WO2007023917A1 - 無線通信方法および受信機 - Google Patents

無線通信方法および受信機 Download PDF

Info

Publication number
WO2007023917A1
WO2007023917A1 PCT/JP2006/316644 JP2006316644W WO2007023917A1 WO 2007023917 A1 WO2007023917 A1 WO 2007023917A1 JP 2006316644 W JP2006316644 W JP 2006316644W WO 2007023917 A1 WO2007023917 A1 WO 2007023917A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
propagation path
sector
subcarrier
sectors
Prior art date
Application number
PCT/JP2006/316644
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Hamaguchi
Shoichi Shitara
Minoru Kubota
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to JP2007532183A priority Critical patent/JPWO2007023917A1/ja
Publication of WO2007023917A1 publication Critical patent/WO2007023917A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se

Definitions

  • the present invention relates to a radio communication method and a receiver capable of estimating a propagation path with high accuracy in an OFDM communication system and suppressing the influence on other sectors when using MIMO.
  • Fig. 16 shows codes used for propagation path estimation symbols when the number of sectors controlled by the base station is three. In FIG. 16, it is assumed that one square is a code of each subcarrier. Create “1 + Oj" for "1" and “1 1 + Oj” for complex IFFT (Inverse Fourier Transform) input in the OFDM transmitter to create a symbol for channel estimation. I will show you that.
  • IFFT Inverse Fourier Transform
  • the pattern shown in Fig. 16 has a configuration in which a code string composed of four codes is repeatedly allocated to subcarriers for each sector. That is, (1, 1, 1, 1) in sector 1, (1,-1,-1, 1) in sector 2, (1, 1,-1, 1) in sector 3, It is an orthogonal code (multiply each codeword and add up to 0).
  • FIG. 17 identifies this code, and furthermore, it is possible to estimate the propagation path with the sector to be connected.
  • a possible receiver block configuration is shown.
  • FIG. 18 is a block diagram showing a detailed configuration of the correlation calculation unit of FIG.
  • a basic propagation path estimation method is shown in Figs. 17 and 18.
  • the received OFDM signal is symbol-synchronized, and data of the number of points necessary for the FFT is input from the OFDM symbol to the FFT section (Fast Fourier Transform) 101 and subjected to the FFT.
  • the FFT-processed data is input to the correlation calculation units 102-1 to 102-3 when the symbol is CE.
  • the reason why there are three correlation calculation units is that the system assumed here is three sectors, so it is necessary to identify three types of signals.
  • each of the correlation calculation units 102_1 to 102_3 correlation detection is performed based on the pattern of each sector. This will be described in detail with reference to FIG.
  • data for the number of subcarriers is input. Since the codes used to identify the sector are four orthogonal codes, the correlation is calculated every 4 subcarriers.
  • N correlation units 150-1 to 150-3 are required for one correlation calculation unit. .
  • f4k-3, f4k2, f4k1, and f4k are input to one correlator during FFT output.
  • fx is the complex number of the FFT output of the Xth carrier.
  • f4k3 it is the output of the 4k-3rd subcarrier.
  • four subcarriers assigned to form an orthogonal system are selected. These data are multiplied by the complex conjugate signal of the code used in the transmission system in the multipliers 121-1 to 121-4.
  • the Sector code 1 is stored in the memory 120-1
  • the Sector code 2 is stored in the memory 120_2, the Sector code 3 and the memory 120_3, the Sector code 4 and the memory 120_4, respectively.
  • the sector selection unit 104 determines the data of the correlation calculation units 102-1 to 102-3, which is the maximum output, as the transmission sector, and F m obtained by the correlation calculation unit corresponding to the selected sector. Is input to the propagation path estimation unit 105 via the selection unit 103.
  • the propagation path estimation unit 105 estimates the propagation path of each subcarrier based on the input Fm.
  • the propagation path fluctuations in the four subcarriers used to calculate Fm are constant, so the propagation path from f4m-3 to f4m is estimated as FmZ4.
  • Data is demodulated based on the propagation path information thus obtained.
  • Data OFDM symbol input to FFT section 101 is subjected to FFT and input to propagation path compensation section 106.
  • the propagation path compensation unit 106 multiplies the complex conjugate signal of the propagation path estimation value obtained previously for each subcarrier to compensate the propagation path. Then, the propagation path compensated data is input to the data demodulator 107, and the transmission data is demodulated.
  • Patent Document 1 Special Table 2006-500864 Publication
  • Non-Patent Document 1 "3GPP Rl -050589 NTT DoCoMo"
  • Figure 19 shows the preamble pattern when assuming 2 X 2MIMO (two sequences of data are transmitted simultaneously and processed by the receiving system on the receiving side).
  • the white rectangle is transmitted only from antenna 1, and the shaded rectangle is transmitted only from antenna 2.
  • orthogonality can be maintained between sectors for each antenna, and propagation path estimation can be performed at intervals of 8 subcarriers.
  • the pattern in this example differs from the pattern shown in FIG. 16 for each subcarrier. Therefore, it is necessary for all mobile terminals to be able to receive MIMO, and to recognize that transmission is performed using MIMO in advance by some means! Become. Terminals that are not capable of receiving M1MO should not be ignored in the actual system. Even if such terminals exist, it is desirable that the system operates normally.
  • the present invention has been made in view of such circumstances, and in the OFDM communication system, it is possible to estimate a propagation path with high accuracy even near the edge of a sector, and to perform MIMO.
  • the radio communication method controls a plurality of sectors and performs radio communication of a base station apparatus that performs radio communication with a mobile station apparatus existing in any sector by an OFDM communication scheme.
  • a code sequence used for estimating a propagation path in one sector of an arbitrary set of sectors and a code string used for estimating a propagation path in the other sector are mutually connected.
  • the code sequences are generated so that some of the components of the code sequences are orthogonal to each other, and a single system data communication is performed using a single or a plurality of antennas.
  • the generated code sequences are allocated to subcarriers by the same method, and symbols are transmitted to mobile station apparatuses existing in the respective sectors. Special to do It is set to.
  • the code string used to estimate the propagation path in one sector and the propagation path in the other sector are estimated. Therefore, not only the code sequences used are orthogonal to each other, but also some of the components of each code sequence are orthogonal to each other. Can be maintained and improved. In addition, by using such a code, it is possible to easily determine whether the power is SISO, which is MIMO, by detecting the correlation on the receiving side.
  • SISO which is MIMO
  • the maximum number of antennas used is M (M is a natural number).
  • MIMO that performs data communication of the following systems can be used. It is a base station apparatus that controls a plurality of sectors and performs radio communication with a mobile station apparatus existing in any sector by OFDM communication.
  • a combination of code sequences is repeatedly assigned NZn times to the number N of subcarriers for channel estimation (N is a natural number). It is characterized by transmitting symbols from the antenna cover.
  • N is a natural number
  • the same antenna power symbol is assigned. It is characterized by transmitting.
  • the receiving side can easily determine whether the power is SISO, which is MIMO, by detecting the correlation.
  • a symbol is assigned to a combination of different antennas a plurality of times in one packet and transmitted to a mobile station apparatus existing in each sector. It is characterized by
  • the code string can be expanded in the time direction, and the propagation path estimation system is maintained even if a large frequency fluctuation occurs in the subcarrier interval. It becomes possible to improve.
  • n is a natural number and represents the code length of the code sequences Ca and Cb, and each of the code sequences Ca and Cb is divided into M.
  • (A1, ⁇ , A (nZM)) and (B1, ⁇ , B (nZM)) are orthogonal, and (A (n / M) +1, ⁇ , A (2nZM ); ⁇ (B (nZM) + l, ⁇ , B (2nZM)) is orthogonal, and ⁇ , (A ((M-1) Xn / M + 1), ⁇ , A ( n)) and (B ((M-1) XnZM + 1), ⁇ , B (n)) are orthogonal, and generate code sequences Ca and Cb satisfying all the relations of t As
  • the orthogonal relationship is established for all the components between the code strings Ca and Cb, and the M consecutive components are also established as the orthogonal relationship, the average propagation path characteristics are obtained in the continuous subcarriers. It is possible to estimate. Furthermore, it is less susceptible to propagation path fluctuations in the frequency direction, and the propagation path estimation system can be improved.
  • the radio communication method according to the present invention is characterized in that any two sectors are adjacent sectors.
  • the receiving side can easily determine whether the power is SISO, which is MIMO, by detecting the correlation.
  • code sequences used to control three sectors adjacent to each other and estimate a propagation path in each sector are (1, 1, respectively). 1, 1,
  • the radio communication method provides a single data when the transmission path estimation code string and data are arranged in subcarriers when MIMO communication is performed. Either one of the subcarriers for channel estimation existing at both ends of the subcarrier for transmission and the single data subcarrier are also transmitted with the same antenna force, or a plurality of continuous subcarrier groups for data are transmitted. One of the propagation path estimation subcarriers existing at both ends and the plurality of continuous data subcarrier groups are transmitted from the same antenna.
  • one of the subcarriers for channel estimation existing at both ends of a single data subcarrier and the single data subcarrier are transmitted from the same antenna.
  • either one of the propagation path estimation subcarriers existing at both ends of a plurality of continuous data subcarrier groups and the plurality of continuous data subcarrier groups transmit with the same antenna force, communication is performed.
  • the other party is a communication device that supports only SISO, it is possible to demodulate data at the other party. For example, by including information indicating that transmission is based on “MIMO” in the data portion, a communication device that supports only SISO can recognize that it is MIMO transmission from the first received slot.
  • a receiver according to the present invention is a receiver that receives data transmitted by an OFDM communication method, and performs fast Fourier transform on the received symbol to obtain complex information of each subcarrier.
  • the FFT unit that calculates and outputs complex information for each subcarrier divided into subcarrier groups to which code sequences are assigned, and the maximum length within the range of the length of one code sequence assigned to subcarriers for channel estimation.
  • correlation calculation is performed using the corresponding code sequence
  • MIMO transmission is performed using the autocorrelation and cross-correlation of the correlation calculation result for the above set.
  • a determination unit that performs the determination.
  • each group of subcarriers transmitted with different antennas corresponds to the maximum number of antennas.
  • Correlation calculation is performed using the code string, and MIMO transmission is determined using the autocorrelation and cross-correlation of the correlation calculation results for the above set, so that it is not affected by adjacent sector forces that do not impair orthogonality.
  • the propagation path can be estimated.
  • the determination unit includes an autocorrelation value and a cross-correlation value of a correlation calculation result performed for each group within a range of one code length, and a plurality of code lengths. It is characterized by integrating over the range of.
  • the determination unit sets a range of a plurality of code lengths to be integrated as a range of a minimum number of subcarriers allocated to the receiver. .
  • the range of the plurality of code lengths to be integrated is set to the range of the minimum number of subcarriers assigned to the receiver, the propagation path is not affected by the adjacent sector without impairing the orthogonality. Can be estimated. In addition, it is possible to easily determine whether the force is SISO, which is MIMO. [0040] (13) Further, in the receiver according to the present invention, the determination unit is characterized in that a range of a plurality of code lengths to be integrated is the entire communication band.
  • the receiver according to the present invention is characterized in that MIMO transmission is also determined for adjacent sectors, and the correlation calculation method for the code string is changed.
  • MIMO transmission is also determined for adjacent sectors and the correlation calculation method for the code sequence is changed, so that the propagation path estimation is not affected by the adjacent sector force without impairing orthogonality. Can be performed.
