WO2007032193A1 - METHOD FOR MANUFACTURE OF DIELECTRIC FILM HAVING ABOx TYPE of PEROVSKITE-TYPE CRYSTALLINE STRUCTURE - Google Patents

METHOD FOR MANUFACTURE OF DIELECTRIC FILM HAVING ABOx TYPE of PEROVSKITE-TYPE CRYSTALLINE STRUCTURE Download PDF

Info

Publication number
WO2007032193A1
WO2007032193A1 PCT/JP2006/316630 JP2006316630W WO2007032193A1 WO 2007032193 A1 WO2007032193 A1 WO 2007032193A1 JP 2006316630 W JP2006316630 W JP 2006316630W WO 2007032193 A1 WO2007032193 A1 WO 2007032193A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
thin film
forming
film
pressure
Prior art date
Application number
PCT/JP2006/316630
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuya Okumura
Takahiro Kitano
Yoshiki Yamanishi
Muneo Harada
Tatsuzo Kawaguchi
Yoshihiro Hirota
Original Assignee
Tokyo Electron Limited
Octec Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited, Octec Inc. filed Critical Tokyo Electron Limited
Publication of WO2007032193A1 publication Critical patent/WO2007032193A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 

Definitions

  • the present invention relates to a method and system for forming a dielectric film having an ABOx type perovskite crystal structure.
  • a dielectric film for example, barium titanate having an ABOx type perovskite crystal structure has attracted attention as a dielectric film constituting the capacitor in this case.
  • a sol-gel method is known as a method for producing a dielectric film having this ABOx type perovskite crystal structure.
  • the dielectric film obtained by the sol-gel method is characterized by low crack resistance. Specifically, cracks occur when the thickness of the dielectric film per layer to be formed exceeds lOOnm. Therefore, the film thickness per layer needs to be 100 ⁇ m or less. However, this reduces the distance between the electrodes and increases the leakage current. As a result, the capacitor is not suitable for stable power supply.
  • the film thickness in order to use as a dielectric film for a capacitor, the film thickness must be 300 nm or more from the viewpoint of reducing leakage current. Therefore, multilayer coating is performed, for example, to increase the thickness of the entire barium titanate thin film. However, if baking is repeated in a multi-layer coating, the barium titanate crystals in the coating film cause grain growth, increasing the surface roughness. For this reason, while the film thickness can be increased, the gap between crystal grains becomes a leakage point, and conversely, the leakage current may be increased.
  • the method for forming a dielectric film having an ABOx type perovskite crystal structure includes an ABOx type perovskite crystal including voids having an average diameter of a predetermined value or more.
  • An application process for applying the composition liquid onto the first dielectric thin film, and a resultant product obtained by the application process are baked to form an ABOx-type perovskite crystal structure on the first dielectric thin film.
  • a firing step for forming the second dielectric thin film is included in the first dielectric thin film.
  • a step of applying a predetermined solvent to the surface of the first dielectric thin film and replacing the air in the gap with the predetermined solvent may be further provided.
  • the application step may include a step of supplying the dielectric forming composition liquid until a liquid deposit is formed on the first dielectric thin film.
  • the coating step may further include a step of widening the liquid accumulation portion by rotating the first dielectric thin film.
  • an air permeation step may be further included in which air in the gap is sucked and a part of the dielectric forming liquid is infiltrated into the gap.
  • the resultant product obtained in the coating step is placed in a sealed space, and a predetermined pressure (for example, volatilization of the predetermined solvent contained in the dielectric forming composition liquid) is placed in the sealed space.
  • a predetermined pressure for example, volatilization of the predetermined solvent contained in the dielectric forming composition liquid
  • a depressurizing step of depressurizing to a pressure equal to or lower than
  • the result obtained in the application step is placed in a sealed space, and the inside of the sealed space is decompressed to a first pressure, and the inside of the sealed space is reduced.
  • a step of increasing pressure from the first pressure to a predetermined pressure, and a second pressure lower than the predetermined pressure force and the first pressure in the sealed space includes And a second pressure reducing step for reducing the pressure to a level equal to or lower than a pressure at which volatilization of the predetermined solvent is started.
  • the first dielectric thin film is formed of the dielectric forming set for forming the second dielectric thin film.
  • a first dielectric thin film having an ABOx type perovskite crystal structure is formed on the substrate by firing a coating process for forming the first dielectric thin film and firing the resultant product obtained in the coating process.
  • the first dielectric thin film is fired for the first dielectric thin film to be formed.
  • the base material in this case corresponds to a semiconductor substrate, an electrode formed on the semiconductor substrate, a dielectric thin film, and the like.
  • the dielectric forming composition liquid for forming the second dielectric thin film includes a metal species A and a metal species B selected from the group consisting of metal alkoxides, metal carboxylates, metal complexes, and metal hydroxides. It may be configured to include one or more compounds and a predetermined solvent!
  • the metal species A includes one or more metals selected from lithium, sodium, calcium, strontium, normium and lanthanum
  • the metal species B is one of titanium, zirconium, tantalum and niobium. You may make it the structure containing the above metals.
  • the dielectric forming composition liquid for forming the first dielectric thin film is obtained by hydrolyzing the dielectric forming composition liquid for forming the second dielectric thin film. May be configured to include particles having an average particle size of lOOnm or less having an integer of 1 or more type crystal structure.
  • the dielectric film formation system having an ABOx type perovskite crystal structure of the present invention is provided on the first dielectric thin film having an ABOx type bebbitite crystal structure including voids having an average diameter of a predetermined value or more.
  • the coating apparatus may include a solvent coating unit that coats only the predetermined solvent contained in the dielectric forming composition liquid for forming the second dielectric thin film.
  • the permeation device includes a sealed container that contains a resultant product obtained by applying the dielectric forming composition liquid for forming the second dielectric thin film by the coating device, and an inside of the sealed container.
  • a depressurization means for depressurizing to a predetermined pressure (for example, a pressure at which volatilization of the predetermined solvent contained in the dielectric-forming composition liquid for forming the second dielectric thin film is started) or less. Good.
  • the permeation device includes a sealed container for accommodating a resultant product obtained by applying the dielectric forming composition liquid for forming the second dielectric thin film by the coating device, and the sealed container.
  • a first pressure reducing means for reducing the pressure in the sealed container to a first pressure
  • a pressure increasing means for increasing the pressure in the sealed container from the first pressure to a predetermined pressure
  • the first pressure in the sealed container from the predetermined pressure.
  • a second pressure that is reduced to below a second pressure lower than the pressure (for example, a pressure at which the volatilization of the predetermined solvent contained in the dielectric forming liquid for forming the second dielectric thin film is started).
  • a decompression unit for example, a pressure at which the volatilization of the predetermined solvent contained in the dielectric forming liquid for forming the second dielectric thin film is started.
  • FIG. 1 is a cross-sectional view showing an example of a capacitor using a dielectric film having an ABOx-type bottom bumskite crystal structure according to the present invention.
  • FIG. 2 is a cross-sectional view for explaining a step of forming a first coating film.
  • FIG. 3 is a cross-sectional view for explaining a heating / firing step for forming a first thin film.
  • FIG. 4 is a schematic view showing a state of modification of the dielectric film in the heating and firing process for forming the first thin film.
  • FIG. 5 is a cross-sectional view for explaining the coating film forming process and the process up to the manufacture of the capacitor.
  • FIG. 6 is a cross-sectional view for explaining the action of a dielectric film having an ABOx-type bottom buxite crystal structure.
  • FIG. 7 is a diagram showing a schematic configuration of a coating unit used in the first embodiment of the coating film forming step, where (a) is a sectional view of the coating unit and (b) is a plan view thereof.
  • ⁇ 8 A schematic diagram for explaining the first embodiment of the coating film forming step.
  • FIG. 10 is a schematic diagram for explaining a second embodiment of the coating film forming step.
  • FIG. 12 A diagram showing a schematic configuration of a coating unit used in the third embodiment and the fourth embodiment of the coating film forming step, (a) is a sectional view of the coating unit, and (b) is a sectional view of the coating unit.
  • FIG. 12 A diagram showing a schematic configuration of a coating unit used in the third embodiment and the fourth embodiment of the coating film forming step, (a) is a sectional view of the coating unit, and (b) is a sectional view of the coating unit.
  • FIG. 13 is a perspective view showing a state of application of the application liquid performed by the application unit shown in FIG.
  • FIG. 15 is a schematic diagram for explaining the third embodiment of the coating film forming step.
  • FIG. 16 is a characteristic diagram showing the change over time in the pressure of the sealed container provided in the vacuum drying unit.
  • FIG. 17 is a cross-sectional view for explaining the operation of the third embodiment of the coating film forming step. ⁇ 18] A schematic view for explaining a fourth embodiment of the coating film forming step.
  • FIG. 19 is a cross-sectional view for explaining the operation of the fourth embodiment of the coating film forming step.
  • FIG. 20 is a plan view showing a dielectric film forming apparatus included in a dielectric film forming system having an ABOx-type mouthbushite crystal structure according to an embodiment of the present invention.
  • FIG. 21 is a perspective view of a dielectric film forming apparatus according to the embodiment.
  • FIG. 22 is a cross-sectional view showing a schematic configuration of a heating unit provided in the dielectric film forming apparatus according to the embodiment.
  • FIG. 23 is a cross-sectional view showing a schematic configuration of a heating furnace provided in the dielectric film formation system according to the embodiment.
  • Heating unit 1 Cooling plate 2 Hot plate 10 Heating furnace
  • FIG. 1 shows an example in which the dielectric film according to the present invention is applied to a capacitive element (capacitor).
  • the capacitor shown in FIG. 1 (a) is composed of a lower electrode 21 (for example, made of Pt), an upper electrode 22 (for example, made of A1), and a dielectric film 3a.
  • the dielectric film 3a is a dielectric film having an ABOx type bottom bumskite crystal structure composed of a first thin film 31 (first dielectric thin film) layer and a second thin film 32 (second dielectric thin film) layer. It is a body membrane.
  • the lower electrode 21 is provided on the surface on the first thin film 31 side, and the upper electrode 22 is provided on the surface on the second thin film 32 side.
  • the first thin film 31 is a dielectric thin film having an ABOx type perovskite crystal structure including voids having an average diameter of 10 nm or more, and the film thickness thereof is, for example, about 200 to 300 nm. .
  • the first thin film 31 can be generated by applying a first coating liquid to a semiconductor substrate (for example, a silicon substrate) and heating.
  • the first coating liquid is a dielectric forming composition liquid containing particles having an ABOx type perovskite crystal structure and an average particle diameter of lOOnm or less and a solvent (organic solvent).
  • the second thin film 32 is a dielectric thin film having an ABOx type bottom bskite crystal structure, and its film thickness is, for example, about lOOnm.
  • the second thin film 32 can be produced by applying a second coating liquid on the first thin film 31 and heating at 700 ° C. to 900 ° C.
  • the second coating liquid is one or more compounds including a metal species A and a metal species B selected from the group of metal alkoxides, metal carboxylates, metal complexes, and metal hydroxides, and a solvent (organic solvent). ) And a dielectric composition forming liquid.
  • Metal species A includes Li (lithium), Na (sodium), Ca (calcium), Sr (strontium), One or more metals selected from Ba (barium) and La (lanthanum).
  • Metal species B is one or more metals selected from Ti (titanium), Zr (zirconium), Ta (tantalum), and Nb (niobium).
  • FIG. 1 (b) and FIG. 1 (c) show an example of a capacitor in which the dielectric between the lower electrode 21 and the upper electrode 22 is composed of three layers.
  • the capacitor shown in FIG. 1 (b) includes a dielectric film 3b configured such that the first thin film 31 is sandwiched between two second thin films 32.
  • the capacitor shown in FIG. 1 (c) includes a dielectric film 3c configured such that the second thin film 32 is sandwiched between the two first thin films 31.
  • the first thin film 31 can be generated by applying the first coating liquid to the substrate 23 and heating and baking.
  • the first coating liquid used in the present embodiment is a dielectric forming composition liquid containing an organic solvent and particles having an ABOx type perovskite crystal structure and an average particle diameter of 10 Onm or less.
  • the first coating solution is produced through each step of (1) dissolution step, (2) hydrolysis step, (3) purification step, and (4) dispersion step. Hereinafter, these steps will be described in detail.
  • Well-known technologies that include one or more compounds containing metal species A constituting particles having an ABOx-type perovskite crystal structure and one or more compounds containing metal species B constituting particles having an ABOx-type perovskite crystal structure This is a step of dissolving in an organic solvent.
  • the compound is selected from the group of metal alkoxides, metal carboxylates, metal complexes, and metal hydroxides.
  • Metal species A is one or more metals selected from the internal forces of Li, Na, Ca, Sr, Ba, and La. Is preferred.
  • the metal species B is preferably one or more metals selected from the internal forces of Ti, Zr, Ta, and Nb. More preferably, the metal species A is one or more metals selected from the internal forces of Sr and Ba, and the metal species B is Ti.
  • the concentration of the metal species A in the solution during dissolution is 0.1 to 0.7 mmol Zg.
  • the concentration of metal species B is also 0.1 to 0.7 mmol Zg.
  • metal alkoxide examples include, for example, barium alkoxides such as dimethoxybarium, diethoxybarium, dipropoxybarium, diisopropoxybarium, dibutoxybarium, and diisobutoxybarium, dimethoxystrontium, cetoxystrontium, dioxy
  • barium alkoxides such as dimethoxybarium, diethoxybarium, dipropoxybarium, diisopropoxybarium, dibutoxybarium, and diisobutoxybarium, dimethoxystrontium, cetoxystrontium, dioxy
  • Use strontium alkoxides such as propoxystrontium, diisopropoxystrontium, dibutoxystrontium, diisobutoxystrontium, tetramethoxytitanium, tetraethoxytitanium, tetrapropoxytitanium, tetraisopropoxytitanium, tetrabutoxyt
  • Examples of the metal carboxylate include barium acetate, barium propionate, 2 methyl barium propionate, barium pentanoate, barium 2,2-dimethylpropionate, barium butanoate, barium hexanoate, 2 -Barium carboxylates such as ethylbarium hexanoate, barium octylate, barium nonanoate, barium decanoate, strontium acetate, strontium propionate, strontium 2-methylpropionate, strontium pentanoate, 2,2-dimethinorepropi Strontium carboxy such as strontium citrate, strontium butanoate, strontium hexanoate, strontium 2-ethylhexylate, strontium octylate, strontium nonanoate, strontium decanoate, etc. It can be used over door and the like.
  • Examples of the metal complex include titanium arylacetoacetate triisopropylate, titanium dibutoxide (bis 2,4 pentanedionate), titanium diisoproxyside (bis 2,4 pentanedio). Nate), titanium dibutoxide bis (tetramethyl heptane dionate), titanium diisoproxide bis (tetramethyl heptane dionate), titanium dibutoxide bis (ethinoreacetoacetate), titanium diisopropoxide bis ( Ethinoacetate acetate) and the like can be used.
  • the metal hydroxide is a compound in which a hydroxide ion is coordinated to a metal atom. It is represented by general formula (1).
  • M represents a metal selected from Li, Na, Ca, Sr, Ba, La, Ti, Zr, Ta, and Nb.
  • a is an integer of 1 to 7 according to the valence of metal M.
  • X is an integer of 1-8.
  • organic solvent for example, alcohol solvents, polyhydric alcohol solvents, ether solvents, ketone solvents, ester solvents and the like can be used.
  • alcohol solvent methanol, ethanol, propanol, butanol, amyl alcohol, cyclohexanol, methylcyclohexanol, and the like can be used.
  • polyhydric alcohol solvent examples include ethylene glycol monomethyl ether, ethylenic glycolenomonoacetate ester, diethylene glycolenol monomethylenether, jetylene glycolenol monoacetate, propylene glycol monoethyl ether, propylene glycol.
  • Nole monoacetate, dipropylene glycol monoethanolo ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, methoxybutanol, propylene glycol monoethylenoate ethere acetate, propylene glycol monomethyl ether acetate, di Propylene glycol propyl ether, dipropylene glycol monobutyl ether and the like can be used.
  • ether solvent methylal, jetyl ether, dipropyl ether, dibutyl ether, diamyl ether, jetyl acetal, dihexyl ether, trioxane, dioxane and the like can be used.
  • Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, methyl cyclohexyl ketone, jetyl ketone, ethyl butyl ketone, trimethylnonanone, acetonyl acetone, dimethyl oxide.
  • Horn, cyclohexanone, diacetone alcohol and the like can be used.
  • ester solvent examples include ethyl formate, methyl acetate, ethyl acetate, butyl acetate, cyclohexyl acetate, methyl propionate, ethyl butyrate, ethyl oxyisobutyrate, ethyl acetoacetate, ethyl acetate, methoxybutyl acetate, Jetyl oxalate, jetyl malonate and the like can be used.
  • the organic solvent may be one of the above solvents or a combination of two or more solvents.
  • the solution generated in the dissolution step corresponds to a second coating solution for forming the second thin film 32.
  • water is added to the solution produced in the dissolution step, and the precursor in the solution is hydrolyzed to obtain crystal particles.
  • the solution temperature is usually kept in the range of -78 ° C to 200 ° C from the viewpoint of reaction efficiency. In this case, it is preferably ⁇ 20 ° C. to 100 ° C., and more preferably 0 to 50 ° C.
  • the amount of water added to the solution during hydrolysis is usually 5 to 300 times the molar amount of 1 mol of metal species A.
  • the molar amount is preferably 10 to 200 times (more preferably 20 to 100 times the molar amount).
  • water is added in such a molar amount, the crystallinity of the particles is improved and the dispersibility is also improved.
  • a mixture of one or more solvents selected from the plurality of solvents described above and water may be added.
  • the water to be added contains a catalyst!
  • acid catalysts such as inorganic acids (eg hydrochloric acid, sulfuric acid, nitric acid), organic acids (eg acetic acid, propionic acid, butyric acid, maleic acid), sodium hydroxide, potassium hydroxide, barium hydroxide, ammonia, Inorganic or organic alkali catalysts such as monoethanolamine, diethanolamine, and tetramethylammonium hydroxide can be used as the catalyst.
  • Hydrolysis condensate produced after addition of water is usually 0.5 to 10 to 200 ° C.
  • crystal particles having an ABOx-type perovskite crystal structure and an average particle size of lOOnm or less preferably an average particle size of 20 to 80 nm
  • the crystal particles obtained in the hydrolysis step are purified with an organic solvent.
  • an organic solvent is added to the crystal particles, and the decantation is! /, Sediments the crystal particles by centrifugation, and removes the supernatant. Then, there is a method in which the process of adding the organic solvent to the precipitated crystal particles and heating again is repeated 2 to 5 times.
  • Examples of the organic solvent used in this case include alcohol solvents, polyhydric alcohol solvents, ether solvents, ketone solvents, and ester solvents.
  • these organic solvents those exemplified in the section of the dissolution step can be used.
  • the crystal particles purified by the purification step are dispersed in an organic solvent. Specifically, first, the crystal particles obtained in the purification step are separated from an organic solvent which is a washing solution. Then, the separated crystal particles are put into a new organic solvent and dispersed to produce a crystal particle dispersion.
  • any method may be used as long as the crystal particles can be uniformly dispersed in the organic solvent.
  • any method may be used as long as the crystal particles can be uniformly dispersed in the organic solvent.
  • organic solvent used for dispersion examples include alcohol solvents, polyhydric alcohol solvents, ether solvents, ketone solvents, ester solvents, and the like. Further, the organic solvent used for dispersion may be the same as or different from the organic solvent used in the purification step.
  • the content of the crystal particles in the crystal particle dispersion is 1 to 20% by weight (preferably 3 to 15% by weight) of the entire crystal particle dispersion as a solid content concentration. ).
  • a surfactant for example, polyoxyethylene polyoxypropylene It is possible to use glycols, polyoxypropylenes of ethylenediamine, polyoxyethylene condensates (pull-mouth type), sodium alkylbenzene sulfonate, polyethyleneimine, polyvinylpyrrolidone, oligomers containing perfluoroalkyl groups, etc. it can.
  • the type and amount of the dispersant can be appropriately selected and used depending on the type of crystal particles and the type of solvent in which the crystal particles are dispersed. In this case, considering the dielectric properties of the dielectric film obtained in the present embodiment, the amount of additive is 0.001 with respect to the crystal particle lOOg.
  • a dielectric forming composition liquid comprising an organic solvent and particles having an ABOx type perovskite crystal structure and an average particle size of 100 nm or less (preferably an average particle size of 20 to 80 nm) is obtained.
  • a certain first coating solution can be obtained.
  • a substantially central portion on the back surface side of the substrate 23 having the lower electrode 21 formed on the surface is held by a spin chuck 25. Then, the first coating liquid is discharged from the coating liquid nozzle 26, and the first coating liquid is applied to the surface of the lower electrode 21.
  • the substrate 23 is rotated by the spin chuck 25 at a predetermined rotation speed (for example, about 2000 rpm). Then, the first coating liquid extends toward the peripheral edge of the substrate 23 by the centrifugal force of rotation (see FIGS. 2 (b) and 2 (c)).
  • a predetermined rotation speed for example, about 2000 rpm.
  • the substrate 23 is rotated at a predetermined rotation speed (eg, about 1500 rpm). Then, the excess first coating liquid is shaken off, and a coating film (first coating film 31a) of the first coating liquid having a predetermined thickness (for example, 200 ⁇ m) is formed on the surface of the lower electrode 21 ( (See Figure 2 (d)).
  • a predetermined rotation speed eg, about 1500 rpm.
  • FIG. 4 (a) schematically shows the state of the first coating film 31a formed as described above. As shown in FIG. 4 (a), it is presumed that most of the crystal particles 40 are dispersed in the solvent 41, and a part of them generates barium titanate.
  • the first coating film 31a formed on the surface of the lower electrode 21 is subjected to a predetermined temperature (eg, 250 ° C.). Heat for 1 minute ( Beta processing).
  • the organic solvent contained in the first coating film 31a is volatilized by the beta treatment, which is a pretreatment for baking.
  • hydrolysis occurs and the coating film becomes gelled, and further, a condensation polymerization force S occurs.
  • FIG. 4 (b) it is presumed that a network structure of barium titanate, which is a precursor film of barium titanate having an ABOx type perovskite crystal structure, is formed.
  • the organic solvent volatilizes agglomeration of crystal particles occurs due to the action of the binder in the coating film, and the crystal particles become large.
  • the first coating film 31a formed on the surface of the lower electrode 21 on the substrate 23 is heated to a predetermined temperature by using a baking apparatus described later. (For example, 800 ° C) Heat for 60 minutes (firing process). Due to this baking treatment, the inside of the first coating film 31a is changed to an amorphous state force crystallization state. As a result, as shown in FIG. 4 (c), a first thin film 31 made of a barium titanate film having an ABO X-type bottom buxite crystal structure is formed.
  • This ABOx-type perovskite crystal structure has an ABOx X value in the range of 2.5 to 3.5 depending on the oxygen supersaturation or deficiency.
  • the first thin film 31 thus formed is a thin film containing barium titanate crystal particles having an average particle diameter of 50 nm or more and lOO nm or less. And the film thickness is 200 ⁇ ! ⁇ 300nm.
  • the first thin film 31 has a porous structure, and a large number of fine voids having an average diameter of lOnm or more are formed.
  • the second coating liquid is applied to the surface of the first thin film 31 (application process), and as shown in FIG. 5 (a), the second coating film 32a is formed (coating film formation).
  • the present invention is characterized by the method for forming the coating film 32a. This feature will be described in detail later.
  • the second coating liquid which is the dielectric forming composition liquid is generated in the manufacturing process of the first coating liquid (more specifically, the above-described dissolution step). If the concentration of the first coating solution is too high, the first coating solution will not enter the gap of the first thin film 31 as will be described later. Therefore, it is desirable that the concentration of the metal species A contained in the first coating solution is 0.1 to 0.7 mmolZg, and the concentration of the metal species B is also 0.1 to 0.7 mmol / g.
  • the organic solvent the alcohol-based solvent, ether-based solvent, ketone-based solvent, ester-based solvent described above having good wettability with respect to the first thin film 31. The use of a rutile solvent or the like further increases the degree of penetration.
  • the second coating film 32a formed on the surface of the first thin film 31 is subjected to a predetermined temperature (eg, 250 ° C.). ) For 1 minute (heat treatment).
  • the organic solvent contained in the second coating film 32a is volatilized by the heat treatment before firing (that is, beta treatment) (heating step).
  • heat treatment that is, beta treatment
  • hydrolysis occurs, the coating film gels, and condensation polymerization occurs.
  • a network structure of barium titanate that forms a precursor film of norium titanate having an ABOx type perovskite crystal structure is formed.
  • the second coating film 32a is applied to a temperature of about 700 ° C. to 900 ° C. (for example, 800 ° C.) in a baking apparatus described later. Heat for 60 minutes (firing process).
  • the state changes into an amorphous state force crystallization state inside the second coating film 32a.
  • a second thin film 32 made of a barium titanate film having an ABOx type bobsite crystal structure is formed.
  • This ABOx-type perovskite crystal structure has an ABOx X value in the range of 2.5 to 3.5 depending on the oxygen supersaturation or deficiency.
  • the second thin film 32 thus formed has an ABOx type perovskite crystal structure, and its film thickness is about lOOnm.
  • the second thin film 32 is a thin film containing barium titanate crystal particles having an average particle size smaller than that of the first thin film 31. More specifically, the average particle diameter of the crystal particles is lOnm or more and 50 nm or less. This average particle diameter was calculated by the present inventors based on a photograph taken with a SEM (scanning electron microscope, manufactured by Hitachi High-Tech).
  • the second thin film 32 also has a porous structure, and many finer voids are formed than the voids (average diameter is lOnm or more) of the first thin film 31. RU
  • the dielectric film 3a (see FIG. 1 (a)) having the ABOx type perovskite crystal structure is formed.
  • the capacitor shown in FIG. 1 (a) is obtained.
  • the upper electrode 22 can be formed by sputtering the upper side force of the second thin film 32 with, for example, A1 in a sputtering apparatus (not shown) (FIG. 5 (e)). )reference).
  • the ABOx-type perovskite crystal structure according to this embodiment of the present invention According to the method of forming a dielectric film having the following, the following excellent actions and effects can be obtained.
  • the first coating solution is a special solution obtained by hydrolyzing and dispersing the second coating solution.
  • the first coating solution 31a is subjected to a beta treatment. Therefore, aggregation of particles occurs when the organic solvent in the first coating film 31a is volatilized. Therefore, even if the second thin film 32 is formed by substantially the same process, the average grain size of the crystal particles constituting the first thin film 31 is larger than that of the crystal particles constituting the second thin film 32.
  • the average grain size of the crystal grains constituting the first thin film 31 is not less than 50 nm and not more than lOOnm. For this reason, it is possible to secure a film thickness of, for example, about 200 nm to 300 nm by applying the first coating liquid once.
  • the second thin film 32 can secure a film thickness of, for example, about lOOnm by one application, the first thin film 31 and the second thin film 32 are laminated one by one.
  • the dielectric film 3a having an ABOx type perovskite crystal structure with a thickness of 300 nm to 400 nm can be formed. That is, the number of stacked layers when forming a dielectric film having a desired thickness can be reduced.
  • the grain growth of barium titanate can be suppressed, and the occurrence of leakage current caused by this can be suppressed.
  • the voids of the first thin film 31 can be filled with particles constituting the second thin film 32.
  • a dense (high density) layer is formed on the surface of the first thin film 31, and the flatness of the surface of the dielectric film 3a is improved.
  • the first thin film 31 has a porous structure when heated for crystallization as described above, and the average grain size of the crystal grains constituting the thin film is 50 nm or more and lOOnm or less.
  • the average diameter of the voids 42 formed between the crystal grains 40 in the first thin film 31 is not less than lOnm. Therefore, the surface of the first thin film 31 is uneven due to the presence of voids in the porous structure, and both the crystal grains 40 and the voids 42 are large, and thus the flatness is poor.
  • the average diameter of the voids 42 is larger than the average particle diameter of the particles serving as the precursor of the second thin film 32 contained in the second coating liquid.
  • the average diameter of the voids 42 is larger than the average particle diameter of the particles serving as the precursor of the second thin film 32 contained in the second coating liquid.
  • FIG. 6 (b) in the step of applying the second coating liquid to the surface of the first thin film 31, it is generated in the surface side region of the first thin film 31.
  • the particles 43 constituting the second coating liquid enter the voids 42 that open, and penetrate into the interior.
  • FIG. 6C in the boundary region between the first thin film 31 and the second thin film 32, the particles 43 are embedded in the voids 42. That is, the voids 42 of the first thin film 31 are blocked by the particles 43 constituting the second thin film 32 (second coating liquid). Therefore, in this boundary region, it is presumed that the film becomes denser than the second thin film 32 composed of fine crystal particles.
  • the flatness of the surface of the first thin film 31 is improved. improves.
  • the second thin film 32 is formed on the surface of the first thin film 31 with good flatness, the flatness of the surface of the second thin film 32 is also improved.
  • the leakage characteristics of the dielectric film can be improved.
  • the reason for this is as follows.
  • the first reason is that the crystal grains of the second thin film 32 are very small. That is, as described above, since the crystal particles of the second thin film 32 are very small (average particle size is about 20 nm), even if a porous structure is formed by heating for crystallization, voids formed thereby are formed. Is quite small.
  • the second thin film 32 has a small gap, so that the snow / tag particles are difficult to enter. Therefore, even when the first thin film 31 is fired or the second thin film 32 is fired, even if the Pt particles of the lower electrode 21 penetrate from the lower side of the first thin film 31 due to thermal diffusion, It can be said that it is difficult to contact. Therefore, it is possible to suppress the generation of a leakage current that is difficult to form a conductive path between the Pt particles and the sputtered particles.
  • the second reason is that a dense layer (a layer having a high density) is formed at the boundary between the first thin film 31 and the second thin film 32, so that the Pt particles of the lower electrode 21 Even if it penetrates from the lower side of the first thin film 31 due to thermal diffusion, it exceeds the boundary between the first thin film 31 and the second thin film 32. Therefore, it is difficult to penetrate into the second thin film 32 side.
  • A1 sputtered particles
  • the boundary region between the first thin film 31 and the second thin film 32 is denser than the second thin film 32, the sputtered particles permeate the first thin film 31 side beyond the region. Is difficult! For this reason, the formation of the vertical conductive path of the dielectric film 3a having the ABOx type bevskite crystal structure composed of the first thin film 31 and the second thin film 32 can be suppressed. The generation of current can be suppressed.
  • the capacitors having the structures shown in FIGS. 1 (b) and 1 (c) also have an ABOx type base having a desired film thickness by laminating the first thin film 31 and the second thin film 32.
  • a dielectric film 3b or a dielectric film 3c having an orbskite crystal structure can be obtained.
  • the first thin film 31 located in the middle of the dielectric film 3b and the second layer located on the third layer (on the upper electrode 22 side) are located.
  • the boundary area with the thin film 32 becomes dense, and the boundary surface is flattened.
  • the boundary area becomes dense and the boundary surface becomes flat. Therefore, a desired capacitor capacity can be secured for both capacitors, and the occurrence of leakage current can be suppressed.
  • the dielectric film according to the present invention forms the second thin film 32 on the surface of the first thin film 31, so that the void 42 of the first thin film 31 constitutes the second thin film 32. It is characterized by being filled with crystal grains.
  • the coating solution of the second thin film 32 that is, the second coating solution
  • the second coating solution has a high viscosity
  • the gap 42 is filled with a gas such as air before application of the second coating liquid, and this gas inhibits the entry of the particles 43 constituting the second coating liquid.
  • FIG. 7 is a schematic configuration diagram of the coating unit 5 which is a coating apparatus for performing this process.
  • reference numeral 51 denotes a spin chuck for sucking and sucking and holding the central portion of the back side of a semiconductor wafer (hereinafter referred to as “wafer”) W as a substrate.
  • the spin chuck 51 is configured to be rotatable and vertically movable about a vertical axis.
  • a cup body 52 On the outer periphery of the wafer W held by the spin chuck 51, there is provided a cup body 52 that opens on the upper side so as to surround the wafer W.
  • a recess-shaped liquid receiving portion 53 is provided on the lower peripheral side of the wafer W over the entire circumference.
  • Reference numeral 54a denotes a drainage path for discharging the drain of the second coating liquid and the like, and 54b denotes an exhaust path.
  • Reference numeral 56 denotes a coating liquid nozzle that supplies the second coating liquid to the wafer W held on the spin chuck 51.
  • Reference numeral 57 denotes a solvent nozzle (solvent application means) for supplying an organic solvent (for example, thinner one liquid) contained in the second application liquid.
