WO2007022667A1 - Appareil à pipettes automatiques multiples et son procédé de fonctionnement - Google Patents

Appareil à pipettes automatiques multiples et son procédé de fonctionnement Download PDF

Info

Publication number
WO2007022667A1
WO2007022667A1 PCT/CN2006/000014 CN2006000014W WO2007022667A1 WO 2007022667 A1 WO2007022667 A1 WO 2007022667A1 CN 2006000014 W CN2006000014 W CN 2006000014W WO 2007022667 A1 WO2007022667 A1 WO 2007022667A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipette tip
multichannel pipettor
syringe pump
apportioned
volumetrically
Prior art date
Application number
PCT/CN2006/000014
Other languages
English (en)
Inventor
Dong Wang
Jingchun Zhang
Wei Gao
Yingna Li
Kun Zou
Jing Cheng
Original Assignee
Capitalbio Corporation
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Capitalbio Corporation, Tsinghua University filed Critical Capitalbio Corporation
Publication of WO2007022667A1 publication Critical patent/WO2007022667A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/021Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0275Interchangeable or disposable dispensing tips
    • B01L3/0279Interchangeable or disposable dispensing tips co-operating with positive ejection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0099Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor comprising robots or similar manipulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1065Multiple transfer devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0289Apparatus for withdrawing or distributing predetermined quantities of fluid
    • B01L3/0293Apparatus for withdrawing or distributing predetermined quantities of fluid for liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/103General features of the devices using disposable tips

