WO2007023909A1 - DIELECTRIC FILM HAVING ABOx-TYPE PEROVSKITE CRYSTALLINE STRUCTURE, CAPACITOR USING THE DIELECTRIC FILM, AND METHOD AND SYSTEM FOR FORMATION OF DIELECTRIC FILM HAVING ABOx-TYPE PEROVSKITE CRYSTALLINE STRUCTURE - Google Patents

DIELECTRIC FILM HAVING ABOx-TYPE PEROVSKITE CRYSTALLINE STRUCTURE, CAPACITOR USING THE DIELECTRIC FILM, AND METHOD AND SYSTEM FOR FORMATION OF DIELECTRIC FILM HAVING ABOx-TYPE PEROVSKITE CRYSTALLINE STRUCTURE Download PDF

Info

Publication number
WO2007023909A1
WO2007023909A1 PCT/JP2006/316631 JP2006316631W WO2007023909A1 WO 2007023909 A1 WO2007023909 A1 WO 2007023909A1 JP 2006316631 W JP2006316631 W JP 2006316631W WO 2007023909 A1 WO2007023909 A1 WO 2007023909A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
thin film
forming
film
abox
Prior art date
Application number
PCT/JP2006/316631
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuya Okumura
Kinji Yamada
Tomotaka Shinoda
Daohai Wang
Takahiro Kitano
Yoshiki Yamanishi
Muneo Harada
Tatsuzo Kawaguchi
Yoshihiro Hirota
Kenji Matsuda
Original Assignee
Tokyo Electron Limited
Octec Inc.
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited, Octec Inc., Ibiden Co., Ltd. filed Critical Tokyo Electron Limited
Publication of WO2007023909A1 publication Critical patent/WO2007023909A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/101Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including resistors or capacitors only

