WO2007023514A1 - 海水からの水素製造システム及び水素製造方法 - Google Patents

海水からの水素製造システム及び水素製造方法 Download PDF

Info

Publication number
WO2007023514A1
WO2007023514A1 PCT/JP2005/015192 JP2005015192W WO2007023514A1 WO 2007023514 A1 WO2007023514 A1 WO 2007023514A1 JP 2005015192 W JP2005015192 W JP 2005015192W WO 2007023514 A1 WO2007023514 A1 WO 2007023514A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
pipe
hydrogen
parallel
pipes
Prior art date
Application number
PCT/JP2005/015192
Other languages
English (en)
French (fr)
Inventor
Kousaku Mabuchi
Tomonao Miyashiro
Masaharu Takao
Original Assignee
Kousaku Mabuchi
Tomonao Miyashiro
Masaharu Takao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kousaku Mabuchi, Tomonao Miyashiro, Masaharu Takao filed Critical Kousaku Mabuchi
Priority to JP2007531959A priority Critical patent/JPWO2007023514A1/ja
Priority to US11/990,818 priority patent/US8303917B2/en
Priority to PCT/JP2005/015192 priority patent/WO2007023514A1/ja
Publication of WO2007023514A1 publication Critical patent/WO2007023514A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a seawater-powered hydrogen production system and a hydrogen production method that can efficiently produce hydrogen using seawater as a raw material.
  • Hydrogen is widely used in various fields such as the chemical, chemical, electrical, metal and glass industries. Furthermore, in recent years, hydrogen has been attracting attention as a clean energy that can be used as a fossil fuel because it produces only water as waste. For example, research and development for use in hydrogen fuel cells and hydrogen fuel vehicles, etc. Has been done. Therefore, a large amount of hydrogen is expected to be used in the future.
  • conventional hydrogen production methods include, for example, a method of producing hydrogen by electrolyzing water (electrolyte), or a method of producing hydrogen by reforming a hydrocarbon fuel gas such as natural gas. (For example, see Patent Document 1) and the like are known.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-115326
  • the hydrogen production method described in Patent Document 1 is, for example, natural gas as shown in the following formulas (i) and (ii):
  • a hydrocarbon compound such as (methane gas)
  • the present invention has been made in view of the above-described conventional problems, and one object of the present invention is to efficiently produce hydrogen from abundant seawater as a raw material. It is to provide a method for producing hydrogen. Another object of the present invention is to provide a hydrogen production system and a hydrogen production method that are excellent in terms of environment in which by-products such as carbon monoxide and carbon dioxide gas are small when producing hydrogen.
  • the present invention includes a sealed space S into which seawater W is introduced and a steam ejection means (18) that ejects high-temperature and high-pressure steam T into the sealed space S.
  • a steam ejection means (18) that ejects high-temperature and high-pressure steam T into the sealed space S.
  • a conduit device 14 including one or a plurality of seawater flow pipes 40 (403, 405, 406, 408) having a pentagonal, hexagonal, or octagonal!
  • the cross-sectional shape of the seawater flow pipe 40 is preferably provided as a regular triangle, a regular pentagon, a regular hexagon, or a regular octagon with all sides set to the same length.
  • tube may differ may be sufficient.
  • the plurality of seawater flow pipes 40 (403 to 408) are arranged and supported in parallel via the support means 44 so that the longitudinal axes (X) are parallel to each other and the pipe ends are aligned.
  • the parallel pipe units 42a to 42b may be configured.
  • the seawater flow pipes 403 to 408 are arranged so that the center points (axis) X of their cross-sectional shapes are aligned vertically or horizontally, or are regular or irregular. It is good also as arranging regularly arranging vertically and horizontally.
  • a plurality of parallel pipe units (42a, 42b, 42c, 42d, 42e) in which the cross-sectional shape P, the size of the pipes Q, the position (X) of the seawater flow pipe 40, or a plurality of elements are different.
  • the seawater flow pipes arranged in tandem may be connected so that they communicate in the longitudinal direction with the inside of the pipe sealed in the external force.
  • All of the plurality of parallel pipe units may be provided so that the above-described elements are different from each other, but it is sufficient that the elements are different at least among the connected parallel pipe units.
  • the first and third parallel pipe units 42a, 42c are provided to be configured with exactly the same elements, and only the second parallel pipe unit 42b is provided.
  • the first and third parallel pipe units may be provided so as to have different element configurations.
  • the number of parallel pipe units connected in cascade is arbitrary.
  • the seawater flow pipes arranged in tandem need not be connected in a one-to-one communication.
  • one seawater flow pipe may be connected in communication with a plurality of seawater flow pipes in the longitudinal direction.
  • seawater flow pipes 40 may be connected in the longitudinal direction in a state in which the pipe center axes X are shifted.
  • the seawater W is activated in a state where the inside of the sealed space S is maintained at a high temperature and high pressure by jetting high temperature and high pressure steam T into the seawater W introduced into the sealed space S.
  • the method of producing hydrogen from seawater is characterized in that hydrogen is produced by pumping the seawater activated in the seawater flow pipe of the pipe device 14 configured through the pumping mechanism 34.
  • the seawater in the sealed space is heated to have a sealed space into which the seawater is introduced and a steam ejection means for ejecting high-temperature and high-pressure steam in the sealed space.
  • the operating energy of the system is smaller than that of the conventional electrolysis method, and the manufacturing cost per unit production can be reduced.
  • greenhouse gases such as carbon dioxide and carbon dioxide are not generated. Hydrogen production can be performed.
  • the plurality of seawater flow pipes are configured by forming parallel pipe units arranged and supported in parallel through support means so that their longitudinal axes are parallel to each other and their pipe ends are aligned. The efficiency of generation can be improved.
  • a plurality of parallel pipe units having different cross-sectional shape, size, number of pipes, position of seawater flow pipes or a plurality of elements are connected in cascade, and at that time, seawater flow arranged in a tandem shape
  • a large amount of hydrogen can be produced more efficiently by adopting a configuration in which the flow tubes are connected so as to communicate in the longitudinal direction with the inside of the tubes sealed from the outside.
  • seawater flow pipes are configured to be connected in the longitudinal direction in a state in which the central axes of the pipes are deviated from each other, so that the mass of the system can be increased more efficiently without greatly complicating the system configuration.
  • the mass of the system can be increased more efficiently without greatly complicating the system configuration.
  • the seawater is activated in a state in which the inside of the sealed space is maintained at high temperature and pressure by jetting high-temperature and high-pressure steam into the seawater introduced into the sealed space.
  • a pipe constructed by paralleling a plurality of seawater flow pipes that have a cross-section of a triangle, pentagon, hexagon, or octagon so that their longitudinal axes are parallel to each other. Since the activated seawater is pumped through the pumping mechanism in the seawater flow pipe of the apparatus, a large amount of hydrogen can be efficiently produced directly by seawater. Furthermore, greenhouse gases such as carbon dioxide are not generated as a by-product of hydrogen production, so that hydrogen production can be performed cleanly.
