WO2007020971A1 - 強誘電体層付き基体の製造方法 - Google Patents

強誘電体層付き基体の製造方法 Download PDF

Info

Publication number
WO2007020971A1
WO2007020971A1 PCT/JP2006/316159 JP2006316159W WO2007020971A1 WO 2007020971 A1 WO2007020971 A1 WO 2007020971A1 JP 2006316159 W JP2006316159 W JP 2006316159W WO 2007020971 A1 WO2007020971 A1 WO 2007020971A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fine particles
crystalline fine
metal compound
soluble metal
Prior art date
Application number
PCT/JP2006/316159
Other languages
English (en)
French (fr)
Inventor
Katsuaki Miyatani
Kazuo Sunahara
Original Assignee
Asahi Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co., Ltd. filed Critical Asahi Glass Co., Ltd.
Priority to JP2007531022A priority Critical patent/JP5029363B2/ja
Publication of WO2007020971A1 publication Critical patent/WO2007020971A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate or hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3

Definitions

  • the present invention relates to a method for manufacturing a substrate with a ferroelectric layer.
  • ferroelectric layer for non-volatile memory
  • the materials that make up the ferroelectric layer for non-volatile memory include metal oxides such as zirconate titanate-based ferroelectrics (PZT, PLZT) and bismuth-based layered perovskite ferroelectrics (BLSF).
  • PZT, PLZT zirconate titanate-based ferroelectrics
  • BLSF bismuth-based layered perovskite ferroelectrics
  • PZT and PLZT have been studied for a long time as ferroelectric or pyroelectric materials having a perovskite structure, and are most widely used as constituent materials for ferroelectric memories.
  • Ferroelectric layers made of PZT include physical vapor deposition methods such as sputtering (PVD), chemical vapor deposition methods such as MOCVD, and chemical solution deposition methods ( The solution method) is known.
  • PVD physical vapor deposition methods
  • MOCVD chemical vapor deposition methods
  • the solution method is known.
  • the solution method is known to be able to produce a ferroelectric layer having a desired layer thickness most inexpensively and easily without requiring a special and expensive apparatus.
  • the solution method is easy to precisely control the composition, and has the advantage of suppressing the characteristic fluctuation caused by the difference in composition that is seen in many ferroelectric materials. Consideration is being promoted as one.
  • Patent Document 1 the present inventors used, as crystal nuclei, crystalline fine particles obtained by crystallizing PZT in a glass matrix and then removing the glass matrix component as crystal nuclei.
  • a fluid composition containing a soluble metal compound that becomes PZT upon heating and a liquid medium is applied to a substrate, the coating film is dried, and then fired to produce a PZT layer.
  • Non-patent Document 1 This is presumed to be caused by the change in the orientation of the PZT layer from the (111) plane to the (110) plane, which is hardly involved in ferroelectricity, in systems with a high ZrZTi ratio (Non-patent Document 1). ).
  • the PZT layer with a low ZrZTi ratio has a problem that a Schottky defect occurs and a leak current density is large immediately (Patent Document 2).
  • Patent Document 2 In order to address this problem, there is a need to develop a method for obtaining a thin PZT layer that can maintain (111) orientation even with a high ZrZTi ratio and has both good leakage characteristics and hysteresis characteristics.
  • Patent Document 1 International Publication No. 2004Z097854 Pamphlet
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-100660 (Claims)
  • Non-Patent Document 1 Jpn. J. Appl. Phys., 39 ⁇ , p. 5434 (2000)
  • the present invention can maintain a (111) orientation even when the ZrZTi ratio is high, and has a thin film shape (layer thickness 8) having both good leakage characteristics and hysteresis characteristics.
  • layer thickness 8 0 to 300 nm
  • PZT layer and a method for producing a thick film-like PZT layer (with a layer thickness of more than 0.3 ⁇ m) with reduced dielectric constant and excellent dielectric constant on the substrate by the solution method The purpose is to provide
  • the present invention relates to Pb La Zr Ti O (0.5 ⁇ x) having an average primary particle size of 20 to 300 nm.
  • a method for producing a body layer is provided.
  • the average primary particle diameter is 20 to 300 nm.
  • a second fluid composition containing a compound and a liquid medium and substantially free of the crystalline fine particles is applied onto the first layer, and the liquid medium is removed to form a second layer; Then, the present invention provides a method for producing a ferroelectric layer, characterized by heating at a temperature of more than 500 ° C to 700 ° C.
  • the present invention provides a method for producing a substrate with a ferroelectric layer, comprising the following steps A to D.
  • a step of forming the crystalline fine particles and then removing the glass matrix component to obtain the crystalline fine particles is a step of forming the crystalline fine particles and then removing the glass matrix component to obtain the crystalline fine particles.
  • Step B Crystalline fine particles obtained in Step A and Pb La Zr Ti 0 (0.5 l -x y l -y 3
  • Step C containing the soluble metal compound and a liquid medium, substantially free of the crystalline fine particles! /, Applying a fluid composition on the first layer and heating at 200 to 500 ° C. And forming the second layer.
  • Process D The substrate on which the first layer and the second layer are formed is heated at a temperature of more than 500 ° C to 700 ° C. The process of baking with.
  • y in Pb La Zr Ti O is 0.4 ⁇ y. It is possible to provide a substrate with a ferroelectric layer that has a high Zr / Ti ratio at ⁇ 0.7 and has both good leakage characteristics and hysteresis characteristics.
  • FIG. 1 is a schematic view of a memory device including a ferroelectric layer.
  • FIG. 7 Scanning electron micrograph of the ferroelectric layer of Example 5.
  • FIG. 8 Scanning electron micrograph of the ferroelectric layer of Example 6.
  • FIG. 9 Scanning electron micrograph of the ferroelectric layer of Example 7.
  • a memory device having a ferroelectric layer generally has a source 7, a source electrode 6, a drain 11, a drain electrode 12, and a gate electrode on the surface of a semiconductor substrate 14 such as a silicon substrate. 9. It has a structure in which a metal-insulating film-semiconductor field effect transistor (MOS FET) having a gate insulating film 10 is provided.
