TWI793826B - Method for producing perovskite film, perovskite substrate and perovskite solar cell - Google Patents

Method for producing perovskite film, perovskite substrate and perovskite solar cell Download PDF

Info

Publication number
TWI793826B
TWI793826B TW110139716A TW110139716A TWI793826B TW I793826 B TWI793826 B TW I793826B TW 110139716 A TW110139716 A TW 110139716A TW 110139716 A TW110139716 A TW 110139716A TW I793826 B TWI793826 B TW I793826B
Authority
TW
Taiwan
Prior art keywords
perovskite
film
thin film
silicon substrate
gas
Prior art date
Application number
TW110139716A
Other languages
Chinese (zh)
Other versions
TW202317503A (en
Inventor
黃玉君
楊智博
吳以德
林煒淳
莊文魁
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW110139716A priority Critical patent/TWI793826B/en
Application granted granted Critical
Publication of TWI793826B publication Critical patent/TWI793826B/en
Publication of TW202317503A publication Critical patent/TW202317503A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a method for producing a perovskite film, a perovskite substrate and a perovskite solar cell. The method for producing the perovskite film utilizes a method by using an ultrasonic resonance to aerosolize a perovskite precursor solution into a plurality of droplets with a specific particles size and utilizes gas to spray the plurality of droplets on a silicon substrate, thereby increase an area of the perovskite film and enhancing an uniformity of the perovskite film. The perovskite substrate containing the resulted perovskite film can be applied to the perovskite solar cell, thereby enhancing effect of the perovskite solar cell.

Description

鈣鈦礦薄膜之製造方法、鈣鈦礦基板及鈣鈦礦太陽能電池Manufacturing method of perovskite thin film, perovskite substrate and perovskite solar cell

本發明係有關於一種鈣鈦礦薄膜之製造方法、鈣鈦礦基板及鈣鈦礦太陽能電池,且特別是有關於一種具有大面積及高均勻度之鈣鈦礦薄膜之製造方法、鈣鈦礦基板及鈣鈦礦太陽能電池。The present invention relates to a method for manufacturing a perovskite film, a perovskite substrate and a perovskite solar cell, and in particular to a method for manufacturing a perovskite film with large area and high uniformity, a perovskite Substrates and perovskite solar cells.

鈣鈦礦(perovskite)材料係由有機物與無機物混合後所製得,鈣鈦礦材料的化學通式可使用ABX 3表示,其中A代表有機陽離子,例如:HC(NH 2) 2+及CH 3NH 3+,B代表金屬陽離子,例如:Pb 2+、Ge 2+及Sn 2+,X代表一價的陰離子,例如:鹵素的陰離子。 Perovskite materials are made by mixing organic and inorganic substances. The general chemical formula of perovskite materials can be represented by ABX 3 , where A represents organic cations, such as: HC(NH 2 ) 2+ and CH 3 NH 3+ , B represents metal cations, such as Pb 2+ , Ge 2+ and Sn 2+ , X represents monovalent anions, such as halogen anions.

鈣鈦礦(perovskite)材料對可見光具有良好的吸收,且吸光範圍廣,故鈣鈦礦材料所製之薄膜(以下稱為鈣鈦礦材料薄膜)常做為太陽能電池的主動層(active Layer)。使用少量的鈣鈦礦材料即可產生高短路電流,且所製之太陽能電池具有高開路電壓,因此鈣鈦礦太陽能電池具有良好的光電轉換效率(power conversion efficiency,PCE)。Perovskite materials have good absorption of visible light and have a wide range of light absorption, so thin films made of perovskite materials (hereinafter referred to as perovskite material thin films) are often used as the active layer of solar cells. . High short-circuit current can be generated by using a small amount of perovskite material, and the fabricated solar cell has a high open-circuit voltage, so the perovskite solar cell has good photoelectric conversion efficiency (power conversion efficiency, PCE).

傳統之鈣鈦礦薄膜的製造方法係以旋轉塗佈方式或蒸鍍方式製造鈣鈦礦薄膜於基材上,以獲得鈣鈦礦基板。旋轉塗佈方式之優點為省時及低成本,但塗佈面積有限,且所製之鈣鈦礦薄膜的均勻度差。此外,雖然蒸鍍方式所製之鈣鈦礦薄膜具備高均勻度,但蒸鍍面積仍有限。The traditional manufacturing method of perovskite thin film is to manufacture perovskite thin film on the substrate by spin coating or vapor deposition, so as to obtain the perovskite substrate. The advantages of the spin coating method are time saving and low cost, but the coating area is limited, and the uniformity of the prepared perovskite film is poor. In addition, although the perovskite film produced by evaporation has high uniformity, the evaporation area is still limited.

有鑑於此,亟需發展一種新的鈣鈦礦薄膜之製造方法,以改善習知的鈣鈦礦薄膜之製造方法、鈣鈦礦基板及鈣鈦礦太陽能電池之上述缺點。In view of this, there is an urgent need to develop a new method of manufacturing perovskite thin films to improve the above-mentioned shortcomings of conventional perovskite thin film manufacturing methods, perovskite substrates and perovskite solar cells.

有鑑於上述之問題,本發明之一態樣是在提供一種鈣鈦礦薄膜之製造方法,此製造方法係使用超音波震盪方式及氣體噴塗鈣鈦礦前驅物溶液,以增大所製之鈣鈦礦薄膜的面積且提升其均勻度。In view of the above-mentioned problems, one aspect of the present invention is to provide a method of manufacturing a perovskite film, which uses ultrasonic vibration and gas spraying of a perovskite precursor solution to increase the amount of calcium produced. The area of the titanium ore film is increased and its uniformity is improved.

本發明之另一態樣是在提供一種鈣鈦礦基板,其包含前述之鈣鈦礦薄膜。Another aspect of the present invention is to provide a perovskite substrate comprising the aforementioned perovskite thin film.

本發明之又一態樣是在提供一種鈣鈦礦太陽能電池,其包含前述之鈣鈦礦薄膜。Another aspect of the present invention is to provide a perovskite solar cell, which includes the aforementioned perovskite thin film.

根據本發明之一態樣,提出一種鈣鈦礦薄膜之製造方法。此製造方法先對矽基材進行噴塗處理,以形成鈣鈦礦塗膜於矽基材的表面上,其中噴塗處理包含:提供鈣鈦礦前驅物溶液、霧化步驟及塗覆步驟。詳述之,對鈣鈦礦前驅物溶液進行霧化步驟,以產生複數個液滴,其中霧化步驟係藉由超音波震盪方式霧化鈣鈦礦前驅物溶液。接著,進行塗覆步驟,以形成鈣鈦礦塗膜,其中塗覆步驟係利用氣體使此些液滴塗覆於表面上。然後,對鈣鈦礦塗膜進行熱處理,以獲得鈣鈦礦薄膜,其中熱處理之溫度為不小於60℃。According to an aspect of the present invention, a method for manufacturing a perovskite thin film is proposed. In the manufacturing method, the silicon substrate is first sprayed to form a perovskite coating film on the surface of the silicon substrate, wherein the spraying treatment includes: providing a perovskite precursor solution, an atomization step and a coating step. In detail, the perovskite precursor solution is atomized to generate a plurality of droplets, wherein the atomization step is to atomize the perovskite precursor solution by means of ultrasonic vibration. Next, a coating step is performed to form a perovskite coating film, wherein the coating step uses gas to coat the droplets on the surface. Then, heat treatment is performed on the perovskite coating film to obtain a perovskite film, wherein the temperature of the heat treatment is not less than 60°C.

依據本發明之一實施例,當噴塗處理包含單一階段式噴塗步驟時,鈣鈦礦前驅物溶液之鈣鈦礦前驅物包含IVA族元素的鹵化鹽及烷基胺之鹵化鹽。According to an embodiment of the present invention, when the spraying process includes a single-stage spraying step, the perovskite precursor of the perovskite precursor solution includes a halide salt of a group IVA element and a halide salt of an alkylamine.

依據本發明之另一實施例,當噴塗處理包含二階段式噴塗步驟時,二階段式噴塗步驟包含第一噴塗步驟及第二噴塗步驟,第一噴塗步驟之鈣鈦礦前驅物溶液之鈣鈦礦前驅物包含IVA族元素的鹵化鹽及烷基胺的鹵化鹽之一者,且第二噴塗步驟之鈣鈦礦前驅物溶液之鈣鈦礦前驅物包含IVA族元素的鹵化鹽及烷基胺的鹵化鹽之另一者。According to another embodiment of the present invention, when the spraying process includes a two-stage spraying step, the two-stage spraying step includes a first spraying step and a second spraying step, and the perovskite of the perovskite precursor solution in the first spraying step The ore precursor includes one of the halide salts of group IVA elements and the halide salts of alkylamines, and the perovskite precursor of the perovskite precursor solution in the second spraying step includes halide salts and alkylamines of group IVA elements The other of the halide salts.