Definitions

  • Dielectric film having ABOx type perovskite crystal structure capacitor using the dielectric film, and method and system for forming dielectric film having ABOx type perovskite crystal structure
  • the present invention relates to a dielectric film having an ABOx type perovskite crystal structure, a capacitor using the dielectric film, and a method and a system for forming a dielectric film having an ABOx type perovskite crystal structure.
  • a dielectric film for example, barium titanate having an ABOx type perovskite crystal structure has attracted attention as a dielectric film constituting the capacitor in this case.
  • a sol-gel method is known as a method for producing a dielectric film having this ABOx type perovskite crystal structure.
  • the dielectric film obtained by the sol-gel method is characterized by low crack resistance. Specifically, cracks occur when the thickness of the dielectric film per layer to be formed exceeds lOOnm. Therefore, the film thickness per layer needs to be 100 ⁇ m or less. However, this reduces the distance between the electrodes and increases the leakage current. As a result, the capacitor is not suitable for stable power supply.
  • the film thickness in order to use as a dielectric film for a capacitor, the film thickness must be 300 nm or more from the viewpoint of reducing leakage current. Therefore, multilayer coating is performed, for example, to increase the thickness of the entire barium titanate thin film. However, if baking is repeated in a multi-layer coating, the barium titanate crystals in the coating film cause grain growth, increasing the surface roughness. For this reason, while the film thickness can be increased, the gap between crystal grains becomes a leakage point, and conversely, the leakage current may be increased.
  • a dielectric film having an ABOx type perovskite crystal structure of the present invention includes a first dielectric thin film having an ABOx type perovskite crystal structure, and the first dielectric thin film.
  • a density of a boundary region between the first dielectric thin film and the second dielectric thin film is higher than that of the first dielectric thin film. It is desirable that the density of other regions and the density of the second dielectric thin film be higher.
  • a capacitor using a dielectric film having an ABOx type perovskite crystal structure according to the present invention is characterized in that a pair of electrodes are formed on a pair of main surfaces of the dielectric film having the above characteristics. To do.
  • the method for forming a dielectric film having an ABOx-type bottom bskite structure provides a first dielectric thin film having an ABOx-type bottom bumskite crystal structure including voids having an average diameter of a predetermined value or more.
  • a first dielectric thin film comprising: a first dielectric thin film comprising: a step of forming a dielectric composition composition comprising: an ABOx-type perovskite crystal structure having an average particle size smaller than the average diameter of the voids;
  • a coating process to be applied on top and a resultant product obtained by the coating process are baked to form a second dielectric thin film having an ABOx-type bobsite crystal structure on the first dielectric thin film.
  • a firing step comprising: a first dielectric thin film comprising: a step of forming a dielectric composition composition comprising: an ABOx-type perovskite crystal structure having an average particle size smaller than the average diameter of the voids.
  • the dielectric-forming composition liquid for forming the second dielectric thin film comprises a metal species A selected from the group consisting of metal alkoxides, metal carboxylates, metal complexes, and metal hydroxides. You may make it the structure containing 1 or more types of compounds containing the metal seed
  • the concentration of the metal species A is preferably 0.1 to 0.7 mmol Zg, and the concentration of the metal species B is preferably 0.1 to 0.7 mmol / g.
  • the metal species A includes one or more metals selected from lithium, sodium, calcium, strontium, barium, and lanthanum
  • the metal species B includes one or more metals selected from titanium, zirconium, tantalum, and niobium. It may be configured to include metal.
  • the organic solvent contained in the dielectric forming composition liquid for forming the second dielectric thin film is selected from the group strength of alcohol solvents, ether solvents, ketone solvents, and ester solvents. It may be configured to include one or more organic solvents.
  • the step of preparing the first dielectric thin film includes an average particle diameter of particles having an ABOx-type perovskite crystal structure contained in the dielectric forming composition liquid for forming the second dielectric thin film.
  • the substrate is rotated to extend the dielectric forming composition liquid for forming the first dielectric thin film onto the substrate.
  • a solvent is applied to the surface side peripheral portion of the substrate, and the surface side peripheral portion of the substrate is cleaned, and after the first cleaning step,
  • a first drying step of rotating the substrate at a predetermined rotation speed for a predetermined time to dry the surface side peripheral portion of the substrate, and the coating step for forming the second dielectric thin film comprises A second extending step of rotating the substrate to extend the dielectric forming composition liquid for forming the second dielectric thin film on the substrate; and a surface side of the substrate after the second extending step.
  • a second cleaning step of applying a solvent to the peripheral portion and cleaning the peripheral portion of the surface side of the substrate; and after the second cleaning step, before The substrate is rotated a predetermined time at a predetermined rotational speed, a second drying step of drying the surface-side peripheral edge of the substrate, may be configured with a.
  • the dielectric forming composition liquid for forming the first dielectric thin film is the second dielectric.
  • the dielectric composition forming liquid for thin film formation may include particles having an average particle diameter of lOOnm or less having an ABOx type crystal structure obtained by hydrolysis.
  • the system for forming a dielectric film having an ABOx type perovskite structure according to the present invention has the above-described system on the first dielectric thin film having an ABOx type bebbitite crystal structure including voids having an average diameter of a predetermined value or more.
  • the dielectric forming composition liquid for forming the second dielectric thin film includes a metal species A and a metal species B selected from the group consisting of metal alkoxides, metal carboxylates, metal complexes, and metal hydroxides. You may make it the structure containing a 1 or more type of compound. In this case, it is desirable that the concentration of the metal species A is 0.1 to 0.7 mmolZg and the concentration of the metal species B is 0.1 to 0.7 mmol / g.
  • the metal species A includes one or more metals selected from lithium, sodium, calcium, strontium, barium, and lanthanum
  • the metal species B includes one or more metals selected from titanium, zirconium, tantalum, and niobium. It may be configured to include metal.
  • FIG. 1 is a cross-sectional view showing an example of a capacitor using a dielectric film having an ABOx type mouth-bushite crystal structure of the present invention.
  • FIG. 2 is a cross-sectional view for explaining a first application process.
  • FIG. 3 is a cross-sectional view for explaining a first heating step.
  • FIG. 4 is a schematic diagram showing how the dielectric film is modified in the first heating step.
  • FIG. 5 is a cross-sectional view for explaining a second coating step and a second heating step.
  • FIG. 6 is a cross-sectional view showing an example of a method for manufacturing a capacitor according to the present invention.
  • FIG. 7 is a cross-sectional view for explaining the action of a dielectric film having an ABOx-type bottom buxite crystal structure.
  • FIG. 8 is a plan view showing a dielectric film forming apparatus having an ABOx type bottom bskite crystal structure according to an embodiment of the present invention.
  • FIG. 9 A perspective view of a forming apparatus according to the embodiment.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of a coating unit included in the forming apparatus according to the embodiment.
  • FIG. 11 is a cross-sectional view showing a schematic configuration of a heating unit provided in the forming apparatus according to the embodiment.
  • FIG. 12 is a cross-sectional view showing a schematic configuration of a heating furnace that performs a baking treatment for crystallization of a coating film in the same embodiment.
  • FIG. 13 A sectional view showing a schematic configuration of a coating unit according to another embodiment of the present invention.
  • FIG. 14 is a cross-sectional view for explaining a cleaning process and a drying process in the embodiment.
  • FIG. 15 is a perspective view for explaining a measurement sample used in an experiment conducted for confirming the effect of the present invention.
  • FIG. 1 shows an example in which the dielectric film according to the present invention is applied to a capacitive element (capacitor).
  • the capacitor shown in FIG. 1A is composed of a lower electrode 21 (for example, made of Pt), an upper electrode 22 (for example, made of A1), and a dielectric film 3.
  • the dielectric film 3 is a dielectric film having an ABOx-type bobsite crystal structure composed of a first thin film 31 (first dielectric thin film) layer and a second thin film 32 (second dielectric thin film) layer. It is a body membrane. And The lower electrode 21 is provided on the surface on the first thin film 31 side, and the upper electrode 22 is provided on the surface on the second thin film 32 side.
  • the first thin film 31 is a dielectric thin film having an ABOx type perovskite crystal structure including voids having an average diameter of lOnm or more, and the film thickness thereof is, for example, about 200 to 300 nm. .
  • the first thin film 31 can be generated by applying a first coating liquid to a semiconductor substrate (for example, a silicon substrate) and heating.
  • the first coating liquid is a dielectric forming composition liquid containing particles having an ABOx type perovskite crystal structure and an average particle diameter of lOOnm or less and a solvent (organic solvent).
  • the second thin film 32 is a dielectric thin film having an ABOx type bottom bskite crystal structure, and its film thickness is, for example, about lOOnm.
  • the second thin film 32 can be produced by applying a second coating liquid on the first thin film 31 and heating at 700 ° C. to 900 ° C.
  • the second coating liquid is one or more compounds including a metal species A and a metal species B selected from the group of metal alkoxides, metal carboxylates, metal complexes, and metal hydroxides, and a solvent (organic solvent). ) And a dielectric composition forming liquid.
  • the metal species A is one or more metals selected from Li (lithium), Na (sodium), Ca (calcium), Sr (strontium), Ba (barium), and La (lanthanum).
  • Metal species B is one or more metals selected from Ti (titanium), Zr (zirconium), Ta (tantalum), and Nb (niobium).
  • FIG. 1B and FIG. 1C show an example of a capacitor in which the dielectric between the lower electrode 21 and the upper electrode 22 is composed of three layers.
  • the capacitor shown in FIG. 1 (b) includes a dielectric film 4 configured such that the first thin film 31 is sandwiched between two second thin films 32.
  • the capacitor shown in FIG. 1 (c) includes a dielectric film 5 configured in such a manner that the second thin film 32 is sandwiched between the two first thin films 31.
  • the surface of the lower electrode 21 (for example, made of Pt) formed on the substrate 23 which is a silicon substrate
  • a method for forming the first thin film 31 will be described.
  • the first thin film 31 can be produced by applying the first coating liquid to the substrate 23 (first coating process) and heating and baking (first baking process).
  • the first coating liquid used in the present embodiment is a dielectric composition forming liquid containing particles having an ABOx type perovskite crystal structure and an average particle diameter of lOOnm or less and an organic solvent.
  • the first coating solution is produced through each step of (1) dissolution step, (2) hydrolysis step, (3) purification step, and (4) dispersion step. Hereinafter, these steps will be described in detail.
  • Well-known technologies that include one or more compounds containing metal species A constituting particles having an ABOx-type perovskite crystal structure and one or more compounds containing metal species B constituting particles having an ABOx-type perovskite crystal structure This is a step of dissolving in an organic solvent.
  • the compound is selected from the group of metal alkoxides, metal carboxylates, metal complexes, and metal hydroxides.
  • the metal species A is preferably one or more metals selected from the internal forces of Li, Na, Ca, Sr, Ba and La.
  • the metal species B is preferably one or more metals selected from the internal forces of Ti, Zr, Ta, and Nb. More preferably, the metal species A is one or more metals selected from the internal forces of Sr and Ba, and the metal species B is Ti.
  • the concentration of the metal species A in the solution during dissolution is 0.1 to 0.7 mmolZg.
  • the concentration of metal species B is also 0.1 to 0.7 mmol Zg.
  • metal alkoxide examples include, for example, barium alkoxides such as dimethoxybarium, diethoxybarium, dipropoxybarium, diisopropoxybarium, dibutoxybarium, and diisobutoxybarium, dimethoxystrontium, cetoxystrontium, Use strontium alkoxides such as propoxystrontium, diisopropoxystrontium, dibutoxystrontium, diisobutoxystrontium, tetramethoxytitanium, tetraethoxytitanium, tetrapropoxytitanium, tetraisopropoxytitanium, tetrabutoxytitanium, tetraisobutoxytitanium, etc.
  • barium alkoxides such as dimethoxybarium, diethoxybarium, dipropoxybarium, diisopropoxybarium, dibutoxybarium, and diisobutoxybarium, dimeth
  • Examples of the metal carboxylate include barium acetate, barium propionate, 2 methyl barium propionate, barium pentanoate, barium 2,2-dimethylpropionate, barium butanoate, barium hexanoate, 2 -Barium carboxylates such as ethylbarium hexanoate, barium octylate, barium nonanoate, barium decanoate, strontium acetate, strontium propionate, strontium 2-methylpropionate, strontium pentanoate, 2,2-dimethinorepropi Strontium carboxy such as strontium citrate, strontium butanoate, strontium hexanoate, strontium 2-ethylhexylate, strontium octylate, strontium nonanoate, strontium decanoate, etc. It can be used over door and the like.
  • Examples of the metal complex include titanium arylacetoacetate triisoproxide, titanium dibutoxide (bis 2,4 pentanedionate), titanium diisoproxyside (bis 2,4 pentanedio). Nate), titanium dibutoxide bis (tetramethyl heptane dionate), titanium diisoproxide bis (tetramethyl heptane dionate), titanium dibutoxide bis (ethinoreacetoacetate), titanium diisopropoxide bis ( Ethinoacetate acetate) and the like can be used.
  • the metal hydroxide is a compound in which a hydroxide ion is coordinated to a metal atom, and is represented by the following general formula (1).
  • M represents a metal selected from Li, Na, Ca, Sr, Ba, La, Ti, Zr, Ta, and Nb.
  • a is an integer of 1 to 7 according to the valence of metal M.
  • X is an integer of 1-8.
  • organic solvent for example, alcohol solvents, polyhydric alcohol solvents, ether solvents, ketone solvents, ester solvents and the like can be used.
  • alcohol solvent methanol, ethanol, propanol, butanol, amyl alcohol, cyclohexanol, methylcyclohexanol and the like can be used.
  • polyhydric alcohol solvent examples include ethylene glycol monomethyl ether, ethylenic glycolenomonoacetate ester, diethylene glycolenol monomethylenether ether, jetylene glycol monoethyl acetate, propylene glycol monoethyl ether, propylene glycol.
  • ether solvent methylal, jetyl ether, dipropyl ether, dibutyl ether, diamyl ether, jetyl acetal, dihexyl ether, trioxane, dioxane and the like can be used.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, methyl cyclohexyl ketone, jetyl ketone, ethyl butyl ketone, trimethylnonanone, acetonyl acetone, dimethyl oxide.
  • Horn, cyclohexanone, diacetone alcohol and the like can be used.
  • ester solvent examples include ethyl formate, methyl acetate, ethyl acetate, butyl acetate, cyclohexyl acetate, methyl propionate, ethyl butyrate, ethyl oxyisobutyrate, ethyl acetate, ethyl acetate, methoxybutyl acetate, Jetyl oxalate, jetyl malonate and the like can be used.
  • the organic solvent may be one of the above-mentioned solvents, or may be a combination of two or more solvents.
  • the solution generated in the dissolution step corresponds to a second coating solution for forming the second thin film 32.
  • water is added to the solution produced in the dissolution step, and the precursor in the solution is hydrolyzed to obtain crystal particles.
  • the solution temperature is usually kept in the range of -78 ° C to 200 ° C from the viewpoint of reaction efficiency. In this case, it is preferably ⁇ 20 ° C. to 100 ° C., and more preferably 0 to 50 ° C.
  • the amount of water added to the solution during hydrolysis is usually 5 to 300 times the molar amount of 1 mol of metal species A.
  • the molar amount is preferably 10 to 200 times (20 A molar amount of ⁇ 100 times is even more preferable. ).
  • water is added in such a molar amount, the crystallinity of the particles is improved and the dispersibility is also improved.
  • a mixture of one or more solvents selected from the above-described plurality of solvents and water may be added.
  • the water to be added contains a catalyst!
  • acid catalysts such as inorganic acids (eg hydrochloric acid, sulfuric acid, nitric acid), organic acids (eg acetic acid, propionic acid, butyric acid, maleic acid), sodium hydroxide, potassium hydroxide, barium hydroxide, ammonia, Inorganic or organic alkali catalysts such as monoethanolamine, diethanolamine, and tetramethylammonium hydroxide can be used as the catalyst.
  • Hydrolysis condensate produced after adding water is usually 0.5 to 10 at 200 to 200 ° C.
  • crystal particles having an ABOx type perovskite crystal structure and an average particle size of lOOnm or less preferably an average particle size of 20 to 80 nm
  • the crystal particles obtained in the hydrolysis step are purified with an organic solvent.
  • an organic solvent is added to the crystal particles, and the decantation is! /, Sediments the crystal particles by centrifugation, and removes the supernatant. Then, there is a method in which the process of adding the organic solvent to the precipitated crystal particles and heating again is repeated 2 to 5 times.
  • Examples of the organic solvent used in this case include alcohol solvents, polyhydric alcohol solvents, ether solvents, ketone solvents, ester solvents, and the like.
  • these organic solvents those exemplified in the section of the dissolution step can be used.
  • the crystal particles purified by the purification step are dispersed in an organic solvent. Specifically, first, the crystal particles obtained in the purification step are separated from an organic solvent which is a washing solution. Then, the separated crystal particles are put into a new organic solvent and dispersed to produce a crystal particle dispersion.
  • any method may be used as long as the crystal particles can be uniformly dispersed in the organic solvent.
  • any method may be used as long as the crystal particles can be uniformly dispersed in the organic solvent.
  • Examples of the organic solvent used for dispersion include alcohol solvents, polyhydric alcohol solvents, ether solvents, ketone solvents, and ester solvents. Further, the organic solvent used for dispersion may be the same as or different from the organic solvent used in the purification step.
  • the content of the crystal particles in the crystal particle dispersion is 1 to 20% by weight (preferably 3 to 15% by weight) of the entire crystal particle dispersion as a solid content concentration. ).
  • a non-one surfactant a key-on surfactant, Cationic surfactants may be used as dispersants!
  • surfactants examples include polyoxyethylene polyoxypropylene glycol, polyoxypropylene polyoxyethylene condensate of ethylenediamine (pull-mouth type), sodium alkylbenzene sulfonate, polyethylene Imine, polyvinylpyrrolidone, perfluoroalkyl group-containing oligomers and the like can be used.
  • the type and amount of the dispersing agent can be appropriately selected and used depending on the type of crystal particles and the type of solvent in which the crystal particles are dispersed.
  • the amount of additive is preferably 0.001 to 10 g with respect to the crystal particle lOOg.
  • a dielectric forming composition liquid comprising an organic solvent and particles having an ABOx type perovskite crystal structure and an average particle size of 100 nm or less (preferably an average particle size of 20 to 80 nm)
  • a certain first coating solution can be obtained.
  • the center part on the back surface side of the substrate 23 on which the lower electrode 21 is formed is held by the spin chuck 25. Then, the first coating liquid is discharged from the coating liquid nozzle 26, and the first coating liquid is applied to the surface of the lower electrode 21.
  • the substrate 23 is rotated by the spin chuck 25 at a predetermined rotation speed (for example, about 2000 rpm). Then, the first coating liquid extends toward the peripheral edge of the substrate 23 by the centrifugal force of rotation (see FIGS. 2 (b) and 2 (c)).
  • a predetermined rotation speed for example, about 2000 rpm.
  • the substrate 23 is rotated at a predetermined rotation speed (for example, about 1500 rpm). Then, the excess first coating liquid is shaken off, and a coating film (first coating film 31a) of the first coating liquid having a predetermined thickness (for example, 200 ⁇ m) is formed on the surface of the lower electrode 21 ( (See Figure 2 (d)).
  • a predetermined rotation speed for example, about 1500 rpm.
  • FIG. 4 (a) schematically shows the state of the first coating film 31a formed as described above. As shown in FIG. 4 (a), it is presumed that most of the crystal particles 40 are dispersed in the solvent 41, and a part of them generates barium titanate.
  • the first coating film 31a formed on the surface of the lower electrode 21 is subjected to a predetermined temperature (for example, 250 ° C). Heat for 1 minute (beta treatment).
  • a predetermined temperature for example, 250 ° C.
  • heat for 1 minute heat for 1 minute
  • the beta treatment which is a pretreatment for the baking
  • the solvent 41 contained in the first coating film 31a is volatilized.
  • hydrolysis occurs and the coating film becomes gelled, and further condensation occurs.
  • Fig. 4 (b) it is presumed that a network structure of barium titanate, which is a precursor film of barium titanate having an ABOx type perovskite crystal structure, is formed.
  • the solvent 41 volatilizes, crystal particles aggregate due to the action of the binder in the coating film, and the crystal particles become large.
  • the first coating film 31a formed on the surface of the lower electrode 21 on the substrate 23 is subjected to a predetermined temperature by using a baking apparatus described later.
  • a baking apparatus described later.
  • 800 ° C Heat for 60 minutes
  • a change proceeds to an amorphous state force crystallization state in the first coating film 31a.
  • FIG. 4 (c) a first thin film 31 made of a barium titanate film having an ABOx type bottom bumskite crystal structure is formed. Is done.
  • This ABOx-type perovskite crystal structure ranges from 2.5 to 3.5 in terms of the X O value of AB Ox depending on the oxygen supersaturation or deficiency.
  • the first thin film 31 formed in this way is a thin film containing barium titanate crystal particles having an average particle diameter of 50 nm or more and lOO nm or less. And the film thickness is 200 ⁇ ! ⁇ 300nm.
  • the first thin film 31 has a porous structure, and a large number of fine voids having an average diameter of lOnm or more are formed.
  • the step of applying the second coating liquid to the surface of the first thin film 31 (second coating step) will be described.
  • This step is performed in a coating unit (described later) in the same manner as the first coating step described above.
  • the second coating liquid which is a dielectric forming composition liquid, is generated in the manufacturing process of the first coating liquid (more specifically, the above-described dissolution process).
  • the concentration of the first coating solution is too high, the first coating solution will not enter the voids of the first thin film 31, as will be described later. Accordingly, it is desirable that the concentration of the metal species A contained in the first coating solution is 0.1 to 0.7 mmolZg and the concentration of the metal species B is 0.1 to 0.7 mmolZg. Further, when the above-described alcohol solvent, ether solvent, ketone solvent, ester solvent or the like having good wettability with respect to the first thin film 31 is used as the organic solvent, the permeability is further increased.
  • the second coating liquid as described above is supplied almost to the center of the first coating film 31 on the substrate 23.
  • the substrate 23 is rotated at a predetermined rotation speed (for example, about 2000 rpm). Then, the first coating liquid extends toward the peripheral side of the substrate 23 by the centrifugal force of rotation. Thereafter, the substrate 23 is rotated at a predetermined rotation speed (for example, about 1500 rpm). Then, the excess second coating liquid is shaken off, and a coating film (second coating film 32a) of the second coating liquid having a predetermined thickness (for example, 180 nm) is formed on the surface of the first thin film 31. (See Fig. 5 (b)). In this state, most of the crystal particles are in a state of being dispersed in the solvent, and it is presumed that a part of them generates barium titanate.
  • the second coating film 32a formed on the surface of the first thin film 31 is subjected to a predetermined temperature (eg, 250 ° C.). Heat for 1 minute at (heat treatment).
  • the organic solvent contained in the second coating film 32a is volatilized by the heat treatment before firing (that is, beta treatment).
  • beta treatment that is, beta treatment
  • hydrolysis occurs, the coating film becomes gelled, and further condensation polymerization occurs.
  • a network structure of barium titanate is formed which becomes a precursor film of barium titanate having an ABOx type perovskite crystal structure.
  • the second coating film 32a is applied to a temperature of about 700 ° C to 900 ° C (for example, 800 ° C) in a baking apparatus described later. For 60 minutes (second baking step).
  • the state changes into an amorphous state force crystallization state inside the second coating film 32a.
  • a second thin film 32 made of a barium titanate film having an ABOx-type bottom buxite crystal structure is formed.
  • the X value of ABOx is in the range of 2.5 to 3.5 depending on the oxygen supersaturation or deficiency.
  • the second thin film 32 formed in this way has an ABOx type perovskite crystal structure, and its film thickness is about lOOnm.
  • the second thin film 32 is a thin film containing barium titanate crystal particles having an average particle size smaller than that of the first thin film 31. More specifically, the average particle diameter of the crystal particles is 10 nm or more and 50 nm or less. This average particle diameter was calculated by the present inventors based on a photograph taken with a SEM (scanning electron microscope, manufactured by Hitachi High-Tech).
  • the second thin film 32 also has a porous structure, and many finer voids are formed than the voids (average diameter is lOnm or more) of the first thin film 31. RU
  • dielectric film 3 (see FIG. 1 (a)) having an ABOx type perovskite crystal structure is formed.
  • the capacitor shown in FIG. 1 (a) is obtained.
  • the upper electrode 22 can be formed by sputtering the upper side force of the second thin film 32 with, for example, A1 using a sputtering apparatus (not shown) (FIG. 6 (b)). )reference).
  • the dielectric film having the ABOx type perovskite crystal structure and the method for forming the same according to the embodiment of the present invention the following excellent actions and effects are obtained. To do.
  • the first coating solution is a special solution obtained by hydrolyzing and dispersing the second coating solution, and as described above, the first coating film 31a is subjected to a beta treatment. Therefore, aggregation of particles occurs when the organic solvent in the first coating film 31a is volatilized. Therefore, even if the second thin film 32 is formed by substantially the same process, the average grain size of the crystal particles constituting the first thin film 31 is larger than that of the crystal particles constituting the second thin film 32. Specifically, the average grain size of the crystal grains constituting the first thin film 31 is not less than 50 nm and not more than lOOnm. For this reason, it is possible to secure a film thickness of, for example, about 200 nm to 300 nm by applying the first coating liquid once.
  • the second thin film 32 can secure a film thickness of, for example, about lOOnm by one application, the first thin film 31 and the second thin film 32 are stacked one by one.
  • the dielectric film 3 having an ABOx type perovskite crystal structure with a thickness of 300 nm to 400 nm can be formed. That is, the number of stacked layers when forming a dielectric film having a desired thickness can be reduced.
  • the grain growth of barium titanate can be suppressed, and the occurrence of leakage current caused by this can be suppressed.
  • the voids of the first thin film 31 can be filled with particles constituting the second thin film 32.
  • a dense (high density) layer is formed on the surface of the first thin film 31, and the flatness of the surface of the dielectric film 3 is improved.
  • the first thin film 31 has a porous structure when heated for crystallization as described above, and the average grain size of the crystal grains constituting the thin film is 50 nm or more and lOOnm or less.
  • the average diameter of the voids 42 formed between the crystal particles 40 in the first thin film 31 is not less than lOnm. Accordingly, the surface of the first thin film 31 is uneven due to the presence of voids in the porous structure.
  • both the crystal particles 40 and the voids 42 are large, the flatness is poor and is in a state.
  • the average diameter of the voids 42 is larger than the average particle diameter of the particles serving as the precursor of the second thin film 32 contained in the second coating liquid.
  • the gap 42 is filled with the second Particles 43 that make up the coating liquid enter and penetrate into the interior.
  • the particles 43 are embedded in the voids 42. That is, the void 42 of the first thin film 31 is blocked by the particles 43 constituting the second thin film 32 (second coating liquid). Therefore, in this boundary region, it is presumed that the film becomes denser than the second thin film 32 composed of fine crystal particles.
  • the concentrations of the metal species A and the metal species B in the second coating solution are 0.1 to 0. 0.
  • the second coating liquid can easily penetrate into the voids 42 of the first thin film 31.
  • the present inventors observed with a TEM (transmission electron microscope, manufactured by Hitachi High-Tech) and SEM (scanning electron microscope, manufactured by Hitachi, Tech), the first thin film 31 had a gap 42. It was observed that the coating solution of 2 entered and went away.
  • the voids 42 formed on the surface of the first thin film 31 are blocked by the particles 43 constituting the second coating liquid, so that the flatness of the surface of the first thin film 31 is improved.
  • the second thin film 32 is formed on the surface of the first thin film 31 having high flatness, the flatness of the surface of the second thin film 32 is also improved.
  • the leakage characteristics of the dielectric film can be improved.
  • the reason for this is as follows.
  • the first reason is that the crystal grains of the second thin film 32 are very small. That is, as described above, since the crystal particles of the second thin film 32 are very small (average particle size is about 20 nm), even if a porous structure is formed by heating for crystallization, voids formed thereby are formed. Is quite small.
  • the second thin film 32 has a small gap, so that the snow / tag particles are difficult to enter. Therefore, even when the first thin film 31 is fired or the second thin film 32 is fired, even if the Pt particles of the lower electrode 21 penetrate from the lower side of the first thin film 31 due to thermal diffusion, It can be said that it is difficult to contact. Therefore, it is possible to suppress the generation of a leakage current that is difficult to form a conductive path between the Pt particles and the sputtered particles.
  • the second reason is that a dense layer (high density) is formed at the boundary between the first thin film 31 and the second thin film 32. Even if the Pt particles in the lower electrode 21 penetrate from the lower side of the first thin film 31 due to thermal diffusion, the vicinity of the boundary between the first thin film 31 and the second thin film 32 is formed. It is difficult to penetrate beyond the second thin film 32 side. This also applies to the case where A1 (sputtered particles) penetrates into the second thin film 32 during the process of forming the upper electrode 22 by sputtering A1 on the surface of the second thin film 32. It is the same.
  • the boundary region between the first thin film 31 and the second thin film 32 is denser than the second thin film 32, the sputtered particles permeate the first thin film 31 side beyond the region. Is difficult! For this reason, the formation of the vertical conduction path of the dielectric film 3 having the ABOx type bevskite crystal structure composed of the first thin film 31 and the second thin film 32 is suppressed, and as a result, leakage occurs. Generation of current can be suppressed.
  • the capacitors having the structures shown in FIG. 1 (b) and FIG. 1 (c) also have an ABOx type base having a desired film thickness by laminating the first thin film 31 and the second thin film 32.
  • the dielectric film 4 or the dielectric film 5 having an oral bskite crystal structure can be obtained.
  • the first thin film 31 located in the middle of the dielectric film 4 and the second layer located on the third layer (on the upper electrode 22 side) are located.
  • the boundary area with the thin film 32 becomes dense, and the boundary surface becomes flat.
  • the boundary area becomes dense, and the boundary surface becomes flat. Therefore, a desired capacitor capacity can be secured for both capacitors, and the occurrence of leakage current can be suppressed.
  • FIG. 8 is a schematic plan view of a forming apparatus provided in the dielectric film forming system according to the present embodiment
  • FIG. 9 is a perspective view of the forming apparatus.
  • S1 is a carrier station.
  • a carrier placing part 51 and delivery means 52 are provided.
  • the carrier placement unit 51 places a carrier C that stores a plurality of (for example, 25) wafers W.
  • the delivery means 52 delivers the wafer W to and from the carrier C.
  • a processing unit S2 surrounded by a casing 53 is connected to the back side of the delivery means 52.
  • a main transfer means 54 is provided in the center of the processing section S2. Near main transport means 54 In the vicinity, there are a plurality of coating units 6 and shelf units Ul, U2, U3, each of which is a stack of heating and cooling units and the like. Further, as the coating unit 6, a first coating unit 6A (not shown) for performing the coating process of the first coating liquid and a second coating unit 6B (not shown) for performing the coating process of the second coating liquid. ) Is prepared.
  • the shelf units Ul, U2, U3 are configured by combining various units for performing pre-processing and post-processing of the coating unit 6 and the like.
  • the combination includes a heating unit 7 for performing a heating process (baking process) and a delivery unit for the wafer W, which is one of the shelves of the shelf unit U3.
  • the heating unit 7 functions as a heating device that heats (beta) W and W coated with the coating liquid on the surface by the coating unit 6 and volatilizes the solvent in the coating liquid.
  • the main transport means 54 is configured to be movable in the vertical direction and the horizontal direction and to be rotatable about the vertical axis. By virtue of the powerful configuration, the main transport means 54 can transfer wafers W between the units constituting the coating unit 6 and the shelf units Ul, U2, U3.
  • the carrier C force in which UENO and W are stored is taken in from the outside and placed on the carrier placing portion 51.
  • a lower electrode 21 is formed on the surface of the wafer W accommodated in the carrier C.
  • the wafer W is taken out from the carrier C by the delivery means 52 and delivered to the main transport means 54 via the delivery unit which is one of the shelves of the shelf unit U 3.
  • the main transfer means 54 transfers the wafer W to the first coating unit 6A.
  • the first unit 6A a process of applying the first application liquid onto the surface of the lower electrode 21 on the transferred wafer W is performed. Thereafter, the wafer W is transferred to the first heating unit 7A and subjected to heat treatment (beta treatment). After the beta processing, the wafer W is once returned into the carrier C on the carrier mounting portion 51 via the main transfer means 54 and the delivery means 52. The wafer W returned to the carrier C is transferred to a baking apparatus described later and is baked by the baking apparatus. Thereby, the first thin film 31 is formed (first firing step).
  • the wafer W that has finished the first baking step is transferred to the second through the delivery means 52 and the main transfer means 54. It is conveyed to the coating unit 6B.
  • the second coating unit 6B a process of coating the second coating solution on the surface of the first thin film 31 formed on the transferred wafer W is performed.
  • the wafer W is transferred to the second heating unit 7B and subjected to heat treatment (beta treatment).
  • the wafer W is once returned into the carrier C on the carrier mounting portion 51 via the main transfer means 54 and the delivery means 52.
  • the wafer W returned to the carrier C is transferred to a baking apparatus described later and is baked by the baking apparatus (baking process). Thereby, the second thin film 32 is formed (second baking step).
  • FIG. 10 is a cross-sectional view showing a schematic configuration of the coating unit 6 according to the present embodiment.
  • the first coating unit 6A and the second coating unit 6B have the same configuration as the coating unit 6.
  • reference numeral 61 denotes a spin chuck configured to be rotatable and movable up and down around a vertical axis in order to suck and adsorb the central portion on the back side of the wafer W and hold it substantially horizontally.
  • a cup body 62 having an opening on the upper side so as to surround the wafer W is provided outside the periphery of the wafer W held by the spin chuck 61.
  • a recess-shaped liquid receiving portion 63 is provided on the lower peripheral edge of the wafer W over the entire circumference.
  • Reference numeral 64 denotes a drainage path for discharging a drain such as a coating liquid
  • reference numeral 65 denotes an exhaust path
  • Reference numeral 66 denotes a coating liquid nozzle for supplying a first coating liquid (second coating liquid) to the wafer W held on the spin chuck 61.
  • the spin chuck 61 is positioned above the cup body 62. Then, V (not shown) and the wafer W transferred by the transfer means are placed on the spin chuck 61 by a cooperative action with the lift pins (not shown). Next, the spin chuck 61 is lowered to the processing position shown in FIG. Then, the first coating liquid (second coating liquid) is applied from the coating liquid nozzle 66 to approximately the center of the wafer W held by the spin chuck 61. Further, by rotating the wafer W by the spin chuck 61, the first coating liquid (second coating liquid) spreads over the entire surface of the wafer W.
  • the first heating unit 7A and the second heating unit 7B have the same configuration as the heating unit 7.
  • a base 75 formed in a cylindrical shape with a bottom is provided inside the casing 70 of the heating unit 7.
  • a circular heat plate 72 is provided in the base 75.
  • the rectifying top plate 73 is lowered and the peripheral portion of the top plate 73 and the base are placed via the O-ring 74. 75 peripheral portions are in close contact with each other.
  • the periphery of the wafer W becomes a sealed space.
  • suction and exhaust are performed from the exhaust port 78 in the center of the top plate 73 by the suction mechanism 77.
  • the heat treatment is performed while forming an airflow (see the arrow in FIG. 11 (b)) directed from the outer periphery of the wafer W toward the center.
  • FIG. 12 is a schematic configuration diagram of a heating furnace 8 which is an example of a baking apparatus.
  • the heating furnace 8 is a baking apparatus for changing the internal state of the coating film after the beta treatment into an amorphous state force crystallization state.
  • the heating furnace 8 includes a vertical reaction tube 80 having a double tube structure, for example.
  • a plurality of wafers W are accommodated in the wafer boat 81 in the reaction tube 80 at a predetermined interval in the vertical direction.
  • gas is supplied from the gas supply pipe 82 into the reaction pipe 80 and the suction pipe 83 is used to suck and exhaust the reaction pipe 80.
  • the wafer W is baked by the heating means 84 provided outside the reaction tube 80 while forming a gas stream.
  • the method for forming the dielectric film 3 having an ABOx-type perovskite crystal structure according to the present embodiment is the first coating film 31a on the surface of the substrate (wafer W) on which the lower electrode 21 is formed as shown in FIG.
  • a first cleaning step side rinsing treatment
  • a first drying step spin drying treatment
  • the second coating film 32a is formed on the surface of the first thin film 31, as shown in FIG. 5, the second cleaning step (side Rinse treatment) and a second drying step (spin drying treatment) for rotating the substrate to dry the solvent.
  • the other features are the same as those of the above-described embodiment.
  • the rinse nozzle 101 for supplying the solvent R to the peripheral portion on the surface side of the wafer W is provided so as to be inclined outward and downward.
  • the discharge port of the lens nozzle 101 is configured such that the discharged solvent R reaches the peripheral edge of the wafer W from above and from the inside.
  • the rinse nozzle 101 is connected to a solvent supply source 103 via a supply device group 104 including a solvent supply pipe 102, a valve, a flow rate adjusting unit, and the like.
  • the coating liquid nozzle 66 can move from the standby region 69 provided on the outer side of one end side (right side in FIG. 13) of the cup body 62 to the other end side and move in the vertical direction. It is configured. Further, the rinse nozzle 101 is configured to be able to move from one standby side 107 provided on the outside of the other end side (left side in FIG. 13) of the cup body 62 to one end side and to move in the vertical direction. RU
  • the wafer W on which the lower electrode 21 is formed is placed on the spin chuck 61 by the cooperative operation of the main transfer means 54 (see FIG. 8) and the spin chuck 61.
  • the first coating solution is applied to the central portion on the front side of the wafer W by the method described above (see FIG. 2 (a)) (FIG. 14 (a)).
  • FIG. 2 (a) the force that applies the first coating liquid 31 to the center of the front side of the wafer W while the wafer W is stopped.
  • the surface of the wafer W is rotated when the wafer W rotates. You may apply
  • a predetermined amount of solvent is applied from the rinse nozzle 101 to a range of, for example, 3 mm from the surface side peripheral edge to the center of the wafer W while rotating the wafer W at a low speed. Then, the solvent R applied to the peripheral edge of the front surface of the wafer W spreads toward the peripheral edge, and the surface side of the wafer W The first coating film 31a at the peripheral edge is dissolved (so-called side rinse). As shown in FIG. 14C, the dissolved first coating film 31a is shaken off together with the solvent R by the rotation of Ueno and W (first cleaning process).
  • the wafer W is rotated at a predetermined rotation speed (for example, 200 Orpm or more) for a predetermined time (for example, 20 seconds or more) to perform swing-off drying (so-called spin drying), as shown in FIG. 14 (d).
  • a predetermined rotation speed for example, 200 Orpm or more
  • a predetermined time for example, 20 seconds or more
  • spin drying swing-off drying
  • the solvent R remaining on the peripheral edge of the wafer W is volatilized (first drying step).
  • the heating unit the first coating film 31a formed on the surface of the lower electrode 21 of the wafer W is heated by the above-described method (see FIG. 3A) (beta treatment). .
  • the first thin film 31 is formed by performing the baking process by the method described above (see FIG. 3B).
  • the second thin film 32 is formed in the same manner as the first thin film 31 forming method described above.
  • Form That is, the second coating solution is applied to the front surface side central portion of the wafer W on which the first thin film 31 is formed (FIG. 14 (a)), spread over the entire surface of the wafer W, and an extra second coating solution.
  • the liquid 32 is shaken off to form a second coating film 32a (FIG. 14 (b)).
  • the baking process and the baking process are executed.
  • the second thin film 32 is formed.
  • the dielectric film 3 having the ABOx type perovskite crystal structure according to the present embodiment is formed.
  • FIG. 1 (a) when the electrode (upper electrode 22) is formed on the upper surface of the second thin film 32 by the above-described method using a sputtering apparatus (not shown), as shown in FIG. 1 (a).
  • the wafer W is moved at high speed (for example, 5000rpm
  • the solvent R remaining on the peripheral edge of the wafer W can be sufficiently volatilized by rotating for a predetermined time (for example, 60 seconds or more) in the above manner. If beta treatment or baking treatment is performed while the solvent R remains on the peripheral edge of the wafer W, the non-volatile solvent R inhibits crystallization of the barium titanate (BaTi03) at high temperatures. As a result, the barium titanate constituting the first coating film 31a (second coating film 32a) becomes a crystal with a broken composition ratio.
  • the solvent R penetrates and the solvent R adheres to the film. As a result, a conduction path is formed by the carbon contained in the solvent R, and the leakage current increases.
  • a sample for measuring electrical characteristics as shown in FIG. 15 was used.
  • a procedure for manufacturing a sample for measuring electrical characteristics used in this example will be described.
  • the surface of the silicon substrate 91 is oxidized and a Si02 film 92 having a thickness of about lOO nm is formed on the upper layer side.
  • a Pt layer 93 as a lower electrode is formed thereon.
  • the thickness of the Pt layer 93 is about 3 Onm.
  • the dielectric film 3 having an ABOx type perovskite crystal structure to be measured is formed on the upper surface of the Pt layer 93.
  • an aluminum (A1) layer 94 as an upper electrode is formed on the upper surface of the dielectric film 3.
  • this A1 layer 94 is put into a disk shape having a diameter of about 0.25 mm to 10 mm.
  • the dielectric film 3 is patterned into the shape shown in FIG. 15, and the Pt layer 93 is exposed.
  • the dielectric film 3 to be measured is a titanium film having an ABOx-type perovskite crystal structure on a first thin film 31 having a thickness of 200 nm and made of ABOx-type bottom-bushite crystal structure.
  • a second thin film 32 made of barium oxide and having a thickness of lOOnm is laminated. This The first thin film 31 and the second thin film 32 are formed by the method described in the above embodiment.
  • the measurement device 95 is connected to the electrical property measurement sample manufactured as described above (connected between the Pt layer 93 and the A1 layer 94), and the leakage current of the dielectric film 3 and the dielectric The capacitance of membrane 3 was measured.
  • the leakage current of the dielectric film 3 in which the first thin film 31 and the second thin film 32 are laminated is 8.1 ⁇ 10 _8 AZcm 2
  • the electric capacity is 1.2 ⁇ Y. It was / cra.
  • the dielectric film 3 used for the electrical property measurement sample a dielectric film having only a 200 nm-thick first thin film 31 made of barium titanate having an ABOx type perovskite crystal structure was prepared. Using this, the leakage current and the electric capacity were measured in the same manner as in Example 1.
  • the first thin film 31 is formed by the method described in the above embodiment. As a result, the leakage current is 1. a 3 X 10 _2 AZcm 2, the electric capacity is rarely at 0. 9 F / cm.
  • a dielectric film having only a second thin film 32 of lOOnm thickness made of barium titanate having an ABOx type perovskite crystal structure was prepared.
  • the second thin film 32 is formed by the method described in the above embodiment.
  • the leakage current was 2.8 X 10 _3 AZcm 2 and the electric capacity was 0.7 F, cm 2.
  • the leakage current was larger and the leakage current was smaller than in the case of using only the configuration including only the first thin film (Comparative Example 1) and the configuration including only the second thin film 32 (Comparative Example 2).
  • the dielectric film 3 having the ABOx type bottom bskite crystal structure of the present invention including the first thin film 31 and the second thin film 32 formed on the upper layer side is used as a dielectric thin film of the capacitor. It is understood that high electrical characteristics can be secured when used.
  • the sample for measuring electrical characteristics used in this example uses the dielectric film 3 formed through the above-described side rinse treatment and spin drying treatment (see FIG. 14). Except this point, the sample is the same as the sample for measuring electrical characteristics of Example 1. Using this, the leakage current and the capacitance were measured under the same conditions as in Example 1. In the spin drying process, the rotation speed and rotation time of the silicon substrate 91 were set to 5000 rpm and 60 seconds, respectively.
  • the leakage current of the dielectric film 3 is 1. a 3 X 10 _9 AZcm 2, electrical capacitance, 1. 4 ⁇ Y / cm (? Rarely.
  • the electrical property measurement sample used in this example uses a dielectric film 3 formed through a side rinse process and a spin drying process as in the second example. Then, using this, the leakage current and the capacitance were measured under the same conditions as in Example 1. In the spin drying process, the rotation speed and rotation time of the silicon substrate 91 were set to 2000 rpm and 20 seconds, respectively.
  • the leakage current of the dielectric film 3 was 8. IX 10 _8 AZcm 2 , and the electric capacity was 1.2 ⁇ ⁇ / cm (?
  • the electrical property measurement sample used in this example uses a dielectric film 3 formed through a side rinse process and a spin drying process as in the second example. Then, using this, the leakage current and the capacitance were measured under the same conditions as in Example 1. In the spin drying process, the rotation speed and rotation time of the silicon substrate 91 are set to 4000 rpm and 20 rpm, respectively. Seconds.
  • the leakage current of the dielectric film 3 was 8.8 ⁇ 10 _8 AZcm 2 , and the electric capacity was 1.2 ⁇ ⁇ / cm (?
  • the electrical property measurement sample used in this example uses a dielectric film 3 formed through a side rinse process and a spin drying process as in the second example. Then, using this, the leakage current and the capacitance were measured under the same conditions as in Example 1. In the spin drying process, the rotation speed and rotation time of the silicon substrate 91 were set to 5000 rpm and 20 seconds, respectively.
  • the leakage current of the dielectric film 3 was 9.5 ⁇ 10 _8 AZcm 2 , and the electric capacity was 1.3 ⁇ Y / cm 2 (?).
  • Example 2-1 to Example 2-3 leakage current and electric capacity substantially the same as those in Example 1 were obtained.
  • Example 2 gave much better results than Example 1 (that is, leakage current was small and electric capacity was large).
  • the silicon substrate 91 is rotated at a rotational speed of 2000 rpm or more for 20 seconds or more in the spin drying process after the side rinse process. I can understand that.
  • the rotation speed and rotation time of the silicon substrate 91 were set to 5000 rpm and 60 seconds, respectively. Then, it can be estimated that the excess solvent R remaining on the peripheral edge of the wafer W is sufficiently volatilized.
  • the dielectric film according to the present invention is composed of strontium titanate, calcium titanate, barium zirconate, etc. in addition to barium titanate as long as it is a dielectric film having an ABOx type perovskite crystal structure. May be.
  • the dielectric film having an ABOx type perovskite crystal structure according to the present invention is used for a capacitor, generation of a leakage current can be suppressed as much as possible while securing a desired electric capacity. Therefore, it is expected to be applied to capacitors mounted on circuits that require more stability, such as power supply circuits for CPUs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Disclosed is a dielectric film (3) having an ABOx-type perovskite structure which is composed of a laminate of films each having an ABOx-type perovskite structure. The dielectric film (3) can be produced by, onto a first thin film (31) which has an ABOx-type perovskite crystalline structure and has voids (42) having an average diameter equal to or larger than a predetermined value, applying a second coating solution containing particles each of which has an ABOx-type perovskite crystalline structure and which has an average particle diameter smaller than the average diameter of the voids (42) and then heating and firing the resulting product to form a second thin film (32) having an ABOx-type perovskite crystalline structure on the first thin film (31). The dielectric film (3) is characterized in that the density at the boundary between the first thin film (31) and the second thin film (32) is higher than the density at any other area of the dielectric film (3).