  • Reference numeral 55 denotes a nozzle unit in which a coating liquid nozzle 56 and a solvent nozzle 57 are integrally provided.
  • the nozzle unit 55 can be moved up and down by an elevating mechanism 58a, and can be moved in the X direction by a moving mechanism 58c along a guide rail 58b extending in the X direction.
  • the nozzle unit 55 supplies the second coating liquid or thinner liquid to the wafer W (the position shown in FIG. 7 (a)) and the standby position outside the cup body 52 (FIG. 7 ( It is possible to move between the positions shown in b).
  • the coating liquid nozzle 56 is connected to a second coating liquid supply source 56b via a coating liquid supply path 56a provided with a valve VI.
  • the solvent nozzle 57 is connected to a supply source 57b of an organic solvent (a thinner liquid in this embodiment) via a solvent supply path 57a provided with a valve V2.
  • the application unit 5 of the present embodiment applies the second application liquid by spin coating, but the first application liquid of the first thin film 31 described above can also be applied using the apparatus.
  • the spin chuck 51 is positioned above the cup body 52. And illustrated However, the wafer w transported by the transport means is placed on the spin chuck 51 by a cooperative action with the lifting pins, not shown. Next, the spin chuck 51 is lowered to the processing position shown in FIG. Here, it is assumed that the first thin film 31 is formed on the wafer W on the wafer W transferred to the coating unit 5.
  • the nozzle unit 55 is moved so that the discharge port at the tip of the solvent nozzle 57 faces the substantially center of the wafer W held by the spin chuck 51. Then, the thinner one liquid 45 is supplied from the solvent nozzle 57 to the approximate center of the wafer W without rotating the wafer W. In this way, the thinner liquid 45 gradually spreads concentrically toward the peripheral edge side of the substantially central force of the wafer W, and is applied to the entire surface of the wafer W.
  • the nozzle unit 55 is moved so that the discharge port at the tip of the coating liquid nozzle 56 faces the substantially center of the wafer W held by the spin chuck 51.
  • the second coating liquid 46 is supplied from the coating liquid nozzle 56 to the approximate center of the wafer W while the wafer W is rotated by the spin chuck 51 at a rotational speed of about 100 to 1000 rpm, for example.
  • the second coating liquid 46 is applied to the entire surface of the wafer W by the substantially central force of the wafer W extending toward the peripheral side due to the centrifugal force of the rotation of the wafer W. Become.
  • the wafer W is rotated at a rotational speed of, for example, about 1500 rpm, and the excess second coating liquid 46 is shaken off. Thereafter, as shown in FIG. 8 (d), the second coating liquid 46 is dried by rotating the wafer W at a rotational speed of about 2000 rpm, for example.
  • the second coating film 32a having a thickness of, for example, 180 nm is formed on the surface of the first thin film 31 on the wafer W (see FIG. 5A). In this state, most of the particles of the compound containing Ba and the compound containing Ti in the second coating film 32a are dispersed in the solvent, and a part of the particles is barium titanate. It is inferred that
  • the second thin film 32 is formed by successively performing the heating step and the baking step, which are the pretreatments of the baking described above.
  • the above replaceability is improved by not rotating the wafer W during the supply of the thinner liquid 45. That is, in the non-rotating state, the substantially central force of the wafer W is also directed toward the peripheral side, and a liquid flow of the thinner liquid 45 is generated. As a result, the thinner liquid is entirely applied to the first thin film 31 on the wafer W. 45 will be applied. In other words, compared with the case where the thinner liquid 45 is applied while rotating the wafer W, the thinner liquid is applied while slowly penetrating. As a result, the substituting property between the air 44 in the gap 42 of the first thin film 31 and the thinner liquid 45 is enhanced. It is not always necessary to be in a non-rotating state. For example, if it is a low-speed rotation of 20 rpm or less, the same effect can be obtained and the time can be reduced.
  • the second coating liquid 46 is applied in the state where the thinner liquid 45 is present on the surface of the first thin film 31 as described above. Then, as shown in FIGS. 9 (c) and 9 (d), the thinner liquid 45 and the second coating liquid 46 are replaced in the gap 42 of the first thin film 31. In this case, since both are liquids, the replacement proceeds much faster than the replacement between the second coating liquid 46 and the air 44, that is, between the liquid and the gas.
  • the second coating liquid 46 can more easily permeate into the gap 42 of the first thin film 31, and the second force can be reduced. If the amount of the coating liquid 46 is reduced, the application time can be shortened. Therefore, a denser layer, that is, a layer having a higher density, is formed on the surface of the first thin film 31, and the flatness is improved. As described above, when the second thin film 32 is formed on the first thin film 31 having high flatness, as a result, the flatness of the surface of the dielectric film 3a having the ABOx-type perovskite crystal structure is improved.
  • the spin chuck 51 is positioned above the cup body 52. Then, V (not shown) and the wafer W transferred by the transfer means are placed on the spin chuck 51 by a cooperative action with the lift pins (not shown). Next, the spin chuck 51 is lowered to the processing position shown in FIG. Here, it is assumed that the first thin film 31 is formed on the wafer W on the wafer W transferred to the coating unit 5.
  • the nozzle unit 55 is moved so that the discharge port at the tip of the coating liquid nozzle 56 faces the substantially center of the wafer W held by the spin chuck 51.
  • the second coating liquid 46 is supplied from the coating liquid nozzle 56 to the approximate center of the wafer W without rotating the spin chuck 51 or rotating at a low speed of 10 rpm or less. This supply is continued until the second coating liquid 46 reaches the peripheral edge on the wafer W.
  • the substantially central force of the wafer W of the second coating liquid 46 is also directed toward the peripheral side.
  • the second coating solution 46 when the second coating solution 46 reaches the peripheral edge on the wafer W, a liquid coating portion of the second coating solution 46 is generated on the surface of the first thin film 31.
  • the thickness of the liquid deposit is, for example, about 2 m.
  • the wafer W is rotated by the spin chuck 51 at a rotational speed of, for example, about 1500 rpm.
  • the second coating liquid 46 spreads on the surface of the first thin film 31 by the centrifugal force due to this rotation, and is coated with an appropriate thickness. Also, the excess second coating liquid 46 is shaken off. After this, as shown in FIG.
  • the second coating liquid 46 is dried by rotating at a rotational speed of about.
  • the second coating film 32a (see FIG. 5A) having a thickness of, for example, 180 nm is formed on the surface of the first thin film 31 on the wafer W. In this state, most of the particles of the compound containing Ba and the compound containing Ti in the second coating film 32a are dispersed in the solvent, and a part of the particles is titanic acid. It is presumed that barium is produced.
  • the second thin film 32 is formed by successively performing the heating step and the baking step, which are the pretreatments of the baking described above.
  • the second coating liquid 46 is supplied without rotating the wafer W or while rotating at a low speed, and the supply is performed by the second coating liquid 46. Continue until it reaches the entire surface of wafer W. Then, during this time, the liquid coating portion of the second coating liquid 46 is generated, and this prevents the volatilization of the thinner liquid 45 in the second coating liquid 46. Therefore, in the gap 42 of the first thin film 31, the second coating liquid 46 easily enters the gap 42 due to the presence of the thinner liquid 45 in the second coating liquid 46.
  • the liquid deposition of the second coating liquid 46 proceeds slowly with the substantially central force of the wafer W also directed toward the peripheral side.
  • the thinner liquid 45 contained in the second coating liquid 46 extends to the peripheral side while volatilizing, so it can be said that it is easier to extend forward than the precursor component of the second coating liquid.
  • the thinner liquid 45 is 2-methoxyethanol and can be easily replaced with air. For this reason, as shown in FIGS. 11 (a) and 11 (b), during the slow extension of the second coating solution 46, first, the thinner solution 45 in the second coating solution 46, Replacement with the air 44 in the air gap 42 occurs. Then, as shown in FIG.
  • the second coating liquid 46 is applied so as to spread rapidly to the peripheral side of the wafer W. Therefore, it can be said that the thinner liquid 45 in the second coating liquid 46 is likely to volatilize. Also, When the wafer W is rotated at a high speed of 2000 rpm, an air flow is generated by the rotation, and the thinner 45 is easily volatilized. Therefore, when the second coating solution 46 is extended, the thinner solution 45 is volatilized almost simultaneously. Accordingly, it is assumed that the thinner liquid 45 in the second coating liquid 46 cannot enter the gap 42, and as a result, the second coating liquid 46 hardly penetrates into the gap 42.
  • the second coating liquid 46 is more easily penetrated into the gaps 42 of the first thin film 31, and the first thin film 31 A denser layer, that is, a layer having a higher density, is formed on the surface of the film, and the flatness is improved.
  • the second thin film 32 is formed on the first thin film 31 having high flatness, as a result, the flatness of the surface of the dielectric film 3a having the ABOx type bevskite crystal structure is improved.
  • the capacitor is formed by forming the lower electrode 21 and the upper electrode 22 on both surfaces of the dielectric film 3a (see Fig. 1 (a)), the generation of leakage current can be further suppressed. it can. This is because a denser (higher density) film is formed near the boundary between the first thin film 31 and the second thin film 32, thereby making it difficult to form a conductive path in the dielectric film 3a. Because
  • FIG. 12 is a schematic configuration diagram of the coating unit 6 which is a coating apparatus for carrying out this process.
  • the coating unit 6 shown in FIG. 12 has a configuration in which the second coating liquid is applied in the manner of a single stroke!
  • reference numeral 61 denotes a wafer holding unit for sucking and adsorbing the back side central portion of the wafer W and holding it horizontally.
  • the wafer holding unit 61 is configured to be movable up and down by a lifting mechanism 61a.
  • Reference numeral 60 denotes a case body, and a slit 62 extending in the X direction is formed in the top plate 60a of the case body 60. In the slit 62, a coating liquid nozzle 63 is provided so as to be movable in the X direction.
  • Reference numeral 64a is a guide portion extending in the X direction.
  • Reference numeral 64b denotes a ball screw portion.
  • Reference numeral 64c is a moving body to which the coating liquid nozzle 63 is attached and screwed with the ball screw portion 64b.
  • the coating solution nozzle 63 can move in the X direction via the moving body 64c by rotating the ball screw 64b by the motor M2. It has become so.
  • the coating liquid nozzle 63 is connected to a second coating liquid supply source 63b via a supply path 63a having a valve V3.
  • the movable table 65c is configured to be movable in the Y direction while being guided by the guide portion 65b by a ball screw portion 65a driven by the motor Ml. With this configuration, the wafer holding unit 61 disposed on the moving table 65c can move intermittently in the Y direction.
  • Reference numeral 66 denotes a mask that covers the peripheral area of the wafer W but opens the portion corresponding to the coating film forming area. The mask 66 is provided in order to prevent the second coating liquid from adhering to and wrapping around the peripheral area and back side of the wafer W.
  • the second coating film forming process performed in the coating unit 6 configured as described above will be described.
  • alignment is performed so that one end side of the wafer W in the Y direction is positioned directly below the coating solution nozzle 63.
  • This positional force wafer holder 61 moves intermittently at a predetermined pitch in the Y direction toward the other end side of the wafer W in the Y direction.
  • the coating solution nozzle 63 reciprocates in the X direction in accordance with the timing of intermittent movement of the wafer W. That is, the coating liquid nozzle 63 moves from one end side in the X direction to the other end side while discharging the coating liquid onto the wafer W while the wafer W is stationary.
  • the wafer W is moved in the Y direction by a predetermined amount (predetermined pitch) by the wafer holder 61.
  • the coating solution nozzle 63 is folded back at the other end side in the X direction, and moves while discharging the coating solution onto the wafer W with a force toward one end side in the X direction. In this way, the second coating solution 46 is applied onto the wafer W in the manner of a single stroke.
  • reference numeral 70 denotes a sealed container.
  • Reference numeral 71 denotes a mounting table on which the wafer W is mounted.
  • the mounting table 71 is provided with temperature adjusting means 72 for adjusting the temperature of the wafer W.
  • Reference numeral 71 a is a protrusion for holding the back side of the wafer W.
  • Reference numeral 73 denotes a lid, and reference numeral 74 denotes a lid lifting mechanism that lifts and lowers the lid 73.
  • the lid lifting / lowering mechanism 74 By the lid lifting / lowering mechanism 74, the lid 73 is raised when the wafer W is loaded / unloaded, and is lowered when vacuum drying is performed.
  • the hermetic container 70 is configured by the lid 73 and the mounting table 71. Also, near the center of the ceiling of lid 73 The exhaust path 76 is connected.
  • a vacuum pump 75 as a vacuum exhaust means is connected to the exhaust path 76 via a valve V4.
  • a purge gas supply source 78 is connected to the exhaust passage 76 via a valve V5 and a supply passage 77.
  • the reduced-pressure drying process (permeation process) performed by the reduced-pressure drying unit 7 configured as described above will be described.
  • the wafer W is loaded onto the protrusion 71a by the cooperative action of a lift pin (not shown) and a transfer means.
  • the lid 73 is lowered and the sealed container 70 is closed.
  • the valve V4 is opened, the vacuum pump 75 is operated, the inside of the sealed container 70 is decompressed, and the wafer W is dried. After the wafer W is dried under reduced pressure in this way, the valve V4 is closed.
  • valve V 5 is opened, and a purge gas (for example, N2) gas is caused to flow into the sealed container 70 to return the inside of the sealed container 70 to atmospheric pressure. Then, the lid 73 of the hermetic container 70 is raised and the wafer W is unloaded and transferred to the next process.
  • a purge gas for example, N2
  • the second coating film forming process in the coating film forming step of the present embodiment is performed by the coating unit 6 and the reduced pressure drying unit 7 as follows. First, as shown in FIG. 15 (a), the coating unit 6 applies the second coating liquid 46 to the wafer W on which the first thin film 31 is formed as described above in the manner of one stroke. Next, the wafer W with the second coating liquid 46 applied on the surface of the first thin film 31 is transferred to the vacuum drying unit 7 and is placed on the mounting table 71 of the sealed container 70 as shown in FIG. Placed on.
  • the valve V4 is opened and the vacuum pump 75 is operated to depressurize the sealed container 70 for a predetermined time (for example, about 3 minutes) (decompression step).
  • a predetermined time for example, about 3 minutes
  • the inside of the sealed container 70 is depressurized to a pressure lower than the pressure at which the solvent 45, which is a solvent, starts to be volatilized (for example, about lOOPa), as will be described later. Most of the thinner 45 in the coating 46 is volatilized.
  • the change with time of the pressure in the sealed container 70 will be described with reference to FIG. 16 (a).
  • the pressure in the sealed container 70 (substantially equal to the atmospheric pressure at the time tl) reaches the time t2 when the pressure becomes P1 (for example, a pressure of about lOOPa). It decreases rapidly. After reaching P1, the state remains constant until time t3, but decreases more rapidly after time t3.
  • P1 for example, a pressure of about lOOPa
  • Ueno, W The state of the first thin film 31 and the second coating liquid 46 on the surface will be described.
  • the pressure inside the sealed container 70 is also reduced, the air 44 entering the gap 42 of the first thin film 31 is gradually sucked from the gap 42 and removed.
  • the second coating film 32a having a thickness of, for example, 180 nm is formed on the surface of the first thin film 31 of the wafer W. (See Fig. 5 (a)). In this state, it is presumed that part of particles of the compound containing Ba and the compound containing Ti in the second coating film 32a generate barium titanate.
  • the valve V4 is closed and the valve V5 is opened, and the purge gas is supplied into the sealed container 70 as described above to return the inside of the sealed container 70 to atmospheric pressure.
  • the lid 73 is opened, the wafer W is unloaded, and is transferred to a heating unit described later in the next process.
  • the thinner liquid 45 remaining in the second coating film 32a is volatilized by the heating process, which is the pretreatment for baking described above.
  • hydrolysis and condensation polymerization occur to form a barium titanate network structure that becomes a precursor film of barium titanate having an AB Ox-type bobsite crystal structure.
  • the second thin film 32 is formed by performing a baking process thereafter.
  • the second coating liquid 46 is more easily penetrated into the voids 42 of the first thin film 31, and the first thin film 31 A denser layer, that is, a layer having a higher density, is formed on the surface of the film, and the flatness is improved.
  • the second thin film 32 is formed on the first thin film 31 having high flatness, the result is an ABOx type base. The flatness of the surface of the dielectric film 3a having the mouth bskite crystal structure is improved.
  • the capacitor is formed by forming the lower electrode 21 and the upper electrode 22 on both surfaces of the dielectric film 3a (see Fig. 1 (a)), the generation of leakage current can be further suppressed. it can. This is because a denser (higher density) film is formed near the boundary between the first thin film 31 and the second thin film 32, thereby making it difficult to form a conductive path in the dielectric film 3a. Because
  • the coating film forming process of the present embodiment as in the third embodiment, after the coating process of the second coating liquid 46, the vacuum drying process (penetration) Step). Then, the coating unit 6 and the vacuum drying unit 7 are used as in the third embodiment.
  • the second coating film forming process in the coating film forming step of the present embodiment is performed as follows. First, as shown in FIG. 18 (a), the coating unit 6 applies the second coating liquid 46 to the wafer W on which the first thin film 31 is formed in the manner of one stroke as described above. The Next, the wafer W having the surface of the first thin film 31 coated with the second coating liquid 46 is transferred to the vacuum drying unit 7, and on the mounting table 71 of the hermetic container 70 as shown in FIG. Placed on.
  • the valve V4 is opened, and the vacuum pump 75 is operated to start depressurization in the sealed container 70, and the pressure is higher than a predetermined pressure (for example, the pressure P1 (for example, lOOPa) under a temperature of 20 ° C. Pressure) until it reaches (pressure) (first decompression step).
  • a predetermined pressure for example, the pressure P1 (for example, lOOPa) under a temperature of 20 ° C. Pressure
  • valve V4 is closed, and as shown in FIG. 18 (c), the valve V5 is opened and purge gas is supplied into the sealed container 70 to return the inside of the sealed container 70 to atmospheric pressure (pressure increase process). .
  • the valve V5 is closed, and as shown in FIG. 18 (d), the valve V4 is opened again, and the pressure reduction in the sealed container 70 is started by the vacuum pump 75.
  • the pressure is reduced for a predetermined time (for example, about 5 minutes) until the pressure in the sealed container 70 becomes lower than the pressure P1 under the condition of a temperature of 20 ° C. (second pressure reduction step).
  • a predetermined time for example, about 5 minutes
  • volatilization of the thinner liquid 45 in the second coating liquid 46 starts when the pressure in the sealed container 70 reaches the pressure P1.
  • the second decompression step If performed, most of the thinner liquid 45 in the second coating liquid 46 on the surface of the UENO W will volatilize.
  • the second coating film 32a having a thickness of, for example, 180 nm is formed on the surface of the first thin film 31 of the wafer W. (See Fig. 5 (a)). In this state, it is presumed that part of particles of the compound containing Ba and the compound containing Ti in the second coating film 32a generate barium titanate.
  • the purge gas is supplied into the sealed container 70 as described above to return the inside of the sealed container 70 to atmospheric pressure.
  • the lid 73 is opened and the wafer W is unloaded and transferred to a heating unit, which will be described later.
  • the thinner liquid 45 remaining in the second coating film 32a is volatilized by the heating process, which is a pretreatment for the firing described above.
  • hydrolysis and condensation polymerization occur, and a network structure of barium titanate that forms a precursor film of barium titanate having an ABOx type perovskite crystal structure is formed.
  • the second thin film 32 is formed by performing a baking process thereafter.
  • the air 44 with sufficient force to escape from the gap 42 is compressed and becomes smaller. As a result, the space of the gap 42 becomes larger, and the second coating liquid 46 enters here. Subsequently, by depressurizing the hermetic container 70 again (second depressurization step), as shown in FIG. 19 (c), the air 44 further escapes from the gap 42, and the thinner liquid 45 also volatilizes. Thus, the second coating liquid 46 further enters the gap 42 from which the air 44 has been removed. As a result, it is presumed that, as shown in FIG. 19 (d), the second coating liquid 46 can be quickly filled into the gaps 42 of the first thin film 31.
  • the second coating liquid 46 is more easily penetrated into the gaps 42 of the first thin film 31, and the first thin film 31 A denser layer, that is, a layer having a higher density, is formed on the surface of the film, and the flatness is improved.
  • the second thin film 32 is formed on the first thin film 31 having high flatness, as a result, the flatness of the surface of the dielectric film 3a having the ABOx type bevskite crystal structure is improved.
  • the capacitor is formed by forming the lower electrode 21 and the upper electrode 22 on both surfaces of the dielectric film 3a (see Fig. 1 (a)), the generation of leakage current can be further suppressed. it can. This is because a denser (higher density) film is formed near the boundary between the first thin film 31 and the second thin film 32, thereby making it difficult to form a conductive path in the dielectric film 3a. Because
  • the atmosphere in which the wafer W coated with the second coating liquid 46 is placed is defined as The air 44 entering the gap 42 of the thin film 31 is removed, but the reduced pressure atmosphere may be set so that the thinner liquid 45 does not volatilize (evaporate) from the second coating liquid 46.
  • the reduced-pressure drying process may be completed while a large amount of the thinner liquid 45 remains in the second coating liquid 46 while setting the reduced-pressure atmosphere in which the thinner liquid 45 volatilizes from the second coating liquid 46. Good.
  • the coating unit 6 is used as the coating apparatus. However, the first embodiment and the second embodiment are described.
  • the coating unit 5 may be used in the same manner as the coating film forming step according to the state.
  • FIG. 20 is a schematic plan view of a forming apparatus provided in the dielectric film forming system according to the present embodiment
  • FIG. 21 is a perspective view of the forming apparatus.
  • S1 is a carrier station.
  • a carrier placing portion 81 and a delivery means 82 are provided.
  • the carrier placement unit 81 places a carrier C containing a plurality of (for example, 25) wafers W.
  • the delivery means 82 delivers Weno and W with the carrier C.
  • a processing unit S2 surrounded by a casing 83 is connected to the back side of the delivery means 82.
  • a main transport means 84 is provided at the center of the processing section S2.
  • shelf units Ul, U2 and U3 are arranged in which coating units 5 and Z or coating unit 6 forming a plurality of coating devices, heating and cooling units, etc. are stacked in multiple stages, respectively. ing.
  • the coating unit 5 (6) the first coating liquid coating process and the second coating liquid coating process may be performed in different coating units 5 (6). 5 (6) may be used. In the latter case, only the coating solution needs to be changed.
  • the shelf units Ul, U2, and U3 are configured by combining various units for performing pre-processing and post-processing of the coating unit 5 (6).
  • the combination includes a heating unit 9 for performing a beta treatment, a vacuum drying unit 7, a wafer W delivery unit, and the like.
  • the heating unit 9 functions as a heating device that heats (bakes) the wafer W whose surface is coated with the coating liquid by the coating unit 5 (6) and volatilizes the solvent in the coating liquid.
  • the heat treatment of the first coating film 31a and the heat treatment of the second coating film 32a may be performed by different heating units 9, or the same heating unit 9 is used. May be implemented.
  • the main transport means 84 is configured to be movable in the vertical and horizontal directions and to be rotatable around the vertical axis. Due to the configuration, the main transfer means 84 can transfer the wafer W between the units constituting the coating unit 5 (6) and the shelf units Ul, U2, U3. ⁇ It is wrong.
  • the carrier C force in which UENO and W are stored is taken in from the outside and placed on the carrier placing portion 81.
  • a lower electrode 21 is formed on the surface of the wafer W accommodated in the carrier C.
  • the wafer W is also taken out from the carrier C by the delivery means 82 and delivered to the main transport means 84 via the delivery unit which is one of the shelves of the shelf unit U 3.
  • the main transfer means 84 transfers the wafer W to the coating unit 5 (6).
  • the coating unit 5 (6) a process of coating the first coating liquid on the surface of the lower electrode 21 on the transported wafer and W is performed. Thereafter, the wafer W is transferred to the heating unit 9 and subjected to a heat treatment (beta treatment). After the beta processing, the wafer W is once returned into the carrier C on the carrier mounting portion 81 via the main transfer means 84 and the delivery means 82. The wafer W returned to the carrier C is transferred to a baking apparatus (described later) for performing a baking process, and heated by the baking apparatus (baking process). Thereby, the first thin film 31 is formed.
  • a heat treatment beta treatment
  • the wafer W on which the first thin film 31 is formed is transferred to the coating unit 5 (6) that performs the coating process of the second coating liquid 46 via the delivery unit 82 and the main transfer unit 84.
  • the second coating unit 5 (6) a process of coating the second coating solution 46 on the surface of the first thin film 31 formed on the transferred wafer W is performed.
  • the wafer W is transferred to the reduced pressure drying unit 7 when necessary, where the reduced pressure drying process is performed.
  • the wafer W is transferred to the heating unit 9 and subjected to a heat treatment (beta treatment).
  • the wafer W is once returned into the carrier C on the carrier mounting portion 81 via the main transfer means 84 and the delivery means 82.
  • the wafer W returned to the carrier C is transferred to a baking apparatus (to be described later) for performing a baking process and heated by the baking apparatus (baking process).
  • the second thin film 32 is formed.
  • a base 95 formed in a cylindrical shape with a bottom is provided inside the casing 90 of the heating unit 9.
  • a circular hot plate 92 is provided in the base 95.
  • the rectifying top plate 93 is lowered, and the peripheral portion of the top plate 93 and the peripheral portion of the base 95 are brought into close contact with each other via the O-ring 94.
  • the periphery of the wafer W becomes a sealed space. Thereafter, for example, while supplying gas from the gas supply unit 96 into the sealed space, suction and exhaust are performed from the exhaust port 98 at the center of the top plate 93 by the suction mechanism 97. In this way, the heat treatment is performed while forming an air current (see the arrow in FIG. 22B) that is directed from the outer periphery to the center of the wafer W.
  • FIG. 23 is a schematic configuration diagram of a heating furnace 10 which is an example of a baking apparatus.
  • the heating furnace 10 is a baking apparatus for changing (baking) the internal state of the coating film after the beta treatment into an amorphous state force crystallization state.
  • the heating furnace 10 includes a vertical reaction tube 100 having a double tube structure, for example. Further, a plurality of wafers W are accommodated in the wafer boat 101 in the reaction tube 100 at a predetermined interval in the vertical direction. In this state, for example, gas is supplied into the reaction tube 100 from the gas supply tube 102 and the suction tube 103 is evacuated and exhausted. In this manner, the wafer W is heated by the heating means 104 provided outside the reaction tube 100 while forming a gas stream, whereby the baking process is performed.
  • a sample for measuring electrical characteristics as shown in FIG. 24 was used.
  • a procedure for manufacturing a sample for measuring electrical characteristics used in this example will be described.
  • the surface of the silicon substrate 111 is oxidized and an SiO film 112 having a thickness of about lOOnm is formed on the upper layer side.
  • a dielectric film 3a having an ABOx type perovskite crystal structure to be measured is formed on the upper surface of the Pt layer 113.
  • an aluminum (A1) layer 114 as an upper electrode is formed on the upper surface of the dielectric film 3a.
  • the A1 layer 114 is put into a disk shape having a diameter of about 0.25 mm to 10 mm.
  • the dielectric film 3a is put into the shape shown in FIG. Then, the Pt layer 113 is exposed.
  • the dielectric film 3a to be measured is formed on the first thin film 31 made of barium titanate having an ABOx type perovskite crystal structure and barium titanate having an ABOx type perovskite crystal structure. And a second thin film 32 having a thickness of lOOnm.
  • the dielectric film 3a is formed through the technique described in the first embodiment of the coating film forming step.
  • the measurement device 115 is connected to the electrical property measurement sample manufactured as described above (connected between the Pt layer 113 and the A1 layer 114), and the leakage current and dielectric of the dielectric film 3a are measured. The electric capacity of the body membrane 3a was measured.
  • the bias voltage is OV or IV at room temperature.
  • the sample for measuring electrical characteristics used in this example is obtained by using the dielectric film 3a formed through the technique described in the second embodiment of the coating film forming step. Except this point, the sample is the same as the sample for measuring electrical characteristics of Example 1. Using this, the leakage current and the capacitance were measured under the same conditions as in Example 1.
  • the dielectric film 3a is 9. a 4 X 10 _9 AZcm 2, electrical capacitance, mediation 7 this in 1. 46 ⁇ ⁇ / cm.
  • the sample for measuring electrical characteristics used in this example is obtained by using the dielectric film 3a formed by the method described in the third embodiment of the coating film forming step. Other than this point This is the same as the sample for measuring electrical characteristics of Example 1. Using this, the leakage current and the capacitance were measured under the same conditions as in Example 1.
  • the leakage current of the dielectric film 3a is 9. 7 X 10 _9 AZcm 2, electric capacity,
  • the sample for measuring electrical characteristics used in this example uses the dielectric film 3a formed by the method described in the fourth embodiment of the coating film forming step. Except this point, the sample is the same as the sample for measuring electrical characteristics of Example 1. Using this, the leakage current and the capacitance were measured under the same conditions as in Example 1.
  • the dielectric film 3a is 9. was 8 X 10 _9 AZcm 2, electrical capacitance, mediation 7 this in 1. 64 ⁇ Y / cm.
  • a dielectric film having a configuration in which a second thin film 32 is laminated on a first thin film 31 was prepared as a dielectric film 3a used for a sample for measuring electrical characteristics.
  • the second thin film 32 of the dielectric film 3a is formed by applying the second coating liquid 46 directly on the surface of the first thin film 31 by spin coating under the same conditions as the first thin film 31, and then performing a heating process. And formed through a firing step. In the same manner as in Example 1, the leakage current and electric capacity of the dielectric film 3a were measured.
  • the leakage current of the dielectric film 3a is 8.1 X 10 _8 AZcm 2 , and the electric capacity is
  • the dielectric film 3a used for the electrical property measurement sample a dielectric film having only a 200 nm-thick first thin film 31 made of barium titanate having an ABOx type perovskite crystal structure was prepared. Then, using this, the leakage current and the electric capacity were measured in the same manner as in Example 1.
  • the first thin film 31 is formed by the method described in the above embodiment.
  • the dielectric film 3a used for the sample for measuring electrical characteristics a dielectric film having a configuration including only the second thin film 32 of lOOnm thickness made of barium titanate having an ABOx type perovskite crystal structure was prepared. Then, using this, the leakage current and the electric capacity were measured in the same manner as in Example 1.
  • the second thin film 32 is formed by the method described in the above embodiment. As a result, the leakage current is 2. an 8 X 10 _3 AZcm 2, the electric capacity was 0. 7 ⁇ Y / cm.
  • the dielectric film 3a includes the first thin film 31 and the second thin film 32, the second thin film 32 is formed through the method of the coating film forming process of the present invention.
  • Examples 1 to 4 it was confirmed that the leakage current was large and the electric current was large compared to the case where the first thin film 31 was formed by the same method (Comparative Example 1).
  • the dielectric film 3a having the ABOx type bottom bumskite crystal structure including the first thin film 31 and the second thin film 32 formed on the upper layer side is formed into the coating film forming step of the present invention. It is understood that when this method is used, high electrical characteristics can be secured when this dielectric film 3a is used as a dielectric film of a capacitor.
  • the dielectric film according to the present invention is composed of strontium titanate, calcium titanate, barium zirconate, etc. in addition to barium titanate, as long as it is a dielectric film having an ABOx type perovskite crystal structure. May be.
  • the dielectric film having an ABOx type perovskite crystal structure obtained by the present invention is expected to be applied to a capacitor mounted on a circuit that requires more stability such as a power supply circuit for a CPU.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Insulating Bodies (AREA)
  • Semiconductor Memories (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

A constituent solution for formation of a dielectric body is applied onto a first thin film (31) and then heated/fired, wherein the first thin film (31) has an ABOx type of perovskite-type crystalline structure and contains voids (42) having an average diameter equal to or larger than a predetermined value and the constituent solution contains particles each of which has an ABOx type of perovskite-type crystalline structure and which has an average particle diameter smaller than the average diameter of the voids (42). As a result, a second thin film (32) having an ABOx type of perovskite-type crystalline structure. In this manner, a dielectric film having an ABOx type of perovskite-type structure and composed of a laminate of films each having an ABOx type of perovskite-type structure can be manufactured. The boundary area between the first thin film (31) and the second thin film (32) in the dielectric film becomes dense, since a part of the constituent solution is incorporated into the voids (42) during the application of the constituent solution.

