合ガスなどを用いてもよい。  Sm, Hg vapor, or a mixed gas thereof may be used.
[0178] 以上、本発明はその特定の実施の形態に関連して説明されてきた力 このほか多 数の変形例及び修正例が可能であるということは当業者にとっては自明なことであろ う。それゆえ、本発明は、このような実施の形態によって限定されるものではなぐ請 求の範囲によって限定されるべきものである。 [0178] As described above, it is obvious to those skilled in the art that the present invention is capable of many variations and modifications in addition to the forces described in connection with the specific embodiment. . Therefore, the present invention is not limited to such an embodiment. It should be limited by the scope of demand.
産業上の利用可能性 Industrial applicability
以上のように、本発明にかかる放電プラズマ生成補助装置は、イオン衝撃等による その損傷を抑制しつつ、放電プラズマ装置ないしは発光装置の放電開始電圧、放電 維持電圧等を低減するとともに放電プラズマを安定させる手段として有用であり、とく に蛍光ランプ、紫外線ランプ、プラズマディスプレイパネルなどに用いるのに適してい る。  As described above, the discharge plasma generation auxiliary device according to the present invention reduces the discharge start voltage, discharge sustain voltage, etc. of the discharge plasma device or the light emitting device and stabilizes the discharge plasma while suppressing damage caused by ion bombardment. It is useful as a means for making it suitable for use in fluorescent lamps, ultraviolet lamps, plasma display panels and the like.