Definitions

  • the present invention relates to an automated pipetting apparatus ("autopipettor”) for the simultaneous delivery of multiple, separate aliquots of sample fluids.
  • autopipettor automated pipetting apparatus
  • Pipetting systems are widely used for clinical, laboratory, and manufacturing applications. There are two categories of pipetting system, manual and automatic.
  • Manual pipette systems can be actuated by breath pressure, or by manipulation of an elastomeric bulb or a piston pump to aspirate and dispense fluid.
  • Automatic pipette systems often use a motor driven syringe pump to aspirate, and dispense a metered volume of sample fluid.
  • Automatic pipette systems can be combined with robotic positioning technology, for coordinated positioning, aspiration, and fluid dispensing.
  • Applications for automatic pipetting include, without exclusion, sample treatment, sample purification, sample amplification, electrophoresis, liquid chromatography, flow cytometry, microarray analysis, and many others. Pipetting technology is indispensable for life sciences fields such as genomics and proteomics. Pipetting can be used to mix, as well as to transfer fluids.
  • Multichannel autopipettors can simultaneously transfer, for example, 4, 8, 12, 24, or 96 aliquots of fluid samples.
  • Methods of metering volumes of dispensed fluids include volumetric and time methods.
  • volumetric method the volume displacement of the syringe pump is used to estimate the volume of the aspirated or dispensed fluid.
  • the time method estimates the dispensed volume of fluid based on the time interval between opening and closing a valve controlling the fluid discharge combined with known fluid flow rates.
  • a pump body comprises multiple syringe cavities, each cavity being coupled to its own pipette tip.
  • the corresponding syringe plungers are mechanically coupled to one another and are driven by a common actuation mechanism.
  • the drawbacks of the first configuration include the need to maintain tight mechanical tolerances in a multiplicity of syringe cavities in a common pump body, as well as the possible need to discard an entire pump body in the event that a single syringe pump fails. Also, volumetric delivery consistency among the different syringe pumps can be difficult to maintain.
  • a second basic configuration simply gangs a number of individual syringe pumps, each coupled to its corresponding pipette tip, and each syringe pump having its own, independent actuator.
  • Tecan Corp. of Switzerland adopts this type of configuration.
  • the independent actuation of each syringe pump admits the possibility of simultaneously dispensing aliquots of different volumes, the redundant actuator hardware increases equipment costs.
  • An embodiment of the present invention comprises an automatic multichannel pipettor operating in coordination with a robotic positioner.
  • a volumetrically apportioned, pressure dividing manifold equally divides volumetric displacement from a syringe pump among a plurality of pipetting channels for simultaneous aspiration and dispensing.
  • the automatic pipettor can use disposable pipette tips that can be automatically loaded and discarded.
  • FIG. 1 is a schematic drawing of an embodiment of the invention.
  • FIG. 2 is a perspective view of an embodiment of the invention.
  • Fig. 3 is a cross-sectional view of a detail of an embodiment of the invention.
  • FIG. 4 illustrates an operation of an embodiment of the invention.
  • Fig. 5 illustrates a further operation of an embodiment of the invention.
  • Fig.6 illustrates another operation of an embodiment of the invention.
  • Fig. 7 illustrates a block diagram of a controller for an embodiment of the invention.
  • Fig. 1 is a schematic illustration of an embodiment of the invention having four pipetting channels.
  • Syringe pump 103 is connected to inlet port 10 Ie of the volumetrically apportioned pressure dividing manifold ("manifold") 101 via coupling 108.
  • the plunger of syringe pump 103 is mechanically coupled to actuator 103b through a mechanical coupling 103a.
  • actuator 103b causes syringe pump 103 to aspirate or expel volumes of air or other working fluid or gas contained therein.
  • Actuator 103b is typically electromechanical, and is coupled to the piston of syringe pump 103 via a mechanical coupling 103 a.
  • Examples of actuator 103 d can include stepper motors and various servo motors, coupled with gears and/or a worm drive for precise control of the position of the piston within syringe pump 103.
  • Manifold 101 is shown dividing the pressure or vacuum generated by the syringe pump 103 among four different pipette tips 102a, 102b, 102c, and 102d. It is important that the volume displacement of the syringe pump 103 is equally apportioned between outlets 101a, 101b, 101c, and 1 Old of the manifold so that aliquots of equal volume may be simultaneously dispensed by each pipette tip. Although manifold 101 has four outlets in the embodiment of Fig. 1, in general any number of outlets may be desired.
  • the bore diameters of outlets 101a, 101b, 101c, and 101d can be individually set to compensate for pressure gradients along distributing channel 101f, regardless of the position of the outlet on the manifold.
  • the bore diameters of outlets 101a and 101d can be larger than the bore diameters of outlets 101b and 101c, to equalize the apportionment of volumetric displacement from syringe pump 103.
  • distributing channel 101f can be tapered in cross-section to equalize the apportionment of volumetric displacement on other embodiments of the invention.
  • buffer zones may be disposed between adjacent outlets to equalize the apportionment of volumetric displacement, as described below.
  • pipette tip remover 106 can be a bar with holes therein to accommodate each outlet of the manifold.
  • Pipette tips 102a, 102b, 102c, and 102d are typically made of somewhat mechanically compliant polymer material and are removably press fit onto outlets 101a, 101b, 101c, and 101d, respectively.
  • pipette tip ejector 106 is actuated downward, as shown by the arrows, pipette tips 102a, 102b, 102c, and 102d are ejected from their holders.
  • Actuator 106b for pipette tip ejection can be electromechanical or pneumatic.
  • the tip ejector actuator can be a pneumatic cylinder.
  • the cylinder can be a double acting cylinder or single acting cylinder.
  • the double acting cylinder has two input ports for the discharged air, which are used to push out and pull in the cylinder shaft independently; the port through which the discharged air is input into the cylinder is controlled through an electric controlled 2-way and 5-port valve; the 2- way and 5-port valve has one air inlet, two air outlets and two air discharging ports; a normally closed 2-way direct operated valve is provided between the air inlet of the 2- way and 5-port valve and the source of the discharged air.
  • the cylinder shaft is fixed on the remover to unload disposable tip on which the through holes are bored which can let the disposable tip holders pass through.
  • the diameter of the through holes is larger than the outer diameter of a tip holder but smaller than the largest diameter of a disposable tip.
  • the manifold and the disposable tip holder can be formed integrally, or they may be formed separately and assembled together.
  • a non-disposable tip can replace the combination of the disposable tip and the disposable tip holder.