依據本發明之又一實施例,此些液滴之粒徑為不大於10μm。According to yet another embodiment of the present invention, the particle size of these liquid droplets is not greater than 10 μm.

依據本發明之又一實施例,氣體包含第一氣體以及第二氣體。According to yet another embodiment of the present invention, the gas includes a first gas and a second gas.

依據本發明之又一實施例,第一氣體之第一氣流方向與第二氣體之第二氣流方向成一夾角,且夾角為20˚至160˚。According to yet another embodiment of the present invention, the first gas flow direction of the first gas and the second gas flow direction of the second gas form an included angle, and the included angle is 20° to 160°.

根據本發明之另一態樣,提出一種鈣鈦礦基板。此鈣鈦礦基板包含矽基材以及設置於此矽基材上之鈣鈦礦薄膜,其中鈣鈦礦薄膜對於矽基材之覆蓋率大於75%,且鈣鈦礦薄膜的晶粒尺寸為2μm至5μm。According to another aspect of the present invention, a perovskite substrate is provided. The perovskite substrate includes a silicon substrate and a perovskite film disposed on the silicon substrate, wherein the coverage of the perovskite film on the silicon substrate is greater than 75%, and the grain size of the perovskite film is 2 μm to 5 μm.

依據本發明之又一實施例,鈣鈦礦薄膜之一面積大於22500mm 2According to yet another embodiment of the present invention, one of the perovskite films has an area greater than 22500 mm 2 .

依據本發明之又一實施例,鈣鈦礦薄膜的XRD圖譜在(220)結晶方向與(310)結晶方向的繞射峰強度比為大於1.2且不大於1.8。According to another embodiment of the present invention, the XRD spectrum of the perovskite thin film has a diffraction peak intensity ratio between (220) crystallographic direction and (310) crystallographic direction greater than 1.2 and not greater than 1.8.

根據本發明之又一態樣,提出一種鈣鈦礦太陽能電池。此鈣鈦礦太陽能電池包含矽基材、光電轉化層及電極層,其中光電轉化層設置於矽基材及電極層之間。光電轉化層包含鈣鈦礦薄膜,以及電子傳輸層或電洞傳輸層。當光電轉化層包含鈣鈦礦薄膜及電子傳輸層時,電子傳輸層設置於鈣鈦礦薄膜及矽基材之間,且鈣鈦礦薄膜對於電子傳輸層之覆蓋率為大於75%;或者當光電轉化層包含鈣鈦礦薄膜及電洞傳輸層時,電洞傳輸層設置於鈣鈦礦薄膜及電極層之間,且鈣鈦礦薄膜對於矽基材之覆蓋率為大於75%。According to another aspect of the present invention, a perovskite solar cell is provided. The perovskite solar cell includes a silicon substrate, a photoelectric conversion layer and an electrode layer, wherein the photoelectric conversion layer is arranged between the silicon substrate and the electrode layer. The photoelectric conversion layer includes a perovskite thin film, and an electron transport layer or a hole transport layer. When the photoelectric conversion layer includes a perovskite film and an electron transport layer, the electron transport layer is disposed between the perovskite film and the silicon substrate, and the coverage of the perovskite film on the electron transport layer is greater than 75%; or when When the photoelectric conversion layer includes a perovskite film and a hole transport layer, the hole transport layer is disposed between the perovskite film and the electrode layer, and the coverage of the perovskite film on the silicon substrate is greater than 75%.

依據本發明之一實施例,鈣鈦礦薄膜的XRD圖譜在(220)結晶方向與(310)結晶方向的繞射峰強度比為大於1.2且不大於1.8。According to an embodiment of the present invention, the XRD spectrum of the perovskite thin film has a diffraction peak intensity ratio between the (220) crystallographic direction and the (310) crystallographic direction greater than 1.2 and not greater than 1.8.

應用本發明之鈣鈦礦薄膜之製造方法、鈣鈦礦基板及鈣鈦礦太陽能電池,其中使用超音波震盪方式霧化鈣鈦礦前驅物溶液成具有特定粒徑之複數個液滴,且以氣體噴塗此些液滴於矽基材上,從而增大所製之鈣鈦礦薄膜的面積且提升其均勻度。含有所製之鈣鈦礦薄膜之鈣鈦礦基板可應用於鈣鈦礦太陽能電池,以提升鈣鈦礦太陽能電池之功效。The manufacturing method of the perovskite thin film, the perovskite substrate and the perovskite solar cell of the present invention are applied, wherein the perovskite precursor solution is atomized into a plurality of droplets with a specific particle size by means of ultrasonic vibration, and the The gas sprays these droplets on the silicon substrate, thereby increasing the area and improving the uniformity of the fabricated perovskite film. The perovskite substrate containing the prepared perovskite thin film can be applied to perovskite solar cells to improve the performance of the perovskite solar cells.

以下仔細討論本發明實施例之製造和使用。然而,可以理解的是,實施例提供許多可應用的發明概念,其可實施於各式各樣的特定內容中。所討論之特定實施例僅供說明,並非用以限定本發明之範圍。The making and using of embodiments of the invention are discussed in detail below. It should be appreciated, however, that the embodiments provide many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are illustrative only and do not limit the scope of the invention.

請參閱圖1,鈣鈦礦薄膜之製造方法100先對矽基材進行噴塗處理,以形成鈣鈦礦塗膜於矽基材的表面上,如操作110所示。於噴塗處理中,先提供鈣鈦礦前驅物溶液,如步驟111所示。鈣鈦礦前驅物溶液包含溶劑及鈣鈦礦前驅物。溶劑沒有特別限制,可為本發明所屬技術領域中具有通常知識者所慣用之溶劑,例如:二甲基甲醯胺(DMF)、二甲基亞碸(DMSO)及異丙醇(IPA)。Please refer to FIG. 1 , the method 100 for manufacturing a perovskite film first sprays a silicon substrate to form a perovskite coating on the surface of the silicon substrate, as shown in operation 110 . In the spray coating process, a perovskite precursor solution is firstly provided, as shown in step 111 . The perovskite precursor solution includes a solvent and a perovskite precursor. The solvent is not particularly limited, and may be a solvent commonly used by those skilled in the art of the present invention, such as dimethylformamide (DMF), dimethylsulfoxide (DMSO) and isopropanol (IPA).

在一些實施例中,依據後續噴塗處理所進行之噴塗步驟的次數(詳述於後),噴塗之鈣鈦礦前驅物可分別包含但不限於IVA族元素的鹵化鹽及/或烷基胺之鹵化鹽。較佳地,此IVA族元素可為鍺、錫及鉛,鹵化鹽的鹵素元素可為氯、溴及碘,且烷基胺的烷基例如為甲基。In some embodiments, according to the number of spraying steps carried out in the subsequent spraying process (detailed later), the perovskite precursors sprayed may include but are not limited to halide salts of group IVA elements and/or alkylamines. halide salts. Preferably, the group IVA element can be germanium, tin and lead, the halogen element of the halide salt can be chlorine, bromine and iodine, and the alkyl group of the alkylamine is, for example, methyl.

在單一階段式噴塗步驟之實施例中,鈣鈦礦前驅物可包含IVA族元素的鹵化鹽及烷基胺之鹵化鹽。在二階段式噴塗步驟之實施例中,二階段式噴塗步驟包含第一噴塗步驟及第二噴塗步驟。第一噴塗步驟所使用之鈣鈦礦前驅物包含IVA族元素的鹵化鹽及烷基胺的鹵化鹽之一者,且第二噴塗步驟所使用之鈣鈦礦前驅物包含IVA族元素的鹵化鹽及烷基胺的鹵化鹽之另一者,以製得鈣鈦礦塗膜。此處所稱之「階段」係依據噴塗鈣鈦礦前驅物溶液之層數而定。In an embodiment of a single-stage spraying step, the perovskite precursor may include a halide salt of a Group IVA element and a halide salt of an alkylamine. In an embodiment of the two-stage spraying step, the two-stage spraying step includes a first spraying step and a second spraying step. The perovskite precursor used in the first spraying step includes one of the halide salts of group IVA elements and the halide salts of alkylamines, and the perovskite precursor used in the second spraying step includes halide salts of group IVA elements And the other one of halide salt of alkylamine to make perovskite coating film. The "stage" referred to here depends on the number of layers sprayed with the perovskite precursor solution.