Claims

請求の範囲 The scope of the claims
[1] 放電媒体であるガスが封入された気密容器と、  [1] an airtight container filled with a discharge medium gas;
気密容器の内部と外部とのうちの少なくとも一方に配置され、前記ガスを放電させ て放電プラズマを生成するためのエネルギを供給するエネルギ供給部とを備えた放 電プラズマ装置に設けられ放電プラズマの生成を補助する放電プラズマ生成補助装 置であって、  Disposed in at least one of the inside and the outside of the hermetic container and provided in a discharge plasma apparatus provided with an energy supply unit that supplies energy for discharging the gas to generate discharge plasma. A discharge plasma generation auxiliary device for assisting generation,
前記ガス中に電子を供給する電界放射型電子源と、  A field emission electron source for supplying electrons into the gas;
気密容器内で生成された放電プラズマのイオンカゝら電界放射型電子源を保護する 保護手段とを含むことを特徴とする放電プラズマ生成補助装置。  A discharge plasma generation auxiliary device comprising: a protection means for protecting a field emission electron source such as an ion source of discharge plasma generated in an airtight container.
[2] 前記ガスの放電を検出する放電検出器と、  [2] a discharge detector for detecting discharge of the gas;
前記ガスの放電開始が検出されたときに、放電プラズマ中のプラスイオンが電界放 射型電子源に衝突するのを抑制するように電界放射型電子源の電位を制御する制 御手段とをさらに含むことを特徴とする、請求項 1に記載の放電プラズマ生成補助装 置。  Control means for controlling the electric potential of the field emission electron source so as to suppress positive ions in the discharge plasma from colliding with the field emission electron source when the start of discharge of the gas is detected. The discharge plasma generation auxiliary device according to claim 1, wherein the discharge plasma generation auxiliary device is included.
[3] エネルギ供給部が、少なくとも 1対の放電電極を含んで 、て、  [3] The energy supply unit includes at least one pair of discharge electrodes, and
放電検出器が、放電電極対間のインピーダンス、電流又は電圧の変化に基づいて 前記ガスの放電開始を検出することを特徴とする、請求項 2に記載の放電プラズマ生 成補助装置。  3. The discharge plasma generation auxiliary device according to claim 2, wherein the discharge detector detects the start of discharge of the gas based on a change in impedance, current or voltage between the discharge electrode pair.
[4] 前記制御手段が、前記ガスの放電開始検出後は、電界放射型電子源の電位を、 放電開始検出前の電位より高い電位となるように制御することを特徴とする、請求項 2 に記載の放電プラズマ生成補助装置。  [4] The control means, wherein after the start of discharge of the gas is detected, the potential of the field emission electron source is controlled to be higher than the potential before the start of discharge is detected. A discharge plasma generation auxiliary device according to claim 1.
[5] 前記保護手段が、電子を通すための電子通過部を有し放電プラズマのイオンから 電界放射型電子源の表面電極を保護する保護部材を含むことを特徴とする、請求項[5] The protective means includes a protective member having an electron passage portion for allowing electrons to pass therethrough and protecting the surface electrode of the field emission electron source from ions of discharge plasma.
1に記載の放電プラズマ生成補助装置。 The discharge plasma generation auxiliary device according to 1.
[6] 保護部材の部位のうち少なくとも前記表面電極に対向する部位は、導電性材料で 形成され、かつ電子通過部を有することを特徴とする、請求項 5に記載の放電プラズ マ生成補助装置。 6. The discharge plasma generation assisting device according to claim 5, wherein at least a portion of the protective member facing the surface electrode is made of a conductive material and has an electron passage portion. .
[7] 保護部材が網形状に形成されていることを特徴とする、請求項 5に記載の放電ブラ ズマ生成補助装置。 7. The discharge bra of claim 5, wherein the protective member is formed in a net shape. Zuma generation assist device.
[8] 保護部材が二次電子放出部材であることを特徴とする、請求項 5に記載の放電ブラ ズマ生成補助装置。  8. The discharge plasma generation assisting device according to claim 5, wherein the protective member is a secondary electron emission member.
[9] 保護部材の内側と外側とのうちの少なくとも一方が二次電子放出部材を備えている ことを特徴とする、請求項 5に記載の放電プラズマ生成補助装置。  9. The discharge plasma generation auxiliary device according to claim 5, wherein at least one of the inner side and the outer side of the protective member includes a secondary electron emission member.
[10] 保護部材の電位が、電界放射型電子源の電子放出部の電位に対して同電位又は 高電位となるように制御され、及び Z又は、保護部材と電界放射型電子源の電子放 出部との間の電位差が、放電開始電圧より小さくなるように制御されることを特徴とす る、請求項 5に記載の放電プラズマ生成補助装置。  [10] The potential of the protection member is controlled to be the same or higher than the potential of the electron emission portion of the field emission electron source, and Z or the electron emission of the protection member and the field emission electron source is controlled. 6. The discharge plasma generation auxiliary device according to claim 5, wherein a potential difference between the discharge portion and the discharge portion is controlled to be smaller than a discharge start voltage.
[11] エネルギ供給手段が力ソード電極とアノード電極とを有して 、て、  [11] The energy supply means includes a force sword electrode and an anode electrode, and
保護部材の電位力 力ソード電極の電位よりも高くなり、アノード電極の電位よりも 低くなるように制御されることを特徴とする、請求項 5に記載の放電プラズマ生成補助 装置。  6. The discharge plasma generation assisting device according to claim 5, wherein the discharge plasma generation assisting device is controlled to be higher than a potential of the potential force sword electrode of the protective member and lower than a potential of the anode electrode.
[12] エネルギ供給手段が力ソード電極とアノード電極とを有して 、て、  [12] The energy supply means includes a force sword electrode and an anode electrode, and
アノード電極の電位と保護部材の電位との間の電位差が、放電開始電圧よりも小さ くなるように制御されることを特徴とする、請求項 5に記載の放電プラズマ生成補助装 置。  6. The discharge plasma generation auxiliary device according to claim 5, wherein the potential difference between the potential of the anode electrode and the potential of the protective member is controlled to be smaller than the discharge start voltage.
[13] エネルギ供給手段が力ソード電極とアノード電極とを有して 、て、  [13] The energy supply means includes a force sword electrode and an anode electrode, and
保護部材とカソード電極との距離を dとし、保護部材とカソード電極との間の空間に おける電子増倍率を αとし、放電プラズマのイオンによる二次電子放出係数を γとす れば、  If the distance between the protective member and the cathode electrode is d, the electron multiplication factor in the space between the protective member and the cathode electrode is α, and the secondary electron emission coefficient due to the ions of the discharge plasma is γ,
保護部材が、  Protective member
y≤l/ (ea d- l) y≤l / (e ad -l)
の関係を満たす材料で形成されて!ヽることを特徴とする、請求項 5に記載の放電ブラ ズマ生成補助装置。  6. The discharge plasma generation assisting device according to claim 5, wherein the discharge plasma generation assisting device is formed of a material satisfying the following relationship.
[14] エネルギ供給手段が力ソード電極とアノード電極とを有して 、て、 [14] The energy supply means includes a force sword electrode and an anode electrode, and
保護部材とカソード電極との距離を dとし、保護部材とカソード電極との間の空間に おける電子増倍率を αとし、放電プラズマのイオンによる二次電子放出係数を γとす れば、 The distance between the protective member and the cathode electrode is d, the electron multiplication factor in the space between the protective member and the cathode electrode is α, and the secondary electron emission coefficient due to the discharge plasma ions is γ. If
保護部材の電位が、 The potential of the protective member is
Figure imgf000048_0001
Figure imgf000048_0001
の関係を満たすように制御されることを特徴とする、請求項 5に記載の放電プラズマ 生成補助装置。  6. The discharge plasma generation auxiliary device according to claim 5, wherein the discharge plasma generation auxiliary device is controlled so as to satisfy the relationship of:
[15] 保護部材が、電界放射型電子源に近い第 1の保護部材と、電界放射型電子源から 遠 、第 2の保護部材とで構成されて 、て、  [15] The protective member includes a first protective member close to the field emission electron source and a second protective member far from the field emission electron source.
第 1の保護部材の電位が電界放射型電子源よりも高電位となるように制御され、か つ第 1の保護部材の電位と第 2の保護部材の電位とが互いに異なる電位となるように 制御されるとともに、  The potential of the first protective member is controlled to be higher than that of the field emission electron source, and the potential of the first protective member and the potential of the second protective member are different from each other. As well as being controlled
第 2の保護部材の電位が、アノード電極の電位よりも低くなり、力ソード電極の電位 よりも高くなるように制御されることを特徴とする、請求項 5に記載の放電プラズマ生成 補助装置。  6. The discharge plasma generation auxiliary device according to claim 5, wherein the potential of the second protective member is controlled to be lower than the potential of the anode electrode and higher than the potential of the force sword electrode.
[16] 第 2の保護部材の電位が、第 1の保護部材の電位よりも低い電位となるように制御さ れることを特徴とする、請求項 15に記載の放電プラズマ生成補助装置。  16. The discharge plasma generation auxiliary device according to claim 15, wherein the potential of the second protective member is controlled to be lower than the potential of the first protective member.
[17] 第 2の保護部材の開口率が第 1の保護部材の開口率より低いことを特徴とする、請 求項 15に記載の放電プラズマ生成補助装置。 [17] The discharge plasma generation auxiliary device according to claim 15, wherein the aperture ratio of the second protective member is lower than the aperture ratio of the first protective member.
[18] 電界放射型電子源が放電プラズマに直接さらされないように配置される一方、二次 電子放出部が電界放射型電子源の電子放出面の斜め前方に配置されていることを 特徴とする、請求項 1に記載の放電プラズマ生成補助装置。 [18] The field emission electron source is arranged so as not to be directly exposed to the discharge plasma, while the secondary electron emission part is arranged obliquely in front of the electron emission surface of the field emission electron source. The discharge plasma generation auxiliary device according to claim 1.
[19] 電界放射型電子源が弾道電子面放出型電子源であることを特徴とする、請求項 119. The field emission electron source is a ballistic electron surface emission electron source.
〜18のいずれか 1つに記載の放電プラズマ生成補助装置。 The discharge plasma generation auxiliary device according to any one of -18.
[20] 請求項 1、 2、 5又は 18に記載の放電プラズマ生成補助装置を含むことを特徴とす る照明装置。 [20] An illumination device comprising the discharge plasma generation auxiliary device according to claim 1, 2, 5, or 18.
PCT/JP2006/316729 2005-08-26 2006-08-25 Discharge plasma generation auxiliary device WO2007023945A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005246800 2005-08-26
JP2005-246800 2005-08-26
JP2005-246801 2005-08-26
JP2005246801A JP5102442B2 (en) 2005-08-26 2005-08-26 Discharge plasma generation auxiliary device