  • Fig. 2 is a perspective view of an embodiment of the invention having four pipette channels.
  • a syringe pump (not shown in Figs.) or other type of mechanism that can realize fluid volume exchange is connected to the inlet 101 e of the manifold 101 via tubing 108.
  • the four outlets of the manifold 101 are coupled to four respective, disposable tip holders (one is labeled 101d in Fig. 2).
  • the tip holders as shown in Fig. 2 have threaded connectors, and external unthreaded sleeves that firmly abut the housing of the manifold 101, and tightly fit into the disposable pipette tips forming seals to minimize air leakage.
  • a disposable tip 102d is shown installed on tip holder lOld.
  • Double acting pneumatic cylinder 207 is fixed to the manifold 101 with a mounting plate 206.
  • the cylinder shaft 204 is fixed with the disposable tip ejector 106 by nuts threaded onto cylinder shaft 204.
  • the tip ejector 106 simultaneously pushes down the disposable tips 102 from their respective holders 101.
  • Mounting plate 206 also supports an auxiliary locating rod 203 that prevents the remover 106 from rotating around the axis the cylinder shaft 204 when it moves up-and-down.
  • the air inlet of the manifold diverter is connected with its air outlet through a buffer zone 101f.
  • the buffer zone 10 If can be formed by a deep blind, transverse hole that is bored into the side of the manifold and then sealed with a plug 202 as shown.
  • the radial or cross-sectional dimension of the buffer zone 101 f should be larger than that of each outlet orifice of the manifold, to avoid or reduce the performance differences between channels when they aspirate or dispense fluid due to differences in resistance to air flow, so a buffer effect is achieved.
  • the buffer zone has the function of dispensing fluid equally, based on the volume exchange principle, it can equally dispense a volume of air aspirated and expelled by the syringe pump into each pipetting channel, resulting in consistency of pipetting operation of each channel.
  • the manifold can adopt other mechanisms to equally dispense fluid in other embodiments of the invention.
  • the automatic pipettor provided by the present utility model can be fixed onto the move up-and-down slide of the kinematic axis of a robot.
  • the robot can then position the automatic pipettor to realize the operations such as loading/unloading a disposable tip, and aspirating and dispensing fluid samples automatically.
  • the pipetting method provided by embodiments of the present invention can be applied to plate replication, sample dispensing, and sample mixing.
  • Fig. 4 illustrates an operation of an embodiment of the invention, in which a robot positions the automatic pipetter 271 above a holder 310 for disposable pipette tips 102. Next the robot lowers the autopipettor, pressing the tip holders into the disposable tips, so that tip holder and disposable tip are coupled by press fit and deformation of the disposable tip. Then, as shown in Fig. 5, the robot moves to an array of fluid samples 401 to aspirate. The disposable tips are then dipped by the robot into the respectively positioned fluid samples for aspiration. Next the robot takes the automatic pipettor to a target position and dispenses the samples.
  • the robot can move the autopipettor over a waste or recycling receptacle into which the disposable pipette tips are ejected, as shown in Fig. 6, thereby completing the operation to move fluid samples from their respective sources to their respective destinations.
  • the autopipettor Before aspirating a sample fluid, the autopipettor can pre-aspirate a volume of air to promote subsequent, thorough dispensing of a subsequently aspirated fluid sample. Dispensing the pre-aspirate along with the fluid sample can prevent some fluid sample from remaining inside the cavity of the disposable tip, and therefore it achieves high precision of pipetting operation.
  • the containers to hold sample can be any kind of well plates, such as 96 well plate, or the containers, such as test tube, arranged in the holes of a plate spaced at a certain horizontal and vertical hole to hole pitches. In such cases the distance between pipetting channels is equal to one of said hole to hole pitches, or its integer multiple.
  • a volume of sample fluid aspirated in a single step can be dispensed as smaller volumes (equal, or individually different volumes) to a number of successive destinations.
  • a droplet may remain hanging on the outside of the disposable tip, which can affect the precision of subsequent dispensing operations thereafter due to the hanging droplet.
  • the dispensing precision can be increased by controlling the syringe pump to aspirate such droplets into pipetting channels first and then dispensing the fluid.
  • Fluid samples that need to be mixed can be deposited in the same container.
  • the robot can then dip a disposable tip of the autopipettor into the collection of fluid samples, and the autopipettor can be cycled to aspirate and dispense substantially all of the aggregate volume of the fluid samples so as to mix the samples by fluid turbulence during the aspiration and dispensation.
  • the operation can be repeated as many times as necessary for thorough mixing.
  • Fig. 7 is a block diagram of a controller for an embodiment of the invention.
  • Embedded microcontroller 704 comprises, for example, an 80C552 8-bit microprocessor from Philips Semiconductor with associated memory (not shown).
  • Embedded microcontroller 704 communicates with actuator drive circuits 706 and 708 via microcomputer I/O and expansion circuit 705. Comparable, suitable alternative embodiments are readily identified by one of ordinary skill in the embedded microcontroller arts.
  • Actuator driver circuit 708 controls actuator 103b for the syringe pump 103.
  • Actuator driver circuit 706 controls a pressure valve for actuating pneumatic cylinder 207.
  • Embedded microcontroller 704 communicates with a system operator via a personal computer 701 through serial communication port 702 and RS232 unit 703. Software controlling the fluid dispensing apparatus can execute on embedded microcontroller 704, personal computer 701, or both. A system operator selects program parameters for the operation of the fluid dispensing apparatus via a user interface on personal computer 701. In some embodiments, embedded microcontroller 704 may have rudimentary user interface features such as pushbutton controls, and/or status indicator displays.
  • controller 110 can be coordinated with the operation of the robotic positioning device to synchronize the dipping and positioning of the pipette tips with associated aspiration, dispensing, and purging operations such as described in the methods, above.
  • the manifold may have different (i.e. other than co-linear) configurations of output ports for the pipette tips, for example a rectangular array.
  • embodiments of the invention can be used to precisely dispense volumes of sample fluid for applications other than microarrays for biological and/or chemical testing.
  • Other applications, features, and advantages of this invention will be apparent to one of ordinary skill in the art who studies this invention disclosure. Therefore the scope of this invention is to be limited only by the following claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