  • MOS FET metal-insulating film-semiconductor field effect transistor
  • a ferroelectric capacitor composed of the upper electrode 2—the ferroelectric layer 3—the lower electrode 4 is connected from the source electrode 6 through the plug 5, and the plate electrode 1 and the gate electrode 9 are connected to the upper electrode 2.
  • the word line 8 is connected to the drain electrode 12, and the bit line 13 is connected to the drain electrode 12.
  • the ferroelectric layer 3 of the present invention is obtained by laminating two layers of a first layer 16 and a second layer 17 on a substrate by a solution method, It is preferable that the layer is formed by firing and integrated.
  • the ferroelectric layer 3 is preferably sandwiched between two electrodes (upper electrode 2 and lower electrode 4) made of a conductive film to form a ferroelectric capacitor as shown in FIG.
  • the upper electrode 2 and the lower electrode 4 may be composed mainly of the same material, or may be composed of different material covers.
  • a metal film mainly composed of platinum, aluminum, titanium, iridium, ruthenium, iridium, tungsten, nickel and the like, and a laminated film thereof, mainly composed of ruthenium oxide, iridium oxide, and the like.
  • a metal oxide film, a laminated film of these and the metal film, a silicate conductive film, polysilicon, or the like is used.
  • the formation method of the upper electrode 2 and the lower electrode 4 is not particularly limited, and a known method, that is, a sputtering method, a vacuum evaporation method, a chemical vapor deposition method, or the like can be used.
  • An anti-oxidation layer (not shown) made of a conductive material such as titanium nitride is laminated under the lower electrode 4 to prevent the plug 5 from oxidizing. May be.
  • a substrate both the semiconductor substrate 14 itself and the substrate in which the lower electrode 4 is formed and integrated on the semiconductor substrate 14 are referred to as a substrate.
  • the ferroelectric layer 3 and the first layer 16 in the present invention have an average primary particle diameter of 20 to 300 nm, Pb La Zr Ti O (0.5 ⁇ x ⁇ l, 0 ⁇ v ⁇ 0.4. ) Crystalline fine particles
  • This crystalline fine particle is a fine particle ferroelectric substance, and is preferably a fine particle obtained by a glass crystallization method. Fine particles obtained by the glass crystallization method were obtained by crystallizing Pb La Zr Ti O (0.5 ⁇ x ⁇ l, 0 ⁇ y ⁇ 0.4) in a glass matrix.
  • Crystalline fine particles obtained by removing the glass matrix That is, the glass matrix melt in which the components having the above-described structure are dissolved is rapidly cooled to be vitrified, and then the heating fine annealing is performed again to precipitate the crystal fine particles having the above-described structure in the glass matrix. Crystalline fine particles obtained by a method of removing the matrix by dissolving and removing the matrix with an appropriate chemical solution or the like.
  • Fine particles crystallized in a strong glass matrix have particularly high crystallinity and are easy to control the morphology, and produce relatively anisotropic large V and fine particles depending on the conditions of annealing treatment, etc. Soon, the aspect ratio is large! / And it is easy to obtain particles.
  • boric acid glass As the above matrix glass, boric acid glass, phosphoric acid glass, silicate glass, and the like can be used. From the viewpoint of easiness of leaching, boric acid glass is preferably used.
  • the average primary particle size (hereinafter simply referred to as particle size) of the crystalline fine particles is 20 to 300 nm, and an appropriate particle size is selected according to the thickness of the ferroelectric layer to be manufactured.
  • a more preferred particle size is 20 to: LOOnm.
  • the method for producing the crystalline PZT fine particles by the glass crystallization method will be specifically described.
  • the crystalline fine particles can be obtained by the following steps [1] to [4].
  • Glass-forming component for example, boron oxide
  • gold of the desired ferroelectric oxide composition Mix with metal oxides (eg zirconium oxide, titanium oxide and lead oxide) and melt the whole at a temperature of 1200 ° C or higher [melting].
  • metal oxides eg zirconium oxide, titanium oxide and lead oxide
  • a glass containing metal ions having a ferroelectric oxide composition is obtained by rapidly cooling the molten glass [vitrification].
  • Annealing is performed at a temperature of about 550 ° C to 700 ° C to form ferroelectric oxide crystal nuclei in the glass, and the annealing conditions are controlled to grow to a predetermined particle size [Crystal ].
  • the glass base material component for example, oxyboron
  • crystalline ferroelectric fine particles for example, Pb (ZrTi) O
  • composition of the crystallized fine particles obtained above is Pb La Zr Ti O (0.5 ⁇ x ⁇ l, 0 ⁇
  • the range is y ⁇ 0.4.
  • y is 0.4 or more, the composition of cubic phase and rhombohedral phase (Morphotronic Phase Diagram composition) is entered, making it difficult to control the crystal shape.
  • the soluble metal compound in the present invention is a compound that can be converted into an oxide by pyrolysis or the like by firing to exhibit ferroelectricity.
  • the target ferroelectric oxide is a composite oxide
  • two or more kinds of soluble metal compounds are mixed and used in a predetermined ratio, or a composite metal containing two or more metals in a predetermined ratio
  • Use compounds as these soluble metal compounds, inorganic acid salts such as nitrates, organic acid salts such as ethylhexanoic acid salts, organometallic complexes such as acetylethylacetone complexes, or metal alkoxides are used.
  • An organometallic complex or a metal alkoxide is preferably used.
  • the ferroelectric produced from the soluble metal compound also functions as a binder for the crystalline fine particles, and the ferroelectric produced from the soluble metal compound can grow crystals using the crystalline fine particles as a nucleus. Therefore, crystallization from a lower temperature is possible.
  • the soluble metal compound also has a function of improving the dielectric properties of the entire ferroelectric layer obtained by forming a ferroelectric in the voids between the crystalline fine particles after firing.
  • the soluble metal compound is heated to Pb La Zr Ti O (
  • composition forms 0.5.x ⁇ l, 0.4.4 ⁇ y ⁇ 0. 7).
  • y exceeds 0.7, sufficient hysteresis characteristics cannot be obtained.
  • y is less than 0.4, leakage current increases and sufficient characteristics cannot be exhibited when used in a memory device. In addition, it cannot be used as an insulator.