  • FIG. 1 is a schematic explanatory diagram of a seawater hydrogen production system and a hydrogen production method according to an embodiment.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • FIG. 3 is a cross-sectional explanatory view taken along line BB in FIG. 1.
  • FIG. 4 is a cross-sectional explanatory view taken along the line CC in FIG.
  • FIG. 5 is an explanatory view showing a longitudinal connection state of seawater flow pipes in a parallel pipe unit to be connected.
  • FIG. 6 is an explanatory diagram of a connection state between the first parallel pipe unit and the second parallel pipe unit.
  • FIG. 7 is an explanatory diagram of a connection state between the second parallel pipe unit and the third parallel pipe unit.
  • FIG. 8 is a cross-sectional explanatory view of a parallel pipe unit of an embodiment in which components are made different.
  • FIG. 9 is a cross-sectional explanatory view of a parallel pipe unit of another embodiment with different constituent elements. Explanation of symbols
  • the seawater hydrogen production system of the present invention is a system that directly produces hydrogen using seawater as a raw material.
  • 1 to 7 show an embodiment of the seawater hydrogen production system of the present invention.
  • the seawater-powered hydrogen production system 10 accepts and activates an activation device 12 that activates seawater W at high temperature and high pressure, and activated high temperature and high pressure seawater.
  • the activated water device 12 is a first processing means that activates high-temperature and high-pressure steam to the seawater W to give an energy state with high reactivity.
  • the activation device 12 includes a sealed tank 16 having a sealed space S therein, and a steam ejection device 18 that ejects high-temperature and high-pressure steam into the sealed space S.
  • the sealed tank 16 also has, for example, a hollow side-by-side cylinder force with both ends closed, and is made of a metal such as stainless steel having heat resistance, pressure resistance, and corrosion resistance.
  • the hollow interior of the sealed tank is sealed, and seawater W, which is the raw water, is introduced as the sealed space S.
  • the airtight tank 16 is supported by the support leg 19 with ground force arranged at a certain height.
  • An inlet 20 for introducing seawater into the closed space S is provided in the upper part of the closed tank 16.
  • a drain outlet 22 for draining the activated seawater W is provided at the bottom of the sealed tank 16.
  • These inlet port 20 and drain port 22 have open / close valves 24 and 25, respectively, and can be opened and closed. When these are closed, the sealed space S is hermetically held.
  • reference numeral 23 denotes a safety valve for preventing the inside of the sealed space S from exceeding a predetermined pressure.
  • the steam ejection device 18 is a steam ejection means that ejects high-temperature and high-pressure steam T into the sealed space S and steams the seawater in the sealed space to high-temperature and high-pressure.
  • the steam ejection device 18 includes a steam ejection pipe 28 provided with an ejection outlet 26 in the sealed space S and connected to the sealed tank 16, and a steam generator that supplies high-temperature and high-pressure steam to the steam ejection pipe 28. Including boiler 30 and so on.
  • the steam ejection pipe 28 is attached to the lower surface side of the sealed tank 16, and the jet outlet 26 is attached in the sealed space S upward.
  • the steam ejected from the ejection port 26 agitates the seawater W in the sealed space S from below by blowing up the steam. That is, the steam from the steam ejection pipe 28 also serves as a stirring means for stirring the seawater with the jet power, and promotes the activation process of the seawater.
  • the steam ejected from the steam ejection pipe 28 is set, for example, at a temperature of 180 to 300 ° C. and a pressure of 15 to 30 atm.
  • a check valve 32 is provided in the vicinity of the jet outlet of the steam jet pipe 28 to prevent the reverse flow of seawater with tank power.
  • a control unit that controls the opening and closing of sensors and valves should be provided.
  • the seawater is locally brought into ultrahigh-temperature and high-pressure (several thousand degrees or thousands of atmospheres) or neutrino entanglement generated thereby. Is activated.
  • ultrahigh-temperature and high-pressure hundreds or thousands of atmospheres
  • neutrino entanglement generated thereby.
  • the active water tank 12 it has been confirmed that atom conversion occurs in the case of fresh water, and for example, mineral components such as calcium and iron increase.
  • the water-containing component is considered to undergo atomic conversion as shown in the following formulas (a) to (e).
  • the high-temperature and high-pressure seawater activated by the processing device 12 is pumped to a pipeline device 14 to be described later via a pumping mechanism 34.
  • the pressure feeding mechanism 34 includes a connection pipe 36 that connects the drain port of the sealed tank 16 and one end side of the pipe line device 14, and a pressure pump 38 that is interposed at an intermediate position of the connection pipe. Including.
  • the pressure pump 38 feeds seawater to the pipeline device 14 at a high pressure of, for example, about 40 to 50 atm.
  • the pipe line device 14 includes a seawater flow pipe 40 having a cross-sectional shape P of a triangular shape, a pentagonal shape, a hexagonal shape, or an octagonal shape. Have more than one.
  • the conduit device 14 is configured by a cylinder having a longitudinal axis arranged horizontally as a whole, and a plurality of seawater flow pipes 40 are provided inside the cylinder. Is provided.
  • High-temperature and high-pressure seawater activated by the above-described active device 12 is allowed to flow at a high pressure from one end side to the other end side of the pipe device 14.
  • the pipe line device 14 constitutes a main hydrogen generating part in the hydrogen production system according to the present embodiment. Is it confirmed that a large amount of hydrogen is generated by passing seawater through specific pipes such as P, 3, 5, 6, and octagonal as shown above? Therefore, it is considered that a high energy field for separation and generation of seawater hydrogen is easily generated in the pipes having the cross-sectional shapes!
  • the conduit device 14 is divided into three blocks (42a, 42b, 42c) in the longitudinal direction.
  • Each block is composed of first to third parallel pipes 42a to 42c provided with a plurality of seawater flow pipes 40 arranged in parallel so that their longitudinal axes are parallel to each other.
  • the first to third parallel pipe units are cascaded in the longitudinal direction.
  • the first parallel pipe unit 42a includes a seawater flow pipe 403 having a regular triangular cross section P3, a seawater flow pipe 405 having a regular pentagonal shape, a seawater flow pipe 406 having a regular hexagonal shape, There are four regular Q octagonal seawater flow pipes 408, each with four pipes Q.
  • the seawater flow pipes 403 to 408 are straight pipe members formed with a constant cross-sectional shape P in the longitudinal direction of the pipes, for example, heat resistance, pressure resistance, and corrosion resistance. It is made of metal such as stainless steel.
  • the seawater flow pipes 403 to 408 are all provided with the same pipe length, and their longitudinal axes are parallel to each other (in the horizontal direction in FIG.
  • the support means 44 includes a stainless outer cylinder 44a that covers the seawater flow pipes arranged in parallel so as to be bundled from the outside, and a stainless steel closure fixed to both ends of the outer cylinder 44a. It has a lid 44b.
  • Each of the closed wall bodies 44b fixes and supports both ends of the seawater midstream pipe, and closes the portions other than the pipe mouth (upward-right parallel hatched portions in FIG. 2).
  • the outer cylinder 44a is a force provided so as to have a cylindrical cross section.