  • a mobile station apparatus includes the receiver according to any one of claims 10 to 14.
  • each subcarrier set transmitted by different antennas in the case of the maximum number of antennas within the range of one code string length allocated to subcarriers for channel estimation.
  • the correlation calculation is performed using the corresponding code sequences, and the MIMO transmission is determined using the autocorrelation and cross-correlation of the correlation calculation result for the above-mentioned group, so the influence of adjacent sector power without impairing the orthogonality It is possible to estimate the propagation path without receiving it.
  • the force is SISO, which is MIMO.
  • the base station apparatus controls a plurality of sectors, and wirelessly communicates with the mobile station apparatus according to claim 14 existing in any sector by an OFDM communication method.
  • a code string generation unit that generates the code strings so that the code strings to be used are orthogonal to each other and a part of the components of the code strings are orthogonal to each other;
  • a transmitter that transmits symbols to the mobile station apparatus according to claim 15, which is allocated to a carrier and exists in each sector.
  • the base station apparatus of the present invention one of the adjacent sets of sectors,
  • the code sequence used for estimating the propagation path in the sector and the code sequence used for estimating the propagation path in the other sector are not only orthogonal to each other, but also a part of the components of each code sequence mutually. Therefore, it is less susceptible to frequency fluctuations due to fading than before, and the estimation accuracy of the propagation path can be maintained.
  • the mobile station apparatus according to claim 15 and the base station apparatus according to claim 16 are configured.
  • the radio communication system of the present invention it is possible to maintain and improve the estimation accuracy of the propagation path by receiving a frequency change due to fading than before.
  • a code string used for estimating a propagation path in one sector of a set of sectors controlled by the base station apparatus and a propagation path in another sector are estimated. Therefore, not only the code sequences used are orthogonal to each other, but also some of the components of each code sequence are orthogonal to each other. Maintaining 'can be improved. Furthermore, when performing single-system data communication using a single or a plurality of antennas and when performing multiple-system data communication using a plurality of antennas, the generated code strings are the same. By assigning to subcarriers according to the method and transmitting symbols to mobile station devices existing in each sector, it is possible to eliminate the influence on the system even if there is a terminal that can handle only single data communication. Become. Also, by using such a code and detecting the correlation on the receiving side, it is possible to easily determine whether the force is SISO, which is MIMO.
  • FIG. 1 is a block diagram showing a schematic configuration of the radio communication system according to the present embodiment.
  • This wireless communication system includes a base station apparatus 1 (sometimes simply referred to as “base station”) and a mobile station apparatus 2 (sometimes simply referred to as “mobile station”).
  • the base station apparatus 1 transmits, to the mobile station apparatus 2, a code string (sometimes referred to as a blemble pattern in this specification) for estimating the propagation path generated by the code string generator lb by the transmitter la. To do.
  • the mobile station device 2 measures or estimates the propagation path state based on the received code string, and measures or estimates The result is transmitted to base station apparatus 1.
  • the base station apparatus 1 receives the information indicating the transmission path state transmitted from the mobile station apparatus 2 by the receiving unit lc.
  • FIG. 2 shows an example of a preamble pattern in the present invention.
  • the number of sectors controlled by base station apparatus 1 is 3 and the maximum number of MIMO transmission sequences is 2.
  • the upper diagram shows the transmission pattern with a single antenna
  • the lower diagram shows the transmission pattern with a double antenna (in MIMO).
  • the code (1, 1, -1, 1, -1) is repeated in the subcarrier (frequency) direction from sector A to CE, and from sector B, (1, 1, 1, 1, 1, 1) It has the same configuration.
  • This is a propagation path estimation symbol that can be used when the propagation path is considered to be constant at around 4 subcarriers.
  • the propagation path from subcarrier k to k + 3 from sector A is uniformly fa ⁇ k, and similarly the propagation path from sector B is uniformly fb ⁇ k.
  • the FFT outputs for subcarriers k to k + 3 are fa—k X 1 + fb—k X 1, fa—k X 1 + fb-k X (—l), fa — K X (-l) + fb -k X (— 1), fa — k X (— 1) + fb — k X 1
  • fb-k can be calculated by multiplying (1, 1, 1, —1, —1) to these results in 4 X fa—k, and finally dividing by 4, It is possible to calculate the propagation path from k
  • the pattern shown in FIG. 2 uses an orthogonal code string composed of eight codes.
  • Sector 1 (1, 1, 1, 1, 1, 1, 1, 1)
  • Sector 2 (1, 1, 1, 1, 1, 1, 1, 1)
  • Sector 3 (1, 1, 1, 1, 1,-1,-1, 1).
  • a system is assumed in which the propagation path is considered to be almost constant between the eight subcarriers.
  • the codes used in the first embodiment have eight codewords in an orthogonal relationship, and codes composed of every other four codewords are also orthogonal. In other words, (1, 3, 5, 7) subcarrier pairs are orthogonalized, (2, 4, 6, 8) subcarrier pairs are orthogonalized, (1, 2, 3, 4, 5 , 6, 7, 8). This arrangement is repeated for all subcarriers.
  • FIG. 3 shows a block configuration of the receiver 30 that can identify this code and can estimate the propagation path to the sector to be connected.
  • the receiver 30 having the block configuration shown in FIG.
  • FIG. 4 is a diagram showing details of the correlation calculation units 102-2 to 102-3 in FIG.
  • a basic propagation path estimation method is shown in Figs. 3 and 4.
  • the received ⁇ FDM signal is symbol-synchronized, and the data of the number of points required for the FFT from the OFDM symbol is input to the FFT unit (Fast Fourier Transform) 101 and subjected to the FFT.
  • the FFT-processed data is input to the correlation calculation units 102-1 to 102-3 when the symbol is CE.
  • the reason why there are three correlation calculation units is to identify three types of signals because the assumed system is three sectors.
  • the reason why there are two correlation calculation units, a and b is to explicitly indicate that odd-numbered subcarriers and even-numbered subcarriers are input to separate correlation calculation units.
  • correlation calculation sections 102-1 to 102-3 correlation detection is performed based on the pattern of each sector. This will be described in detail with reference to FIG.
  • subcarrier data is input. Since the code for identifying the sector is an orthogonal code of four codewords using every other eight codewords, the correlation is calculated every four subcarriers.
  • the total number of subcarriers used for transmission is 8N, one correlation calculation unit requires N correlation units ls to Ns (portions enclosed by squares in Fig. 4).
  • Correlation calculation units 102_la to 102_3a indicated by the subscript power are each input with four odd-numbered subcarriers during FFT output.
  • the input subcarrier number is k as a natural number less than N. f ⁇ 8 (k— 1) +1 ⁇ ,
  • fx indicates the FFT output of the Xth subcarrier in a complex number as in the conventional example, and f ⁇ 8 (k— 1) + 1 ⁇ is ⁇ 8 (k— 1) + 1 ⁇ FFT output of the subcarrier.
  • Sector code 1 is stored in memory 120-1, Sector code 2 and memory 120_2, Sector code 3 and memory 120_3, Sector code 4 and memory 120_4, respectively.
  • the sector selection unit 104 determines the data of any one of the correlation calculation units 102-1 to 102-3 that has the maximum output as the transmission sector, and the correlation calculation unit corresponding to the selected sector.
  • Fm—a and Fm—b obtained in step (1) are input to the MIMO determination unit 108 via the selection unit 103. Normally, this sector selection is performed at the start of communication and is fixed during communication. However, in sector handover, select the sector to be connected by the same process.
  • MIMO determination section 108 determines whether or not the transmitted channel estimation signal is! /, Using MIMO.
  • MIMO determination section 108 determines that MIMO is not used, it estimates the propagation path from Fm-a and Fm-b, and demodulates the following signals.
  • the quality measurement unit 500 determines each frequency or each The quality information of the antenna is acquired and notified to the base station using a separate transmission means.
  • this quality measurement unit 500 is not explicitly described in the conventional example, the MIMO determination unit 108 as shown in the first embodiment is provided, so that the conventional communication method does not use the quality measurement unit 500.
  • the communication method shown here makes it possible to prevent system performance deterioration due to erroneous notification.
  • FIG. 5 shows details of the MIMO determination unit 108.
  • 550-1 to 550-N are autocorrelation calculation units, and Fm—a X Fm—a * is calculated.
  • 551-1 to 551-N are cross-correlation calculation units, and Fm—a X Fm—b * is calculated.
  • 552—1 to 552—N are difference / absolute value calculation units that calculate Sm!
  • a determination unit 553 performs the above-described addition and the like according to the system, and estimates the transmission method of each subcarrier. Based on the estimation result, the propagation path for each subcarrier is estimated.
  • a transmitter can perform MIMO estimation by allocating codes having the same orthogonality to OFDM symbols for channel estimation when MIMO is used and when MIMO is not used. Data is not demodulated accidentally, and the reception quality can be reported to the base station separately when MIMO is used and when it is not used, so that scheduling and adaptive modulation at the base station can operate normally. Become.
  • propagation path estimation section 105 estimates the propagation path of each subcarrier based on the input Fm.
  • the propagation path fluctuations in the four subcarriers used for calculating Fm are constant, the propagation path of four subcarriers for any m Is estimated to be Fm—aZ4.
  • the propagation path of eight subcarriers for an arbitrary m can be set to (Fm_a + Fm_b) Z8.
  • Data is demodulated based on the propagation path information thus obtained.
  • Data OFDM symbol input to FFT section 101 is subjected to FFT and input to propagation path compensation section 106.
  • the propagation path compensation unit 106 multiplies the complex conjugate signal of the propagation path estimation value obtained previously for each subcarrier to compensate the propagation path. Then, the propagation path compensated data is input to the data demodulator 107, and the transmission data is demodulated.
  • the orthogonality is not impaired by changing the subcarrier number input to the correlation calculation units 102-1 to 102-3. It is possible to estimate the propagation path without being affected by adjacent sectors, and the reception quality can be calculated for each transmission antenna even when MIMO is used on the transmission side. Scheduling or adaptive modulation will work normally.
  • FIG. 6 shows an example of a receiver considering MIMO.
  • MIMO determination section 108 determines whether or not the packet or frame uses MIMO from the transmitted preamble.
  • a method for notifying in advance that the communication is based on MIMO, and a data area that can be demodulated even during normal reception are set, and the data that follows in that area must be MIMO.
  • a method of notifying the user can also be considered.
  • the difference from FIG. 3 is that the propagation path compensation unit 109 and the data demodulation unit 110 are configured to support MIMO, and that there are two systems because the reception system is MIMO.
  • This receiving system has the same configuration for both 1 and 2.
  • propagation path estimation section 105 estimates the propagation path for each antenna and each subcarrier.
  • the operation is a force MIMO transmission that is almost the same as the previous example, so no addition processing is performed. Therefore, for any m, the subcarrier propagation information for every 8 subcarriers uses Fm-aZ4 for antenna 1 and Fm-bZ4 for antenna 2.
  • the transmission system can be realized with the same configuration even if the transmission system is a power M system shown for the preamble assuming the two systems of MIMO and the configuration of the receiver.
  • Figure 7 shows two types of preambles assuming four systems, suggesting expansion to M systems.
  • the upper diagram in Fig. 7 is an extension of the preamble pattern in the frequency axis direction.
  • the white rectangle is antenna 1;
  • the rectangle marked with is antenna 3, and the shaded rectangle is antenna 4.