La présente invention concerne, dans un mode de réalisation, un dispositif de pipetage automatique à canaux multiples fonctionnant en combinaison avec un positionneur robotique. Une rampe de distribution de pression à répartition volumétrique divise de manière égale le volume déplacé d’une pompe de seringue parmi une pluralité de canaux de pipetage pour opérer simultanément l’aspiration et la distribution. Le dispositif de pipetage automatique peut utiliser des cônes de pipettes jetables pouvant être automatiquement chargés et écartés
PCT/CN2006/000014 2005-08-26 2006-01-06 Appareil à pipettes automatiques multiples et son procédé de fonctionnement WO2007022667A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510092993.0 2005-08-26
CNB2005100929930A CN100402153C (zh) 2005-08-26 2005-08-26 一种多通道移液装置及其使用方法

Publications (1)

Publication Number Publication Date
WO2007022667A1 true WO2007022667A1 (fr) 2007-03-01

Family

ID=36079678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/000014 WO2007022667A1 (fr) 2005-08-26 2006-01-06 Appareil à pipettes automatiques multiples et son procédé de fonctionnement

Country Status (2)

Country Link
CN (1) CN100402153C (fr)
WO (1) WO2007022667A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927696A1 (fr) * 2014-03-28 2015-10-07 Gerstel Systemtechnik GmbH & Co. KG Dispositif de réception automatique d'échantillon
DE102016111912A1 (de) * 2016-06-29 2018-01-04 Eppendorf Ag Dosierkopf, Dosiervorrichtung umfassend einen Dosierkopf und Verfahren zum Dosieren mittels eines Dosierkopfes
WO2018002254A1 (fr) * 2016-06-29 2018-01-04 Eppendorf Ag Tête de dosage, dispositif de dosage comprenant une tête de dosage et procédé de dosage au moyen d'une tête de dosage
KR20190045686A (ko) * 2017-10-24 2019-05-03 (주) 바이오팩트 자성입자를 이용한 핵산 정제용 멀티-웰 자성입자 파이펫터
US20210156878A1 (en) * 2018-04-25 2021-05-27 Siemens Healthcare Diagnostics Inc. Intelligent pressure control apparatus and methods for maintaining manifold pressure in a diagnostic testing apparatus
CN115475542A (zh) * 2016-05-23 2022-12-16 贝克顿·迪金森公司 具有用于模块化的独立致动的移液管通道的歧管安装件的液体分配器
US11980891B2 (en) 2016-06-29 2024-05-14 Eppendorf Group SE & Co. KG Metering head, metering device comprising a metering head, and method for metering by means of a metering head