Description

明 細 書  Specification
ABOx型べ口ブスカイト結晶構造を有する誘電体膜及びその誘電体膜を 使用したコンデンサ並びに ABOx型ぺロブスカイト結晶構造を有する誘電体膜 の形成方法及び形成システム  Dielectric film having ABOx type perovskite crystal structure, capacitor using the dielectric film, and method and system for forming dielectric film having ABOx type perovskite crystal structure
技術分野  Technical field
[0001] 本発明は、 ABOx型べ口ブスカイト結晶構造を有する誘電体膜及びその誘電体膜 を使用したコンデンサ並びに ABOx型ぺロブスカイト結晶構造を有する誘電体膜の 形成方法及び形成システムに関する。  The present invention relates to a dielectric film having an ABOx type perovskite crystal structure, a capacitor using the dielectric film, and a method and a system for forming a dielectric film having an ABOx type perovskite crystal structure.
背景技術  Background art
[0002] 近年、コンピュータの CPUに安定した電力供給を行う観点から基板上におけるコン デンサと CPUとの距離を実質的にゼロにしようとする技術が検討されて 、る。そして、 この場合のコンデンサを構成する誘電体膜として、 ABOx型ぺロブスカイト結晶構造 を有する誘電体膜 (例えば、チタン酸バリウム)が注目されている。  [0002] In recent years, a technique for making the distance between a capacitor and a CPU on a board substantially zero from the viewpoint of stably supplying power to a computer CPU has been studied. A dielectric film (for example, barium titanate) having an ABOx type perovskite crystal structure has attracted attention as a dielectric film constituting the capacitor in this case.
[0003] この ABOx型ぺロブスカイト結晶構造を有する誘電体膜の製法としてゾルーゲル法 が知られている。しカゝしながら、カゝかるゾル一ゲル法により得られた誘電体膜は、クラ ック耐性が低いという特徴がある。具体的には、形成する 1層当たりの誘電体膜の厚 さが lOOnm以上になるとクラックが発生してしまう。従って、 1層当たりの膜厚を 100η m以下にする必要があるが、こうすると電極間の距離が短くなるため、リーク電流が大 きくなる。その結果、安定した電力供給を目的とするコンデンサとしては不適合となる  A sol-gel method is known as a method for producing a dielectric film having this ABOx type perovskite crystal structure. However, the dielectric film obtained by the sol-gel method is characterized by low crack resistance. Specifically, cracks occur when the thickness of the dielectric film per layer to be formed exceeds lOOnm. Therefore, the film thickness per layer needs to be 100 ηm or less. However, this reduces the distance between the electrodes and increases the leakage current. As a result, the capacitor is not suitable for stable power supply.
[0004] 一般に、コンデンサ用の誘電体膜として利用するためには、リーク電流低減の観点 から、その膜厚を 300nm以上にする必要がある。そこで、多層塗りを行って、例えば 、チタン酸バリウム薄膜全体の膜厚を太くするようにしている。し力しながら、多層塗り で焼成を重ねると塗布膜中のチタン酸バリウム結晶が粒成長を起こし、表面の凹凸 が増大する。このため、膜厚を太くできる反面、結晶粒間の空隙がリークポイントとな り、逆にリーク電流を増大させる結果になる場合がある。 [0004] Generally, in order to use as a dielectric film for a capacitor, the film thickness must be 300 nm or more from the viewpoint of reducing leakage current. Therefore, multilayer coating is performed, for example, to increase the thickness of the entire barium titanate thin film. However, if baking is repeated in a multi-layer coating, the barium titanate crystals in the coating film cause grain growth, increasing the surface roughness. For this reason, while the film thickness can be increased, the gap between crystal grains becomes a leakage point, and conversely, the leakage current may be increased.
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0005] 以上のことから、リーク電流の低減が図れる ABOx型ぺロブスカイト結晶構造を有 する誘電体膜の新たな形成方法の確立が望まれて ヽる。  [0005] From the above, it is desired to establish a new method for forming a dielectric film having an ABOx type perovskite crystal structure capable of reducing leakage current.
課題を解決するための手段  Means for solving the problem
[0006] 以上の問題点を解決するため、本発明の ABOx型ぺロブスカイト結晶構造を有す る誘電体膜は、 ABOx型べ口ブスカイト結晶構造を有する第 1の誘電体薄膜と、該第 1の誘電体薄膜上に ABOx型べ口ブスカイト結晶構造を有する第 2の誘電体薄膜が 形成された誘電体膜であって、前記第 2の誘電体薄膜を構成する結晶粒子の平均 粒径は、前記第 1の誘電体薄膜を構成する結晶粒子の平均粒径よりも小さぐ前記 第 1の誘電体薄膜における前記第 2の誘電体薄膜との境界領域では、前記第 1の誘 電体薄膜を構成する結晶粒子と前記第 2の誘電体薄膜を構成する結晶粒子とが混 在する、ことを特徴とする。  [0006] In order to solve the above problems, a dielectric film having an ABOx type perovskite crystal structure of the present invention includes a first dielectric thin film having an ABOx type perovskite crystal structure, and the first dielectric thin film. A dielectric film in which a second dielectric thin film having an ABOx-type bettobushite crystal structure is formed on the dielectric thin film, and the average particle size of the crystal particles constituting the second dielectric thin film is In the boundary region between the first dielectric thin film and the second dielectric thin film, which is smaller than the average particle diameter of crystal grains constituting the first dielectric thin film, the first dielectric thin film is The crystal grains constituting the second dielectric thin film are mixed with the crystal grains constituting the second dielectric thin film.
[0007] 上記構成の ABOx型ぺロブスカイト結晶構造を有する誘電体膜において、前記第 1の誘電体薄膜における前記第 2の誘電体薄膜との境界領域の密度が、前記第 1の 誘電体薄膜の他の領域の密度及び前記第 2の誘電体薄膜の密度より高くなることが 望ましい。  [0007] In the dielectric film having the ABOx type perovskite crystal structure configured as described above, a density of a boundary region between the first dielectric thin film and the second dielectric thin film is higher than that of the first dielectric thin film. It is desirable that the density of other regions and the density of the second dielectric thin film be higher.
[0008] 本発明の ABOx型ぺロブスカイト結晶構造を有する誘電体膜を使用したコンデン サは、上記の特徴を有する誘電体膜の一対の主面に一対の電極が形成されている ことを特徴とする。  [0008] A capacitor using a dielectric film having an ABOx type perovskite crystal structure according to the present invention is characterized in that a pair of electrodes are formed on a pair of main surfaces of the dielectric film having the above characteristics. To do.
[0009] 本発明の ABOx型べ口ブスカイト構造を有する誘電体膜の形成方法は、平均径が 所定値以上の空隙を含む ABOx型べ口ブスカイト結晶構造を有する第 1の誘電体薄 膜を用意する工程と、前記空隙の平均径よりも小さい平均粒径の ABOx型ぺロブス カイト結晶構造を有する粒子と、所定の有機溶媒とを含む誘電体形成用組成液を前 記第 1の誘電体薄膜上に塗布する塗布工程と、該塗布工程で得られた結果物を焼 成して、前記第 1の誘電体薄膜上に ABOx型べ口ブスカイト結晶構造を有する第 2の 誘電体薄膜を形成する焼成工程と、を備えることを特徴とする。  [0009] The method for forming a dielectric film having an ABOx-type bottom bskite structure according to the present invention provides a first dielectric thin film having an ABOx-type bottom bumskite crystal structure including voids having an average diameter of a predetermined value or more. A first dielectric thin film comprising: a first dielectric thin film comprising: a step of forming a dielectric composition composition comprising: an ABOx-type perovskite crystal structure having an average particle size smaller than the average diameter of the voids; A coating process to be applied on top and a resultant product obtained by the coating process are baked to form a second dielectric thin film having an ABOx-type bobsite crystal structure on the first dielectric thin film. And a firing step.
[0010] 前記第 2の誘電体薄膜形成用の前記誘電体形成用組成液は、金属アルコキシド、 金属カルボキシレート、金属錯体及び金属水酸化物の群から選ばれる金属種 A及び 金属種 Bを含む一種以上の化合物を含む構成にしてもよい。この場合、前記金属種 Aの濃度が 0. 1〜0. 7mmolZgであり、前記金属種 Bの濃度が 0. 1〜0. 7mmol/ gであるのが好ましい。また、前記金属種 Aは、リチウム、ナトリウム、カルシウム、スト口 ンチウム、バリウム及びランタンの内の一種以上の金属を含み、前記金属種 Bはチタ ン、ジルコニウム、タンタル及びニオブの内の一種以上の金属を含む構成にしてもよ い。 [0010] The dielectric-forming composition liquid for forming the second dielectric thin film comprises a metal species A selected from the group consisting of metal alkoxides, metal carboxylates, metal complexes, and metal hydroxides. You may make it the structure containing 1 or more types of compounds containing the metal seed | species B. FIG. In this case, the concentration of the metal species A is preferably 0.1 to 0.7 mmol Zg, and the concentration of the metal species B is preferably 0.1 to 0.7 mmol / g. In addition, the metal species A includes one or more metals selected from lithium, sodium, calcium, strontium, barium, and lanthanum, and the metal species B includes one or more metals selected from titanium, zirconium, tantalum, and niobium. It may be configured to include metal.
[0011] また、前記第 2の誘電体薄膜形成用の前記誘電体形成用組成液に含まれる前記 有機溶媒が、アルコール系溶媒、エーテル系溶媒、ケトン系溶媒及びエステル系溶 媒の群力 選ばれる一種以上の有機溶媒を含む構成にしてもよい。  [0011] In addition, the organic solvent contained in the dielectric forming composition liquid for forming the second dielectric thin film is selected from the group strength of alcohol solvents, ether solvents, ketone solvents, and ester solvents. It may be configured to include one or more organic solvents.
[0012] 前記第 1の誘電体薄膜を用意する工程は、前記第 2の誘電体薄膜形成用の前記 誘電体形成用組成液に含まれる ABOx型ぺロブスカイト結晶構造を有する粒子の平 均粒径よりも大きい平均粒径の ABOx型べ口ブスカイト結晶構造を有する粒子を含 む誘電体形成用組成液を基板の表面に塗布する第 1の誘電体薄膜形成用の塗布 工程と、該塗布工程で得られた結果物を焼成して、前記基板上に ABOx型ぺロブス カイト結晶構造を有する第 1の誘電体薄膜を形成する第 1の誘電体薄膜形成用の焼 成工程と、を備える構成にしてもよい。  [0012] The step of preparing the first dielectric thin film includes an average particle diameter of particles having an ABOx-type perovskite crystal structure contained in the dielectric forming composition liquid for forming the second dielectric thin film. A first dielectric thin film forming coating step of coating a surface of a substrate with a dielectric forming composition liquid containing particles having an ABOx-type bavskite crystal structure having a larger average particle size, and the coating step And firing the resulting product to form a first dielectric thin film having an ABOx-type perovskite crystal structure on the substrate. May be.
[0013] 前記第 1の誘電体薄膜形成用の塗布工程は、前記基板を回転させて該基板上に 前記第 1の誘電体薄膜形成用の前記誘電体形成用組成液を伸展させる第 1の伸展 工程と、該第 1の伸展工程後、前記基板の表面側周縁部に溶剤を塗布し、前記基板 の表面側周縁部を洗浄する第 1の洗浄工程と、該第 1の洗浄工程後、前記基板を所 定の回転速度で所定時間回転させて、前記基板の表面側周縁部を乾燥させる第 1 の乾燥工程と、を備え、前記第 2の誘電体薄膜形成用の塗布工程は、前記基板を回 転させて該基板上に前記第 2の誘電体薄膜形成用の前記誘電体形成用組成液を 伸展させる第 2の伸展工程と、該第 2の伸展工程後、前記基板の表面側周縁部に溶 剤を塗布し、前記基板の表面側周縁部を洗浄する第 2の洗浄工程と、該第 2の洗浄 工程後、前記基板を所定の回転速度で所定時間回転させて、前記基板の表面側周 縁部を乾燥させる第 2の乾燥工程と、を備える構成にしてもよい。  [0013] In the first dielectric thin film forming coating step, the substrate is rotated to extend the dielectric forming composition liquid for forming the first dielectric thin film onto the substrate. After the first extension step, after the first extension step, a solvent is applied to the surface side peripheral portion of the substrate, and the surface side peripheral portion of the substrate is cleaned, and after the first cleaning step, A first drying step of rotating the substrate at a predetermined rotation speed for a predetermined time to dry the surface side peripheral portion of the substrate, and the coating step for forming the second dielectric thin film comprises A second extending step of rotating the substrate to extend the dielectric forming composition liquid for forming the second dielectric thin film on the substrate; and a surface side of the substrate after the second extending step. A second cleaning step of applying a solvent to the peripheral portion and cleaning the peripheral portion of the surface side of the substrate; and after the second cleaning step, before The substrate is rotated a predetermined time at a predetermined rotational speed, a second drying step of drying the surface-side peripheral edge of the substrate, may be configured with a.
[0014] 前記第 1の誘電体薄膜形成用の前記誘電体形成用組成液は、前記第 2の誘電体 薄膜形成用の前記誘電体形成用組成液を加水分解することにより得られる ABOx型 の結晶構造を有する平均粒径 lOOnm以下の粒子を含む構成にしてもよい。 [0014] The dielectric forming composition liquid for forming the first dielectric thin film is the second dielectric. The dielectric composition forming liquid for thin film formation may include particles having an average particle diameter of lOOnm or less having an ABOx type crystal structure obtained by hydrolysis.
[0015] 本発明の ABOx型ぺロブスカイト構造を有する誘電体膜の形成システムは、平均 径が所定値以上の空隙を含む ABOx型べ口ブスカイト結晶構造を有する第 1の誘電 体薄膜上に、前記空隙の平均径よりも小さい平均粒径の ABOx型ぺロブスカイト結 晶構造を有する粒子を含む誘電体形成用組成液を塗布する塗布装置と、該塗布装 置による前記誘電体形成用組成液の塗布によって得られた結果物を焼成して、前記 第 1の誘電体薄膜上に ABOx型べ口ブスカイト結晶構造を有する第 2の誘電体薄膜 を形成する焼成装置と、を備えることを特徴とする。  [0015] The system for forming a dielectric film having an ABOx type perovskite structure according to the present invention has the above-described system on the first dielectric thin film having an ABOx type bebbitite crystal structure including voids having an average diameter of a predetermined value or more. A coating apparatus for coating a dielectric forming composition liquid containing particles having an ABOx type perovskite crystal structure having an average particle size smaller than the average diameter of the voids, and coating of the dielectric forming composition liquid by the coating apparatus And a firing device for firing the resultant product obtained by the above-described method to form a second dielectric thin film having an ABOx type bebskite crystal structure on the first dielectric thin film.
[0016] 前記第 2の誘電体薄膜形成用の前記誘電体形成用組成液は、金属アルコキシド、 金属カルボキシレート、金属錯体及び金属水酸化物の群から選ばれる金属種 A及び 金属種 Bを含む一種以上の化合物を含む構成にしてもよい。この場合、前記金属種 Aの濃度が 0. 1〜0. 7mmolZgであり、前記金属種 Bの濃度が 0. 1〜0. 7mmol/ gであるのが望ましい。また、前記金属種 Aは、リチウム、ナトリウム、カルシウム、スト口 ンチウム、バリウム及びランタンの内の一種以上の金属を含み、前記金属種 Bはチタ ン、ジルコニウム、タンタル及びニオブの内の一種以上の金属を含む構成にしてもよ い。  [0016] The dielectric forming composition liquid for forming the second dielectric thin film includes a metal species A and a metal species B selected from the group consisting of metal alkoxides, metal carboxylates, metal complexes, and metal hydroxides. You may make it the structure containing a 1 or more type of compound. In this case, it is desirable that the concentration of the metal species A is 0.1 to 0.7 mmolZg and the concentration of the metal species B is 0.1 to 0.7 mmol / g. In addition, the metal species A includes one or more metals selected from lithium, sodium, calcium, strontium, barium, and lanthanum, and the metal species B includes one or more metals selected from titanium, zirconium, tantalum, and niobium. It may be configured to include metal.
発明の効果  The invention's effect
[0017] 以上の如ぐ本発明に係る ABOx型ぺロブスカイト結晶構造を有する誘電体膜は、 コンデンサに使用した場合、所望の容量を確保しつつ、リーク電流の低減が図れる。 図面の簡単な説明  [0017] When the dielectric film having the ABOx type perovskite crystal structure according to the present invention as described above is used for a capacitor, the leakage current can be reduced while securing a desired capacity. Brief Description of Drawings
[0018] [図 1]本発明の ABOx型べ口ブスカイト結晶構造を有する誘電体膜を使用したコンデ ンサの一例を示す断面図である。  [0018] FIG. 1 is a cross-sectional view showing an example of a capacitor using a dielectric film having an ABOx type mouth-bushite crystal structure of the present invention.
[図 2]第 1の塗布工程を説明するための断面図である。  FIG. 2 is a cross-sectional view for explaining a first application process.
[図 3]第 1の加熱工程を説明するための断面図である。  FIG. 3 is a cross-sectional view for explaining a first heating step.
[図 4]第 1の加熱工程での誘電体膜の変性の様子を示す模式図である。  FIG. 4 is a schematic diagram showing how the dielectric film is modified in the first heating step.
[図 5]第 2の塗布工程及び第 2の加熱工程を説明するための断面図である。  FIG. 5 is a cross-sectional view for explaining a second coating step and a second heating step.
[図 6]本発明に係るコンデンサの製造方法の一例を示す断面図である。 圆 7]ABOx型べ口ブスカイト結晶構造を有する誘電体膜の作用を説明するための断 面図である。 FIG. 6 is a cross-sectional view showing an example of a method for manufacturing a capacitor according to the present invention. [7] FIG. 7 is a cross-sectional view for explaining the action of a dielectric film having an ABOx-type bottom buxite crystal structure.
圆 8]本発明の一実施形態に係る ABOx型べ口ブスカイト結晶構造を有する誘電体 膜の形成装置を示す平面図である。 [8] FIG. 8 is a plan view showing a dielectric film forming apparatus having an ABOx type bottom bskite crystal structure according to an embodiment of the present invention.
圆 9]同実施形態に係る形成装置の斜視図である。 9] A perspective view of a forming apparatus according to the embodiment.
圆 10]同実施形態に係る形成装置が備える塗布ユニットの概略構成を示す断面図 である。 FIG. 10 is a cross-sectional view showing a schematic configuration of a coating unit included in the forming apparatus according to the embodiment.
圆 11]同実施形態に係る形成装置が備える加熱ユニットの概略構成を示す断面図 である。 FIG. 11 is a cross-sectional view showing a schematic configuration of a heating unit provided in the forming apparatus according to the embodiment.
圆 12]同実施形態において、塗布膜の結晶化のための焼成処理を行う加熱炉の概 略構成を示す断面図である。 FIG. 12 is a cross-sectional view showing a schematic configuration of a heating furnace that performs a baking treatment for crystallization of a coating film in the same embodiment.
圆 13]本発明の他の実施形態に係る塗布ユニットの概略構成を示す断面図である。 圆 14]同実施形態において、洗浄工程及び乾燥工程を説明するための断面図であ る。 13] A sectional view showing a schematic configuration of a coating unit according to another embodiment of the present invention. FIG. 14 is a cross-sectional view for explaining a cleaning process and a drying process in the embodiment.
圆 15]本発明の効果を確認するために行なった実験で用いられる測定用サンプルを 説明するための斜視図である。 [15] FIG. 15 is a perspective view for explaining a measurement sample used in an experiment conducted for confirming the effect of the present invention.
符号の説明 Explanation of symbols
21 下部電極  21 Bottom electrode
22 上部電極  22 Upper electrode
23 基板  23 Board
25, 61 スピンチャック  25, 61 Spin chuck
26, 66 塗布液ノズル  26, 66 Coating liquid nozzle
3〜5 誘電体膜  3-5 dielectric film
31 第 1の薄膜  31 First thin film
31a 第 1の塗布膜  31a First coating film
32 第 2の薄膜  32 Second thin film
32a 第 2の塗布膜  32a Second coating film
40 結晶粒子 41 溶媒 40 crystal grains 41 Solvent
42 空隙  42 Air gap
SI キャリアステーション  SI carrier station
S2 処理部  S2 processor
51 キャリア載置部  51 Carrier placement
6 (6A, 6B) 塗布ユニット  6 (6A, 6B) Dispensing unit
62 カップ体  62 cup body
63 液受部  63 Liquid receiver
7 (7A, 7B) 加熱ユニット  7 (7A, 7B) Heating unit
71 冷却プレート  71 Cooling plate
72 熱板  72 Hot plate
73 天板  73 Top plate
8 加熱炉  8 Heating furnace
81 ウェハボート  81 wafer boat
84 加熱手段  84 Heating means
101 リンスノズル  101 rinse nozzle
W 半導体ウェハ  W Semiconductor wafer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明に係る ABOx型ぺロブスカイト結晶構造を有する誘電体膜及びその 誘電体膜を使用したコンデンサ並びに ABOx型ぺロブスカイト結晶構造を有する誘 電体膜の形成方法及び形成システムの一実施形態について図面を参照して説明す る。 Hereinafter, a dielectric film having an ABOx type perovskite crystal structure, a capacitor using the dielectric film, and a method and a system for forming an dielectric film having an ABOx type perovskite crystal structure according to the present invention are described below. Embodiments will be described with reference to the drawings.
[0021] 先ず、本発明に係る ABOx型べ口ブスカイト結晶構造を有する誘電体膜の一例を 図 1に基づいて説明する。図 1では、本発明に係る誘電体膜を容量素子 (コンデンサ )に適用した例を示している。図 1 (a)に示すコンデンサは、下部電極 21 (例えば Pt 製)、上部電極 22 (例えば A1製)及び誘電体膜 3で構成されて 、る。  [0021] First, an example of a dielectric film having an ABOx type mouth bumskite crystal structure according to the present invention will be described with reference to FIG. FIG. 1 shows an example in which the dielectric film according to the present invention is applied to a capacitive element (capacitor). The capacitor shown in FIG. 1A is composed of a lower electrode 21 (for example, made of Pt), an upper electrode 22 (for example, made of A1), and a dielectric film 3.
[0022] 誘電体膜 3は、第 1の薄膜 31 (第 1の誘電体薄膜)層と第 2の薄膜 32 (第 2の誘電体 薄膜)層からなる ABOx型べ口ブスカイト結晶構造を有する誘電体膜である。そして、 第 1の薄膜 31側の面に下部電極 21が設けられ、第 2の薄膜 32側の面に上部電極 2 2が設けられている。 The dielectric film 3 is a dielectric film having an ABOx-type bobsite crystal structure composed of a first thin film 31 (first dielectric thin film) layer and a second thin film 32 (second dielectric thin film) layer. It is a body membrane. And The lower electrode 21 is provided on the surface on the first thin film 31 side, and the upper electrode 22 is provided on the surface on the second thin film 32 side.
[0023] 第 1の薄膜 31は、平均径が lOnm以上の空隙(ボイド)を含む ABOx型ぺロブス力 イト結晶構造を有する誘電体薄膜であり、その膜厚は、例えば 200〜300nm程度で ある。第 1の薄膜 31は、第 1の塗布液を半導体基板 (例えば、シリコン基板)に塗布し 、加熱することで生成され得る。第 1の塗布液は、本実施形態では、 ABOx型ぺロブ スカイト結晶構造を有する平均粒径 lOOnm以下の粒子と溶剤 (有機溶媒)とを含む 誘電体形成用組成液である。  [0023] The first thin film 31 is a dielectric thin film having an ABOx type perovskite crystal structure including voids having an average diameter of lOnm or more, and the film thickness thereof is, for example, about 200 to 300 nm. . The first thin film 31 can be generated by applying a first coating liquid to a semiconductor substrate (for example, a silicon substrate) and heating. In the present embodiment, the first coating liquid is a dielectric forming composition liquid containing particles having an ABOx type perovskite crystal structure and an average particle diameter of lOOnm or less and a solvent (organic solvent).