  • a fluid composition for producing a ferroelectric layer includes the crystalline fine particles, the soluble metal compound, and a liquid medium.
  • This fluid composition is prepared by mixing crystalline fine particles and a soluble metal compound at a predetermined ratio.
  • the amount of the soluble metal compound is less than this range, sufficient flatness cannot be obtained, and the in-plane variation in electrical characteristics becomes remarkable.
  • the amount of the soluble metal compound is larger than this range, the effect of controlling the orientation of the entire ferroelectric layer due to the addition of the crystalline fine particles cannot be obtained.
  • this fluid composition may contain a dispersant for assisting the dispersion of the crystalline fine particles and various additives for improving the wettability and leveling properties of the coating film.
  • a dispersant having a phosphate ester salt strength in the fluid composition improves the dispersibility of the crystalline fine particles and has the effect of suppressing aggregation when the crystalline fine particles are applied. Preferable because it becomes easier.
  • the flowable composition is applied to a substrate or the like to a predetermined thickness, and dried by heating to form a layer containing crystalline fine particles and a soluble metal compound.
  • the heating temperature is suitably 200 to 500 ° C. If the heating temperature is less than 200 ° C, the liquid medium may not evaporate sufficiently.
  • the heating time varies depending on the temperature and atmosphere, but is preferably 10 to 60 minutes. It is also possible to raise the heating temperature in steps such as 200 ° C, 300 ° C, 500 ° C in the heating process. When heating at a relatively high temperature within the above temperature range, some or all of the soluble metal compound decomposes to produce Pb La Zr Ti O and its precursor.
  • the soluble metal compound becomes insoluble in the liquid medium, the fluid composition can be easily applied onto the layer. By repeatedly applying the fluid composition and heating and drying, the formation of the thick film is facilitated. [0028] After forming a layer of a predetermined thickness, the soluble metal compound is heated to a higher temperature to form Pb x L & i Zr Ti O (0.5 ⁇ x ⁇ l, 0.4 ⁇ y ⁇ 0.7) Convert to crystals. This crystallization is 500 l 3
  • This heating for crystallization is also referred to as firing below. If firing at a temperature exceeding 700 ° C, the composition ratio may shift due to evaporation of lead, and if electronic components are provided on the substrate, the electronic components may be deteriorated. On the other hand, calcination at 500 ° C. or lower may result in insufficient crystallization. A more preferable firing temperature is 550 to 700 ° C. By this firing, the pyrolysis and Z or crystallization of the soluble metal compound can be completed, and a dense ferroelectric layer can be formed. The process from heating to drying and firing may be performed continuously.
  • the ferroelectric layer can be formed by raising the temperature continuously or stepwise without separating the heat drying step and the firing step.
  • the firing time varies depending on the firing temperature and atmosphere, preferably 10 to 120 minutes, more preferably 10 to 60 minutes.
  • the thickness of the ferroelectric layer to be manufactured is not particularly limited, but is 20 ⁇ ! It is preferably ⁇ 10 m. Those having a thickness of 20 to 300 nm are hereinafter referred to as thin films, and those having a thickness of more than 0.3 ⁇ ⁇ (300 nm) to 10 / z m are hereinafter referred to as thick films.
  • a ferroelectric layer having an arbitrary thickness which is a thin film or a thick film, can be manufactured. Ferroelectric layers with these thicknesses can also be manufactured by the two-stage manufacturing described later.
  • the particle size of the crystalline fine particles used in the production of the thin film is 20-: LOOnm Is preferred. If the particle size is less than 20 nm, ferroelectricity is difficult to develop, whereas if it exceeds lOOnm, the flatness of the entire ferroelectric layer may be impaired. If the particle diameter of the crystalline fine particles is preferably 80% or less of the thickness of the ferroelectric layer, and larger than that, the flatness of the surface of the ferroelectric layer may be lowered.
  • the thickness of the ferroelectric layer as a thin film is preferably 30 to 300 nm, more preferably 80 to 300 nm. Thinner and desired withstand voltage characteristics cannot be obtained! On the contrary, if it is thicker than this, a high voltage is required to develop memory characteristics, and a booster circuit is required on the circuit, which may make it impossible to differentiate from existing flash memory. .
  • the percentage of crystalline fine particles is small, and the resulting ferroelectric layer is more likely to have defects such as cracks. This increases the possibility of an increase in leakage current and a decrease in relative dielectric constant. Therefore, when producing a thick film, it is preferable to increase the proportion of crystalline fine particles.
  • the size of the crystalline fine particles used in the production of the thick film is relatively large, and the particle size is preferably 30 to 300 nm. If the particle diameter is less than 30 nm, it may be difficult to make the content ratio of the crystalline fine particles in the fluid composition within the above range. On the other hand, if it exceeds 300 nm, the flatness of the entire ferroelectric layer may be reduced. There is it. If the particle size of the crystalline fine particles is preferably 40% or less of the thickness of the ferroelectric layer, and larger than that, the flatness of the surface of the ferroelectric layer may be lowered.
  • the thickness of the ferroelectric layer as the thick film is preferably 0.5 to 10 ⁇ m. If it is thinner than this, the desired withstand voltage characteristic may not be obtained, and conversely, if it is thicker than this, cracks may occur in the layer. [0036]
  • the present invention also provides Pb La Zr Ti 0 (0.5 l) having an average primary particle size of 20 to 300 nm.
  • a second fluid composition containing a compound and a liquid medium and substantially free of the crystalline fine particles is applied onto the first layer, and the liquid medium is removed to form a second layer; Thereafter, the ferroelectric layer is heated at a temperature of more than 500 ° C to 700 ° C.
  • a method for producing a ferroelectric layer using the second fluid composition is a two-layer forming method t, and a method for producing a ferroelectric layer without using the second fluid composition is one layer. This is called the formation method.
  • the first layer in the two-layer forming method corresponds to the layer before firing in the one-layer forming method, and is a layer manufactured by the same method as before until firing.
  • the first layer is fired together with the second layer after the second layer is formed, and the two layers are fired together to form one ferroelectric layer.