  • Fig. 8 shows the preamble pattern when 2 x 2 MIMO is considered and data is also arranged in the CE symbol. This is the force data part indicated by “D” in FIG. In this configuration, after estimating the propagation path, it is necessary to demodulate the D subcarrier. In Fig. 8, for D, the power that is transmitted sequentially with antenna 1 and antenna 2 makes it possible to demodulate only this part even with terminals that cannot demodulate MIMO, and control data is sent to this part. By storing, efficient communication is possible.
  • FIG. 9 shows an example of a preamble pattern in the second embodiment of the present invention.
  • 2 ⁇ 2 MIMO is assumed in which the number of sectors controlled by the base station apparatus 1 is 3, and the maximum number of MIMO transmission sequences is 2.
  • the upper diagram shows a transmission pattern with a single antenna
  • the lower diagram shows a transmission pattern with a double antenna (during MIMO).
  • the bit pattern is the same for the single antenna and the double antenna.
  • the pattern shown in FIG. 9 uses a code string composed of four codes as in the first embodiment.
  • orthogonal codes are arranged every other subcarrier, and at the time of MIMO transmission, a preamble pattern is transmitted in which different antenna power is transmitted for each subcarrier.
  • the receiver as shown in FIG.
  • each correlation calculation unit 102 Correlation values are calculated from 1, 102-2 and 102-3.
  • the subcarrier selection unit 501 selects four subcarriers every other subcarrier, and a correlation calculation in which the number corresponding to 2 which is the maximum transmission sequence in the second embodiment is a set.
  • the correlation value is calculated. Since the essential part of the correlation value calculation method is the same as that of the first embodiment, a description thereof will be omitted.
  • one of the differences from the first embodiment is that the number of Ml MO determination units 108 shown in FIG. This is to determine the transmission format of adjacent sectors as well as the sector that is determined to perform wireless communication in section 104.
  • the method for determining each sector is the same as the method of the first embodiment, and is therefore omitted. Based on this determination result, it can be used as an index for switching the subcarrier combination of the preamble pattern input to the correlation calculation section described later.
  • FIG. 11 shows details of the correlation calculation unit according to the second embodiment.
  • the second embodiment as described above, there are three sets of correlation calculation units corresponding to the maximum transmission sequence of 2 as in the first embodiment, the same number as the number of sectors.
  • the difference from the first embodiment is that the arrangement pattern of orthogonal codes is different.
  • the subcarrier positions input to the multipliers in FIG. 11 are different.
  • the fx values input to the multipliers 12 1-1 to 121_4 are respectively
  • k is a natural number from 1 to N.
  • the fx value of the other correlation calculation unit corresponding to the maximum number of transmission sequences of 2 in the second embodiment is f ⁇ 8k ⁇
  • k is a natural number from 1 to N.
  • the first, 9, 17, 25th subcarriers are input to the multiplication unit 121-1 in FIG. 11, and the multiplication unit 121-2 is 3, 11, 19, 27 ... The th subcarrier is input.
  • the fifth, 13, 21, 29... Subcarriers are input to the multiplier 121-3, and the seventh, 15, 23, 31. Entered.
  • the channel estimation for each subcarrier of the selected sector is performed.
  • the propagation path estimation method in FIG. 11 is the same as that in the first embodiment described above, and a description thereof will be omitted.
  • Data is demodulated based on the propagation path information obtained as described above.
  • the data OFDM symbol input to FFT section 101 is subjected to FFT and input to propagation path compensation section 106.
  • the propagation path compensation unit 106 compensates the propagation path for each subcarrier by multiplying the complex conjugate signal of the propagation path estimation value obtained previously. Then, the data subjected to propagation path compensation is input to the data demodulator 107, and the transmission data is demodulated.
  • the preamble pattern shown in the lower figure in Fig. 2 is a pattern for 2 x 2 MIMO communication system set to transmit different antenna power every other subcarrier, and a preamble pattern using one transmit antenna (upper side) This is a pattern that is characterized by having the same arrangement pattern of orthogonal codes in the preamble pattern using the four patterns. Since four codes are arranged every other subcarrier, the average propagation of 8 subcarriers The road characteristics were estimated.
  • the preamble pattern shown in Fig. 9 by using the preamble pattern shown in Fig. 9, four subcarriers that are continuous during wireless communication using one transmitting antenna are used. Therefore, the average propagation path characteristics of 4 subcarriers can be estimated. That is, the preamble pattern is more resistant to propagation path fluctuations in the frequency axis direction than the preamble pattern in the first embodiment, and it is possible to perform more accurate propagation path estimation.
  • Sarasako uses preamble symbols by communication methods that are not notified in advance whether the data to be transmitted is MIMO transmission data or SISO transmission data, and powerful mobile stations that can receive prior notification information.
  • the use of preamble symbols arranged every other subcarrier enables accurate measurement regardless of MIMO and SISO communication systems. Measurement can be performed, and the measurement data can be fed back to the base station.
  • the subcarrier combination input to the correlation pattern calculation unit of the preamble pattern is switched by the MIMO determination unit 108 using the same method as in the first embodiment. Judge the power being done. At this time, it is determined in a similar manner whether the transmission format used in the adjacent sector, that is, the MIMO power SISO, and the interference level of the adjacent cell is determined based on the signal strength from each sector. judge.
  • k is a natural number from 1 to N. These correspond to the multiplication unit 121-1, the multiplication unit 121-2, the multiplication unit 121-3, and the multiplication unit 121-4, respectively, from the top.
  • switching index switching is performed so that propagation path fluctuations in the four subcarrier sections for which propagation path estimation is desired to be performed depending on the propagation path fluctuation conditions are constant.
  • propagation path fluctuations such as measuring delayed waves, measuring the moving speed of mobile stations, or statistically determining temporal fluctuations in the received intensity of subcarriers, and combinations of these. Can be considered.
  • wireless communication with a better propagation path environment can be performed by using the above-mentioned means to make a determination based on the result of determining the transmission format of adjacent sectors and the interference power level.
  • Fig. 12 shows two types of preambles assuming the case of four transmission sequences, suggesting an extension to the M system.
  • the upper diagram in Fig. 12 is an extension of the preamble pattern in the frequency axis direction.
  • the white rectangle is the antenna 1
  • the rectangle with the diagonally descending left line is the antenna 2
  • the rectangle with the diagonally descending right line is the square.
  • Antenna 3 is a shaded square.
  • the orthogonal code repeat interval is set to M.
  • the second embodiment is characterized in that the codes of four subcarriers continuous in the frequency direction are orthogonal between sectors in the same manner as in the above-described 2 X 2 MIMO transmission / reception.
  • a diagram corresponding to the lower diagram of FIG. 7 in the first embodiment is the lower diagram of FIG.
  • This is a concept that extends in the time direction in the same way as in the first embodiment. For example, by preparing a blemble symbol such as “the smallest integer greater than (MZ2)”, the propagation paths of all antennas are estimated. Is possible. In any of the embodiments, it is also possible to insert a data subcarrier between forces that the subcarriers in the CE symbol are known.
  • FIG. 13 shows an example of a preamble pattern in the third embodiment of the present invention.
  • 2 ⁇ 2 MIMO is assumed in which the number of sectors controlled by the base station apparatus 1 is 3, and the maximum number of MIMO transmission sequences is 2.
  • the upper diagram shows the transmission pattern with a single antenna
  • the lower diagram shows the transmission pattern with a double antenna (during MIMO).
  • the difference from the first embodiment is that a preamble pattern at the time of single antenna transmission is arranged for each subcarrier, and symbols between the preamble symbols are set as symbols for data symbols. Is a point.
  • the data symbol can be a symbol of normal traffic data or control information data.
  • the number of preamble symbols for each antenna in single antenna transmission and double antenna transmission can be set to the same number. In other words, half the number of preamble symbols is allocated when transmitting single antennas compared to when transmitting double antennas.
  • a mobile station that performs reception using only a single antenna estimates a propagation path by detecting a subcarrier preamble pattern similar to that used when performing single antenna transmission. Is possible
  • the pattern shown in Fig. 13 is a code composed of four codes as in the first embodiment. Using columns. Also in the third embodiment, orthogonal codes are arranged every other subcarrier. Similarly to the first embodiment, when detecting a correlation, the receiver takes a correlation every other subcarrier to determine which antenna. Detect if is used.
  • FIG. 14 shows details of the correlation calculation unit in the third embodiment.
  • the difference from the first embodiment is that the arrangement pattern of orthogonal codes is different, and therefore the subcarrier position input to the multiplication unit in FIG. 14 is different.
  • the fx values input to the multipliers 121-1 to 1 21-4 are respectively
  • the multiplication unit 121-1 in Fig. 14 has 1, 9, 17, 2 5 ⁇ th subcarrier power S, and the multiplication ⁇ 121 1 2 to ⁇ 3, 11, 19, 27 ⁇ Subcarrier power S is input. Similarly, the fifth, 13, 21, 29 ... subcarriers are input to the multiplier 121_3, and the seventh, 15, 23, 31 ... subcarriers are input to the multiplier 121-4. Is done.
  • the propagation path estimation method in FIG. 14 is the same as that in the first embodiment described above, and a description thereof will be omitted.
  • the same pattern as that in the lower diagram of Fig. 7 can be applied to the preamble pattern when using 4 ⁇ 4 ⁇ .
  • the preamble patterns of antenna 1 and antenna 2 are arranged in the first symbol every other subcarrier, and the preamble patterns of antenna 3 and antenna 4 are arranged in the following symbols. Similarly, every other subcarrier is placed.
  • the symbol that arranges the antenna 3 and antenna 4 preamble patterns is not necessarily the symbol that is continuous with the first symbol, that is, the second symbol!
  • Data is demodulated based on the propagation path information obtained as described above.
  • the data OFDM symbol input to FFT section 101 is subjected to FFT and input to propagation path compensation section 106.
  • the propagation path compensation unit 106 compensates the propagation path for each subcarrier by multiplying the complex conjugate signal of the propagation path estimation value obtained previously. Then, the data subjected to propagation path compensation is input to the data demodulator 107, and the transmission data is demodulated.
  • FIG. 1 is a block diagram showing a schematic configuration of a wireless communication system.
  • FIG. 2 is a diagram showing a preamble pattern according to the first embodiment.
  • FIG. 3 is a diagram showing a configuration of a receiver according to the first embodiment.
  • FIG. 4 is a diagram illustrating a configuration of a correlation calculation unit of the receiver according to the first embodiment.
  • FIG. 5 is a diagram showing details of a MIMO determination unit.
  • FIG. 6 is a diagram showing a configuration of a receiver according to the first embodiment.
  • FIG. 7 is a diagram showing a preamble pattern according to the first embodiment.
  • FIG. 8 is a diagram showing a preamble pattern according to the first embodiment.
  • FIG. 9 is a diagram showing a preamble pattern according to the second embodiment.
  • FIG. 10 is a diagram illustrating a configuration of a receiver according to a second embodiment.
  • FIG. 11 is a diagram illustrating a configuration of a correlation calculation unit of a receiver according to a second embodiment.
  • FIG. 12 is a diagram showing a preamble pattern according to the second embodiment.
  • FIG. 13 is a diagram showing a preamble pattern according to the third embodiment.
  • FIG. 14 is a diagram illustrating a configuration of a correlation calculation unit of a receiver according to a third embodiment.
  • FIG. 15 shows a preamble pattern according to the third embodiment.
  • FIG. 16 is a diagram showing a preamble pattern in which conventional power is also used.
  • FIG. 17 is a diagram showing a configuration of a conventional receiver.
  • FIG. 18 is a diagram illustrating a configuration of a correlation calculation unit of a conventional receiver.
  • FIG. 19 is a diagram showing a preamble pattern in which the conventional force is also used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