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033001B (zh) * 2009-09-24 2015-04-15 北京化工大学 事故现场自动气体采样过程及其装置
CN102366725B (zh) * 2011-07-19 2014-02-12 烟台艾德康生物科技有限公司 自动加样枪
CN102419377B (zh) * 2011-08-18 2013-04-03 北京国科华仪科技有限公司 全自动免疫系统用取样装置及取样方法
CN102735827A (zh) * 2011-10-28 2012-10-17 上海市第一人民医院 一种用于胆管体外多项同步实验装置模型
CN102539806B (zh) * 2012-02-16 2013-05-08 哈尔滨工业大学(威海) 一种多通道液体加样等量分距装置
CN104643570B (zh) * 2015-01-04 2017-12-08 成都杰仕德科技有限公司 可移动升降家具
CN106383241B (zh) * 2016-08-23 2019-05-17 厦门市波生生物技术有限公司 微孔自适应独立洗涤机构
CN106950083A (zh) * 2017-06-01 2017-07-14 深圳市港科深研生物科技有限公司 一种多通道前置吸引枪及吸引器
CN110361230B (zh) * 2018-04-09 2021-12-14 冷泉港生物科技股份有限公司 检测单基因遗传疾病的自动注液方法及装置
CN108889354B (zh) * 2018-07-06 2020-12-04 上海兰博贸易有限公司 一种高精度移液系统
DE102018126019A1 (de) * 2018-10-19 2020-04-23 Hekuma Gmbh Verfahren und Vorrichtung zum Überprüfen von Spritzgussteilen, insbesondere Pipettenspitzen
CN109675649A (zh) * 2019-01-22 2019-04-26 邹宇彬 一种液体转移设备
CN109985680A (zh) * 2019-04-24 2019-07-09 浙江警察学院 适用于手持式spr检测仪的模块化多通道样品检测芯片组件
CN111135884A (zh) * 2020-01-14 2020-05-12 安徽奇书生物科技有限公司 一种多通道可调注射泵结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4467843A (en) * 1980-11-18 1984-08-28 Clinicon Ab Method of operating a metering apparatus for liquid
US4468974A (en) * 1981-10-02 1984-09-04 Culture Tek Corporation Pipette sampler and related apparatus
CN2076444U (zh) * 1990-09-29 1991-05-08 唐国泰 多排多头微量移液器
CN2118577U (zh) * 1991-10-26 1992-10-14 陕西省人民医院 多头微量移液器
WO1993025309A1 (fr) * 1992-06-17 1993-12-23 Niilo Kaartinen Procede pour melanger une quantite de liquide dans un recipient en vue d'une analyse, aiguille de melange et de mesure et procede de fabrication de l'aiguille
US20040141885A1 (en) * 2002-02-12 2004-07-22 Molecular Devices Corp. Pipettor systems and components

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5915284A (en) * 1996-07-22 1999-06-22 Cyberlab, Inc. Multiple channel pipetting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4467843A (en) * 1980-11-18 1984-08-28 Clinicon Ab Method of operating a metering apparatus for liquid
US4468974A (en) * 1981-10-02 1984-09-04 Culture Tek Corporation Pipette sampler and related apparatus
CN2076444U (zh) * 1990-09-29 1991-05-08 唐国泰 多排多头微量移液器
CN2118577U (zh) * 1991-10-26 1992-10-14 陕西省人民医院 多头微量移液器
WO1993025309A1 (fr) * 1992-06-17 1993-12-23 Niilo Kaartinen Procede pour melanger une quantite de liquide dans un recipient en vue d'une analyse, aiguille de melange et de mesure et procede de fabrication de l'aiguille
US20040141885A1 (en) * 2002-02-12 2004-07-22 Molecular Devices Corp. Pipettor systems and components