  • the first layer in the two-layer formation method must be heated to a temperature of 500 ° C or lower before the second layer is formed. This heating is the same as the one-layer formation method!
  • the most preferred heating conditions are used. In particular, a temperature of 200-500 ° C is adopted.
  • the soluble metal compound used for forming the first layer becomes insoluble in the liquid medium, and the second fluid composition can be easily applied on the first layer. In this case, if the temperature is higher than 500 ° C, the composition ratio may be shifted due to evaporation of lead.
  • the second layer in the two-layer formation method is heated by Pb La Zr Ti O (0.5 ⁇ x ⁇ l, 0 l -x l
  • a second fluid composition containing a soluble metal compound forming a liquid medium and a liquid medium and substantially free of the crystalline fine particles is applied onto the first layer to form a liquid. It is formed by removing the medium.
  • the type and composition of the soluble metal compound for forming the second layer may be the same as or different from those used for forming the first layer. Usually, however, substantially the same soluble metal compound is used and the two layers are used except for the presence or absence of the crystalline fine particles. It is preferable that qualitatively identical ferroelectrics are formed.
  • the application of the second fluid composition and the removal of the liquid medium can be performed under the same conditions as the application and drying in the one-layer forming method.
  • Heating before firing can be performed arbitrarily, and in that case, it can be performed under the same conditions as the heating before firing in the one-layer forming method. Furthermore, firing is performed after the second layer is formed, and this firing can also be performed under the same conditions as the firing in the one-layer forming method.
  • One of the advantages of providing an upper layer (ferroelectric dielectric layer formed from the second layer) over the ferroelectric layer obtained by the two-layer formation method is that the lower layer (formed from the first layer) This is in that the smoothness of the surface can be improved and a ferroelectric layer having a smoother surface can be formed.
  • a ferroelectric layer with low smoothness may cause a large variation in dielectric characteristics. Therefore, when the smoothness of the lower layer surface may be lowered (for example, the particle diameter of the crystalline fine particles is relatively large compared to the thickness of the lower layer, or the content of the crystalline fine particles in the lower layer is In the case of a high case, it is preferable to provide an upper layer.
  • the lower limit of the thickness is not particularly limited as long as the smoothness of the ferroelectric layer can be improved, but the upper layer thickness is preferably 1 Onm or more, particularly preferably 20 nm or more U, .
  • the thickness of the upper layer is preferably 250 nm or less, particularly preferably 20 Onm or less.
  • the thickness of the lower layer is a thickness obtained by subtracting the thickness of the upper layer from the thickness of the thin film, and preferably has a thickness of at least 20 nm.
  • the layer thickness when the ferroelectric layer obtained by the two-layer formation method is a thin film is preferably 80 to 300 nm, as in the case of the thin film obtained by the one-layer formation method. If it is thinner than this, the desired withstand voltage characteristic may not be obtained, and conversely, if it is thicker than this, a high voltage is required to develop the memory characteristics, and a booster circuit is required on the circuit. There is a possibility that it cannot be distinguished from flash memory.
  • the thickness of the upper layer is preferably 500 nm or less. OOnm or less is more preferable. Considering the orientation of the entire ferroelectric layer, the thickness is particularly preferably 200 nm or less.
  • the thickness of the lower layer is a thickness obtained by subtracting the thickness of the upper layer from the thickness of the thick film, and preferably has a thickness of at least 200 nm.
  • the layer thickness is preferably 0.5 to 10 m, as in the case of the thick film obtained by the one-layer formation method. If it is thinner than this, the desired withstand voltage characteristics may not be obtained, and conversely, if it is thicker than this, cracks may occur in the layer. More preferred! / The thickness of the thick film is 0.5-5 ⁇ .
  • the present invention provides a method for producing the crystalline fine particles by a glass crystallization method and producing a substrate with a ferroelectric layer by a two-layer formation method using the crystalline fine particles obtained by the method.
  • a method for producing a substrate with a ferroelectric layer which comprises the following steps A to D.
  • the following steps B to D correspond to the steps of the two-layer forming method.
  • Process A Pb La Zr Ti O (0.5 ⁇ x ⁇ l, 0 ⁇ y ⁇ 0. 4) (D) in the glass matrix
  • a step of forming the crystalline fine particles and then removing the glass matrix component to obtain the crystalline fine particles is a step of forming the crystalline fine particles and then removing the glass matrix component to obtain the crystalline fine particles.
  • Process B Crystalline fine particles obtained in Process A and Pb La Zr Ti 0 (0.5
  • Step C containing the soluble metal compound and a liquid medium, substantially free of the crystalline fine particles! /, Applying a fluid composition on the first layer and heating at 200 to 500 ° C. And forming the second layer.
  • Step D A step of firing the substrate on which the first layer and the second layer are formed at a temperature of more than 500 ° C to 700 ° C.
  • the substrate in the present invention various substrates such as a semiconductor substrate, a dielectric substrate, and a conductor substrate can be used. These substrates need to be substrates that can withstand the sintering temperature.
  • the ferroelectric layer can be formed directly on the surface of the substrate, and what is the substrate provided on the surface of the substrate? It can also be formed on layers of different materials. In particular, it is preferable to form a ferroelectric layer on a conductive film (such as the lower electrode 4 in FIGS. 1 and 2) provided on the surface of a semiconductor substrate or dielectric substrate.
  • the lower layer of the ferroelectric layer formed on the substrate (preferably on the lower electrode 4 of the semiconductor substrate 14) is the first layer 16, and the upper layer is the second ferroelectric layer 17 and (See Figure 2).
  • the entire formed ferroelectric layer becomes the ferroelectric layer 3 (see Fig. 1).
  • the present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
  • the layer thickness of the ferroelectric layer was measured using a stylus type surface roughness measuring device (DekTak2020, manufactured by S1 oan).
  • the obtained flaky solid was transparent, and as a result of powder X-ray diffraction, it was confirmed to be an amorphous substance.
  • This flaky solid was heated at 500 ° C. for 12 hours to crystallize the ferroelectric particles in the B 2 O glass matrix. Then this flake
  • the powder was added to an ImolZL acetic acid aqueous solution kept at 80 ° C. and stirred for 6 hours, followed by centrifugation, washing with water and drying to obtain a white powder.