  • the cylindrical body may have any other cross sectional shape such as a quadrangular, pentagonal, hexagonal, etc. But it ’s okay.
  • the support means 44 is not limited to a cylindrical body, and may be, for example, a frame body or other support members.
  • it is possible to support a plurality of parallel-arranged pipes by fixing the trunks of seawater flow-through pipes by welding or the like and supporting the parallel arrangement state to each other. Support structure may be sufficient.
  • the first parallel pipe unit 42a is connected to the connection pipe 36 of the pressure feeding mechanism via the buffer part 39, and seawater is easily introduced into the seawater flow pipes 403 to 408 substantially equally.
  • the seawater flow pipes 40 are arranged in parallel in the outer cylinder V, so that the seawater pumped from the pressure pump 38 flows through each seawater flow pipe with substantially equal pressure.
  • the parallel pipe unit is not limited to the force shown in the case where the parallel pipe unit is configured by a simple model. For example, as shown in FIGS.
  • the parallel pipe units 42d, 42e Such a parallel configuration may be adopted, and the seawater flow pipe may be configured by arbitrarily combining elements such as the cross-sectional shape P, the size of the pipe Q, and the position.
  • the size of the seawater flow pipe indicates, for example, the length to the center of the circumscribed circle of the cross-sectional shape P (center axis X) force apex.
  • the position is, for example, The position of the central axis X is shown.
  • the parallel pipe unit 42d has a configuration in which the size R of each seawater flow pipe 40 is as shown in FIG. 2 and is smaller than that in FIG. 4, and the number Q of pipes is five. Furthermore, more efficient hydrogen generation can be expected by arranging a large number of seawater flow pipes in parallel, as in the parallel pipe unit 42e shown in FIG.
  • the second and third parallel pipe units 42b and 42c have substantially the same configuration as the first parallel pipe unit 42a, and the cross-sectional shape is normal 3, 5 , 6, and octagonal seawater flow pipes 403 to 408 are provided.
  • the arrangement positions of the seawater flow pipes 40 are set differently.
  • a plurality of parallel pipe units 42a to 42c having different positions of the seawater flow pipes 403 to 408 are connected in cascade.
  • the positions of these pipes are changed by rotating them around the central axis Y of the seawater flow pipe groups arranged in parallel, that is, around the central axis of the outer cylinder 44a.
  • the plurality of parallel pipe units to be connected are not limited to those in which the positions of the seawater flow pipes 40 are simply changed as in the present embodiment, but the cross-sectional shape P of the seawater flow pipes P , Size Tube number Q, position (X), or a plurality of elements may be different.
  • the parallel pipe units 42a, 42b, 42c in the modes of FIGS. 2, 3, and 4 may be connected to the parallel pipe unit 42d in the mode shown in FIG.
  • the position of the seawater flow pipe as described above is As shown in Fig. 5, Fig. 6, and Fig. 7, the seawater flow pipes arranged in tandem are connected with their pipe center axes X shifted as shown in Figs. Yes.
  • the solid line is the pipe end port of the seawater flow pipe 40a of the first parallel pipe unit 42a
  • the alternate long and short dash line is the pipe end port 40b of the seawater flow pipe of the second parallel pipe unit 42b.
  • the seawater flow pipes 40 arranged in the respective columns are in a state in which the pipe end openings are displaced so that at least a part thereof overlaps.
  • the pipes are connected in the longitudinal direction while communicating with each other only through the communication part H having a small flow area.
  • the seawater flow pipe 40 is supported, and the closed lid 44b opens the pipe end port where the seawater flow pipe 40 is displaced.
  • the mouth is closed in close contact.
  • the seawater flow pipes connected in the longitudinal direction are provided so as to communicate only with each other, and the inside of these pipes is sealed with an external force. As a result, it is possible to maintain a good high-pressure flow state in which seawater does not leak to the outside of the seawater flow tube.
  • the seawater communication pipes 40 arranged in tandem are connected to each other with the pipe center axis X shifted and connected, so that the pipe portion is connected to the connection position of the parallel pipe unit.
  • the seawater flow pipes with different cross-sectional shapes for example, a seawater flow pipe 403 with a triangular cross section and a seawater flow pipe 406 with a hexagonal cross section
  • the flow rate of seawater flowing through the pipe device changes due to the narrowing of the flow path in the middle of the flat straight flow, or multiple seawater communication pipes with different cross-sectional shapes are used. It will flow while. This can be expected to improve the hydrogen generation efficiency of the entire pipeline system.
  • the pipe device 14 may have only one seawater flow pipe 40 of any of the 3, 5, 6, and octagonal seawater flow pipes having a cross-sectional shape.
  • hydrogen generation efficiency is improved by combining a plurality of parts having different cross-sectional shapes.
  • Arbitrary numbers of two, three or more parallel tube units may be connected.
  • a separation device 46 is connected to the other end side of the conduit device 14, that is, the third parallel pipe unit 42c side.
  • the separation device 46 is a separation means that separates and extracts seawater hydrogen, water, and other salts that have flowed through the seawater flow pipe 40. Hydrogen generated from seawater in the seawater flow pipe is separated by a separator, and collected and stored in a hydrogen storage tank 48 or the like in a liquid state, for example.
  • seawater which is a raw material
  • the drain port 22 is closed.
  • 230 ° C, 25 atm of steam is blown into the sealed space S via the steam blower 18 while maintaining the high temperature and high pressure in the sealed space S while closing the inlet valve.
  • the steam is spouted to stir the seawater.
  • the drain port 22 is opened, and the activated high-temperature and high-pressure seawater is fed into the seawater flow pipes 403 to 408 of the pipeline device 14 via the pumping mechanism 34. Let it flow in.
  • 2-Torino for example, is weak in fine particles, has only interaction, and has no interaction with other substances, with a charge that is often created during nuclear fusion, fission, other nuclear reactions, elementary particle reactions, etc. It is known that it hardly reacts.
  • neutrino (V) reacts with nuclei (neutons) to cause nuclear transformation, as shown in the following equations (11) and (12).
  • the pipe device is configured by connecting parallel pipe units having different parallel arrangement configurations of seawater flow pipes.
  • the seawater flowing through the seawater flow pipes has a flow velocity at an intermediate position, and flows through seawater flow pipes with different cross-sectional shapes.
  • various other substances such as sodium calcium iron, chlorine, etc. contained as seawater components activated by the treatment equipment are free of radicals other than ⁇ (for example, ⁇
  • the reverse reaction as shown in the following formula (13) decreases, and it is considered that the hydrogen generation reaction (for example, the above formulas (2) and (10)) is promoted.
  • the hydrogen production system and method for producing hydrogen from seawater of the present invention are suitably applied when industrially producing hydrogen used in a wide range of fields such as hydrogen fuel cells or various industries.
  • it is advantageous in terms of refueling if it is installed in a large tanker that travels on the ocean with a power source that fuels hydrogen.
  • effective energy utilization can be achieved even when installed in coastal cities, coastal industrial areas, islands, marine plants, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