Publications (1)

Publication Number Publication Date
WO2007023945A1 true WO2007023945A1 (en) 2007-03-01

Family

ID=37771683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316729 WO2007023945A1 (en) 2005-08-26 2006-08-25 Discharge plasma generation auxiliary device

Country Status (1)

Country Link
WO (1) WO2007023945A1 (en)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121454A (en) * 1977-03-31 1978-10-23 Toshiba Corp Electron source of thin film electric field emission type and its manufacture
JPS63150837A (en) * 1986-12-16 1988-06-23 Canon Inc Electron emitting device
JPH0473837A (en) * 1990-07-13 1992-03-09 Futaba Corp Electron emission element
JPH04286855A (en) * 1991-03-15 1992-10-12 Matsushita Electric Works Ltd Electroluminescent device
JPH07235257A (en) * 1993-12-27 1995-09-05 Canon Inc Electron source, electron beam generator, and image formation device
JPH08222158A (en) * 1995-02-17 1996-08-30 Olympus Optical Co Ltd Thin display device
JPH09274845A (en) * 1996-04-03 1997-10-21 Dainippon Printing Co Ltd Electron emission element and focusing electrode for electron emission element and manufacture thereof
JPH1131452A (en) * 1997-07-08 1999-02-02 Nec Corp Field emission type cold cathode and manufacture thereof
JPH11311975A (en) * 1998-04-30 1999-11-09 Toshiba Corp Discharge type plane display device
JPH11329213A (en) * 1997-10-29 1999-11-30 Matsushita Electric Works Ltd Field emission type electron source and its manufacture, and planar light-emitting device, display device and solid vacuum device thereof
JP2002150944A (en) * 2000-11-14 2002-05-24 Matsushita Electric Works Ltd Luminous device having electron emitter
JP2002203471A (en) * 2000-12-19 2002-07-19 Iimu Jisuun Field emitter
JP2002298778A (en) * 2001-03-27 2002-10-11 Delta Optoelectronics Inc Cold cathode fluorescent flat lamp
JP2004152591A (en) * 2002-10-30 2004-05-27 Mitsubishi Pencil Co Ltd Field emission lamp
JP2004200896A (en) * 2002-12-17 2004-07-15 Anritsu Corp Dielectric leaky wave antenna
JP2004207066A (en) * 2002-12-25 2004-07-22 Ci Techno:Kk Light emitting device and its manufacturing method
JP2005084491A (en) * 2003-09-10 2005-03-31 Hitachi Displays Ltd Flat plate back light and liquid crystal display using the same
JP2006164648A (en) * 2004-12-03 2006-06-22 Quantum 14:Kk Plasma igniter and device with the same mounted thereon
JP2006179202A (en) * 2004-12-21 2006-07-06 Quantum 14:Kk Flat face light source