  • the obtained white powder was identified by powder X-ray diffraction.
  • the average primary particle size of the crystals was 32 nm.
  • the PbTiO crystal powder obtained above is dispersed into a dispersant (Bic Chemi), such as a phosphate ester salt.
  • Dispersion A was obtained by dispersing in 1-propanol containing a product name: Disperbyk (registered trademark) -142) using a wet jet mill, and then removing coarse particles by centrifugation.
  • concentration of the PbTiO crystal particles in dispersion A is 10% by mass, and the phosphate ester salt
  • the concentration of was 0.1% by mass.
  • Dispersion A and solution B obtained above were mixed so that the Pb ratio was 20:80, and a liquid (spin coating liquid C) adjusted to have a solid content of 10% by mass was obtained. It spin-coated at 30 OOrpm for 20 seconds on Si base
  • the solution B was spin-coated on the first layer at 3000 rpm for 20 seconds. Thereafter, each layer was heated at 120 ° C. and 350 ° C. for 10 minutes and dried to obtain a second layer. After that, using a horizontal oxidation furnace, the ferroelectric layer 3 was obtained by firing for 60 minutes at 650 ° C. in an oxygen atmosphere. The layer thickness of the ferroelectric layer 3 was 200 nm.
  • the spin coating liquid D was used as the spin coating liquid D.
  • a first layer (layer thickness: 160 nm) was obtained.
  • a second layer was laminated on the first layer in the same manner as in Example 1, and fired in the same manner as in Example 1 to obtain a ferroelectric layer.
  • the thickness of the ferroelectric layer is 200 nm.
  • the solution B alone was spin-coated at 3000 rpm for 20 seconds on a Si substrate with a Pt electrode. So After that, it was heated at 120 ° C and 350 ° C for 10 minutes each and dried. This process of applying and drying power was repeated four times, and then baked for 60 minutes in an oxygen atmosphere at 650 ° C. using a horizontal acid furnace to obtain a ferroelectric layer. The thickness of the obtained ferroelectric layer was 200 nm.
  • the upper electrode 2 made of 300 ⁇ m square Au thin film was formed on the ferroelectric layer obtained in Examples 1 to 3 by vacuum evaporation, and post annealing was performed at 500 ° C in an RTA furnace for 5 minutes. This was used as a sample for evaluating the charging characteristics. Hysteresis measurement and leakage current measurement were performed using FCE-1 manufactured by Toyo Yuka.
  • Table 1 shows the maximum polarization and remanent polarization when a 6V triangular wave is applied, and Table 2 shows the leakage current characteristics when 3V and 6V are applied.
  • Example 1 both the maximum polarization value and the remanent polarization value were larger than those in Example 2 and Example 3, and showed good squareness. In Example 1, good leakage current characteristics were shown.
  • Example 1 In the XRD pattern of Example 1 (Fig. 3), only the peak (111) due to the orientation being controlled by the addition of crystalline fine particles and the peaks (100) and (001) according to the orientation of the platinum electrode.
  • the peak on the (110) plane observed in the XRD pattern of Example 2 (Fig. 4) does not appear. From this, the reason why the squareness superior to Example 2 is obtained in Example 1 is as follows: By increasing the amount of crystalline fine particles added, crystal growth mainly proceeds around the crystalline fine particles, and polycrystallization and (111) plane orientation change due to mixing with crystal growth on the platinum electrode can be achieved. This is presumed to be possible.
  • the spin coating solution C obtained above was spin-coated on a Si substrate with a Pt electrode at 3000 rpm for 20 seconds, then heated at 120 ° C. and 350 ° C. for 10 minutes each and dried to be the first layer ( A layer thickness of 50 was produced.
  • a ferroelectric layer 3 (layer thickness: 200 ⁇ m) was obtained in the same manner as in Example 4 except that the firing temperature was changed to 700 ° C.
  • a ferroelectric layer (layer thickness: 200 nm) was obtained in the same manner as in Example 3 except that the firing temperature was changed to 600 ° C.
  • a ferroelectric layer (layer thickness: 200 nm) was obtained in the same manner as in Example 3 except that the firing temperature was changed to 700 ° C.
  • the surface of the ferroelectric layer obtained in Examples 4 to 7 was observed with a scanning electron microscope (manufactured by JEOL Ltd., trade name: JSM-6340F), and the results are shown in FIGS.
  • an upper electrode 2 made of a 300 ⁇ m square and lmm square gold thin film was formed on the ferroelectric layers obtained in Examples 4 to 7 by a vacuum evaporation method, and the defect rate was evaluated.
  • a sample was used. Using these samples, 20 measurement areas were visually selected for each sample, and the leakage current when applying IV was measured with FCE-1 manufactured by Toyo Telecommunications Co., Ltd. As a result, 1 X 10 _4 [AZcm 2 ] More current
  • the defect rate [%] number of defects [pieces] Z20 [pieces] X 100 was calculated. The results are shown in Table 3.
  • Dispersion A and solution E obtained above were mixed so that the Pb ratio was 50:50, and a liquid (spin coating liquid F) adjusted so that the solid content was 20% by mass was obtained.
  • a Si substrate with a Pt electrode was spin-coated at 1 OOOrpm for 20 seconds. After that, it was dried at 120 ° C and 350 ° C for 10 minutes each . This process of coating and drying force was repeated 3 times to obtain a first layer (layer thickness: 0.75 m).
  • spin-code only solution E at 2000 rpm for 20 seconds, 120. C, 350.
  • a second layer was obtained by drying with C for 10 minutes each.
  • a ferroelectric layer 3 was obtained by firing for 60 minutes at 650 ° C. in an oxygen atmosphere using a horizontal acid furnace. The layer thickness of the ferroelectric layer 3 was 0.9 ⁇ m.
  • the solution E alone was spin-coated at lOOOrpm for 20 seconds on a Si substrate with a Pt electrode. Then, it was dried at 120 ° C and 350 ° C for 10 minutes each. This coating-drying process was repeated four times. After that, a ferroelectric layer was obtained by firing for 60 minutes in an oxygen atmosphere at 650 ° C. using a horizontal acid furnace. The thickness of the obtained ferroelectric layer was 0.6 m.