 豊富に存在する海水を原料として、効率のよい水素の製造を期待できる水素製造システム及び水素製造方法を提供する。  海水Wを導入させる密閉空間Sと密閉空間S内に高温高圧の蒸気Tを噴出する蒸気噴出手段(18)とを有して密閉空間S内の海水Wを高温高圧下で活性化処理する活性化装置12と、活性化装置12で活性化された高温高圧の海水を受入れて通流させる管路装置であり、断面が3角形、5角形、6角形又は8角形のいずれかの形状の海水通流管403~408を1個または複数含む管路装置14と、を有することを特徴とする海水からの水素製造システム10から構成される。  

Description

明 細 書
海水からの水素製造システム及び水素製造方法
技術分野
[0001] 本発明は、海水を原料として、効率よく水素製造を期待できる海水力 の水素製造 システム及び水素製造方法に関する。
背景技術
[0002] 水素は、化学、薬品、電気、金属、ガラス工業等の多種の分野で広く利用されてい る。さらに、近年では、水素は、廃棄物として水しか生成しないことから、化石燃料に 変わるクリーンエネルギーとして注目されており、例えば、水素燃料電池及び水素燃 料自動車等への利用に向けて研究 ·開発が行なわれている。よって、将来的には大 量の水素が利用されることが予想される。それに対し、従来の水素製造方法としては 、例えば、水 (電解液)を電気分解して水素を製造する方法や、天然ガス等の炭化水 素系燃料ガスを改質して水素を製造する方法 (例えば、特許文献 1参照)等が知られ ている。
特許文献 1 :特開 2004— 115326号公報
発明の開示
発明が解決しょうとする課題
[0003] し力しながら、従来の電気分解の方法では、水素の生成に大量の電力を消費する ので、製造効率が悪い、水素が高コストである、水素の大量生産には経済的に割に 合わない等の問題があった。また、地球上に豊富に存在している海水を電気分解し て水素を製造しょうとする試みもあるが、現状では、上記のように製造効率が悪い点 や、不純物を取り除く工程等が必要な点等の多くの問題があり実用的なレベルまで いたっていない。
[0004] 一方、特許文献 1記載の水素製造方法は、例えば、下式 (i) (ii)のように、天然ガス
(メタンガス)等の炭化水素化合物を触媒の存在下で数百度以上の高温の水蒸気と 反応させて水素を得る方法である。 C H 4 + H 2 0 -→C O + 3 H 2 · · · ( i )
C O + H 2 0→C 0 2 + H 2 · · · ( i i ) しかしながら、特許文献 1記載の水素製造方法では、上式のように、水素が生成され る過程で、副産物として一酸化炭素や二酸化炭素ガスが生じるものであり、環境面で の問題があった。また、原料となる天然ガス等の資源枯渴のおそれもあった。
[0005] 本発明は上記従来の課題に鑑みてなされたものであり、その一つの目的は、豊富 に存在する海水を原料として、効率のよ!ヽ水素の製造を期待できる水素製造システ ム及び水素製造方法を提供することにある。また、他の目的は、水素を製造する際に 一酸化炭素や二酸化炭素ガス等の副産物が少なぐ環境面で優れた水素製造シス テム及び水素製造方法を提供することにある。
課題を解決するための手段
[0006] 上記課題を解決するために本発明は、海水 Wを導入させる密閉空間 Sと密閉空間 S内に高温高圧の蒸気 Tを噴出する蒸気噴出手段(18)とを有して密閉空間 S内の 海水 Wを高温高圧下で活性化処理する活性化装置 12と、活性化装置 12で活性ィ匕 された高温高圧の海水を受入れて通流させる管路装置であり、断面が 3角形、 5角形 、 6角形又 ίま 8角形の!/ヽずれ力の形状の海水通流管 40 (403、 405, 406, 408)を 1 個または複数含む管路装置 14と、を有することを特徴とする海水力 の水素製造シ ステム 10から構成される。海水通流管 40の断面形状は、好適には全ての辺の長さ が同じ長さで設定された正 3角形、正 5角形、正 6角形、正 8角形のもので設けられる とよい。なお、管の断面形状の辺の長さが異なる形状のものでも良い。
[0007] また、前記複数の海水通流管 40 (403〜408)は、長手軸 (X)が互いに平行でそ れらの管端が揃うように支持手段 44を介して並列に配置支持された並列管ユニット 4 2a〜42bを構成することとしてもよい。海水通流管 403〜408は、管端側から見た際 に、それらの断面形状の中心点(軸) Xが縦又は横に一直線上に並ぶように配置した り、或いは、規則的または不規則的に縦横に並べて配置することとしてもよい。
[0008] また、海水通流管 40の断面形状 P、大きさ 管数 Q、位置 (X)のいずれか又は複 数の要素が異なる複数の並列管ユニット (42a、 42b、 42c、 42d、 42e)を縦続接続 し、その際、縦列状に配置された海水通流管どうしがそれらの管内を管外力 密閉し た状態で長手方向に連通するように接続したこととしてもょ ヽ。複数の全ての並列管 ユニットをそれぞれ、上記要素が異なるように設けてもよいが、少なくとも接続される 並列管ユニットどうしで要素が異なれば良い。例えば、 3個の並列管ユニット 42a、 42 b、 42cを接続する際に、第 1、第 3並列管ユニット 42a、 42cを全く同じ要素で構成さ れるように設け、第 2並列管ユニット 42bのみを第 1、第 3並列管ユニットと要素の構成 が異なるように設けても良い。なお、縦続接続する並列管ユニットの個数は任意でよ V、。縦列状に配置された海水通流管どうしは 1対 1に連通するように接続されなくても よい。例えば、一本の海水通流管は複数本の海水通流管と長手方向に連通接続さ れていても良い。
[0009] また、海水通流管 40どうしは、それぞれの管中心軸 Xがずれた状態で長手方向に 連通接続されたこととしてもよ ヽ。
[0010] さらに、本発明は、密閉空間 S内に導入した海水 Wに高温高圧の蒸気 Tを噴出させ ることにより、密閉空間 S内を高温高圧に維持した状態で海水 Wを活性ィ匕処理し、断 面が 3角形, 5角形, 6角形又は 8角形状のいずれかの形状となる複数の海水通流管 403, 405, 406, 408を長手軸 (X)が平行になるように並列させて構成された管路 装置 14の該海水通流管内に活性化処理した海水を圧送機構 34を介して圧送する ことにより水素を製造することを特徴とする海水からの水素製造方法から構成される。 発明の効果
[0011] 本発明の海水からの水素製造システムによれば、海水を導入させる密閉空間と密 閉空間内に高温高圧の蒸気を噴出する蒸気噴出手段とを有して密閉空間内の海水 を高温高圧下で活性化処理する活性化装置と、活性化装置で活性化された高温高 圧の海水を受入れて通流させる管路装置であり、断面が 3角形、 5角形、 6角形又は 8角形のいずれかの形状の海水通流管を 1個または複数含む管路装置と、を有する 構成であるから、海水力 直接的に大量の水素を効率良く製造できる水素製造シス テムの実現できる。また、システムの稼働エネルギーが従来の電気分解法等に対し て少なくてすみ、単位生成量当たりの製造コストの低減を図れる。さらに、水素製造 の副産物としては二酸ィ匕炭素等の温室効果ガス等を発生することがなぐクリーンに 水素製造を行うことができる。