[0024] 第 2の薄膜 32は、 ABOx型べ口ブスカイト結晶構造を有する誘電体薄膜であり、そ の膜厚は、例えば lOOnm程度である。第 2の薄膜 32は、第 2の塗布液を第 1の薄膜 31の上に塗布し、 700°C〜900°Cで加熱することで生成され得る。第 2の塗布液は、 本実施形態では、金属アルコキシド、金属カルボキシレート、金属錯体及び金属水 酸化物の群から選択された金属種 A及び金属種 Bを含む一種以上の化合物と溶剤( 有機溶媒)とを含む誘電体形成用組成液である。  [0024] The second thin film 32 is a dielectric thin film having an ABOx type bottom bskite crystal structure, and its film thickness is, for example, about lOOnm. The second thin film 32 can be produced by applying a second coating liquid on the first thin film 31 and heating at 700 ° C. to 900 ° C. In this embodiment, the second coating liquid is one or more compounds including a metal species A and a metal species B selected from the group of metal alkoxides, metal carboxylates, metal complexes, and metal hydroxides, and a solvent (organic solvent). ) And a dielectric composition forming liquid.
[0025] 金属種 Aは、 Li (リチウム)、 Na (ナトリウム)、 Ca (カルシウム)、 Sr (ストロンチウム)、 Ba (バリウム)及び La (ランタン)の内から選択される一種以上の金属である。また、金 属種 Bは Ti (チタン)、 Zr (ジルコニウム)、 Ta (タンタル)及び Nb (ニオブ)から選択さ れる一種以上の金属である。  [0025] The metal species A is one or more metals selected from Li (lithium), Na (sodium), Ca (calcium), Sr (strontium), Ba (barium), and La (lanthanum). Metal species B is one or more metals selected from Ti (titanium), Zr (zirconium), Ta (tantalum), and Nb (niobium).
[0026] 図 1 (b)及び図 1 (c)は、下部電極 21と上部電極 22との間の誘電体を 3層で構成し たコンデンサの例を示している。図 1 (b)に示すコンデンサは、 2つの第 2の薄膜 32と の間に第 1の薄膜 31が挟まれる態様で構成された誘電体膜 4を含んで ヽる。また、 図 1 (c)に示すコンデンサは、 2つの第 1の薄膜 31との間に第 2の薄膜 32が挟まれる 態様で構成された誘電体膜 5を含んで ヽる。  FIG. 1B and FIG. 1C show an example of a capacitor in which the dielectric between the lower electrode 21 and the upper electrode 22 is composed of three layers. The capacitor shown in FIG. 1 (b) includes a dielectric film 4 configured such that the first thin film 31 is sandwiched between two second thin films 32. The capacitor shown in FIG. 1 (c) includes a dielectric film 5 configured in such a manner that the second thin film 32 is sandwiched between the two first thin films 31.
[0027] 続いて、本発明の本実施形態に係る ABOx型ぺロブスカイト結晶構造を有する誘 電体膜 3の形成方法について図 2〜図 6を用いて説明する。尚、以下の説明では、 誘電体膜 3として、金属種 A力 ¾aであり、金属種 Bが Tiであるチタン酸バリウム(BaTi O )を採用しているものとする。  Next, a method for forming the dielectric film 3 having an ABOx type perovskite crystal structure according to this embodiment of the present invention will be described with reference to FIGS. In the following description, it is assumed that barium titanate (BaTi 2 O 3) having a metal type A force ¾a and a metal type B being Ti is used as the dielectric film 3.
3  Three
[0028] 先ず、シリコン基板である基板 23に形成された下部電極 21 (例えば Pt製)の表面 に第 1の薄膜 31を形成する方法について説明する。第 1の薄膜 31は、上述したよう に第 1の塗布液を基板 23に塗布し (第 1の塗布工程)、加熱'焼成する(第 1の焼成ェ 程)ことで生成され得る。本実施形態で使用する第 1の塗布液は、 ABOx型ぺロブス カイト結晶構造を有する平均粒径 lOOnm以下の粒子と有機溶媒とを含む誘電体形 成用組成液である。 [0028] First, the surface of the lower electrode 21 (for example, made of Pt) formed on the substrate 23 which is a silicon substrate Next, a method for forming the first thin film 31 will be described. As described above, the first thin film 31 can be produced by applying the first coating liquid to the substrate 23 (first coating process) and heating and baking (first baking process). The first coating liquid used in the present embodiment is a dielectric composition forming liquid containing particles having an ABOx type perovskite crystal structure and an average particle diameter of lOOnm or less and an organic solvent.
[0029] ここで、力かる第 1の塗布液の製造方法について説明する。第 1の塗布液は、(1) 溶解工程、(2)加水分解工程、(3)精製工程及び (4)分散工程の各工程を経て製造 される。以下、これらの工程を詳細に説明する。  [0029] Here, a powerful method for producing the first coating liquid will be described. The first coating solution is produced through each step of (1) dissolution step, (2) hydrolysis step, (3) purification step, and (4) dispersion step. Hereinafter, these steps will be described in detail.
[0030] (1)溶解工程  [0030] (1) Dissolution process
ABOx型ぺロブスカイト結晶構造を有する粒子を構成する金属種 Aを含む一種以 上の化合物及び ABOx型ぺロブスカイト結晶構造を有する粒子を構成する金属種 B を含む一種以上の化合物をよく知られた技術により有機溶媒に溶解させる工程であ る。  Well-known technologies that include one or more compounds containing metal species A constituting particles having an ABOx-type perovskite crystal structure and one or more compounds containing metal species B constituting particles having an ABOx-type perovskite crystal structure This is a step of dissolving in an organic solvent.
[0031] 上記化合物は、金属アルコキシド、金属カルボキシレート、金属錯体及び金属水酸 化物の群から選択される。  [0031] The compound is selected from the group of metal alkoxides, metal carboxylates, metal complexes, and metal hydroxides.
[0032] 金属種 Aは Li, Na, Ca, Sr, Ba及び Laの内力 選ばれる一種以上の金属である のが好ましい。また、金属種 Bは、 Ti, Zr, Ta及び Nbの内力 選ばれる一種以上の 金属であるのが好ましい。さらには、金属種 Aが Sr及び Baの内力 選ばれる一種以 上の金属であり、金属種 Bが Tiであるのがより好ましい。  [0032] The metal species A is preferably one or more metals selected from the internal forces of Li, Na, Ca, Sr, Ba and La. The metal species B is preferably one or more metals selected from the internal forces of Ti, Zr, Ta, and Nb. More preferably, the metal species A is one or more metals selected from the internal forces of Sr and Ba, and the metal species B is Ti.
[0033] 溶解の際の液中の金属種 Aの濃度は、 0. 1〜0. 7mmolZgである。同様に、金属 種 Bの濃度も、 0. 1〜0. 7mmolZgである。  [0033] The concentration of the metal species A in the solution during dissolution is 0.1 to 0.7 mmolZg. Similarly, the concentration of metal species B is also 0.1 to 0.7 mmol Zg.
[0034] 前記金属アルコキシドとしては、例えば、ジメトキシバリウム、ジエトキシバリウム、ジ プロポキシバリウム、ジイソプロポキシバリウム、ジブトキシバリウム、ジイソブトキシバリ ゥム等のバリウムアルコキシドや、ジメトキシストロンチウム、ジェトキシストロンチウム、 ジプロポキシストロンチウム、ジイソプロポキシストロンチウム、ジブトキシストロンチウム 、ジイソブトキシストロンチウム等のストロンチウムアルコキシドや、テトラメトキシチタン 、テトラエトキシチタン、テトラプロポキシチタン、テトライソプロポキシチタン、テトラブト キシチタン、テトライソブトキシチタン等を使用することができる。 [0035] 前記金属カルボキシレートとしては、例えば、酢酸バリウム、プロピロン酸バリウム、 2 メチルプロピオン酸バリウム、ペンタン酸バリウム、 2, 2—ジメチルプロピオン酸バリ ゥム、ブタン酸バリウム、へキサン酸バリウム、 2—ェチルへキサン酸バリウム、ォクチ ル酸バリウム、ノナン酸バリウム、デカン酸バリウム等のバリウムカルボキシレートや、 酢酸ストロンチウム、プロピロン酸ストロンチウム、 2—メチルプロピオン酸ストロンチウ ム、ペンタン酸ストロンチウム、 2, 2—ジメチノレプロピ才ン酸ストロンチウム、ブタン酸ス トロンチウム、へキサン酸ストロンチウム、 2—ェチルへキサン酸ストロンチウム、ォクチ ル酸ストロンチウム、ノナン酸ストロンチウム、デカン酸ストロンチウム等のストロンチウ ムカルボキシレート等を使用することができる。 [0034] Examples of the metal alkoxide include, for example, barium alkoxides such as dimethoxybarium, diethoxybarium, dipropoxybarium, diisopropoxybarium, dibutoxybarium, and diisobutoxybarium, dimethoxystrontium, cetoxystrontium, Use strontium alkoxides such as propoxystrontium, diisopropoxystrontium, dibutoxystrontium, diisobutoxystrontium, tetramethoxytitanium, tetraethoxytitanium, tetrapropoxytitanium, tetraisopropoxytitanium, tetrabutoxytitanium, tetraisobutoxytitanium, etc. Can do. [0035] Examples of the metal carboxylate include barium acetate, barium propionate, 2 methyl barium propionate, barium pentanoate, barium 2,2-dimethylpropionate, barium butanoate, barium hexanoate, 2 -Barium carboxylates such as ethylbarium hexanoate, barium octylate, barium nonanoate, barium decanoate, strontium acetate, strontium propionate, strontium 2-methylpropionate, strontium pentanoate, 2,2-dimethinorepropi Strontium carboxy such as strontium citrate, strontium butanoate, strontium hexanoate, strontium 2-ethylhexylate, strontium octylate, strontium nonanoate, strontium decanoate, etc. It can be used over door and the like.
[0036] 前記金属錯体としては、例えば、チタンァリルァセトアセテートトリイソプロキサイド、 チタンジブトキサイド(ビス 2, 4 ペンタンジォネート)、チタンジイソプロキシサイド (ビス 2, 4 ペンタンジォネート)、チタンジブトキサイドビス(テトラメチルヘプタン ジォネート)、チタンジイソプロキサイドビス(テトラメチルヘプタンジォネート)、チタン ジブトキサイドビス(ェチノレアセトアセテート)、チタンジイソプロポキサイドビス(ェチノレ ァセトアセテート)等を使用することができる。  [0036] Examples of the metal complex include titanium arylacetoacetate triisoproxide, titanium dibutoxide (bis 2,4 pentanedionate), titanium diisoproxyside (bis 2,4 pentanedio). Nate), titanium dibutoxide bis (tetramethyl heptane dionate), titanium diisoproxide bis (tetramethyl heptane dionate), titanium dibutoxide bis (ethinoreacetoacetate), titanium diisopropoxide bis ( Ethinoacetate acetate) and the like can be used.
[0037] 前記金属水酸化物は、金属原子に水酸化物イオンが配位した化合物であり、下記 一般式(1)で表される。  [0037] The metal hydroxide is a compound in which a hydroxide ion is coordinated to a metal atom, and is represented by the following general formula (1).
[0038] Ma(OH) ·χΗ Ο · · ·式(1) [0038] M a (OH) · χΗ Ο · · · · Equation (1)
a 2  a 2
[式(1)中、 Mは Li, Na, Ca, Sr, Ba, La, Ti, Zr, Ta及び Nbの内から選ばれる金 属を表す。 aは金属 Mの価数に応じた 1〜7の整数である。 Xは 1〜8の整数である。 ] [0039] 前記有機溶媒として、例えば、アルコール系溶媒、多価アルコール系溶媒、エーテ ル系溶媒、ケトン系溶媒、エステル系溶媒等を使用できる。  [In the formula (1), M represents a metal selected from Li, Na, Ca, Sr, Ba, La, Ti, Zr, Ta, and Nb. a is an integer of 1 to 7 according to the valence of metal M. X is an integer of 1-8. [0039] As the organic solvent, for example, alcohol solvents, polyhydric alcohol solvents, ether solvents, ketone solvents, ester solvents and the like can be used.
[0040] 前記アルコール系溶媒として、メタノール、エタノール、プロパノール、ブタノール、 ァミルアルコール、シクロへキサノール、メチルシクロへキサノール等を使用すること ができる。 [0040] As the alcohol solvent, methanol, ethanol, propanol, butanol, amyl alcohol, cyclohexanol, methylcyclohexanol and the like can be used.
[0041] 前記多価アルコール系溶媒として、エチレングリコールモノメチルエーテル、ェチレ ングリコーノレモノァセトエステル、ジエチレングリコーノレモノメチノレエーテル、ジェチレ ングリコーノレモノアセテート、プロピレングリコールモノェチルエーテル、プロピレング リコーノレモノアセテート、ジプロピレングリコーノレモノェチノレエーテル、プロピレングリ コールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、メトキシブタ ノーノレ、プロピレングリコーノレモノェチノレエーテノレアセテート、プロピレングリコーノレモ ノメチルエーテルアセテート、ジプロピレングリコールプロピルエーテル、ジプロピレン グリコールモノブチルエーテル等を使用することができる。 [0041] Examples of the polyhydric alcohol solvent include ethylene glycol monomethyl ether, ethylenic glycolenomonoacetate ester, diethylene glycolenol monomethylenether ether, jetylene glycol monoethyl acetate, propylene glycol monoethyl ether, propylene glycol. Ricohone Monoacetate, Dipropylene Glycolol Monoethyl Ethanolate, Propylene Glycol Monomethyl Ether, Propylene Glycol Monopropyl Ether, Methoxybutanol, Propylene Glycolol Monoethyl Ethenoate Ethyl Acetate, Propylene Glycol Monomethyl Ether Acetate, Dipropylene glycol propyl ether, dipropylene glycol monobutyl ether, and the like can be used.
[0042] 前記エーテル系溶媒として、メチラール、ジェチルエーテル、ジプロピルエーテル、 ジブチルエーテル、ジァミルエーテル、ジェチルァセタール、ジへキシルエーテル、ト リオキサン、ジォキサン等を使用することができる。  [0042] As the ether solvent, methylal, jetyl ether, dipropyl ether, dibutyl ether, diamyl ether, jetyl acetal, dihexyl ether, trioxane, dioxane and the like can be used.
[0043] 前記ケトン系溶媒として、アセトン、メチルェチルケトン、メチルプロピルケトン、メチ ルイソブチルケトン、メチルアミルケトン、メチルシクロへキシルケトン、ジェチルケトン 、ェチルブチルケトン、トリメチルノナノン、ァセトニルアセトン、ジメチルォキシド、ホロ ン、シクロへキサノン、ダイアセトンアルコール等を使用することができる。  [0043] Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, methyl cyclohexyl ketone, jetyl ketone, ethyl butyl ketone, trimethylnonanone, acetonyl acetone, dimethyl oxide. , Horn, cyclohexanone, diacetone alcohol and the like can be used.
[0044] 前記エステル系溶媒として、ギ酸ェチル、酢酸メチル、酢酸ェチル、酢酸ブチル、 酢酸シクロへキシル、プロピオン酸メチル、酪酸ェチル、ォキシイソ酪酸ェチル、ァセ ト酢酸ェチル、乳酸ェチル、メトキシブチルアセテート、シユウ酸ジェチル、マロン酸 ジェチル等を使用することができる。  [0044] Examples of the ester solvent include ethyl formate, methyl acetate, ethyl acetate, butyl acetate, cyclohexyl acetate, methyl propionate, ethyl butyrate, ethyl oxyisobutyrate, ethyl acetate, ethyl acetate, methoxybutyl acetate, Jetyl oxalate, jetyl malonate and the like can be used.
[0045] 有機溶媒は、上記溶媒の内の 1種類でもよいし、 2種類上の溶媒を組み合わせて 用いることちでさる。  [0045] The organic solvent may be one of the above-mentioned solvents, or may be a combination of two or more solvents.
[0046] 尚、溶解工程で生成した溶液は、第 2の薄膜 32を形成するための第 2の塗布液に 相当する。  Note that the solution generated in the dissolution step corresponds to a second coating solution for forming the second thin film 32.
[0047] (2)加水分解工程 [0047] (2) Hydrolysis step
溶解工程で生成した溶液中に水を添加し、溶液中の前駆体を加水分解して結晶 粒子を得る工程である。  In this step, water is added to the solution produced in the dissolution step, and the precursor in the solution is hydrolyzed to obtain crystal particles.
[0048] 加水分解の際、反応効率の点から、通常、溶液温度を— 78°C〜200°Cの範囲に 保つ。この場合、—20°C〜100°Cにするのが好ましぐさらに、 0〜50°Cするのがより 好ましい。 [0048] During hydrolysis, the solution temperature is usually kept in the range of -78 ° C to 200 ° C from the viewpoint of reaction efficiency. In this case, it is preferably −20 ° C. to 100 ° C., and more preferably 0 to 50 ° C.
[0049] また、加水分解の際に溶液へ添加する水の量は、金属種 Aの 1モルに対して通常 5 〜300倍のモル量になる。この場合、 10〜200倍のモル量にするのが好ましい(20 〜 100倍のモル量ならば、いっそう好ましい。 )。このようなモル量で水を添カ卩すると、 粒子の結晶性が向上し、加えて分散性も良好となる。 [0049] The amount of water added to the solution during hydrolysis is usually 5 to 300 times the molar amount of 1 mol of metal species A. In this case, the molar amount is preferably 10 to 200 times (20 A molar amount of ~ 100 times is even more preferable. ). When water is added in such a molar amount, the crystallinity of the particles is improved and the dispersibility is also improved.
[0050] また、水のみを溶液中に添加する他に、上記した複数種類の溶媒の内から選択し た 1種類以上の溶媒と水を混合したものを添加してもよい。  [0050] In addition to adding only water to the solution, a mixture of one or more solvents selected from the above-described plurality of solvents and water may be added.
[0051] また、添加する水に触媒が含まれて!/ヽてもよ ヽ。例えば、無機酸 (例えば塩酸、硫 酸、硝酸)、有機酸 (例えば酢酸、プロピオン酸、酪酸、マレイン酸)等の酸触媒や、 水酸化ナトリウム、水酸ィ匕カリウム、水酸化バリウム、アンモニア、モノエタノールァミン 、ジエタノールァミン、テトラメチルアンモ-ゥムヒドロキシド等の無機または有機アル カリ触媒等を触媒として使用できる。  [0051] Further, the water to be added contains a catalyst! For example, acid catalysts such as inorganic acids (eg hydrochloric acid, sulfuric acid, nitric acid), organic acids (eg acetic acid, propionic acid, butyric acid, maleic acid), sodium hydroxide, potassium hydroxide, barium hydroxide, ammonia, Inorganic or organic alkali catalysts such as monoethanolamine, diethanolamine, and tetramethylammonium hydroxide can be used as the catalyst.
[0052] 水を添加した後に生成される加水分解 ·縮合物は、通常、 10〜200°Cで 0. 5〜[0052] Hydrolysis condensate produced after adding water is usually 0.5 to 10 at 200 to 200 ° C.
200時間保持される。この場合、 20〜150°Cで 1〜: LOO時間保持するのが好ましぐHold for 200 hours. In this case, it is preferable to hold for 1 to: LOO time at 20 to 150 ° C.
30〜100°Cで 3〜20時間保持するのがより好ましい。 It is more preferable to hold at 30 to 100 ° C for 3 to 20 hours.
[0053] 以上の溶解工程及び加水分解工程を経ることで、 ABOx型ぺロブスカイト結晶構 造を有する平均粒径 lOOnm以下 (好ましくは平均粒径 20〜80nm)の結晶粒子を 得ることができる。 [0053] Through the dissolution step and the hydrolysis step, crystal particles having an ABOx type perovskite crystal structure and an average particle size of lOOnm or less (preferably an average particle size of 20 to 80 nm) can be obtained.
[0054] (3)精製工程 [0054] (3) Purification step
加水分解工程で得られた結晶粒子を有機溶媒で精製する工程である。結晶粒子 を有機溶媒で精製する方法は、精製後に結晶粒子と有機溶媒とを分離することが可 能であれば、どのような手法を用いてもよい。例えば、先ず、有機溶媒を結晶粒子に 加え、デカンテーシヨンある!/、は遠心分離によって該結晶粒子を沈降させて上澄液 を除去する。そして、再度、有機溶媒を沈降した結晶粒子に加えて加熱する、という 工程を、 2〜5回繰り返す方法がある。  In this step, the crystal particles obtained in the hydrolysis step are purified with an organic solvent. As a method for purifying the crystal particles with an organic solvent, any method may be used as long as the crystal particles and the organic solvent can be separated after purification. For example, first, an organic solvent is added to the crystal particles, and the decantation is! /, Sediments the crystal particles by centrifugation, and removes the supernatant. Then, there is a method in which the process of adding the organic solvent to the precipitated crystal particles and heating again is repeated 2 to 5 times.
[0055] この場合に使用する有機溶媒には、アルコール系溶媒、多価アルコール系溶媒、 エーテル系溶媒、ケトン系溶媒、エステル系溶媒等が挙げられる。これらの有機溶媒 については、上記溶解工程の項で例示したものを用いることができる。 [0055] Examples of the organic solvent used in this case include alcohol solvents, polyhydric alcohol solvents, ether solvents, ketone solvents, ester solvents, and the like. As these organic solvents, those exemplified in the section of the dissolution step can be used.
[0056] (4)分散工程 [0056] (4) Dispersion process
精製工程により精製された結晶粒子を有機溶媒に分散させる工程である。具体的 には、先ず、精製工程により得られた結晶粒子を洗液である有機溶媒と分離させる。 そして、分離した結晶粒子を新たな有機溶媒に投入し、分散させて結晶粒子分散体 を生成する。 In this step, the crystal particles purified by the purification step are dispersed in an organic solvent. Specifically, first, the crystal particles obtained in the purification step are separated from an organic solvent which is a washing solution. Then, the separated crystal particles are put into a new organic solvent and dispersed to produce a crystal particle dispersion.
[0057] 結晶粒子を有機溶媒中に分散させる方法は、該結晶粒子を有機溶媒中に均一に 分散させることが可能であれば、どのような手法を用いてもよい。例えば、機械的撹拌 、超音波を使用した撹拌等を行ないながら、結晶粒子を溶媒中に分散させる方法を 採用してちょい。  [0057] As a method for dispersing the crystal particles in the organic solvent, any method may be used as long as the crystal particles can be uniformly dispersed in the organic solvent. For example, adopt a method in which crystal particles are dispersed in a solvent while performing mechanical stirring, stirring using ultrasonic waves, or the like.
[0058] 分散に用いられる有機溶媒には、アルコール系溶媒、多価アルコール系溶媒、ェ 一テル系溶媒、ケトン系溶媒、エステル系溶媒等が挙げられる。また、分散に用いら れる有機溶媒は、精製工程で用いた有機溶媒と同一でもよぐ異なってもよい。  [0058] Examples of the organic solvent used for dispersion include alcohol solvents, polyhydric alcohol solvents, ether solvents, ketone solvents, and ester solvents. Further, the organic solvent used for dispersion may be the same as or different from the organic solvent used in the purification step.
[0059] 結晶粒子分散体の安定性を考慮すると、結晶粒子分散体中の結晶粒子の含有量 は、固形分濃度として結晶粒子分散体全体の 1〜20重量% (好ましくは 3〜15重量 %)になるようにする。  [0059] In consideration of the stability of the crystal particle dispersion, the content of the crystal particles in the crystal particle dispersion is 1 to 20% by weight (preferably 3 to 15% by weight) of the entire crystal particle dispersion as a solid content concentration. ).
[0060] 尚、結晶粒子の分散を容易にするため、分離 (精製)後の結晶粒子を新たな有機 溶媒に分散させる際に、ノ-オン系界面活性剤、ァ-オン系界面活性剤、カチオン 系界面活性剤等を分散剤として用いてもよ!ヽ。  [0060] In order to facilitate the dispersion of the crystal particles, when dispersing the separated (purified) crystal particles in a new organic solvent, a non-one surfactant, a key-on surfactant, Cationic surfactants may be used as dispersants!
[0061] このような界面活'性剤としては、例えば、ポリオキシエチレン ポリオキシプロピレン グリコール、エチレンジァミンのポリオキシプロピレン ポリオキシエチレン縮合物(プ ル口-ック型)、アルキルベンゼンスルフォン酸ナトリウム、ポリエチレンィミン、ポリビ- ルルピロリドン、パーフルォロアルキル基含有オリゴマー等を使用することができる。  [0061] Examples of such surfactants include polyoxyethylene polyoxypropylene glycol, polyoxypropylene polyoxyethylene condensate of ethylenediamine (pull-mouth type), sodium alkylbenzene sulfonate, polyethylene Imine, polyvinylpyrrolidone, perfluoroalkyl group-containing oligomers and the like can be used.
[0062] 分散剤の種類と添加量は、結晶粒子の種類と結晶粒子を分散させる溶媒の種類に より適宜選定して使用することができる。この場合、本実施形態で得られる誘電体膜 の誘電特性を考慮すると、添カ卩量についていえば、結晶粒子 lOOgに対し、 0. 001 〜10gとするのが好ましい。  [0062] The type and amount of the dispersing agent can be appropriately selected and used depending on the type of crystal particles and the type of solvent in which the crystal particles are dispersed. In this case, considering the dielectric properties of the dielectric film obtained in the present embodiment, the amount of additive is preferably 0.001 to 10 g with respect to the crystal particle lOOg.
[0063] 以上の工程を経ることで、 ABOx型ぺロブスカイト結晶構造を有する平均粒径 100 nm以下 (好ましくは平均粒径 20〜80nm)の粒子と有機溶媒とを含む誘電体形成用 組成液である第 1の塗布液を得ることができる。  [0063] By passing through the above steps, a dielectric forming composition liquid comprising an organic solvent and particles having an ABOx type perovskite crystal structure and an average particle size of 100 nm or less (preferably an average particle size of 20 to 80 nm) A certain first coating solution can be obtained.
[0064] 次に、以上のようにして得られた第 1の塗布液を基板 23に塗布する工程 (第 1の塗 布工程)について説明する。かかる工程は、塗布ユニット (後述する)において行われ る。 [0064] Next, a process of applying the first coating solution obtained as described above to the substrate 23 (first coating process) will be described. This process is performed in a coating unit (described later). The