  • An upper electrode 2 made of a 1 mm aluminum thin film was formed on the ferroelectric layers obtained in Examples 8 and 9 by vacuum deposition, and a post-anneal treatment similar to the above was performed to obtain a sample for evaluating dielectric characteristics. .
  • the leak current was measured using Keithley's source meter 6430, and the relative dielectric constant was measured using Hioki Electric's LCR Hi Tester 3532-50.
  • Table 4 shows the presence or absence of cracks in the ferroelectric layer, the leakage current characteristics when 10 V is applied, and the relative dielectric constant at 1 kHz.
  • Example 4 did not generate cracks even when it was thick, and exhibited good dielectric properties.
  • the ferroelectric layer of the present invention can be suitably used as a memory element on a semiconductor circuit.
  • a thin film layer thickness of 80 to 300 nm
  • PZT hysteresis characteristics
  • thick films thinness> 0.3 m
  • MEMS Micro Electro Mechanical Systems
  • inorganic EL etc. because cracks are suppressed and they have a good dielectric constant. It can be applied as a ferroelectric layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

 本発明は、良好なリーク特性とヒステリシス特性を兼ね備えた、薄膜状(層厚80~300nm)のPZT層、及びクラックの発生が抑えられ、比誘電率に優れた厚膜状(層厚0.3μm超)のPZT層を溶液法で作製するための方法を提供することを目的とする。本発明は、ガラス結晶化法により作製したPbxLa1-xZryTi1-yO3(0.5≦x≦1、0≦y<0.4)微粒子と、加熱によりPbxLa1-xZryTi1-yO3(0.5≦x≦1、0.4≦y≦0.7)を形成する可溶性金属化合物とを所定のPb比で含有させ、さらに液状媒体を含有する流動性組成物から、塗布-乾燥-焼成を行って強誘電体層を得る強誘電体層の製造方法に関する。

Description

明 細 書
強誘電体層付き基体の製造方法
技術分野
[0001] 本発明は強誘電体層付き基体の製造方法に関する。
背景技術
[0002] 近年、不揮発性メモリとして、強誘電体層を備えた各種メモリ素子が開発されている 。この不揮発性メモリ用の強誘電体層を構成する材料としては、これまでにチタン酸 ジルコン酸鈴系強誘電体 (PZT、 PLZT)、ビスマス系層状ぺロブスカイト強誘電体( BLSF)などの金属酸ィ匕物系材料が提案され、検討されてきている。これらの材料の うち、 PZT及び PLZTはぺロブスカイト構造を持つ強誘電体又は焦電体材料として古 くから研究がなされており、強誘電体メモリの構成材料として最も広く用いられている
[0003] PZTからなる強誘電体層を作製する方法としては、スパッタリング法などの物理的 気相成膜法 (PVD)や MOCVD法などの化学的気相成長法及び化学的溶液成膜 法 (溶液法)が知られている。このうち、溶液法は、特殊で高価な装置を必要とせず、 最も安価かつ簡便に所望の層厚の強誘電体層を作製できることが知られている。ま た溶液法は精密な組成制御が容易であり、多くの強誘電体材料に見られる、組成の 違いによる特性変動を抑制できるというメリットがあるため、非常に有効な強誘電体層 作製方法の一つとして検討が進められて 、る。
[0004] 本発明者らは特許文献 1において、ガラスマトリックス中で PZTを結晶化させた後に ガラスマトリックス成分を除去することによって得られる結晶性の微粒子を結晶核とし て用い、該結晶性の微粒子と、加熱により PZTとなる可溶性金属化合物と、液状媒 体とを含む流動性組成物を基体に塗布し、塗膜を乾燥した後、焼成して PZT層を作 製する方法を提案している。この方法によれば、結晶性微粒子の添カ卩により面内配 向性が高度に制御され、優れた比誘電率を有する、層厚 80〜300nm程度の薄膜 状の PZT層が得られる。本発明者らが鋭意検討を重ねた結果、この方法により作製 される薄膜状の PZT層のうち、 Pb La Zr Ti Oにおける yが 0≤v< 0. 4で ZrZ l -x y l -y 3 Ti比が低い系では最大分極値に対する残留分極値が大きくなり、ヒステリシスの角形 性が向上するのに対し、 0. 4≤y≤0. 7で ZrZTi比が高い系では最大分極値に対 する残留分極値が小さくなり、ヒステリシスの角形性が低下する傾向がみられることが 判明した。これは、 ZrZTi比が高い系においては PZT層の配向性が(111)面から 強誘電性にほとんど関与しない(110)面へと変化することが原因であると推測される (非特許文献 1)。一方、 ZrZTi比の低い PZT層においてはショットキー欠陥が発生 やすぐリーク電流密度が大きいという問題があった (特許文献 2)。この問題に対応 するため、 ZrZTi比が高くても(111)配向性を保持でき、良好なリーク特性とヒステリ シス特性を兼ね備えた、薄膜状の PZT層を得るための方法の開発が求められている