詳述之,以通式為HC(NH 2)PbI 3之鈣鈦礦薄膜為例,當鈣鈦礦前驅物溶液為含有PbI 2及甲基碘化銨(CH 3NH 3I,MAI)之溶液時,可一次或重複多次噴塗鈣鈦礦前驅物溶液於矽基材上,以形成鈣鈦礦塗膜。當鈣鈦礦前驅物溶液為含有PbI 2或甲基碘化銨之溶液時,在一些具體例中,先噴塗含有PbI 2或甲基碘化銨之溶液於矽基材上,以形成相應之塗膜,再噴塗含有另一者之溶液於前述塗膜上,以使PbI 2與甲基碘化銨反應,而形成鈣鈦礦塗膜。 In detail, take the perovskite film with the general formula HC(NH 2 )PbI 3 as an example, when the perovskite precursor solution is a solution containing PbI 2 and methyl ammonium iodide (CH 3 NH 3 I, MAI) When using a solution, the perovskite precursor solution can be sprayed on the silicon substrate once or repeatedly to form a perovskite coating film. When the perovskite precursor solution is a solution containing PbI2 or methylammonium iodide, in some specific examples, the solution containing PbI2 or methylammonium iodide is first sprayed on the silicon substrate to form a corresponding coating film, and then spray a solution containing the other on the aforementioned coating film, so that PbI 2 reacts with methyl ammonium iodide to form a perovskite coating film.

在另一些實施例中,鈣鈦礦薄膜之製造方法100可組合單一階段式噴塗步驟及二階段式噴塗步驟來進行噴塗處理,組合後之噴塗步驟可稱作多階段式噴塗步驟。就功效而言,一階段式噴塗步驟可節省時間,而二階段式(或多階段式)噴塗步驟可更提高所製之鈣鈦礦薄膜的均勻度及厚度的調整性。In some other embodiments, the manufacturing method 100 of the perovskite thin film may combine a single-stage spraying step and a two-stage spraying step to carry out the spraying process, and the combined spraying step may be called a multi-stage spraying step. In terms of efficacy, the one-stage spraying step can save time, and the two-stage (or multi-stage) spraying step can further improve the uniformity and thickness adjustment of the prepared perovskite film.

本發明所稱之「均勻度」係使用後述之覆蓋率進行評價,其中覆蓋率係以鈣鈦礦薄膜的面積除以矽基材之面積所獲得之商表示。當覆蓋率大於75%時,此鈣鈦礦薄膜具有良好的均勻度。此覆蓋率受鈣鈦礦薄膜的孔洞數量及塗覆之成膜性影響。當鈣鈦礦薄膜的孔洞少且成膜性佳時,覆蓋率愈高。The "uniformity" referred to in the present invention is evaluated using the coverage rate described later, wherein the coverage rate is expressed by the quotient obtained by dividing the area of the perovskite film by the area of the silicon substrate. When the coverage is greater than 75%, this perovskite film has good uniformity. This coverage is affected by the number of pores in the perovskite film and the film-forming property of the coating. When the perovskite film has fewer pores and better film-forming properties, the coverage rate is higher.

在一些實施例中,鈣鈦礦前驅物溶液之黏度可為不大於35cp。當黏度為前述之範圍時,利於噴塗,從而增大鈣鈦礦薄膜的面積、提升其均勻度及厚度的調整性。In some embodiments, the viscosity of the perovskite precursor solution may not be greater than 35 cp. When the viscosity is within the aforementioned range, it is beneficial for spraying, thereby increasing the area of the perovskite film, improving its uniformity and thickness adjustability.

於步驟111後,對鈣鈦礦前驅物溶液進行霧化步驟,以產生複數個液滴,如步驟112所示。在一些實施例中,前述霧化步驟係利用噴塗裝置進行,噴塗裝置可為含有一股氣體或含有二股氣體之噴塗裝置。請參閱圖2A及圖2B,噴塗裝置200包含供料槽210、超音波震盪元件220、噴霧口230、第一氣體噴嘴240及第二氣體噴嘴250。詳述之,於超音波震盪元件220中,超音波產生器產生特定頻率之電子訊號,此電子訊號使壓電陶瓷產生相同頻率的機械振動,再藉由變幅桿放大機械振動之振幅。After step 111 , the perovskite precursor solution is atomized to generate a plurality of droplets, as shown in step 112 . In some embodiments, the aforementioned atomization step is performed using a spraying device, and the spraying device may be a spraying device containing one gas or two gases. Referring to FIG. 2A and FIG. 2B , the spraying device 200 includes a supply tank 210 , an ultrasonic vibrating element 220 , a spray port 230 , a first gas nozzle 240 and a second gas nozzle 250 . In detail, in the ultrasonic oscillator 220, the ultrasonic generator generates an electronic signal of a specific frequency, and the electronic signal causes the piezoelectric ceramic to generate a mechanical vibration of the same frequency, and then the amplitude of the mechanical vibration is amplified by the horn.

進一步,於供料槽210中之鈣鈦礦前驅物溶液經馬達施壓且透過噴霧口230噴出,噴出的鈣鈦礦前驅物溶液被放大振幅的機械振動細化成液滴。此外,機械振動可混合鈣鈦礦前驅物溶液,以使所製之鈣鈦礦薄膜的晶粒更均勻(即晶粒尺寸更均勻)。在一些實施例中,前述頻率可為20kHz至150kHz,且較佳可為25kHz至125kHz。當頻率為前述範圍時,利於液滴細化及霧化,進而提升所製之鈣鈦礦薄膜的均勻度。再者,所生成之液滴粒徑可為不大於10μm,且較佳可為2μm至9μm。當液滴粒徑為大於10μm時,提升鈣鈦礦薄膜的均勻度且增大塗佈面積。Further, the perovskite precursor solution in the supply tank 210 is pressurized by the motor and sprayed out through the spray port 230 , and the sprayed perovskite precursor solution is refined into liquid droplets by the amplified mechanical vibration. In addition, the mechanical vibration can mix the perovskite precursor solution to make the grains of the perovskite film more uniform (ie, the grain size is more uniform). In some embodiments, the aforementioned frequency may be 20 kHz to 150 kHz, and preferably may be 25 kHz to 125 kHz. When the frequency is within the aforementioned range, it is beneficial to the refinement and atomization of droplets, thereby improving the uniformity of the manufactured perovskite film. Furthermore, the particle size of the generated droplets may not be greater than 10 μm, and preferably may be 2 μm to 9 μm. When the droplet size is greater than 10 μm, the uniformity of the perovskite film is improved and the coating area is increased.

在一些具體例中,供料槽210可為注射筒。注射筒配有單一管注射器,其切換閥設置於注射器的上方。切換閥由馬達感測器控制開關,並由馬達進行鈣鈦礦前驅物溶液的補充或噴出,此馬達感測器設計成三組,其功能分別為上極限、抽料點及下極限,其中抽料點之設計以排除注射筒內空氣做為參考原點,以使鈣鈦礦前驅物溶液的利用率可大於80%。詳述之,採用對稱機構的方式推送注射筒,以控制鈣鈦礦前驅物溶液的噴出速度。切換閥以電控式換位閥件控制,且換位閥件的材質為聚醚醚酮(PEEK)及聚四氟乙烯(PTFE),以耐化學藥劑,且方便組裝與保養維護。此外,當以注射筒做為供料槽210時,殘留的(即未使用的)鈣鈦礦前驅物溶液可藉由灌氣打出而被回收。In some embodiments, the feed tank 210 may be a syringe. The syringe is equipped with a single tube syringe, and its switching valve is set above the syringe. The switching valve is controlled by a motor sensor, and the motor is used to supplement or spray the perovskite precursor solution. The motor sensor is designed into three groups, and its functions are the upper limit, the pumping point and the lower limit. The pumping point is designed to remove the air in the injection cylinder as a reference point, so that the utilization rate of the perovskite precursor solution can be greater than 80%. In detail, a symmetrical mechanism is used to push the syringe to control the ejection speed of the perovskite precursor solution. The switching valve is controlled by an electronically controlled transposition valve, and the material of the transposition valve is polyetheretherketone (PEEK) and polytetrafluoroethylene (PTFE), which are chemical resistant and easy to assemble and maintain. In addition, when the syringe is used as the feed tank 210, the residual (ie, unused) perovskite precursor solution can be recovered by pumping it out with gas.