[0065] 先ず、図 2 (a)に示すように、表面に下部電極 21が形成された基板 23の裏面側中 心部をスピンチャック 25により保持する。そして、塗布液ノズル 26から第 1の塗布液を 吐出し、下部電極 21の表面に第 1の塗布液を塗布する。  First, as shown in FIG. 2 (a), the center part on the back surface side of the substrate 23 on which the lower electrode 21 is formed is held by the spin chuck 25. Then, the first coating liquid is discharged from the coating liquid nozzle 26, and the first coating liquid is applied to the surface of the lower electrode 21.
[0066] 続いて、基板 23をスピンチャック 25により、所定の回転速度(例えば 2000rpm程 度)で回転させる。すると、回転の遠心力によって第 1の塗布液は基板 23の周縁側に 向けて伸展する(図 2 (b)、図 2 (c)参照)。  [0066] Subsequently, the substrate 23 is rotated by the spin chuck 25 at a predetermined rotation speed (for example, about 2000 rpm). Then, the first coating liquid extends toward the peripheral edge of the substrate 23 by the centrifugal force of rotation (see FIGS. 2 (b) and 2 (c)).
[0067] この後、基板 23を所定の回転速度 (例えば 1500rpm程度)で回転させる。すると、 余分な第 1の塗布液が振り切られ、下部電極 21の表面に所定の厚さ(例えば 200η m)の第 1の塗布液による塗布膜 (第 1の塗布膜 31a)が形成される(図 2 (d)参照)。  [0067] Thereafter, the substrate 23 is rotated at a predetermined rotation speed (for example, about 1500 rpm). Then, the excess first coating liquid is shaken off, and a coating film (first coating film 31a) of the first coating liquid having a predetermined thickness (for example, 200 ηm) is formed on the surface of the lower electrode 21 ( (See Figure 2 (d)).
[0068] 図 4 (a)は、以上のようにして形成された第 1の塗布膜 31aの状態を模式的に示して いる。図 4 (a)に示すように、結晶粒子 40の大部分は溶媒 41中に分散された状態に なって 、て、一部がチタン酸バリウムを生成して 、るものと推察される。  FIG. 4 (a) schematically shows the state of the first coating film 31a formed as described above. As shown in FIG. 4 (a), it is presumed that most of the crystal particles 40 are dispersed in the solvent 41, and a part of them generates barium titanate.
[0069] 次に、以上のようにして形成された第 1の塗布膜 31aを加熱することによって、第 1 の薄膜 31を形成する方法について説明する。  Next, a method of forming the first thin film 31 by heating the first coating film 31a formed as described above will be described.
[0070] 先ず、後述する加熱ユニットにお 、て、図 3 (a)に示すように、下部電極 21の表面 に形成された第 1の塗布膜 31aを、所定の温度 (例えば 250°C)で 1分間加熱する( ベータ処理)。この焼成の前処理であるベータ処理により、第 1の塗布膜 31aに含ま れる溶媒 41が揮発する。また、加水分解が起こって塗布膜がゲルィ匕し、さらに縮重 合が起こる。その結果、図 4 (b)に示すように、 ABOx型ぺロブスカイト結晶構造のチ タン酸バリウムの前駆体膜となるチタン酸バリウムの網状構造が形成されるものと推察 される。また、溶媒 41が揮発するときに、塗布膜中のバインダーの作用により結晶粒 子の凝集が発生し、結晶粒子が大きくなる。  [0070] First, in the heating unit described later, as shown in FIG. 3 (a), the first coating film 31a formed on the surface of the lower electrode 21 is subjected to a predetermined temperature (for example, 250 ° C). Heat for 1 minute (beta treatment). By the beta treatment, which is a pretreatment for the baking, the solvent 41 contained in the first coating film 31a is volatilized. In addition, hydrolysis occurs and the coating film becomes gelled, and further condensation occurs. As a result, as shown in Fig. 4 (b), it is presumed that a network structure of barium titanate, which is a precursor film of barium titanate having an ABOx type perovskite crystal structure, is formed. Further, when the solvent 41 volatilizes, crystal particles aggregate due to the action of the binder in the coating film, and the crystal particles become large.
[0071] 続、て、後述する焼成装置にぉ 、て、図 3 (b)に示すように、基板 23上の下部電極 21の表面に形成された第 1の塗布膜 31aを、所定の温度 (例えば 800°C)で 60分間 加熱する(第 1の焼成工程)。この焼成処理により、第 1の塗布膜 31aの内部では、ァ モルファスな状態力 結晶化状態へと変化が進む。その結果、図 4 (c)に示すように、 ABOx型べ口ブスカイト結晶構造のチタン酸バリウム膜よりなる第 1の薄膜 31が形成 される。この ABOx型ぺロブスカイト結晶構造は、酸素の過飽和や不足に応じて AB Oxの X値力 2. 5〜3. 5の範囲になる。 Subsequently, as shown in FIG. 3 (b), the first coating film 31a formed on the surface of the lower electrode 21 on the substrate 23 is subjected to a predetermined temperature by using a baking apparatus described later. (For example, 800 ° C) Heat for 60 minutes (first firing step). By this baking treatment, a change proceeds to an amorphous state force crystallization state in the first coating film 31a. As a result, as shown in FIG. 4 (c), a first thin film 31 made of a barium titanate film having an ABOx type bottom bumskite crystal structure is formed. Is done. This ABOx-type perovskite crystal structure ranges from 2.5 to 3.5 in terms of the X O value of AB Ox depending on the oxygen supersaturation or deficiency.
[0072] このようにして形成された第 1の薄膜 31は、平均粒径 50nm以上 lOOnm以下のチ タン酸バリウムの結晶粒子を含む薄膜である。そして、その膜厚は 200ηπ!〜 300nm 程度となっている。また、第 1の薄膜 31は、ポーラス構造であり、平均径が lOnm以上 の微細な空隙が多数形成されて ヽる。  [0072] The first thin film 31 formed in this way is a thin film containing barium titanate crystal particles having an average particle diameter of 50 nm or more and lOO nm or less. And the film thickness is 200ηπ! ~ 300nm. The first thin film 31 has a porous structure, and a large number of fine voids having an average diameter of lOnm or more are formed.
[0073] 次に、以上のようにして形成された第 1の薄膜 31の表面に、第 2の薄膜 32を形成す る方法について説明する。  Next, a method for forming the second thin film 32 on the surface of the first thin film 31 formed as described above will be described.
[0074] 先ず、第 2の塗布液を第 1の薄膜 31の表面に塗布する工程 (第 2の塗布工程)につ いて説明する。かかる工程は、上述した第 1の塗布工程と同様に塗布ユニット(後述 する)において行われる。誘電体形成用組成液である第 2の塗布液は、第 1の塗布液 の製造過程 (より詳細には、上述した溶解工程)で生成される。  First, the step of applying the second coating liquid to the surface of the first thin film 31 (second coating step) will be described. This step is performed in a coating unit (described later) in the same manner as the first coating step described above. The second coating liquid, which is a dielectric forming composition liquid, is generated in the manufacturing process of the first coating liquid (more specifically, the above-described dissolution process).
[0075] 第 1の塗布液の濃度が高すぎると、後述するように第 1の薄膜 31の空隙に第 1の塗 布液が入り込んでいかなくなる。従って、第 1の塗布液に含まれる金属種 Aの濃度が 0. 1〜0. 7mmolZgであり、金属種 Bの濃度が 0. 1〜0. 7mmolZgであるのが望 ましい。また、有機溶媒として、第 1の薄膜 31に対して濡れ性が良好な既述のアルコ ール系溶媒、エーテル系溶媒、ケトン系溶媒、エステル系溶媒等を用いるとさらに浸 透度が高まる。  [0075] If the concentration of the first coating solution is too high, the first coating solution will not enter the voids of the first thin film 31, as will be described later. Accordingly, it is desirable that the concentration of the metal species A contained in the first coating solution is 0.1 to 0.7 mmolZg and the concentration of the metal species B is 0.1 to 0.7 mmolZg. Further, when the above-described alcohol solvent, ether solvent, ketone solvent, ester solvent or the like having good wettability with respect to the first thin film 31 is used as the organic solvent, the permeability is further increased.
[0076] 以上のような第 2の塗布液を、基板 23上の第 1の塗布膜 31のほぼ中央に供給する  [0076] The second coating liquid as described above is supplied almost to the center of the first coating film 31 on the substrate 23.
(図 5 (a)参照)。続いて、基板 23を所定の回転速度 (例えば 2000rpm程度)で回転 させる。すると、回転の遠心力によって第 1の塗布液は基板 23の周縁側に向けて伸 展する。この後、基板 23を所定の回転速度 (例えば 1500rpm程度)で回転させる。 すると、余分な第 2の塗布液が振り切られ、第 1の薄膜 31の表面に所定の厚さ(例え ば 180nm)の第 2の塗布液による塗布膜 (第 2の塗布膜 32a)が形成される(図 5 (b) 参照)。この状態では、結晶粒子の大部分は溶媒中に分散された状態になっていて 、一部がチタン酸バリウムを生成して 、るものと推察される。  (See Figure 5 (a)). Subsequently, the substrate 23 is rotated at a predetermined rotation speed (for example, about 2000 rpm). Then, the first coating liquid extends toward the peripheral side of the substrate 23 by the centrifugal force of rotation. Thereafter, the substrate 23 is rotated at a predetermined rotation speed (for example, about 1500 rpm). Then, the excess second coating liquid is shaken off, and a coating film (second coating film 32a) of the second coating liquid having a predetermined thickness (for example, 180 nm) is formed on the surface of the first thin film 31. (See Fig. 5 (b)). In this state, most of the crystal particles are in a state of being dispersed in the solvent, and it is presumed that a part of them generates barium titanate.
[0077] 次に、以上のようにして形成された第 2の塗布膜 32aを加熱することによって、第 2 の薄膜 32を形成する方法にっ 、て説明する。 [0078] 先ず、後述する加熱ユニットにおいて、図 5 (c)に示すように、第 1の薄膜 31の表面 上に形成された第 2の塗布膜 32aを、所定の温度 (例えば 250°C)で 1分間加熱する (加熱処理)。この焼成前の加熱処理 (即ち、ベータ処理)により、第 2の塗布膜 32aに 含まれる有機溶媒が揮発する。また、加水分解が起こって塗布膜がゲルィ匕し、さらに 縮重合が起こる。その結果、 ABOx型ぺロブスカイト結晶構造のチタン酸バリウムの 前駆体膜となるチタン酸バリウムの網状構造が形成される。 [0077] Next, a method for forming the second thin film 32 by heating the second coating film 32a formed as described above will be described. First, in the heating unit described later, as shown in FIG. 5 (c), the second coating film 32a formed on the surface of the first thin film 31 is subjected to a predetermined temperature (eg, 250 ° C.). Heat for 1 minute at (heat treatment). The organic solvent contained in the second coating film 32a is volatilized by the heat treatment before firing (that is, beta treatment). In addition, hydrolysis occurs, the coating film becomes gelled, and further condensation polymerization occurs. As a result, a network structure of barium titanate is formed which becomes a precursor film of barium titanate having an ABOx type perovskite crystal structure.
[0079] 続、て、後述する焼成装置にぉ 、て、図 5 (d)に示すように、第 2の塗布膜 32aを、 700°C〜900°C程度の温度(例えば 800°C)で 60分間加熱する(第 2の焼成工程)。 この焼成処理により、第 2の塗布膜 32aの内部では、アモルファスな状態力 結晶化 状態へと変化が進む。その結果、 ABOx型べ口ブスカイト結晶構造のチタン酸バリウ ム膜よりなる第 2の薄膜 32が形成される。この ABOx型べ口ブスカイト結晶構造は、 酸素の過飽和や不足に応じて ABOxの X値が 2. 5〜3. 5の範囲になる。  [0079] Subsequently, as shown in Fig. 5 (d), the second coating film 32a is applied to a temperature of about 700 ° C to 900 ° C (for example, 800 ° C) in a baking apparatus described later. For 60 minutes (second baking step). By this baking treatment, the state changes into an amorphous state force crystallization state inside the second coating film 32a. As a result, a second thin film 32 made of a barium titanate film having an ABOx-type bottom buxite crystal structure is formed. In this ABOx-type mouthbushite crystal structure, the X value of ABOx is in the range of 2.5 to 3.5 depending on the oxygen supersaturation or deficiency.
[0080] このようにして形成された第 2の薄膜 32は、 ABOx型ぺロブスカイト結晶構造を有し 、その膜厚は lOOnm程度となっている。また、第 2の薄膜 32は、第 1の薄膜 31よりも 平均粒径が小さいチタン酸バリウムの結晶粒子を含む薄膜である。より詳細には、前 記結晶粒子の平均粒径は、 10nm以上 50nm以下となる。この平均粒径は、本発明 者らが、 SEM (走査電子顕微鏡、日立ハイテク社製)にて撮像した写真に基づいて 算出したものである。  [0080] The second thin film 32 formed in this way has an ABOx type perovskite crystal structure, and its film thickness is about lOOnm. The second thin film 32 is a thin film containing barium titanate crystal particles having an average particle size smaller than that of the first thin film 31. More specifically, the average particle diameter of the crystal particles is 10 nm or more and 50 nm or less. This average particle diameter was calculated by the present inventors based on a photograph taken with a SEM (scanning electron microscope, manufactured by Hitachi High-Tech).
[0081] また、第 1の薄膜 31と同様に第 2の薄膜 32も、ポーラス構造であり、第 1の薄膜 31 の空隙 (平均径が lOnm以上)よりもさらに微細な空隙が多数形成されて 、る。  [0081] Further, like the first thin film 31, the second thin film 32 also has a porous structure, and many finer voids are formed than the voids (average diameter is lOnm or more) of the first thin film 31. RU
[0082] 以上のようにして、 ABOx型ぺロブスカイト結晶構造を有する誘電体膜 3 (図 1 (a)参 照)が形成される。  As described above, dielectric film 3 (see FIG. 1 (a)) having an ABOx type perovskite crystal structure is formed.
[0083] ここで、誘電体膜 3の上面に電極(上部電極 22)を形成すると、図 1 (a)に示すコン デンサが得られる。具体的には、図 6 (a)に示すように、図示しないスパッタ装置にて 、第 2の薄膜 32の上方側力も例えば A1をスパッタすることで上部電極 22を形成でき る(図 6 (b)参照)。  Here, when the electrode (upper electrode 22) is formed on the upper surface of the dielectric film 3, the capacitor shown in FIG. 1 (a) is obtained. Specifically, as shown in FIG. 6 (a), the upper electrode 22 can be formed by sputtering the upper side force of the second thin film 32 with, for example, A1 using a sputtering apparatus (not shown) (FIG. 6 (b)). )reference).
[0084] 以上説明したように、本発明の本実施形態に係る ABOx型ぺロブスカイト結晶構造 を有する誘電体膜及びその形成方法によると以下のような優れた作用及び効果を奏 する。 As described above, according to the dielectric film having the ABOx type perovskite crystal structure and the method for forming the same according to the embodiment of the present invention, the following excellent actions and effects are obtained. To do.
[0085] (1)第 1の塗布液は、第 2の塗布液を加水分解して分散させた特殊な溶液であり、 上述したように、第 1の塗布膜 31 aに対してベータ処理を行なつて当該第 1の塗布膜 31a中の有機溶媒を揮発させるときに粒子の凝集が起こる。従って、第 2の薄膜 32と ほぼ同様のプロセスにより形成されるとしても、第 1の薄膜 31を構成する結晶粒子の 平均粒径は、第 2の薄膜 32を構成する結晶粒子よりも大きくなる。具体的には、第 1 の薄膜 31を構成する結晶粒子の平均粒径は 50nm以上 lOOnm以下となる。このた め 1回の第 1の塗布液の塗布により、例えば 200nm〜300nm程度の膜厚を確保す ることがでさる。  [0085] (1) The first coating solution is a special solution obtained by hydrolyzing and dispersing the second coating solution, and as described above, the first coating film 31a is subjected to a beta treatment. Therefore, aggregation of particles occurs when the organic solvent in the first coating film 31a is volatilized. Therefore, even if the second thin film 32 is formed by substantially the same process, the average grain size of the crystal particles constituting the first thin film 31 is larger than that of the crystal particles constituting the second thin film 32. Specifically, the average grain size of the crystal grains constituting the first thin film 31 is not less than 50 nm and not more than lOOnm. For this reason, it is possible to secure a film thickness of, for example, about 200 nm to 300 nm by applying the first coating liquid once.
[0086] また、第 2の薄膜 32は、 1回の塗布により、例えば lOOnm程度の膜厚を確保するこ とができるので、第 1の薄膜 31と第 2の薄膜 32とを 1層ずつ積層することにより、 300 nm〜400nmの厚さの ABOx型ぺロブスカイト結晶構造を有する誘電体膜 3を形成 することができる。即ち、所望の膜厚の誘電体膜を形成する際における積層数を少な くできる。このように、所望のコンデンサ容量を確保しつつ、加熱回数を少なくできる ので、チタン酸バリウムの粒成長を抑制でき、これが原因となるリーク電流の発生を抑 えることができる。  [0086] Since the second thin film 32 can secure a film thickness of, for example, about lOOnm by one application, the first thin film 31 and the second thin film 32 are stacked one by one. Thus, the dielectric film 3 having an ABOx type perovskite crystal structure with a thickness of 300 nm to 400 nm can be formed. That is, the number of stacked layers when forming a dielectric film having a desired thickness can be reduced. Thus, since the number of times of heating can be reduced while securing a desired capacitor capacity, the grain growth of barium titanate can be suppressed, and the occurrence of leakage current caused by this can be suppressed.
[0087] (2)第 1の薄膜 31の上層側に第 2の薄膜 32を形成することにより、第 1の薄膜 31が 有する空隙を第 2の薄膜 32を構成する粒子で埋めることができる。これにより、第 1の 薄膜 31の表面に緻密な (密度が高い)層を形成し、かつ誘電体膜 3の表面の平坦性 が向上する。力かる点について具体的に説明すると、第 1の薄膜 31は上述したように 結晶化のための加熱時にポーラス構造となり、薄膜を構成する結晶粒子の平均粒径 が 50nm以上 lOOnm以下となる。このため、図 7 (a)に示すように、第 1の薄膜 31中 の結晶粒子 40, 40間に形成される空隙 42の平均径は lOnm以上の大きさがある。 従って、第 1の薄膜 31の表面は、ポーラス構造の空隙の存在による凹凸があり、しか も結晶粒子 40と空隙 42が共に大き 、ので、平坦性が悪 、状態である。  (2) By forming the second thin film 32 on the upper layer side of the first thin film 31, the voids of the first thin film 31 can be filled with particles constituting the second thin film 32. Thereby, a dense (high density) layer is formed on the surface of the first thin film 31, and the flatness of the surface of the dielectric film 3 is improved. Specifically, the first thin film 31 has a porous structure when heated for crystallization as described above, and the average grain size of the crystal grains constituting the thin film is 50 nm or more and lOOnm or less. For this reason, as shown in FIG. 7 (a), the average diameter of the voids 42 formed between the crystal particles 40 in the first thin film 31 is not less than lOnm. Accordingly, the surface of the first thin film 31 is uneven due to the presence of voids in the porous structure. However, since both the crystal particles 40 and the voids 42 are large, the flatness is poor and is in a state.
[0088] し力しながら、空隙 42の平均径は、第 2の塗布液に含まれる第 2の薄膜 32の前駆 体となる粒子の平均粒径よりも大きい。このため、図 7 (b)に示すように、第 1の薄膜 3 1の表面に第 2の塗布液を塗布する工程 (第 2の塗布工程)において、空隙 42に第 2 の塗布液を構成する粒子 43が入り込み、内部に浸透していく。これにより、図 7 (c)に 示すように、第 1の薄膜 31と第 2の薄膜 32との境界領域では、空隙 42に粒子 43が埋 め込まれた状態になる。即ち、第 1の薄膜 31の空隙 42が第 2の薄膜 32 (第 2の塗布 液)を構成する粒子 43で塞がれることになる。従って、この境界領域では、微小な結 晶粒子で構成された第 2の薄膜 32よりも、さらに膜が緻密なものとなると推察される。 [0088] However, the average diameter of the voids 42 is larger than the average particle diameter of the particles serving as the precursor of the second thin film 32 contained in the second coating liquid. For this reason, as shown in FIG. 7 (b), in the step of applying the second coating liquid onto the surface of the first thin film 31 (second coating step), the gap 42 is filled with the second Particles 43 that make up the coating liquid enter and penetrate into the interior. As a result, as shown in FIG. 7C, in the boundary region between the first thin film 31 and the second thin film 32, the particles 43 are embedded in the voids 42. That is, the void 42 of the first thin film 31 is blocked by the particles 43 constituting the second thin film 32 (second coating liquid). Therefore, in this boundary region, it is presumed that the film becomes denser than the second thin film 32 composed of fine crystal particles.
[0089] この場合、上述したように、第 2の塗布液の金属種 Aと金属種 Bの濃度を 0. 1〜0.  [0089] In this case, as described above, the concentrations of the metal species A and the metal species B in the second coating solution are 0.1 to 0. 0.
7mmolZgに設定し、さらに第 1の薄膜 31に対して濡れ性の良好な有機溶媒を選択 することにより、第 1の薄膜 31の空隙 42内に、第 2の塗布液が浸透しやすくなる。実 際に、本発明者らが、 TEM (透過電子顕微鏡、日立ハイテク社製)及び SEM (走査 電子顕微鏡、 日立ノ、ィテク社製)により観察したところ、第 1の薄膜 31の空隙 42に第 2の塗布液が入り込んで 、る様子が観察された。  When the organic solvent is set to 7 mmolZg and an organic solvent having good wettability with respect to the first thin film 31 is selected, the second coating liquid can easily penetrate into the voids 42 of the first thin film 31. In fact, when the present inventors observed with a TEM (transmission electron microscope, manufactured by Hitachi High-Tech) and SEM (scanning electron microscope, manufactured by Hitachi, Tech), the first thin film 31 had a gap 42. It was observed that the coating solution of 2 entered and went away.
[0090] 以上のように第 1の薄膜 31の表面に形成された空隙 42が第 2の塗布液を構成する 粒子 43により塞がれるので、第 1の薄膜 31の表面の平坦性が向上する。力!]えて、第 2の薄膜 32は、平坦性の高い第 1の薄膜 31の表面に形成されることから、当該第 2 の薄膜 32の表面の平坦性も向上する。  [0090] As described above, the voids 42 formed on the surface of the first thin film 31 are blocked by the particles 43 constituting the second coating liquid, so that the flatness of the surface of the first thin film 31 is improved. . In addition, since the second thin film 32 is formed on the surface of the first thin film 31 having high flatness, the flatness of the surface of the second thin film 32 is also improved.
[0091] また、第 1の薄膜 31の上に第 2の薄膜 32を形成する構成とすることで、誘電体膜の リーク特性を向上させることができる。この理由として以下の点が挙げられる。第 1の 理由は、第 2の薄膜 32の結晶粒子が微小であるという点である。つまり、上述したよう に、第 2の薄膜 32の結晶粒子は微小(平均粒径が 20nm程度)であるので、結晶化 のための加熱によりポーラス構造となったとしても、これにより形成される空隙はかなり 小さいといえる。  In addition, by adopting a configuration in which the second thin film 32 is formed on the first thin film 31, the leakage characteristics of the dielectric film can be improved. The reason for this is as follows. The first reason is that the crystal grains of the second thin film 32 are very small. That is, as described above, since the crystal particles of the second thin film 32 are very small (average particle size is about 20 nm), even if a porous structure is formed by heating for crystallization, voids formed thereby are formed. Is quite small.
[0092] 従って、第 2の薄膜 32の表面に A1をスパッタして上部電極 22を形成する工程にお いて、第 2の薄膜 32の空隙が小さいため、スノ ¾ /タ粒子が入り込みにくい。このため、 第 1の薄膜 31の焼成時や第 2の薄膜 32の焼成時に、下部電極 21の Pt粒子が熱拡 散により第 1の薄膜 31の下部側から浸透してきたとしても、スパッタ粒子と接触し難い といえる。従って、 Pt粒子とスパッタ粒子との間で導電路が形成され難ぐリーク電流 の発生が抑えられる。  Accordingly, in the step of forming the upper electrode 22 by sputtering A1 on the surface of the second thin film 32, the second thin film 32 has a small gap, so that the snow / tag particles are difficult to enter. Therefore, even when the first thin film 31 is fired or the second thin film 32 is fired, even if the Pt particles of the lower electrode 21 penetrate from the lower side of the first thin film 31 due to thermal diffusion, It can be said that it is difficult to contact. Therefore, it is possible to suppress the generation of a leakage current that is difficult to form a conductive path between the Pt particles and the sputtered particles.