【課題】 OFDM通信方式において、セクタのエッジ付近であっても、伝搬路の推定を高精度で行なうと共に、MIMO受信ができない端末が存在しても、システム全体の通信性能が劣化しないようなプリアンブルパターンを生成および送信する。 【解決手段】 OFDM通信方式による無線通信方法であって、任意の一組のセクタのうち、一方のセクタで伝搬路を推定するために使用する符号列と、他方のセクタで伝搬路を推定するために使用する符号列とが相互に直交すると共に、各符号列の成分の一部が相互に直交するように各符号列を生成し、単一あるいは複数のアンテナを用いて単一系統のデータ通信を行なう場合と複数のアンテナを用いて複数系統のデータ通信を行なう場合において、生成した各符号列を同一の方法によりサブキャリアに割り当てて、それぞれのセクタ内に存在する移動局装置へシンボルを送信する。

Description

明 細 書
無線通信方法および受信機
技術分野
[0001] 本発明は、 OFDM通信方式において伝搬路の推定を高精度で行なうこと、および MIMO使用時に他のセクタへの影響を抑えることができる無線通信方法および受信 機に関する。
背景技術
[0002] 従来から、 OFDM (Orthogonal Frequency Division Multiplexing)を用い る通信システムであって、各基地局が同じ周波数帯を使用するセルラ方式、さらに各 基地局はいくつかのセクタを持ち、同様に全セクタが同一の周波数帯を使用する通 信システムが知られている。このような通信システムでは、セクタ間は同一の基地局が 制御しているため、基地局力も移動局への通信は全てのセクタで同期しているものと 考えられる。そのため、 OFDMでは必要である、伝搬路を推定するための伝搬路推 定シンボル(CEシンボル: Channel Estimate)は同一のタイミングで送信されるた め、移動局では伝搬路を推定できるたけではなぐこのシンボルをどのセクタ力も送 信されたシンボルであるかを識別し、さらには、どのセクタ力もの電波の精度が高い かを測定できるようになって 、ることが望ま 、と考えられる。
[0003] 図 16に基地局が制御するセクタ数が 3つの場合の伝搬路推定用シンボルに使用 する符号について示す。図 16において、 1つの四角形が各サブキャリアの符号であ るとする。 OFDM送信機内の複素 IFFT (Inverse Fourier Transform)入力に「 1」は「 1 + Oj」を、「一 1」は「一 1 + Oj」を入力して、伝搬路推定用のシンボルを作成す ることを示して ヽる。
[0004] 図 16に示したパターンは 4つの符号で構成される符号列をセクタ毎にサブキャリア に繰り返し割り当てる構成となっている。すなわち、セクタ 1では(1, 1, 1, 1)、セクタ 2では(1, - 1, - 1, 1)、セクタ 3では(1, 1, - 1, 1)となっており、それぞれが直 交符号 (各符号語を乗算し、総加算すると 0になる)となっている。
[0005] 図 17にこの符号を識別し、さらには、接続したいセクタとの伝搬路を推定することが 可能な、受信機のブロック構成を示す。また、図 18は図 17の相関演算部の詳細な構 成を示すブロック図である。図 17および図 18に沿って、基本的な伝搬路の推定方法 を示す。図 17において、受信された OFDM信号にシンボル同期が取られ、 OFDM シンボル中から FFTに必要なポイント数のデータが FFT部(Fast Fourier Transf orm) 101〖こ入力され、 FFTが施される。 FFTされたデータは、そのシンボルが CEの 場合、相関演算部 102— 1から 102— 3に入力される。ここで、この相関演算部が 3個 あるのは、ここで仮定しているシステムが 3セクタであるため、 3種類の信号を識別す る必要があるためである。
[0006] 各相関演算部 102_1から 102_3では、それぞれのセクタのパターンにより相関 検出が施される。この詳細について図 18を用いて説明する。 FFT部 101の出力中、 サブキャリア数分のデータが入力される。セクタを識別するための符号を 4つの直交 符号としているため、相関は 4サブキャリア毎に計算される。ここで、伝送に用いるサ ブキャリア総数を 4N本とすると、 1つの相関演算部には N個の相関部 150— 1〜 150 — 3 (図 18中の四角形で囲まれた部分)が必要となる。
[0007] 1つの相関部では FFTの出力中 f4k— 3、 f4k 2、 f4k 1、 f4k(kは 1から Nの自 然数)が入力される。ここで、 fxは X番目のキャリアの FFT出力を複素数で表したもの であり、 f4k 3の場合は、 4k— 3番目のサブキャリアの出力である。このグルーピン グは直交系をなすように割り当てられた 4本のサブキャリアが選択される。これらのデ ータに送信系で用いられた符号の複素共役信号が乗算部 121— 1から 121— 4にお いて乗ぜられる。ここで、 Sector符号 1は、メモリ 120—1に、 Sector符号 2は、メモリ 120_2に、 Sector符号 3ίま、メモリ 120_3に、 Sector符号 4ίま、メモリ 120_4にそ れぞれ記憶されている。
[0008] 例えば、セクタ 1の相関を検出する場合、 120— 1から 120— 4にすベて 1がセットさ れ、セクタ 2の場合は 120— 1および 120— 4に 1、 120— 2および 120— 3に— 1力セ ットされる。そして、それらが和演算部 122で加算される。この信号を Fmとし (Fmは 複素数、 mは 1から Nの自然数)、 Fmをセレクト部 103に出力する一方、絶対値演算 部 123において、 Fmの絶対値が演算される。その後、和演算部 124において全て の mについて加算し、セクタ選択部 104に出力される。 [0009] 受信 OFDM信号は信号が 1つの基地局力 のみの場合、セクタ選択部 104に出 力されるデータは 102— 1から 102— 3のうち、 1つだけが大きな値をとり、その他は小 さな値となる。これは、符号が直交しているためであり、伝搬路が 4本のサブキャリア 内で大きく変動しない限り、この関係は保たれる。
[0010] そこで、セクタ選択部 104では最大出力となった、相関演算部 102— 1から 102— 3 のデータを送信セクタと決定し、選択されたセクタに対応する相関演算部で求めた F mを伝搬路推定部 105にセレクト部 103を介して入力する。
[0011] 伝搬路推定部 105では入力された Fmをもとに各サブキャリアの伝搬路を推定する 。ここでは、先にも示したように Fmを算出するために使用した 4本のサブキャリア内で の伝搬路変動は一定としているため、 f4m—3から f4mの伝搬路は FmZ4と推定さ れる。
[0012] こうして得られた伝搬路情報を元にデータを復調する。 FFT部 101に入力されたデ ータ OFDMシンボルは FFTが施され、伝搬路補償部 106に入力される。伝搬路補 償部 106ではサブキャリア毎に、先に求めた伝搬路推定値の複素共役信号を乗ずる ことで、伝搬路が補償される。そして、伝搬路補償されたデータがデータ復調部 107 に入力され、送信データが復調される。
特許文献 1:特表 2006 - 500864号公報
非特許文献 1 : "3GPP Rl -050589 NTT DoCoMo"
発明の開示
発明が解決しょうとする課題
[0013] しかしながら、昨今の通信システムでは MIMO (Multi— Input Multi- Output) を導入し、システムのスループットの向上を図ることが必要不可欠である。図 19に 2 X 2MIMO (送信から 2系列のデータを同時に送信し、受信側でも系統の受信系により 処理する)を想定した場合の、プリアンブルパターンを示す。図 19で、白色の四角形 はアンテナ 1からのみの送信、網掛けがされた四角形はアンテナ 2からのみの送信に なる。この図 19に示すように、プリアンブルを設定すれば、アンテナ毎にセクタ間でも 直交性を保つことができ、また、伝搬路推定も 8サブキャリア間隔で可能になる。
[0014] ただし、この例のパターンでは、図 16に示したパターンと、サブキャリア毎で異なる ため、全ての移動端末が MIMO受信可能であることと、さらには何かの手段であらか じめ MIMOを用いて送信が行なわれて!/、ることを認識して 、ることが必要となる。 Ml MO受信ができない端末も実システム上は低消費電力の観点力 無視すべきもので はなぐこのような端末が存在しても、システムが正常に動作することが望ましい。
[0015] 本発明は、このような事情に鑑みてなされたものであり、 OFDM通信方式において 、セクタのエッジ付近であっても、伝搬路の推定を高精度で行なうことができ、かつ、 MIMO受信ができな 、端末が存在しても、システム全体の通信性能が劣化しな!、よ うなプリアンブルパターンを生成および送信する無線通信方法およびそのプリアンプ ルパターンを受信する受信機を提供することを目的とする。
課題を解決するための手段
[0016] (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわ ち、本発明に係る無線通信方法は、複数のセクタを制御し、いずれかのセクタ内に存 在する移動局装置との間で OFDM通信方式により無線通信を行なう基地局装置の 無線通信方法であって、任意の一組のセクタのうち、一方のセクタで伝搬路を推定す るために使用する符号列と、他方のセクタで伝搬路を推定するために使用する符号 列とが相互に直交すると共に、前記各符号列の成分の一部が相互に直交するように 前記各符号列を生成し、単一あるいは複数のアンテナを用いて単一系統のデータ通 信を行なう場合と複数のアンテナを用いて複数系統のデータ通信を行なう場合にお いて、前記生成した各符号列を同一の方法によりサブキャリアに割り当てて、それぞ れのセクタ内に存在する移動局装置へシンボルを送信することを特徴としている。
[0017] このように、基地局装置が制御する、任意の一組のセクタのうち、一方のセクタで伝 搬路を推定するために使用する符号列と、他方のセクタで伝搬路を推定するために 使用する符号列とが相互に直交するのみならず、各符号列の成分の一部が相互に 直交するので、従来よりもフ ージングによる周波数変動を受けにくくし、伝搬路の推 定精度を維持'向上させることが可能となる。また、このような符号を使用することによ り、受信側では相関を検出することで MIMOである力 SISOであるかを容易に判定す ることが可能となる。
[0018] (2)また、本発明に係る無線通信方法は、最大使用アンテナ数が M (Mは自然数) 以下の系統のデータ通信を行なう MIMOを使用可能であって、複数のセクタを制御 し、いずれかのセクタ内に存在する移動局装置との間で OFDM通信方式により無線 通信を行なう基地局装置の無線通信方法であって、前記すベてのセクタのうち、任 意の一つのセクタで伝搬路を推定するために使用する符号列 Caを、 Ca= (Al, A2 , ···, An) (nは自然数で符号長を表わす)と表わし、他方のセクタで伝搬路を推定 するために使用する符号列 Cbを、 Cb= (Bl, B2, ···, Bn) (nは自然数で符号長を 表わす)と表わしたとき、 (Al, A2, ···, An)と(Bl, B2, ···, Bn)とが直交し、かつ 、 Rおよび kを、 1≤R≤M、 0≤k<nZMを満たす整数として、前記符号列 Caの成 分の一部を、 (AR, ···, A(kXM+R), ···)と表わし、前記符号列 Cbの成分の一 部を、(BR, ···, B(kXM+R), ···)と表わしたとき、(AR, ···, A(kXM+R), · ··)と(BR, ···, B(kXM+R), ···)とが直交する符号歹 UCaおよび Cbを生成し、 m (mは Mの約数)系統の MIMOを使用する際に、伝搬路推定用のサブキャリア番号 を kとした場合、(k mod M)mod m により分類される伝搬路推定用のサブキヤリ ァ毎に前記符号列 Caおよび Cbを、伝搬路推定用のサブキャリア数に対して割り当 てて、同じアンテナ力もシンボルを送信することを特徴として!/、る。
[0019] このように、基地局装置が制御する、任意の一組のセクタのうち、一方のセクタで伝 搬路を推定するために使用する符号列と、他方のセクタで伝搬路を推定するために 使用する符号列とが相互に直交するのみならず、各符号列の成分の一部が相互に 直交するので、従来よりもフ ージングによる周波数変動を受けにくくし、伝搬路の推 定精度を維持'向上させることが可能となる。また、このような符号を使用することによ り、受信側では相関を検出することで MIMOである力 SISOであるかを容易に判定す ることが可能となる。
[0020] (3)また、本発明に係る無線通信方法において、伝搬路推定用のサブキャリアの本 数 N(Nは自然数)に対して、符号列の組み合わせを NZn回繰り返し割り当てて、同 じアンテナカゝらシンボルを送信することを特徴としている。
[0021] この構成により、従来よりもフ ージングによる周波数変動を受けにくくし、伝搬路の 推定精度を維持'向上させることが可能となる。また、このような符号を使用することに より、受信側では相関を検出することで MIMOである力 SISOであるかを容易に判定 することが可能となる。
[0022] (4)また、本発明に係る無線通信方法において、伝搬路推定用のサブキャリアの本 数 N(Nは自然数)に対して、異なる符号列の組み合わせを割り当てて、同じアンテナ 力 シンボルを送信することを特徴として 、る。
[0023] この構成により、従来よりもフ ージングによる周波数変動を受けにくくし、伝搬路の 推定精度を維持'向上させることが可能となる。また、このような符号を使用することに より、受信側では相関を検出することで MIMOである力 SISOであるかを容易に判定 することが可能となる。
[0024] (5)また、本発明に係る無線通信方法は、それぞれのセクタ内に存在する移動局 装置に対し、一パケット内で複数回シンボルを異なるアンテナの組み合わせに割り当 てて送信することを特徴として 、る。
[0025] このように、一パケット内で複数回シンボルを送信するので、符号列を時間方向に 拡張することができ、サブキャリア間隔における大きな周波数変動が生じても伝搬路 の推定制度を維持'向上させることが可能となる。
[0026] (6)また、本発明に係る無線通信方法は、 nは自然数で前記符号列 Caおよび Cbの 符号長を表わすものとし、前記符号列 Caおよび Cbを M分割した各分割符号列の間 に、 (A1, ···, A(nZM))と(B1, · · ·, B(nZM))とが直交し、 (A(n/M)+1, ·· ·, A(2nZM);^(B(nZM)+l, ···, B(2nZM))とが直交し、 ···、(A((M— 1) Xn/M+1), ···, A(n))と(B((M— 1) XnZM+1), · · ·, B(n))とが直交する 、 t ヽうすべての関係を満たす符号列 Caおよび Cbを生成することを特徴として 、る。