於步驟112後,進行塗覆步驟,以形成鈣鈦礦塗膜,如步驟113所示。在一些實施例中,第一氣體噴嘴240及第二氣體噴嘴250分別產生第一氣體及第二氣體,此二氣體噴向細化後的液滴,以使液滴噴塗於矽基材的表面上。第一氣體噴嘴240及第二氣體噴嘴250之氣流方向均不平行於噴霧口230之延伸方向。在一些具體例中,第一氣體噴嘴240及第二氣體噴嘴250之氣流方向係垂直於噴霧口230之延伸方向。此二氣體之氣流方向成一夾角θ,此夾角θ的角度可為20˚至160˚。當此夾角θ為20˚至160˚時,可使液滴均勻噴塗於矽基材的表面,且增大噴塗面積。較佳地,夾角θ可為45˚至135˚。前述之第一氣體及第二氣體的種類沒有特別限制,惟以不能與鈣鈦礦前驅物溶液發生反應為目的。較佳地,第一氣體及第二氣體的具體例可包含空氣或氮氣。After step 112 , a coating step is performed to form a perovskite coating film, as shown in step 113 . In some embodiments, the first gas nozzle 240 and the second gas nozzle 250 respectively generate the first gas and the second gas, and the two gases are sprayed to the thinned liquid droplets, so that the liquid droplets are sprayed on the surface of the silicon substrate superior. The gas flow directions of the first gas nozzle 240 and the second gas nozzle 250 are not parallel to the extending direction of the spray opening 230 . In some embodiments, the gas flow direction of the first gas nozzle 240 and the second gas nozzle 250 is perpendicular to the extension direction of the spray port 230 . The gas flow directions of these two gases form an included angle θ, and the included angle θ can be from 20° to 160°. When the included angle θ is 20° to 160°, the liquid droplets can be evenly sprayed on the surface of the silicon substrate, and the spraying area can be increased. Preferably, the included angle θ may be 45° to 135°. The types of the aforementioned first gas and second gas are not particularly limited, but the purpose is not to react with the perovskite precursor solution. Preferably, specific examples of the first gas and the second gas may include air or nitrogen.

此二氣體之壓力總和可維持一定值(例如:0 Psi至70Psi),以藉由二者之壓力的相對消長來控制液滴之噴塗面積,如圖3所示。詳述之,以此二氣體對衝的方式控制對衝後氣體的流場(flow field),即噴塗液滴所占據的空間,而噴塗方向之擺動係藉由二氣體之壓力來調控。舉例而言,壓力總和可為60Psi,由靠近第二氣體噴嘴250的一側往靠近第一氣體噴嘴240的一側噴塗時,第一氣體的壓力由60Psi逐漸下降,而第二氣體的壓力由1Psi逐漸增加。當噴塗於第一氣體噴嘴240與第二氣體噴嘴250之中間處時,第一氣體及第二氣體的壓力相等。然後繼續往靠近第一氣體噴嘴240的一側噴塗,第一氣體的壓力逐漸下降至1Psi,而第二氣體的壓力逐漸增至60Psi。當此二氣體之壓力總和維持定值時,有利於均勻噴塗液滴於矽基材的表面,而提升鈣鈦礦薄膜的均勻度,並且因此增大塗佈面積。The sum of the pressures of the two gases can be maintained at a certain value (for example: 0 Psi to 70 Psi), so as to control the spraying area of the droplets through the relative fluctuation of the pressures of the two gases, as shown in FIG. 3 . In detail, the flow field of the gas after the collision is controlled in this way, that is, the space occupied by the sprayed droplets, and the swing of the spraying direction is regulated by the pressure of the two gases. For example, the sum of the pressures can be 60Psi. When spraying from the side close to the second gas nozzle 250 to the side close to the first gas nozzle 240, the pressure of the first gas gradually decreases from 60Psi, while the pressure of the second gas decreases from 60Psi to 1Psi is gradually increased. When spraying in the middle of the first gas nozzle 240 and the second gas nozzle 250 , the pressures of the first gas and the second gas are equal. Then continue spraying toward the side close to the first gas nozzle 240, the pressure of the first gas gradually drops to 1Psi, and the pressure of the second gas gradually increases to 60Psi. When the sum of the pressures of the two gases is maintained at a constant value, it is beneficial to uniformly spray the liquid droplets on the surface of the silicon substrate, thereby improving the uniformity of the perovskite film, and thus increasing the coating area.

在一些實施例中,此二氣體之壓力經歷一個循環(例如:從1Psi增加至60Psi後再降至1Psi)的時間沒有特別限定,惟以可均勻噴塗液滴於矽基材的表面為目的,可為1至10分鐘。在一些具體例中,此二氣體的流速可為0.05mL/min至35mL/min,以利於維持此二氣體之壓力總和為定值。當流速為前述之範圍時,可使液滴均勻噴塗於矽基材的表面,且增大噴塗面積。較佳地,流速可為0.5mL/min至1mL/min。In some embodiments, the pressure of the two gases undergoes a cycle (for example: increasing from 1Psi to 60Psi and then decreasing to 1Psi) time is not particularly limited, but for the purpose of uniformly spraying liquid droplets on the surface of the silicon substrate, It can be from 1 to 10 minutes. In some specific examples, the flow rate of the two gases may be 0.05 mL/min to 35 mL/min, so as to maintain the sum of the pressures of the two gases at a constant value. When the flow rate is in the aforementioned range, the liquid droplets can be evenly sprayed on the surface of the silicon substrate, and the spraying area can be increased. Preferably, the flow rate may be 0.5 mL/min to 1 mL/min.

在一些實施例中,前述之塗佈面積可為大於22500mm 2(例如:大於150mm×150mm之矩形)。當塗佈面積為前述範圍時,所製之鈣鈦礦薄膜適於應用於鈣鈦礦太陽能電池。在一些實施例中,塗佈量可為0.1 mL/min至0.5mL/min,且較佳可為0.25mL/min。當塗佈量為前述範圍時,利於噴塗,從而增大鈣鈦礦薄膜的面積並提升其均勻度及厚度的調整性。 In some embodiments, the aforementioned coating area may be greater than 22500 mm 2 (for example, a rectangle greater than 150 mm×150 mm). When the coating area is within the aforementioned range, the prepared perovskite thin film is suitable for application in perovskite solar cells. In some embodiments, the coating amount can be 0.1 mL/min to 0.5 mL/min, and preferably 0.25 mL/min. When the coating amount is in the aforementioned range, it is beneficial for spraying, thereby increasing the area of the perovskite film and improving its uniformity and thickness adjustment.

矽基材的具體例可包含但不限於塗佈金屬氧化層的矽基材,且矽基材較佳可為結晶矽(c-Si)的基材。此外,金屬氧化層的具體例可包含但不限於銦錫氧化物(ITO)。在一些較佳的具體例中,金屬氧化層的厚度可為70nm至130nm,以提升所製之鈣鈦礦薄膜對於光線的吸收,且可維持良好的導電性。在一些具體例中,金屬氧化層可蒸鍍於矽基材上,且於蒸鍍前,矽基材可利用紫外光及臭氧處理(如經歷30分鐘之處理時間),以清潔矽基材表面。Specific examples of the silicon substrate include but are not limited to a silicon substrate coated with a metal oxide layer, and the silicon substrate is preferably a crystalline silicon (c-Si) substrate. In addition, specific examples of the metal oxide layer may include but not limited to indium tin oxide (ITO). In some preferred embodiments, the thickness of the metal oxide layer can be 70nm to 130nm, so as to improve the light absorption of the fabricated perovskite film and maintain good electrical conductivity. In some specific examples, the metal oxide layer can be evaporated on the silicon substrate, and before the evaporation, the silicon substrate can be treated with ultraviolet light and ozone (for example, after 30 minutes of treatment time) to clean the surface of the silicon substrate .

於操作110後,對鈣鈦礦塗膜進行熱處理,以獲得鈣鈦礦薄膜,如操作120所示。熱處理之溫度為不小於60℃。倘若此溫度小於60℃,鈣鈦礦前驅物不能形成鈣鈦礦,所製之薄膜不能應用於鈣鈦礦太陽能電池。熱處理之溫度較佳可為60℃至120℃。在一些實施例中,熱處理之時間可為20分鐘至60分鐘。當熱處理之時間為前述之範圍時,可利於鈣鈦礦前驅物形成鈣鈦礦薄膜。After operation 110 , heat treatment is performed on the perovskite coating film to obtain a perovskite film, as shown in operation 120 . The heat treatment temperature is not less than 60°C. If the temperature is lower than 60°C, the perovskite precursor cannot form perovskite, and the resulting film cannot be used in perovskite solar cells. The heat treatment temperature is preferably 60°C to 120°C. In some embodiments, the heat treatment time may be 20 minutes to 60 minutes. When the heat treatment time is within the aforementioned range, the perovskite precursor can be beneficial to form the perovskite film.