[0093] また、第 2の理由は、第 1の薄膜 31と第 2の薄膜 32との境界に緻密な層(密度が高 い層)が形成されているので、下部電極 21の Pt粒子が熱拡散により第 1の薄膜 31の 下部側から浸透してきたとしても、第 1の薄膜 31と第 2の薄膜 32との境界付近を越え て第 2の薄膜 32側に浸透して行き難いという点である。この点は、第 2の薄膜 32の表 面に A1をスパッタして上部電極 22を形成する工程にぉ 、て、仮に A1 (スパッタ粒子) が第 2の薄膜 32内に浸透してきた場合についても同様である。つまり、第 1の薄膜 31 と第 2の薄膜 32との境界領域は第 2の薄膜 32よりも緻密であるので、当該領域を超 えて第 1の薄膜 31側にスパッタ粒子が浸透して行くのは困難であると!、える。このた め、第 1の薄膜 31と第 2の薄膜 32とにより構成される ABOx型べ口ブスカイト結晶構 造を有する誘電体膜 3の縦方向の導電路の形成が抑えられるので、結果としてリーク 電流の発生を抑制することができる。 [0093] The second reason is that a dense layer (high density) is formed at the boundary between the first thin film 31 and the second thin film 32. Even if the Pt particles in the lower electrode 21 penetrate from the lower side of the first thin film 31 due to thermal diffusion, the vicinity of the boundary between the first thin film 31 and the second thin film 32 is formed. It is difficult to penetrate beyond the second thin film 32 side. This also applies to the case where A1 (sputtered particles) penetrates into the second thin film 32 during the process of forming the upper electrode 22 by sputtering A1 on the surface of the second thin film 32. It is the same. That is, since the boundary region between the first thin film 31 and the second thin film 32 is denser than the second thin film 32, the sputtered particles permeate the first thin film 31 side beyond the region. Is difficult! For this reason, the formation of the vertical conduction path of the dielectric film 3 having the ABOx type bevskite crystal structure composed of the first thin film 31 and the second thin film 32 is suppressed, and as a result, leakage occurs. Generation of current can be suppressed.
[0094] 尚、図 1 (b)や図 1 (c)に示す構造のコンデンサについても、第 1の薄膜 31と第 2の 薄膜 32とを積層することにより、所望の膜厚の ABOx型べ口ブスカイト結晶構造を有 する誘電体膜 4又は誘電体膜 5を得ることができる。具体的には、図 1 (b)に示す構 造のコンデンサの場合、誘電体膜 4の中間に位置する第 1の薄膜 31と 3層目(上部 電極 22側)〖こ位置する第 2の薄膜 32との境界領域が緻密となり、当該境界面が平坦 化する。また、図 1 (c)に示す構造のコンデンサの場合、誘電体膜 5の 1層目(下部電 極 21側)〖こ位置する第 1の薄膜 31と中間に位置する第 2の薄膜 32との境界領域が 緻密となり、境界面が平坦化する。従って、両コンデンサとも所望のコンデンサ容量を 確保でき、リーク電流の発生が抑制できる。  It should be noted that the capacitors having the structures shown in FIG. 1 (b) and FIG. 1 (c) also have an ABOx type base having a desired film thickness by laminating the first thin film 31 and the second thin film 32. The dielectric film 4 or the dielectric film 5 having an oral bskite crystal structure can be obtained. Specifically, in the case of the capacitor having the structure shown in FIG. 1 (b), the first thin film 31 located in the middle of the dielectric film 4 and the second layer located on the third layer (on the upper electrode 22 side) are located. The boundary area with the thin film 32 becomes dense, and the boundary surface becomes flat. In the case of the capacitor having the structure shown in FIG. 1 (c), the first thin film 31 located on the first layer of the dielectric film 5 (on the lower electrode 21 side) and the second thin film 32 located in the middle The boundary area becomes dense, and the boundary surface becomes flat. Therefore, a desired capacitor capacity can be secured for both capacitors, and the occurrence of leakage current can be suppressed.
[0095] 次に、本発明の一実施形態に係る ABOx型ぺロブスカイト結晶構造を有する誘電 体膜の形成システムについて図 8〜図 12を用いて説明する。  Next, a system for forming a dielectric film having an ABOx type perovskite crystal structure according to an embodiment of the present invention will be described with reference to FIGS.
[0096] 図 8は、本実施形態に係る誘電体膜の形成システムが備える形成装置の概略平面 図であり、図 9は、前記形成装置の斜視図である。図 8及び図 9において、 S1はキヤリ ァステーションである。 S1には、キャリア載置部 51及び受渡手段 52が設けられてい る。キャリア載置部 51は、複数枚 (例えば 25枚)のウェハ Wを収納したキャリア Cを載 置する。受渡手段 52は、キャリア Cとの間でウェハ Wの受け渡しを行なう。  FIG. 8 is a schematic plan view of a forming apparatus provided in the dielectric film forming system according to the present embodiment, and FIG. 9 is a perspective view of the forming apparatus. 8 and 9, S1 is a carrier station. In S1, a carrier placing part 51 and delivery means 52 are provided. The carrier placement unit 51 places a carrier C that stores a plurality of (for example, 25) wafers W. The delivery means 52 delivers the wafer W to and from the carrier C.
[0097] 受渡手段 52の背面側には筐体 53にて周囲を囲まれた処理部 S2が接続されてい る。該処理部 S2の中央には主搬送手段 54が設けられている。該主搬送手段 54近 傍には、複数の塗布装置をなす塗布ユニット 6、加熱'冷却系のユニット等を多段に 積み重ねた棚ユニット Ul, U2, U3が夫々配置されている。また、塗布ユニット 6とし て、第 1の塗布液の塗布処理を行なう第 1の塗布ユニット 6A (図示せず)及び第 2の 塗布液の塗布処理を行なう第 2の塗布ユニット 6B (図示せず)が用意されて 、る。 [0097] A processing unit S2 surrounded by a casing 53 is connected to the back side of the delivery means 52. A main transfer means 54 is provided in the center of the processing section S2. Near main transport means 54 In the vicinity, there are a plurality of coating units 6 and shelf units Ul, U2, U3, each of which is a stack of heating and cooling units and the like. Further, as the coating unit 6, a first coating unit 6A (not shown) for performing the coating process of the first coating liquid and a second coating unit 6B (not shown) for performing the coating process of the second coating liquid. ) Is prepared.
[0098] 棚ユニット Ul, U2, U3は、塗布ユニット 6の前処理及び後処理を行なうためのュ ニット等を各種組み合わせて構成したものである。該組み合わせには、加熱処理 (ベ ーク処理)を行う加熱ユニット 7や棚ユニット U3の棚の 1つであるウェハ Wの受渡ュ- ット等が含まれる。加熱ユニット 7は、塗布ユニット 6により表面に塗布液が塗られたゥ エノ、 Wを加熱 (ベータ)して塗布液中の溶剤を揮発させる加熱装置として機能する。 また、加熱ユニット 7として、第 1の塗布膜 31aの加熱処理を行なう第 1の加熱ユニット 7A (図示せず)及び第 2の塗布膜 32aの加熱処理を行なう第 2の加熱ユニット 7B (図 示せず)が用意されている。また、主搬送手段 54は、鉛直方向及び水平方向に移動 自在で且つ鉛直軸周りに回転自在に構成されている。力かる構成により、主搬送手 段 54は、塗布ユニット 6及び棚ユニット Ul, U2, U3を構成する各ユニット間とのゥェ ハ Wの受け渡しが可能になって!/、る。  [0098] The shelf units Ul, U2, U3 are configured by combining various units for performing pre-processing and post-processing of the coating unit 6 and the like. The combination includes a heating unit 7 for performing a heating process (baking process) and a delivery unit for the wafer W, which is one of the shelves of the shelf unit U3. The heating unit 7 functions as a heating device that heats (beta) W and W coated with the coating liquid on the surface by the coating unit 6 and volatilizes the solvent in the coating liquid. Further, as the heating unit 7, a first heating unit 7A (not shown) for performing the heat treatment of the first coating film 31a and a second heating unit 7B (not shown) for performing the heat treatment of the second coating film 32a. Is prepared). The main transport means 54 is configured to be movable in the vertical direction and the horizontal direction and to be rotatable about the vertical axis. By virtue of the powerful configuration, the main transport means 54 can transfer wafers W between the units constituting the coating unit 6 and the shelf units Ul, U2, U3.
[0099] 上記構成の誘電体膜の形成装置が行う各処理の流れにつ!、て説明する。先ず、ゥ エノ、 Wが収納されたキャリア C力 外部から取り込まれキャリア載置部 51に載置され る。このキャリア Cに収容されているウェハ Wの表面には、下部電極 21が形成されて いる。次に、受渡手段 52により、キャリア C内からウェハ Wが取り出され、棚ユニット U 3の棚の一つである受渡ユニットを介して主搬送手段 54に受け渡される。該主搬送 手段 54は、当該ウェハ Wを第 1の塗布ユニット 6 Aに搬送する。  The flow of each process performed by the dielectric film forming apparatus having the above configuration will be described. First, the carrier C force in which UENO and W are stored is taken in from the outside and placed on the carrier placing portion 51. On the surface of the wafer W accommodated in the carrier C, a lower electrode 21 is formed. Next, the wafer W is taken out from the carrier C by the delivery means 52 and delivered to the main transport means 54 via the delivery unit which is one of the shelves of the shelf unit U 3. The main transfer means 54 transfers the wafer W to the first coating unit 6A.
[0100] 第 1のユニット 6Aでは、搬送されたウェハ W上の下部電極 21の表面に第 1の塗布 液を塗布する処理が行われる。その後、ウェハ Wは第 1の加熱ユニット 7Aに搬送さ れ、加熱処理 (ベータ処理)が行われる。ベータ処理後、ウェハ Wは、主搬送手段 54 及び受渡手段 52を介してキャリア載置部 51上のキャリア C内にいったん戻される。キ ャリア C内に戻されたウェハ Wは、後述する焼成装置に搬送され、該焼成装置にて焼 成される。これにより、第 1の薄膜 31が形成される(第 1の焼成工程)。  [0100] In the first unit 6A, a process of applying the first application liquid onto the surface of the lower electrode 21 on the transferred wafer W is performed. Thereafter, the wafer W is transferred to the first heating unit 7A and subjected to heat treatment (beta treatment). After the beta processing, the wafer W is once returned into the carrier C on the carrier mounting portion 51 via the main transfer means 54 and the delivery means 52. The wafer W returned to the carrier C is transferred to a baking apparatus described later and is baked by the baking apparatus. Thereby, the first thin film 31 is formed (first firing step).
[0101] 第 1の焼成工程を終えたウェハ Wは、受渡手段 52及び主搬送手段 54を介して第 2 の塗布ユニット 6Bに搬送される。第 2の塗布ユニット 6Bでは、搬送されたウェハ W上 に形成された第 1の薄膜 31の表面に第 2の塗布液を塗布する処理が行われる。その 後、ウェハ Wは第 2の加熱ユニット 7Bに搬送され、加熱処理 (ベータ処理)が行われ る。ベータ処理後、ウェハ Wは、主搬送手段 54及び受渡手段 52を介してキャリア載 置部 51上のキャリア C内にいったん戻される。キャリア C内に戻されたウェハ Wは、後 述する焼成装置に搬送され、該焼成装置にて焼成される(焼成処理)。これにより、 第 2の薄膜 32が形成される(第 2の焼成工程)。 [0101] The wafer W that has finished the first baking step is transferred to the second through the delivery means 52 and the main transfer means 54. It is conveyed to the coating unit 6B. In the second coating unit 6B, a process of coating the second coating solution on the surface of the first thin film 31 formed on the transferred wafer W is performed. After that, the wafer W is transferred to the second heating unit 7B and subjected to heat treatment (beta treatment). After the beta processing, the wafer W is once returned into the carrier C on the carrier mounting portion 51 via the main transfer means 54 and the delivery means 52. The wafer W returned to the carrier C is transferred to a baking apparatus described later and is baked by the baking apparatus (baking process). Thereby, the second thin film 32 is formed (second baking step).
[0102] 次に、塗布処理を行う塗布ユニット 6について、図 10を用いて簡単に説明する。図 10は、本実施形態に係る塗布ユニット 6の概略構成を示す断面図である。尚、第 1の 塗布ユニット 6Aと、第 2の塗布ユニット 6Bは、塗布ユニット 6と同様の構成である。  [0102] Next, the application unit 6 that performs the application process will be briefly described with reference to FIG. FIG. 10 is a cross-sectional view showing a schematic configuration of the coating unit 6 according to the present embodiment. The first coating unit 6A and the second coating unit 6B have the same configuration as the coating unit 6.
[0103] 図 10において、符号 61は、ウェハ Wの裏面側中央部を吸引吸着して略水平に保 持するため、鉛直軸回りに回転自在及び昇降自在に構成されたスピンチャックである 。該スピンチャック 61に保持されたウエノ、 Wの周縁外側には、当該ウェハ Wを囲むよ うにして上部側が開口するカップ体 62が設けられている。該カップ体 62の底部側に は凹部状をなす液受部 63がウェハ Wの周縁下方側に全周に亘つて設けられている  In FIG. 10, reference numeral 61 denotes a spin chuck configured to be rotatable and movable up and down around a vertical axis in order to suck and adsorb the central portion on the back side of the wafer W and hold it substantially horizontally. A cup body 62 having an opening on the upper side so as to surround the wafer W is provided outside the periphery of the wafer W held by the spin chuck 61. On the bottom side of the cup body 62, a recess-shaped liquid receiving portion 63 is provided on the lower peripheral edge of the wafer W over the entire circumference.
[0104] 符号 64は、塗布液などのドレインを排出するための排液路であり、符号 65は排気 路である。符号 66は、スピンチャック 61に保持されたウェハ Wに対して第 1の塗布液 (第 2の塗布液)を供給するための塗布液ノズルである。 [0104] Reference numeral 64 denotes a drainage path for discharging a drain such as a coating liquid, and reference numeral 65 denotes an exhaust path. Reference numeral 66 denotes a coating liquid nozzle for supplying a first coating liquid (second coating liquid) to the wafer W held on the spin chuck 61.
[0105] 以上のように構成された塗布ユニット 6にて行われる塗布処理について説明する。  [0105] The coating process performed in the coating unit 6 configured as described above will be described.
先ず、スピンチャック 61をカップ体 62の上方側に位置させておく。そして、図示しな V、搬送手段により搬送されたウェハ Wを図示しな 、昇降ピンとの協働作用によりスピ ンチャック 61上に載置させる。次に、スピンチャック 61を図 10に示す処理位置まで下 降させる。そして、スピンチャック 61に保持されたウェハ Wの略中心に塗布液ノズル 6 6から第 1の塗布液 (第 2の塗布液)が塗出される。さらに、スピンチャック 61によりゥェ ハ Wを回転させることでウェハ Wの表面全体に第 1の塗布液 (第 2の塗布液)が広が る。  First, the spin chuck 61 is positioned above the cup body 62. Then, V (not shown) and the wafer W transferred by the transfer means are placed on the spin chuck 61 by a cooperative action with the lift pins (not shown). Next, the spin chuck 61 is lowered to the processing position shown in FIG. Then, the first coating liquid (second coating liquid) is applied from the coating liquid nozzle 66 to approximately the center of the wafer W held by the spin chuck 61. Further, by rotating the wafer W by the spin chuck 61, the first coating liquid (second coating liquid) spreads over the entire surface of the wafer W.
[0106] 続いて、図 11を用いて、ベータ処理を行う加熱ユニット 7について説明する。尚、第 1の加熱ユニット 7Aと、第 2の加熱ユニット 7Bは、加熱ユニット 7と同様の構成である 。図 11 (a)に示すように、加熱ユニット 7の筐体 70の内部には有底の円筒状に形成さ れた基台 75が設けられている。また、該基台 75内には例えば円形状の熱板 72が設 けられている。そして、ウェハ Wが、筐体 70内の冷却プレート 71上に搬入されると、 該冷却プレート 71により熱板 72に搬送される。ウェハ Wが熱板 72上に載置されると 、図 11 (b)に示すように、整流用の天板 73が下降して、 Oリング 74を介して天板 73 の周縁部と基台 75の周縁部とが密着状態となる。これによりウェハ Wの周囲が密閉 空間となる。しかる後、例えばガス供給部 76から前記密閉空間内にガスを供給しな がら、吸引機構 77により当該天板 73の中央部の排気口 78から吸引排気を行う。こう して、ウェハ Wの外周から中央に向力う気流(図 11 (b)中の矢印参照)を形成しなが ら加熱処理が行われる。 Subsequently, the heating unit 7 that performs the beta process will be described with reference to FIG. The first The first heating unit 7A and the second heating unit 7B have the same configuration as the heating unit 7. As shown in FIG. 11 (a), a base 75 formed in a cylindrical shape with a bottom is provided inside the casing 70 of the heating unit 7. In addition, for example, a circular heat plate 72 is provided in the base 75. When the wafer W is loaded onto the cooling plate 71 in the housing 70, the wafer W is transferred to the hot plate 72 by the cooling plate 71. When the wafer W is placed on the hot plate 72, as shown in FIG. 11 (b), the rectifying top plate 73 is lowered and the peripheral portion of the top plate 73 and the base are placed via the O-ring 74. 75 peripheral portions are in close contact with each other. As a result, the periphery of the wafer W becomes a sealed space. Thereafter, for example, while supplying gas into the sealed space from the gas supply unit 76, suction and exhaust are performed from the exhaust port 78 in the center of the top plate 73 by the suction mechanism 77. In this way, the heat treatment is performed while forming an airflow (see the arrow in FIG. 11 (b)) directed from the outer periphery of the wafer W toward the center.
[0107] 次に、本実施形態に係る誘電体膜の形成システムが備える焼成装置について説明 する。図 12は、焼成装置の一例である加熱炉 8の概略構成図である。加熱炉 8は、 ベータ処理後の塗布膜の内部状態をアモルファスな状態力 結晶化状態へと変化さ せるための焼成装置である。図 12に示すように、加熱炉 8は、例えば二重管構造の 縦型の反応管 80を備えている。また、該反応管 80内のウェハボート 81には、ウェハ Wが垂直方向に所定の間隔をおいて複数枚収容されている。かかる状態で、例えば ガス供給管 82から反応管 80内にガスを供給すると共に、吸引手段 83により反応管 8 0の吸引排気を行う。このようにしてガスの気流を形成しながら反応管 80の外側に設 けられた加熱手段 84によりウェハ Wの焼成処理が行われる。  [0107] Next, a firing apparatus provided in the dielectric film formation system according to the present embodiment will be described. FIG. 12 is a schematic configuration diagram of a heating furnace 8 which is an example of a baking apparatus. The heating furnace 8 is a baking apparatus for changing the internal state of the coating film after the beta treatment into an amorphous state force crystallization state. As shown in FIG. 12, the heating furnace 8 includes a vertical reaction tube 80 having a double tube structure, for example. A plurality of wafers W are accommodated in the wafer boat 81 in the reaction tube 80 at a predetermined interval in the vertical direction. In this state, for example, gas is supplied from the gas supply pipe 82 into the reaction pipe 80 and the suction pipe 83 is used to suck and exhaust the reaction pipe 80. In this way, the wafer W is baked by the heating means 84 provided outside the reaction tube 80 while forming a gas stream.
[0108] 続いて、本発明の他の実施形態について説明する。本実施形態に係る ABOx型 ぺロブスカイト結晶構造を有する誘電体膜 3の形成方法は、図 2に示すように下部電 極 21が形成された基板 (ウェハ W)の表面に第 1の塗布膜 31aが形成された後、当 該基板の表面側周縁部を溶剤で洗浄する第 1の洗浄工程 (サイドリンス処理)と、当 該基板を回転させて前記溶剤を乾燥させる第 1の乾燥工程 (スピン乾燥処理)と、図 5に示すように第 1の薄膜 31の表面に第 2の塗布膜 32aが形成された後、当該基板 の表面側周縁部を溶剤で洗浄する第 2の洗浄工程 (サイドリンス処理)と、当該基板 を回転させて前記溶剤を乾燥させる第 2の乾燥工程 (スピン乾燥処理)と、を備える点 に特徴を有し、他の点は、上述した実施形態と同じ構成である。 [0108] Next, another embodiment of the present invention will be described. The method for forming the dielectric film 3 having an ABOx-type perovskite crystal structure according to the present embodiment is the first coating film 31a on the surface of the substrate (wafer W) on which the lower electrode 21 is formed as shown in FIG. After the surface is formed, a first cleaning step (side rinsing treatment) for cleaning the peripheral edge of the surface of the substrate with a solvent, and a first drying step (spinning) for rotating the substrate to dry the solvent After the second coating film 32a is formed on the surface of the first thin film 31, as shown in FIG. 5, the second cleaning step (side Rinse treatment) and a second drying step (spin drying treatment) for rotating the substrate to dry the solvent. The other features are the same as those of the above-described embodiment.
[0109] 先ず、上記サイドリンス処理及びスピン乾燥処理を行う塗布ユニット 6 (6A, 6B)に ついて、図 13を用いて簡単に説明する。尚、図 13において、上述した図 10に示す 塗布ユニット 6と同じ構成にある部分については、同一符号を付し、その説明を省略 する。  First, the application unit 6 (6A, 6B) that performs the side rinse process and the spin drying process will be briefly described with reference to FIG. In FIG. 13, parts having the same configuration as the coating unit 6 shown in FIG. 10 described above are denoted by the same reference numerals and description thereof is omitted.
[0110] 図 13に示すように、本実施形態の塗布ユニット 6は、ウェハ Wの表面側周縁部に溶 剤 Rを供給するためのリンスノズル 101が外側下方に傾斜して設けられており、このリ ンスノズル 101の吐出口は、吐出された溶剤 Rがウェハ Wの周縁部に内側上方から 到達するように構成されている。リンスノズル 101は、溶剤供給管 102、バルブや流 量調整部等を含む供給機器群 104を介して溶剤供給源 103に接続している。  As shown in FIG. 13, in the coating unit 6 of the present embodiment, the rinse nozzle 101 for supplying the solvent R to the peripheral portion on the surface side of the wafer W is provided so as to be inclined outward and downward. The discharge port of the lens nozzle 101 is configured such that the discharged solvent R reaches the peripheral edge of the wafer W from above and from the inside. The rinse nozzle 101 is connected to a solvent supply source 103 via a supply device group 104 including a solvent supply pipe 102, a valve, a flow rate adjusting unit, and the like.
[0111] また、塗布液ノズル 66は、カップ体 62の一端側(図 13において右側)の外側に設 けられた待機領域 69から他端側に向力つて移動できると共に上下方向に移動できる ように構成されている。また、リンスノズル 101は、カップ体 62の他端側(図 13におい て左側)の外側に設けられた待機領域 107から一端側に向力つて移動できると共に 上下方向に移動できるように構成されて 、る。  [0111] Further, the coating liquid nozzle 66 can move from the standby region 69 provided on the outer side of one end side (right side in FIG. 13) of the cup body 62 to the other end side and move in the vertical direction. It is configured. Further, the rinse nozzle 101 is configured to be able to move from one standby side 107 provided on the outside of the other end side (left side in FIG. 13) of the cup body 62 to one end side and to move in the vertical direction. RU
[0112] 次に、本実施形態の作用について図 14を参照しながら説明する。先ず、主搬送手 段 54 (図 8参照)とスピンチャック 61との協働作業によりスピンチャック 61の上に、下 部電極 21が形成されたウェハ Wが載置される。続いて、既述の手法(図 2 (a)参照) でウェハ Wの表面側中央部に第 1の塗布液を塗布する(図 14 (a) )。尚、図 2 (a)では ウェハ Wが停止している状態でウェハ Wの表面側中央部に第 1の塗布液 31が塗布 される力 ウェハ Wが回転して 、る状態でウェハ Wの表面側中央部に第 1の塗布液 3 1を塗布してもよい。  Next, the operation of the present embodiment will be described with reference to FIG. First, the wafer W on which the lower electrode 21 is formed is placed on the spin chuck 61 by the cooperative operation of the main transfer means 54 (see FIG. 8) and the spin chuck 61. Subsequently, the first coating solution is applied to the central portion on the front side of the wafer W by the method described above (see FIG. 2 (a)) (FIG. 14 (a)). In FIG. 2 (a), the force that applies the first coating liquid 31 to the center of the front side of the wafer W while the wafer W is stopped. The surface of the wafer W is rotated when the wafer W rotates. You may apply | coat the 1st coating liquid 31 to the side center part.