Description

明 細 書  Specification
ABOx型ぺロブスカイト結晶構造を有する誘電体膜の形成方法及び形成 システム  Method and system for forming dielectric film having ABOx type perovskite crystal structure
技術分野  Technical field
[0001] 本発明は、 ABOx型ぺロブスカイト結晶構造を有する誘電体膜の形成方法及び形 成システムに関する。  The present invention relates to a method and system for forming a dielectric film having an ABOx type perovskite crystal structure.
背景技術  Background art
[0002] 近年、コンピュータの CPUに安定した電力供給を行う観点から基板上におけるコン デンサと CPUとの距離を実質的にゼロにしようとする技術が検討されて 、る。そして、 この場合のコンデンサを構成する誘電体膜として、 ABOx型ぺロブスカイト結晶構造 を有する誘電体膜 (例えば、チタン酸バリウム)が注目されている。  [0002] In recent years, a technique for making the distance between a capacitor and a CPU on a board substantially zero from the viewpoint of stably supplying power to a computer CPU has been studied. A dielectric film (for example, barium titanate) having an ABOx type perovskite crystal structure has attracted attention as a dielectric film constituting the capacitor in this case.
[0003] この ABOx型ぺロブスカイト結晶構造を有する誘電体膜の製法としてゾルーゲル法 が知られている。しカゝしながら、カゝかるゾル一ゲル法により得られた誘電体膜は、クラ ック耐性が低いという特徴がある。具体的には、形成する 1層当たりの誘電体膜の厚 さが lOOnm以上になるとクラックが発生してしまう。従って、 1層当たりの膜厚を 100η m以下にする必要があるが、こうすると電極間の距離が短くなるため、リーク電流が大 きくなる。その結果、安定した電力供給を目的とするコンデンサとしては不適合となる  A sol-gel method is known as a method for producing a dielectric film having this ABOx type perovskite crystal structure. However, the dielectric film obtained by the sol-gel method is characterized by low crack resistance. Specifically, cracks occur when the thickness of the dielectric film per layer to be formed exceeds lOOnm. Therefore, the film thickness per layer needs to be 100 ηm or less. However, this reduces the distance between the electrodes and increases the leakage current. As a result, the capacitor is not suitable for stable power supply.
[0004] 一般に、コンデンサ用の誘電体膜として利用するためには、リーク電流低減の観点 から、その膜厚を 300nm以上にする必要がある。そこで、多層塗りを行って、例えば 、チタン酸バリウム薄膜全体の膜厚を太くするようにしている。し力しながら、多層塗り で焼成を重ねると塗布膜中のチタン酸バリウム結晶が粒成長を起こし、表面の凹凸 が増大する。このため、膜厚を太くできる反面、結晶粒間の空隙がリークポイントとな り、逆にリーク電流を増大させる結果になる場合がある。 [0004] Generally, in order to use as a dielectric film for a capacitor, the film thickness must be 300 nm or more from the viewpoint of reducing leakage current. Therefore, multilayer coating is performed, for example, to increase the thickness of the entire barium titanate thin film. However, if baking is repeated in a multi-layer coating, the barium titanate crystals in the coating film cause grain growth, increasing the surface roughness. For this reason, while the film thickness can be increased, the gap between crystal grains becomes a leakage point, and conversely, the leakage current may be increased.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 以上のことから、リーク電流の低減が図れる ABOx型ぺロブスカイト結晶構造を有 する誘電体膜の新たな形成方法及び形成システムの確立が望まれている。 [0005] From the above, it has an ABOx-type perovskite crystal structure that can reduce leakage current. Therefore, it is desired to establish a new method and system for forming a dielectric film.
課題を解決するための手段  Means for solving the problem
[0006] 以上の問題点を解決するため、本発明の ABOx型ぺロブスカイト結晶構造を有す る誘電体膜の形成方法は、平均径が所定値以上の空隙を含む ABOx型ぺロブス力 イト結晶構造を有する第 1の誘電体薄膜を用意する工程と、前記空隙の平均径よりも 小さ 1、平均粒径の ABOx型ぺロブスカイト結晶構造を有する粒子と、所定の溶剤とを 含む誘電体形成用組成液を前記第 1の誘電体薄膜上に塗布する塗布工程と、該塗 布工程で得られた結果物を焼成して、前記第 1の誘電体薄膜上に ABOx型ぺロブス カイト結晶構造を有する第 2の誘電体薄膜を形成する焼成工程と、を備えることを特 徴とする。  [0006] In order to solve the above problems, the method for forming a dielectric film having an ABOx type perovskite crystal structure according to the present invention includes an ABOx type perovskite crystal including voids having an average diameter of a predetermined value or more. A first dielectric thin film having a structure, a particle having an ABOx-type perovskite crystal structure having an average particle diameter smaller than the average diameter of the voids, and a predetermined solvent; An application process for applying the composition liquid onto the first dielectric thin film, and a resultant product obtained by the application process are baked to form an ABOx-type perovskite crystal structure on the first dielectric thin film. And a firing step for forming the second dielectric thin film.
[0007] 前記塗布工程の前に、前記第 1の誘電体薄膜の表面に所定の溶剤を塗布し、前記 空隙内の空気と前記所定の溶剤を置換させる工程を更に備えてもよい。  [0007] Prior to the applying step, a step of applying a predetermined solvent to the surface of the first dielectric thin film and replacing the air in the gap with the predetermined solvent may be further provided.
[0008] 前記塗布工程は、前記第 1の誘電体薄膜上に液盛り部が生じるまで前記誘電体形 成用組成液を供給する工程を備えてもよい。この場合、前記塗布工程は、前記第 1 の誘電体薄膜を回転させることで、前記液盛り部を広く伸ばす工程を更に備えてもよ い。  [0008] The application step may include a step of supplying the dielectric forming composition liquid until a liquid deposit is formed on the first dielectric thin film. In this case, the coating step may further include a step of widening the liquid accumulation portion by rotating the first dielectric thin film.
[0009] 前記焼成工程の前に、前記空隙内の空気を吸引し、前記空隙に前記誘電体形成 用組成液の一部を浸透させる浸透工程を更に備えてもよい。  [0009] Prior to the firing step, an air permeation step may be further included in which air in the gap is sucked and a part of the dielectric forming liquid is infiltrated into the gap.
[0010] 前記浸透工程は、前記塗布工程で得られた結果物を密閉空間内に置き、該密閉 空間内を所定圧力(例えば、前記誘電体形成用組成液に含まれる前記所定の溶剤 の揮発が開始される圧力)以下まで減圧する減圧工程を備えてもよい。 [0010] In the permeation step, the resultant product obtained in the coating step is placed in a sealed space, and a predetermined pressure (for example, volatilization of the predetermined solvent contained in the dielectric forming composition liquid) is placed in the sealed space. May be provided with a depressurizing step of depressurizing to a pressure equal to or lower than
[0011] また、前記浸透工程は、前記塗布工程で得られた結果物を密閉空間内に置き、該 密閉空間内を第 1の圧力まで減圧する第 1の減圧工程と、前記密閉空間内を前記第 1の圧力から所定圧力まで昇圧する昇圧工程と、前記密閉空間内を前記所定圧力 力 前記第 1の圧力よりも低い第 2の圧力(例えば、前記誘電体形成用組成液に含ま れる前記所定の溶剤の揮発が開始される圧力)以下まで減圧する第 2の減圧工程と 、を備える構成にしてもよい。  [0011] Further, in the permeation step, the result obtained in the application step is placed in a sealed space, and the inside of the sealed space is decompressed to a first pressure, and the inside of the sealed space is reduced. A step of increasing pressure from the first pressure to a predetermined pressure, and a second pressure lower than the predetermined pressure force and the first pressure in the sealed space (for example, the dielectric composition-containing composition liquid includes And a second pressure reducing step for reducing the pressure to a level equal to or lower than a pressure at which volatilization of the predetermined solvent is started.
[0012] 前記第 1の誘電体薄膜は、前記第 2の誘電体薄膜形成用の前記誘電体形成用組 成液に含まれる ABOx型ぺロブスカイト結晶構造を有する粒子の平均粒径よりも大き い平均粒径の ABOx型ぺロブスカイト結晶構造を有する粒子を含む誘電体形成用 組成液を基材の表面に塗布する第 1の誘電体薄膜形成用の塗布工程と、該塗布ェ 程で得られた結果物を焼成して、前記基材上に ABOx型ぺロブスカイト結晶構造を 有する第 1の誘電体薄膜を形成する第 1の誘電体薄膜用の焼成工程と、を経て形成 されるようにしてちょい。 [0012] The first dielectric thin film is formed of the dielectric forming set for forming the second dielectric thin film. Apply a composition liquid for dielectric formation containing particles with ABOx-type perovskite crystal structure with an average particle size larger than the average particle size of particles with ABOx-type perovskite crystal structure contained in the composition to the surface of the substrate A first dielectric thin film having an ABOx type perovskite crystal structure is formed on the substrate by firing a coating process for forming the first dielectric thin film and firing the resultant product obtained in the coating process. The first dielectric thin film is fired for the first dielectric thin film to be formed.
[0013] この場合の前記基材には、半導体基板、該半導体基板に形成された電極、誘電性 を有する薄膜等が該当する。  [0013] The base material in this case corresponds to a semiconductor substrate, an electrode formed on the semiconductor substrate, a dielectric thin film, and the like.
[0014] 前記第 2の誘電体薄膜形成用の前記誘電体形成用組成液は、金属アルコキシド、 金属カルボキシレート、金属錯体及び金属水酸化物の群から選ばれる金属種 A及び 金属種 Bを含む一種以上の化合物と、所定の溶剤とを含む構成にしてもよ!ヽ。  [0014] The dielectric forming composition liquid for forming the second dielectric thin film includes a metal species A and a metal species B selected from the group consisting of metal alkoxides, metal carboxylates, metal complexes, and metal hydroxides. It may be configured to include one or more compounds and a predetermined solvent!
[0015] この場合、前記金属種 Aは、リチウム、ナトリウム、カルシウム、ストロンチウム、ノリウ ム及びランタンの内の一種以上の金属を含み、前記金属種 Bはチタン、ジルコニウム 、タンタル及びニオブの内の一種以上の金属を含む構成にしてもよい。  [0015] In this case, the metal species A includes one or more metals selected from lithium, sodium, calcium, strontium, normium and lanthanum, and the metal species B is one of titanium, zirconium, tantalum and niobium. You may make it the structure containing the above metals.
[0016] 前記第 1の誘電体薄膜形成用の前記誘電体形成用組成液は、前記第 2の誘電体 薄膜形成用の前記誘電体形成用組成液を加水分解することにより得られる ABOx( Xは 1以上の整数)型の結晶構造を有する平均粒径 lOOnm以下の粒子を含む構成 にしてもよい。  [0016] The dielectric forming composition liquid for forming the first dielectric thin film is obtained by hydrolyzing the dielectric forming composition liquid for forming the second dielectric thin film. May be configured to include particles having an average particle size of lOOnm or less having an integer of 1 or more type crystal structure.
[0017] また、本発明の ABOx型ぺロブスカイト結晶構造を有する誘電体膜の形成システム は、平均径が所定値以上の空隙を含む ABOx型べ口ブスカイト結晶構造を有する第 1の誘電体薄膜上に、前記空隙の平均径よりも小さい平均粒径の ABOx型ぺロブス カイト結晶構造を有する粒子と所定の溶剤とを含む誘電体形成用組成液を塗布する 塗布装置と、該塗布装置による前記誘電体形成用組成液の塗布によって得られた 結果物を焼成して、前記第 1の誘電体薄膜上に ABOx型べ口ブスカイト結晶構造を 有する第 2の誘電体薄膜を形成する焼成装置と、を備えることを特徴とする。  [0017] Further, the dielectric film formation system having an ABOx type perovskite crystal structure of the present invention is provided on the first dielectric thin film having an ABOx type bebbitite crystal structure including voids having an average diameter of a predetermined value or more. A coating apparatus for applying a dielectric composition liquid containing particles having an ABOx-type perovskite crystal structure having an average particle size smaller than the average diameter of the voids and a predetermined solvent; and the dielectric by the coating apparatus A firing apparatus for firing the resulting product obtained by applying the body-forming composition liquid to form a second dielectric thin film having an ABOx-type bechbskite crystal structure on the first dielectric thin film; It is characterized by providing.
[0018] 前記塗布装置は、前記第 2の誘電体薄膜形成用の前記誘電体形成用組成液に含 まれる前記所定の溶剤のみを塗布する溶剤塗布手段を備えてもよい。  [0018] The coating apparatus may include a solvent coating unit that coats only the predetermined solvent contained in the dielectric forming composition liquid for forming the second dielectric thin film.
[0019] 前記空隙内の空気を吸引し、前記空隙に前記第 2の誘電体薄膜形成用の前記誘 電体形成用組成液の一部を浸透させる浸透装置を更に備えてもよい。 [0019] Air in the gap is sucked, and the induction for forming the second dielectric thin film in the gap is performed. You may further provide the osmosis | permeation apparatus which osmose | permeates a part of composition liquid for electric body formation.
[0020] 前記浸透装置は、前記塗布装置による前記第 2の誘電体薄膜形成用の前記誘電 体形成用組成液の塗布によって得られた結果物を収容する密閉容器と、該密閉容 器内を所定圧力(例えば、前記第 2の誘電体薄膜形成用の前記誘電体形成用組成 液に含まれる前記所定の溶剤の揮発が開始される圧力)以下まで減圧する減圧手 段と、を備えてもよい。  [0020] The permeation device includes a sealed container that contains a resultant product obtained by applying the dielectric forming composition liquid for forming the second dielectric thin film by the coating device, and an inside of the sealed container. A depressurization means for depressurizing to a predetermined pressure (for example, a pressure at which volatilization of the predetermined solvent contained in the dielectric-forming composition liquid for forming the second dielectric thin film is started) or less. Good.
[0021] また、前記浸透装置は、前記塗布装置による前記第 2の誘電体薄膜形成用の前記 誘電体形成用組成液の塗布によって得られた結果物を収容する密閉容器と、該密 閉容器内を第 1の圧力まで減圧する第 1の減圧手段と、前記密閉容器内を前記第 1 の圧力から所定圧力まで昇圧する昇圧手段と、前記密閉容器内を前記所定圧力か ら前記第 1の圧力よりも低い第 2の圧力(例えば、前記第 2の誘電体薄膜形成用の誘 電体形成用組成液に含まれる前記所定の溶剤の揮発が開始される圧力)以下まで 減圧する第 2の減圧手段と、を備える構成にしてもよい。  [0021] Further, the permeation device includes a sealed container for accommodating a resultant product obtained by applying the dielectric forming composition liquid for forming the second dielectric thin film by the coating device, and the sealed container. A first pressure reducing means for reducing the pressure in the sealed container to a first pressure, a pressure increasing means for increasing the pressure in the sealed container from the first pressure to a predetermined pressure, and the first pressure in the sealed container from the predetermined pressure. A second pressure that is reduced to below a second pressure lower than the pressure (for example, a pressure at which the volatilization of the predetermined solvent contained in the dielectric forming liquid for forming the second dielectric thin film is started). And a decompression unit.
発明の効果  The invention's effect
[0022] 以上の如ぐ本発明によれば、表面が緻密で、且つ、薄膜であってもリーク電流が 小さい ABOx型べ口ブスカイト結晶構造を有する誘電体膜を形成することが可能とな る。  [0022] According to the present invention as described above, it is possible to form a dielectric film having an ABOx type bottom bumskite crystal structure having a dense surface and a small leakage current even if it is a thin film. .
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]本発明に係る ABOx型べ口ブスカイト結晶構造を有する誘電体膜を使用したコ ンデンサの一例を示す断面図である。  [0023] FIG. 1 is a cross-sectional view showing an example of a capacitor using a dielectric film having an ABOx-type bottom bumskite crystal structure according to the present invention.
[図 2]第 1の塗布膜を形成する工程を説明するための断面図である。  FIG. 2 is a cross-sectional view for explaining a step of forming a first coating film.
[図 3]第 1の薄膜形成用の加熱 ·焼成工程を説明するための断面図である。  FIG. 3 is a cross-sectional view for explaining a heating / firing step for forming a first thin film.
[図 4]第 1の薄膜形成用の加熱'焼成工程における誘電体膜の変性の様子を示す模 式図である。  FIG. 4 is a schematic view showing a state of modification of the dielectric film in the heating and firing process for forming the first thin film.
[図 5]塗布膜形成工程カゝらコンデンサの製造までの工程を説明するための断面図で ある。  FIG. 5 is a cross-sectional view for explaining the coating film forming process and the process up to the manufacture of the capacitor.
[図 6]ABOx型べ口ブスカイト結晶構造を有する誘電体膜の作用を説明するための断 面図である。 [図 7]塗布膜形成工程の第 1の実施形態で使用する塗布ユニットの概略構成を示す 図であり、(a)は塗布ユニットの断面図、(b)はその平面図である。 FIG. 6 is a cross-sectional view for explaining the action of a dielectric film having an ABOx-type bottom buxite crystal structure. FIG. 7 is a diagram showing a schematic configuration of a coating unit used in the first embodiment of the coating film forming step, where (a) is a sectional view of the coating unit and (b) is a plan view thereof.
圆 8]塗布膜形成工程の第 1の実施形態を説明するための模式図である。 圆 8] A schematic diagram for explaining the first embodiment of the coating film forming step.
圆 9]塗布膜形成工程の第 1の実施形態の作用を説明するための断面図である。 圆 10]塗布膜形成工程の第 2の実施形態を説明するための模式図である。 9] A cross-sectional view for explaining the operation of the first embodiment of the coating film forming step. FIG. 10 is a schematic diagram for explaining a second embodiment of the coating film forming step.
圆 11]塗布膜形成工程の第 2の実施形態の作用を説明するための断面図である。 圆 12]塗布膜形成工程の第 3の実施形態及び第 4の実施形態で使用する塗布ュ- ットの概略構成を示す図であり、(a)は塗布ユニットの断面図、(b)はその平面図であ る。 圆 11] It is a cross-sectional view for explaining the operation of the second embodiment of the coating film forming step. 12] A diagram showing a schematic configuration of a coating unit used in the third embodiment and the fourth embodiment of the coating film forming step, (a) is a sectional view of the coating unit, and (b) is a sectional view of the coating unit. FIG.
[図 13]図 12の塗布ユニットによって行われる塗布液の塗布の様子を示す斜視図であ る。  FIG. 13 is a perspective view showing a state of application of the application liquid performed by the application unit shown in FIG.
圆 14]塗布膜形成工程の第 3の実施形態及び第 4の実施形態で使用する減圧乾燥 ユニットの概略構成を示す断面図である。 14] A cross-sectional view showing a schematic configuration of a reduced-pressure drying unit used in the third and fourth embodiments of the coating film forming step.
圆 15]塗布膜形成工程の第 3実施の形態を説明するための模式図である。 FIG. 15 is a schematic diagram for explaining the third embodiment of the coating film forming step.
圆 16]減圧乾燥ユニットが備える密閉容器の圧力の経時変化を示す特性図である。 圆 17]塗布膜形成工程の第 3の実施形態の作用を説明するための断面図である。 圆 18]塗布膜形成工程の第 4の実施形態を説明するための模式図である。 FIG. 16 is a characteristic diagram showing the change over time in the pressure of the sealed container provided in the vacuum drying unit. FIG. 17 is a cross-sectional view for explaining the operation of the third embodiment of the coating film forming step.圆 18] A schematic view for explaining a fourth embodiment of the coating film forming step.
圆 19]塗布膜形成工程の第 4の実施形態の作用を説明するための断面図である。 圆 20]本発明の一実施形態に係る ABOx型べ口ブスカイト結晶構造を有する誘電体 膜の形成システムが備える誘電体膜の形成装置を示す平面図である。 FIG. 19 is a cross-sectional view for explaining the operation of the fourth embodiment of the coating film forming step. FIG. 20 is a plan view showing a dielectric film forming apparatus included in a dielectric film forming system having an ABOx-type mouthbushite crystal structure according to an embodiment of the present invention.
圆 21]同実施形態に係る誘電体膜の形成装置の斜視図である。 FIG. 21 is a perspective view of a dielectric film forming apparatus according to the embodiment.
圆 22]同実施形態に係る誘電体膜の形成装置が備える加熱ユニットの概略構成を 示す断面図である。 FIG. 22 is a cross-sectional view showing a schematic configuration of a heating unit provided in the dielectric film forming apparatus according to the embodiment.
[図 23]同実施形態に係る誘電体膜の形成システムが備える加熱炉の概略構成を示 す断面図である。  FIG. 23 is a cross-sectional view showing a schematic configuration of a heating furnace provided in the dielectric film formation system according to the embodiment.
圆 24]本発明の効果を確認するために行なった実験で用いられる測定用サンプルを 説明するための斜視図である。 24] A perspective view for explaining a measurement sample used in an experiment conducted for confirming the effect of the present invention.
符号の説明 1 下部電極Explanation of symbols 1 Lower electrode
2 上部電極2 Upper electrode
3 基板3 Board
5, 51 スピンチャック6, 56, 63 塗布液ノズルa, 3b, 3c 誘電体膜1 第 1の薄膜5, 51 Spin chuck 6, 56, 63 Coating liquid nozzles a, 3b, 3c Dielectric film 1 First thin film
1a 第 1の塗布膜2 第 2の薄膜1a 1st coating film 2 2nd thin film
2a 第 2の塗布膜0 結晶粒子2a Second coating film 0 Crystal grains
1 溶媒1 solvent
2 空隙2 Air gap
4 空気4 Air
5 シンナー液5 thinner
6 第 2の塗布液I キャリアステーション2 処理部6 Second coating liquid I Carrier station 2 Processing section
, 6 塗布ユニット2 カップ体, 6 Dispensing unit 2 cup body
7 溶剤ノズル7 Solvent nozzle
1 ウェハ保持部 1 Wafer holder
減圧乾燥ユニット0 密閉容器 Vacuum drying unit 0 Airtight container
5 真空ポンプ 5 Vacuum pump
加熱ユニット1 冷却プレート2 熱板 10 加熱炉 Heating unit 1 Cooling plate 2 Hot plate 10 Heating furnace
101 ウェハボート  101 wafer boat
104 加熱手段  104 Heating means
W 半導体ウェハ  W Semiconductor wafer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、本発明に係る ABOx型ぺロブスカイト結晶構造を有する誘電体膜の形成方 法及び形成システムの一実施形態について図面を参照して説明する。  Hereinafter, an embodiment of a method and system for forming a dielectric film having an ABOx type perovskite crystal structure according to the present invention will be described with reference to the drawings.
[0026] 先ず、本発明に係る ABOx型べ口ブスカイト結晶構造を有する誘電体膜の一例を 図 1に基づいて説明する。図 1では、本発明に係る誘電体膜を容量素子 (コンデンサ )に適用した例を示している。図 1 (a)に示すコンデンサは、下部電極 21 (例えば Pt 製)、上部電極 22 (例えば A1製)及び誘電体膜 3aで構成されて ヽる。  [0026] First, an example of a dielectric film having an ABOx type mouth-bushite crystal structure according to the present invention will be described with reference to FIG. FIG. 1 shows an example in which the dielectric film according to the present invention is applied to a capacitive element (capacitor). The capacitor shown in FIG. 1 (a) is composed of a lower electrode 21 (for example, made of Pt), an upper electrode 22 (for example, made of A1), and a dielectric film 3a.
[0027] 誘電体膜 3aは、第 1の薄膜 31 (第 1の誘電体薄膜)層と第 2の薄膜 32 (第 2の誘電 体薄膜)層からなる ABOx型べ口ブスカイト結晶構造を有する誘電体膜である。そし て、第 1の薄膜 31側の面に下部電極 21が設けられ、第 2の薄膜 32側の面に上部電 極 22が設けられている。  [0027] The dielectric film 3a is a dielectric film having an ABOx type bottom bumskite crystal structure composed of a first thin film 31 (first dielectric thin film) layer and a second thin film 32 (second dielectric thin film) layer. It is a body membrane. The lower electrode 21 is provided on the surface on the first thin film 31 side, and the upper electrode 22 is provided on the surface on the second thin film 32 side.
[0028] 第 1の薄膜 31は、平均径が 10nm以上の空隙(ボイド)を含む ABOx型ぺロブス力 イト結晶構造を有する誘電体薄膜であり、その膜厚は、例えば 200〜300nm程度で ある。第 1の薄膜 31は、第 1の塗布液を半導体基板 (例えば、シリコン基板)に塗布し 、加熱することで生成され得る。第 1の塗布液は、本実施形態では、 ABOx型ぺロブ スカイト結晶構造を有する平均粒径 lOOnm以下の粒子と溶剤 (有機溶媒)とを含む 誘電体形成用組成液である。  [0028] The first thin film 31 is a dielectric thin film having an ABOx type perovskite crystal structure including voids having an average diameter of 10 nm or more, and the film thickness thereof is, for example, about 200 to 300 nm. . The first thin film 31 can be generated by applying a first coating liquid to a semiconductor substrate (for example, a silicon substrate) and heating. In the present embodiment, the first coating liquid is a dielectric forming composition liquid containing particles having an ABOx type perovskite crystal structure and an average particle diameter of lOOnm or less and a solvent (organic solvent).
[0029] 第 2の薄膜 32は、 ABOx型べ口ブスカイト結晶構造を有する誘電体薄膜であり、そ の膜厚は、例えば lOOnm程度である。第 2の薄膜 32は、第 2の塗布液を第 1の薄膜 31の上に塗布し、 700°C〜900°Cで加熱することで生成され得る。第 2の塗布液は、 本実施形態では、金属アルコキシド、金属カルボキシレート、金属錯体及び金属水 酸化物の群から選択された金属種 A及び金属種 Bを含む一種以上の化合物と溶剤( 有機溶媒)とを含む誘電体形成用組成液である。  [0029] The second thin film 32 is a dielectric thin film having an ABOx type bottom bskite crystal structure, and its film thickness is, for example, about lOOnm. The second thin film 32 can be produced by applying a second coating liquid on the first thin film 31 and heating at 700 ° C. to 900 ° C. In this embodiment, the second coating liquid is one or more compounds including a metal species A and a metal species B selected from the group of metal alkoxides, metal carboxylates, metal complexes, and metal hydroxides, and a solvent (organic solvent). ) And a dielectric composition forming liquid.
[0030] 金属種 Aは、 Li (リチウム)、 Na (ナトリウム)、 Ca (カルシウム)、 Sr (ストロンチウム)、 Ba (バリウム)及び La (ランタン)の内から選択される一種以上の金属である。また、金 属種 Bは Ti (チタン)、 Zr (ジルコニウム)、 Ta (タンタル)及び Nb (ニオブ)から選択さ れる一種以上の金属である。 [0030] Metal species A includes Li (lithium), Na (sodium), Ca (calcium), Sr (strontium), One or more metals selected from Ba (barium) and La (lanthanum). Metal species B is one or more metals selected from Ti (titanium), Zr (zirconium), Ta (tantalum), and Nb (niobium).
[0031] 図 1 (b)及び図 1 (c)は、下部電極 21と上部電極 22との間の誘電体を 3層で構成し たコンデンサの例を示している。図 1 (b)に示すコンデンサは、 2つの第 2の薄膜 32と の間に第 1の薄膜 31が挟まれる態様で構成された誘電体膜 3bを含んでいる。また、 図 1 (c)に示すコンデンサは、 2つの第 1の薄膜 31との間に第 2の薄膜 32が挟まれる 態様で構成された誘電体膜 3cを含んで 、る。  FIG. 1 (b) and FIG. 1 (c) show an example of a capacitor in which the dielectric between the lower electrode 21 and the upper electrode 22 is composed of three layers. The capacitor shown in FIG. 1 (b) includes a dielectric film 3b configured such that the first thin film 31 is sandwiched between two second thin films 32. In addition, the capacitor shown in FIG. 1 (c) includes a dielectric film 3c configured such that the second thin film 32 is sandwiched between the two first thin films 31.
[0032] 続いて、本発明の本実施形態に係る ABOx型ぺロブスカイト結晶構造を有する誘 電体膜 3aの形成方法について図 2〜図 6を用いて説明する。尚、以下の説明では、 誘電体膜 3aとして、金属種 A力 ¾aであり、金属種 Bが Tiであるチタン酸バリウム(BaT iO )を採用しているものとする。  Next, a method for forming the dielectric film 3a having an ABOx type perovskite crystal structure according to the present embodiment of the present invention will be described with reference to FIGS. In the following description, it is assumed that barium titanate (BaT iO) having a metal type A force of 3a and a metal type B of Ti is used as the dielectric film 3a.
3  Three
[0033] 先ず、シリコン基板である基板 23に形成された下部電極 21 (例えば Pt製)の表面 に第 1の薄膜 31を形成する方法について説明する。第 1の薄膜 31は、上述したよう に第 1の塗布液を基板 23に塗布し、加熱'焼成することで生成され得る。本実施形態 で使用する第 1の塗布液は、 ABOx型ぺロブスカイト結晶構造を有する平均粒径 10 Onm以下の粒子と有機溶媒とを含む誘電体形成用組成液である。  [0033] First, a method of forming the first thin film 31 on the surface of the lower electrode 21 (for example, made of Pt) formed on the substrate 23 which is a silicon substrate will be described. As described above, the first thin film 31 can be generated by applying the first coating liquid to the substrate 23 and heating and baking. The first coating liquid used in the present embodiment is a dielectric forming composition liquid containing an organic solvent and particles having an ABOx type perovskite crystal structure and an average particle diameter of 10 Onm or less.
[0034] ここで、力かる第 1の塗布液の製造方法について説明する。第 1の塗布液は、(1) 溶解工程、(2)加水分解工程、(3)精製工程及び (4)分散工程の各工程を経て製造 される。以下、これらの工程を詳細に説明する。  [0034] Here, a powerful method for producing the first coating liquid will be described. The first coating solution is produced through each step of (1) dissolution step, (2) hydrolysis step, (3) purification step, and (4) dispersion step. Hereinafter, these steps will be described in detail.
[0035] (1)溶解工程  [0035] (1) Dissolution process
ABOx型ぺロブスカイト結晶構造を有する粒子を構成する金属種 Aを含む一種以 上の化合物及び ABOx型ぺロブスカイト結晶構造を有する粒子を構成する金属種 B を含む一種以上の化合物をよく知られた技術により有機溶媒に溶解させる工程であ る。  Well-known technologies that include one or more compounds containing metal species A constituting particles having an ABOx-type perovskite crystal structure and one or more compounds containing metal species B constituting particles having an ABOx-type perovskite crystal structure This is a step of dissolving in an organic solvent.
[0036] 上記化合物は、金属アルコキシド、金属カルボキシレート、金属錯体及び金属水酸 化物の群から選択される。  [0036] The compound is selected from the group of metal alkoxides, metal carboxylates, metal complexes, and metal hydroxides.
[0037] 金属種 Aは Li, Na, Ca, Sr, Ba及び Laの内力 選ばれる一種以上の金属である のが好ましい。また、金属種 Bは、 Ti, Zr, Ta及び Nbの内力 選ばれる一種以上の 金属であるのが好ましい。さらには、金属種 Aが Sr及び Baの内力 選ばれる一種以 上の金属であり、金属種 Bが Tiであるのがより好ましい。 [0037] Metal species A is one or more metals selected from the internal forces of Li, Na, Ca, Sr, Ba, and La. Is preferred. The metal species B is preferably one or more metals selected from the internal forces of Ti, Zr, Ta, and Nb. More preferably, the metal species A is one or more metals selected from the internal forces of Sr and Ba, and the metal species B is Ti.
[0038] 溶解の際の液中の金属種 Aの濃度は、 0. 1〜0. 7mmolZgである。同様に、金属 種 Bの濃度も、 0. 1〜0. 7mmolZgである。  [0038] The concentration of the metal species A in the solution during dissolution is 0.1 to 0.7 mmol Zg. Similarly, the concentration of metal species B is also 0.1 to 0.7 mmol Zg.
[0039] 前記金属アルコキシドとしては、例えば、ジメトキシバリウム、ジエトキシバリウム、ジ プロポキシバリウム、ジイソプロポキシバリウム、ジブトキシバリウム、ジイソブトキシバリ ゥム等のバリウムアルコキシドや、ジメトキシストロンチウム、ジェトキシストロンチウム、 ジプロポキシストロンチウム、ジイソプロポキシストロンチウム、ジブトキシストロンチウム 、ジイソブトキシストロンチウム等のストロンチウムアルコキシドや、テトラメトキシチタン 、テトラエトキシチタン、テトラプロポキシチタン、テトライソプロポキシチタン、テトラブト キシチタン、テトライソブトキシチタン等を使用することができる。  [0039] Examples of the metal alkoxide include, for example, barium alkoxides such as dimethoxybarium, diethoxybarium, dipropoxybarium, diisopropoxybarium, dibutoxybarium, and diisobutoxybarium, dimethoxystrontium, cetoxystrontium, dioxy Use strontium alkoxides such as propoxystrontium, diisopropoxystrontium, dibutoxystrontium, diisobutoxystrontium, tetramethoxytitanium, tetraethoxytitanium, tetrapropoxytitanium, tetraisopropoxytitanium, tetrabutoxytitanium, tetraisobutoxytitanium, etc. Can do.