本發明之另一態樣在於提供一種鈣鈦礦基板。請參閱圖4,鈣鈦礦基板400包含矽基材410,以及設置於矽基材410上之鈣鈦礦薄膜420。此鈣鈦礦薄膜420可利用前述之鈣鈦礦薄膜之製造方法製得。在一些實施例中,鈣鈦礦薄膜420之晶粒尺寸為2μm至5μm。當鈣鈦礦薄膜420之晶粒尺寸為前述之範圍時,可提升所製之鈣鈦礦薄膜420的晶粒均勻度及覆蓋率,而利於應用於鈣鈦礦太陽能電池。此外,鈣鈦礦薄膜420對於矽基材410之覆蓋率可大於75%。倘若覆蓋率不大於75%,含有鈣鈦礦薄膜420之鈣鈦礦基板400難以應用於鈣鈦礦太陽能電池。在一些實施例中,鈣鈦礦薄膜420之厚度可為200nm至3μm,且較佳可為300nm至2μm。當鈣鈦礦薄膜420之厚度為前述之範圍時,可提高所製之鈣鈦礦薄膜420之均勻度及覆蓋率,而利於應用於鈣鈦礦太陽能電池。在一些具體例中,鈣鈦礦薄膜420之面積大於22500mm 2,以有利於應用於鈣鈦礦太陽能電池。 Another aspect of the present invention is to provide a perovskite substrate. Referring to FIG. 4 , the perovskite substrate 400 includes a silicon substrate 410 and a perovskite film 420 disposed on the silicon substrate 410 . The perovskite thin film 420 can be manufactured by the above-mentioned manufacturing method of the perovskite thin film. In some embodiments, the grain size of the perovskite thin film 420 is 2 μm to 5 μm. When the grain size of the perovskite thin film 420 is in the aforementioned range, the grain uniformity and coverage of the manufactured perovskite thin film 420 can be improved, which is beneficial for application in perovskite solar cells. In addition, the coverage of the perovskite thin film 420 on the silicon substrate 410 may be greater than 75%. If the coverage is not greater than 75%, the perovskite substrate 400 including the perovskite thin film 420 is difficult to be applied to perovskite solar cells. In some embodiments, the thickness of the perovskite film 420 may be 200 nm to 3 μm, and preferably 300 nm to 2 μm. When the thickness of the perovskite thin film 420 is within the aforementioned range, the uniformity and coverage of the manufactured perovskite thin film 420 can be improved, which is beneficial for application in perovskite solar cells. In some embodiments, the area of the perovskite thin film 420 is greater than 22500 mm 2 , which is beneficial for application in perovskite solar cells.

在一些實施例中,鈣鈦礦薄膜420的XRD圖譜在(220)結晶方向與(310)結晶方向的繞射峰強度比為大於1.2且不大於1.8。當此繞射峰強度比為前述之範圍時,鈣鈦礦薄膜420對可見光具有良好的吸收,而利於應用於鈣鈦礦太陽能電池。In some embodiments, the XRD pattern of the perovskite thin film 420 has a diffraction peak intensity ratio of (220) crystallographic direction to (310) crystallographic direction greater than 1.2 and not greater than 1.8. When the diffraction peak intensity ratio is within the aforementioned range, the perovskite thin film 420 has good absorption of visible light, which is beneficial for application in perovskite solar cells.

本發明之鈣鈦礦薄膜適合應用於鈣鈦礦太陽能電池,其中鈣鈦礦薄膜做為太陽能電池的主動層。請參閱圖5A,鈣鈦礦太陽能電池500可包含矽基材510、光電轉化層520及電極層530,其中光電轉化層520設置於矽基材510及電極層530之間。請參閱圖5B,在一些應用例中,光電轉化層520包含鈣鈦礦薄膜521及電子傳輸層522,電子傳輸層522設置於鈣鈦礦薄膜521及矽基材510之間。請參閱圖5C,在另一些應用例中,光電轉化層520包含鈣鈦礦薄膜521及電洞傳輸層523,電子傳輸層522設置於鈣鈦礦薄膜521及電極層530之間。矽基材510、電子傳輸層522及鈣鈦礦吸收層521分別可使用前述之鈣鈦礦薄膜之製造方法所使用的結晶矽基材、金屬氧化層及鈣鈦礦薄膜。The perovskite thin film of the present invention is suitable for use in perovskite solar cells, wherein the perovskite thin film is used as the active layer of the solar cell. Please refer to FIG. 5A , the perovskite solar cell 500 may include a silicon substrate 510 , a photoelectric conversion layer 520 and an electrode layer 530 , wherein the photoelectric conversion layer 520 is disposed between the silicon substrate 510 and the electrode layer 530 . Please refer to FIG. 5B , in some application examples, the photoelectric conversion layer 520 includes a perovskite film 521 and an electron transport layer 522 , and the electron transport layer 522 is disposed between the perovskite film 521 and the silicon substrate 510 . Please refer to FIG. 5C , in some other application examples, the photoelectric conversion layer 520 includes a perovskite film 521 and a hole transport layer 523 , and the electron transport layer 522 is disposed between the perovskite film 521 and the electrode layer 530 . The silicon substrate 510, the electron transport layer 522, and the perovskite absorbing layer 521 can respectively use the crystalline silicon substrate, metal oxide layer, and perovskite thin film used in the manufacturing method of the aforementioned perovskite thin film.

電子傳輸層522、電洞傳輸層523及電極層530之材料沒有特別限制,惟以適於應用於鈣鈦礦太陽能電池500之目的。在一些具體例中,電洞傳輸層523的材料可包含聚二氧乙基噻吩:苯乙烯磺酸(PEDOT:PSS)及2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl) amino]-9,9'-spirobifluorene,Spiro-OMeTAD)。此外,電子傳輸層522的材料可包含6,6-苯基-C61-丁酸甲酯(6,6-phenyl-C61-butyric acid methyl ester,PC61BM)、6,6-苯基-C71-丁酸甲酯(6,6-phenyl-C71-butyric acid methyl ester,PC71BM)、氧化鋅及氧化鈦。較佳地,電洞傳輸層523使用具有高熱穩定性之固態Spiro-OMeTAD,以提升鈣鈦礦太陽能電池之穩定性。在一些實施例中,可省略電子傳輸層522或電洞傳輸層523,以降低在各層之介面所形成之能量的損耗。舉例說明,使用玻璃基材之鈣鈦礦太陽能電池必需以串接式電池結合矽晶,故易導致製程結構的複雜化,而造成介面損失。此外,電極層530的材料可包含導電性金屬,例如:金及鋁。The materials of the electron transport layer 522 , the hole transport layer 523 and the electrode layer 530 are not particularly limited, but are suitable for the purpose of application in the perovskite solar cell 500 . In some specific examples, the material of the hole transport layer 523 may include polydioxyethylenethiophene: styrene sulfonic acid (PEDOT: PSS) and 2,2',7,7'-tetrakis[N,N-bis( 4-methoxyphenyl)amino]-9,9'-spirobifluorene (2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl) amino]-9,9'- spirobifluorene, Spiro-OMeTAD). In addition, the material of the electron transport layer 522 may include 6,6-phenyl-C61-butyric acid methyl ester (6,6-phenyl-C61-butyric acid methyl ester, PC61BM), 6,6-phenyl-C71-butyl acid methyl ester (6,6-phenyl-C71-butyric acid methyl ester, PC71BM), zinc oxide and titanium oxide. Preferably, the hole transport layer 523 uses solid Spiro-OMeTAD with high thermal stability to improve the stability of the perovskite solar cell. In some embodiments, the electron-transporting layer 522 or the hole-transporting layer 523 can be omitted to reduce the energy loss formed at the interface of each layer. For example, perovskite solar cells using glass substrates must be combined with silicon crystals in tandem cells, which easily leads to complex process structures and interface loss. In addition, the material of the electrode layer 530 may include conductive metals, such as gold and aluminum.

以下利用實施例以說明本發明之應用,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。The following examples are used to illustrate the application of the present invention, but they are not intended to limit the present invention. Anyone skilled in this art can make various changes and modifications without departing from the spirit and scope of the present invention.

鈣鈦礦薄膜之製備Preparation of Perovskite Thin Films

實施例1Example 1

實施例1的鈣鈦礦薄膜係先使用RCA標準清潔製程來清洗矽基基材,再以紫外光及臭氧清除矽基基材表面。接著以濺鍍法沉積厚度為70nm至130nm的ITO薄膜於結晶矽晶圓的表面。然後使用本發明之噴塗裝置,以一階段方式或二階段方式噴塗鈣鈦礦前驅物溶液(10wt.%至15wt.%之MAI及5mol%至10mol%之PbI 2的溶液,且溶劑為體積比為4:1之DMF及DMSO)於ITO薄膜的表面上,以控制塗佈厚度為300nm至10μm。噴塗所使用之二個氣體皆為空氣,其氣流方向所形成之夾角為60˚,且壓力總和維持在1psi至60psi。塗佈量為0.25mL/min。再以70℃至110℃之溫度及20分鐘至30分鐘之處理時間對鈣鈦礦塗膜進行熱處理,以製得實施例1之鈣鈦礦薄膜。然後,以下述評價方式對鈣鈦礦薄膜進行試驗。 The perovskite thin film of Example 1 was firstly cleaned with the RCA standard cleaning process to clean the silicon-based substrate, and then the surface of the silicon-based substrate was cleaned with ultraviolet light and ozone. Then deposit an ITO film with a thickness of 70nm to 130nm on the surface of the crystalline silicon wafer by sputtering. Then use the spraying device of the present invention to spray the perovskite precursor solution (10wt.% to 15wt.% of MAI and 5mol% to 10mol% PbI solution in one-stage mode or two-stage mode, and the solvent is the volume ratio 4:1 DMF and DMSO) on the surface of the ITO film to control the coating thickness from 300nm to 10μm. The two gases used for spraying are both air, the angle formed by the air flow direction is 60°, and the total pressure is maintained at 1psi to 60psi. The coating amount was 0.25 mL/min. The perovskite coating film is then heat-treated at a temperature of 70° C. to 110° C. and a treatment time of 20 minutes to 30 minutes to obtain the perovskite film of Example 1. Then, the perovskite thin film was tested in the following evaluation manner.