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121454A (en) * 1977-03-31 1978-10-23 Toshiba Corp Electron source of thin film electric field emission type and its manufacture
JPS63150837A (en) * 1986-12-16 1988-06-23 Canon Inc Electron emitting device
JPH0473837A (en) * 1990-07-13 1992-03-09 Futaba Corp Electron emission element
JPH04286855A (en) * 1991-03-15 1992-10-12 Matsushita Electric Works Ltd Electroluminescent device
JPH07235257A (en) * 1993-12-27 1995-09-05 Canon Inc Electron source, electron beam generator, and image formation device
JPH08222158A (en) * 1995-02-17 1996-08-30 Olympus Optical Co Ltd Thin display device
JPH09274845A (en) * 1996-04-03 1997-10-21 Dainippon Printing Co Ltd Electron emission element and focusing electrode for electron emission element and manufacture thereof
JPH1131452A (en) * 1997-07-08 1999-02-02 Nec Corp Field emission type cold cathode and manufacture thereof
JPH11329213A (en) * 1997-10-29 1999-11-30 Matsushita Electric Works Ltd Field emission type electron source and its manufacture, and planar light-emitting device, display device and solid vacuum device thereof
JPH11311975A (en) * 1998-04-30 1999-11-09 Toshiba Corp Discharge type plane display device
JP2002150944A (en) * 2000-11-14 2002-05-24 Matsushita Electric Works Ltd Luminous device having electron emitter
JP2002203471A (en) * 2000-12-19 2002-07-19 Iimu Jisuun Field emitter
JP2002298778A (en) * 2001-03-27 2002-10-11 Delta Optoelectronics Inc Cold cathode fluorescent flat lamp
JP2004152591A (en) * 2002-10-30 2004-05-27 Mitsubishi Pencil Co Ltd Field emission lamp
JP2004200896A (en) * 2002-12-17 2004-07-15 Anritsu Corp Dielectric leaky wave antenna
JP2004207066A (en) * 2002-12-25 2004-07-22 Ci Techno:Kk Light emitting device and its manufacturing method
JP2005084491A (en) * 2003-09-10 2005-03-31 Hitachi Displays Ltd Flat plate back light and liquid crystal display using the same
JP2006164648A (en) * 2004-12-03 2006-06-22 Quantum 14:Kk Plasma igniter and device with the same mounted thereon
JP2006179202A (en) * 2004-12-21 2006-07-06 Quantum 14:Kk Flat face light source

Similar Documents

Publication Publication Date Title
US5663611A (en) Plasma display Panel with field emitters
JP2002150944A (en) Luminous device having electron emitter
CN102089853B (en) Light emitting device
EP1758144A3 (en) Plasma display panel
JP4618145B2 (en) Discharge plasma equipment
KR100719574B1 (en) Flat panel display device and Electron emission device
WO2007023945A1 (en) Discharge plasma generation auxiliary device
JP4944502B2 (en) Discharge lighting device and lighting fixture.
JP4631716B2 (en) Discharge plasma generation auxiliary device
JP4692348B2 (en) Discharge plasma generation auxiliary device
JPH11317171A (en) Plasma display
JP5237538B2 (en) Discharge plasma equipment
EP1783801A2 (en) Display device
JP5102442B2 (en) Discharge plasma generation auxiliary device
JP4876779B2 (en) Discharge device
JP4797815B2 (en) Discharge lighting device and lighting fixture
JP2007087937A (en) Electric discharge plasma generation auxiliary device
JP2002334674A (en) Fluorescent display tube and its drive method and drive circuit
JP2008108635A (en) Discharge plasma generation auxiliary device, light-emitting device, and lighting fixture
JP2005149779A (en) Arc tube, flat luminescent panel, and image display element using it
JP4359013B2 (en) Discharge generator and method
JP4944503B2 (en) Discharge lighting device and lighting apparatus using the same
JP2006179202A (en) Flat face light source
JP2006004954A (en) Light emitting device with electron emitter
KR100659099B1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796802

Country of ref document: EP

Kind code of ref document: A1