[0040] 前記金属カルボキシレートとしては、例えば、酢酸バリウム、プロピロン酸バリウム、 2 メチルプロピオン酸バリウム、ペンタン酸バリウム、 2, 2—ジメチルプロピオン酸バリ ゥム、ブタン酸バリウム、へキサン酸バリウム、 2—ェチルへキサン酸バリウム、ォクチ ル酸バリウム、ノナン酸バリウム、デカン酸バリウム等のバリウムカルボキシレートや、 酢酸ストロンチウム、プロピロン酸ストロンチウム、 2—メチルプロピオン酸ストロンチウ ム、ペンタン酸ストロンチウム、 2, 2—ジメチノレプロピ才ン酸ストロンチウム、ブタン酸ス トロンチウム、へキサン酸ストロンチウム、 2—ェチルへキサン酸ストロンチウム、ォクチ ル酸ストロンチウム、ノナン酸ストロンチウム、デカン酸ストロンチウム等のストロンチウ ムカルボキシレート等を使用することができる。  [0040] Examples of the metal carboxylate include barium acetate, barium propionate, 2 methyl barium propionate, barium pentanoate, barium 2,2-dimethylpropionate, barium butanoate, barium hexanoate, 2 -Barium carboxylates such as ethylbarium hexanoate, barium octylate, barium nonanoate, barium decanoate, strontium acetate, strontium propionate, strontium 2-methylpropionate, strontium pentanoate, 2,2-dimethinorepropi Strontium carboxy such as strontium citrate, strontium butanoate, strontium hexanoate, strontium 2-ethylhexylate, strontium octylate, strontium nonanoate, strontium decanoate, etc. It can be used over door and the like.
[0041] 前記金属錯体としては、例えば、チタンァリルァセトアセテートトリイソプロキサイド、 チタンジブトキサイド(ビス 2, 4 ペンタンジォネート)、チタンジイソプロキシサイド (ビス 2, 4 ペンタンジォネート)、チタンジブトキサイドビス(テトラメチルヘプタン ジォネート)、チタンジイソプロキサイドビス(テトラメチルヘプタンジォネート)、チタン ジブトキサイドビス(ェチノレアセトアセテート)、チタンジイソプロポキサイドビス(ェチノレ ァセトアセテート)等を使用することができる。  [0041] Examples of the metal complex include titanium arylacetoacetate triisopropylate, titanium dibutoxide (bis 2,4 pentanedionate), titanium diisoproxyside (bis 2,4 pentanedio). Nate), titanium dibutoxide bis (tetramethyl heptane dionate), titanium diisoproxide bis (tetramethyl heptane dionate), titanium dibutoxide bis (ethinoreacetoacetate), titanium diisopropoxide bis ( Ethinoacetate acetate) and the like can be used.
[0042] 前記金属水酸化物は、金属原子に水酸化物イオンが配位した化合物であり、下記 一般式(1)で表される。 [0042] The metal hydroxide is a compound in which a hydroxide ion is coordinated to a metal atom. It is represented by general formula (1).
[0043] Ma(OH) ·χΗ Ο · · ·式(1) [0043] M a (OH) · χΗ Ο · · · Formula (1)
a 2  a 2
[式(1)中、 Mは Li, Na, Ca, Sr, Ba, La, Ti, Zr, Ta及び Nbの内から選ばれる金 属を表す。 aは金属 Mの価数に応じた 1〜7の整数である。 Xは 1〜8の整数である。 ] [0044] 前記有機溶媒として、例えば、アルコール系溶媒、多価アルコール系溶媒、エーテ ル系溶媒、ケトン系溶媒、エステル系溶媒等を使用できる。  [In the formula (1), M represents a metal selected from Li, Na, Ca, Sr, Ba, La, Ti, Zr, Ta, and Nb. a is an integer of 1 to 7 according to the valence of metal M. X is an integer of 1-8. [0044] As the organic solvent, for example, alcohol solvents, polyhydric alcohol solvents, ether solvents, ketone solvents, ester solvents and the like can be used.
[0045] 前記アルコール系溶媒として、メタノール、エタノール、プロパノール、ブタノール、 ァミルアルコール、シクロへキサノール、メチルシクロへキサノール等を使用すること ができる。 [0045] As the alcohol solvent, methanol, ethanol, propanol, butanol, amyl alcohol, cyclohexanol, methylcyclohexanol, and the like can be used.
[0046] 前記多価アルコール系溶媒として、エチレングリコールモノメチルエーテル、ェチレ ングリコーノレモノァセトエステル、ジエチレングリコーノレモノメチノレエーテル、ジェチレ ングリコーノレモノアセテート、プロピレングリコールモノェチルエーテル、プロピレング リコーノレモノアセテート、ジプロピレングリコーノレモノェチノレエーテル、プロピレングリ コールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、メトキシブタ ノーノレ、プロピレングリコーノレモノェチノレエーテノレアセテート、プロピレングリコーノレモ ノメチルエーテルアセテート、ジプロピレングリコールプロピルエーテル、ジプロピレン グリコールモノブチルエーテル等を使用することができる。  [0046] Examples of the polyhydric alcohol solvent include ethylene glycol monomethyl ether, ethylenic glycolenomonoacetate ester, diethylene glycolenol monomethylenether, jetylene glycolenol monoacetate, propylene glycol monoethyl ether, propylene glycol. Nole monoacetate, dipropylene glycol monoethanolo ether, propylene glycol monomethyl ether, propylene glycol monopropyl ether, methoxybutanol, propylene glycol monoethylenoate ethere acetate, propylene glycol monomethyl ether acetate, di Propylene glycol propyl ether, dipropylene glycol monobutyl ether and the like can be used.
[0047] 前記エーテル系溶媒として、メチラール、ジェチルエーテル、ジプロピルエーテル、 ジブチルエーテル、ジァミルエーテル、ジェチルァセタール、ジへキシルエーテル、ト リオキサン、ジォキサン等を使用することができる。  [0047] As the ether solvent, methylal, jetyl ether, dipropyl ether, dibutyl ether, diamyl ether, jetyl acetal, dihexyl ether, trioxane, dioxane and the like can be used.
[0048] 前記ケトン系溶媒として、アセトン、メチルェチルケトン、メチルプロピルケトン、メチ ルイソブチルケトン、メチルアミルケトン、メチルシクロへキシルケトン、ジェチルケトン 、ェチルブチルケトン、トリメチルノナノン、ァセトニルアセトン、ジメチルォキシド、ホロ ン、シクロへキサノン、ダイアセトンアルコール等を使用することができる。  [0048] Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, methyl amyl ketone, methyl cyclohexyl ketone, jetyl ketone, ethyl butyl ketone, trimethylnonanone, acetonyl acetone, dimethyl oxide. , Horn, cyclohexanone, diacetone alcohol and the like can be used.
[0049] 前記エステル系溶媒として、ギ酸ェチル、酢酸メチル、酢酸ェチル、酢酸ブチル、 酢酸シクロへキシル、プロピオン酸メチル、酪酸ェチル、ォキシイソ酪酸ェチル、ァセ ト酢酸ェチル、乳酸ェチル、メトキシブチルアセテート、シユウ酸ジェチル、マロン酸 ジェチル等を使用することができる。 [0050] 有機溶媒は、上記溶媒の内の 1種類でもよいし、 2種類上の溶媒を組み合わせて 用いることちでさる。 [0049] Examples of the ester solvent include ethyl formate, methyl acetate, ethyl acetate, butyl acetate, cyclohexyl acetate, methyl propionate, ethyl butyrate, ethyl oxyisobutyrate, ethyl acetoacetate, ethyl acetate, methoxybutyl acetate, Jetyl oxalate, jetyl malonate and the like can be used. [0050] The organic solvent may be one of the above solvents or a combination of two or more solvents.
[0051] 尚、溶解工程で生成した溶液は、第 2の薄膜 32を形成するための第 2の塗布液に 相当する。  Note that the solution generated in the dissolution step corresponds to a second coating solution for forming the second thin film 32.
[0052] (2)加水分解工程 [0052] (2) Hydrolysis step
溶解工程で生成した溶液中に水を添加し、溶液中の前駆体を加水分解して結晶 粒子を得る工程である。  In this step, water is added to the solution produced in the dissolution step, and the precursor in the solution is hydrolyzed to obtain crystal particles.
[0053] 加水分解の際、反応効率の点から、通常、溶液温度を— 78°C〜200°Cの範囲に 保つ。この場合、—20°C〜100°Cにするのが好ましぐさらに、 0〜50°Cするのがより 好ましい。 [0053] During hydrolysis, the solution temperature is usually kept in the range of -78 ° C to 200 ° C from the viewpoint of reaction efficiency. In this case, it is preferably −20 ° C. to 100 ° C., and more preferably 0 to 50 ° C.
[0054] また、加水分解の際に溶液へ添加する水の量は、金属種 Aの 1モルに対して通常 5 〜300倍のモル量になる。この場合、 10〜200倍のモル量にするのが好ましい(20 〜 100倍のモル量ならば、いっそう好ましい。 )。このようなモル量で水を添カ卩すると、 粒子の結晶性が向上し、加えて分散性も良好となる。  [0054] The amount of water added to the solution during hydrolysis is usually 5 to 300 times the molar amount of 1 mol of metal species A. In this case, the molar amount is preferably 10 to 200 times (more preferably 20 to 100 times the molar amount). When water is added in such a molar amount, the crystallinity of the particles is improved and the dispersibility is also improved.
[0055] また、水のみを溶液中に添加する他に、上記した複数種類の溶媒の内から選択し た 1種類以上の溶媒と水を混合したものを添加してもよい。  [0055] In addition to adding only water to the solution, a mixture of one or more solvents selected from the plurality of solvents described above and water may be added.
[0056] また、添加する水に触媒が含まれて!/ヽてもよ ヽ。例えば、無機酸 (例えば塩酸、硫 酸、硝酸)、有機酸 (例えば酢酸、プロピオン酸、酪酸、マレイン酸)等の酸触媒や、 水酸化ナトリウム、水酸ィ匕カリウム、水酸化バリウム、アンモニア、モノエタノールァミン 、ジエタノールァミン、テトラメチルアンモ-ゥムヒドロキシド等の無機または有機アル カリ触媒等を触媒として使用できる。  [0056] Further, the water to be added contains a catalyst! For example, acid catalysts such as inorganic acids (eg hydrochloric acid, sulfuric acid, nitric acid), organic acids (eg acetic acid, propionic acid, butyric acid, maleic acid), sodium hydroxide, potassium hydroxide, barium hydroxide, ammonia, Inorganic or organic alkali catalysts such as monoethanolamine, diethanolamine, and tetramethylammonium hydroxide can be used as the catalyst.
[0057] 水を添加した後に生成される加水分解 ·縮合物は、通常、 10〜200°Cで 0. 5〜[0057] Hydrolysis condensate produced after addition of water is usually 0.5 to 10 to 200 ° C.
200時間保持される。この場合、 20〜150°Cで 1〜: LOO時間保持するのが好ましぐHold for 200 hours. In this case, it is preferable to hold for 1 to: LOO time at 20 to 150 ° C.
30〜100°Cで 3〜20時間保持するのがより好ましい。 It is more preferable to hold at 30 to 100 ° C for 3 to 20 hours.
[0058] 以上の溶解工程及び加水分解工程を経ることで、 ABOx型ぺロブスカイト結晶構 造を有する平均粒径 lOOnm以下 (好ましくは平均粒径 20〜80nm)の結晶粒子を 得ることができる。 [0058] By passing through the above dissolution step and hydrolysis step, crystal particles having an ABOx-type perovskite crystal structure and an average particle size of lOOnm or less (preferably an average particle size of 20 to 80 nm) can be obtained.
[0059] (3)精製工程 加水分解工程で得られた結晶粒子を有機溶媒で精製する工程である。結晶粒子 を有機溶媒で精製する方法は、精製後に結晶粒子と有機溶媒とを分離することが可 能であれば、どのような手法を用いてもよい。例えば、先ず、有機溶媒を結晶粒子に 加え、デカンテーシヨンある!/、は遠心分離によって該結晶粒子を沈降させて上澄液 を除去する。そして、再度、有機溶媒を沈降した結晶粒子に加えて加熱する、という 工程を、 2〜5回繰り返す方法がある。 [0059] (3) Purification step In this step, the crystal particles obtained in the hydrolysis step are purified with an organic solvent. As a method for purifying the crystal particles with an organic solvent, any method may be used as long as the crystal particles and the organic solvent can be separated after purification. For example, first, an organic solvent is added to the crystal particles, and the decantation is! /, Sediments the crystal particles by centrifugation, and removes the supernatant. Then, there is a method in which the process of adding the organic solvent to the precipitated crystal particles and heating again is repeated 2 to 5 times.
[0060] この場合に使用する有機溶媒には、アルコール系溶媒、多価アルコール系溶媒、 エーテル系溶媒、ケトン系溶媒、エステル系溶媒等が挙げられる。これらの有機溶媒 については、上記溶解工程の項で例示したものを用いることができる。  [0060] Examples of the organic solvent used in this case include alcohol solvents, polyhydric alcohol solvents, ether solvents, ketone solvents, and ester solvents. As these organic solvents, those exemplified in the section of the dissolution step can be used.
[0061] (4)分散工程  [0061] (4) Dispersion process
精製工程により精製された結晶粒子を有機溶媒に分散させる工程である。具体的 には、先ず、精製工程により得られた結晶粒子を洗液である有機溶媒と分離させる。 そして、分離した結晶粒子を新たな有機溶媒に投入し、分散させて結晶粒子分散体 を生成する。  In this step, the crystal particles purified by the purification step are dispersed in an organic solvent. Specifically, first, the crystal particles obtained in the purification step are separated from an organic solvent which is a washing solution. Then, the separated crystal particles are put into a new organic solvent and dispersed to produce a crystal particle dispersion.
[0062] 結晶粒子を有機溶媒中に分散させる方法は、該結晶粒子を有機溶媒中に均一に 分散させることが可能であれば、どのような手法を用いてもよい。例えば、機械的撹拌 、超音波を使用した撹拌等を行ないながら、結晶粒子を溶媒中に分散させる方法を 採用してちょい。  [0062] As a method of dispersing the crystal particles in the organic solvent, any method may be used as long as the crystal particles can be uniformly dispersed in the organic solvent. For example, adopt a method in which crystal particles are dispersed in a solvent while performing mechanical stirring, stirring using ultrasonic waves, or the like.
[0063] 分散に用いられる有機溶媒には、アルコール系溶媒、多価アルコール系溶媒、ェ 一テル系溶媒、ケトン系溶媒、エステル系溶媒等が挙げられる。また、分散に用いら れる有機溶媒は、精製工程で用いた有機溶媒と同一でもよぐ異なってもよい。  [0063] Examples of the organic solvent used for dispersion include alcohol solvents, polyhydric alcohol solvents, ether solvents, ketone solvents, ester solvents, and the like. Further, the organic solvent used for dispersion may be the same as or different from the organic solvent used in the purification step.
[0064] 結晶粒子分散体の安定性を考慮すると、結晶粒子分散体中の結晶粒子の含有量 は、固形分濃度として結晶粒子分散体全体の 1〜20重量% (好ましくは 3〜15重量 %)になるようにする。  [0064] In consideration of the stability of the crystal particle dispersion, the content of the crystal particles in the crystal particle dispersion is 1 to 20% by weight (preferably 3 to 15% by weight) of the entire crystal particle dispersion as a solid content concentration. ).
[0065] 尚、結晶粒子の分散を容易にするため、分離 (精製)後の結晶粒子を新たな有機 溶媒に分散させる際に、ノ-オン系界面活性剤、ァ-オン系界面活性剤、カチオン 系界面活性剤等を分散剤として用いてもよ!ヽ。  [0065] In order to facilitate the dispersion of the crystal particles, when dispersing the separated (purified) crystal particles in a new organic solvent, a non-one surfactant, a char-on surfactant, Cationic surfactants may be used as dispersants!
[0066] このような界面活性剤としては、例えば、ポリオキシエチレン ポリオキシプロピレン グリコール、エチレンジァミンのポリオキシプロピレン ポリオキシエチレン縮合物(プ ル口-ック型)、アルキルベンゼンスルフォン酸ナトリウム、ポリエチレンィミン、ポリビ- ルルピロリドン、パーフルォロアルキル基含有オリゴマー等を使用することができる。 [0066] As such a surfactant, for example, polyoxyethylene polyoxypropylene It is possible to use glycols, polyoxypropylenes of ethylenediamine, polyoxyethylene condensates (pull-mouth type), sodium alkylbenzene sulfonate, polyethyleneimine, polyvinylpyrrolidone, oligomers containing perfluoroalkyl groups, etc. it can.
[0067] 分散剤の種類と添加量は、結晶粒子の種類と結晶粒子を分散させる溶媒の種類に より適宜選定して使用することができる。この場合、本実施形態で得られる誘電体膜 の誘電特性を考慮すると、添カ卩量についていえば、結晶粒子 lOOgに対し、 0. 001 [0067] The type and amount of the dispersant can be appropriately selected and used depending on the type of crystal particles and the type of solvent in which the crystal particles are dispersed. In this case, considering the dielectric properties of the dielectric film obtained in the present embodiment, the amount of additive is 0.001 with respect to the crystal particle lOOg.
〜10gとするのが好ましい。 ˜10 g is preferred.
[0068] 以上の工程を経ることで、 ABOx型ぺロブスカイト結晶構造を有する平均粒径 100 nm以下 (好ましくは平均粒径 20〜80nm)の粒子と有機溶媒とを含む誘電体形成用 組成液である第 1の塗布液を得ることができる。 [0068] By passing through the above steps, a dielectric forming composition liquid comprising an organic solvent and particles having an ABOx type perovskite crystal structure and an average particle size of 100 nm or less (preferably an average particle size of 20 to 80 nm) is obtained. A certain first coating solution can be obtained.
[0069] 次に、以上のようにして得られた第 1の塗布液を基板 23に塗布する工程について 説明する。かかる工程は、塗布ユニット(後述する)において行われる。 Next, a process for applying the first coating liquid obtained as described above to the substrate 23 will be described. This process is performed in a coating unit (described later).
[0070] 先ず、図 2 (a)に示すように、表面に下部電極 21が形成された基板 23の裏面側略 中心部をスピンチャック 25により保持する。そして、塗布液ノズル 26から第 1の塗布 液を吐出し、下部電極 21の表面に第 1の塗布液を塗布する。 First, as shown in FIG. 2 (a), a substantially central portion on the back surface side of the substrate 23 having the lower electrode 21 formed on the surface is held by a spin chuck 25. Then, the first coating liquid is discharged from the coating liquid nozzle 26, and the first coating liquid is applied to the surface of the lower electrode 21.
[0071] 続いて、基板 23をスピンチャック 25により、所定の回転速度(例えば 2000rpm程 度)で回転させる。すると、回転の遠心力によって第 1の塗布液は基板 23の周縁側に 向けて伸展する(図 2 (b)、図 2 (c)参照)。 Subsequently, the substrate 23 is rotated by the spin chuck 25 at a predetermined rotation speed (for example, about 2000 rpm). Then, the first coating liquid extends toward the peripheral edge of the substrate 23 by the centrifugal force of rotation (see FIGS. 2 (b) and 2 (c)).
[0072] この後、基板 23を所定の回転速度 (例えば 1500rpm程度)で回転させる。すると、 余分な第 1の塗布液が振り切られ、下部電極 21の表面に所定の厚さ(例えば 200η m)の第 1の塗布液による塗布膜 (第 1の塗布膜 31a)が形成される(図 2 (d)参照)。 [0072] Thereafter, the substrate 23 is rotated at a predetermined rotation speed (eg, about 1500 rpm). Then, the excess first coating liquid is shaken off, and a coating film (first coating film 31a) of the first coating liquid having a predetermined thickness (for example, 200 ηm) is formed on the surface of the lower electrode 21 ( (See Figure 2 (d)).
[0073] 図 4 (a)は、以上のようにして形成された第 1の塗布膜 31aの状態を模式的に示して いる。図 4 (a)に示すように、結晶粒子 40の大部分は溶媒 41中に分散された状態に なって 、て、一部がチタン酸バリウムを生成して 、るものと推察される。 [0073] FIG. 4 (a) schematically shows the state of the first coating film 31a formed as described above. As shown in FIG. 4 (a), it is presumed that most of the crystal particles 40 are dispersed in the solvent 41, and a part of them generates barium titanate.
[0074] 次に、以上のようにして形成された第 1の塗布膜 31aを加熱することによって、第 1 の薄膜 31を形成する方法について説明する。 [0074] Next, a method for forming the first thin film 31 by heating the first coating film 31a formed as described above will be described.
[0075] 先ず、後述する加熱ユニットにお 、て、図 3 (a)に示すように、下部電極 21の表面 に形成された第 1の塗布膜 31aを、所定の温度 (例えば 250°C)で 1分間加熱する( ベータ処理)。焼成の前処理であるベータ処理により、第 1の塗布膜 31aに含まれる 有機溶媒が揮発する。また、加水分解が起こって塗布膜がゲルィ匕し、さらに縮重合 力 S起こる。その結果、図 4 (b)に示すように、 ABOx型ぺロブスカイト結晶構造のチタ ン酸バリウムの前駆体膜となるチタン酸バリウムの網状構造が形成されるものと推察さ れる。また、有機溶媒が揮発するときに、塗布膜中のバインダーの作用により結晶粒 子の凝集が発生し、結晶粒子が大きくなる。 First, in the heating unit described later, as shown in FIG. 3 (a), the first coating film 31a formed on the surface of the lower electrode 21 is subjected to a predetermined temperature (eg, 250 ° C.). Heat for 1 minute ( Beta processing). The organic solvent contained in the first coating film 31a is volatilized by the beta treatment, which is a pretreatment for baking. In addition, hydrolysis occurs and the coating film becomes gelled, and further, a condensation polymerization force S occurs. As a result, as shown in FIG. 4 (b), it is presumed that a network structure of barium titanate, which is a precursor film of barium titanate having an ABOx type perovskite crystal structure, is formed. Further, when the organic solvent volatilizes, agglomeration of crystal particles occurs due to the action of the binder in the coating film, and the crystal particles become large.
[0076] 続、て、後述する焼成装置にぉ 、て、図 3 (b)に示すように、基板 23上の下部電極 21の表面に形成された第 1の塗布膜 31aを、所定の温度 (例えば 800°C)で 60分間 加熱する(焼成処理)。この焼成処理により、第 1の塗布膜 31aの内部では、ァモルフ ァスな状態力 結晶化状態へと変化が進む。その結果、図 4 (c)に示すように、 ABO X型べ口ブスカイト結晶構造のチタン酸バリウム膜よりなる第 1の薄膜 31が形成される[0076] Subsequently, as shown in FIG. 3B, the first coating film 31a formed on the surface of the lower electrode 21 on the substrate 23 is heated to a predetermined temperature by using a baking apparatus described later. (For example, 800 ° C) Heat for 60 minutes (firing process). Due to this baking treatment, the inside of the first coating film 31a is changed to an amorphous state force crystallization state. As a result, as shown in FIG. 4 (c), a first thin film 31 made of a barium titanate film having an ABO X-type bottom buxite crystal structure is formed.
。この ABOx型ぺロブスカイト結晶構造は、酸素の過飽和や不足に応じて ABOxの X 値が 2. 5〜3. 5の範囲になる。 . This ABOx-type perovskite crystal structure has an ABOx X value in the range of 2.5 to 3.5 depending on the oxygen supersaturation or deficiency.
[0077] このようにして形成された第 1の薄膜 31は、平均粒径 50nm以上 lOOnm以下のチ タン酸バリウムの結晶粒子を含む薄膜である。そして、その膜厚は 200ηπ!〜 300nm 程度となっている。また、第 1の薄膜 31は、ポーラス構造であり、平均径が lOnm以上 の微細な空隙が多数形成されて ヽる。  [0077] The first thin film 31 thus formed is a thin film containing barium titanate crystal particles having an average particle diameter of 50 nm or more and lOO nm or less. And the film thickness is 200ηπ! ~ 300nm. The first thin film 31 has a porous structure, and a large number of fine voids having an average diameter of lOnm or more are formed.
[0078] 次に、以上のようにして形成された第 1の薄膜 31の表面に、第 2の薄膜 32を形成す る方法について説明する。  Next, a method for forming the second thin film 32 on the surface of the first thin film 31 formed as described above will be described.
[0079] 先ず、第 1の薄膜 31の表面に第 2の塗布液を塗布し (塗布工程)、図 5 (a)に示すよ うに、第 2の塗布膜 32aの形成を行う(塗布膜形成工程)。本発明は、かかる塗布膜 3 2aの形成方法に特徴を有する。この特徴については、後に詳述する。  [0079] First, the second coating liquid is applied to the surface of the first thin film 31 (application process), and as shown in FIG. 5 (a), the second coating film 32a is formed (coating film formation). Process). The present invention is characterized by the method for forming the coating film 32a. This feature will be described in detail later.
[0080] 誘電体形成用組成液である第 2の塗布液は、第 1の塗布液の製造過程 (より詳細に は、上述した溶解工程)で生成される。第 1の塗布液は、濃度が高すぎると、後述する ように第 1の薄膜 31の空隙に入り込んでいかなくなる。従って、第 1の塗布液に含ま れる金属種 Aの濃度は、 0. 1〜0. 7mmolZgであり、金属種 Bの濃度もまた、 0. 1 〜0. 7mmol/gであるのが望ましい。また、有機溶媒として、第 1の薄膜 31に対して 濡れ性が良好な既述のアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、エステ ル系溶媒等を用いるとさらに浸透度が高まる。 [0080] The second coating liquid which is the dielectric forming composition liquid is generated in the manufacturing process of the first coating liquid (more specifically, the above-described dissolution step). If the concentration of the first coating solution is too high, the first coating solution will not enter the gap of the first thin film 31 as will be described later. Therefore, it is desirable that the concentration of the metal species A contained in the first coating solution is 0.1 to 0.7 mmolZg, and the concentration of the metal species B is also 0.1 to 0.7 mmol / g. In addition, as the organic solvent, the alcohol-based solvent, ether-based solvent, ketone-based solvent, ester-based solvent described above having good wettability with respect to the first thin film 31. The use of a rutile solvent or the like further increases the degree of penetration.
[0081] 次に、後述する加熱ユニットにおいて、図 5 (b)に示すように、第 1の薄膜 31の表面 上に形成された第 2の塗布膜 32aを、所定の温度 (例えば 250°C)で 1分間加熱する (加熱処理)。この焼成前の加熱処理 (即ち、ベータ処理)により、第 2の塗布膜 32aに 含まれる有機溶媒が揮発する (加熱工程)。また、加水分解が起こって塗布膜がゲル 化し、さらに縮重合が起こる。その結果、 ABOx型ぺロブスカイト結晶構造のチタン酸 ノリウムの前駆体膜となるチタン酸バリウムの網状構造が形成される。  Next, in the heating unit described later, as shown in FIG. 5 (b), the second coating film 32a formed on the surface of the first thin film 31 is subjected to a predetermined temperature (eg, 250 ° C.). ) For 1 minute (heat treatment). The organic solvent contained in the second coating film 32a is volatilized by the heat treatment before firing (that is, beta treatment) (heating step). In addition, hydrolysis occurs, the coating film gels, and condensation polymerization occurs. As a result, a network structure of barium titanate that forms a precursor film of norium titanate having an ABOx type perovskite crystal structure is formed.
[0082] 続、て、後述する焼成装置にぉ 、て、図 5 (c)に示すように、第 2の塗布膜 32aを、 700°C〜900°C程度の温度(例えば 800°C)で 60分間加熱する(焼成工程)。この焼 成処理により、第 2の塗布膜 32aの内部では、アモルファスな状態力 結晶化状態へ と変化が進む。その結果、 ABOx型べ口ブスカイト結晶構造のチタン酸バリウム膜より なる第 2の薄膜 32が形成される。この ABOx型ぺロブスカイト結晶構造は、酸素の過 飽和や不足に応じて ABOxの X値が 2. 5〜3. 5の範囲になる。  Subsequently, as shown in FIG. 5 (c), the second coating film 32a is applied to a temperature of about 700 ° C. to 900 ° C. (for example, 800 ° C.) in a baking apparatus described later. Heat for 60 minutes (firing process). As a result of this baking treatment, the state changes into an amorphous state force crystallization state inside the second coating film 32a. As a result, a second thin film 32 made of a barium titanate film having an ABOx type bobsite crystal structure is formed. This ABOx-type perovskite crystal structure has an ABOx X value in the range of 2.5 to 3.5 depending on the oxygen supersaturation or deficiency.
[0083] このようにして形成された第 2の薄膜 32は、 ABOx型ぺロブスカイト結晶構造を有し 、その膜厚は lOOnm程度となっている。また、第 2の薄膜 32は、第 1の薄膜 31よりも 平均粒径が小さいチタン酸バリウムの結晶粒子を含む薄膜である。より詳細には、前 記結晶粒子の平均粒径は、 lOnm以上 50nm以下となる。この平均粒径は、本発明 者らが、 SEM (走査電子顕微鏡、日立ハイテク社製)にて撮像した写真に基づいて 算出したものである。  [0083] The second thin film 32 thus formed has an ABOx type perovskite crystal structure, and its film thickness is about lOOnm. The second thin film 32 is a thin film containing barium titanate crystal particles having an average particle size smaller than that of the first thin film 31. More specifically, the average particle diameter of the crystal particles is lOnm or more and 50 nm or less. This average particle diameter was calculated by the present inventors based on a photograph taken with a SEM (scanning electron microscope, manufactured by Hitachi High-Tech).
[0084] また、第 1の薄膜 31と同様に第 2の薄膜 32も、ポーラス構造であり、第 1の薄膜 31 の空隙 (平均径が lOnm以上)よりもさらに微細な空隙が多数形成されて 、る。  [0084] Further, like the first thin film 31, the second thin film 32 also has a porous structure, and many finer voids are formed than the voids (average diameter is lOnm or more) of the first thin film 31. RU
[0085] 以上のようにして、 ABOx型ぺロブスカイト結晶構造を有する誘電体膜 3a (図 1 (a) 参照)が形成される。  As described above, the dielectric film 3a (see FIG. 1 (a)) having the ABOx type perovskite crystal structure is formed.
[0086] ここで、誘電体膜 3aの上面に電極(上部電極 22)を形成すると、図 1 (a)に示すコン デンサが得られる。具体的には、図 5 (d)に示すように、図示しないスパッタ装置にて 、第 2の薄膜 32の上方側力も例えば A1をスパッタすることで上部電極 22を形成でき る(図 5 (e)参照)。  Here, when the electrode (upper electrode 22) is formed on the upper surface of the dielectric film 3a, the capacitor shown in FIG. 1 (a) is obtained. Specifically, as shown in FIG. 5 (d), the upper electrode 22 can be formed by sputtering the upper side force of the second thin film 32 with, for example, A1 in a sputtering apparatus (not shown) (FIG. 5 (e)). )reference).
[0087] 以上説明したように、本発明の本実施形態に係る ABOx型ぺロブスカイト結晶構造 を有する誘電体膜の形成方法によると以下のような優れた作用及び効果を奏する。 [0087] As described above, the ABOx-type perovskite crystal structure according to this embodiment of the present invention According to the method of forming a dielectric film having the following, the following excellent actions and effects can be obtained.
[0088] (1)第 1の塗布液は、第 2の塗布液を加水分解して分散させた特殊な溶液であり、 上述したように、第 1の塗布膜 31 aに対してベータ処理を行なつて当該第 1の塗布膜 31a中の有機溶媒を揮発させるときに粒子の凝集が起こる。従って、第 2の薄膜 32と ほぼ同様のプロセスにより形成されるとしても、第 1の薄膜 31を構成する結晶粒子の 平均粒径は、第 2の薄膜 32を構成する結晶粒子よりも大きくなる。具体的には、第 1 の薄膜 31を構成する結晶粒子の平均粒径は 50nm以上 lOOnm以下となる。このた め 1回の第 1の塗布液の塗布により、例えば 200nm〜300nm程度の膜厚を確保す ることがでさる。  (1) The first coating solution is a special solution obtained by hydrolyzing and dispersing the second coating solution. As described above, the first coating solution 31a is subjected to a beta treatment. Therefore, aggregation of particles occurs when the organic solvent in the first coating film 31a is volatilized. Therefore, even if the second thin film 32 is formed by substantially the same process, the average grain size of the crystal particles constituting the first thin film 31 is larger than that of the crystal particles constituting the second thin film 32. Specifically, the average grain size of the crystal grains constituting the first thin film 31 is not less than 50 nm and not more than lOOnm. For this reason, it is possible to secure a film thickness of, for example, about 200 nm to 300 nm by applying the first coating liquid once.
[0089] また、第 2の薄膜 32は、 1回の塗布により、例えば lOOnm程度の膜厚を確保するこ とができるので、第 1の薄膜 31と第 2の薄膜 32とを 1層ずつ積層することにより、 300 nm〜400nmの厚さの ABOx型ぺロブスカイト結晶構造を有する誘電体膜 3aを形成 することができる。即ち、所望の膜厚の誘電体膜を形成する際における積層数を少な くできる。このように、所望のコンデンサ容量を確保しつつ、加熱回数を少なくできる ので、チタン酸バリウムの粒成長を抑制でき、これが原因となるリーク電流の発生を抑 えることができる。  [0089] Further, since the second thin film 32 can secure a film thickness of, for example, about lOOnm by one application, the first thin film 31 and the second thin film 32 are laminated one by one. Thus, the dielectric film 3a having an ABOx type perovskite crystal structure with a thickness of 300 nm to 400 nm can be formed. That is, the number of stacked layers when forming a dielectric film having a desired thickness can be reduced. Thus, since the number of times of heating can be reduced while securing a desired capacitor capacity, the grain growth of barium titanate can be suppressed, and the occurrence of leakage current caused by this can be suppressed.
[0090] (2)第 1の薄膜 31の上層側に第 2の薄膜 32を形成することにより、第 1の薄膜 31が 有する空隙を第 2の薄膜 32を構成する粒子で埋めることができる。これにより、第 1の 薄膜 31の表面に緻密な (密度が高い)層を形成し、かつ誘電体膜 3aの表面の平坦 性が向上する。力かる点について具体的に説明すると、第 1の薄膜 31は上述したよう に結晶化のための加熱時にポーラス構造となり、薄膜を構成する結晶粒子の平均粒 径が 50nm以上 lOOnm以下となる。このため、図 6 (a)に示すように、第 1の薄膜 31 中の結晶粒子 40, 40間に形成される空隙 42の平均径は lOnm以上の大きさがある 。従って、第 1の薄膜 31の表面は、ポーラス構造の空隙の存在による凹凸があり、し 力も結晶粒子 40と空隙 42が共に大き 、ので、平坦性が悪 、状態である。  (2) By forming the second thin film 32 on the upper layer side of the first thin film 31, the voids of the first thin film 31 can be filled with particles constituting the second thin film 32. Thereby, a dense (high density) layer is formed on the surface of the first thin film 31, and the flatness of the surface of the dielectric film 3a is improved. Specifically, the first thin film 31 has a porous structure when heated for crystallization as described above, and the average grain size of the crystal grains constituting the thin film is 50 nm or more and lOOnm or less. For this reason, as shown in FIG. 6 (a), the average diameter of the voids 42 formed between the crystal grains 40 in the first thin film 31 is not less than lOnm. Therefore, the surface of the first thin film 31 is uneven due to the presence of voids in the porous structure, and both the crystal grains 40 and the voids 42 are large, and thus the flatness is poor.