[0012] また、前記複数の海水通流管は、長手軸が互いに平行でそれらの管端が揃うよう に支持手段を介して並列に配置支持された並列管ユニットを構成することにより、水 素発生の効率を向上させることができる。
[0013] また、海水通流管の断面形状、大きさ、管数、位置のいずれか又は複数の要素が 異なる複数の並列管ユニットを縦続接続し、その際、縦列状に配置された海水通流 管どうしがそれらの管内を管外から密閉した状態で長手方向に連通するように接続し た構成とすることにより、より効率良く大量の水素を製造できる。
[0014] また、海水通流管どうしは、それぞれの管中心軸がずれた状態で長手方向に連通 接続された構成とすることにより、システム構成を大幅に複雑ィ匕することなぐより効率 良く大量の水素を製造できる。
[0015] さらに、本発明の海水力 の水素製造方法によれば、密閉空間内に導入した海水 に高温高圧の蒸気を噴出させることにより、密閉空間内を高温高圧に維持した状態 で海水を活性ィ匕処理し、断面が 3角形, 5角形, 6角形又は 8角形状のいずれかの形 状となる複数の海水通流管を長手軸が平行になるように並列させて構成された管路 装置の該海水通流管内に活性化処理した海水を圧送機構を介して圧送する構成で あるから、海水力 直接に大量の水素を効率良く製造できる。さらに、水素製造の副 産物としては二酸ィヒ炭素等の温室効果ガス等が発生することがないので、クリーンに 水素製造を行うことができる。
図面の簡単な説明
[0016] [図 1]実施形態に係る海水力 の水素製造システム及び水素製造方法の概略説明 図である。
[図 2]図 1の A— A線断面説明図である。
[図 3]図 1の B— B線断面説明図である。
[図 4]図 1の C C線断面説明図である。
[図 5]接続される並列管ユニットにおける海水通流管の長手方向の連通接続状態を 示す説明図である。
[図 6]第 1並列管ユニットと第 2並列管ユニットとの接続状態説明図である。 [図 7]第 2並列管ユニットと第 3並列管ユニットとの接続状態説明図である。
[図 8]構成要素を異ならしめた実施形態の並列管ユニットの断面説明図である。
[図 9]構成要素を異ならしめた他の実施形態の並列管ユニットの断面説明図である。 符号の説明
[0017] 10 水素製造システム
12 活性化装置
14 管路装置
18 蒸気噴出装置
40 (403、 405、 406、 408) 海水通流管
42a, 42b、 42c、 42d、 42e 並列管ユニット
44 支持手段
発明を実施するための最良の形態
[0018] 以下添付図面を参照しつつ本発明の海水からの水素製造システム及び水素製造 方法の実施の形態について説明する。本発明の海水力 の水素製造システムは、海 水を原料として直接的に水素を製造するシステムである。図 1ないし図 7は、本発明 の海水力もの水素製造システムの実施形態を示している。図 1に示すように、本実施 形態において、海水力もの水素製造システム 10は、海水 Wを高温高圧で活性化処 理する活性化装置 12と、活性化された高温高圧の海水を受け入れて通流させる管 路装置 14と、を含む。
[0019] 本実施形態において、活性ィ匕装置 12は、海水 Wに高温高圧の蒸気を噴出してェ ネルギーを与えることにより反応性の高い活性ィ匕状態とする第 1の処理手段である。 図 1において、本実施形態では、活性化装置 12は、内部に密閉空間 Sを有する密閉 タンク 16と、密閉空間 S内に高温高圧の蒸気を噴出する蒸気噴出装置 18と、を有し ている。密閉タンク 16は、例えば、両端を閉鎖した中空の横倒し円筒体力もなり、耐 熱、耐圧、耐蝕性のあるステンレス等の金属から設けられる。密閉タンクの中空内部 は密閉されており、密閉空間 Sとして、原水となる海水 Wが導入される。密閉タンク 16 は、地面力もある程度の高さに配置されて支持脚 19に支持されている。密閉タンク 1 6の上部には海水を密閉空間内 Sに投入するための導入口 20が設けられている。一 方、密閉タンク 16の下部には活性ィ匕させた海水 Wを排水する排水口 22が設けられ て 、る。これらの導入口 20、排水口 22はそれぞれ開閉弁 24, 25を有して開閉自在 になっており、それらの閉鎖時には密閉空間 Sが密閉保持される。なお、図 1中、 23 は、密閉空間 S内が所定圧力以上になるのを防止する安全弁である。
[0020] 蒸気噴出装置 18は、密閉空間 S内に高温高圧の蒸気 Tを噴出して該密閉空間の 海水を高温高圧に蒸気処理する蒸気噴出手段である。本実施形態では、蒸気噴出 装置 18は、密閉空間 S内に噴出口 26を設けて密閉タンク 16に接続された蒸気噴出 管 28と、高温高圧の蒸気を蒸気噴出管 28に供給する蒸気発生装置としてのボイラ 3 0と、を含む。蒸気噴出管 28は、密閉タンク 16の下面側に取り付けられており、その 噴出口 26を密閉空間 S内に上方向に向けて取り付けられている。噴出口 26から噴 出する蒸気は、その蒸気噴出力により該密閉空間 S内の海水 Wを下から吹き上げ状 に撹拌するようになっている。すなわち、蒸気噴出管 28からの蒸気は、その噴出力で 海水を撹拌する撹拌手段を兼ねており、海水の活性化処理を促進させる。蒸気噴出 管 28から噴出される蒸気は、本実施形態では、例えば、温度 180〜300°C、圧力 15 〜30atmに設定される。なお、蒸気噴出管 28の噴出口近傍にはタンク力もの海水の 逆流を防止する逆止弁 32が設けられている。なお、密閉タンクの密閉空間内の温度 圧力を一定に保持するように、センサや弁の開閉等を制御する制御部を備えていて ちょい。
[0021] 活性化装置 12で海水を高温高圧の蒸気で処理することにより、例えば、局所的に 超高温高圧 (数千度、数千気圧)となり、或はそれにより発生されるニュートリノ絡みで 海水が活性化される。活性ィ匕装置 12では、淡水の場合では、原子転換が起こり、例 えば、カルシウムや鉄等のミネラル成分が増加することが確認されている。例えば、 活性化装置 12では水含有成分は、次式 (a)〜 (e)のような原子転換が起こると考え られる。
[化 2] ! ! N a +gO→! 9K · · · ( a )
12Mg +8O→20 C a ' · * (b)
19K+1H→20C a · · · (。)
! 7C 1 +80 + ^→26 F e · · · ( d)
25Mn + 1H→26F e · · · ( e ) よって、海水の場合でも同様な原子転換が起こり、特定のミネラル成分が増加する と推測される。さらに、活性化処理された高温高圧の海水は、蒸気から熱エネルギー を得て内部エネルギーが高い状態となり、上式のような原子転換とともに、ラジカル反 応等の化学反応が起こり、ラジカル類 (Η·、 OH ·等)や電子等が生じやすぐ反応性 が高 、状態となって 、ると考えられる。
[0022] 図 1に示すように、本実施形態では、処理装置 12で活性化された高温高圧の海水 は、圧送機構 34を介して後述する管路装置 14に圧送される。圧送機構 34は、本実 施形態では、密閉タンク 16の排水口と管路装置 14の一端側とを接続する接続管 36 と、接続管の中間位置に介設された圧力ポンプ 38と、を含む。本実施形態では、圧 力ポンプ 38は、例えば、 40〜50atm程度の高い圧力で海水を管路装置 14へ圧送 する。