[0027] このように、符号列 Caおよび Cb間のすべての成分について直交関係が成立すると 共に、 M個の連続する成分同士も直交関係が成立するので、連続するサブキャリア において平均伝搬路特性を推定することが可能となる。さらに、周波数方向における 伝搬路変動からの影響を受けにくくなり、伝搬路の推定制度を向上させることが可能 となる。
[0028] (7)また、本発明に係る無線通信方法は、任意の 2つのセクタを隣接セクタとするこ とを特徴としている。
[0029] この構成により、従来よりもフ ージングによる周波数変動を受けにくくし、伝搬路の 推定精度を維持'向上させることが可能となる。また、このような符号を使用することに より、受信側では相関を検出することで MIMOである力 SISOであるかを容易に判定 することが可能となる。
[0030] (8)また、本発明に係る無線通信方法において、相互に隣接する 3つのセクタを制 御し、各セクタで伝搬路を推定するために使用する符号列が、それぞれ、(1, 1, 1,
1, 1、 - 1, 1)、であることを特徴としている。
[0031] このように、各符号列のすべての成分にっ 、て直交関係が成立すると共に、 4個の 連続する成分同士も直交関係が成立するので、連続するサブキャリアにおいて平均 伝搬路特性を推定することが可能となる。さらに、周波数方向における伝搬路変動か らの影響を受けに《なり、伝搬路の推定制度を向上させることが可能となる。
[0032] (9)また、本発明に係る無線通信方法は、 MIMO通信を行なう場合にぉ 、て、伝 搬路推定用の符号列とデータとをサブキャリアに配置する場合、単一のデータ用サ ブキャリアの両端に存在する伝搬路推定用のサブキャリアのいずれか一方と、前記 単一のデータ用サブキャリアとを同一のアンテナ力も送信し、または、連続する複数 のデータ用サブキャリア群の両端に存在する伝搬路推定用のサブキャリアのいずれ か一方と、前記連続する複数のデータ用サブキャリア群とを同一のアンテナから送信 することを特徴としている。
[0033] このように、単一のデータ用サブキャリアの両端に存在する伝搬路推定用のサブキ ャリアの 、ずれか一方と、前記単一のデータ用サブキャリアとを同一のアンテナから 送信し、または、連続する複数のデータ用サブキャリア群の両端に存在する伝搬路 推定用のサブキャリアのいずれか一方と、前記連続する複数のデータ用サブキャリア 群とを同一のアンテナ力 送信するので、通信相手が SISOのみに対応した通信装 置であっても、通信相手においてデータを復調することが可能となる。例えば、デー タ部分に「MIMO」による送信であることを示す情報を含ませることによって、 SISO のみに対応した通信装置は最初に受信したスロットから MIMO送信であることを把握 することができる。そして、それ以降のスロットは復調動作を止めることができるので、 SISOのみに対応した通信装置の電力を節約することが可能となる。 [0034] (10)また、本発明に係る受信機は、 OFDM通信方式で送信されたデータを受信 する受信機であって、受信したシンボルを高速フーリエ変換して各サブキャリアの複 素情報を算出し、サブキャリア毎の複素情報を符号列が割り当てられたサブキャリア 群に分割して出力する FFT部と、伝搬路推定用のサブキャリアに割り当てられた 1符 号列長の範囲において、最大アンテナ数の場合に異なるアンテナで送信されるサブ キャリアの組ごとに、それぞれ対応する符号列により相関演算を行ない、上記組に対 して相関演算結果の自己相関および相互相関を用いて MIMO送信の判定を行なう 判定部と、を備えることを特徴としている。
[0035] このように、伝搬路推定用のサブキャリアに割り当てられた 1符号列長の範囲にお いて、最大アンテナ数の場合に異なるアンテナで送信されるサブキャリアの組ごとに 、それぞれ対応する符号列により相関演算を行ない、上記組に対して相関演算結果 の自己相関および相互相関を用いて MIMO送信の判定を行なうので、直交性を損 なうことなぐ隣接するセクタ力 の影響を受けずに伝搬路の推定を行なうことが可能 となる。また、 MIMOである力 SISOであるかを容易に判定することが可能となる。
[0036] (11)また、本発明に係る受信機において、前記判定部は、 1符合長の範囲におい て組ごとに行なった相関演算結果の自己相関値及び相互相関値を、複数の符号長 の範囲にぉ 、て積分することを特徴として 、る。
[0037] このように、 1符合長の範囲において組ごとに行なった相関演算結果の自己相関値 及び相互相関値を、複数の符号長の範囲において積分するので、直交性を損なうこ となぐ隣接するセクタ力 の影響を受けずに伝搬路の推定を行なうことが可能となる 。また、 MIMOである力 SISOであるかを容易に判定することが可能となる。
[0038] (12)また、本発明に係る受信機において、前記判定部は、積分する複数の符号長 の範囲を受信機に割り当てられる最小のサブキャリア数の範囲とすることを特徴とし ている。
[0039] このように、積分する複数の符号長の範囲を受信機に割り当てられる最小のサブキ ャリア数の範囲とするので、直交性を損なうことなぐ隣接するセクタからの影響を受 けずに伝搬路の推定を行なうことが可能となる。また、 MIMOである力 SISOであるか を容易に判定することが可能となる。 [0040] (13)また、本発明に係る受信機において、前記判定部は、積分する複数の符号長 の範囲を通信帯域全体とすることを特徴として 、る。
[0041] このように、積分する複数の符号長の範囲を通信帯域全体とするので、直交性を損 なうことなぐ隣接するセクタ力 の影響を受けずに伝搬路の推定を行なうことが可能 となる。
[0042] (14)また、本発明に係る受信機は、隣接セクタに対しても MIMO送信を判定し、 符号列に対する相関演算方法を変更することを特徴としている。
[0043] このように、隣接セクタに対しても MIMO送信を判定し、符号列に対する相関演算 方法を変更するので、直交性を損なうことなぐ隣接するセクタ力 の影響を受けずに 伝搬路の推定を行なうことが可能となる。
[0044] (15)また、本発明に係る移動局装置は、請求項 10から請求項 14のいずれかに記 載の受信機を備えることを特徴として ヽる。
[0045] 本発明に係る移動局装置によれば、伝搬路推定用のサブキャリアに割り当てられた 1符号列長の範囲において、最大アンテナ数の場合に異なるアンテナで送信される サブキャリアの組ごとに、それぞれ対応する符号列により相関演算を行ない、上記組 に対して相関演算結果の自己相関および相互相関を用いて MIMO送信の判定を 行なうので、直交性を損なうことなぐ隣接するセクタ力 の影響を受けずに伝搬路の 推定を行なうことが可能となる。また、 MIMOである力 SISOであるかを容易に判定す ることが可能となる。
[0046] (16)また、本発明に係る基地局装置は、複数のセクタを制御し、いずれかのセクタ 内に存在する請求項 14記載の移動局装置との間で OFDM通信方式により無線通 信を行なう基地局装置であって、隣接するいずれか一組のセクタのうち、一方のセク タで伝搬路を推定するために使用する符号列と、他方のセクタで伝搬路を推定する ために使用する符号列とが相互に直交すると共に、前記各符号列の成分の一部が 相互に直交するように前記各符号列を生成する符号列生成部と、前記生成した各符 号列をサブキャリアに割り当てて、それぞれのセクタ内に存在する請求項 15記載の 移動局装置へシンボルを送信する送信部と、を備えることを特徴として ヽる。
[0047] 本発明に係る基地局装置によれば、隣接するいずれか一組のセクタのうち、一方の セクタで伝搬路を推定するために使用する符号列と、他方のセクタで伝搬路を推定 するために使用する符号列とが相互に直交するのみならず、各符号列の成分の一 部が相互に直交するので、従来よりもフェージングによる周波数変動を受けにくくし、 伝搬路の推定精度を維持'向上させることが可能となる。
[0048] (17)また、本発明に係る無線通信システムによれば、請求項 15記載の移動局装 置と、請求項 16記載の基地局装置とから構成されることを特徴としている。
[0049] 本発明に係る無線通信システムによれば、従来よりもフェージングによる周波数変 動を受けに《し、伝搬路の推定精度を維持'向上させることが可能となる。
発明の効果
[0050] 本発明によれば、基地局装置が制御する、一組のセクタのうち、一方のセクタで伝 搬路を推定するために使用する符号列と、他方のセクタで伝搬路を推定するために 使用する符号列とが相互に直交するのみならず、各符号列の成分の一部が相互に 直交するので、従来よりもフ ージングによる周波数変動を受けにくくし、伝搬路の推 定精度を維持 '向上させることが可能となる。さらには、単一あるいは複数のアンテナ を用いて単一系統のデータ通信を行なう場合と複数のアンテナを用いて複数系統の データ通信を行なう場合にぉ 、て、前記生成した各符号列を同一の方法によりサブ キャリアに割り当てて、それぞれのセクタ内に存在する移動局装置へシンボルを送信 することで、単一データ通信のみ対応できる端末が存在しても、システムへの影響を なくすことが可能となる。また、このような符号を使用し、受信側では相関を検出する ことで MIMOである力 SISOであるかを容易に判定することが可能となる。
発明を実施するための最良の形態
[0051] 次に、本発明の実施形態について、図面を参照しながら説明する。図 1は、本実施 の形態に係る無線通信システムの概略構成を示すブロック図である。この無線通信 システムは、基地局装置 1 (単に「基地局」と呼ぶこともある)と、移動局装置 2 (単に「 移動局」と呼ぶこともある)とから構成されている。基地局装置 1は、送信部 laによって 、符号列生成部 lbが生成した伝搬路を推定するための符号列 (本明細書ではブリア ンブルパターンと呼称することもある)を移動局装置 2へ送信する。移動局装置 2は、 受信した符号列に基づいて、伝搬路状態を測定または推定し、測定または推定した 結果を基地局装置 1へ送信する。基地局装置 1は、移動局装置 2から送信された伝 搬路状態を示す情報を受信部 lcで受信する。
[0052] (第 1の実施形態)
図 2に本発明におけるプリアンブルパターンの例を示す。ただし、基地局装置 1が 制御するセクタ数は 3、 MIMOの最大送信系列数は 2の 2 X 2MIMOを考慮するも のとする。図 2において、上側の図がシングルアンテナでの送信パターンであり、下 側の図がダブルアンテナ(MIMO時)の送信パターンである。
[0053] まず、最初に直交符号を使用することで、セクタ間の伝搬路が識別できる原理を簡 単に示す。
[0054] 仮にセクタ Aから CEに(1、 1、—1、—1)という符号がサブキャリア (周波数)方向に 繰り返されており、セクタ Bからは(1、 一 1、 一 1、 1)で同様な構成としている。これは、 4サブキャリア程度では、伝搬路を一定と考えられる場合に、使用可能な伝搬路推定 用シンボルである。
[0055] ある受信機において、セクタ Aからのサブキャリア kから k+ 3の伝搬路を一様に fa— k、同様にセクタ Bからの伝搬路を一様に fb— kとする。 CEを受信し、シンボル同期後 、サブキャリア kから k + 3における FFTの出力は、 fa— k X 1 +fb— k X 1、 fa— k X 1 + fb-k X (— l)、fa— k X ( - l) +fb -k X (— 1)、 fa— k X (— 1) +fb— k X 1とな る。セクタ A力もの伝搬路を求める場合、これらに、(1、 1、—1、—1)を乗じ加算する と、 4 X fa— kとなり、最終的に 4で除算することで、セクタ Aからの kから k+ 3における 伝搬路を算出することが可能になる。同様にセクタ Bからの伝搬路を求める場合は、 ( 1、 一 1、 一 1、 1)を乗じ同様の処理をすることで fb—kを算出することが可能になる。
[0056] 図 2に示したパターンは、 8つの符号で構成される直交符号列使用している。セクタ 1では(1, 1, 1, 1, 1, 1, 1, 1)、セクタ 2では(1, 1, 1, 1, 1, 1, 1, 1)、 セクタ 3では(1, 1, 1, 1, - 1, - 1, - 1, 1)である。上記の原理で示したように 8 つのサブキャリア間で伝搬路がほぼ一定とみなせるシステムを想定している。
[0057] 第 1の実施形態において用いる符号は、 8つの符号語が直交関係にある上に、 1つ おきの 4つの符号語で構成される符号も、直交している。即ち(1, 3, 5, 7)のサブキ ャリア対で直交化され、 (2, 4, 6, 8)のサブキャリア対で直交化され、(1, 2, 3, 4, 5 , 6, 7, 8)のサブキャリア対で直交化されている。全てのサブキャリアでこの配置が繰 り返される。
[0058] 移動局装置 2側の受信機では、相関を検出する際、送信側が 2つのアンテナから 送信していることを前提に、 1サブキャリアおきの相関をとり、どのアンテナが使用され ているかを検出する必要がある。従って、本プリアンブルを受信し、データを復調する ブロック構成は従来例とほぼ同様の構成になり、相関演算部への入力パターンが異 なること〖こなる。
[0059] 図 3にこの符号を識別し、さらには、接続したいセクタとの伝搬路を推定することが 可能な、受信機 30のブロック構成を示す。ただし、図 3のブロック構成を持つ受信機 30は、 ΜΙΜΟ受信はできない。
[0060] また、図 4は図 3の相関演算部 102— 2から 102— 3の詳細を示す図である。図 3お よび図 4に沿って、基本的な伝搬路の推定方法を示す。図 3において、受信された Ο FDM信号にシンボル同期が取られ、 OFDMシンボル中から FFTに必要なポイント 数のデータが FFT部(Fast Fourier Transform:高速フーリエ変換) 101に入力 され、 FFTが施される。 FFTされたデータは、そのシンボルが CEの場合、相関演算 部 102— 1から 102— 3に入力される。ここで、この相関演算部が 3個あるのは、ここで 仮定しているシステムが 3セクタであるため、 3種類の信号を識別するためである。ま た、それぞれ相関演算部が a、 bと 2つずつあるのは、奇数番号のサブキャリアと偶数 番号のサブキャリアを別々の相関演算部に入力するのを明示的に示すためである。