[0091] し力しながら、空隙 42の平均径は、第 2の塗布液に含まれる第 2の薄膜 32の前駆 体となる粒子の平均粒径よりも大きい。このため、図 6 (b)に示すように、第 1の薄膜 3 1の表面に第 2の塗布液を塗布する工程において、第 1の薄膜 31の表面側領域に生 じている空隙 42に第 2の塗布液を構成する粒子 43が入り込み、内部に浸透していく 。これにより、図 6 (c)に示すように、第 1の薄膜 31と第 2の薄膜 32との境界領域では 、空隙 42に粒子 43が埋め込まれた状態になる。即ち、第 1の薄膜 31の空隙 42が第 2の薄膜 32 (第 2の塗布液)を構成する粒子 43で塞がれることになる。従って、この境 界領域では、微小な結晶粒子で構成された第 2の薄膜 32よりも、さらに膜が緻密なも のとなると推察される。 [0091] However, the average diameter of the voids 42 is larger than the average particle diameter of the particles serving as the precursor of the second thin film 32 contained in the second coating liquid. For this reason, as shown in FIG. 6 (b), in the step of applying the second coating liquid to the surface of the first thin film 31, it is generated in the surface side region of the first thin film 31. The particles 43 constituting the second coating liquid enter the voids 42 that open, and penetrate into the interior. As a result, as shown in FIG. 6C, in the boundary region between the first thin film 31 and the second thin film 32, the particles 43 are embedded in the voids 42. That is, the voids 42 of the first thin film 31 are blocked by the particles 43 constituting the second thin film 32 (second coating liquid). Therefore, in this boundary region, it is presumed that the film becomes denser than the second thin film 32 composed of fine crystal particles.
[0092] 実際に、本発明者らが、 TEM (透過電子顕微鏡、日立ハイテク社製)及び SEM ( 走査電子顕微鏡、 日立ノ、ィテク社製)により観察したところ、第 1の薄膜 31の空隙 42 に第 2の塗布液が入り込んで 、る様子が観察された。  [0092] Actually, the present inventors observed with a TEM (transmission electron microscope, manufactured by Hitachi High-Tech) and SEM (scanning electron microscope, manufactured by Hitachi, Tech), the void 42 of the first thin film 31 It was observed that the second coating solution entered the
[0093] 以上のように、第 1の薄膜 31の表面に形成された空隙 42が第 2の塗布液を構成す る粒子 43により塞がれるので、第 1の薄膜 31の表面の平坦性が向上する。加えて、 第 2の薄膜 32は、平坦性の良い第 1の薄膜 31の表面に形成されることから、当該第 2の薄膜 32の表面の平坦性も向上する。  [0093] As described above, since the void 42 formed on the surface of the first thin film 31 is blocked by the particles 43 constituting the second coating liquid, the flatness of the surface of the first thin film 31 is improved. improves. In addition, since the second thin film 32 is formed on the surface of the first thin film 31 with good flatness, the flatness of the surface of the second thin film 32 is also improved.
[0094] また、第 1の薄膜 31の上に第 2の薄膜 32を形成する構成とすることで、誘電体膜の リーク特性を向上させることができる。この理由として以下の点が挙げられる。第 1の 理由は、第 2の薄膜 32の結晶粒子が微小であるという点である。つまり、上述したよう に、第 2の薄膜 32の結晶粒子は微小(平均粒径が 20nm程度)であるので、結晶化 のための加熱によりポーラス構造となったとしても、これにより形成される空隙はかなり 小さいといえる。  [0094] Further, by adopting a configuration in which the second thin film 32 is formed on the first thin film 31, the leakage characteristics of the dielectric film can be improved. The reason for this is as follows. The first reason is that the crystal grains of the second thin film 32 are very small. That is, as described above, since the crystal particles of the second thin film 32 are very small (average particle size is about 20 nm), even if a porous structure is formed by heating for crystallization, voids formed thereby are formed. Is quite small.
[0095] 従って、第 2の薄膜 32の表面に A1をスパッタして上部電極 22を形成する工程にお いて、第 2の薄膜 32の空隙が小さいため、スノ ¾ /タ粒子が入り込みにくい。このため、 第 1の薄膜 31の焼成時や第 2の薄膜 32の焼成時に、下部電極 21の Pt粒子が熱拡 散により第 1の薄膜 31の下部側から浸透してきたとしても、スパッタ粒子と接触し難い といえる。従って、 Pt粒子とスパッタ粒子との間で導電路が形成され難ぐリーク電流 の発生が抑えられる。  Accordingly, in the step of forming the upper electrode 22 by sputtering A1 on the surface of the second thin film 32, the second thin film 32 has a small gap, so that the snow / tag particles are difficult to enter. Therefore, even when the first thin film 31 is fired or the second thin film 32 is fired, even if the Pt particles of the lower electrode 21 penetrate from the lower side of the first thin film 31 due to thermal diffusion, It can be said that it is difficult to contact. Therefore, it is possible to suppress the generation of a leakage current that is difficult to form a conductive path between the Pt particles and the sputtered particles.
[0096] また、第 2の理由は、第 1の薄膜 31と第 2の薄膜 32との境界に緻密な層(密度が高 い層)が形成されているので、下部電極 21の Pt粒子が熱拡散により第 1の薄膜 31の 下部側から浸透してきたとしても、第 1の薄膜 31と第 2の薄膜 32との境界付近を越え て第 2の薄膜 32側に浸透して行き難いという点である。この点は、第 2の薄膜 32の表 面に A1をスパッタして上部電極 22を形成する工程にぉ 、て、仮に A1 (スパッタ粒子) が第 2の薄膜 32内に浸透してきた場合についても同様である。つまり、第 1の薄膜 31 と第 2の薄膜 32との境界領域は第 2の薄膜 32よりも緻密であるので、当該領域を超 えて第 1の薄膜 31側にスパッタ粒子が浸透して行くのは困難であると!、える。このた め、第 1の薄膜 31と第 2の薄膜 32とにより構成される ABOx型べ口ブスカイト結晶構 造を有する誘電体膜 3aの縦方向の導電路の形成が抑えられるので、結果としてリー ク電流の発生を抑制することができる。 [0096] In addition, the second reason is that a dense layer (a layer having a high density) is formed at the boundary between the first thin film 31 and the second thin film 32, so that the Pt particles of the lower electrode 21 Even if it penetrates from the lower side of the first thin film 31 due to thermal diffusion, it exceeds the boundary between the first thin film 31 and the second thin film 32. Therefore, it is difficult to penetrate into the second thin film 32 side. This also applies to the case where A1 (sputtered particles) penetrates into the second thin film 32 during the process of forming the upper electrode 22 by sputtering A1 on the surface of the second thin film 32. It is the same. That is, since the boundary region between the first thin film 31 and the second thin film 32 is denser than the second thin film 32, the sputtered particles permeate the first thin film 31 side beyond the region. Is difficult! For this reason, the formation of the vertical conductive path of the dielectric film 3a having the ABOx type bevskite crystal structure composed of the first thin film 31 and the second thin film 32 can be suppressed. The generation of current can be suppressed.
[0097] 尚、図 1 (b)や図 1 (c)に示す構造のコンデンサについても、第 1の薄膜 31と第 2の 薄膜 32とを積層することにより、所望の膜厚の ABOx型べ口ブスカイト結晶構造を有 する誘電体膜 3b又は誘電体膜 3cを得ることができる。具体的には、図 1 (b)に示す 構造のコンデンサの場合、誘電体膜 3bの中間に位置する第 1の薄膜 31と 3層目(上 部電極 22側)〖こ位置する第 2の薄膜 32との境界領域が緻密となり、当該境界面が平 坦化する。また、図 1 (c)に示す構造のコンデンサの場合、誘電体膜 3cの 1層目(下 部電極 21側)〖こ位置する第 1の薄膜 31と中間に位置する第 2の薄膜 32との境界領 域が緻密となり、境界面が平坦ィ匕する。従って、両コンデンサとも所望のコンデンサ 容量を確保でき、リーク電流の発生が抑制できる。  Note that the capacitors having the structures shown in FIGS. 1 (b) and 1 (c) also have an ABOx type base having a desired film thickness by laminating the first thin film 31 and the second thin film 32. A dielectric film 3b or a dielectric film 3c having an orbskite crystal structure can be obtained. Specifically, in the case of the capacitor having the structure shown in FIG. 1 (b), the first thin film 31 located in the middle of the dielectric film 3b and the second layer located on the third layer (on the upper electrode 22 side) are located. The boundary area with the thin film 32 becomes dense, and the boundary surface is flattened. In the case of the capacitor having the structure shown in FIG. 1 (c), the first thin film 31 located on the first layer (on the lower electrode 21 side) of the dielectric film 3c and the second thin film 32 located in the middle The boundary area becomes dense and the boundary surface becomes flat. Therefore, a desired capacitor capacity can be secured for both capacitors, and the occurrence of leakage current can be suppressed.
[0098] 次に、第 2の塗布膜 32aの形成を行う塗布膜形成工程の好適な例について説明す る。上述したように、本発明に係る誘電体膜は、第 1の薄膜 31の表面に第 2の薄膜 3 2を形成することにより、第 1の薄膜 31の空隙 42が第 2の薄膜 32を構成する結晶粒 子で充填されるという特徴を有する。ところで、第 2の薄膜 32の塗布液 (即ち、第 2の 塗布液)は、粘度が高いために、第 1の薄膜 31の上に直接第 2の塗布液をスピンコー ティングにより塗布しょうとすると、前記第 1の薄膜 31の空隙 42内に浸透して行きにく い。これは、第 2の塗布液の塗布前において、空隙 42には空気等の気体が充填され た状態であり、この気体が、第 2の塗布液を構成する粒子 43の進入を阻害するため であると推察される。本発明に係る誘電体膜の形成方法の塗布膜形成工程では、こ の点を改善し、当該方法を使用することで、第 2の塗布液が第 1の薄膜 31の空隙 42 内により浸透しやすくなる。以下、この点について詳細に説明する。 [0099] [塗布膜形成工程の第 1の実施形態] Next, a preferred example of the coating film forming process for forming the second coating film 32a will be described. As described above, the dielectric film according to the present invention forms the second thin film 32 on the surface of the first thin film 31, so that the void 42 of the first thin film 31 constitutes the second thin film 32. It is characterized by being filled with crystal grains. By the way, since the coating solution of the second thin film 32 (that is, the second coating solution) has a high viscosity, when the second coating solution is applied directly onto the first thin film 31 by spin coating, It is difficult to penetrate into the gap 42 of the first thin film 31. This is because the gap 42 is filled with a gas such as air before application of the second coating liquid, and this gas inhibits the entry of the particles 43 constituting the second coating liquid. It is assumed that there is. In the coating film forming step of the dielectric film forming method according to the present invention, this point is improved, and by using the method, the second coating liquid penetrates into the voids 42 of the first thin film 31. It becomes easy. Hereinafter, this point will be described in detail. [0099] [First embodiment of coating film forming step]
先ず、塗布膜形成工程の第 1の実施形態について図 7〜図 9を用いて説明する。 図 7は、この工程を実施するための塗布装置である塗布ユニット 5の概略構成図であ る。図 7に示す塗布ユニット 5おいて、符号 51は、基板である半導体ウェハ(以下「ゥ ェハ」という) Wの裏面側中央部を吸引吸着して水平に保持するためのスピンチャック である。該スピンチャック 51は、鉛直軸回りに回転自在及び昇降自在に構成されて いる。スピンチャック 51に保持されたウェハ Wの周縁外側には、このウェハ Wを囲む ようにして上部側が開口するカップ体 52が設けられている。該カップ体 52の底部側 には凹部状をなす液受部 53がウェハ Wの周縁下方側に全周に亘つて設けられてい る。また、符号 54aは、第 2の塗布液等のドレインを排出するための排液路であり、 54 bは排気路である。  First, a first embodiment of the coating film forming process will be described with reference to FIGS. FIG. 7 is a schematic configuration diagram of the coating unit 5 which is a coating apparatus for performing this process. In the coating unit 5 shown in FIG. 7, reference numeral 51 denotes a spin chuck for sucking and sucking and holding the central portion of the back side of a semiconductor wafer (hereinafter referred to as “wafer”) W as a substrate. The spin chuck 51 is configured to be rotatable and vertically movable about a vertical axis. On the outer periphery of the wafer W held by the spin chuck 51, there is provided a cup body 52 that opens on the upper side so as to surround the wafer W. On the bottom side of the cup body 52, a recess-shaped liquid receiving portion 53 is provided on the lower peripheral side of the wafer W over the entire circumference. Reference numeral 54a denotes a drainage path for discharging the drain of the second coating liquid and the like, and 54b denotes an exhaust path.
[0100] 符号 56は、スピンチャック 51に保持されたウェハ Wに対して第 2の塗布液を供給す る塗布液ノズルである。符号 57は、第 2の塗布液に含まれる有機溶媒 (例えばシンナ 一液)を供給するための溶剤ノズル (溶剤塗布手段)である。符号 55は、塗布液ノズ ル 56と、溶剤ノズル 57とを一体に設けたノズルユニットである。該ノズルユニット 55は 、昇降機構 58aにより昇降自在であり、 X方向に伸びるガイドレール 58bに沿って移 動機構 58cにより X方向に移動自在に設けられている。これにより、ノズルユニット 55 は、ウェハ Wに対して第 2の塗布液やシンナー液を供給する位置(図 7 (a)に示す位 置)と、カップ体 52の外側の待機位置(図 7 (b)に示す位置)との間を移動可能となつ ている。  Reference numeral 56 denotes a coating liquid nozzle that supplies the second coating liquid to the wafer W held on the spin chuck 51. Reference numeral 57 denotes a solvent nozzle (solvent application means) for supplying an organic solvent (for example, thinner one liquid) contained in the second application liquid. Reference numeral 55 denotes a nozzle unit in which a coating liquid nozzle 56 and a solvent nozzle 57 are integrally provided. The nozzle unit 55 can be moved up and down by an elevating mechanism 58a, and can be moved in the X direction by a moving mechanism 58c along a guide rail 58b extending in the X direction. As a result, the nozzle unit 55 supplies the second coating liquid or thinner liquid to the wafer W (the position shown in FIG. 7 (a)) and the standby position outside the cup body 52 (FIG. 7 ( It is possible to move between the positions shown in b).
[0101] また、塗布液ノズル 56〖こは、バルブ VIを備えた塗布液供給路 56aを介して第 2の 塗布液の供給源 56bが接続されている。また、溶剤ノズル 57〖こは、バルブ V2を備え た溶剤供給路 57aを介して有機溶媒 (本実施形態ではシンナー液)の供給源 57bが 接続されている。本実施形態の塗布ユニット 5は、第 2の塗布液をスピンコーティング により塗布するものであるが、上述した第 1の薄膜 31の第 1の塗布液も当該装置を用 いて塗布することができる。  Further, the coating liquid nozzle 56 is connected to a second coating liquid supply source 56b via a coating liquid supply path 56a provided with a valve VI. Further, the solvent nozzle 57 is connected to a supply source 57b of an organic solvent (a thinner liquid in this embodiment) via a solvent supply path 57a provided with a valve V2. The application unit 5 of the present embodiment applies the second application liquid by spin coating, but the first application liquid of the first thin film 31 described above can also be applied using the apparatus.
[0102] 続いて、この塗布ユニット 5にて実施される第 2の塗布膜の形成処理について説明 する。先ず、スピンチャック 51をカップ体 52の上方側に位置させておく。そして、図示 しな 、搬送手段により搬送されたウェハ wを図示しな 、昇降ピンとの協働作用により スピンチャック 51上に載置させる。次に、スピンチャック 51を図 7 (a)に示す処理位置 まで下降させる。ここで、当該塗布ユニット 5に搬送されるウェハ Wには、ウェハ Wの 上に第 1の薄膜 31が形成されているものとする。 [0102] Next, the second coating film forming process performed in the coating unit 5 will be described. First, the spin chuck 51 is positioned above the cup body 52. And illustrated However, the wafer w transported by the transport means is placed on the spin chuck 51 by a cooperative action with the lifting pins, not shown. Next, the spin chuck 51 is lowered to the processing position shown in FIG. Here, it is assumed that the first thin film 31 is formed on the wafer W on the wafer W transferred to the coating unit 5.
[0103] 次に、図 8 (a)に示すように、溶剤ノズル 57の先端の吐出口がスピンチャック 51に 保持されたウェハ Wの略中心に対向するようにノズルユニット 55を移動させる。そし て、ウェハ Wを回転させない状態で、ウェハ Wの略中心に溶剤ノズル 57からシンナ 一液 45を供給する。このようにすると、シンナー液 45は、ウェハ Wの略中心力 周縁 側に向かって同心円状に徐々に広がっていき、ウェハ Wの全面に塗布された状態に なる。 Next, as shown in FIG. 8 (a), the nozzle unit 55 is moved so that the discharge port at the tip of the solvent nozzle 57 faces the substantially center of the wafer W held by the spin chuck 51. Then, the thinner one liquid 45 is supplied from the solvent nozzle 57 to the approximate center of the wafer W without rotating the wafer W. In this way, the thinner liquid 45 gradually spreads concentrically toward the peripheral edge side of the substantially central force of the wafer W, and is applied to the entire surface of the wafer W.
[0104] 次に、図 8 (b)に示すように、塗布液ノズル 56の先端の吐出口がスピンチャック 51 に保持されたウェハ Wの略中心に対向するようにノズルユニット 55を移動させる。そ して、スピンチャック 51によってウェハ Wを例えば 100〜1000rpm程度の回転速度 で回転させながら、ウェハ Wの略中心に塗布液ノズル 56から第 2の塗布液 46を供給 する。このようにすると、第 2の塗布液 46は、ウェハ Wの回転の遠心力により当該ゥェ ハ Wの略中心力も周縁側に向かって伸展していき、ウェハ Wの全面に塗布されること になる。  Next, as shown in FIG. 8B, the nozzle unit 55 is moved so that the discharge port at the tip of the coating liquid nozzle 56 faces the substantially center of the wafer W held by the spin chuck 51. Then, the second coating liquid 46 is supplied from the coating liquid nozzle 56 to the approximate center of the wafer W while the wafer W is rotated by the spin chuck 51 at a rotational speed of about 100 to 1000 rpm, for example. In this way, the second coating liquid 46 is applied to the entire surface of the wafer W by the substantially central force of the wafer W extending toward the peripheral side due to the centrifugal force of the rotation of the wafer W. Become.
[0105] 次に、図 8 (c)に示すように、ウェハ Wを例えば 1500rpm程度の回転速度で回転さ せ、余分な第 2の塗布液 46を振り切らせる。その後、図 8 (d)に示すように、ウェハ W を例えば 2000rpm程度の回転速度で回転させることにより第 2の塗布液 46を乾燥さ せる。以上のようにして、ウェハ W上の第 1の薄膜 31の表面に例えば 180nmの厚さ の第 2の塗布膜 32aが形成される(図 5 (a)参照)。尚、この状態では、第 2の塗布膜 3 2a中の Baを含む化合物と Tiを含む化合物との粒子の大部分は、溶剤中に分散され た状態になっており、一部がチタン酸バリウムを生成しているものと推察される。  Next, as shown in FIG. 8C, the wafer W is rotated at a rotational speed of, for example, about 1500 rpm, and the excess second coating liquid 46 is shaken off. Thereafter, as shown in FIG. 8 (d), the second coating liquid 46 is dried by rotating the wafer W at a rotational speed of about 2000 rpm, for example. As described above, the second coating film 32a having a thickness of, for example, 180 nm is formed on the surface of the first thin film 31 on the wafer W (see FIG. 5A). In this state, most of the particles of the compound containing Ba and the compound containing Ti in the second coating film 32a are dispersed in the solvent, and a part of the particles is barium titanate. It is inferred that
[0106] 以上の塗布膜形成工程を実施した後、上述した焼成の前処理である加熱工程と、 焼成工程とを引き続いて行なうことによって第 2の薄膜 32が形成される。  [0106] After performing the above-described coating film forming step, the second thin film 32 is formed by successively performing the heating step and the baking step, which are the pretreatments of the baking described above.
[0107] 以上の第 1の実施形態に係る塗布膜形成工程を実施すると、第 1の薄膜 31の空隙 42に第 2の塗布液 46が入り込みやすいという効果が得られる。以下、この理由につ いて説明する。図 9 (a)に示すように、シンナー液 45を塗布する前は、第 1の薄膜 31 の空隙 42に空気 44が入りこんでいる状態である。ところで、シンナー液 45は 2—メト キシエタノールであるので空気と置換されやすい性質を有する。従って、前記状態で 第 1の薄膜 31の表面にシンナー液 45を塗布すると、シンナー液 45は、図 9 (b)に示 すように、第 1の薄膜 31の空隙 42に入り込んでいる空気 44と置換される。これにより 、第 1の薄膜 31の空隙 42がシンナー液 45で満たされている状態となる。 When the coating film forming step according to the first embodiment described above is performed, an effect that the second coating liquid 46 easily enters the gap 42 of the first thin film 31 is obtained. The reason for this is as follows. And explain. As shown in FIG. 9 (a), before applying the thinner liquid 45, the air 44 is in the gap 42 of the first thin film 31. By the way, since thinner liquid 45 is 2-methoxyethanol, it has the property of being easily replaced with air. Accordingly, when the thinner liquid 45 is applied to the surface of the first thin film 31 in the above-described state, the thinner liquid 45 becomes air 44 that has entered the gap 42 of the first thin film 31 as shown in FIG. 9 (b). Is replaced with As a result, the gap 42 of the first thin film 31 is filled with the thinner liquid 45.
[0108] また、シンナー液 45の供給中にウェハ Wを回転させないことで、上記置換性を向 上させている。即ち、無回転状態であると、ウェハ Wの略中心力も周縁側へ向力 シ ンナー液 45の液流れが発生し、これにより、ウエノ、 W上の第 1の薄膜 31の全面にシ ンナー液 45が塗布されることになる。つまり、ウェハ Wを回転させながらシンナー液 4 5を塗布する場合に比べ、シンナー液がゆっくりと浸透されつつ塗布されることになる 。これにより、第 1の薄膜 31の空隙 42中の空気 44とシンナー液 45との置換性が高ま る。尚、必ずしも無回転状態である必要はなぐ例えば 20rpm以下の低速回転であ れば、同様の効果が得られ、時間の短縮も図れる。  [0108] Further, the above replaceability is improved by not rotating the wafer W during the supply of the thinner liquid 45. That is, in the non-rotating state, the substantially central force of the wafer W is also directed toward the peripheral side, and a liquid flow of the thinner liquid 45 is generated. As a result, the thinner liquid is entirely applied to the first thin film 31 on the wafer W. 45 will be applied. In other words, compared with the case where the thinner liquid 45 is applied while rotating the wafer W, the thinner liquid is applied while slowly penetrating. As a result, the substituting property between the air 44 in the gap 42 of the first thin film 31 and the thinner liquid 45 is enhanced. It is not always necessary to be in a non-rotating state. For example, if it is a low-speed rotation of 20 rpm or less, the same effect can be obtained and the time can be reduced.
[0109] 続いて、このように第 1の薄膜 31の表面にシンナー液 45が存在する状態で、第 2の 塗布液 46を塗布する。すると、図 9 (c)及び図 9 (d)に示すように、第 1の薄膜 31の空 隙 42で、シンナー液 45と第 2の塗布液 46の置換が行われる。この場合、両者共に液 体であるので、第 2の塗布液 46と空気 44との間、即ち、液体と気体との間の置換に 比べて格段に速く置換が進行する。  Subsequently, the second coating liquid 46 is applied in the state where the thinner liquid 45 is present on the surface of the first thin film 31 as described above. Then, as shown in FIGS. 9 (c) and 9 (d), the thinner liquid 45 and the second coating liquid 46 are replaced in the gap 42 of the first thin film 31. In this case, since both are liquids, the replacement proceeds much faster than the replacement between the second coating liquid 46 and the air 44, that is, between the liquid and the gas.
[0110] このため、第 1の薄膜 31の表面にシンナー液 45を塗布し、このシンナー液 45が揮 発しないうちに第 2の塗布液 46を塗布することにより、第 1の薄膜 31の空隙 42に第 2 の塗布液 46を速やかに充填することができる。  [0110] For this reason, by applying a thinner liquid 45 to the surface of the first thin film 31, and applying the second coating liquid 46 before the thinner liquid 45 is volatilized, the voids in the first thin film 31 are obtained. 42 can be quickly filled with the second coating liquid 46.
[0111] 以上のように第 1の実施形態に係る塗布膜形成工程を実施すると、第 2の塗布液 4 6が第 1の薄膜 31の空隙 42内により浸透しやすくなり、し力も、第 2の塗布液 46の省 量ィ匕ゃ塗布時間の短縮ィ匕等も図れる。従って、第 1の薄膜 31の表面にはより緻密な 層、即ち、より密度の高い層が形成され、平坦性が向上する。このように、平坦性の 高い第 1の薄膜 31の上に第 2の薄膜 32を形成すると、結果として、 ABOx型べロブ スカイト結晶構造を有する誘電体膜 3aの表面の平坦性が向上する。 [0112] また、当該誘電体膜 3aの両面に下部電極 21と上部電極 22とを形成してコンデン サを生成した場合(図 1 (a)参照)には、リーク電流の発生をより抑制することができる 。これは、第 1の薄膜 31と第 2の薄膜 32との境界付近に緻密性の高い (密度の高い) 膜が形成されることで、誘電体膜 3a内の導電路が形成され難くなるという理由による [0111] As described above, when the coating film forming step according to the first embodiment is performed, the second coating liquid 46 can more easily permeate into the gap 42 of the first thin film 31, and the second force can be reduced. If the amount of the coating liquid 46 is reduced, the application time can be shortened. Therefore, a denser layer, that is, a layer having a higher density, is formed on the surface of the first thin film 31, and the flatness is improved. As described above, when the second thin film 32 is formed on the first thin film 31 having high flatness, as a result, the flatness of the surface of the dielectric film 3a having the ABOx-type perovskite crystal structure is improved. [0112] Further, when the capacitor is generated by forming the lower electrode 21 and the upper electrode 22 on both surfaces of the dielectric film 3a (see Fig. 1 (a)), the generation of leakage current is further suppressed. be able to . This is because the formation of a highly dense (dense) film near the boundary between the first thin film 31 and the second thin film 32 makes it difficult to form a conductive path in the dielectric film 3a. Depending on the reason
[0113] [塗布膜形成工程の第 2の実施形態] [0113] [Second embodiment of coating film forming step]
次に、塗布膜形成工程の第 2の実施形態について説明する、尚、この工程で使用 する塗布装置は、第 1の実施形態と同様(図 7に示す塗布ユニット 5)であるので、内 部構成等の説明につ 、ては省略する。  Next, a second embodiment of the coating film forming process will be described. Note that the coating apparatus used in this process is the same as that of the first embodiment (coating unit 5 shown in FIG. 7). The description of the configuration will be omitted.
[0114] 先ず、スピンチャック 51をカップ体 52の上方側に位置させておく。そして、図示しな V、搬送手段により搬送されたウェハ Wを図示しな 、昇降ピンとの協働作用によりスピ ンチャック 51上に載置させる。次に、スピンチャック 51を図 7 (a)に示す処理位置まで 下降させる。ここで、当該塗布ユニット 5に搬送されるウェハ Wには、ウェハ Wの上に 第 1の薄膜 31が形成されているものとする。  [0114] First, the spin chuck 51 is positioned above the cup body 52. Then, V (not shown) and the wafer W transferred by the transfer means are placed on the spin chuck 51 by a cooperative action with the lift pins (not shown). Next, the spin chuck 51 is lowered to the processing position shown in FIG. Here, it is assumed that the first thin film 31 is formed on the wafer W on the wafer W transferred to the coating unit 5.
[0115] 次に、図 10 (a)に示すように、塗布液ノズル 56の先端の吐出口がスピンチャック 51 に保持されたウェハ Wの略中心に対向するようにノズルユニット 55を移動させる。そ して、スピンチャック 51を回転させずに、あるいは lOrpm以下で低速回転させた状態 で、ウェハ Wの略中心に塗布液ノズル 56から第 2の塗布液 46を供給する。そして、こ の供給は、第 2の塗布液 46がウェハ W上の周縁に達するまで続けられる。このように して第 2の塗布液 46を供給することによって、第 2の塗布液 46のウェハ Wの略中心 力も周縁側へ向力 液流れが作られる。そして、図 10 (b)に示すように、第 2の塗布 液 46がウェハ W上の周縁部まで行き渡ると、第 1の薄膜 31の表面に第 2の塗布液 4 6の液盛り部が発生する。この場合の液盛り部の厚さは、例えば 2 m程度となってい る。  Next, as shown in FIG. 10 (a), the nozzle unit 55 is moved so that the discharge port at the tip of the coating liquid nozzle 56 faces the substantially center of the wafer W held by the spin chuck 51. Then, the second coating liquid 46 is supplied from the coating liquid nozzle 56 to the approximate center of the wafer W without rotating the spin chuck 51 or rotating at a low speed of 10 rpm or less. This supply is continued until the second coating liquid 46 reaches the peripheral edge on the wafer W. By supplying the second coating liquid 46 in this manner, the substantially central force of the wafer W of the second coating liquid 46 is also directed toward the peripheral side. Then, as shown in FIG. 10 (b), when the second coating solution 46 reaches the peripheral edge on the wafer W, a liquid coating portion of the second coating solution 46 is generated on the surface of the first thin film 31. To do. In this case, the thickness of the liquid deposit is, for example, about 2 m.
[0116] 次に、図 10 (c)に示すように、スピンチャック 51によってウェハ Wを例えば 1500rp m程度の回転速度で回転させる。この回転による遠心力によって、第 2の塗布液 46 が第 1の薄膜 31の表面に広がり、適切な厚さで塗布される。また、余分な第 2の塗布 液 46が振り切られる。この後、図 10 (d)に示すように、ウェハ Wを例えば 3000rpm 程度の回転速度で回転させることで、第 2の塗布液 46を乾燥させる。以上のようにし て、ウェハ W上の第 1の薄膜 31の表面に例えば 180nmの厚さの第 2の塗布膜 32a ( 図 5 (a)参照)が形成される。尚、この状態では、第 2の塗布膜 32a中の Baを含む化 合物と Tiを含む化合物との粒子の大部分は、溶剤中に分散された状態になっており 、一部がチタン酸バリウムを生成して 、るものと推察される。 Next, as shown in FIG. 10C, the wafer W is rotated by the spin chuck 51 at a rotational speed of, for example, about 1500 rpm. The second coating liquid 46 spreads on the surface of the first thin film 31 by the centrifugal force due to this rotation, and is coated with an appropriate thickness. Also, the excess second coating liquid 46 is shaken off. After this, as shown in FIG. The second coating liquid 46 is dried by rotating at a rotational speed of about. As described above, the second coating film 32a (see FIG. 5A) having a thickness of, for example, 180 nm is formed on the surface of the first thin film 31 on the wafer W. In this state, most of the particles of the compound containing Ba and the compound containing Ti in the second coating film 32a are dispersed in the solvent, and a part of the particles is titanic acid. It is presumed that barium is produced.
[0117] 以上の塗布膜形成工程を実施した後、上述した焼成の前処理である加熱工程と、 焼成工程とを引き続いて行なうことによって第 2の薄膜 32が形成される。  [0117] After performing the above-described coating film forming step, the second thin film 32 is formed by successively performing the heating step and the baking step, which are the pretreatments of the baking described above.
[0118] 以上の第 2の実施形態に係る塗布膜形成工程を実施すると、第 1の薄膜 31の空隙 42に第 2の塗布液 46が入り込みやすいという効果が得られる。以下、この理由につ いて説明する。上記第 2の実施形態に係る塗布膜形成工程では、第 2の塗布液 46を ウェハ Wを回転させずに、あるいは低速回転させた状態で供給し、該供給は、第 2の 塗布液 46がウェハ Wの全面に行き渡るまで続けられる。すると、この間に第 2の塗布 液 46の液盛り部が発生し、これにより第 2の塗布液 46中のシンナー液 45の揮発が 妨げられることになる。従って、第 1の薄膜 31の空隙 42では、第 2の塗布液 46中のシ ンナー液 45の存在により第 2の塗布液 46が前記空隙 42に入り込みやすくなる When the coating film forming step according to the second embodiment described above is performed, an effect that the second coating liquid 46 easily enters the gap 42 of the first thin film 31 is obtained. The reason for this will be explained below. In the coating film forming step according to the second embodiment, the second coating liquid 46 is supplied without rotating the wafer W or while rotating at a low speed, and the supply is performed by the second coating liquid 46. Continue until it reaches the entire surface of wafer W. Then, during this time, the liquid coating portion of the second coating liquid 46 is generated, and this prevents the volatilization of the thinner liquid 45 in the second coating liquid 46. Therefore, in the gap 42 of the first thin film 31, the second coating liquid 46 easily enters the gap 42 due to the presence of the thinner liquid 45 in the second coating liquid 46.