實施例2至4及比較例1至2Examples 2 to 4 and Comparative Examples 1 to 2

實施例2至4及比較例1至2皆以與實施例1相同的方法進行製備鈣鈦礦薄膜。不同的是,實施例2至4係改變鈣鈦礦前驅物溶液之組成、霧化步驟及塗覆步驟之條件,其具體條件及評價結果如表1所示。比較例1以旋轉塗佈方式塗佈鈣鈦礦前驅物溶液,其中旋轉速度為5000rpm,且塗佈量為0.5mL/min,工作距離為5公分。比較例2以玻璃基材取代結晶矽晶圓,且於噴塗鈣鈦礦前驅物溶液之前,塗佈PEDOT:PSS層,其中塗佈的溶液為PEDOT溶液,塗佈條件為5000rpm的旋轉速度。Examples 2 to 4 and Comparative Examples 1 to 2 were prepared in the same manner as in Example 1 to prepare perovskite thin films. The difference is that in Examples 2 to 4, the composition of the perovskite precursor solution, the conditions of the atomization step and the coating step are changed, and the specific conditions and evaluation results are shown in Table 1. In Comparative Example 1, the perovskite precursor solution was coated by spin coating, wherein the spin speed was 5000 rpm, the coating amount was 0.5 mL/min, and the working distance was 5 cm. In Comparative Example 2, a glass substrate was used instead of a crystalline silicon wafer, and a PEDOT:PSS layer was coated before spraying the perovskite precursor solution, wherein the coating solution was a PEDOT solution, and the coating condition was a rotation speed of 5000 rpm.

評價方式Evaluation method

1.晶粒尺寸及覆蓋率之試驗1. Test of grain size and coverage

晶粒尺寸及覆蓋率之試驗係以電子顯微鏡進行量測鈣鈦礦薄膜之晶粒尺寸及覆蓋率,其中電子顯微鏡之檢測條件為本發明所屬技術領域中具有通常知識者所慣用之條件。The experiment of grain size and coverage ratio is to measure the grain size and coverage ratio of the perovskite thin film with an electron microscope, wherein the detection conditions of the electron microscope are the conditions commonly used by those with ordinary knowledge in the technical field of the present invention.

2.繞射峰強度比之試驗2. Test of diffraction peak intensity ratio

繞射峰強度比之試驗係以X光繞射儀量測鈣鈦礦薄膜之XRD圖譜在(220)結晶方向與(310)結晶方向的繞射峰強度比,其中條件為本發明所屬技術領域中具有通常知識者所慣用之條件。The test of the diffraction peak intensity ratio is to use an X-ray diffractometer to measure the diffraction peak intensity ratio of the XRD pattern of the perovskite thin film in the (220) crystallographic direction and the (310) crystallographic direction, wherein the conditions are in the technical field of the present invention Conditions commonly used by persons with ordinary knowledge.

表1   實施例 比較例 1 2 3 4 1 2 製程條件 鈣鈦礦前驅物溶液 黏度(cp) <30 <20 <15 <10 <30 <30 MAI/PbI 2 分子量(mole/g) >300000 >300000 100000~ 300000 <100000 >300000 >300000 DMF:DMSO 倍率(%) 0.5 0.5 2.0 5.0 0.5 0.5 MAI+PbI 2 總固含量(%) <15 <15 <10 <10 <15 <15 基材 結晶矽晶圓 玻璃 霧化 步驟 液滴粒徑(μm) <9 <5 <3 <2 旋轉 塗佈 <9 塗覆 步驟 氣體流速(mL/min) 0.1~30 0.1~30 0.1~20 0.1~10 0.1~30 振動頻率 (kHz) 28 45 60 120 28 塗佈面積 (mm×mm) >156×156 100×100 100×100 塗佈厚度 300nm~10μm 評價結果 鈣鈦礦薄膜 晶粒尺寸 2μm ~5μm 2μm ~5μm 2μm ~5μm 2μm ~5μm <2μm 400nm ~5μm 覆蓋率(%) >80 >80 >80 >80 70~80 <70 繞射峰 強度比 1.8 - - - 1.2 1.0 註解:「MAI/PbI 2之分子量」表示MAI/PbI 2形成之聚合物的分子量。「DMF:DMSO之倍率」表示DMF及DMSO之體積比。「MAI/PbI 2之總固含量」表示MAI/PbI 2形成之聚合物於鈣鈦礦前驅物溶液所佔之總固含量,且使用重量計。「-」表示未進行繞射峰強度的測量及強度比的計算。 Table 1 Example comparative example 1 2 3 4 1 2 Process conditions Perovskite Precursor Solution Viscosity (cp) <30 <20 <15 <10 <30 <30 MAI/ PbI2 Molecular weight (mole/g) >300000 >300000 100000~ 300000 <100000 >300000 >300000 DMF:DMSO Magnification (%) 0.5 0.5 2.0 5.0 0.5 0.5 MAI+ PbI2 Total solid content (%) <15 <15 <10 <10 <15 <15 Substrate Crystalline silicon wafer Glass atomization step Droplet size (μm) <9 <5 <3 <2 spin coating <9 Coating steps Gas flow rate (mL/min) 0.1~30 0.1~30 0.1~20 0.1~10 0.1~30 Vibration frequency (kHz) 28 45 60 120 28 Coating area (mm×mm) >156×156 100×100 100×100 Coating thickness 300nm~10μm Evaluation results perovskite film grain size 2μm ~5μm 2μm ~5μm 2μm ~5μm 2μm ~5μm <2μm 400nm ~5μm Coverage (%) >80 >80 >80 >80 70~80 <70 Diffraction peak intensity ratio 1.8 - - - 1.2 1.0 Note: "The molecular weight of MAI/PbI 2 " means the molecular weight of the polymer formed by MAI/PbI 2 . "DMF:DMSO ratio" represents the volume ratio of DMF and DMSO. "Total solid content of MAI/PbI 2 " means the total solid content of the polymer formed by MAI/PbI 2 in the perovskite precursor solution, and it is measured by weight. "-" indicates that the measurement of the intensity of the diffraction peak and the calculation of the intensity ratio were not performed.

請參閱表1,各實施例之塗佈面積及覆蓋率皆大於各比較例,且各實施例之晶粒尺寸皆在2μm至5μm之範圍內。由此可知,各實施例之製造方法可增大鈣鈦礦薄膜的面積且提升其均勻度。Please refer to Table 1, the coating area and coverage of each embodiment are larger than each comparative example, and the grain size of each embodiment is in the range of 2 μm to 5 μm. It can be seen that the manufacturing methods of the various embodiments can increase the area of the perovskite thin film and improve its uniformity.

請參閱圖6A至圖6C,其分別為實施1、比較例1及比較例2之鈣鈦礦薄膜的掃描式電子顯微鏡照片。實施1之鈣鈦礦薄膜外觀較平整無孔洞,薄膜之成膜性佳,晶粒尺寸較均勻,且無晶格堆積的現象,故提升覆蓋率。此外,實施1之鈣鈦礦薄膜的晶粒尺寸較比較例1略大,故提升所製之鈣鈦礦太陽能電池的效率。然而,使用旋轉塗佈之比較例1及使用玻璃基材之比較例2之鈣鈦礦薄膜較不均勻且有堆積的現象(即白色的部分所示)。Please refer to FIG. 6A to FIG. 6C , which are scanning electron micrographs of the perovskite thin films of Embodiment 1, Comparative Example 1 and Comparative Example 2, respectively. The appearance of the perovskite film in Example 1 is relatively smooth without holes, the film has good film-forming properties, the grain size is relatively uniform, and there is no crystal lattice accumulation, so the coverage rate is improved. In addition, the grain size of the perovskite thin film in Example 1 is slightly larger than that in Comparative Example 1, so the efficiency of the fabricated perovskite solar cell is improved. However, the perovskite thin films of Comparative Example 1 using spin coating and Comparative Example 2 using glass substrates are not uniform and have stacking phenomenon (shown by the white part).