[0061] 相関演算部 102— 1から 102— 3ではそれぞれのセクタのパターンにより相関検出 が施される。この詳細について図 4を用いて説明する。 FFT部 101の出力中、サブキ ャリア分のデータが入力される。セクタを識別するための符号が 8つの符号語を 1つ おきに利用した 4つの符号語の直交符号として 、るため、相関は 4サブキャリア毎に 計算される。ここで、伝送に用いるサブキャリア総数を 8N本とすると、 1つの相関演算 部には N個の相関部 ls〜Ns (図 4中の四角で囲まれた部分)が必要となる。
[0062] 添え字力 で示される相関演算部 102_la〜102_3aには、 FFTの出力中、奇数 のサブキャリアが 4つずつ組みとなり、入力される。入力されるサブキャリア番号は kを N以下の自然数として、 f{8(k— 1)+1}、
f{8(k— 1)+3}、
f{8(k— 1)+5}、
8&—1)+7}で表され、
bの添え字で示される相関演算部 102— lb〜 102— 3bには、
f{8(k— 1)+2}、
f{8(k— 1)+4}、
f{8(k— 1)+6}、
f{8(k— 1)+8}が入力される。
[0063] fxは、従来例と同様に X番目のサブキャリアの FFT出力を複素数で示したものであ り、 f {8 (k— 1) + 1 }は、 {8 (k— 1) + 1 }番目のサブキャリアの FFT出力になる。
[0064] これらのデータに送信系で用いられた符号の複素共役信号が乗算部 121— 1から 121— 4において乗ぜられる。ここで、 Sector符号 1は、メモリ 120— 1に、 Sector符 号 2ίま、メモリ 120_2に、 Sector符号 3ίま、メモリ 120_3に、 Sector符号 4ίま、メモ リ 120_4にそれぞれ記憶されて 、る。
[0065] 例えば、セクタ 1の相関を検出する場合、 120— 1から 120— 4にすベて 1がセットさ れ、セクタ 2の場合は 120— 1および 120— 4に 1、 120— 2および 120— 3に— 1力セ ットされる。そして、それらが和演算部 122で加算される。添え字力 である相関演算 部(102— la〜102— 3a)からの出力を Fm— a、添え字が bである相関演算部(102 — lb〜102— 3b)力らの出力を Fm— b(mは 1から Nの自然数)、 Fm— a、 Fm— bを セレクト部 103に出力する一方、絶対値演算部 123において、 Fm— a、 Fm— bの絶 対値が演算される。その後、和演算部 124において相関演算部(102— la〜: L02— 3a)および、相関演算部(102— lb〜102— 3b)かつすベての mについて加算し、 セクタ選択部 104に出力される。
[0066] 受信 OFDM信号は 1つの基地局装置からのみの場合、セクタ選択部 104に出力さ れるデータは 102— 1から 102— 3のうち、 1つだけが大きな値をとり、その他は小さな 値となる。これは、符号が直交しているためであり、伝搬路が 8本のサブキャリア帯域 内で大きく変動しない限り、この関係は保たれる。 [0067] そこで、セクタ選択部 104では最大出力となった、相関演算部 102— 1から 102— 3 のいずれか一つのデータを送信セクタと決定し、選択されたセクタに対応する相関演 算部で求めた Fm— a、 Fm— bを MIMO判定部 108にセレクト部 103を介して入力 する。通常このセクタ選択は、通信開始時に行なわれ、通信中は固定されている。た だし、セクタハンドオーバの際には同じような処理により接続すべきセクタを選択する
[0068] MIMO判定部 108では入力された Fmに基づいて、送信された伝搬路推定信号が MIMOを使用して!/、るか否かを判定する。
[0069] ある mに対し、 Sm= | Fm— a X Fm— a *—Fm— a X Fm— b * |を計算する。こ こで *は複素共役を示し、 I X Iは Xの絶対値を示す。
[0070] 送信側が同一のアンテナで信号を送信して ヽる場合、上式に示す Fm— a *と Fm —b *がほぼ同一のなるため、 Smは 0に近い値を算出する。 MIMOを使用している 場合は異なる値となるため、 Smは 0にはならない。この性質を利用して、符合が割り 当てられたサブキャリア単位で、送信時に MIMO送信がされたカゝ否かを判定すること が可能である。
[0071] さらに OFDMAシステムのように、サブチャネル単位で MIMO送信をするかしない かを決定するシステムの場合は、 Sを、サブチャネルを構成する mに対して和演算す ることで精度の高い判定が可能になる。
[0072] もちろん、すべてのサブチャネルで同時に MIMO送信するかしないかを決定する ようなシステムでは、 Smをすベての mで和演算すると最も精度が高くなると考えられ る。
[0073] MIMO判定部 108において、 MIMOを使用されていないと判定した場合は、 Fm —aおよび Fm—bカゝら伝搬路を推定し、以下に続く信号を復調する。
[0074] 本受信機は MIMO受信ができないものを想定しているため、 MIMO判定部 108に おいて送信データが MIMO送信であると判定された場合は、品質測定部 500で、各 周波数あるいは各アンテナの品質情報を取得し、別に用意される送信手段を用いて 、基地局に通知される。この品質測定部 500は、従来例には明記していないが、第 1 の実施形態に示すような MIMO判定部 108を設けることで、従来の通信方法ではァ ンテナ毎の識別を行なえな力つたことに対し、ここで示したような通信方法では可能と なり、誤った通知によるシステムの性能劣化を防ぐことが可能になる。
[0075] 図 5に MIMO判定部 108の詳細を示す。 550— 1から 550— Nは自己相関演算部 であり、 Fm— a X Fm— a *が算出される。一方、 551— 1から 551— Nは相互相関 演算部であり Fm— a X Fm— b *が算出される。 552— 1から 552— Nは各 mにつ!/ヽ て Smを算出する差 ·絶対値演算部である。 553は判定部であり、システムに応じて 上述の加算等が行なわれ、各サブキャリアの送信方法を推定する。その推定結果を もとに、サブキャリア毎の伝搬路推定が行なわれる。
[0076] このように送信機において、 MIMO使用時と未使用時において、同一の直交性を もった符号を伝搬路推定用 OFDMシンボルに割り当てることで、 MIMO受信ができ ない端末において、 MIMO送信時に誤ってデータを復調することがなくなり、受信品 質について、 MIMO使用時と未使用時にわけてデータを基地局に通知できるため、 基地局でのスケジューリングや適応変調が正常に動作することが可能になる。
[0077] 一方、 MIMO未使用であると判定された場合、伝搬路推定部 105では入力された Fmをもとに各サブキャリアの伝搬路を推定する。ここでは、先にも示したように Fmを 算出するために使用した 4本のサブキャリア内での伝搬路変動は一定として 、るため 、任意の mに対して、サブキャリア 4本の伝搬路は Fm—aZ4と推定される。
[0078] また、 Fm— aと Fm—b伝搬路はほぼ同一と考えられるので、任意の mに対するサ ブキャリア 8本の伝搬路を、 (Fm_a+Fm_b) Z8とすることも可能である。
[0079] こうして得られた伝搬路情報を元にデータを復調する。 FFT部 101に入力されたデ ータ OFDMシンボルは FFTが施され、伝搬路補償部 106に入力される。伝搬路補 償部 106ではサブキャリア毎に、先に求めた伝搬路推定値の複素共役信号を乗ずる ことで、伝搬路が補償される。そして、伝搬路補償されたデータがデータ復調部 107 に入力され、送信データが復調される。
[0080] このように、従来と同様の構成を採る受信機であっても、相関演算部 102— 1から 1 02— 3に入力するサブキャリア番号を変えることで、直交性を損なうことはなぐ隣接 セクタの影響を受けずに、伝搬路推定することが可能になり、さらに送信側において MIMO使用時においても受信品質が送信アンテナ単位で算出可能となり、基地局 におけるスケジューリングあるいは適応変調が正常に働くことになる。
[0081] 次に、 MIMOを考慮した受信機の例を図 6に示す。 MIMO判定部 108では先の例 と同様に、送信されたプリアンブルから、そのパケットやフレームが MIMOを使用され ているかどうかを判定する。また、この構成のほかにあらかじめ MIMOによる通信で あることを通知する方法や、データの一部を通常の受信でも復調可能なデータ領域 を設定し、その領域で以下に続くデータが MIMOであることを通知する方法なども考 えられる。
[0082] 図 6において、図 3と同じ機能のブロックについては同じ番号を付するものとする。
従って図 3との差異は、伝搬路補償部 109、データ復調部 110が MIMOに対応する ような構成になることと、受信系統が MIMOであるため 2系統あることである。この受 信系統は 1、 2とも同じ構成としている。
[0083] ほとんどの動作については先の例と同じであるが、相違する点は、送信側で MIM O送信を行なっていると判定した後の動作である。
[0084] MIMO送信と判定された場合、伝搬路推定部 105では、アンテナ毎、サブキャリア 毎の伝搬路が推定される。動作については、先の例とほぼ同じである力 MIMO送 信であるため、加算処理が行なわれることはない。従って任意の mについて、 8本毎 のサブキャリアの伝搬路情報は、アンテナ 1については Fm— aZ4が使用され、アン テナ 2については Fm— bZ4が使用される。
[0085] このように、 MIMO受信した場合でもデータを復調可能で、図 2のようにプリアンプ ルを設定することで、セクタ間の直交性が保たれているため、 MIMO時に隣接セクタ においてどのような通信が行なわれているかに制限されることなく精度の高い伝搬路 推定を行なうことが可能となる。
[0086] ここまでに示したようなプリアンブルの構成と受信機の構成を実現することで、セクタ 識別を可能にしながら、 MIMO受信を特性の劣化なく実現することができる。また、 第 1の実施形態では、送信系列が 2系統の MIMOを想定したプリアンブルとその受 信機の構成について示した力 M系統であっても同様の構成で実現可能である。図 7に、 4系統の場合を想定したプリアンブルを 2種類示し、 M系統への拡張を示唆す る。 [0087] 図 7の上側の図は、周波数軸方向にプリアンブルパターンを拡張したものであり、 白い四角形がアンテナ 1、斜め左下がり線が付された四角形がアンテナ 2、斜め右下 力 Sり線が付された四角形がアンテナ 3、網掛けがされた四角形がアンテナ 4である。こ のように直交符号の繰り返し間隔を M個とすることで、同じ直交符号を用い、セクタ間 の直交性を保ちながら、通常の OFDMでも、 MIMOでも精度良く伝搬路が推定可 能なプリアンブルパターンを形成することができる。
[0088] ただし、上記の例ではサブキャリア間隔で 16本の帯域内での大きな周波数変動が 許されないという問題がある。それに対応するものが、図 7の下側の図である。これは 、時間方向に拡張する概念であり、この場合、プリアンブルシンボルを、例えば「(M Z2)以上の最小の整数」用意することで、全てのアンテナの伝搬路が推定可能であ る。
[0089] また、いずれの例においても、 CEシンボルにおけるサブキャリアは既知であるとし た力 間にデータ用のサブキャリアを挿入することも可能である。
[0090] 図 8に 2 X 2の MIMOを考慮し、 CEシンボル中にもデータを配した場合のプリアン ブルパターンを示す。図 8中、「D」で示したもの力 データ部分である。この構成の場 合、伝搬路を推定した後、この Dの部分のサブキャリアを復調する必要がある。図 8で は、 Dについても、アンテナ 1およびアンテナ 2と順次送信している力 このような構成 にしておけば、 MIMOを復調できない端末でもこの部分のみは復調可能となり、この 部分に制御データを格納することで、効率よ ヽ通信が可能となる。
[0091] (第 2の実施形態)
図 9に本発明の第 2の実施形態におけるプリアンブルパターンの例を示す。第 1の 実施形態と同様に、基地局装置 1が制御するセクタ数は 3、 MIMOの最大送信系列 数は 2の 2 X 2MIMOを考慮するものとする。
[0092] 図 9において、上側の図がシングルアンテナでの送信パターンであり、下側の図が ダブルアンテナ(MIMO時)の送信パターンである。第 1の実施形態で示したプリア ンブルパターンと同様に、ビットパターンはシングルアンテナ、ダブルアンテナで同一 である。また、図 9に示したパターンは第 1の実施形態と同様に 4つの符号で構成さ れる符号列を使用している。 [0093] 第 2の実施形態においても、直交符号を 1サブキャリアおきに配し、 MIMO送信時 には 1サブキャリア毎に異なるアンテナ力も送信されるプリアンブルパターンになって いる。第 1の実施形態と同様に受信機では、図 10に示すように、無線通信開始時に おいて無線データを送受信する最適なセクタを検出するため 3つのセクタに対応する それぞれの相関演算部 102— 1、 102—2、 102— 3により相関値が算出される。相 関を演算する際、サブキャリア選択部 501において、 4つサブキャリアが 1サブキヤリ ァおきに選択され、第 2の実施形態における最大送信系列である 2に対応する数が 組になった相関演算部 102にて相関値が演算される。相関値の演算方法の本質部 分に関しては第 1の実施形態と同様であるため省略する。
[0094] 第 2の実施形態において、第 1の実施形態との相違点のひとつは図 10に示した Ml MO判定部 108が各セクタに対応する数備わっていることと、その動作にセクタ選択 部 104において無線通信を行なうと判断したセクタだけでなぐ隣接セクタの送信形 式をも判定することである。それぞれのセクタの判定方法に関しては第 1の実施形態 の方法と同様であるため省略する。この判定結果を基に後述する相関演算部に入力 されるプリアンブルパターンのサブキャリア組み合わせの切り替えの指標に使用する ことが可能である。
[0095] 図 11は、第 2の実施形態に係る相関演算部の詳細を示している。第 2の実施形態 においても前述したように第 1の実施形態と同様に最大送信系列の 2に対応する数 の相関演算部がセクタ数と同数の 3組備わって 、るが、図 11はその 1例を示して 、る 。第 1の実施形態との相違点は、直交符号の配置パターンが異なることである。すな わち、図 11の乗算部に入力されるサブキャリア位置が異なり、具体的には乗算部 12 1—1から 121_4に入力される fx値がそれぞれ、