[0119] この点をさらに詳細に説明する。第 2の塗布液 46の液盛りィ匕は、ウェハ Wの略中心 力も周縁側に向力つてゆっくりと進行する。その際、第 2の塗布液 46に含まれるシン ナー液 45は、揮発しょうとしながら周縁側へ伸展して行くので、第 2の塗布液の前駆 体成分よりも前方側へ伸展しやすいといえる。また、上述したように、シンナー液 45 は、 2—メトキシエタノールであって空気と置換しやすい。このため、図 11 (a) ,図 11 ( b)に示すように、第 2の塗布液 46のゆっくりとした伸展の間に、先ず、第 2の塗布液 4 6中のシンナー液 45と、空隙 42内の空気 44との置換が起こる。そして、次に、図 11 ( c)に示すように、空隙 42内のシンナー液 45と第 2の塗布液 46の残りの成分 (即ち、 シンナー液 45以外の成分)との置換が行なわれる。その結果、第 1の薄膜 31の空隙 42に第 2の塗布液 46を速やかに充填することができると推察される。  [0119] This point will be described in more detail. The liquid deposition of the second coating liquid 46 proceeds slowly with the substantially central force of the wafer W also directed toward the peripheral side. At that time, the thinner liquid 45 contained in the second coating liquid 46 extends to the peripheral side while volatilizing, so it can be said that it is easier to extend forward than the precursor component of the second coating liquid. . Further, as described above, the thinner liquid 45 is 2-methoxyethanol and can be easily replaced with air. For this reason, as shown in FIGS. 11 (a) and 11 (b), during the slow extension of the second coating solution 46, first, the thinner solution 45 in the second coating solution 46, Replacement with the air 44 in the air gap 42 occurs. Then, as shown in FIG. 11 (c), replacement of the thinner liquid 45 in the gap 42 with the remaining components of the second coating liquid 46 (ie, components other than the thinner liquid 45) is performed. As a result, it is presumed that the second coating liquid 46 can be quickly filled into the gap 42 of the first thin film 31.
[0120] これに対し、第 2の塗布液 46の塗布をウェハ Wを高速回転させながら行なうスピン コーティングでは、第 2の塗布液 46が急激にウェハ Wの周縁側まで広がるように塗布 される。このため、第 2の塗布液 46中のシンナー液 45が揮発しやすいといえる。また 、ウェハ Wを 2000rpmもの高速で回転させると、当該回転による気流が発生し、さら にシンナー液 45の揮発が行なわれやすい状態となる。従って、第 2の塗布液 46が伸 展すると略同時にシンナー液 45が揮発してしまうことになる。これにより、第 2の塗布 液 46中のシンナー液 45が空隙 42内に入っていけず、結果として、第 2の塗布液 46 が空隙 42に浸透し難いものと推察される。 On the other hand, in the spin coating in which the application of the second coating liquid 46 is performed while rotating the wafer W at a high speed, the second coating liquid 46 is applied so as to spread rapidly to the peripheral side of the wafer W. Therefore, it can be said that the thinner liquid 45 in the second coating liquid 46 is likely to volatilize. Also When the wafer W is rotated at a high speed of 2000 rpm, an air flow is generated by the rotation, and the thinner 45 is easily volatilized. Therefore, when the second coating solution 46 is extended, the thinner solution 45 is volatilized almost simultaneously. Accordingly, it is assumed that the thinner liquid 45 in the second coating liquid 46 cannot enter the gap 42, and as a result, the second coating liquid 46 hardly penetrates into the gap 42.
[0121] 以上のように第 2の実施形態に係る塗布膜形成工程を実施すると、第 2の塗布液 4 6が第 1の薄膜 31の空隙 42内により浸透しやすくなり、第 1の薄膜 31の表面にはより 緻密な層、即ち、より密度の高い層が形成され、平坦性が向上する。このように、平坦 性の高い第 1の薄膜 31の上に第 2の薄膜 32を形成すると、結果として、 ABOx型べ 口ブスカイト結晶構造を有する誘電体膜 3aの表面の平坦性が向上する。  When the coating film forming step according to the second embodiment is performed as described above, the second coating liquid 46 is more easily penetrated into the gaps 42 of the first thin film 31, and the first thin film 31 A denser layer, that is, a layer having a higher density, is formed on the surface of the film, and the flatness is improved. Thus, when the second thin film 32 is formed on the first thin film 31 having high flatness, as a result, the flatness of the surface of the dielectric film 3a having the ABOx type bevskite crystal structure is improved.
[0122] またこの誘電体膜 3aの両面に下部電極 21と上部電極 22とを形成してコンデンサを 形成した場合(図 1 (a)参照)には、リーク電流の発生をより抑制することができる。こ れは、第 1の薄膜 31と第 2の薄膜 32との境界付近により緻密性の高い (密度の高い) 膜が形成されることで、誘電体膜 3a内の導電路が形成され難くなるという理由による  [0122] Further, when the capacitor is formed by forming the lower electrode 21 and the upper electrode 22 on both surfaces of the dielectric film 3a (see Fig. 1 (a)), the generation of leakage current can be further suppressed. it can. This is because a denser (higher density) film is formed near the boundary between the first thin film 31 and the second thin film 32, thereby making it difficult to form a conductive path in the dielectric film 3a. Because
[0123] [塗布膜形成工程の第 3の実施形態] [Third Embodiment of Coating Film Forming Process]
次に、塗布膜形成工程の第 3の実施形態について説明する。図 12は、この工程を 実施するための塗布装置である塗布ユニット 6の概略構成図である。図 12に示す塗 布ユニット 6は、第 2の塗布液を 、わば一筆書きの要領で塗布する構成を備えて!/、る  Next, a third embodiment of the coating film forming process will be described. FIG. 12 is a schematic configuration diagram of the coating unit 6 which is a coating apparatus for carrying out this process. The coating unit 6 shown in FIG. 12 has a configuration in which the second coating liquid is applied in the manner of a single stroke!
[0124] 図 12に示す塗布ユニット 6において、符号 61は、ウェハ Wの裏面側中央部を吸引 吸着して水平に保持するためのウェハ保持部である。該ウェハ保持部 61は、昇降機 構 61aにより昇降自在に構成されている。符号 60はケース体であり、該ケース体 60 の天板 60aには X方向に伸びるスリット 62が形成されている。該スリット 62内には、塗 布液ノズル 63が、 X方向に移動自在に設けられている。符号 64aは X方向に伸びる ガイド部である。符号 64bはボールネジ部である。符号 64cは、塗布液ノズル 63が取 り付けられ、ボールネジ部 64bと螺合する移動体である。塗布液ノズル 63は、モータ M2によるボールネジ部 64bの回動によって、移動体 64cを介して X方向に移動でき るようになっている。また、塗布液ノズル 63は、バルブ V3を備えた供給路 63aを介し て第 2の塗布液の供給源 63bに接続されている。 [0124] In the coating unit 6 shown in Fig. 12, reference numeral 61 denotes a wafer holding unit for sucking and adsorbing the back side central portion of the wafer W and holding it horizontally. The wafer holding unit 61 is configured to be movable up and down by a lifting mechanism 61a. Reference numeral 60 denotes a case body, and a slit 62 extending in the X direction is formed in the top plate 60a of the case body 60. In the slit 62, a coating liquid nozzle 63 is provided so as to be movable in the X direction. Reference numeral 64a is a guide portion extending in the X direction. Reference numeral 64b denotes a ball screw portion. Reference numeral 64c is a moving body to which the coating liquid nozzle 63 is attached and screwed with the ball screw portion 64b. The coating solution nozzle 63 can move in the X direction via the moving body 64c by rotating the ball screw 64b by the motor M2. It has become so. The coating liquid nozzle 63 is connected to a second coating liquid supply source 63b via a supply path 63a having a valve V3.
[0125] 移動台 65cは、モータ Mlにより駆動されるボールネジ部 65aにより、ガイド部 65b にガイドされながら Y方向に移動自在に構成されている。この構成により、移動台 65c の上に配置されるウェハ保持部 61は、 Y方向に間欠的に移動できるようになつてい る。符号 66は、ウェハ Wの周縁領域を覆うが、塗布膜形成領域に対応する部分は開 口しているマスクである。該マスク 66は、ウェハ Wの周縁領域や裏面側への第 2の塗 布液の付着や回り込みを防ぐために設けられて 、る。  [0125] The movable table 65c is configured to be movable in the Y direction while being guided by the guide portion 65b by a ball screw portion 65a driven by the motor Ml. With this configuration, the wafer holding unit 61 disposed on the moving table 65c can move intermittently in the Y direction. Reference numeral 66 denotes a mask that covers the peripheral area of the wafer W but opens the portion corresponding to the coating film forming area. The mask 66 is provided in order to prevent the second coating liquid from adhering to and wrapping around the peripheral area and back side of the wafer W.
[0126] 続いて、以上のように構成された塗布ユニット 6にて実施される第 2の塗布膜の形成 処理について説明する。先ず、図 13に示すように、例えばウェハ Wの Y方向の一端 側が塗布液ノズル 63の真下に位置するように位置合わせする。この位置力 ウェハ 保持部 61が、ウェハ Wの Y方向の他端側に向かつて Y方向に所定のピッチで間欠 的に移動する。一方、塗布液ノズル 63は、ウェハ Wの間欠移動のタイミングに対応し て X方向に往復移動する。つまり、塗布液ノズル 63は、ウェハ Wが静止中にウェハ W 上に塗布液を吐出しながら X方向の一端側から他端側に移動する。そして、このよう な塗布液ノズル 63の 1回の往復移動後、ウェハ Wは、ウェハ保持部 61により所定量 (所定ピッチ)だけ Y方向に移動する。塗布液ノズル 63は、 X方向の他端側で折り返 し、 X方向の一端側に向力つてウェハ W上に塗布液を吐出しながら移動する。このよ うにして第 2の塗布液 46が一筆書きの要領でウェハ W上に塗布されて行く。  [0126] Next, the second coating film forming process performed in the coating unit 6 configured as described above will be described. First, as shown in FIG. 13, for example, alignment is performed so that one end side of the wafer W in the Y direction is positioned directly below the coating solution nozzle 63. This positional force wafer holder 61 moves intermittently at a predetermined pitch in the Y direction toward the other end side of the wafer W in the Y direction. On the other hand, the coating solution nozzle 63 reciprocates in the X direction in accordance with the timing of intermittent movement of the wafer W. That is, the coating liquid nozzle 63 moves from one end side in the X direction to the other end side while discharging the coating liquid onto the wafer W while the wafer W is stationary. Then, after such reciprocation of the coating solution nozzle 63 once, the wafer W is moved in the Y direction by a predetermined amount (predetermined pitch) by the wafer holder 61. The coating solution nozzle 63 is folded back at the other end side in the X direction, and moves while discharging the coating solution onto the wafer W with a force toward one end side in the X direction. In this way, the second coating solution 46 is applied onto the wafer W in the manner of a single stroke.
[0127] 次に、塗布ユニット 6によって第 2の塗布液 46の塗布処理が行われた後にウェハ W が搬送される減圧乾燥ユニット 7 (浸透装置)について図 14を用いて説明する。図 14 において、符号 70は密閉容器である。符号 71はウェハ Wを載置するための載置台 である。該載置台 71には、ウェハ Wの温度を調節するための温度調節手段 72が設 けられている。符号 71aはウェハ Wの裏面側を保持するための突起部である。符号 7 3は蓋体であり、符号 74は、蓋体 73を昇降させる蓋体昇降機構である。該蓋体昇降 機構 74により、蓋体 73は、ウェハ Wの搬入'搬出時には上昇し、減圧乾燥を行なうと きには下降する。また、蓋体 73が最下点まで下降すると、蓋体 73と載置台 71とにより 密閉容器 70が構成されるようになっている。また、蓋体 73の天井部の中心付近には 、排気路 76が接続されている。該排気路 76には、バルブ V4を介して真空排気手段 である真空ポンプ 75が接続されている。また、排気路 76には、バルブ V5及び供給 路 77を介してパージガス供給源 78が接続されて 、る。 Next, the reduced pressure drying unit 7 (penetration device) to which the wafer W is transferred after the coating process of the second coating liquid 46 is performed by the coating unit 6 will be described with reference to FIG. In FIG. 14, reference numeral 70 denotes a sealed container. Reference numeral 71 denotes a mounting table on which the wafer W is mounted. The mounting table 71 is provided with temperature adjusting means 72 for adjusting the temperature of the wafer W. Reference numeral 71 a is a protrusion for holding the back side of the wafer W. Reference numeral 73 denotes a lid, and reference numeral 74 denotes a lid lifting mechanism that lifts and lowers the lid 73. By the lid lifting / lowering mechanism 74, the lid 73 is raised when the wafer W is loaded / unloaded, and is lowered when vacuum drying is performed. When the lid 73 is lowered to the lowest point, the hermetic container 70 is configured by the lid 73 and the mounting table 71. Also, near the center of the ceiling of lid 73 The exhaust path 76 is connected. A vacuum pump 75 as a vacuum exhaust means is connected to the exhaust path 76 via a valve V4. A purge gas supply source 78 is connected to the exhaust passage 76 via a valve V5 and a supply passage 77.
[0128] 次に、以上のように構成された減圧乾燥ユニット 7で実施される減圧乾燥処理 (浸 透工程)について説明する。先ず、蓋体 73が上方に位置する状態で、ウェハ Wを図 示しない昇降ピンと搬送手段との協働作用により前記突起部 71a上に搬入する。次 に、蓋体 73を下降させて、密閉容器 70を閉じた状態にする。次に、バルブ V4を開き 、真空ポンプ 75を動作させて密閉容器 70内を減圧し、ウェハ Wの乾燥を行なう。こ のようにしてウェハ Wの減圧乾燥を行なった後、バルブ V4を閉じる。次に、バルブ V 5を開いてパージガス (例えば N2)ガスを密閉容器 70内に流入させ、密閉容器 70内 を大気圧に戻す。し力る後、密閉容器 70の蓋体 73を上昇させてウェハ Wを搬出し、 次工程に搬送する。 Next, the reduced-pressure drying process (permeation process) performed by the reduced-pressure drying unit 7 configured as described above will be described. First, in a state where the lid 73 is positioned above, the wafer W is loaded onto the protrusion 71a by the cooperative action of a lift pin (not shown) and a transfer means. Next, the lid 73 is lowered and the sealed container 70 is closed. Next, the valve V4 is opened, the vacuum pump 75 is operated, the inside of the sealed container 70 is decompressed, and the wafer W is dried. After the wafer W is dried under reduced pressure in this way, the valve V4 is closed. Next, the valve V 5 is opened, and a purge gas (for example, N2) gas is caused to flow into the sealed container 70 to return the inside of the sealed container 70 to atmospheric pressure. Then, the lid 73 of the hermetic container 70 is raised and the wafer W is unloaded and transferred to the next process.
[0129] 本実施形態の塗布膜形成工程での第 2の塗布膜の形成処理は、上記塗布ユニット 6及び減圧乾燥ユニット 7により、以下のようにして行われる。先ず、図 15 (a)に示す ように、塗布ユニット 6が、上述したように第 1の薄膜 31が形成されたウェハ Wに対し て一筆書きの要領で第 2の塗布液 46を塗布する。次に、第 1の薄膜 31の表面に第 2 の塗布液 46が塗布されたウェハ Wを減圧乾燥ユニット 7に搬送し、図 15 (b)に示す ように、密閉容器 70の載置台 71上に載置する。そして、温度 20°Cの条件下で、バル ブ V4を開き、真空ポンプ 75を動作させて当該密閉容器 70内を所定時間(例えば 3 分程度)減圧する(減圧工程)。このようにすると、密閉容器 70内は、後述するように 溶剤であるシンナー液 45の揮発が開始される圧力(例えば lOOPa程度)より低い圧 力まで減圧されるので、ウェハ W表面の第 2の塗布液 46中のシンナー液 45の大部 分は揮発していく。  [0129] The second coating film forming process in the coating film forming step of the present embodiment is performed by the coating unit 6 and the reduced pressure drying unit 7 as follows. First, as shown in FIG. 15 (a), the coating unit 6 applies the second coating liquid 46 to the wafer W on which the first thin film 31 is formed as described above in the manner of one stroke. Next, the wafer W with the second coating liquid 46 applied on the surface of the first thin film 31 is transferred to the vacuum drying unit 7 and is placed on the mounting table 71 of the sealed container 70 as shown in FIG. Placed on. Then, under the condition of a temperature of 20 ° C., the valve V4 is opened and the vacuum pump 75 is operated to depressurize the sealed container 70 for a predetermined time (for example, about 3 minutes) (decompression step). As a result, the inside of the sealed container 70 is depressurized to a pressure lower than the pressure at which the solvent 45, which is a solvent, starts to be volatilized (for example, about lOOPa), as will be described later. Most of the thinner 45 in the coating 46 is volatilized.
[0130] ここで、密閉容器 70内の圧力の経時変化について図 16 (a)を用いて説明する。先 ず、時刻 tlにて密閉容器 70内の減圧を開始すると、密閉容器 70内の圧力(時刻 tl 時点では大気圧と略等しい)は、圧力 P1 (例えば lOOPa程度の圧力)になる時刻 t2 まで急激に低下していく。そして、 P1到達後は、時刻 t3まで一定状態となるが時刻 t 3以降はさらに急激に低下する。ここで、このような減圧をした場合におけるウエノ、 W 表面上の第 1の薄膜 31及び第 2の塗布液 46の状態について説明する。先ず、密閉 容器 70内を大気圧力も減圧していくと、次第に第 1の薄膜 31の空隙 42に入り込んで いる空気 44が空隙 42から吸引され、除去されていく。そして、圧力 P1 (時刻 tl)にな ると第 2の塗布液 46から溶剤であるシンナー液 45の揮発が開始される。この揮発は 、密閉容器 70内の圧力が P1である間(時刻 t2〜時刻 t3)、続くこと〖こなる。 Here, the change with time of the pressure in the sealed container 70 will be described with reference to FIG. 16 (a). First, when the pressure reduction in the sealed container 70 is started at time tl, the pressure in the sealed container 70 (substantially equal to the atmospheric pressure at the time tl) reaches the time t2 when the pressure becomes P1 (for example, a pressure of about lOOPa). It decreases rapidly. After reaching P1, the state remains constant until time t3, but decreases more rapidly after time t3. Here, Ueno, W The state of the first thin film 31 and the second coating liquid 46 on the surface will be described. First, when the pressure inside the sealed container 70 is also reduced, the air 44 entering the gap 42 of the first thin film 31 is gradually sucked from the gap 42 and removed. Then, when the pressure P1 (time tl) is reached, volatilization of the thinner liquid 45 as the solvent starts from the second coating liquid 46. This volatilization continues for a while while the pressure in the sealed container 70 is P1 (time t2 to time t3).
[0131] このようにしてウェハ W上の第 2の塗布液 46に対する減圧乾燥を行なうことで、ゥェ ハ Wの第 1の薄膜 31の表面に例えば 180nmの厚さの第 2の塗布膜 32aが形成され る(図 5 (a)参照)。尚、この状態では、第 2の塗布膜 32a中の Baを含む化合物と Tiを 含む化合物との粒子の一部がチタン酸バリウムを生成しているものと推察される。  [0131] By performing vacuum drying on the second coating liquid 46 on the wafer W in this manner, the second coating film 32a having a thickness of, for example, 180 nm is formed on the surface of the first thin film 31 of the wafer W. (See Fig. 5 (a)). In this state, it is presumed that part of particles of the compound containing Ba and the compound containing Ti in the second coating film 32a generate barium titanate.
[0132] そして、このような減圧乾燥を行なった後、バルブ V4を閉じ、バルブ V5を開いて、 上述したように密閉容器 70内にパージガスを供給して密閉容器 70内を大気圧まで 戻す。そして、蓋体 73を開いてウェハ Wを搬出し、次工程の後述する加熱ユニットま で搬送する。この後、上述した焼成の前処理である加熱工程により、第 2の塗布膜 32 aに残存するシンナー液 45が揮発する。また、加水分解及び縮重合が起こって、 AB Ox型べ口ブスカイト結晶構造のチタン酸バリウムの前駆体膜となるチタン酸バリウム の網状構造が形成される。さら〖こ、この後、焼成工程を行なうことで第 2の薄膜 32が 形成される。  [0132] Then, after such vacuum drying is performed, the valve V4 is closed and the valve V5 is opened, and the purge gas is supplied into the sealed container 70 as described above to return the inside of the sealed container 70 to atmospheric pressure. Then, the lid 73 is opened, the wafer W is unloaded, and is transferred to a heating unit described later in the next process. Thereafter, the thinner liquid 45 remaining in the second coating film 32a is volatilized by the heating process, which is the pretreatment for baking described above. In addition, hydrolysis and condensation polymerization occur to form a barium titanate network structure that becomes a precursor film of barium titanate having an AB Ox-type bobsite crystal structure. Further, the second thin film 32 is formed by performing a baking process thereafter.
[0133] 以上の第 3の実施形態に係る塗布膜形成工程を実施すると、第 1の薄膜 31の空隙 42に第 2の塗布液 46が入り込みやすいという効果が得られる。以下、この理由につ いて説明する。第 2の塗布液 46を塗布した後に行われる上述の減圧乾燥処理により 、図 17 (a) ,図 17 (b)に示すように、第 1の薄膜 31の空隙 42に入り込んでいる空気 4 4が強制的に吸い出される。こうして空気 44が除去された空隙 42に第 2の塗布液 46 が入り込んでいく。その結果、図 17 (c)に示すように、第 1の薄膜 31の空隙 42に第 2 の塗布液 46を速やかに充填することができると推察される。  When the coating film forming step according to the third embodiment described above is performed, an effect that the second coating liquid 46 easily enters the gap 42 of the first thin film 31 is obtained. The reason for this will be explained below. As shown in FIG. 17 (a) and FIG. 17 (b), the air 44 4 entering the gap 42 of the first thin film 31 is obtained by the above-described reduced-pressure drying process performed after the second coating liquid 46 is applied. Is forcibly sucked out. Thus, the second coating liquid 46 enters the gap 42 from which the air 44 has been removed. As a result, it is presumed that the second coating liquid 46 can be quickly filled into the gaps 42 of the first thin film 31 as shown in FIG. 17 (c).
[0134] 以上のように第 3の実施形態に係る塗布膜形成工程を実施すると、第 2の塗布液 4 6が第 1の薄膜 31の空隙 42内により浸透しやすくなり、第 1の薄膜 31の表面にはより 緻密な層、即ち、より密度の高い層が形成され、平坦性が向上する。このように、平坦 性の高い第 1の薄膜 31の上に第 2の薄膜 32を形成すると、結果として、 ABOx型べ 口ブスカイト結晶構造を有する誘電体膜 3aの表面の平坦性が向上する。 As described above, when the coating film forming step according to the third embodiment is performed, the second coating liquid 46 is more easily penetrated into the voids 42 of the first thin film 31, and the first thin film 31 A denser layer, that is, a layer having a higher density, is formed on the surface of the film, and the flatness is improved. As described above, when the second thin film 32 is formed on the first thin film 31 having high flatness, the result is an ABOx type base. The flatness of the surface of the dielectric film 3a having the mouth bskite crystal structure is improved.
[0135] またこの誘電体膜 3aの両面に下部電極 21と上部電極 22とを形成してコンデンサを 形成した場合(図 1 (a)参照)には、リーク電流の発生をより抑制することができる。こ れは、第 1の薄膜 31と第 2の薄膜 32との境界付近により緻密性の高い (密度の高い) 膜が形成されることで、誘電体膜 3a内の導電路が形成され難くなるという理由による [0135] When the capacitor is formed by forming the lower electrode 21 and the upper electrode 22 on both surfaces of the dielectric film 3a (see Fig. 1 (a)), the generation of leakage current can be further suppressed. it can. This is because a denser (higher density) film is formed near the boundary between the first thin film 31 and the second thin film 32, thereby making it difficult to form a conductive path in the dielectric film 3a. Because
[0136] [塗布膜形成工程の第 4の実施形態] [Fourth Embodiment of Coating Film Forming Process]
次に、塗布膜形成工程の第 4の実施形態について説明する、本実施形態の塗布 膜形成工程も第 3の実施形態と同様、第 2の塗布液 46の塗布処理後に減圧乾燥処 理 (浸透工程)を行う。そして、第 3の実施形態と同様に塗布ユニット 6及び減圧乾燥 ユニット 7を使用する。  Next, a fourth embodiment of the coating film forming process will be described. In the coating film forming process of the present embodiment, as in the third embodiment, after the coating process of the second coating liquid 46, the vacuum drying process (penetration) Step). Then, the coating unit 6 and the vacuum drying unit 7 are used as in the third embodiment.
[0137] 本実施形態の塗布膜形成工程での第 2の塗布膜の形成処理は、以下のようにして 行われる。先ず、図 18 (a)に示すように、塗布ユニット 6が、上述のようにして、第 1の 薄膜 31が形成されたウェハ Wに対して一筆書きの要領で第 2の塗布液 46を塗布す る。次に、第 1の薄膜 31の表面に第 2の塗布液 46が塗布されたウェハ Wを減圧乾燥 ユニット 7に搬送し、図 18 (b)に示すように、密閉容器 70の載置台 71上に載置する。 そして、バルブ V4を開き、真空ポンプ 75を動作させて当該密閉容器 70内の減圧を 開始し、温度 20°Cの条件下で、所定圧力(例えば、前記圧力 P1 (例えば lOOPa)よ りも高い圧力)になるまで減圧する (第 1の減圧工程)。ここで、第 2の塗布液 46中の シンナー液 45の揮発は、圧力 P1になってから始まるので、この段階では、シンナー 液 45が揮発して 、な 、状態であると推察される。  [0137] The second coating film forming process in the coating film forming step of the present embodiment is performed as follows. First, as shown in FIG. 18 (a), the coating unit 6 applies the second coating liquid 46 to the wafer W on which the first thin film 31 is formed in the manner of one stroke as described above. The Next, the wafer W having the surface of the first thin film 31 coated with the second coating liquid 46 is transferred to the vacuum drying unit 7, and on the mounting table 71 of the hermetic container 70 as shown in FIG. Placed on. Then, the valve V4 is opened, and the vacuum pump 75 is operated to start depressurization in the sealed container 70, and the pressure is higher than a predetermined pressure (for example, the pressure P1 (for example, lOOPa) under a temperature of 20 ° C. Pressure) until it reaches (pressure) (first decompression step). Here, the volatilization of the thinner liquid 45 in the second coating liquid 46 starts after the pressure P1 is reached, so it is presumed that at this stage, the thinner liquid 45 is volatilized and is in a state.
[0138] 次に、バルブ V4を閉じ、図 18 (c)に示すように、バルブ V5を開いて当該密閉容器 70内にパージガスを供給し、密閉容器 70内を大気圧に戻す (昇圧工程)。次に、バ ルブ V5を閉じ、図 18 (d)に示すように、再度バルブ V4を開いて真空ポンプ 75により 当該密閉容器 70内の減圧を開始する。そして、温度 20°Cの条件下で、密閉容器 70 内の圧力が前記圧力 P1より低い圧力になるまで、所定時間(例えば 5分程度)減圧 する (第 2の減圧工程)。この場合、密閉容器 70内の圧力が圧力 P1となった段階で、 第 2の塗布液 46中のシンナー液 45の揮発が開始する。このため、第 2の減圧工程が 行なわれると、ウエノヽ W表面の第 2の塗布液 46中のシンナー液 45の大部分は揮発 すること〖こなる。 Next, the valve V4 is closed, and as shown in FIG. 18 (c), the valve V5 is opened and purge gas is supplied into the sealed container 70 to return the inside of the sealed container 70 to atmospheric pressure (pressure increase process). . Next, the valve V5 is closed, and as shown in FIG. 18 (d), the valve V4 is opened again, and the pressure reduction in the sealed container 70 is started by the vacuum pump 75. Then, the pressure is reduced for a predetermined time (for example, about 5 minutes) until the pressure in the sealed container 70 becomes lower than the pressure P1 under the condition of a temperature of 20 ° C. (second pressure reduction step). In this case, volatilization of the thinner liquid 45 in the second coating liquid 46 starts when the pressure in the sealed container 70 reaches the pressure P1. For this reason, the second decompression step If performed, most of the thinner liquid 45 in the second coating liquid 46 on the surface of the UENO W will volatilize.
[0139] ここで、密閉容器 70内の圧力の経時変化について図 16 (b)を用いて説明する。先 ず、時刻 t4にて密閉容器 70内の減圧を開始すると、密閉容器 70内の圧力(時刻 t4 時点では大気圧と略等しい)は、急激に低下していく。しかし、圧力 P1まで低下する 前のタイミング(時刻 t5)で当該密閉容器 70内にパージガスを供給することにより、時 刻 t6の時点では当該容器 70内の圧力は大気圧に戻る。次に、第 2の減圧工程によ り、再度圧力 P1まで急激に低下する。そして、圧力 P1到達 (時刻 t7)後は、時刻 t8ま で一定状態となるが、時刻 t8以降はさらに急激に低下する。ここで、このような減圧を した場合におけるウエノ、 W表面上の第 1の薄膜 31及び第 2の塗布液 46の状態につ いて説明する。先ず、密閉容器 70内を大気圧から減圧すると、上述したように第 1の 薄膜 31の空隙 42に入り込んでいる空気 44が当該空隙 42から吸引され (押し出され )、除去される。次に、時刻 t6にて再度密閉容器 70内の減圧を開始し、圧力 P1まで 低下すると(時刻 t7)、第 2の塗布液 46中のシンナー液 45の揮発が開始され、時刻 t 8まで当該揮発が続く。  Here, the change with time of the pressure in the sealed container 70 will be described with reference to FIG. 16 (b). First, when pressure reduction in the hermetic container 70 is started at time t4, the pressure in the hermetic container 70 (substantially equal to the atmospheric pressure at time t4) decreases rapidly. However, when the purge gas is supplied into the closed container 70 at the timing (time t5) before the pressure P1 decreases, the pressure in the container 70 returns to the atmospheric pressure at the time t6. Next, in the second depressurization step, the pressure decreases rapidly to the pressure P1 again. Then, after reaching pressure P1 (time t7), the pressure remains constant until time t8, but decreases more rapidly after time t8. Here, the state of Ueno, the first thin film 31 on the W surface, and the second coating liquid 46 when such pressure reduction is performed will be described. First, when the inside of the sealed container 70 is depressurized from the atmospheric pressure, as described above, the air 44 that has entered the gap 42 of the first thin film 31 is sucked (extruded) from the gap 42 and removed. Next, pressure reduction in the sealed container 70 is started again at time t6, and when the pressure decreases to pressure P1 (time t7), volatilization of the thinner liquid 45 in the second coating liquid 46 starts and the time until time t8 is reached. Volatilization continues.
[0140] このようにしてウェハ W上の第 2の塗布液 46に対する減圧乾燥を行なうことで、ゥェ ハ Wの第 1の薄膜 31の表面に例えば 180nmの厚さの第 2の塗布膜 32aが形成され る(図 5 (a)参照)。尚、この状態では、第 2の塗布膜 32a中の Baを含む化合物と Tiを 含む化合物との粒子の一部がチタン酸バリウムを生成しているものと推察される。  [0140] By performing vacuum drying on the second coating liquid 46 on the wafer W in this manner, the second coating film 32a having a thickness of, for example, 180 nm is formed on the surface of the first thin film 31 of the wafer W. (See Fig. 5 (a)). In this state, it is presumed that part of particles of the compound containing Ba and the compound containing Ti in the second coating film 32a generate barium titanate.
[0141] そして、このような減圧乾燥を行なった後、上述したように密閉容器 70内にパージ ガスを供給して密閉容器 70内を大気圧まで戻す。そして、蓋体 73を開いてウェハ W を搬出し、次工程の後述する加熱ユニットまで搬送する。この後、上述した焼成の前 処理である加熱工程により、第 2の塗布膜 32aに残存するシンナー液 45が揮発する 。また、加水分解及び縮重合が起こって、 ABOx型ぺロブスカイト結晶構造のチタン 酸バリウムの前駆体膜となるチタン酸バリウムの網状構造が形成される。さら〖こ、この 後、焼成工程を行なうことで第 2の薄膜 32が形成される。  [0141] Then, after such drying under reduced pressure, the purge gas is supplied into the sealed container 70 as described above to return the inside of the sealed container 70 to atmospheric pressure. Then, the lid 73 is opened and the wafer W is unloaded and transferred to a heating unit, which will be described later. Thereafter, the thinner liquid 45 remaining in the second coating film 32a is volatilized by the heating process, which is a pretreatment for the firing described above. In addition, hydrolysis and condensation polymerization occur, and a network structure of barium titanate that forms a precursor film of barium titanate having an ABOx type perovskite crystal structure is formed. Further, the second thin film 32 is formed by performing a baking process thereafter.