[0113] そして、既述の手法(図 2 (b)、図 2 (c)参照)により第 1の塗布液 31がウェハ Wの全 面に行き渡った後、既述の手法(図 2 (d)参照)により余分な第 1の塗布液 31が振り 切られ、第 1の塗布膜 31aが形成される(図 14 (b) )。  [0113] Then, after the first coating solution 31 has spread over the entire surface of the wafer W by the method described above (see Figs. 2 (b) and 2 (c)), the method described above (Fig. 2 (d ))), The excess first coating solution 31 is spun off to form the first coating film 31a (FIG. 14 (b)).
[0114] 次に、ウェハ Wを低速回転させながらリンスノズル 101から所定量の溶剤をウェハ Wの表面側周縁部から中央部までの例えば 3mmの範囲に塗布する。すると、ウェハ Wの表面側周縁部に塗布された溶剤 Rは周縁に向力つて広がり、ウェハ Wの表面側 周縁部の第 1の塗布膜 31aを溶解させる (いわゆるサイドリンス)。この溶解した第 1の 塗布膜 31aは、図 14 (c)に示すようにウエノ、 Wの回転により溶剤 Rと共に振り切られ て除去される(第 1の洗浄工程)。その後、ウェハ Wを所定の回転速度 (例えば、 200 Orpm以上)で所定時間(例えば、 20秒以上)回転させることで、振り切り乾燥 (いわゆ るスピン乾燥)を行い、図 14 (d)に示すようにウェハ Wの周縁部に残留している溶剤 Rを揮発させる(第 1の乾燥工程)。尚、このスピン乾燥においては、 5000rpm以上 の回転速度で 20秒以上回転させるのが好ましい(5000rpm以上の回転速度で 60 秒以上回転させると、いっそう好ましい。 ) o [0114] Next, a predetermined amount of solvent is applied from the rinse nozzle 101 to a range of, for example, 3 mm from the surface side peripheral edge to the center of the wafer W while rotating the wafer W at a low speed. Then, the solvent R applied to the peripheral edge of the front surface of the wafer W spreads toward the peripheral edge, and the surface side of the wafer W The first coating film 31a at the peripheral edge is dissolved (so-called side rinse). As shown in FIG. 14C, the dissolved first coating film 31a is shaken off together with the solvent R by the rotation of Ueno and W (first cleaning process). Thereafter, the wafer W is rotated at a predetermined rotation speed (for example, 200 Orpm or more) for a predetermined time (for example, 20 seconds or more) to perform swing-off drying (so-called spin drying), as shown in FIG. 14 (d). Thus, the solvent R remaining on the peripheral edge of the wafer W is volatilized (first drying step). In this spin drying, it is preferable to rotate at a rotation speed of 5000 rpm or more for 20 seconds or more (more preferably, rotation at a rotation speed of 5000 rpm or more for 60 seconds or more).
[0115] 次に、加熱ユニットにおいて、ウェハ Wの下部電極 21の表面に形成された第 1の塗 布膜 31aを、既述の手法 (図 3 (a)参照)で加熱する (ベータ処理)。続いて、焼成装 置において、既述の手法(図 3 (b)参照)で焼成処理を行うことで第 1の薄膜 31が形 成される。 [0115] Next, in the heating unit, the first coating film 31a formed on the surface of the lower electrode 21 of the wafer W is heated by the above-described method (see FIG. 3A) (beta treatment). . Subsequently, in the baking apparatus, the first thin film 31 is formed by performing the baking process by the method described above (see FIG. 3B).
[0116] 続いて、上述した第 1の塗布ユニット 6Aと同じ構成である第 2の塗布ユニット 6Bに おいて、上述した第 1の薄膜 31の形成手法と同様にして、第 2の薄膜 32を形成する 。即ち、第 1の薄膜 31が形成されたウェハ Wの表面側中央部に、第 2の塗布液を塗 布し(図 14 (a) )、ウェハ Wの全面に広げ、余分な第 2の塗布液 32を振り切って第 2 の塗布膜 32aを形成する(図 14 (b) )。そして、図 14 (c)に示すサイドリンス処理 (第 2 の洗浄工程)及び図 14 (d)に示すスピン乾燥処理 (第 2の乾燥工程)を実行後、ベー ク処理及び焼成処理を実行することで第 2の薄膜 32が形成される。  [0116] Subsequently, in the second coating unit 6B having the same configuration as the first coating unit 6A described above, the second thin film 32 is formed in the same manner as the first thin film 31 forming method described above. Form . That is, the second coating solution is applied to the front surface side central portion of the wafer W on which the first thin film 31 is formed (FIG. 14 (a)), spread over the entire surface of the wafer W, and an extra second coating solution. The liquid 32 is shaken off to form a second coating film 32a (FIG. 14 (b)). Then, after performing the side rinse process (second cleaning process) shown in FIG. 14 (c) and the spin drying process (second drying process) shown in FIG. 14 (d), the baking process and the baking process are executed. Thus, the second thin film 32 is formed.
[0117] 以上のようにして、本実施形態に係る ABOx型ぺロブスカイト結晶構造を有する誘 電体膜 3が形成される。  As described above, the dielectric film 3 having the ABOx type perovskite crystal structure according to the present embodiment is formed.
[0118] ここで、図示しないスパッタ装置にて、既述の手法により第 2の薄膜 32の上面に電 極 (上部電極 22)を形成すると(図 6参照)、図 1 (a)に示すような、下部電極 21と上部 電極 22との間に、第 1の薄膜 31と第 2の薄膜 32とを下側力もこの順序で積層してな る ABOx型ぺロブスカイト結晶構造を有する誘電体膜 3を備えたコンデンサが得られ る。  [0118] Here, when the electrode (upper electrode 22) is formed on the upper surface of the second thin film 32 by the above-described method using a sputtering apparatus (not shown), as shown in FIG. 1 (a). A dielectric film having an ABOx type perovskite crystal structure in which a first thin film 31 and a second thin film 32 are laminated in this order between the lower electrode 21 and the upper electrode 22 in this order. Capacitors with can be obtained.
[0119] 以上のように本実施形態によれば、溶剤 Rによってウェハ Wの表面側周縁部の第 1 の塗布膜 31a (第 2の塗布膜 32a)を除去した後、ウェハ Wを高速 (例えば 5000rpm 以上)で所定時間(例えば 60秒以上)回転させることで、ウェハ Wの周縁部に残留し ている溶剤 Rを十分に揮発させることができる。仮に、溶剤 Rがウェハ Wの周縁部に 残留したままベータ処理や焼成処理を行うと、未揮発の溶剤 Rにより、チタン酸バリウ ム(BaTi03)の高温時での結晶化が阻害されることで、第 1の塗布膜 31a (第 2の塗 布膜 32a)を構成するチタン酸バリウムを組成比の崩れた結晶にしてしまう。第 1の塗 布膜 31a (第 2の塗布膜 32a)がこのような状態になると、溶剤 Rがしみ込み、膜中に 溶剤 Rが付着することになる。その結果、溶剤 Rに含まれる炭素による通電パスが形 成され、リーク電流が増大する。 As described above, according to the present embodiment, after removing the first coating film 31a (second coating film 32a) on the surface side peripheral portion of the wafer W with the solvent R, the wafer W is moved at high speed (for example, 5000rpm The solvent R remaining on the peripheral edge of the wafer W can be sufficiently volatilized by rotating for a predetermined time (for example, 60 seconds or more) in the above manner. If beta treatment or baking treatment is performed while the solvent R remains on the peripheral edge of the wafer W, the non-volatile solvent R inhibits crystallization of the barium titanate (BaTi03) at high temperatures. As a result, the barium titanate constituting the first coating film 31a (second coating film 32a) becomes a crystal with a broken composition ratio. When the first coating film 31a (second coating film 32a) is in such a state, the solvent R penetrates and the solvent R adheres to the film. As a result, a conduction path is formed by the carbon contained in the solvent R, and the leakage current increases.
[0120] 従って、本実施形態の如ぐサイドリンス処理後に所定の回転速度で所定時間スピ ン乾燥を行ってウェハ W周縁部の溶剤 Rを揮発させることで、通電パスによるリーク 電流を抑えることができる。 Therefore, by performing spin drying at a predetermined rotational speed for a predetermined time after the side rinse treatment as in the present embodiment to volatilize the solvent R at the peripheral edge of the wafer W, it is possible to suppress the leakage current due to the energization path. it can.
実施例  Example
[0121] 続、て ABOx型ぺロブスカイト結晶構造の誘電体膜の電気特性を確認するために 行なった実験の実施例について説明する。  [0121] Next, examples of experiments conducted to confirm the electrical characteristics of the dielectric film having the ABOx type perovskite crystal structure will be described.
(実施例 1)  (Example 1)
本実施例では、図 15に示すような電気特性測定用サンプルを使用した。ここで、本 実施例で用いる電気特性測定用サンプルの作製手順について説明する。先ず、シリ コン基板 91の表面を酸ィ匕させて、その上層側に厚さ lOOnm程度の Si02膜 92を形 成する。そして、その上に下部電極である Pt層 93を成膜する。該 Pt層 93の厚さは 3 Onm程度である。  In this example, a sample for measuring electrical characteristics as shown in FIG. 15 was used. Here, a procedure for manufacturing a sample for measuring electrical characteristics used in this example will be described. First, the surface of the silicon substrate 91 is oxidized and a Si02 film 92 having a thickness of about lOO nm is formed on the upper layer side. Then, a Pt layer 93 as a lower electrode is formed thereon. The thickness of the Pt layer 93 is about 3 Onm.
[0122] 次に、 Pt層 93の上面に測定対象となる ABOx型ぺロブスカイト結晶構造を有する 誘電体膜 3を形成する。そして、この誘電体膜 3の上面に上部電極であるアルミ-ゥ ム(A1)層 94を成膜する。続いて、この A1層 94を直径 0. 25mm〜10mm程度の円 板状にパターユングする。そして、誘電体膜 3を図 15に示す形状にパターユングして 、 Pt層 93を露出させる。  Next, the dielectric film 3 having an ABOx type perovskite crystal structure to be measured is formed on the upper surface of the Pt layer 93. Then, an aluminum (A1) layer 94 as an upper electrode is formed on the upper surface of the dielectric film 3. Subsequently, this A1 layer 94 is put into a disk shape having a diameter of about 0.25 mm to 10 mm. Then, the dielectric film 3 is patterned into the shape shown in FIG. 15, and the Pt layer 93 is exposed.
[0123] また、測定対象となる誘電体膜 3は、 ABOx型べ口ブスカイト結晶構造のチタン酸 ノリウムよりなる厚さ 200nmの第 1の薄膜 31の上に、 ABOx型ぺロブスカイト結晶構 造のチタン酸バリウムよりなる厚さ lOOnmの第 2の薄膜 32を積層したものである。こ れら第 1の薄膜 31及び第 2の薄膜 32は、上述の実施形態に記載した手法により形成 されている。 [0123] In addition, the dielectric film 3 to be measured is a titanium film having an ABOx-type perovskite crystal structure on a first thin film 31 having a thickness of 200 nm and made of ABOx-type bottom-bushite crystal structure. A second thin film 32 made of barium oxide and having a thickness of lOOnm is laminated. This The first thin film 31 and the second thin film 32 are formed by the method described in the above embodiment.
[0124] 以上のようにして作製された電気特性測定用サンプルに測定器 95を接続して (Pt 層 93と A1層 94との間に接続する)、誘電体膜 3のリーク電流及び誘電体膜 3の電気 容量の測定を行った。  [0124] The measurement device 95 is connected to the electrical property measurement sample manufactured as described above (connected between the Pt layer 93 and the A1 layer 94), and the leakage current of the dielectric film 3 and the dielectric The capacitance of membrane 3 was measured.
[0125] 誘電体膜 3のリーク電流については、室温にて、 Pt層 93と A1層 94との間に 2Vのバ ィァス電圧を 15秒間印加し、そのときに誘電体膜 3に流れる単位面積当たりの電流 の平均値を検出した。  [0125] With respect to the leakage current of dielectric film 3, a 2 V bias voltage was applied between Pt layer 93 and A1 layer 94 for 15 seconds at room temperature, and the unit area flowing in dielectric film 3 at that time was The average value of the current per contact was detected.
[0126] また、誘電体膜 3の電気容量につ!/、ては、室温にて、バイアス電圧が OV又は IV、 Vrms (容量測定用交流電圧)が 10mV、周波数が lkHz〜lMHzという条件で、 Pt 層 93と A1層 94との間に電圧を印加し、その時に流れる電流と周波数とを検出し、こ れらの結果力も算出して求めた。  [0126] Also, regarding the electric capacity of dielectric film 3! /, At room temperature, bias voltage is OV or IV, Vrms (capacitance measurement AC voltage) is 10mV, and frequency is lkHz to lMHz. A voltage was applied between the Pt layer 93 and the A1 layer 94, the current and frequency flowing at that time were detected, and the resultant force was also calculated.
[0127] この結果、第 1の薄膜 31と第 2の薄膜 32とを積層した誘電体膜 3のリーク電流は、 8 . l X 10_8AZcm2であり、電気容量は、 1. 2 μ Y/cra であった。 As a result, the leakage current of the dielectric film 3 in which the first thin film 31 and the second thin film 32 are laminated is 8.1 × 10 _8 AZcm 2 , and the electric capacity is 1.2 μY. It was / cra.
[0128] (比較例 1)  [0128] (Comparative Example 1)
電気特性測定用サンプルに使用する誘電体膜 3として、 ABOx型ぺロブスカイト結 晶構造のチタン酸バリウムよりなる厚さ 200nmの第 1の薄膜 31のみを備える構成の 誘電体膜を準備した。そして、これを用いて実施例 1と同様に、リーク電流と電気容量 とを測定した。尚、第 1の薄膜 31は、上述の実施形態に記載した手法により形成され ている。この結果、リーク電流は、 1. 3 X 10_2AZcm2であり、電気容量は、 0. 9 F / cm でめった。 As the dielectric film 3 used for the electrical property measurement sample, a dielectric film having only a 200 nm-thick first thin film 31 made of barium titanate having an ABOx type perovskite crystal structure was prepared. Using this, the leakage current and the electric capacity were measured in the same manner as in Example 1. The first thin film 31 is formed by the method described in the above embodiment. As a result, the leakage current is 1. a 3 X 10 _2 AZcm 2, the electric capacity is rarely at 0. 9 F / cm.
[0129] (比較例 2) [0129] (Comparative Example 2)
電気特性測定用サンプルに使用する誘電体膜 3として、 ABOx型ぺロブスカイト結 晶構造のチタン酸バリウムよりなる厚さ lOOnmの第 2の薄膜 32のみを備える構成の 誘電体膜を準備した。そして、これを用いて実施例 1と同様に、リーク電流と電気容量 とを測定した。尚、第 2の薄膜 32は、上述の実施形態に記載した手法により形成され ている。この結果、リーク電流は、 2. 8 X 10_3AZcm2であり、電気容量は、 0. 7 F , cm でめった。 [0130] 以上の結果により、誘電体膜 3として、第 1の薄膜 31と第 2の薄膜 32とを備えた構 成 (実施例 1)のものを用いた場合には、第 1の薄膜 31のみを備えた構成 (比較例 1) や、第 2の薄膜 32のみを備えた構成 (比較例 2)を用いた場合よりも、電気容量が大 きぐリーク電流が小さくなることが確認された。これにより、第 1の薄膜 31と、この上層 側に形成された第 2の薄膜 32とを備えた本発明の ABOx型べ口ブスカイト結晶構造 を有する誘電体膜 3は、コンデンサの誘電体薄膜として用いた場合に高!ヽ電気特性 を確保できることが理解される。 As the dielectric film 3 used for the electrical property measurement sample, a dielectric film having only a second thin film 32 of lOOnm thickness made of barium titanate having an ABOx type perovskite crystal structure was prepared. Using this, the leakage current and the electric capacity were measured in the same manner as in Example 1. The second thin film 32 is formed by the method described in the above embodiment. As a result, the leakage current was 2.8 X 10 _3 AZcm 2 and the electric capacity was 0.7 F, cm 2. [0130] From the above results, when the dielectric film 3 having the first thin film 31 and the second thin film 32 (Example 1) is used, the first thin film 31 is used. It was confirmed that the leakage current was larger and the leakage current was smaller than in the case of using only the configuration including only the first thin film (Comparative Example 1) and the configuration including only the second thin film 32 (Comparative Example 2). As a result, the dielectric film 3 having the ABOx type bottom bskite crystal structure of the present invention including the first thin film 31 and the second thin film 32 formed on the upper layer side is used as a dielectric thin film of the capacitor. It is understood that high electrical characteristics can be secured when used.
[0131] (実施例 2)  [0131] (Example 2)
本実施例で用いる電気特性測定用サンプルは、上述したサイドリンス処理及びスピ ン乾燥処理(図 14参照)を経て形成された誘電体膜 3を使用している。この点以外は 、実施例 1の電気特性測定用サンプルと同様である。そして、これを用いて実施例 1 と同一条件でリーク電流及び電気容量の測定を行った。尚、スピン乾燥処理におい て、シリコン基板 91の回転速度及び回転時間を、夫々 5000rpm及び 60秒とした。  The sample for measuring electrical characteristics used in this example uses the dielectric film 3 formed through the above-described side rinse treatment and spin drying treatment (see FIG. 14). Except this point, the sample is the same as the sample for measuring electrical characteristics of Example 1. Using this, the leakage current and the capacitance were measured under the same conditions as in Example 1. In the spin drying process, the rotation speed and rotation time of the silicon substrate 91 were set to 5000 rpm and 60 seconds, respectively.
[0132] この結果、誘電体膜 3のリーク電流は、 1. 3 X 10_9AZcm2であり、電気容量は、 1 . 4 μ Y/ cm (?めった。 [0132] As a result, the leakage current of the dielectric film 3 is 1. a 3 X 10 _9 AZcm 2, electrical capacitance, 1. 4 μ Y / cm (? Rarely.
[0133] (実施例 2— 1)  [0133] (Example 2-1)
本実施例で用いる電気特性測定用サンプルは、実施例 2と同様にサイドリンス処理 及びスピン乾燥処理を経て形成された誘電体膜 3を使用している。そして、これを用 いて実施例 1と同一条件でリーク電流及び電気容量の測定を行った。尚、スピン乾燥 処理において、シリコン基板 91の回転速度及び回転時間を、夫々 2000rpm及び 20 秒とした。  The electrical property measurement sample used in this example uses a dielectric film 3 formed through a side rinse process and a spin drying process as in the second example. Then, using this, the leakage current and the capacitance were measured under the same conditions as in Example 1. In the spin drying process, the rotation speed and rotation time of the silicon substrate 91 were set to 2000 rpm and 20 seconds, respectively.
[0134] この結果、誘電体膜 3のリーク電流は、 8. I X 10_8AZcm2であり、電気容量は、 1 . 2 μ ¥/ cm (?めった。 As a result, the leakage current of the dielectric film 3 was 8. IX 10 _8 AZcm 2 , and the electric capacity was 1.2 μ ¥ / cm (?
[0135] (実施例 2— 2)  [0135] (Example 2-2)
本実施例で用いる電気特性測定用サンプルは、実施例 2と同様にサイドリンス処理 及びスピン乾燥処理を経て形成された誘電体膜 3を使用している。そして、これを用 いて実施例 1と同一条件でリーク電流及び電気容量の測定を行った。尚、スピン乾燥 処理において、シリコン基板 91の回転速度及び回転時間を、夫々 4000rpm及び 20 秒とした。 The electrical property measurement sample used in this example uses a dielectric film 3 formed through a side rinse process and a spin drying process as in the second example. Then, using this, the leakage current and the capacitance were measured under the same conditions as in Example 1. In the spin drying process, the rotation speed and rotation time of the silicon substrate 91 are set to 4000 rpm and 20 rpm, respectively. Seconds.
[0136] この結果、誘電体膜 3のリーク電流は、 8. 8 X 10_8AZcm2であり、電気容量は、 1 . 2 μ ¥/ cm (?めった。 As a result, the leakage current of the dielectric film 3 was 8.8 × 10 _8 AZcm 2 , and the electric capacity was 1.2 μ ¥ / cm (?
[0137] (実施例 2— 3)  [0137] (Example 2-3)
本実施例で用いる電気特性測定用サンプルは、実施例 2と同様にサイドリンス処理 及びスピン乾燥処理を経て形成された誘電体膜 3を使用している。そして、これを用 いて実施例 1と同一条件でリーク電流及び電気容量の測定を行った。尚、スピン乾燥 処理において、シリコン基板 91の回転速度及び回転時間を、夫々 5000rpm及び 20 秒とした。  The electrical property measurement sample used in this example uses a dielectric film 3 formed through a side rinse process and a spin drying process as in the second example. Then, using this, the leakage current and the capacitance were measured under the same conditions as in Example 1. In the spin drying process, the rotation speed and rotation time of the silicon substrate 91 were set to 5000 rpm and 20 seconds, respectively.
[0138] この結果、誘電体膜 3のリーク電流は、 9. 5 X 10_8AZcm2であり、電気容量は、 1 . 3 μ Y/ cm (?めった。 As a result, the leakage current of the dielectric film 3 was 9.5 × 10 _8 AZcm 2 , and the electric capacity was 1.3 μY / cm 2 (?).
[0139] (結果及び考察)  [0139] (Results and discussion)
実施例 2—1〜実施例 2— 3では実施例 1と略同じ値のリーク電流及び電気容量が 得らた。また、実施例 2では実施例 1よりも非常に良い結果 (即ち、リーク電流が小さく 、電気容量が大きい)が得られることが確認された。このようなことから、リーク電流が 小さぐ性能の良い誘電体膜を得るためには、サイドリンス処理後のスピン乾燥処理 において、シリコン基板 91を 2000rpm以上の回転速度で 20秒以上回転させればよ いことが理解できる。また実施例 2では実施例 2— 1〜実施例 2— 3よりもリーク電流が 小さぐ電気容量が大きい結果を得られたことから、シリコン基板 91の回転速度及び 回転時間を夫々 5000rpm及び 60秒とすると、ウェハ Wの周縁部に残留している余 分な溶剤 Rが十分に揮発すると推測できる。  In Example 2-1 to Example 2-3, leakage current and electric capacity substantially the same as those in Example 1 were obtained. In addition, it was confirmed that Example 2 gave much better results than Example 1 (that is, leakage current was small and electric capacity was large). For this reason, in order to obtain a dielectric film with small leakage current and good performance, the silicon substrate 91 is rotated at a rotational speed of 2000 rpm or more for 20 seconds or more in the spin drying process after the side rinse process. I can understand that. In Example 2, since the leakage current was smaller and the electric capacity was larger than in Examples 2-1 to 2-3, the rotation speed and rotation time of the silicon substrate 91 were set to 5000 rpm and 60 seconds, respectively. Then, it can be estimated that the excess solvent R remaining on the peripheral edge of the wafer W is sufficiently volatilized.
[0140] 尚、本発明に係る誘電体膜は、 ABOx型ぺロブスカイト結晶構造を有する誘電体 膜であれば、チタン酸バリウム以外に、チタン酸ストロンチウム、チタン酸カルシウム、 ジルコン酸バリウム等により構成してもよい。  [0140] The dielectric film according to the present invention is composed of strontium titanate, calcium titanate, barium zirconate, etc. in addition to barium titanate as long as it is a dielectric film having an ABOx type perovskite crystal structure. May be.
[0141] 尚、本願については、 2005年 8月 24日に出願された日本国特許願特願 2005— 2 43286号、 2006年 8月 16曰に出願された曰本国特許願特願 2006— 221998号を 基礎とする優先権を主張し、当該基礎出願の内容をすベて本願にとりこむものとする 産業上の利用可能性 [0141] Regarding this application, Japanese Patent Application No. 2005-2 43286 filed on August 24, 2005, Japanese Patent Application No. 2006- 221998, filed August 16, 2006 Claim the priority based on No. and incorporate all the contents of the basic application into this application. Industrial applicability
本発明に係る ABOx型ぺロブスカイト結晶構造を有する誘電体膜は、コンデンサに 使用すると、所望の電気容量を確保しつつ、リーク電流の発生を極力抑えることがで きる。従って、 CPUに対する電力供給回路等のより安定性が求められる回路に実装 されるコンデンサへの適用が期待される。  When the dielectric film having an ABOx type perovskite crystal structure according to the present invention is used for a capacitor, generation of a leakage current can be suppressed as much as possible while securing a desired electric capacity. Therefore, it is expected to be applied to capacitors mounted on circuits that require more stability, such as power supply circuits for CPUs.