[0005] また、特許文献 1に記載される方法により層厚 0. 3 μ mを超える厚膜状の PZT層を 得る場合には、焼成時の応力によるクラックが層中に発生し、 PZT層の比誘電率が 低下するという問題もあった。
[0006] 特許文献 1:国際公開第 2004Z097854号パンフレット
特許文献 2:特開 2005 - 100660号公報 (特許請求の範囲)
非特許文献 1 :Jpn. J. Appl. Phys. , 39卷, 5434頁(2000年)
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、上記したような従来技術の問題点に鑑み、 ZrZTi比が高くても (111) 配向を保持でき、良好なリーク特性とヒステリシス特性を兼ね備えた、薄膜状 (層厚 8 0〜300nm)の PZT層、及びクラックの発生が抑えられ、比誘電率に優れた厚膜状( 層厚 0. 3 μ m超)の PZT層を基体上に溶液法で作製するための方法の提供を目的 とする。
課題を解決するための手段
[0008] 本発明は、平均一次粒子径が 20〜300nmである Pb La Zr Ti O (0. 5≤x
l -x y l -y 3
≤1、 0≤y< 0. 4)の結晶'性微粒子と、カロ熱により Pb La Zr Ti O (0. 5≤x≤
l -x y l -y 3
1、 0. 4≤y≤0. 7)を形成する可溶性金属化合物と、液状媒体とを含んでなり、前記 結晶性微粒子と前記可溶性金属化合物との含有比率が、 Pb比で [結晶性微粒子] Z [可溶性金属化合物] =5Z95〜70Z30である流動性組成物を基体上に塗布し 、液状媒体を除去した後 500°C超〜 700°Cの温度で加熱することを特徴とする強誘 電体層の製造方法を提供する。
[0009] また本発明は、平均一次粒子径が 20〜300nmである Pb La Zr Ti 0 (0. 5
1 -χ y l -y 3
≤x≤l、 0≤y< 0. 4)の結晶'性微粒子と、カロ熱により Pb La Zr Ti O (0. 5≤ l -x y l -y 3 x≤l、0. 4≤y≤0. 7)を形成する可溶性金属化合物と、液状媒体とを含んでなり、 前記結晶性微粒子と前記可溶性金属化合物との含有比率が、 Pb比で [結晶性微粒 子] Z [可溶性金属化合物] =5Z95〜70Z30である流動性組成物を基体上に塗 布し、液状媒体を除去して前記結晶性微粒子を含む第 1の層を形成し、次いで加熱 により Pb La Zr Ti O (0. 5≤x≤l , 0. 4≤y≤0. 7)を形成する可溶性金属
l -x y l -y 3
化合物と液状媒体とを含みかつ前記結晶性微粒子を実質的に含まない第 2の流動 性組成物を前記第 1の層上に塗布し、液状媒体を除去して第 2の層を形成し、その 後 500°C超〜 700°Cの温度で加熱することを特徴とする強誘電体層の製造方法を 提供する。
[0010] さらに本発明は、下記工程 A〜Dを含むことを特徴とする強誘電体層付き基体の製 造方法を提供する。
工程 A:ガラスマトリックス中で Pb La Zr Ti O (0. 5≤x≤l , 0≤y< 0. 4) (D l -x y l -y 3
結晶性微粒子を形成した後、ガラスマトリックス成分を除去して該結晶性微粒子を得 る工程。
工程 B :工程 Aで得られた結晶性微粒子と、加熱により Pb La Zr Ti 0 (0. 5 l -x y l -y 3
≤x≤l、0. 4≤y≤0. 7)を形成する可溶性金属化合物と、液状媒体とを含んでなり 、前記結晶性微粒子と前記可溶性金属化合物との含有比率が、 Pb比で [結晶性微 粒子] Z [可溶性金属化合物] =5Z95〜70Z30である流動性組成物を基体上に 塗布し、 200〜 500°Cで加熱して第 1の層を形成する工程。
工程 C :前記可溶性金属化合物と、液状媒体とを含み、前記結晶性微粒子を実質 的に含まな!/、流動性組成物を前記第 1の層上に塗布し、 200〜 500°Cで加熱して第 2の層を形成する工程。
工程 D:前記第 1の層と第 2の層とが形成された基体を、 500°C超〜 700°Cの温度 で焼成する工程。
発明の効果
[0011] 本発明によれば、溶液法で成膜して薄膜状 (層厚 80〜300nm程度)の PZT層付 き基体を得る場合に、 Pb La Zr Ti Oにおける yが 0. 4≤y≤0. 7で Zr/Ti比 が高ぐかつ良好なリーク特性とヒステリシス特性を兼ね備えた強誘電体層付き基体 を提供できる。また、クラックの発生が高度に抑えられ、優れた比誘電率を有する厚 膜状 (層厚 0. 3 m超)の PZT層付き基体が提供される。
図面の簡単な説明
[0012] [図 1]強誘電体層を備えたメモリ素子の概略図
[図 2]強誘電体キャパシタ部分の拡大模式図
[図 3]例 1の強誘電体層の XRDパターン
[図 4]例 2の強誘電体層の XRDパターン
[図 5]例 3の強誘電体層の XRDパターン
[図 6]例 4の強誘電体層の走査型電子顕微鏡写真
[図 7]例 5の強誘電体層の走査型電子顕微鏡写真
[図 8]例 6の強誘電体層の走査型電子顕微鏡写真
[図 9]例 7の強誘電体層の走査型電子顕微鏡写真
符号の説明
[0013] 1 :プレート線
2 :上部電極
3 :強誘電体層
4 :下部電極
5 :プラグ
6 :ソース電極
7 :ソース
8 :ワード線
9 :ゲート電極
10 :ゲート絶縁膜 11 :ドレイン
12 :ドレイン電極
13 :ビット線
14 :半導体基板
15 :層間絶縁膜
16 :第 1の層
17 :第 2の層
発明を実施するための最良の形態
[0014] 図 1に示すように、強誘電体層を備えたメモリ素子は一般に、シリコン基板などの半 導体基板 14の表面にソース 7、ソース電極 6、ドレイン 11、ドレイン電極 12、ゲート電 極 9、ゲート絶縁膜 10を有する金属—絶縁膜—半導体電界効果トランジスタ (MOS FET)が設けられた構造をとる。ここで、ソース電極 6からプラグ 5を介し上部電極 2— 強誘電体層 3—下部電極 4で構成される強誘電体キャパシタが接続され、さらに、上 部電極 2にプレート線 1、ゲート電極 9にワード線 8、ドレイン電極 12にビット線 13が接 続される。