請參閱圖7,其為實施1、比較例1及比較例2之鈣鈦礦薄膜的XRD圖譜,實施1的鈣鈦礦薄膜之XRD圖譜在(220)結晶方向與(310)結晶方向的繞射峰強度比為1.8,所以此鈣鈦礦薄膜對可見光具有較佳的吸收度,而更適合應用於鈣鈦礦太陽能電池。Please refer to Figure 7, which is the XRD spectrum of the perovskite thin film of Embodiment 1, Comparative Example 1 and Comparative Example 2, the XRD spectrum of the perovskite thin film of Embodiment 1 is in the (220) crystal direction and the (310) crystal direction. The peak intensity ratio is 1.8, so the perovskite film has better absorption of visible light, and is more suitable for perovskite solar cells.

綜上所述,本發明之鈣鈦礦薄膜之製造方法係使用超音波震盪方式霧化鈣鈦礦前驅物溶液成具有特定粒徑之複數個液滴,且以壓力總和為定值之二股氣體噴塗此些液滴於基材上,從而增大所製之鈣鈦礦薄膜的面積且提升其均勻度。含有所製之鈣鈦礦薄膜之鈣鈦礦基板可應用於鈣鈦礦太陽能電池,以提升鈣鈦礦太陽能電池之功效。In summary, the manufacturing method of the perovskite thin film of the present invention is to use ultrasonic vibration to atomize the perovskite precursor solution into a plurality of liquid droplets with a specific particle size, and two gas streams with the sum of the pressure as the fixed value Spray these droplets on the substrate, thereby increasing the area of the perovskite film and improving its uniformity. The perovskite substrate containing the prepared perovskite thin film can be applied to perovskite solar cells to improve the performance of the perovskite solar cells.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed above in terms of implementation, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field of the present invention can make various modifications and changes without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the scope of the appended patent application.

100:方法 110,120:操作 111,112,113:步驟 200:噴塗裝置 210:供料槽 220:超音波震盪元件 230:噴霧口 240,250:氣體噴嘴 θ:夾角 400:鈣鈦礦基板 410:矽基材 420:鈣鈦礦薄膜 510:矽基材 522:電子傳輸層 521: 鈣鈦礦薄膜 523:電洞傳輸層 530:電極層 100: method 110,120: operation 111, 112, 113: steps 200: spraying device 210: Feed chute 220: Ultrasonic vibration element 230: spray port 240,250: gas nozzle θ: included angle 400: Perovskite substrate 410: Silicon substrate 420: Perovskite thin film 510: silicon substrate 522: electron transport layer 521: Perovskite Thin Films 523: Hole transport layer 530: electrode layer

為了對本發明之實施例及其優點有更完整之理解,現請參照以下之說明並配合相應之圖式。必須強調的是,各種特徵並非依比例描繪且僅係為了圖解目的。相關圖式內容說明如下: 圖1係繪示根據本發明之一實施例的鈣鈦礦薄膜之製造方法的流程圖。 圖2A及圖2B係分別繪示根據本發明之一實施例的噴塗裝置之側面及正面的結構示意圖。 圖3係繪示根據本發明之一實施例的噴塗裝置之二股氣體的壓力圖。 圖4係繪示根據本發明之一實施例的鈣鈦礦基板之結構示意圖。 圖5A至5C係繪示根據本發明之應用例的鈣鈦礦太陽能電池之結構示意圖。 圖6A至圖6C分別係繪示根據本發明之實施例1、比較例1與比較例2的鈣鈦礦薄膜之掃描式電子顯微鏡照片。 圖7係繪示根據本發明之實施例1、比較例1與比較例2的鈣鈦礦薄膜之XRD圖譜。 In order to have a more complete understanding of the embodiments of the present invention and their advantages, please refer to the following descriptions together with the corresponding drawings. It must be emphasized that the various features are not drawn to scale and are for illustration purposes only. The contents of relevant diagrams are explained as follows: FIG. 1 is a flowchart illustrating a method for manufacturing a perovskite thin film according to an embodiment of the present invention. 2A and 2B are schematic diagrams showing the side and front structures of a spraying device according to an embodiment of the present invention, respectively. FIG. 3 is a diagram illustrating the pressure of two gases of a spraying device according to an embodiment of the present invention. FIG. 4 is a schematic diagram illustrating the structure of a perovskite substrate according to an embodiment of the present invention. 5A to 5C are schematic diagrams illustrating the structures of perovskite solar cells according to application examples of the present invention. FIGS. 6A to 6C are scanning electron micrographs of perovskite thin films according to Example 1, Comparative Example 1 and Comparative Example 2 of the present invention, respectively. FIG. 7 shows the XRD patterns of the perovskite thin films according to Example 1, Comparative Example 1 and Comparative Example 2 of the present invention.

100:方法 100: method

110,120:操作 110,120: operation

111,112,113:步驟 111, 112, 113: steps

Claims (8)

一種鈣鈦礦薄膜之製造方法,包含:對一矽基材進行一噴塗處理,以形成一鈣鈦礦塗膜於該矽基材上,其中該噴塗處理包含:提供一鈣鈦礦前驅物溶液;對該鈣鈦礦前驅物溶液進行一霧化步驟,以產生複數個液滴,其中該霧化步驟係藉由一超音波震盪方式霧化該鈣鈦礦前驅物溶液;以及進行一塗覆步驟,以形成該鈣鈦礦塗膜,其中該塗覆步驟係利用一氣體使該些液滴塗覆於該矽基材上,該氣體包含一第一氣體以及一第二氣體,且該第一氣體之一第一氣流方向與該第二氣體之一第二氣流方向成一夾角,且該夾角為20°至160°;以及對該鈣鈦礦塗膜進行一熱處理,以獲得該鈣鈦礦薄膜,其中該熱處理之一溫度為不小於60℃,且該鈣鈦礦薄膜之一面積大於22500mm2A method for manufacturing a perovskite thin film, comprising: performing a spray coating process on a silicon substrate to form a perovskite coating film on the silicon substrate, wherein the spray coating process comprises: providing a perovskite precursor solution ; performing an atomization step on the perovskite precursor solution to generate a plurality of droplets, wherein the atomization step is to atomize the perovskite precursor solution by means of an ultrasonic vibration; and performing a coating step to form the perovskite coating film, wherein the coating step is to use a gas to coat the droplets on the silicon substrate, the gas includes a first gas and a second gas, and the first gas A first gas flow direction of a gas forms an included angle with a second gas flow direction of the second gas, and the included angle is 20° to 160°; and performing a heat treatment on the perovskite coating film to obtain the perovskite A thin film, wherein the temperature of one of the heat treatments is not less than 60°C, and one of the perovskite thin films has an area greater than 22500mm 2 . 如請求項1所述之鈣鈦礦薄膜之製造方法,其中當該噴塗處理包含一單一階段式噴塗步驟時,該鈣鈦礦前驅物溶液之一鈣鈦礦前驅物包含IVA族元素的鹵化鹽及烷基胺的鹵化鹽。 The method for manufacturing a perovskite thin film as claimed in claim 1, wherein when the spraying process comprises a single-stage spraying step, one of the perovskite precursors of the perovskite precursor solution comprises halide salts of group IVA elements and halide salts of alkylamines. 如請求項1所述之鈣鈦礦薄膜之製造方法,其中當該噴塗處理包含一二階段式噴塗步驟時,該二階段 式噴塗步驟包含一第一噴塗步驟及一第二噴塗步驟,該第一噴塗步驟之該鈣鈦礦前驅物溶液之一鈣鈦礦前驅物包含IVA族元素的鹵化鹽及烷基胺的鹵化鹽之一者,且該第二噴塗步驟之該鈣鈦礦前驅物溶液之一鈣鈦礦前驅物包含該IVA族元素的該鹵化鹽及該烷基胺的該鹵化鹽之另一者。 The method for manufacturing a perovskite thin film as claimed in item 1, wherein when the spraying treatment includes a two-stage spraying step, the two-stage The formula spraying step comprises a first spraying step and a second spraying step, and one of the perovskite precursors of the perovskite precursor solution in the first spraying step comprises halide salts of group IVA elements and halide salts of alkylamines One of them, and a perovskite precursor of the perovskite precursor solution in the second spraying step includes the other of the halide salt of the IVA group element and the halide salt of the alkylamine. 如請求項1所述之鈣鈦礦薄膜之製造方法,其中該些液滴之一粒徑為不大於10μm。 The method for manufacturing a perovskite thin film according to claim 1, wherein a particle size of the droplets is not greater than 10 μm. 一種鈣鈦礦基板,包含:一矽基材;以及一鈣鈦礦薄膜,其中該鈣鈦礦薄膜利用如請求項1至4所述之鈣鈦礦薄膜之製造方法製得,且設置於該矽基材上;其中該鈣鈦礦薄膜對於該矽基材之一覆蓋率大於75%,該鈣鈦礦薄膜的一晶粒尺寸為2μm至5μm,且該鈣鈦礦薄膜之一面積大於22500mm2A perovskite substrate, comprising: a silicon substrate; and a perovskite thin film, wherein the perovskite thin film is prepared by the manufacturing method of the perovskite thin film as described in Claims 1 to 4, and is arranged on the On a silicon substrate; wherein the coverage of the perovskite film on one of the silicon substrates is greater than 75%, a grain size of the perovskite film is 2 μm to 5 μm, and an area of the perovskite film is greater than 22500 mm 2 . 如請求項5所述之鈣鈦礦基板,其中該鈣鈦礦薄膜的XRD圖譜在(220)結晶方向與(310)結晶方向的一繞射峰強度比為大於1.2且不大於1.8。 The perovskite substrate according to claim 5, wherein the XRD pattern of the perovskite thin film has a diffraction peak intensity ratio between (220) crystallographic direction and (310) crystallographic direction greater than 1.2 and not greater than 1.8. 一種鈣鈦礦太陽能電池,包含:一矽基材; 一光電轉化層,包含:一鈣鈦礦薄膜,其中該鈣鈦礦薄膜利用如請求項1至4所述之鈣鈦礦薄膜之製造方法製得,該鈣鈦礦薄膜的一晶粒尺寸為2μm至5μm,且該鈣鈦礦薄膜之一面積大於22500mm2;以及一電子傳輸層或一電洞傳輸層;以及其中當該光電轉化層包含該鈣鈦礦薄膜及該電子傳輸層時,該電子傳輸層設置於該鈣鈦礦薄膜及該矽基材之間,且該鈣鈦礦薄膜對於該電子傳輸層之一覆蓋率為大於75%;或者當該光電轉化層包含該鈣鈦礦薄膜及該電洞傳輸層時,該電洞傳輸層設置於該鈣鈦礦薄膜及該電極層之間,且該鈣鈦礦薄膜對於該矽基材之一覆蓋率為大於75%;一電極層,其中該光電轉化層設置於該矽基材及該電極層之間。 A perovskite solar cell, comprising: a silicon substrate; a photoelectric conversion layer, comprising: a perovskite thin film, wherein the perovskite thin film utilizes the manufacturing method of the perovskite thin film as described in claims 1 to 4 Prepared, a grain size of the perovskite film is 2 μm to 5 μm, and an area of the perovskite film is greater than 22500 mm 2 ; and an electron transport layer or a hole transport layer; and wherein when the photoelectric conversion layer When the perovskite film and the electron transport layer are included, the electron transport layer is disposed between the perovskite film and the silicon substrate, and the coverage of the perovskite film on the electron transport layer is greater than 75 %; or when the photoelectric conversion layer includes the perovskite thin film and the hole transport layer, the hole transport layer is arranged between the perovskite thin film and the electrode layer, and the perovskite thin film is opposite to the silicon A coverage of the substrate is greater than 75%; an electrode layer, wherein the photoelectric conversion layer is disposed between the silicon substrate and the electrode layer. 如請求項7所述之鈣鈦礦太陽能電池,其中該鈣鈦礦薄膜的XRD圖譜在(220)結晶方向與(310)結晶方向的一繞射峰強度比為大於1.2且不大於1.8。 The perovskite solar cell according to claim 7, wherein the XRD spectrum of the perovskite thin film has a diffraction peak intensity ratio between (220) crystallographic direction and (310) crystallographic direction greater than 1.2 and not greater than 1.8.
TW110139716A 2021-10-26 2021-10-26 Method for producing perovskite film, perovskite substrate and perovskite solar cell TWI793826B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110139716A TWI793826B (en) 2021-10-26 2021-10-26 Method for producing perovskite film, perovskite substrate and perovskite solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110139716A TWI793826B (en) 2021-10-26 2021-10-26 Method for producing perovskite film, perovskite substrate and perovskite solar cell