[0023] 管路装置 14は、図 2、図 3、図 4に示すように断面形状 Pが 3角形、 5角形、 6角形、 8角形の 、ずれかの形状となる海水通流管 40を複数有して 、る。本実施形態では、 図 1にも示すように、管路装置 14は、全体として水平状に長手軸を配置させた筒体 で構成されており、その筒体内部に複数の海水通流管 40を有して設けられている。 管路装置 14の一端側から他端側に向けて上記活性ィヒ装置 12で活性ィヒした高温高 圧の海水を高い圧力で通流させるようになつている。これにより、例えば、活性化され た海水が該管路装置 14の海水通流管 40内を通流する際に海水中の水分子 (H O)
2 が局所的に発生する高エネルギーを受けて、水素 (H
2 )が分離生成すると考えられる
。すなわち、管路装置 14は、本実施形態に係る水素製造システムにおける主な水素 発生部部分を構成している。上記のような断面形状 Pが 3, 5, 6, 8角形といった特定 の管内に海水を通流させることで多くの水素が発生することが確認されていることか ら、それらの断面形状の管内で海水力 の水素の分離生成のための高エネルギー の場を発生させやす!、と考えられる。
[0024] 図 1に示すように、本実施形態では、管路装置 14は、その長手方向に 3つのブロッ ク(42a、 42b、 42c)で分割されている。それぞれのブロックは、複数の海水通流管 4 0をそれらの長手軸が平行になるように並列させて設けられた第 1〜第 3並列管ュ- ット 42a〜42cから構成されている。そして、第 1〜第 3並列管ユニットは、長手方向に 縦続接続されている。
[0025] 図 2において、第 1並列管ユニット 42aは、断面形状 Pが正 3角形の海水通流管 40 3、正 5角形の海水通流管 405、正 6角形の海水通流管 406、正 8角形の海水通流 管 408をそれぞれ 1個ずつ有した、管数 Qが 4個の態様で設けられている。本実施形 態では、海水通流管 403〜408は、それらの管長手軸方向に向けて一定の断面形 状 Pで形成された直管部材カゝらなり、例えば、耐熱、耐圧、耐蝕性のあるステンレス等 の金属で設けられている。海水通流管 403〜408は、全て同じ管長さで設けられて おり、それらの長手軸を互いに平行に(図 1においては左右方向、図 2においては紙 面に垂直な方向に向けて)並列配置されている。図 2に示すように、例えば、海水通 流管 403〜408は、管端口側から見た際に、それらの管の断面形状 Pの中心点 (管 の中心軸)が例えば、縦横に規則的 (又は不規則的)に並ぶように配置されている。 これらの海水通流管 403〜408は、管両端を揃えた状態で支持手段 44を介して支 持されている。支持手段 44は、本実施形態では、並列に配置された海水通流管の 外側から束ねるように覆うステンレス製の外筒体 44aと、外筒体 44aの両端側に固定 されたステンレス製の閉鎖蓋体 44bを有している。閉鎖壁体 44bは、それぞれ海水中 流管の両端を固定して支持するとともに、管口以外の部分(図 2上、右上がり平行斜 線ハッチング部分)を閉鎖している。なお、図 2では、外筒体 44aは断面円筒形状と なるように設けられている力 それに限らず、例えば、断面形状が 4角形、 5角形、 6角 形等その他任意の断面形状の筒体でも良い。また支持手段 44は、筒体に限らず、 例えば、枠体、その他の支持部材であってもよい。また、複数の海水通流管の胴部ど うしを溶接等で固定して互いに並列配置状態を支持することとしてもよぐその他並 列配置させた複数の管を支持するものであれば任意の支持構成でよい。また、本実 施形態では、第 1並列管ユニット 42aは、圧送機構の接続管 36とバッファ部 39を介し て接続されており、各海水通流管 403〜408内に略均等に海水が導入されやすくな つている。さらに、上記のように外筒体内に海水通流管 40を並列配置して設けられて V、るので、圧力ポンプ 38から圧送される海水が各海水通流管を略均等な圧力で通 流することができ、その結果、総合的な水素発生の効率が良い。なお、図 2では、並 列管ユニットは、説明のために単純なモデルで構成した場合を示している力 それに 限らず、例えば、図 8、図 9に示すように、並列管ユニット 42d、 42eのような並列構成 としてもよく、海水通流管の断面形状 P、大きさ 管数 Q、位置等の各要素を任意に 組み合わせて構成することとしてもよい。なお、海水通流管の大きさとは、本実施形 態では例えば断面形状 Pの外接円の中心(中心軸 X)力 頂点までの長さを示してお り、位置は、本実施形態では例えば中心軸 Xの位置を示している。図 8では、並列管 ユニット 42dは、各海水通流管 40の大きさ Rが図 2な!、し図 4のものと比較して小さく 、管数 Qが 5本の構成となっている。また、図 9に示す並列管ユニット 42eように、多数 の海水通流管を並列は位置することでより効率良い水素発生を期待できる。
[0026] 図 3、図 4に示すように、本実施形態では、第 2、第 3並列管ユニット 42b、 42cも第 1 並列管ユニット 42aと略同じ構成であり、断面形状が正 3, 5, 6, 8角形の海水通流管 403〜408を 1本ずつ含む構成で設けられている。第 2、第 3並歹 IJ管ユニット 42b、 42 cでは、各海水通流管 40の配置位置がそれぞれ異なるように設定されている。本実 施形態では、海水通流管 403〜408の位置が異なる複数の並列管ユニット 42a〜4 2cを縦続接続して設けられている。なお、本実施形態では、並列配置された海水通 流管群の中心軸 Y、すなわち、外筒体 44aの中心軸 Υ回りに所要角度回転させてそ れらの管の位置を変更させている。また、接続される複数の並列管ユニットは、本実 施形態のように、複数の海水通流管 40を単に位置を変更させて構成したものに限ら ず、該海水通流管の断面形状 P、大きさ 管数 Q、位置 (X)のいずれか又は複数の 要素を異ならせて構成するようにしてもよい。また、例えば、図 2、図 3、図 4の態様の 並列管ユニット 42a、 42b、 42cと、図 8に示した態様の並列管ユニット 42dを接続す ることとしてちよい。
[0027] 縦続接続される並列管ユニット 42a〜42cでは、上記のような海水通流管の位置が 異なる並列配置構成となっているので、図 5、図 6、図 7に示すように、縦列状に配置 された海水通流管どうしは、それぞれの管中心軸 Xがずれた状態で接続されている。 なお、図 6, 7上では、実線が第 1並列管ユニット 42aの海水通流管 40aの管端口、一 点鎖線が第 2並列管ユニット 42bの海水通流管の管端口 40b、二点鎖線が第 3並列 管ユニット 42cの海水通流管 40cの管端口をそれぞれ表して 、る。本実施形態では 、図 6、図 7に示すように、それぞれの縦列状に配置された海水通流管 40どうしは、 少なくとも一部が重なり合うように管端開口が位置ずれした状態となっており、流路面 積の小さな連通部 Hを介してのみ管内どうしを連通させながら、長手方向に接続され ている。さらに、本実施形態では、並列管ユニットを付き合わせた際に、海水通流管 4 0を支持して 、る閉鎖蓋体 44bが互 、の海水通流管 40の位置ずれした管端口の開 口部分を密着状に閉鎖するようになっている。すなわち、長手方向に連通接続される 海水通流管どうしは、それらの管内どうしのみを連通するように設けられており、それ らの管内を管外力 密閉した状態となっている。