[0142] 以上の第 4の実施形態に係る塗布膜形成工程を実施すると、第 1の薄膜 31の空隙 42に第 2の塗布液 46が入り込みやすいという効果が得られる。以下、この理由につ いて説明する。上述したように、 1回目の減圧乾燥 (第 1の減圧工程)では、密閉容器 70内は圧力 P1よりも高い圧力までし力減圧されないので、第 2の塗布液 46中のシン ナー液 45の揮発は開始されない。つまり、図 19 (a)に示すように、第 1の薄膜 31の 空隙 42に入り込んでいる空気 44のみが除去されることになる。そして、ー且減圧され た密閉容器 70内が再度大気圧まで戻ると (昇圧工程)、図 19 (b)に示すように、空隙 42内から抜けきらな力つた空気 44が圧縮し小さくなる。これにより、空隙 42の空間が 大きくなるので、ここに第 2の塗布液 46が入り込んでいく。続いて、再度密閉容器 70 を減圧することで (第 2の減圧工程)、図 19 (c)に示すように、空隙 42からさらに空気 44が抜け、また、シンナー液 45も揮発していく。こうして空気 44が除去された空隙 4 2に第 2の塗布液 46がさらに入り込んでいく。その結果、これにより図 19 (d)に示すよ うに、第 1の薄膜 31の空隙 42に第 2の塗布液 46を速やかに充填することができると 推察される。 [0142] When the coating film forming step according to the fourth embodiment described above is performed, an effect is obtained that the second coating liquid 46 easily enters the gap 42 of the first thin film 31. The reason for this is as follows. And explain. As described above, in the first reduced-pressure drying (first decompression step), the inside of the sealed container 70 is increased to a pressure higher than the pressure P1, and the pressure is not reduced, so the thinner 45 in the second coating solution 46 is not reduced. Volatilization does not start. That is, as shown in FIG. 19 (a), only the air 44 that has entered the gap 42 of the first thin film 31 is removed. Then, when the reduced-pressure sealed container 70 returns to atmospheric pressure again (pressure increasing step), as shown in FIG. 19 (b), the air 44 with sufficient force to escape from the gap 42 is compressed and becomes smaller. As a result, the space of the gap 42 becomes larger, and the second coating liquid 46 enters here. Subsequently, by depressurizing the hermetic container 70 again (second depressurization step), as shown in FIG. 19 (c), the air 44 further escapes from the gap 42, and the thinner liquid 45 also volatilizes. Thus, the second coating liquid 46 further enters the gap 42 from which the air 44 has been removed. As a result, it is presumed that, as shown in FIG. 19 (d), the second coating liquid 46 can be quickly filled into the gaps 42 of the first thin film 31.
[0143] 以上のように第 4の実施形態に係る塗布膜形成工程を実施すると、第 2の塗布液 4 6が第 1の薄膜 31の空隙 42内により浸透しやすくなり、第 1の薄膜 31の表面にはより 緻密な層、即ち、より密度の高い層が形成され、平坦性が向上する。このように、平坦 性の高い第 1の薄膜 31の上に第 2の薄膜 32を形成すると、結果として、 ABOx型べ 口ブスカイト結晶構造を有する誘電体膜 3aの表面の平坦性が向上する。  As described above, when the coating film forming step according to the fourth embodiment is performed, the second coating liquid 46 is more easily penetrated into the gaps 42 of the first thin film 31, and the first thin film 31 A denser layer, that is, a layer having a higher density, is formed on the surface of the film, and the flatness is improved. Thus, when the second thin film 32 is formed on the first thin film 31 having high flatness, as a result, the flatness of the surface of the dielectric film 3a having the ABOx type bevskite crystal structure is improved.
[0144] またこの誘電体膜 3aの両面に下部電極 21と上部電極 22とを形成してコンデンサを 形成した場合(図 1 (a)参照)には、リーク電流の発生をより抑制することができる。こ れは、第 1の薄膜 31と第 2の薄膜 32との境界付近により緻密性の高い (密度の高い) 膜が形成されることで、誘電体膜 3a内の導電路が形成され難くなるという理由による  [0144] In addition, when the capacitor is formed by forming the lower electrode 21 and the upper electrode 22 on both surfaces of the dielectric film 3a (see Fig. 1 (a)), the generation of leakage current can be further suppressed. it can. This is because a denser (higher density) film is formed near the boundary between the first thin film 31 and the second thin film 32, thereby making it difficult to form a conductive path in the dielectric film 3a. Because
[0145] 尚、上記第 3の実施形態の減圧工程並びに第 4の実施形態の第 1及び第 2の減圧 工程において、第 2の塗布液 46が塗布されたウェハ Wが置かれる雰囲気を、第 1の 薄膜 31の空隙 42に入り込む空気 44は除去されるが、第 2の塗布液 46からシンナー 液 45が揮発 (蒸発)しない程度の減圧雰囲気に設定するようにしてもよい。また、第 2 の塗布液 46からシンナー液 45が揮発する減圧雰囲気に設定しながら、第 2の塗布 液 46に多くのシンナー液 45が残存する状態で減圧乾燥処理を終了するようにしても よい。 [0145] In the decompression step of the third embodiment and the first and second decompression steps of the fourth embodiment, the atmosphere in which the wafer W coated with the second coating liquid 46 is placed is defined as The air 44 entering the gap 42 of the thin film 31 is removed, but the reduced pressure atmosphere may be set so that the thinner liquid 45 does not volatilize (evaporate) from the second coating liquid 46. In addition, the reduced-pressure drying process may be completed while a large amount of the thinner liquid 45 remains in the second coating liquid 46 while setting the reduced-pressure atmosphere in which the thinner liquid 45 volatilizes from the second coating liquid 46. Good.
[0146] また、上記第 3の実施形態及び第 4の実施形態に係る塗布膜形成工程では、塗布 装置として塗布ユニット 6を使用しているが、上記第 1の実施形態及び第 2の実施形 態に係る塗布膜形成工程と同様に塗布ユニット 5を使用してもよい。  [0146] In the coating film forming step according to the third embodiment and the fourth embodiment, the coating unit 6 is used as the coating apparatus. However, the first embodiment and the second embodiment are described. The coating unit 5 may be used in the same manner as the coating film forming step according to the state.
[0147] 次に、本発明の一実施形態に係る ABOx型ぺロブスカイト結晶構造を有する誘電 体膜の形成システムについて図 20〜図 23を用いて説明する。  [0147] Next, a dielectric film forming system having an ABOx type perovskite crystal structure according to an embodiment of the present invention will be described with reference to FIGS.
[0148] 図 20は、本実施形態に係る誘電体膜の形成システムが備える形成装置の概略平 面図であり、図 21は、前記形成装置の斜視図である。図 20及び図 21において、 S1 はキャリアステーションである。 S1には、キャリア載置部 81及び受渡手段 82が設けら れている。キャリア載置部 81は、複数枚 (例えば 25枚)のウェハ Wを収納したキャリア Cを載置する。受渡手段 82は、キャリア Cとの間でウエノ、 Wの受け渡しを行なう。  FIG. 20 is a schematic plan view of a forming apparatus provided in the dielectric film forming system according to the present embodiment, and FIG. 21 is a perspective view of the forming apparatus. In FIG. 20 and FIG. 21, S1 is a carrier station. In S1, a carrier placing portion 81 and a delivery means 82 are provided. The carrier placement unit 81 places a carrier C containing a plurality of (for example, 25) wafers W. The delivery means 82 delivers Weno and W with the carrier C.
[0149] 受渡手段 82の背面側には筐体 83にて周囲を囲まれた処理部 S2が接続されてい る。該処理部 S2の中央には主搬送手段 84が設けられている。該主搬送手段 84近 傍には、複数の塗布装置をなす塗布ユニット 5及び Z又は塗布ユニット 6、加熱'冷 却系のユニット等を多段に積み重ねた棚ユニット Ul, U2, U3が夫々配置されてい る。尚、塗布ユニット 5 (6)については、第 1の塗布液の塗布処理と、第 2の塗布液の 塗布処理とを異なる塗布ユニット 5 (6)で実施してもよ ヽし、同じ塗布ユニット 5 (6)を 使用して実施してもよい。後者の場合、塗布液のみを替えてやればよい。  [0149] A processing unit S2 surrounded by a casing 83 is connected to the back side of the delivery means 82. A main transport means 84 is provided at the center of the processing section S2. In the vicinity of the main transport means 84, shelf units Ul, U2 and U3 are arranged in which coating units 5 and Z or coating unit 6 forming a plurality of coating devices, heating and cooling units, etc. are stacked in multiple stages, respectively. ing. As for the coating unit 5 (6), the first coating liquid coating process and the second coating liquid coating process may be performed in different coating units 5 (6). 5 (6) may be used. In the latter case, only the coating solution needs to be changed.
[0150] 棚ユニット Ul, U2, U3は、塗布ユニット 5 (6)の前処理及び後処理を行なうための ユニット等を各種組み合わせて構成したものである。該組み合わせには、ベータ処理 を行う加熱ユニット 9、減圧乾燥ユニット 7、ウェハ Wの受渡ユニット等が含まれる。加 熱ユニット 9は、塗布ユニット 5 (6)により表面に塗布液が塗られたウェハ Wを加熱 (ベ ーク)して塗布液中の溶剤を揮発させる加熱装置として機能する。尚、加熱ユニット 9 については、第 1の塗布膜 31aの加熱処理と、第 2の塗布膜 32aの加熱処理とを異な る加熱ユニット 9で実施してもよいし、同じ加熱ユニット 9を使用して実施してもよい。  [0150] The shelf units Ul, U2, and U3 are configured by combining various units for performing pre-processing and post-processing of the coating unit 5 (6). The combination includes a heating unit 9 for performing a beta treatment, a vacuum drying unit 7, a wafer W delivery unit, and the like. The heating unit 9 functions as a heating device that heats (bakes) the wafer W whose surface is coated with the coating liquid by the coating unit 5 (6) and volatilizes the solvent in the coating liquid. As for the heating unit 9, the heat treatment of the first coating film 31a and the heat treatment of the second coating film 32a may be performed by different heating units 9, or the same heating unit 9 is used. May be implemented.
[0151] また、主搬送手段 84は、鉛直方向及び水平方向に移動自在で且つ鉛直軸周りに 回転自在に構成されている。カゝかる構成により、主搬送手段 84は、塗布ユニット 5 (6 )及び棚ユニット Ul, U2, U3を構成する各ユニット間とのウェハ Wの受け渡しが可 會 こなっている。 [0151] Further, the main transport means 84 is configured to be movable in the vertical and horizontal directions and to be rotatable around the vertical axis. Due to the configuration, the main transfer means 84 can transfer the wafer W between the units constituting the coating unit 5 (6) and the shelf units Ul, U2, U3. 會 It is wrong.
[0152] 上記構成の誘電体膜の形成装置が行う各処理の流れにつ!、て説明する。先ず、ゥ エノ、 Wが収納されたキャリア C力 外部から取り込まれキャリア載置部 81に載置され る。このキャリア Cに収容されているウェハ Wの表面には、下部電極 21が形成されて いる。次に、受渡手段 82により、キャリア C内力もウェハ Wが取り出され、棚ユニット U 3の棚の一つである受渡ユニットを介して主搬送手段 84に受け渡される。該主搬送 手段 84は、当該ウェハ Wを塗布ユニット 5 (6)に搬送する。  The flow of each process performed by the dielectric film forming apparatus having the above configuration will be described. First, the carrier C force in which UENO and W are stored is taken in from the outside and placed on the carrier placing portion 81. On the surface of the wafer W accommodated in the carrier C, a lower electrode 21 is formed. Next, the wafer W is also taken out from the carrier C by the delivery means 82 and delivered to the main transport means 84 via the delivery unit which is one of the shelves of the shelf unit U 3. The main transfer means 84 transfers the wafer W to the coating unit 5 (6).
[0153] 塗布ユニット 5 (6)では、搬送されたウエノ、 W上の下部電極 21の表面に第 1の塗布 液を塗布する処理が行われる。その後、ウェハ Wは加熱ユニット 9に搬送され、加熱 処理 (ベータ処理)される。ベータ処理後、ウェハ Wは、主搬送手段 84及び受渡手段 82を介してキャリア載置部 81上のキャリア C内にいったん戻される。キャリア C内に戻 されたウェハ Wは、焼成処理を行う焼成装置 (後述する)に搬送され、該焼成装置に て加熱される(焼成処理)。これにより、第 1の薄膜 31が形成される。  In the coating unit 5 (6), a process of coating the first coating liquid on the surface of the lower electrode 21 on the transported wafer and W is performed. Thereafter, the wafer W is transferred to the heating unit 9 and subjected to a heat treatment (beta treatment). After the beta processing, the wafer W is once returned into the carrier C on the carrier mounting portion 81 via the main transfer means 84 and the delivery means 82. The wafer W returned to the carrier C is transferred to a baking apparatus (described later) for performing a baking process, and heated by the baking apparatus (baking process). Thereby, the first thin film 31 is formed.
[0154] 第 1の薄膜 31が形成されたウェハ Wは、受渡手段 82及び主搬送手段 84を介して 第 2の塗布液 46の塗布処理を行う塗布ユニット 5 (6)に搬送される。第 2の塗布ュ-ッ ト 5 (6)では、搬送されたウェハ W上に形成された第 1の薄膜 31の表面に第 2の塗布 液 46を塗布する処理が行われる。その後、ウェハ Wは、必要な場合には減圧乾燥ュ ニット 7に搬送され、ここで減圧乾燥処理が行われる。次に、ウェハ Wは加熱ユニット 9に搬送され、加熱処理 (ベータ処理)される。ベータ処理後、ウェハ Wは、主搬送手 段 84及び受渡手段 82を介してキャリア載置部 81上のキャリア C内にいったん戻され る。キャリア C内に戻されたウェハ Wは、焼成処理を行う焼成装置 (後述する)に搬送 され、該焼成装置にて加熱される(焼成処理)。これにより、第 2の薄膜 32が形成され る。  The wafer W on which the first thin film 31 is formed is transferred to the coating unit 5 (6) that performs the coating process of the second coating liquid 46 via the delivery unit 82 and the main transfer unit 84. In the second coating unit 5 (6), a process of coating the second coating solution 46 on the surface of the first thin film 31 formed on the transferred wafer W is performed. Thereafter, the wafer W is transferred to the reduced pressure drying unit 7 when necessary, where the reduced pressure drying process is performed. Next, the wafer W is transferred to the heating unit 9 and subjected to a heat treatment (beta treatment). After the beta process, the wafer W is once returned into the carrier C on the carrier mounting portion 81 via the main transfer means 84 and the delivery means 82. The wafer W returned to the carrier C is transferred to a baking apparatus (to be described later) for performing a baking process and heated by the baking apparatus (baking process). Thereby, the second thin film 32 is formed.
[0155] 続いて、ベータ処理を行う加熱ユニット 9について、図 22を用いて簡単に説明する 。図 22 (a)に示すように、加熱ユニット 9の筐体 90の内部には有底の円筒状に形成さ れた基台 95が設けられている。また、該基台 95内には例えば円形状の熱板 92が設 けられている。そして、ウェハ Wが、筐体 90内の冷却プレート 91上に搬入されると、 該冷却プレート 91により熱板 92に搬送される。ウェハ Wが熱板 92上に載置されると 、図 22 (b)に示すように、整流用の天板 93が下降して、 Oリング 94を介して天板 93 の周縁部と基台 95の周縁部とが密着状態となる。これによりウェハ Wの周囲が密閉 空間となる。しかる後、例えばガス供給部 96から前記密閉空間内にガスを供給しな がら、吸引機構 97により当該天板 93の中央部の排気口 98から吸引排気を行う。こう して、ウェハ Wの外周から中央に向力う気流(図 22 (b)中の矢印参照)を形成しなが ら加熱処理が行われる。 [0155] Next, the heating unit 9 for performing the beta treatment will be briefly described with reference to FIG. As shown in FIG. 22 (a), a base 95 formed in a cylindrical shape with a bottom is provided inside the casing 90 of the heating unit 9. In addition, for example, a circular hot plate 92 is provided in the base 95. When the wafer W is loaded onto the cooling plate 91 in the housing 90, the wafer W is transferred to the hot plate 92 by the cooling plate 91. When wafer W is placed on hot plate 92 As shown in FIG. 22B, the rectifying top plate 93 is lowered, and the peripheral portion of the top plate 93 and the peripheral portion of the base 95 are brought into close contact with each other via the O-ring 94. As a result, the periphery of the wafer W becomes a sealed space. Thereafter, for example, while supplying gas from the gas supply unit 96 into the sealed space, suction and exhaust are performed from the exhaust port 98 at the center of the top plate 93 by the suction mechanism 97. In this way, the heat treatment is performed while forming an air current (see the arrow in FIG. 22B) that is directed from the outer periphery to the center of the wafer W.
[0156] 次に、本実施形態に係る誘電体膜の形成システムが備える焼成装置について説明 する。図 23は、焼成装置の一例である加熱炉 10の概略構成図である。加熱炉 10は 、ベータ処理後の塗布膜の内部状態をアモルファスな状態力 結晶化状態へと変化 させる(焼成)ための焼成装置である。図 23に示すように、加熱炉 10は、例えば二重 管構造の縦型の反応管 100を備えている。また、該反応管 100内のウェハボート 10 1には、ウェハ Wが垂直方向に所定の間隔をおいて複数枚収容されている。かかる 状態で、例えばガス供給管 102から反応管 100内にガスを供給すると共に、吸引手 段 103により反応管 100の吸引排気を行う。このようにしてガスの気流を形成しながら 反応管 100の外側に設けられた加熱手段 104によりウェハ Wを加熱することで焼成 処理が行われる。  Next, a firing apparatus provided in the dielectric film formation system according to the present embodiment will be described. FIG. 23 is a schematic configuration diagram of a heating furnace 10 which is an example of a baking apparatus. The heating furnace 10 is a baking apparatus for changing (baking) the internal state of the coating film after the beta treatment into an amorphous state force crystallization state. As shown in FIG. 23, the heating furnace 10 includes a vertical reaction tube 100 having a double tube structure, for example. Further, a plurality of wafers W are accommodated in the wafer boat 101 in the reaction tube 100 at a predetermined interval in the vertical direction. In this state, for example, gas is supplied into the reaction tube 100 from the gas supply tube 102 and the suction tube 103 is evacuated and exhausted. In this manner, the wafer W is heated by the heating means 104 provided outside the reaction tube 100 while forming a gas stream, whereby the baking process is performed.
実施例  Example
[0157] 続、て ABOx型ぺロブスカイト結晶構造の誘電体膜の電気特性を確認するために 行なった実験の実施例について説明する。  [0157] Next, an example of the experiment conducted to confirm the electrical characteristics of the dielectric film having the ABOx type perovskite crystal structure will be described.
(実施例 1)  (Example 1)
本実施例では、図 24に示すような電気特性測定用サンプルを使用した。ここで、本 実施例で用いる電気特性測定用サンプルの作製手順について説明する。先ず、シリ コン基板 111の表面を酸ィ匕させて、その上層側に厚さ lOOnm程度の SiO膜 112を  In this example, a sample for measuring electrical characteristics as shown in FIG. 24 was used. Here, a procedure for manufacturing a sample for measuring electrical characteristics used in this example will be described. First, the surface of the silicon substrate 111 is oxidized and an SiO film 112 having a thickness of about lOOnm is formed on the upper layer side.
2 形成する。そして、その上に下部電極である厚さ 30nm程度の Pt層 113を成膜する。  2 Form. Then, a Pt layer 113 having a thickness of about 30 nm as a lower electrode is formed thereon.
[0158] 次に、 Pt層 113の上面に測定対象となる ABOx型ぺロブスカイト結晶構造を有する 誘電体膜 3aを形成する。そして、この誘電体膜 3aの上面に上部電極であるアルミ- ゥム(A1)層 114を成膜する。続いて、この A1層 114を直径 0. 25mm〜10mm程度 の円板状にパターユングする。次に、誘電体膜 3aを図 24に示す形状にパターユング して、 Pt層 113を露出させる。 Next, a dielectric film 3a having an ABOx type perovskite crystal structure to be measured is formed on the upper surface of the Pt layer 113. Then, an aluminum (A1) layer 114 as an upper electrode is formed on the upper surface of the dielectric film 3a. Subsequently, the A1 layer 114 is put into a disk shape having a diameter of about 0.25 mm to 10 mm. Next, the dielectric film 3a is put into the shape shown in FIG. Then, the Pt layer 113 is exposed.
[0159] この測定対象となる誘電体膜 3aは、 ABOx型ぺロブスカイト結晶構造のチタン酸バ リウムよりなる厚さ 200nmの第 1の薄膜 31の上に、 ABOx型ぺロブスカイト結晶構造 のチタン酸バリウムよりなる厚さ lOOnmの第 2の薄膜 32を積層したものである。また、 当該誘電体膜 3aは、上記塗布膜形成工程の第 1の実施形態に記載した手法を経て 形成される。 [0159] The dielectric film 3a to be measured is formed on the first thin film 31 made of barium titanate having an ABOx type perovskite crystal structure and barium titanate having an ABOx type perovskite crystal structure. And a second thin film 32 having a thickness of lOOnm. The dielectric film 3a is formed through the technique described in the first embodiment of the coating film forming step.
[0160] 以上のようにして作製された電気特性測定用サンプルに測定器 115を接続して (P t層 113と A1層 114との間に接続する)、誘電体膜 3aのリーク電流及び誘電体膜 3a の電気容量の測定を行った。  [0160] The measurement device 115 is connected to the electrical property measurement sample manufactured as described above (connected between the Pt layer 113 and the A1 layer 114), and the leakage current and dielectric of the dielectric film 3a are measured. The electric capacity of the body membrane 3a was measured.
[0161] 誘電体膜 3aのリーク電流については、室温にて、 Pt層 113と A1層 114との間に 2V のバイアス電圧を 15秒間印加し、そのときに誘電体膜 3aに流れる単位面積当たりの 電流の平均値を検出した。 [0161] Regarding the leakage current of the dielectric film 3a, at room temperature, a bias voltage of 2V was applied between the Pt layer 113 and the A1 layer 114 for 15 seconds, and per unit area flowing through the dielectric film 3a at that time. The average value of current was detected.
[0162] また、誘電体膜 3aの電気容量については、室温にて、バイアス電圧が OV又は IV、[0162] Regarding the electric capacity of the dielectric film 3a, the bias voltage is OV or IV at room temperature.
Vrms (容量測定用交流電圧)が 10mV、周波数が lkHz〜lMHzという条件で、 Pt 層 113と A1層 114との間に電圧を印加し、その時に流れる電流と周波数とを検出し、 これらの結果力 算出して求めた。 Applying a voltage between Pt layer 113 and A1 layer 114 under the conditions of Vrms (capacitance measurement AC voltage) of 10 mV and frequency of lkHz to lMHz, the current and frequency flowing at that time are detected. Calculated force.
[0163] この結果、第 1の薄膜 31と第 2の薄膜 32とを積層した誘電体膜 3aのリーク電流は、As a result, the leakage current of the dielectric film 3a in which the first thin film 31 and the second thin film 32 are laminated is
9. 8 X 10_9AZcm2であり、電気容量は、 1. 5 μ Y/cra であった。 9. an 8 X 10 _9 AZcm 2, the electric capacity was 1. 5 μ Y / cra.
[0164] (実施例 2) [0164] (Example 2)
本実施例で用いる電気特性測定用サンプルは、上記塗布膜形成工程の第 2の実 施形態に記載した手法を経て形成された誘電体膜 3aを使用して ヽる。この点以外は 、実施例 1の電気特性測定用サンプルと同様である。そして、これを用いて実施例 1 と同一条件でリーク電流及び電気容量の測定を行った。  The sample for measuring electrical characteristics used in this example is obtained by using the dielectric film 3a formed through the technique described in the second embodiment of the coating film forming step. Except this point, the sample is the same as the sample for measuring electrical characteristics of Example 1. Using this, the leakage current and the capacitance were measured under the same conditions as in Example 1.
[0165] この結果、誘電体膜 3aのリーク電流は、 9. 4 X 10_9AZcm2であり、電気容量は、 1. 46 ^ ¥/ cmであつ 7こ。 [0165] leakage current result, the dielectric film 3a is 9. a 4 X 10 _9 AZcm 2, electrical capacitance, mediation 7 this in 1. 46 ^ ¥ / cm.
[0166] (実施例 3)  [Example 3]
本実施例で用いる電気特性測定用サンプルは、上記塗布膜形成工程の第 3の実 施形態に記載した手法により形成された誘電体膜 3aを使用して ヽる。この点以外は 、実施例 1の電気特性測定用サンプルと同様である。そして、これを用いて実施例 1 と同一条件でリーク電流及び電気容量の測定を行った。 The sample for measuring electrical characteristics used in this example is obtained by using the dielectric film 3a formed by the method described in the third embodiment of the coating film forming step. Other than this point This is the same as the sample for measuring electrical characteristics of Example 1. Using this, the leakage current and the capacitance were measured under the same conditions as in Example 1.
[0167] この結果、誘電体膜 3aのリーク電流は、 9. 7 X 10_9AZcm2であり、電気容量は、[0167] As a result, the leakage current of the dielectric film 3a is 9. 7 X 10 _9 AZcm 2, electric capacity,
1. 62 μ ¥/ cmであつ 7こ。 1. 7 pieces at 62 μ ¥ / cm.
[0168] (実施例 4) [Example 4]
本実施例で用いる電気特性測定用サンプルは、上記塗布膜形成工程の第 4の実 施形態に記載した手法により形成された誘電体膜 3aを使用して 、る。この点以外は 、実施例 1の電気特性測定用サンプルと同様である。そして、これを用いて実施例 1 と同一条件でリーク電流及び電気容量の測定を行った。  The sample for measuring electrical characteristics used in this example uses the dielectric film 3a formed by the method described in the fourth embodiment of the coating film forming step. Except this point, the sample is the same as the sample for measuring electrical characteristics of Example 1. Using this, the leakage current and the capacitance were measured under the same conditions as in Example 1.
[0169] この結果、誘電体膜 3aのリーク電流は、 9. 8 X 10_9AZcm2であり、電気容量は、 1. 64 ^ Y/ cmであつ 7こ。 [0169] leakage current result, the dielectric film 3a is 9. was 8 X 10 _9 AZcm 2, electrical capacitance, mediation 7 this in 1. 64 ^ Y / cm.
[0170] (比較例 1)  [0170] (Comparative Example 1)
電気特性測定用サンプルに使用する誘電体膜 3aとして、第 1の薄膜 31に第 2の薄 膜 32を積層した構成の誘電体膜を準備した。この誘電体膜 3aの第 2の薄膜 32は、 第 1の薄膜 31と同様の条件で、第 1の薄膜 31の表面に直接第 2の塗布液 46をスピ ンコーティングにより塗布した後、加熱工程及び焼成工程を経て形成されたものであ る。そして、実施例 1と同様に、この誘電体膜 3aのリーク電流及び電気容量の測定を 行った。  A dielectric film having a configuration in which a second thin film 32 is laminated on a first thin film 31 was prepared as a dielectric film 3a used for a sample for measuring electrical characteristics. The second thin film 32 of the dielectric film 3a is formed by applying the second coating liquid 46 directly on the surface of the first thin film 31 by spin coating under the same conditions as the first thin film 31, and then performing a heating process. And formed through a firing step. In the same manner as in Example 1, the leakage current and electric capacity of the dielectric film 3a were measured.
[0171] この結果、誘電体膜 3aのリーク電流は、 8. 1 X 10_8AZcm2であり、電気容量は、As a result, the leakage current of the dielectric film 3a is 8.1 X 10 _8 AZcm 2 , and the electric capacity is
1. 2 μ ¥/ cmであった。 1. It was 2 μ ¥ / cm.
[0172] (比較例 2) [0172] (Comparative Example 2)
電気特性測定用サンプルに使用する誘電体膜 3aとして、 ABOx型ぺロブスカイト 結晶構造のチタン酸バリウムよりなる厚さ 200nmの第 1の薄膜 31のみを備える構成 の誘電体膜を準備した。そして、これを用いて実施例 1と同様に、リーク電流及び電 気容量を測定した。尚、第 1の薄膜 31は、上述の実施形態に記載した手法により形 成されている。  As the dielectric film 3a used for the electrical property measurement sample, a dielectric film having only a 200 nm-thick first thin film 31 made of barium titanate having an ABOx type perovskite crystal structure was prepared. Then, using this, the leakage current and the electric capacity were measured in the same manner as in Example 1. The first thin film 31 is formed by the method described in the above embodiment.
[0173] この結果、リーク電流は、 1. 3 X 10_2AZcm2であり、電気容量は、 0. 9 F/cm2 であった。 [0174] (比較例 3) As a result, the leakage current was 1.3 X 10 _2 AZcm 2 , and the electric capacity was 0.9 F / cm 2 . [0174] (Comparative Example 3)
電気特性測定用サンプルに使用する誘電体膜 3aとして、 ABOx型ぺロブスカイト 結晶構造のチタン酸バリウムよりなる厚さ lOOnmの第 2の薄膜 32のみを備える構成 の誘電体膜を準備した。そして、これを用いて実施例 1と同様に、リーク電流及び電 気容量を測定した。尚、第 2の薄膜 32は、上述の実施形態に記載した手法により形 成されている。この結果、リーク電流は、 2. 8 X 10_3AZcm2であり、電気容量は、 0 . 7 μ Y/ cm であった。 As the dielectric film 3a used for the sample for measuring electrical characteristics, a dielectric film having a configuration including only the second thin film 32 of lOOnm thickness made of barium titanate having an ABOx type perovskite crystal structure was prepared. Then, using this, the leakage current and the electric capacity were measured in the same manner as in Example 1. The second thin film 32 is formed by the method described in the above embodiment. As a result, the leakage current is 2. an 8 X 10 _3 AZcm 2, the electric capacity was 0. 7 μ Y / cm.
[0175] 以上の結果により、誘電体膜 3aとして、第 1の薄膜 31と第 2の薄膜 32とを備えた構 成 (実施例 1〜4、比較例 1)のものを用いた場合には、第 1の薄膜 31のみを備えた構 成 (比較例 2)や、第 2の薄膜 32のみを備えた構成 (比較例 3)を用いた場合よりも、電 気容量が大きぐリーク電流が小さくなることが確認された。  [0175] From the above results, when the dielectric film 3a having the first thin film 31 and the second thin film 32 (Examples 1 to 4, Comparative Example 1) was used. Compared to the configuration using only the first thin film 31 (Comparative Example 2) and the configuration including only the second thin film 32 (Comparative Example 3), the leakage current with a larger electric capacity is larger. It was confirmed to be smaller.
[0176] また、誘電体膜 3aとして、第 1の薄膜 31と第 2の薄膜 32とを備えた構成であっても、 第 2の薄膜 32を本発明の塗布膜形成工程の手法を経て形成した場合には(実施例 1〜4)、第 1の薄膜 31と同様の手法で形成した場合 (比較例 1)に比べて電気容量が 大きぐリーク電流が小さくなることが確認された。これにより、第 1の薄膜 31と、この上 層側に形成された第 2の薄膜 32とを備えた ABOx型べ口ブスカイト結晶構造を有す る誘電体膜 3aを本発明の塗布膜形成工程の手法を用いて形成すると、この誘電体 膜 3aをコンデンサの誘電体膜として用いた場合に高い電気特性を確保できることが 理解される。  [0176] Even if the dielectric film 3a includes the first thin film 31 and the second thin film 32, the second thin film 32 is formed through the method of the coating film forming process of the present invention. In this case (Examples 1 to 4), it was confirmed that the leakage current was large and the electric current was large compared to the case where the first thin film 31 was formed by the same method (Comparative Example 1). As a result, the dielectric film 3a having the ABOx type bottom bumskite crystal structure including the first thin film 31 and the second thin film 32 formed on the upper layer side is formed into the coating film forming step of the present invention. It is understood that when this method is used, high electrical characteristics can be secured when this dielectric film 3a is used as a dielectric film of a capacitor.
[0177] 尚、本発明に係る誘電体膜は、 ABOx型ぺロブスカイト結晶構造を有する誘電体 膜であれば、チタン酸バリウム以外に、チタン酸ストロンチウム、チタン酸カルシウム、 ジルコン酸バリウム等により構成してもよい。  [0177] The dielectric film according to the present invention is composed of strontium titanate, calcium titanate, barium zirconate, etc. in addition to barium titanate, as long as it is a dielectric film having an ABOx type perovskite crystal structure. May be.
[0178] 尚、本願については、 2005年 8月 24日に出願された日本国特許願特願 2005— 2[0178] Regarding this application, the Japanese Patent Application Patent Application No. 2005-2 filed on August 24, 2005.
43317号を基礎とする優先権を主張し、当該基礎出願の内容をすベて本願にとりこ むものとする。 The priority based on No. 43317 is claimed, and all the contents of the basic application are incorporated in the present application.
産業上の利用可能性  Industrial applicability
[0179] 本発明に係る ABOx型ぺロブスカイト結晶構造を有する誘電体膜の形成方法又は 形成システムによって得られる誘電体膜をコンデンサに使用すると、リーク電流の発 生を極力抑えることができる。従って、本発明によって得られる ABOx型ぺロブスカイ ト結晶構造を有する誘電体膜は、 CPUに対する電力供給回路等のより安定性が求 められる回路に実装されるコンデンサへの適用が期待される。 [0179] When a dielectric film obtained by the method or system for forming a dielectric film having an ABOx type perovskite crystal structure according to the present invention is used for a capacitor, leakage current is generated. The raw can be suppressed as much as possible. Therefore, the dielectric film having an ABOx type perovskite crystal structure obtained by the present invention is expected to be applied to a capacitor mounted on a circuit that requires more stability such as a power supply circuit for a CPU.