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927696A1 (fr) * 2014-03-28 2015-10-07 Gerstel Systemtechnik GmbH & Co. KG Dispositif de réception automatique d'échantillon
CN115475542B (zh) * 2016-05-23 2023-04-07 贝克顿·迪金森公司 具有用于模块化的独立致动的移液管通道的歧管安装件的液体分配器
CN115475542A (zh) * 2016-05-23 2022-12-16 贝克顿·迪金森公司 具有用于模块化的独立致动的移液管通道的歧管安装件的液体分配器
DE102016111910A1 (de) * 2016-06-29 2018-01-04 Eppendorf Ag Dosierkopf, Dosiervorrichtung umfassend einen Dosierkopf und Verfahren zum Dosieren mittels eines Dosierkopfes
WO2018002254A1 (fr) * 2016-06-29 2018-01-04 Eppendorf Ag Tête de dosage, dispositif de dosage comprenant une tête de dosage et procédé de dosage au moyen d'une tête de dosage
JP2019519793A (ja) * 2016-06-29 2019-07-11 エッペンドルフ アクチエンゲゼルシャフトEppendorf AG 計量ヘッド、計量ヘッドを備えた計量装置、および計量ヘッドを用いた計量方法
JP2019523122A (ja) * 2016-06-29 2019-08-22 エッペンドルフ アクチエンゲゼルシャフトEppendo 計量ヘッド、計量ヘッドを備えた計量装置、および計量ヘッドを用いた計量方法
US11179716B2 (en) 2016-06-29 2021-11-23 Eppendorf Ag Metering head, metering device comprising a metering head, and method for metering by means of a metering head
US11305292B2 (en) 2016-06-29 2022-04-19 Eppendorf Ag Metering head, metering device comprising a metering head, and method for metering by means of a metering head
WO2018001645A1 (fr) * 2016-06-29 2018-01-04 Eppendorf Ag Tête de dosage, dispositif de dosage comprenant une tête de dosage et procédé de dosage au moyen d'une tête de dosage
DE102016111912A1 (de) * 2016-06-29 2018-01-04 Eppendorf Ag Dosierkopf, Dosiervorrichtung umfassend einen Dosierkopf und Verfahren zum Dosieren mittels eines Dosierkopfes
US11980891B2 (en) 2016-06-29 2024-05-14 Eppendorf Group SE & Co. KG Metering head, metering device comprising a metering head, and method for metering by means of a metering head
KR20190045686A (ko) * 2017-10-24 2019-05-03 (주) 바이오팩트 자성입자를 이용한 핵산 정제용 멀티-웰 자성입자 파이펫터
KR102011496B1 (ko) 2017-10-24 2019-08-16 (주) 바이오팩트 자성입자를 이용한 핵산 정제용 멀티-웰 자성입자 파이펫터
US20210156878A1 (en) * 2018-04-25 2021-05-27 Siemens Healthcare Diagnostics Inc. Intelligent pressure control apparatus and methods for maintaining manifold pressure in a diagnostic testing apparatus
US11808778B2 (en) * 2018-04-25 2023-11-07 Siemens Healthcare Diagnostics Inc. Intelligent pressure control apparatus and methods for maintaining manifold pressure in a diagnostic testing apparatus

Also Published As

Publication number Publication date
CN100402153C (zh) 2008-07-16
CN1736611A (zh) 2006-02-22

Similar Documents

Publication Publication Date Title
WO2007022667A1 (fr) Appareil à pipettes automatiques multiples et son procédé de fonctionnement
JP6647264B2 (ja) 流体を供給するカートリッジ
US7459128B2 (en) Microfluidic mixing and dispensing
EP2216096B1 (fr) Ensemble de distribution microfluidique
US5525302A (en) Method and device for simultaneously transferring plural samples
KR101769835B1 (ko) 토출 장치 및 액체 분주 장치, 및 액체 분주 방법
US8597592B2 (en) Microvalve controlled precision fluid dispensing apparatus with a self-purging feature and method for use
US20050208676A1 (en) Device for aspirating, manipulating, mixing and dispensing nano-volumes of liquids
DE19737173B4 (de) Mikrodosiersystem
US6911181B1 (en) Self-dispensing storage device
EP2846915B1 (fr) Distributeur microfluidique, cartouche et système d'analyse pour analyser un échantillon biologique
JP2004512951A (ja) 液体サンプルの吸引および/または放出のための装置
AU2004324443A1 (en) A micro-volume liquid ejection system
JP2006145458A (ja) 分注装置
AU2001294769A1 (en) Self-dispensing storage device
JPH0720010A (ja) 液体分注装置
CN112980650A (zh) 一种核酸提取用的立式微流控芯片及方法
CN112844505A (zh) 一种用于核酸提取扩增的立式微流控芯片及方法
JP2010065584A (ja) 送液ポンプ及び該ポンプによる送液方法
KR20030045840A (ko) 헹굼 기능을 갖춘 자동 피펫팅 장치
RU2384368C1 (ru) Способ выбора наконечника пипетки и устройство для его осуществления
US7077018B2 (en) Cleanable volume displacement pipetter
WO2003016832A2 (fr) Melanges et distributions microfluidiques
CN214553637U (zh) 一种用于核酸提取扩增的立式微流控芯片
CN214599114U (zh) 一种核酸扩增用的立式微流控芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06705437

Country of ref document: EP

Kind code of ref document: A1