これにより、海水が海水通流管の外 部に漏れることなぐ良好な高圧通流状態を保持できる。また、本実施形態では、上 記のように、縦列状に配置される海水連通管 40がそれぞれの管中心軸 Xがずれて 連通接続されることにより、管路部分が並列管ユニットの接続位置で一部狭い管路と なるように設けられるとともに、異なる断面形状の海水通流管どうし (例えば、断面 3角 形の海水通流管 403と断面 6角形の海水通流管 406)が連通接続されている。した がって、管路装置を通流する海水は、単なる平坦な直線状の流れでなぐ途中で流 路が狭まることにより流速が変化したり、或いは、断面形状の異なる海水連通管内を 複数しながら流れることとなる。これにより、管路装置全体での水素発生効率が向上 することが期待できる。なお、管路装置 14は、原理的には、断面形状が、 3, 5, 6, 8 角形の海水通流管いずれか 1個の海水通流管 40のみでもよい。しかし、異なる断面 形状のものを複数組み合わせた構成とすることにより、水素発生効率が向上する。並 列管ユニットは、 2個、 3個以上の任意の数を接続してもよい。
なお、図 1に示すように、管路装置 14の他端側、すなわち第 3並列管ユニット 42c 側には、分離装置 46が接続されている。分離装置 46は、海水通流管 40内を通流し てきた海水力 水素と水とその他塩等とをそれぞれ分離して取出す分離手段である。 海水通流管内で海水から生成された水素は、分離装置で分離されて、例えば、液体 状態で水素貯蔵タンク 48等で回収貯蔵される。
次に、本実施形態に係る海水からの水素製造システムの作用を水素製造方法とと もに説明する。活性ィ匕装置 12の密閉タンク 16内に、排水口 22を閉じた状態で導入 口 20から原料となる海水を導入する。導入口の開閉弁を閉鎖して、例えば、 230°C、 25atmの蒸気を蒸気噴出装置 18を介して密閉空間 S内に噴出させつつ、密閉空間 S内を高温高圧に維持しながら、海水を活性化処理する。この際、蒸気は海水を撹 拌するように噴出される。そして、例えば、 1時間程度処理した後に、排水口 22を開く とともに、活性化処理した高温高圧の海水を圧送機構 34を介して管路装置 14の海 水通流管 403〜408内に高圧状態で通流させる。この際、活性ィ匕された海水が該管 路装置 14の海水通流管 40内を通流する際に海水中の水分子が局所的に発生する 高工ネルギー (例えば、超高温高圧の反応)を受けて、水素が分離生成すると考えら れる。この海水通流管内における水素生成のメカニズムについては、実態的な解明 はなされていないが、例えば、管内におけるキヤビテーシヨンのような微小気泡の発 生と崩壊による超高温高圧の発生現象や、水分子力 水素が直接的に熱分離する 反応、水及びその他のラジカル反応等の化学反応、活性化された海水中に含まれる ナトリウム、カルシウム、鉄等のミネラル成分、塩素、その他の含有成分との酸化還元 反応、或いは、後述の高尾が提唱する-ユートリノ反応等の現象が単独又はそれら のいくつかの現象 ·反応が複雑に組み合わさって、水から水素が生成するものと考え られる。その一例として、例えば、水分子のラジカル反応について考慮すると、例え ば、次式のような反応によって水素が発生すると考えられる。
[化 3]
Η 2 0→Η · + O H · · · · ( 1 )
2 H ·→Η 2 · · · ( 2 ) なお、その他の詳細なラジカル反応については省略する。ニュートリノ励起原子ラ ジカル及び-ユートリノ形態波動共鳴については、次式のように海水通流管内で-ュ 一トリノ( V )、反-ユートリノ( V * )が発生し、その発生した-ユートリノ( V、 V * )力 S 水分子と反応して水素が発生すると考えられる c
[化 4]
0→ V + * (3)
V +Η20-→Η · +OH · + (4)
V +H20→H2 + 0 · + V (5)
V +H20→H2 + F · + e— (6)
v * +H20→H2 + N · + e— (7)
e— + e +→ y線 (8)
H20+ γ線→H · +OH · (9)
2 H · →H9 (1 0) なお、式中、 e—は電子、 e+は陽電子である。したがって、上記の式(5) (6) (7) (10 )により水素 (H )が発生すると考えられる。一般的には、二:
2 ートリノは、例えば、核 融合、核分裂、その他の原子核反応、素粒子反応時等に創生されることが多ぐ電 荷をもたな 、微粒子で弱 、相互作用しかなく他の物質とはほとんど反応しな 、ことが 知られている。その一方で、ニュートリノ( V )は、下式(11) (12)のように、原子核(中 性子)と反応して核変換等起こすことも知られている。
[化 5]
+ 1 7C 1→! (1 1)
+ n→ p + e (1 2) なお、式中、 nは中性子、 pは陽子、 e—は電子である。ニュートリノが上式(3)〜(10 )のような反応を起こし水からの水素発生に関係していると推測される。
さらに、管路装置は、図 2ないし図 4に示すように、海水通流管の並列配置構成が 異なる並列管ユニットを接続して構成されているので、図 5に示すように、管路装置の 海水通流管内を通流する海水は、中間位置で流速がしたり、複数の異なる断面形状 の海水通流管を通流する。これにより、上記のような水素発生の反応が促進すると考 えられる。また、処理装置で活性化された海水成分として含まれる、ナトリウムカルシ ゥムゃ鉄、塩素等のその他の種々の物質等が Η·以外のラジカル (例えば、 ΟΗ·や 電子等)と反応することにより、下式(13)のような逆反応が減少し、水素の生成反応( 例えば、上式 (2) (10) )を促進すると考えられる。
[化 6]
H · + O H · -→H 2 0 · · · ( 1 3 ) また、管路装置 14の海水通流管 40内を通流させることで、局所的に高エネルギー が発生することにより、活性ィ匕装置と同じように、海水中の成分が原子転換すると考 えられる。したがって、さらに改質された海水を得ることができる。また、海水中の水分 子が形成するクラスタもナノ(10_9)からピコ(10_ 12)サイズの小さなクラスタが形成さ れることが期待される。本実施形態に係る水素製造システムは、海水カゝら直接に大量 の水素製造を期待できるので、例えば、海洋上を行き来する大型タンカー等の大型 船舶に積載することで、随時海水カゝら水素燃料を製造することができ、長期航行、及 び物品の大量輸送の点で優れる。また、同様に臨海都市、臨海工業地域、島、海洋 プラント等に設置しても有効なエネルギー活用を図ることができる。さらに、水素製造 時の廃棄物としてもクリーンなものであるので、環境面でも優れている。
[0031] 以上説明した本発明の海水からの水素製造システム及び水素製造方法は、上記し た実施形態のみの構成に限定されるものではなぐ特許請求の範囲に記載した本発 明の本質を逸脱しな 、範囲にぉ 、て、任意の改変を行ってもょ 、。
産業上の利用可能性
[0032] 本発明の海水からの水素製造システム及び水素製造方法は、水素燃料電池或い は各種産業等広 、分野で使用される水素を工業的に製造する際に好適に適用され る。特に、海洋上を行き来する大型タンカー等に水素を燃料する動力源とともに設置 すると、燃料補給等の点で有利である。また、同様に臨海都市、臨海工業地域、島、 海洋プラント等に設置しても有効なエネルギー活用を図ることができる。