Publications (2)

Publication Number Publication Date
TWI793826B true TWI793826B (en) 2023-02-21
TW202317503A TW202317503A (en) 2023-05-01

Family

ID=86689291

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110139716A TWI793826B (en) 2021-10-26 2021-10-26 Method for producing perovskite film, perovskite substrate and perovskite solar cell

Country Status (1)

Country Link
TW (1) TWI793826B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200714366A (en) * 2005-08-24 2007-04-16 Tokyo Electron Ltd Method for manufacture of dielectric film having ABOx type of perovskite-type crystalline structure
TW201603307A (en) * 2014-02-26 2016-01-16 澳大利亞國家科學工業研究所 Process of forming a photoactive layer of a perovskite photoactive device
TW201934491A (en) * 2018-02-07 2019-09-01 友達光電股份有限公司 Perovskite structure, electronic device using the same, and relative method for manufacture a photoelectric conversion layer
US20190326501A1 (en) * 2011-03-30 2019-10-24 Ambature Inc. Electrical, mechanical, computing, and/or other devices formed of extremely low resistance materials
US20200240000A1 (en) * 2017-10-16 2020-07-30 Drexel University Mxene layers as substrates for growth of highly oriented perovskite thin films

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200714366A (en) * 2005-08-24 2007-04-16 Tokyo Electron Ltd Method for manufacture of dielectric film having ABOx type of perovskite-type crystalline structure
US20190326501A1 (en) * 2011-03-30 2019-10-24 Ambature Inc. Electrical, mechanical, computing, and/or other devices formed of extremely low resistance materials
TW201603307A (en) * 2014-02-26 2016-01-16 澳大利亞國家科學工業研究所 Process of forming a photoactive layer of a perovskite photoactive device
US20200240000A1 (en) * 2017-10-16 2020-07-30 Drexel University Mxene layers as substrates for growth of highly oriented perovskite thin films
TW201934491A (en) * 2018-02-07 2019-09-01 友達光電股份有限公司 Perovskite structure, electronic device using the same, and relative method for manufacture a photoelectric conversion layer

Also Published As

Publication number Publication date
TW202317503A (en) 2023-05-01

Similar Documents

Publication Publication Date Title
Dehghan et al. Deposition of zinc oxide as an electron transport layer in planar perovskite solar cells by spray and SILAR methods comparable with spin coating
Zabihi et al. Fundamental study on the fabrication of inverted planar perovskite solar cells using two-step sequential substrate vibration-assisted spray coating (2S-SVASC)
Kim et al. Effects of temperature and coating speed on the morphology of solution-sheared halide perovskite thin-films
CN108057590B (en) Spraying liquid, perovskite layer, preparation method of perovskite layer and perovskite battery
Chandrasekhar et al. Fabrication of perovskite films using an electrostatic assisted spray technique: the effect of the electric field on morphology, crystallinity and solar cell performance
TWI657862B (en) Method for making solar cell
Park et al. Facile external treatment for efficient nanoscale morphology control of polymer solar cells using a gas-assisted spray method
JP2012114424A (en) Solar cell and method of manufacturing the same
Xia et al. Interfacial modification using ultrasonic atomized graphene quantum dots for efficient perovskite solar cells
Lee et al. Thermal assisted blade coating methylammonium lead iodide films with non-toxic solvent precursors for efficient perovskite solar cells and sub-module
CN102728289A (en) Preparation method of stannic oxide-titanium dioxide core-shell nano-structure
CN106383150A (en) High-temperature preparation method for depositing NO2 gas-sensitive material on flexible substrate
TWI793826B (en) Method for producing perovskite film, perovskite substrate and perovskite solar cell
US20100129533A1 (en) Conductive Film Formation On Glass
CN107240645A (en) The preparation of perovskite Ge particle organic inorganic composite solar battery
TWI381537B (en) Solar cell device and method for fabricatign the same
CN108417736A (en) A kind of preparation method of transition metal oxide as hole injection layer
Zhang et al. Pyrolysis preparation of WO3 thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells
Sun et al. Ultrasonic spray deposition of TiO2 electron transport layers for reproducible and high efficiency hybrid perovskite solar cells
JP5945379B2 (en) Method for forming organic thin film and solar cell formed using the same
JP2021095307A (en) Anatase-type titanium oxide nanoparticles and method for producing the same, and photoelectric conversion element using anatase-type titanium oxide nanoparticles and method for producing the same
Huang et al. Wetting properties and thin-film quality in the wet deposition of zeolites
Chen et al. Performance enhancement of perovskite solar cells through interfacial engineering: Water-soluble fullerenol C60 (OH) 16 as interfacial modification layer
Trifiletti et al. Sequential deposition of hybrid halide perovskite starting both from lead iodide and lead chloride on the most widely employed substrates
Bahtiar et al. Structural properties of perovskite films on zinc oxide nanoparticles-reduced graphene oxide (ZnO-NPs/rGO) prepared by electrophoretic deposition technique