Claims

請求の範囲 The scope of the claims
[1] ABOx型ぺロブスカイト構造を有する膜の積層膜から構成される ABOx型ぺロブス カイト構造を有する誘電体膜を形成する方法にお!ヽて、  [1] A method for forming a dielectric film having an ABOx type perovskite structure composed of a laminated film of films having an ABOx type perovskite structure.
平均径が所定値以上の空隙を含む ABOx型べ口ブスカイト結晶構造を有する第 1 の誘電体薄膜を用意する工程と、  Providing a first dielectric thin film having an ABOx-type bottom bumskite crystal structure including voids having an average diameter not less than a predetermined value;
前記空隙の平均径よりも小さい平均粒径の ABOx型べ口ブスカイト結晶構造を有 する粒子と、所定の溶剤とを含む誘電体形成用組成液を前記第 1の誘電体薄膜上 に塗布する塗布工程と、  Application in which a dielectric forming composition liquid containing particles having an ABOx type bottom bumskite crystal structure having an average particle size smaller than the average diameter of the voids and a predetermined solvent is applied onto the first dielectric thin film Process,
該塗布工程で得られた結果物を焼成して、前記第 1の誘電体薄膜上に ABOx型べ 口ブスカイト結晶構造を有する第 2の誘電体薄膜を形成する焼成工程と、  Firing the resultant product obtained in the coating step to form a second dielectric thin film having an ABOx type bevbskite crystal structure on the first dielectric thin film; and
を備えることを特徴とする ABOx型べ口ブスカイト構造を有する誘電体膜の形成方 法。  A method for forming a dielectric film having an ABOx-type mouth-bumskite structure.
[2] 前記塗布工程の前に、前記第 1の誘電体薄膜の表面に所定の溶剤を塗布し、前記 空隙内の空気と前記所定の溶剤を置換させる工程を更に備える、ことを特徴とする 請求項 1に記載の ABOx型ぺロブスカイト構造を有する誘電体膜の形成方法。  [2] The method further includes a step of applying a predetermined solvent to the surface of the first dielectric thin film before the applying step, and replacing the air in the gap with the predetermined solvent. The method for forming a dielectric film having an ABOx type perovskite structure according to claim 1.
[3] 前記塗布工程は、前記第 1の誘電体薄膜上に液盛り部が生じるまで前記誘電体形 成用組成液を供給する工程を備える、ことを特徴とする請求項 1に記載の ABOx型 ベロブスカイト構造を有する誘電体膜の形成方法。  [3] The ABOx type according to [1], wherein the coating step includes a step of supplying the dielectric forming composition liquid until a liquid deposit is formed on the first dielectric thin film. A method for forming a dielectric film having a velovskite structure.
[4] 前記塗布工程は、前記第 1の誘電体薄膜を回転させることで、前記液盛り部を広く 伸ばす工程を備える、ことを特徴とする請求項 3に記載の ABOx型ぺロブスカイト構 造を有する誘電体膜の形成方法。  [4] The ABOx type perovskite structure according to [3], wherein the coating step includes a step of widening the liquid accumulation portion by rotating the first dielectric thin film. A method for forming a dielectric film.
[5] 前記焼成工程の前に、前記空隙内の空気を吸引し、前記空隙に前記誘電体形成 用組成液の一部を浸透させる浸透工程を更に備える、ことを特徴とする請求項 1に記 載の ABOx型ぺロブスカイト構造を有する誘電体膜の形成方法。  [5] The method according to claim 1, further comprising a permeation step of sucking air in the gap and allowing a part of the composition liquid for dielectric formation to penetrate into the gap before the firing step. A method for forming a dielectric film having an ABOx type perovskite structure as described.
[6] 前記浸透工程は、前記塗布工程で得られた結果物を密閉空間内に置き、該密閉 空間内を所定圧力以下まで減圧する減圧工程を備える、ことを特徴とする請求項 5 に記載の ABOx型ぺロブスカイト構造を有する誘電体膜の形成方法。  6. The infiltration step includes a depressurization step of placing the resultant product obtained in the application step in a sealed space and depressurizing the sealed space to a predetermined pressure or less. A method for forming a dielectric film having an ABOx type perovskite structure.
[7] 前記減圧工程では、前記密閉空間内を前記誘電体形成用組成液に含まれる前記 所定の溶剤の揮発が開始される圧力以下まで減圧する、ことを特徴とする請求項 6 に記載の ABOx型ぺロブスカイト構造を有する誘電体膜の形成方法。 [7] In the pressure reducing step, the inside of the sealed space is contained in the dielectric forming composition liquid. 7. The method for forming a dielectric film having an ABOx type perovskite structure according to claim 6, wherein the pressure is reduced to a pressure equal to or lower than a pressure at which volatilization of a predetermined solvent is started.
[8] 前記浸透工程は、前記塗布工程で得られた結果物を密閉空間内に置き、該密閉 空間内を第 1の圧力まで減圧する第 1の減圧工程と、 [8] The infiltration step includes a first depressurization step of placing the resultant product obtained in the application step in a sealed space and depressurizing the sealed space to a first pressure;
前記密閉空間内を前記第 1の圧力から所定圧力まで昇圧する昇圧工程と、 前記密閉空間内を前記所定圧力から前記第 1の圧力よりも低い第 2の圧力以下ま で減圧する第 2の減圧工程と、  A pressure increasing step for increasing the pressure in the sealed space from the first pressure to a predetermined pressure; and a second pressure reducing pressure for reducing the pressure in the sealed space from the predetermined pressure to a second pressure lower than the first pressure. Process,
を備えることを特徴とする請求項 5に記載の ABOx型ぺロブスカイト構造を有する誘 電体膜の形成方法。  The method for forming an insulator film having an ABOx type perovskite structure according to claim 5, comprising:
[9] 前記第 2の減圧工程では、前記密閉空間内を前記誘電体形成用組成液に含まれ る前記所定の溶剤の揮発が開始される圧力以下まで減圧する、ことを特徴とする請 求項 8に記載の ABOx型ぺロブスカイト構造を有する誘電体膜の形成方法。  [9] In the second depressurizing step, the inside of the sealed space is depressurized to a pressure below which the volatilization of the predetermined solvent contained in the dielectric forming composition liquid is started. Item 9. A method for forming a dielectric film having an ABOx type perovskite structure according to Item 8.
[10] 前記第 1の誘電体薄膜を用意する工程は、 [10] The step of preparing the first dielectric thin film comprises:
前記第 2の誘電体薄膜形成用の前記誘電体形成用組成液に含まれる ABOx型べ 口ブスカイト結晶構造を有する粒子の平均粒径よりも大きい平均粒径の ABOx型ぺ 口ブスカイト結晶構造を有する粒子を含む誘電体形成用組成液を基材の表面に塗 布する第 1の誘電体薄膜形成用の塗布工程と、  Having an ABOx type perovskite crystal structure having an average particle size larger than an average particle size of particles having an ABOx type bebskite crystal structure contained in the dielectric forming composition liquid for forming the second dielectric thin film A first dielectric thin film forming coating step of coating a surface of the substrate with a dielectric forming composition liquid containing particles;
該塗布工程で得られた結果物を焼成して、前記基材上に ABOx型ぺロブスカイト 結晶構造を有する第 1の誘電体薄膜を形成する第 1の誘電体薄膜用の焼成工程と、 を備えることを特徴とする請求項 1に記載の ABOx型ぺロブスカイト構造を有する誘 電体膜の形成方法。  Firing the resultant obtained in the coating step to form a first dielectric thin film having an ABOx-type perovskite crystal structure on the substrate; and a firing step for the first dielectric thin film. 2. The method for forming an insulator film having an ABOx type perovskite structure according to claim 1.
[11] 前記第 2の誘電体薄膜形成用の前記誘電体形成用組成液は、金属アルコキシド、 金属カルボキシレート、金属錯体及び金属水酸化物の群から選ばれる金属種 A及び 金属種 Bを含む一種以上の化合物と、所定の溶剤とを含む、ことを特徴とする請求項 1に記載の ABOx型ぺロブスカイト構造を有する誘電体膜の形成方法。  [11] The dielectric composition liquid for forming the second dielectric thin film includes a metal species A and a metal species B selected from the group consisting of metal alkoxides, metal carboxylates, metal complexes, and metal hydroxides. 2. The method for forming a dielectric film having an ABOx type perovskite structure according to claim 1, comprising at least one compound and a predetermined solvent.
[12] 前記金属種 Aは、リチウム、ナトリウム、カルシウム、ストロンチウム、ノリウム及びラン タンの内の一種以上の金属を含み、前記金属種 Bはチタン、ジルコニウム、タンタル 及びニオブの内の一種以上の金属を含む、ことを特徴とする請求項 11に記載の AB Ox型ぺロブスカイト結晶構造を有する誘電体膜の形成方法。 [12] The metal species A includes one or more metals selected from lithium, sodium, calcium, strontium, norlium, and lanthanum, and the metal species B includes one or more metals selected from titanium, zirconium, tantalum, and niobium. The AB according to claim 11, characterized in that A method for forming a dielectric film having an Ox-type perovskite crystal structure.
[13] 前記第 1の誘電体薄膜形成用の前記誘電体形成用組成液は、前記第 2の誘電体 薄膜形成用の前記誘電体形成用組成液を加水分解することにより得られる ABOx( Xは 1以上の整数)型の結晶構造を有する平均粒径 lOOnm以下の粒子を含む、こと を特徴とする請求項 10に記載の ABOx型ぺロブスカイト結晶構造を有する誘電体膜 の形成方法。 [13] The dielectric forming composition liquid for forming the first dielectric thin film is obtained by hydrolyzing the dielectric forming composition liquid for forming the second dielectric thin film. 11. The method for forming a dielectric film having an ABOx-type perovskite crystal structure according to claim 10, characterized in that it includes particles having an average particle diameter of lOOnm or less having an integer of 1 or more) -type crystal structure.
[14] ABOx型ぺロブスカイト構造を有する膜の積層膜から構成される ABOx型ぺロブス カイト構造を有する誘電体膜を形成するシステムにおいて、  [14] In a system for forming a dielectric film having an ABOx type perovskite structure composed of a laminated film having an ABOx type perovskite structure,
平均径が所定値以上の空隙を含む ABOx型べ口ブスカイト結晶構造を有する第 1 の誘電体薄膜上に、前記空隙の平均径よりも小さ!ヽ平均粒径の ABOx型ぺロブス力 イト結晶構造を有する粒子と所定の溶剤とを含む誘電体形成用組成液を塗布する塗 布装置と、  On the first dielectric thin film having an ABOx-type bottom bumskite crystal structure containing voids whose average diameter is not less than a predetermined value, it is smaller than the average diameter of the above-mentioned voids. A coating apparatus for applying a dielectric forming composition liquid containing particles having a predetermined solvent and a predetermined solvent;
該塗布装置による前記誘電体形成用組成液の塗布によって得られた結果物を焼 成して、前記第 1の誘電体薄膜上に ABOx型べ口ブスカイト結晶構造を有する第 2の 誘電体薄膜を形成する焼成装置と、  The resultant obtained by applying the dielectric forming composition liquid by the coating apparatus is baked to form a second dielectric thin film having an ABOx type bobsite crystal structure on the first dielectric thin film. A baking apparatus to be formed;
を備えることを特徴とする ABOx型べ口ブスカイト構造を有する誘電体膜の形成シ ステム。  A system for forming a dielectric film having an ABOx type mouth bumskite structure.
[15] 前記塗布装置は、前記第 2の誘電体薄膜形成用の前記誘電体形成用組成液に含 まれる前記所定の溶剤のみを塗布する溶剤塗布手段を備える、ことを特徴とする請 求項 14に記載の ABOx型ぺロブスカイト構造を有する誘電体膜の形成システム。  [15] The application is characterized in that the coating apparatus includes a solvent applying unit that applies only the predetermined solvent contained in the dielectric forming composition liquid for forming the second dielectric thin film. Item 15. A dielectric film formation system having an ABOx type perovskite structure according to Item 14.
[16] 前記空隙内の空気を吸引し、前記空隙に前記第 2の誘電体薄膜形成用の前記誘 電体形成用組成液の一部を浸透させる浸透装置を更に備える、ことを特徴とする請 求 14に記載の ABOx型ぺロブスカイト構造を有する誘電体膜の形成システム。  [16] The apparatus further comprises a permeation device that sucks air in the gap and infiltrates a part of the dielectric forming liquid for forming the second dielectric thin film into the gap. 15. A dielectric film forming system having an ABOx type perovskite structure according to claim 14.
[17] 前記浸透装置は、前記塗布装置による前記第 2の誘電体薄膜形成用の前記誘電 体形成用組成液の塗布によって得られた結果物を収容する密閉容器と、  [17] The permeation device includes a sealed container that accommodates a result obtained by applying the dielectric forming composition liquid for forming the second dielectric thin film by the coating device;
該密閉容器内を所定圧力以下まで減圧する減圧手段と、を更に備える、ことを特徴 とする請求項 16に記載の ABOx型ぺロブスカイト構造を有する誘電体膜の形成シス テム。 17. The system for forming a dielectric film having an ABOx type perovskite structure according to claim 16, further comprising: a decompression unit that decompresses the inside of the sealed container to a predetermined pressure or less.
[18] 前記減圧手段は、前記密閉容器を前記第 2の誘電体薄膜形成用の前記誘電体形 成用組成液に含まれる前記所定の溶剤の揮発が開始される圧力以下まで減圧する 、ことを特徴とする請求項 17に記載の ABOx型ぺロブスカイト構造を有する誘電体 膜の形成システム。 [18] The depressurizing means depressurizes the sealed container to a pressure equal to or lower than a pressure at which volatilization of the predetermined solvent contained in the dielectric forming composition liquid for forming the second dielectric thin film is started. 18. The dielectric film forming system having an ABOx type perovskite structure according to claim 17.
[19] 前記浸透装置は、前記塗布装置による前記第 2の誘電体薄膜形成用の前記誘電 体形成用組成液の塗布によって得られた結果物を収容する密閉容器と、  [19] The permeation device includes a sealed container that accommodates a result obtained by applying the dielectric forming composition liquid for forming the second dielectric thin film by the coating device;
該密閉容器内を第 1の圧力まで減圧する第 1の減圧手段と、  First decompression means for depressurizing the inside of the sealed container to a first pressure;
前記密閉容器内を前記第 1の圧力から所定圧力まで昇圧する昇圧手段と、 前記密閉容器内を前記所定圧力から前記第 1の圧力よりも低い第 2の圧力以下ま で減圧する第 2の減圧手段と、を更に備える、ことを特徴とする請求項 16に記載の A BOx型ぺロブスカイト構造を有する誘電体膜の形成システム。  A pressure increasing means for increasing the pressure in the sealed container from the first pressure to a predetermined pressure, and a second pressure reducing pressure for reducing the pressure in the sealed container from the predetermined pressure to a second pressure lower than the first pressure. The system for forming a dielectric film having an A BOx type perovskite structure according to claim 16, further comprising: means.
[20] 前記第 2の減圧手段は、前記密閉容器内を前記第 2の誘電体薄膜形成用の前記 誘電体形成用組成液に含まれる前記所定の溶剤の揮発が開始される圧力以下まで 減圧する、ことを特徴とする請求項 19に記載の ABOx型ぺロブスカイト構造を有する 誘電体膜の形成システム。 [20] The second depressurizing means depressurizes the sealed container to a pressure equal to or lower than a pressure at which the predetermined solvent contained in the dielectric forming composition liquid for forming the second dielectric thin film is started. 20. The dielectric film forming system having an ABOx type perovskite structure according to claim 19,
PCT/JP2006/316630 2005-08-24 2006-08-24 METHOD FOR MANUFACTURE OF DIELECTRIC FILM HAVING ABOx TYPE of PEROVSKITE-TYPE CRYSTALLINE STRUCTURE WO2007032193A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-243317 2005-08-24
JP2005243317A JP2007055846A (en) 2005-08-24 2005-08-24 METHOD OF FORMING DIELECTRIC FILM HAVING ABOx TYPE PEROVSKITE CRYSTAL STRUCTURE

Publications (1)

Publication Number Publication Date
WO2007032193A1 true WO2007032193A1 (en) 2007-03-22

Family

ID=37864791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316630 WO2007032193A1 (en) 2005-08-24 2006-08-24 METHOD FOR MANUFACTURE OF DIELECTRIC FILM HAVING ABOx TYPE of PEROVSKITE-TYPE CRYSTALLINE STRUCTURE

Country Status (3)

Country Link
JP (1) JP2007055846A (en)
TW (1) TW200714366A (en)
WO (1) WO2007032193A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI474992B (en) 2014-04-29 2015-03-01 Univ Nat Central Method for preparing perovskite thin film and solar cell
CN111974612A (en) * 2020-08-25 2020-11-24 中国科学院长春光学精密机械与物理研究所 Film preparation equipment and method
TWI793826B (en) * 2021-10-26 2023-02-21 財團法人金屬工業研究發展中心 Method for producing perovskite film, perovskite substrate and perovskite solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03271157A (en) * 1990-03-19 1991-12-03 Mitsubishi Electric Corp Production of dense oxide superconductor
JP2001223301A (en) * 2000-02-08 2001-08-17 Hitachi Ltd Board for mounting circuit, where thin film capacitor is fabricated, electronic circuit device and thin film capacitor
JP2001237179A (en) * 1999-12-17 2001-08-31 Tokyo Electron Ltd Coating film forming equipment
JP2002080220A (en) * 2000-06-21 2002-03-19 Seiko Epson Corp Ceramic membrane, method of producing the same, semiconductor device and piezo-electric element
JP2003203782A (en) * 2001-10-29 2003-07-18 Tdk Corp Composite substrate and el panel using the same and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5349955A (en) * 1976-10-18 1978-05-06 Fuji Photo Film Co Ltd Spin coating method
JP3069762B2 (en) * 1993-03-25 2000-07-24 東京エレクトロン株式会社 Method and apparatus for forming coating film
JP2004066166A (en) * 2002-08-08 2004-03-04 Tokyo Electron Ltd Coating liquid and method for forming coated film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03271157A (en) * 1990-03-19 1991-12-03 Mitsubishi Electric Corp Production of dense oxide superconductor
JP2001237179A (en) * 1999-12-17 2001-08-31 Tokyo Electron Ltd Coating film forming equipment
JP2001223301A (en) * 2000-02-08 2001-08-17 Hitachi Ltd Board for mounting circuit, where thin film capacitor is fabricated, electronic circuit device and thin film capacitor
JP2002080220A (en) * 2000-06-21 2002-03-19 Seiko Epson Corp Ceramic membrane, method of producing the same, semiconductor device and piezo-electric element
JP2003203782A (en) * 2001-10-29 2003-07-18 Tdk Corp Composite substrate and el panel using the same and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMASHITA Y. ET AL.: "Yudentai Usumaku no Keisei to Kinosei ni Kansuru Kenkyu; Sol-Gel Method ni yori Yudentai Usumaku Sakusei to Oyo", FUKUOKA KOGYO GIJUTSU SENTA, HEISEI 13 NENDO KENKYU HOKOKU, 2001, XP003010183, Retrieved from the Internet <URL:http://www.fitc.pref.fukuoka.jp/kenkyu/report/h13/houbun03.pdf> *

Also Published As

Publication number Publication date
JP2007055846A (en) 2007-03-08
TW200714366A (en) 2007-04-16

Similar Documents

Publication Publication Date Title
Reddy et al. Superior energy storage performance and fatigue resistance in ferroelectric BCZT thin films grown in an oxygen-rich atmosphere
KR100949254B1 (en) Manganese doped barium titanate thin film compositions, capacitors, and methods of making thereof
US8486800B2 (en) Trench capacitor and method for producing the same
JP5803775B2 (en) Method for manufacturing ferroelectric thin film
JP2007005804A (en) Acceptor doped barium-titanate-based thin film capacitors on metal foils and methods of making thereof
US10431731B2 (en) Method for forming PZT ferroelectric film
KR102384736B1 (en) Mn-doped pzt-based piezoelectric film formation composition and mn-doped pzt-based piezoelectric film
JP6264447B2 (en) Mn and Nb-doped PZT-based piezoelectric film forming liquid composition
JP4912081B2 (en) Method for forming dielectric film having ABOx type perovskite crystal structure
KR20200031697A (en) METHOD FOR MANUFACTURING PNbZT THIN FILM
WO2007032193A1 (en) METHOD FOR MANUFACTURE OF DIELECTRIC FILM HAVING ABOx TYPE of PEROVSKITE-TYPE CRYSTALLINE STRUCTURE
TWI601706B (en) Method of forming pnbzt ferroelectric thin film
JP2003277932A (en) Method for forming dielectric thin film and dielectric thin film formed thereby
KR102334850B1 (en) Manganese- and niobium-doped pzt piezoelectric film
CN1199506A (en) Integrated circuit comprising substrate and wiring layer with buffer layer between substrate and wiring layer
JP2013207155A (en) Ferroelectric thin film manufacturing method
JP4257518B2 (en) Method for producing perovskite type crystal particles, method for producing perovskite type crystal particle dispersion, and dielectric film
JP6459563B2 (en) PZT-based ferroelectric thin film and method for forming the same
JP4361893B2 (en) Apparatus and method for forming dielectric thin film having ABOx type perovskite crystal structure
JP2018150205A (en) Barium titanate film and method for forming the same
KR102385773B1 (en) Cerium-doped pzt piezoelectric film
JP2007059628A (en) METHOD AND DEVICE FOR FORMING OF DIELECTRIC THIN FILM OF ABOx TYPE PEROVSKITE CRYSTAL STRUCTURE
JP2007055845A (en) MANUFACTURING METHOD OF DIELECTRIC THIN FILM OF ABOx TYPE PEROVSKITE CRYSTAL STRUCTURE AND ITS MANUFACTURING UNIT
JP2005247660A (en) Composition for forming dielectric film, method for manufacturing composition for forming dielectric film, dielectric film and capacitor including dielectric film
WO2015146863A1 (en) Composition for forming cerium-doped pzt piezoelectric film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796743

Country of ref document: EP

Kind code of ref document: A1