Claims

請求の範囲 The scope of the claims
[1] ABOx型べ口ブスカイト結晶構造を有する第 1の誘電体薄膜と、該第 1の誘電体薄 膜上に ABOx型べ口ブスカイト結晶構造を有する第 2の誘電体薄膜が形成された誘 電体膜であって、  [1] The first dielectric thin film having an ABOx-type mouth bumite crystal structure, and the second dielectric thin film having the ABOx-type mouth-bushite crystal structure formed on the first dielectric thin film. An electrical membrane,
前記第 2の誘電体薄膜を構成する結晶粒子の平均粒径は、前記第 1の誘電体薄 膜を構成する結晶粒子の平均粒径よりも小さぐ前記第 1の誘電体薄膜における前 記第 2の誘電体薄膜との境界領域では、前記第 1の誘電体薄膜を構成する結晶粒 子と前記第 2の誘電体薄膜を構成する結晶粒子とが混在する、  In the first dielectric thin film, the average particle size of the crystal particles constituting the second dielectric thin film is smaller than the average particle size of the crystal particles constituting the first dielectric thin film. 2 in the boundary region with the dielectric thin film, the crystal grains constituting the first dielectric thin film and the crystal grains constituting the second dielectric thin film are mixed.
ことを特徴とする ABOx型べ口ブスカイト結晶構造を有する誘電体膜。  A dielectric film having an ABOx-type bebbitite crystal structure.
[2] 前記第 1の誘電体薄膜における前記第 2の誘電体薄膜との境界領域の密度が、前 記第 1の誘電体薄膜の他の領域の密度及び前記第 2の誘電体薄膜の密度より高い 、ことを特徴とする請求項 1に記載の ABOx型ぺロブスカイト結晶構造を有する誘電 体膜。 [2] The density of the boundary region between the first dielectric thin film and the second dielectric thin film is the density of the other region of the first dielectric thin film and the density of the second dielectric thin film. 2. The dielectric film having an ABOx type perovskite crystal structure according to claim 1, wherein the dielectric film is higher.
[3] 請求項 1記載の誘電体膜の一対の主面に一対の電極が形成されている、ことを特 徴とする ABOx型ぺロブスカイト結晶構造を有する誘電体膜を使用したコンデンサ。  [3] A capacitor using a dielectric film having an ABOx type perovskite crystal structure, wherein a pair of electrodes are formed on a pair of main surfaces of the dielectric film according to [1].
[4] ABOx型ぺロブスカイト構造を有する膜の積層膜から構成される ABOx型ぺロブス カイト構造を有する誘電体膜を形成する方法にお!ヽて、 [4] A method for forming a dielectric film having an ABOx type perovskite structure composed of a laminated film of films having an ABOx type perovskite structure.
平均径が所定値以上の空隙を含む ABOx型べ口ブスカイト結晶構造を有する第 1 の誘電体薄膜を用意する工程と、  Providing a first dielectric thin film having an ABOx-type bottom bumskite crystal structure including voids having an average diameter not less than a predetermined value;
前記空隙の平均径よりも小さい平均粒径の ABOx型べ口ブスカイト結晶構造を有 する粒子と、所定の有機溶媒とを含む誘電体形成用組成液を前記第 1の誘電体薄 膜上に塗布する塗布工程と、  A dielectric composition forming liquid containing particles having an ABOx type bottom bumskite crystal structure having an average particle size smaller than the average diameter of the voids and a predetermined organic solvent is applied onto the first dielectric thin film. An application process to
該塗布工程で得られた結果物を焼成して、前記第 1の誘電体薄膜上に ABOx型べ 口ブスカイト結晶構造を有する第 2の誘電体薄膜を形成する焼成工程と、  Firing the resultant product obtained in the coating step to form a second dielectric thin film having an ABOx type bevbskite crystal structure on the first dielectric thin film; and
を備えることを特徴とする ABOx型べ口ブスカイト構造を有する誘電体膜の形成方 法。  A method for forming a dielectric film having an ABOx-type mouth-bumskite structure.
[5] 前記第 2の誘電体薄膜形成用の前記誘電体形成用組成液は、金属アルコキシド、 金属カルボキシレート、金属錯体及び金属水酸化物の群から選ばれる金属種 A及び 金属種 Bを含む一種以上の化合物を含む、ことを特徴とする請求項 4に記載の ABO X型べ口ブスカイト構造を有する誘電体膜の形成方法。 [5] The dielectric-forming composition liquid for forming the second dielectric thin film comprises a metal species A selected from the group consisting of metal alkoxides, metal carboxylates, metal complexes, and metal hydroxides. 5. The method for forming a dielectric film having an ABO X-type bevacuskite structure according to claim 4, comprising one or more compounds including metal species B.
[6] 前記金属種 Aの濃度が 0. 1〜0. 7mmolZgであり、前記金属種 Bの濃度が 0. 1 〜0. 7mmolZgである、ことを特徴とする請求項 5に記載の ABOx型ぺロブスカイト 結晶構造を有する誘電体膜の形成方法。  6. The ABOx type according to claim 5, wherein the concentration of the metal species A is 0.1 to 0.7 mmolZg, and the concentration of the metal species B is 0.1 to 0.7 mmolZg. Perovskite A method for forming a dielectric film having a crystal structure.
[7] 前記金属種 Aは、リチウム、ナトリウム、カルシウム、ストロンチウム、ノリウム及びラン タンの内の一種以上の金属を含み、前記金属種 Bはチタン、ジルコニウム、タンタル 及びニオブの内の一種以上の金属を含む、ことを特徴とする請求項 5に記載の ABO X型べ口ブスカイト結晶構造を有する誘電体膜の形成方法。  [7] The metal species A includes one or more metals selected from lithium, sodium, calcium, strontium, norlium, and lanthanum, and the metal species B includes one or more metals selected from titanium, zirconium, tantalum, and niobium. 6. The method for forming a dielectric film having an ABO X-type bottom bumskite crystal structure according to claim 5, comprising:
[8] 前記第 2の誘電体薄膜形成用の前記誘電体形成用組成液に含まれる前記有機溶 媒が、アルコール系溶媒、エーテル系溶媒、ケトン系溶媒及びエステル系溶媒の群 から選ばれる一種以上の有機溶媒を含む、ことを特徴とする請求項 4に記載の ABO X型べ口ブスカイト結晶構造を有する誘電体膜の形成方法。  [8] The organic solvent contained in the dielectric composition liquid for forming the second dielectric thin film is a kind selected from the group consisting of alcohol solvents, ether solvents, ketone solvents, and ester solvents. 5. The method of forming a dielectric film having an ABO X-type bebskite crystal structure according to claim 4, comprising the organic solvent described above.
[9] 前記第 1の誘電体薄膜を用意する工程は、  [9] The step of preparing the first dielectric thin film includes:
前記第 2の誘電体薄膜形成用の前記誘電体形成用組成液に含まれる ABOx型べ 口ブスカイト結晶構造を有する粒子の平均粒径よりも大きい平均粒径の ABOx型ぺ 口ブスカイト結晶構造を有する粒子を含む誘電体形成用組成液を基板の表面に塗 布する第 1の誘電体薄膜形成用の塗布工程と、  Having an ABOx type perovskite crystal structure having an average particle size larger than an average particle size of particles having an ABOx type bebskite crystal structure contained in the dielectric forming composition liquid for forming the second dielectric thin film A first dielectric thin film forming coating step of applying a dielectric-forming composition liquid containing particles on the surface of the substrate;
該塗布工程で得られた結果物を焼成して、前記基板上に ABOx型ぺロブスカイト 結晶構造を有する第 1の誘電体薄膜を形成する第 1の誘電体薄膜形成用の焼成ェ 程と、  Firing the resultant obtained in the coating step to form a first dielectric thin film having an ABOx type perovskite crystal structure on the substrate;
を備えることを特徴とする請求項 4に記載の ABOx型ぺロブスカイト構造を有する誘 電体膜の形成方法。  The method for forming an insulator film having an ABOx-type perovskite structure according to claim 4, comprising:
[10] 前記第 1の誘電体薄膜形成用の塗布工程は、前記基板を回転させて該基板上に 前記第 1の誘電体薄膜形成用の前記誘電体形成用組成液を伸展させる第 1の伸展 工程と、該第 1の伸展工程後、前記基板の表面側周縁部に溶剤を塗布し、前記基板 の表面側周縁部を洗浄する第 1の洗浄工程と、該第 1の洗浄工程後、前記基板を所 定の回転速度で所定時間回転させて、前記基板の表面側周縁部を乾燥させる第 1 の乾燥工程と、を備え、 [10] The first dielectric thin film forming coating step includes a step of rotating the substrate to extend the dielectric forming composition liquid for forming the first dielectric thin film on the substrate. After the first extension step, after the first extension step, a solvent is applied to the surface side peripheral portion of the substrate, and the surface side peripheral portion of the substrate is cleaned, and after the first cleaning step, The substrate is rotated at a predetermined rotation speed for a predetermined time to dry the surface side peripheral portion of the substrate. And a drying process of
前記第 2の誘電体薄膜形成用の塗布工程は、前記基板を回転させて該基板上に 前記第 2の誘電体薄膜形成用の前記誘電体形成用組成液を伸展させる第 2の伸展 工程と、該第 2の伸展工程後、前記基板の表面側周縁部に溶剤を塗布し、前記基板 の表面側周縁部を洗浄する第 2の洗浄工程と、該第 2の洗浄工程後、前記基板を所 定の回転速度で所定時間回転させて、前記基板の表面側周縁部を乾燥させる第 2 の乾燥工程と、を備える、  The coating process for forming the second dielectric thin film includes a second extending process of rotating the substrate and extending the dielectric forming composition liquid for forming the second dielectric thin film on the substrate. After the second extension step, a solvent is applied to the surface side peripheral portion of the substrate, and the surface side peripheral portion of the substrate is cleaned, and after the second cleaning step, the substrate is removed. A second drying step of rotating the surface side peripheral portion of the substrate by rotating at a predetermined rotation speed for a predetermined time,
ことを特徴とする請求項 9に記載の ABOx型ぺロブスカイト構造を有する誘電体膜 の形成方法。  10. The method for forming a dielectric film having an ABOx type perovskite structure according to claim 9.
[11] 前記第 1の誘電体薄膜形成用の前記誘電体形成用組成液は、前記第 2の誘電体 薄膜形成用の前記誘電体形成用組成液を加水分解することにより得られる ABOx型 の結晶構造を有する平均粒径 lOOnm以下の粒子を含む、ことを特徴とする請求項 9 に記載の ABOx型ぺロブスカイト結晶構造を有する誘電体膜の形成方法。  [11] The dielectric forming composition liquid for forming the first dielectric thin film is an ABOx type obtained by hydrolyzing the dielectric forming composition liquid for forming the second dielectric thin film. 10. The method for forming a dielectric film having an ABOx type perovskite crystal structure according to claim 9, comprising particles having a crystal structure and an average particle diameter of lOOnm or less.
[12] ABOx型ぺロブスカイト構造を有する膜の積層膜から構成される ABOx型ぺロブス カイト構造を有する誘電体膜を形成するシステムにおいて、 [12] In a system for forming a dielectric film having an ABOx type perovskite structure composed of a laminated film of films having an ABOx type perovskite structure,
平均径が所定値以上の空隙を含む ABOx型べ口ブスカイト結晶構造を有する第 1 の誘電体薄膜上に、前記空隙の平均径よりも小さ!ヽ平均粒径の ABOx型ぺロブス力 イト結晶構造を有する粒子を含む誘電体形成用組成液を塗布する塗布装置と、 該塗布装置による前記誘電体形成用組成液の塗布によって得られた結果物を焼 成して、前記第 1の誘電体薄膜上に ABOx型べ口ブスカイト結晶構造を有する第 2の 誘電体薄膜を形成する焼成装置と、  On the first dielectric thin film having an ABOx type bottom bumskite crystal structure containing voids whose average diameter is not less than a predetermined value, the average diameter of the ABOx type perovskite crystal structure is smaller than the average diameter of the voids. A coating device for applying a dielectric forming composition liquid containing particles having a particle; and a resultant obtained by applying the dielectric forming composition liquid by the coating device to sinter the first dielectric thin film. A firing apparatus for forming a second dielectric thin film having an ABOx-type bottom buxite crystal structure thereon;
を備えることを特徴とする ABOx型べ口ブスカイト構造を有する誘電体膜の形成シ ステム。  A system for forming a dielectric film having an ABOx type mouth bumskite structure.
[13] 前記第 2の誘電体薄膜形成用の前記誘電体形成用組成液は、金属アルコキシド、 金属カルボキシレート、金属錯体及び金属水酸化物の群から選ばれる金属種 A及び 金属種 Bを含む一種以上の化合物を含む、ことを特徴とする請求項 12に記載の AB Ox型ぺロブスカイト構造を有する誘電体膜の形成システム。  [13] The dielectric forming composition liquid for forming the second dielectric thin film includes a metal species A and a metal species B selected from the group consisting of metal alkoxides, metal carboxylates, metal complexes, and metal hydroxides. 13. The system for forming a dielectric film having an AB Ox type perovskite structure according to claim 12, comprising at least one compound.
[14] 前記金属種 Aの濃度が 0. 1〜0. 7mmolZgであり、前記金属種 Bの濃度が 0. 1 〜0. 7mmol/gである、ことを特徴とする請求項 13に記載の ABOx型ぺロブスカイ ト結晶構造を有する誘電体膜の形成システム。 [14] The concentration of the metal species A is 0.1 to 0.7 mmol Zg, and the concentration of the metal species B is 0.1. 14. The system for forming a dielectric film having an ABOx type perovskite crystal structure according to claim 13, wherein the dielectric film has a structure of ˜0.7 mmol / g.
前記金属種 Aは、リチウム、ナトリウム、カルシウム、ストロンチウム、バリウム及ぴラン タンの内の一種以上の金属を含み、前記金属種 Bはチタン、ジルコユウム、タンタル 及びュォブの内の一種以上の金属を含む、ことを特徴とする請求項 13に記載の AB Ox型ぺロブスカイト結晶構造を有する誘電体膜の形成システム。  The metal species A includes one or more metals selected from lithium, sodium, calcium, strontium, barium, and lanthanum, and the metal species B includes one or more metals selected from titanium, zirconium, tantalum, and tube. 14. The system for forming a dielectric film having an AB Ox type perovskite crystal structure according to claim 13.
PCT/JP2006/316631 2005-08-24 2006-08-24 DIELECTRIC FILM HAVING ABOx-TYPE PEROVSKITE CRYSTALLINE STRUCTURE, CAPACITOR USING THE DIELECTRIC FILM, AND METHOD AND SYSTEM FOR FORMATION OF DIELECTRIC FILM HAVING ABOx-TYPE PEROVSKITE CRYSTALLINE STRUCTURE WO2007023909A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-243286 2005-08-24
JP2005243286 2005-08-24
JP2006-221998 2006-08-16
JP2006221998A JP4912081B2 (en) 2005-08-24 2006-08-16 Method for forming dielectric film having ABOx type perovskite crystal structure

Publications (1)

Publication Number Publication Date
WO2007023909A1 true WO2007023909A1 (en) 2007-03-01

Family

ID=37771652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316631 WO2007023909A1 (en) 2005-08-24 2006-08-24 DIELECTRIC FILM HAVING ABOx-TYPE PEROVSKITE CRYSTALLINE STRUCTURE, CAPACITOR USING THE DIELECTRIC FILM, AND METHOD AND SYSTEM FOR FORMATION OF DIELECTRIC FILM HAVING ABOx-TYPE PEROVSKITE CRYSTALLINE STRUCTURE

Country Status (3)

Country Link
JP (1) JP4912081B2 (en)
TW (1) TW200731466A (en)
WO (1) WO2007023909A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005473A1 (en) * 2011-07-01 2013-01-10 三洋電機株式会社 Multilayer structure and method for manufacturing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6411721B2 (en) * 2013-09-24 2018-10-24 イビデン株式会社 Manufacturing method of holding sealing material
US10115527B2 (en) 2015-03-09 2018-10-30 Blackberry Limited Thin film dielectric stack
US10896950B2 (en) 2017-02-27 2021-01-19 Nxp Usa, Inc. Method and apparatus for a thin film dielectric stack
US10923286B2 (en) 2018-02-21 2021-02-16 Nxp Usa, Inc. Method and apparatus for compensating for high thermal expansion coefficient mismatch of a stacked device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936309A (en) * 1995-07-14 1997-02-07 Matsushita Electron Corp Manufacture of capacitor element
JP2001158607A (en) * 1999-12-02 2001-06-12 Seiko Epson Corp Method for producing oxide thin film, method for producing memory element, method for producing piezoelectric element and oxide thin film, memory element and piezoelectric element produced by these production methods
JP2002080220A (en) * 2000-06-21 2002-03-19 Seiko Epson Corp Ceramic membrane, method of producing the same, semiconductor device and piezo-electric element
JP2003282560A (en) * 2002-03-26 2003-10-03 Seiko Epson Corp Ferroelectric layer and manufacturing method, and ferroelectric capacitor and piezoelectric device
JP2005213105A (en) * 2004-01-30 2005-08-11 Matsushita Electric Ind Co Ltd Polycrystallline metal oxide thin film and its manufacturing method, and non-volatile memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936309A (en) * 1995-07-14 1997-02-07 Matsushita Electron Corp Manufacture of capacitor element
JP2001158607A (en) * 1999-12-02 2001-06-12 Seiko Epson Corp Method for producing oxide thin film, method for producing memory element, method for producing piezoelectric element and oxide thin film, memory element and piezoelectric element produced by these production methods
JP2002080220A (en) * 2000-06-21 2002-03-19 Seiko Epson Corp Ceramic membrane, method of producing the same, semiconductor device and piezo-electric element
JP2003282560A (en) * 2002-03-26 2003-10-03 Seiko Epson Corp Ferroelectric layer and manufacturing method, and ferroelectric capacitor and piezoelectric device
JP2005213105A (en) * 2004-01-30 2005-08-11 Matsushita Electric Ind Co Ltd Polycrystallline metal oxide thin film and its manufacturing method, and non-volatile memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005473A1 (en) * 2011-07-01 2013-01-10 三洋電機株式会社 Multilayer structure and method for manufacturing same

Also Published As

Publication number Publication date
JP4912081B2 (en) 2012-04-04
JP2007088437A (en) 2007-04-05
TW200731466A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
TWI613725B (en) Method for producing ferroelectric thin film
TWI549183B (en) Method for producing ferroelectric thin film
WO2007023909A1 (en) DIELECTRIC FILM HAVING ABOx-TYPE PEROVSKITE CRYSTALLINE STRUCTURE, CAPACITOR USING THE DIELECTRIC FILM, AND METHOD AND SYSTEM FOR FORMATION OF DIELECTRIC FILM HAVING ABOx-TYPE PEROVSKITE CRYSTALLINE STRUCTURE
JP6887770B2 (en) Method of forming PZT ferroelectric film
JP2013203611A (en) Method for producing ferroelectric thin film
JPH05315319A (en) Semiconductor device and its manufacture
EP2784137B1 (en) PZT-based ferroelectric thin film-forming composition, method of preparing the same, and method of forming PZT-based ferroelectric thin film using the same
EP2784802B1 (en) Method of forming PNbZT ferroelectric thin film
WO2015146607A1 (en) Composition for forming manganese- and niobium-doped pzt piezoelectric film
TWI635633B (en) Method for pzt-based piezoelectric film
CN1199506A (en) Integrated circuit comprising substrate and wiring layer with buffer layer between substrate and wiring layer
WO2007032193A1 (en) METHOD FOR MANUFACTURE OF DIELECTRIC FILM HAVING ABOx TYPE of PEROVSKITE-TYPE CRYSTALLINE STRUCTURE
JP2002047011A (en) Method of forming compact perovskite metallic oxide thin film and compact perovskite metallic oxide thin film
KR100406298B1 (en) Dielectric element and a method for fabricating the same
WO2011001734A1 (en) Fluid for removing coating film formed by csd, method for removing csd coating film using same, and ferroelectric thin film and process for producing same
JP4257518B2 (en) Method for producing perovskite type crystal particles, method for producing perovskite type crystal particle dispersion, and dielectric film
WO2005054134A1 (en) Method for producing composition for forming dielectric film, composition for forming dielectric film, dielectric film and method for producing same
JP2013207155A (en) Ferroelectric thin film manufacturing method
JP2007048765A (en) Semiconductor storage device and method of forming insulator layer
JP5381410B2 (en) Method for manufacturing ferroelectric thin film
JP2005075715A (en) Composition for forming dielectric, method of manufacturing the same, dielectric film using the same and capacitor
JP2002299332A (en) Plasma-enhanced film forming method and plasma- enhanced cvd apparatus
JP4361893B2 (en) Apparatus and method for forming dielectric thin film having ABOx type perovskite crystal structure
JP2015193524A (en) Pzt-based ferroelectric substance thin film, and formation method thereof
JP2005247660A (en) Composition for forming dielectric film, method for manufacturing composition for forming dielectric film, dielectric film and capacitor including dielectric film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796744

Country of ref document: EP

Kind code of ref document: A1