Claims

請求の範囲
[1] 海水を導入させる密閉空間と密閉空間内に高温高圧の蒸気を噴出する蒸気噴出 手段とを有して密閉空間内の海水を高温高圧下で活性ィ匕処理する活性ィ匕装置と、 活性ィ匕装置で活性化された高温高圧の海水を受入れて通流させる管路装置であり
、断面が 3角形、 5角形、 6角形又は 8角形のいずれかの形状の海水通流管を 1個ま たは複数含む管路装置と、を有することを特徴とする海水からの水素製造システム。
[2] 前記複数の海水通流管は、長手軸が互いに平行でそれらの管端が揃うように支持 手段を介して並列に配置支持された並列管ユニットを構成する請求項 1記載の海水 力 の水素製造システム。
[3] 海水通流管の断面形状、大きさ、管数、位置のいずれか又は複数の要素が異なる 複数の並列管ユニットを縦続接続し、その際、縦列状に配置された海水通流管どうし がそれらの管内を管外から密閉した状態で長手方向に連通するように接続した請求 項 2記載の海水からの水素製造システム。
[4] 海水通流管どうしは、それぞれの管中心軸がずれた状態で長手方向に連通接続さ れた請求項 3記載の海水からの水素製造システム。
[5] 密閉空間内に導入した海水に高温高圧の蒸気を噴出させることにより、密閉空間 内を高温高圧に維持した状態で海水を活性化処理し、
断面が 3角形, 5角形, 6角形又は 8角形状のいずれかの形状となる複数の海水通 流管を長手軸が平行になるように並列させて構成された管路装置の該海水通流管 内に活性ィ匕処理した海水を圧送機構を介して圧送することにより水素を製造すること を特徴とする海水力 の水素製造方法。
PCT/JP2005/015192 2005-08-22 2005-08-22 海水からの水素製造システム及び水素製造方法 WO2007023514A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007531959A JPWO2007023514A1 (ja) 2005-08-22 2005-08-22 海水からの水素製造システム及び水素製造方法
US11/990,818 US8303917B2 (en) 2005-08-22 2005-08-22 System and method for producing hydrogen from seawater
PCT/JP2005/015192 WO2007023514A1 (ja) 2005-08-22 2005-08-22 海水からの水素製造システム及び水素製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/015192 WO2007023514A1 (ja) 2005-08-22 2005-08-22 海水からの水素製造システム及び水素製造方法

Publications (1)

Publication Number Publication Date
WO2007023514A1 true WO2007023514A1 (ja) 2007-03-01

Family

ID=37771272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015192 WO2007023514A1 (ja) 2005-08-22 2005-08-22 海水からの水素製造システム及び水素製造方法

Country Status (3)

Country Link
US (1) US8303917B2 (ja)
JP (1) JPWO2007023514A1 (ja)
WO (1) WO2007023514A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100251789A1 (en) * 2009-03-20 2010-10-07 James Russell Baird Global Warming Mitigation Method
US11426708B2 (en) 2020-03-02 2022-08-30 King Abdullah University Of Science And Technology Potassium-promoted red mud as a catalyst for forming hydrocarbons from carbon dioxide
US11420915B2 (en) 2020-06-11 2022-08-23 Saudi Arabian Oil Company Red mud as a catalyst for the isomerization of olefins
US11495814B2 (en) 2020-06-17 2022-11-08 Saudi Arabian Oil Company Utilizing black powder for electrolytes for flow batteries
US12000056B2 (en) 2020-06-18 2024-06-04 Saudi Arabian Oil Company Tandem electrolysis cell
US11427519B2 (en) 2021-01-04 2022-08-30 Saudi Arabian Oil Company Acid modified red mud as a catalyst for olefin isomerization
US11820658B2 (en) 2021-01-04 2023-11-21 Saudi Arabian Oil Company Black powder catalyst for hydrogen production via autothermal reforming
US11814289B2 (en) 2021-01-04 2023-11-14 Saudi Arabian Oil Company Black powder catalyst for hydrogen production via steam reforming
US11718522B2 (en) 2021-01-04 2023-08-08 Saudi Arabian Oil Company Black powder catalyst for hydrogen production via bi-reforming
US11724943B2 (en) 2021-01-04 2023-08-15 Saudi Arabian Oil Company Black powder catalyst for hydrogen production via dry reforming

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075188A (ja) * 1973-11-05 1975-06-20
JPS57149802A (en) * 1980-11-21 1982-09-16 Ansonii Kontoreon Jiyooji Device for decomposing water
WO2000065679A1 (fr) * 1999-04-26 2000-11-02 World Fusion Limited Vehicule electrique
JP2004115335A (ja) * 2002-09-27 2004-04-15 Honda Motor Co Ltd 水素の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4124628A (en) * 1977-07-28 1978-11-07 Union Carbide Corporation Serial adiabatic methanation and steam reforming
FR2417709A1 (fr) * 1978-02-21 1979-09-14 Coflexip Tube composite flexible
US4619670A (en) * 1984-04-30 1986-10-28 Malcolm David H Apparatus for dielectrophoretically enhanced particle collection
JP4123425B2 (ja) 2002-09-27 2008-07-23 富士電機ホールディングス株式会社 水素製造装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075188A (ja) * 1973-11-05 1975-06-20
JPS57149802A (en) * 1980-11-21 1982-09-16 Ansonii Kontoreon Jiyooji Device for decomposing water
WO2000065679A1 (fr) * 1999-04-26 2000-11-02 World Fusion Limited Vehicule electrique
JP2004115335A (ja) * 2002-09-27 2004-04-15 Honda Motor Co Ltd 水素の製造方法

Also Published As

Publication number Publication date
JPWO2007023514A1 (ja) 2009-02-26
US8303917B2 (en) 2012-11-06
US20090246121A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
WO2007023514A1 (ja) 海水からの水素製造システム及び水素製造方法
CN103861444B (zh) 一种基于水合物法的二氧化碳捕集和海水淡化联产装置及方法
RU2449828C2 (ru) Способ снижения концентрации co2 в жидкости и устройство для его осуществления
US9315910B2 (en) Methods and devices for the production of hydrocarbons from carbon and hydrogen sources
TWI511782B (zh) 用於轉化二氧化碳及處理廢棄材料的方法及設備
JP2020524650A (ja) 分離システム
KR102340047B1 (ko) 수중 플라즈마 발생장치 및 이를 포함하는 어플리케이션
AU2008209322A1 (en) Carbon dioxide sequestration and capture
CN102863110A (zh) 一种一体化处理难降解有机废水的设备及方法
CN105000627B (zh) 一种臭氧氧化反应器
CN105060408B (zh) 一种水下低温等离子体废水处理方法及装置
KR20120120943A (ko) 배연 및 대기 가스 중의 co2의 환원 방법 및 상기 방법을 수행하기 위한 장치
KR101600037B1 (ko) 선박평형수 처리시스템
CN104163399B (zh) 透氧膜、透氢膜交替分解水制取氢气的装置
CN113144904B (zh) 氢回收装置、氢回收方法及二氧化碳固定系统
KR101612099B1 (ko) 전기분해장치
KR102460620B1 (ko) 해양수소생산플랜트
CN214937123U (zh) 一种利用二氧化碳和水合成甲醇的装置
KR101266856B1 (ko) 클러스터분리를 이용한 대용량 고농도 오존수 처리시스템
KR101815107B1 (ko) Fpso용 오염물질 저감장치
WO2017222805A1 (en) Using natural gas as agitating gas for photocatalytic water splitting
JP5793476B2 (ja) 水素ガス作製装置および水素ガス作製方法
CN117125806B (zh) 基于折线流动的有机废水臭氧降解方法与装置
CN206318753U (zh) 一种高效脱盐装置
KR101663413B1 (ko) 전기분해를 이용한 수소가스 제조장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007531959

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11990818

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05772750

Country of ref document: EP

Kind code of ref document: A1