f{8k— 7}、
f{8k— 5}、
f{8k— 3}、
f {8k— 1 }となっている。ここで、 kは 1から Nの自然数である。
[0096] また、第 2の実施形態における最大送信系列数の 2に対応するためのもう一方の相 関演算部の fx値はそれぞれ、 f{8k}、
f{8k— 2}、
f{8k— 4}、
f {8k— 6}となっている。ここでも、同様に kは 1から Nの自然数である。
[0097] 図 11における乗算部 121— 1には、 1, 9, 17, 25· ··番目のサブキャリアが入力さ れ、乗算部 121— 2には 3, 11, 19, 27· ··番目のサブキャリアが入力される。同様に 、乗算部 121— 3には 5, 13, 21, 29· ··番目のサブキャリアが入力され、乗算部 121 —4には 7, 15, 23, 31· ··番目のサブキャリアが入力される。第 2の実施形態におい ても第 1の実施形態と同様に、セクタ選択部 104にてセクタを選択した後、選択され たセクタの各サブキャリアに関する伝搬路推定が行なわれる。図 11における伝搬路 推定の方法は前述の第 1の実施形態と同様であるため説明は省略する。
[0098] 以上のようにして得られた伝搬路情報を元にデータを復調する。 FFT部 101に入 力されたデータ OFDMシンボルは FFTが施され、伝搬路補償部 106に入力される。 伝搬路補償部 106ではサブキャリア毎に、先に求めた伝搬路推定値の複素共役信 号を乗ずることで、伝搬路が補償される。そして、伝搬路補償されたデータがデータ 復調部 107に入力され、送信データが復調される。
[0099] このように従来と同様の構成を採る受信機であっても、相関演算部に入力するサブ キャリア番号を変えることで、直交性を損なうことはなぐ隣接セクタの影響を受けずに 、伝搬路推定することが可能になる。
[0100] さらには、第 2の実施形態における利点として以下のような特徴がある。図 2の下側 の図に示したプリアンブルパターンは 1サブキャリアおきに異なるアンテナ力 送信さ れるように設定された 2 X 2の MIMO通信方式用のパターンと 1送信アンテナを使用 したプリアンブルパターン(上側の図)を使用したプリアンブルパターンの直交符号の 配置パターンを同一にすることに特徴があるパターンである力 4つの符号を 1サブキ ャリアおきに配置していることから 8サブキャリアの平均的な伝搬路特性を推定してい た。
[0101] し力しながら、第 2の実施形態においては、図 9に示したプリアンブルパターンにす ることにより、 1送信アンテナを使用した無線通信時には連続する 4つのサブキャリア の符号パターンが直交関係にあることから、 4サブキャリアの平均伝搬路特性を推定 することが可能になる。すなわち、第 1の実施形態におけるプリアンブルパターンより 周波数軸方向の伝搬路変動に強いプリアンブルパターンであり、より正確な伝搬路 推定を行なうことが可能になる。
[0102] さら〖こは、送信されるデータが MIMO送信データか SISO送信データかを事前に 通知されない通信方式や事前通知情報を受信することが出来な力つた移動局がプリ アンブルシンボルを利用した SINR、 SIR, SNR、受信電力などに代表される伝搬路 環境の測定を行なう際に、 1サブキャリアおきに配置されたプリアンブルシンボルを利 用することによって MIMOおよび SISOの通信方式にかかわらず正確な測定を行な うことが可能になり、さらにその測定データを基地局にフィードバックすることが可能に なる。
[0103] 第 2の実施形態におけるプリアンブルパターンの相関演算部に入力するサブキヤリ ァ組み合わせの切り替えは、第 1の実施形態と同様の方法を用いて MIMO判定部 1 08で MIMOまたは SISOにより無線通信が行なわれている力判断する。この際、隣 接セクタで使用されている送信形式、すなわち MIMOである力 SISOであるかを同様 の方法で判定しておき、さらに、各セクタからの信号強度により隣接セルの干渉レべ ルを判定する。
[0104] 次に、上記の判定において SISOによる無線通信が行なわれていると判断された場 合には以下の指標により伝搬路推定を行なうプリアンブルシンボルパターンの組み 合わせを選択する。これにより、より正確な伝搬路推定を行なうことが可能になり、ま た、伝搬路変動に強い無線通信を行なうことが可能になる。
[0105] 具体的には、現在通信を行なっているセクタのプリアンブルパターンのサブキャリア の組み合わせを前述の組み合わせから以下の式で示される隣接する 4つのサブキヤ リアの組み合わせに切り替える。
f{8k— 7}、
f{8k— 6}、
f{8k— 5}、
f{8k— 4} さらに、もう一方の相関演算部に入力される組み合わせは、
f{8k— 3}、
f{8k— 2}、
f{8k— 1 }、
f {8k}となっている。
ここで、 kは 1から Nの自然数である。それぞれ、上から乗算部 121— 1、乗算部 121 —2、乗算部 121— 3、乗算部 121—4に対応する。
[0106] また、切り替え指標に関しては、伝搬路変動の状況により切り替えを行なうことが望 ましぐ伝搬路推定を行なう 4つのサブキャリア区間の伝搬路変動が一定であるように 切り替える。伝搬路変動を評価する方法としては、遅延波を測定する、移動局の移動 速度を測定する、またはサブキャリアの受信強度の時間的変動力も統計的に判断す るなどの方法やそれらを複数組み合わせて判断する方法が考えられる。さらには、前 記手段により隣接セクタの送信形式の判定結果と共にその干渉電力レベルを合わせ て判断することにより、より伝搬路環境の良い無線通信を行なうことが可能になる。
[0107] すなわち、隣接セクタが SISO通信を行なっているの力、または MIMO通信を行な つているの力、さらに、その干渉電力レベルの影響を考慮することが望ましい。また、 切り替えの指標を移動局で判断せずに受信データ内の制御情報内に基地局からの 情報として、切り替えの指示を移動局に通知する方法により行なうことも可能である。 この場合、受信データ内の制御情報を復調した後にトラフィックデータ部の復調前に 伝搬路推定を再び行なう方法と伝搬路推定方法を切り替えて復調を行なうデータの 受信以前に基地局より通知しておく方法が考えられる。
[0108] なお、 MIMO使用時の伝搬路推定方法および MIMO受信機構成に関しては前述 の第 1の実施形態と同様であるため説明を省略する。
[0109] 次に、図 12に送信系列が 4系統の場合を想定したプリアンブルを 2種類示し、 M系 統への拡張を示唆する。図 12の上側の図は、周波数軸方向にプリアンブルパターン を拡張したものであり、白い四角形がアンテナ 1、斜め左下がり線が付された四角形 がアンテナ 2、斜め右下がり線が付された四角形がアンテナ 3、網掛けがされた四角 形がアンテナ 4である。このように直交符号の繰り返し間隔を M個とすることで、同じ 直交符号を用い、セクタ間の直交性を保ちながら、通常の OFDMでも、 MIMOでも 精度良く伝搬路が推定可能なプリアンブルパターンを形成することができる。
[0110] さらに、第 2の実施形態では、前述の 2 X 2MIMO送受信時と同様に周波数方向に 連続する 4つのサブキャリアの符号がセクタ間で直交するという特徴を持っている。
[0111] 一方、第 1の実施形態における図 7の下側の図に対応するものが、図 12の下側の 図である。これは、第 1の実施形態と同様に時間方向に拡張する概念であり、ブリア ンブルシンボルを、例えば「(MZ2)以上の最小の整数」用意することで、全てのアン テナの伝搬路が推定可能である。また、いずれの実施形態においても、 CEシンボル におけるサブキャリアは既知であるとした力 間にデータ用のサブキャリアを挿入する ことも可能である。
[0112] (第 3の実施形態)
図 13に本発明の第 3の実施形態におけるプリアンブルパターンの例を示す。第 1の 実施形態と同様、基地局装置 1が制御するセクタ数は 3、 MIMOの最大送信系列数 は 2の 2 X 2MIMOを考慮するものとする。図 13において、上側の図がシングルアン テナでの送信パターンであり、下側の図がダブルアンテナ(MIMO時)の送信パター ンである。
[0113] 第 1の実施形態との差異は、シングルアンテナ送信時におけるプリアンブルパター ンを 1サブキャリア毎に配置し、さらに各プリアンブルシンボルの間のシンボルをデー タシンボル用のシンボルとして設定して 、る点である。データシンボルには通常トラフ イツクデータや制御情報データのシンボルを配置可能である。
[0114] 以上のように配置することによりシングルアンテナ送信時とダブルアンテナ送信時に おけるアンテナ毎のプリアンブルシンボル数が同数に設定できる。すなわち、シング ルアンテナ送信時にはダブルアンテナ送信時に対して半分の数のプリアンブルシン ボルが配置される。また、第 1の実施形態と同様に、シングルアンテナのみを使用し て受信を行なう移動局はシングルアンテナ送信を行なっている時と同様のサブキヤリ ァのプリアンブルパターンを検出することにより伝搬路推定を行なうことが可能である
[0115] 図 13に示したパターンは、第 1の実施形態と同様に 4つの符号で構成される符号 列を使用している。第 3の実施形態においても、直交符号を 1サブキャリアおきに配し 、第 1の実施形態と同様に、受信機では、相関を検出する際、 1サブキャリアおきの相 関をとり、どのアンテナが使用されているかを検出する。
[0116] し力しながら、第 1の実施形態および第 2の実施形態のように 8サブキャリアの中に 2 組の 1サブキャリアおきに配置された 4つのプリアンブルシンボルの相関を取ることに より、 SISOか MIMOかを判定する方法は適用できないため、 SISO送信された制御 情報によりトラフィックデータ部の送信方式 (SISOまたは MIMO)を通知することが望 ましい。
[0117] 第 3の実施形態において、伝搬路推定方法の本質は、第 1の実施形態と同様の方 法で行なうため、受信ブロック図の詳細な説明は省略する。また、図 14は、第 3の実 施形態における相関演算部の詳細を示している。前述したように第 3の実施形態に おいて、第 1の実施形態との相違点は直交符号の配置パターンが異なるため、図 14 の乗算部に入力されるサブキャリア位置が異なる。具体的には乗算部 121—1から 1 21— 4に入力される fx値がそれぞれ、
f{8k— 7}、
f{8k— 5}、
f{8k— 3}、
f {8k— 1 }となっている。
ここで、 kは 1から Nの自然数である。図 14における乗算部 121— 1には 1, 9, 17, 2 5· ··番目のサブキャリア力 S人力され、乗算咅 121一 2に ίま 3, 11, 19, 27· ··番目のサ ブキャリア力 S入力される。同様に、乗算部 121_3には 5, 13, 21, 29· ··番目のサブ キャリアが入力され、乗算部 121— 4には 7, 15, 23, 31· ··番目のサブキャリアが入 力される。図 14における伝搬路推定の方法は前述の第 1の実施形態と同様であるた め説明は省略する。
[0118] また、 4 Χ 4ΜΙΜΟ使用時のプリアンブルパターンは、図 15に示すように、図 7の下 側の図と同様のパターンを適用することが可能である。この場合、図 15に示すように 、先頭シンボルにアンテナ 1、アンテナ 2のプリアンブルパターンをそれぞれ 1サブキ ャリアおきに配置し、続くシンボルにアンテナ 3、アンテナ 4のプリアンブルパターンを 同様にそれぞれ 1サブキャリアおきに配置する。ただし、アンテナ 3、アンテナ 4のプリ アンブルパターンを配置するシンボルは必ずしも先頭のシンボルと連続したシンボル 、すなわち 2シンボル目である必要は無!、。
[0119] 以上のようにして得られた伝搬路情報を元にデータを復調する。 FFT部 101に入 力されたデータ OFDMシンボルは FFTが施され、伝搬路補償部 106に入力される。 伝搬路補償部 106ではサブキャリア毎に、先に求めた伝搬路推定値の複素共役信 号を乗ずることで、伝搬路が補償される。そして、伝搬路補償されたデータがデータ 復調部 107に入力され、送信データが復調される。
[0120] このように従来と同様の構成を採る受信機であっても、相関演算部に入力するサブ キャリア番号を変えることで、直交性を損なうことはなぐ隣接セクタの影響を受けずに 、伝搬路推定することが可能になる。
[0121] MIMO使用時の伝搬路推定方法および MIMO受信機構成に関しては前述の第 1 の実施形態と同様のため説明を省略する
図面の簡単な説明
[0122] [図 1]無線通信システムの概略構成を示すブロック図である。
[図 2]第 1の実施形態に係るプリアンブルパターンを示す図である。
[図 3]第 1の実施形態に係る受信機の構成を示す図である。
圆 4]第 1の実施形態に係る受信機の相関演算部の構成を示す図である。
[図 5]MIMO判定部の詳細を示す図である。
[図 6]第 1の実施形態に係る受信機の構成を示す図である。
[図 7]第 1の実施形態に係るプリアンブルパターンを示す図である。
[図 8]第 1の実施形態に係るプリアンブルパターンを示す図である。
[図 9]第 2の実施形態に係るプリアンブルパターンを示す図である。
[図 10]第 2の実施形態に係る受信機の構成を示す図である。
[図 11]第 2の実施形態に係る受信機の相関演算部の構成を示す図である。
[図 12]第 2の実施形態に係るプリアンブルパターンを示す図である。
[図 13]第 3の実施形態に係るプリアンブルパターンを示す図である。
[図 14]第 3の実施形態に係る受信機の相関演算部の構成を示す図である。 [図 15]第 3の実施形態に係るプリアンブルパターンを示す図である。
[図 16]従来力も使用されているプリアンブルパターンを示す図である
[図 17]従来の受信機の構成を示す図である。
鬧 18]従来の受信機の相関演算部の構成を示す図である。
[図 19]従来力も使用されているプリアンブルパターンを示す図である, 符号の説明
1 基地局装置
2 移動局装置
la 送信部
lb 符号列生成部
lc 受信部
30 受信機
101 FFT咅
102— la〜102— 3b 相関演算部
103 セレクト部
104 セクタ選択部
105 伝搬路推定部
106 伝搬路補償部
107 データ復調部
108 MIMO判定部
109 伝搬路補償部
110 データ復調部
120ー1〜120—4 メモリ
121—;!〜 121— 4 乗算部
122 和演算部
123 絶対値演算部
124 和演算部
50一 1〜550— N 自己相関演算部 551— 1〜551— N 相互相関演算部

Claims

請求の範囲
[1] 複数のセクタを制御し、いずれかのセクタ内に存在する移動局装置との間で OFD M通信方式により無線通信を行なう基地局装置の無線通信方法であって、
任意の一組のセクタのうち、一方のセクタで伝搬路を推定するために使用する符号 列と、他方のセクタで伝搬路を推定するために使用する符号列とが相互に直交する と共に、前記各符号列の成分の一部が相互に直交するように前記各符号列を生成し 単一あるいは複数のアンテナを用いて単一系統のデータ通信を行なう場合と複数 のアンテナを用いて複数系統のデータ通信を行なう場合において、前記生成した各 符号列を同一の方法によりサブキャリアに割り当てて、それぞれのセクタ内に存在す る移動局装置へシンボルを送信することを特徴とする無線通信方法。
[2] 最大使用アンテナ数が M (Mは自然数)以下の系統のデータ通信を行なう MIMO を使用可能であって、複数のセクタを制御し、いずれかのセクタ内に存在する移動局 装置との間で OFDM通信方式により無線通信を行なう基地局装置の無線通信方法 であって、
前記すベてのセクタのうち、任意の一つのセクタで伝搬路を推定するために使用す る符号列 Caを、
Ca= (Al, A2, ···, An) (nは自然数で符号長を表わす)と表わし、
他方のセクタで伝搬路を推定するために使用する符号列 Cbを、
Cb=(Bl, B2, ···, Bn) (nは自然数で符号長を表わす)と表わしたとき、 (Al, A2
, ···, An)と(Bl, B2, ···, Bn)とが直交し、
かつ、 Rおよび kを、 1≤R≤M、 0≤k<nZMを満たす整数として、
前記符号列 Caの成分の一部を、
(AR, ···, A(kXM+R), ···)と表わし、
前記符号列 Cbの成分の一部を、
(BR, ···, B(kXM+R), ···)と表わしたとき、
(AR, ···, A(kXM+R), ···)と(BR, · · ·, B(kXM+R) , ···)とが直交する符 号列 Caおよび Cbを生成し、 m(mは Mの約数)系統の MIMOを使用する際に、伝搬路推定用のサブキャリア番 号を kとした場合、
(k mod M)mod m
により分類される伝搬路推定用のサブキャリア毎に前記符号列 Caおよび Cbを、伝搬 路推定用のサブキャリア数に対して割り当てて、同じアンテナ力もシンボルを送信す ることを特徴とする無線通信方法。
[3] 伝搬路推定用のサブキャリアの本数 N (Nは自然数)に対して、符号列の組み合わ せを NZn回繰り返し割り当てて、同じアンテナカゝらシンボルを送信することを特徴と する請求項 2記載の無線通信方法。
[4] 伝搬路推定用のサブキャリアの本数 N (Nは自然数)に対して、異なる符号列の組 み合わせを割り当てて、同じアンテナ力もシンボルを送信することを特徴とする請求 項 2記載の無線通信方法。
[5] それぞれのセクタ内に存在する移動局装置に対し、一パケット内で複数回シンボル を異なるアンテナの組み合わせに割り当てて送信することを特徴とする請求項 2から 請求項 4の 、ずれかに記載の無線通信方法。
[6] nは自然数で前記符号列 Caおよび Cbの符号長を表わすものとし、前記符号列 Ca および Cbを M分割した各分割符号列の間に、
(A1, ···, A(nZM))と(B1, · · ·, B(nZM))とが直交し、
(A(n/M)+1, ···, A(2nZM))と(Β(ηΖΜ)+1, · · ·, B(2nZM))とが直交し
(A((M-1) Xn/M+1), · · ·, A(n))と(B((M— 1) XnZM+1), ···, B(n)) とが直交する、というすベての関係を満たす符号列 Caおよび Cbを生成することを特 徴とする請求項 2から請求項 5のいずれかに記載の無線通信方法。
[7] 任意の一組のセクタを隣接セクタとすることを特徴とする請求項 1から請求項 6の ヽ ずれかに記載の無線通信方法。
[8] 相互に隣接する 3つのセクタを制御し、各セクタで伝搬路を推定するために使用す る符号列が、それぞれ、 (1, 1, 1, 1, 1, 1, 1, 1, )、 (1, 1,— 1,— 1,— 1,— 1, 1 , 1, )、および(1、 - 1, 1、 1、 一 1, 1、 - 1, 1)、であることを特徴とする請求項 1 から請求項 7の 、ずれかに記載の無線通信方法。
[9] ΜΙΜΟ通信を行なう場合において、伝搬路推定用の符号列とデータとをサブキヤリ ァに配置する場合、単一のデータ用サブキャリアの両端に存在する伝搬路推定用の サブキャリアの 、ずれか一方と、前記単一のデータ用サブキャリアとを同一のアンテ ナから送信し、
または、連続する複数のデータ用サブキャリア群の両端に存在する伝搬路推定用 のサブキャリアの 、ずれか一方と、前記連続する複数のデータ用サブキャリア群とを 同一のアンテナ力 送信することを特徴とする無線通信方法。
[10] OFDM通信方式で送信されたデータを受信する受信機であって、
受信したシンボルを高速フーリエ変換して各サブキャリアの複素情報を算出し、サ ブキャリア毎の複素情報を符号列が割り当てられたサブキャリア群に分割して出力す る FFT咅と、
伝搬路推定用のサブキャリアに割り当てられた 1符号列長の範囲において、最大ァ ンテナ数の場合に異なるアンテナで送信されるサブキャリアの組ごとに、それぞれ対 応する符号列により相関演算を行ない、上記組に対して相関演算結果の自己相関 および相互相関を用いて MIMO送信の判定を行なう判定部と、を備えることを特徴と する受信機。
[11] 前記判定部は、 1符合長の範囲において組ごとに行なった相関演算結果の自己相 関値及び相互相関値を、複数の符号長の範囲において積分することを特徴とする請 求項 10記載の受信機。
[12] 前記判定部は、積分する複数の符号長の範囲を受信機に割り当てられる最小のサ ブキャリア数の範囲とすることを特徴とする請求項 11記載の受信機。
[13] 前記判定部は、積分する複数の符号長の範囲を通信帯域全体とすることを特徴と する請求項 11記載の受信機。
[14] 隣接セクタに対しても MIMO送信を判定し、符号列に対する相関演算方法を変更 することを特徴とする請求項 10から請求項 13のいずれかに記載の受信機。
[15] 請求項 10から請求項 14の 、ずれかに記載の受信機を備えることを特徴とする移動 局装置。
[16] 複数のセクタを制御し、いずれかのセクタ内に存在する請求項 15記載の移動局装 置との間で OFDM通信方式により無線通信を行なう基地局装置であって、
任意の一組のセクタのうち、一方のセクタで伝搬路を推定するために使用する符号 列と、他方のセクタで伝搬路を推定するために使用する符号列とが相互に直交する と共に、前記各符号列の成分の一部が相互に直交するように前記各符号列を生成 する符号列生成部と、
前記生成した各符号列をサブキャリアに割り当てて、それぞれのセクタ内に存在す る請求項 15記載の移動局装置へシンボルを送信する送信部と、を備えることを特徴 とする基地局装置。
[17] 請求項 15記載の移動局装置と、請求項 16記載の基地局装置とから構成されること を特徴とする無線通信システム。
PCT/JP2006/316644 2005-08-24 2006-08-24 無線通信方法および受信機 WO2007023917A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007532183A JPWO2007023917A1 (ja) 2005-08-24 2006-08-24 無線通信方法および受信機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-243426 2005-08-24
JP2005243426 2005-08-24

Publications (1)

Publication Number Publication Date
WO2007023917A1 true WO2007023917A1 (ja) 2007-03-01

Family

ID=37771660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316644 WO2007023917A1 (ja) 2005-08-24 2006-08-24 無線通信方法および受信機

Country Status (2)

Country Link
JP (1) JPWO2007023917A1 (ja)
WO (1) WO2007023917A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080246A (ja) * 2007-05-29 2015-04-23 クゥアルコム・インコーポレイテッドQualcomm Incorporated 複数のアンテナシステムとしてのセクター化された基地局

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005506757A (ja) * 2001-10-17 2005-03-03 ノーテル・ネットワークス・リミテッド マルチ搬送波cdmaシステムにおける同期化
JP2005094255A (ja) * 2003-09-16 2005-04-07 Nippon Telegr & Teleph Corp <Ntt> 無線信号伝送装置、無線信号送信装置、無線信号受信装置
JP2005124125A (ja) * 2003-09-26 2005-05-12 Nippon Hoso Kyokai <Nhk> Ofdm伝送方式におけるキャリアの配置方法、送信装置及び受信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005506757A (ja) * 2001-10-17 2005-03-03 ノーテル・ネットワークス・リミテッド マルチ搬送波cdmaシステムにおける同期化
JP2005094255A (ja) * 2003-09-16 2005-04-07 Nippon Telegr & Teleph Corp <Ntt> 無線信号伝送装置、無線信号送信装置、無線信号受信装置
JP2005124125A (ja) * 2003-09-26 2005-05-12 Nippon Hoso Kyokai <Nhk> Ofdm伝送方式におけるキャリアの配置方法、送信装置及び受信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO: "Pilot Channel and Scrambling Code in Evolved UTRA Downlink", 3GPP R1-050589, 21 June 2005 (2005-06-21), pages 1 - 24 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015080246A (ja) * 2007-05-29 2015-04-23 クゥアルコム・インコーポレイテッドQualcomm Incorporated 複数のアンテナシステムとしてのセクター化された基地局
US9743414B2 (en) 2007-05-29 2017-08-22 Qualcomm Incorporated Sectorized base stations as multiple antenna systems

Also Published As

Publication number Publication date
JPWO2007023917A1 (ja) 2009-02-26

Similar Documents

Publication Publication Date Title
JP5236829B2 (ja) 通信装置
JP5048116B2 (ja) マルチ搬送波cdmaシステムにおける同期化
JP4425986B2 (ja) セクタ同定方法、移動局、および移動通信システム
KR100938095B1 (ko) 직교 주파수 분할 다중 방식을 사용하는 통신시스템에서 프리앰블 시퀀스 생성 장치 및 방법
EP2148483B1 (en) OFDM system with subcarrier group phase rotation
CA2681590C (en) Pilot signal transmitting method, base station, mobile station and cellular system to which the method is applied
US20100272034A1 (en) Base station device, mobile station device, communication system, channel estimation method, transmission antenna detection method, and program
KR101527613B1 (ko) 다중안테나 시스템에서 동기신호의 전송장치
EP1853074A1 (en) Wireless communication terminal and handover control method
MX2011001282A (es) Metodo y sistema y dispositivo para la cancelacion de perturbaciones por estimacion del cqi.
JPWO2007052397A1 (ja) 送受信システム、伝送装置、及びそれらに用いるパイロット信号多重方法
JPWO2007119831A1 (ja) 送信機、受信機および無線送信方法
WO2007023917A1 (ja) 無線通信方法および受信機
KR20050018296A (ko) 직교 주파수 분할 다중 방식 통신 시스템에서 파일럿송수신 장치 및 방법
JP2007049617A (ja) 通信装置
JP4105659B2 (ja) 受信装置および受信回路
JP2006135881A (ja) マルチキャリア通信装置およびセル選択方法
KR20060010309A (ko) 직교 주파수 분할 다중 접속 방식의 무선 통신 시스템에서프리앰블 생성 시스템 및 방법
AU2013200317B2 (en) Pilot signal transmitting method, and base station, mobile station and cellular system to which that method is applied
AU2011203320B2 (en) Pilot signal transmitting method, and base station, mobile station and cellular system to which that method is applied
WO2007063981A1 (ja) 送信機、受信機、通信システムおよび通信方法
JP4473704B2 (ja) マルチアンテナ通信装置および通信相手選択方法
WO2007108044A1 (ja) 基地局、無線端末装置および通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007532183

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796757

Country of ref document: EP

Kind code of ref document: A1