[0015] 本発明の強誘電体層 3は、図 2の拡大模式図に示されるように、第 1の層 16と第 2 の層 17の 2層を基体上に溶液法で積層した後、焼成されて一体化された層として構 成されることが好ましい。また、この強誘電体層 3は導電性膜からなる 2枚の電極 (上 部電極 2及び下部電極 4)により挟持されて図 2に示すような強誘電体キャパシタの形 となることが好ましい。ここで、上部電極 2及び下部電極 4は同一の物質を主体として 構成されていても、異なる物質カゝら構成されていてもよい。該導電性膜の構成材料と しては白金、アルミニウム、チタン、イリジウム、ルテニウム、イリジウム、タングステン、 ニッケルなどを主体とする金属膜及びこれらの積層膜、酸化ルテニウム、酸化イリジゥ ムなどを主体とする金属酸ィ匕物膜及びこれらと前記金属膜との積層膜、又はシリサイ ト系導電膜、ポリシリコンなどが用いられる。ここで、上部電極 2及び下部電極 4の形 成方法は特に限定されず、公知の方法、すなわちスパッタリング法や真空蒸着法、 化学気相成長法などを使用できる。なお、下部電極 4の下部にはプラグ 5の酸ィ匕防 止のため、窒化チタンなどの導電性材料カゝらなる、図示しない酸化防止層を積層し てもよい。なお、本発明においては、半導体基板 14そのもの及び半導体基板 14上 に下部電極 4が形成され一体ィ匕されたものの両方を基体という。
[0016] 本発明における強誘電体層 3や第 1の層 16は、平均一次粒子径が 20〜300nmで ある Pb La Zr Ti O (0. 5≤x≤l, 0≤v< 0. 4)の結晶性微粒子を用いて製
1- y l -y 3
造される。この結晶性微粒子は、微粒子状の強誘電体であり、ガラス結晶化法により 得られる微粒子であることが好ましい。ガラス結晶化法により得られる微粒子とは、ガ ラスマトリックス中で Pb La Zr Ti O (0. 5≤x≤l、 0≤y< 0. 4)を結晶ィ匕した
l -x y l -y 3
後、ガラスマトリックスを除去して得られる、結晶性の微粒子である。すなわち、上記 構成の結晶となる成分を溶解したガラスマトリックス融液を急速冷却してガラス化させ た後、再度加熱ァニールを行うことでガラスマトリックス中に上記構成の結晶微粒子を 析出させ、次いで、ガラスマトリックスを適宜の薬液などによって溶解除去して該結晶 微粒子を取出す方法で得られた、結晶性微粒子である。
[0017] 力かるガラスマトリックス中で結晶化させた微粒子は、特に高い結晶性を有するほか 、形態の制御が容易であり、ァニール処理の条件などによって比較的異方性の大き V、微粒子を作製しやすぐアスペクト比の大き!/、粒子が得られ易 、と 、う特徴も併せ 有している。
[0018] 上記マトリックスガラスとしては、ホウ酸系ガラス、リン酸系ガラス、ケィ酸系ガラスな どが使用できるが、溶融性や目的酸化物との複合化合物の製造のし易さ、マトリック スの溶脱の容易性などの点から、ホウ酸系ガラスが好ましく用いられる。
[0019] この結晶性微粒子の平均一次粒子径(以下単に粒子径と 、う)は 20〜300nmであ り、製造する強誘電体層の厚さに応じて適宜の粒子径のものが選択される。例えば、 ある厚さの強誘電体層を製造する場合はその層の厚さよりも小さい粒子径の結晶性 微粒子を使用する。その粒子径は、上記粒子径の範囲内でかつ製造する強誘電体 層の厚さの 80%以下の粒子径を有する結晶性微粒子を使用することが好ましい。よ り好ましい粒子径は 20〜: LOOnmである。
[0020] 結晶性 PZT微粒子をガラス結晶化法により作製する方法を具体的に説明すると、 次の〔1〕〜〔4〕の工程で結晶性微粒子を得ることができる。
〔1〕ガラス形成成分 (例えば、酸化ホウ素)と、目的とする強誘電体酸化物組成の金 属酸化物(例えば、酸ィ匕ジルコニウム、酸化チタン及び酸化鉛)とを混合し、 1200°C 以上の温度で全体を溶融させる [溶融]。
〔2〕溶融ガラスを急速冷却させることによって強誘電体酸ィ匕物組成の金属イオンを 含むガラスを得る [ガラス化]。
〔3〕 550°C〜700°C程度の温度でァニール処理を行うことでガラス中に強誘電体酸 化物の結晶核を形成させ、ァニール条件を制御して所定の粒子径まで成長させる [ 結晶化]。
〔4〕酸、水、あるいはその混合物によりガラス母材成分 (例えば、酸ィ匕ホウ素)を取り 除き結晶性の強誘電体微粒子 (例えば、 Pb (Zr Ti ) O )を得る [リーチング]。
y l -y 3
[0021] 上記一連の工程によれば、ァニール温度領域において非常に粘度の高いガラスを 母材として結晶化を行っているため、微粒子の粒子径ゃ粒子形態の制御が容易であ り、また結晶性の高い微結晶が得られるという特徴がある。
[0022] 上記で得られる結晶化微粒子の組成は、 Pb La Zr Ti O (0. 5≤x≤l, 0≤
l -x y l -y 3
y< 0. 4)の範囲とする。 yが 0. 4以上であると、立方晶と菱面体晶の混相の組成 (M orphotronic Phase Diagram組成)に入り、結晶の形状制御が困難となる。
[0023] 本発明における可溶性金属化合物は、焼成による熱分解などによって酸化物に転 化して強誘電性を示しうる化合物である。 目的とする強誘電体酸化物が複合酸化物 である場合には、 2種以上の可溶性金属化合物を所定の比率で混合して用いるか、 もしくは 2種以上の金属を所定の割合で含む複合金属化合物を用いる。これらの可 溶性金属化合物としては、硝酸塩などの無機酸塩、ェチルへキサン酸塩などの有機 酸塩、ァセチルアセトン錯体などの有機金属錯体、又は金属アルコキシドなどが用い られ、特に有機酸塩、有機金属錯体、又は金属アルコキシドが好ましく用いられる。
[0024] 上記可溶性金属化合物から生成する強誘電体は、前記結晶性微粒子の結合剤と しても働き、この可溶性金属化合物から生成する強誘電体は前述の結晶性微粒子を 核として結晶成長できるため、より低温からの結晶化が可能となる。また、可溶性金属 化合物は、焼成後に結晶性微粒子間の空隙において強誘電体を形成することにより 、得られる強誘電体層全体としての誘電特性を向上させる働きをも有する。
[0025] 本発明においては、上記可溶性金属化合物を、加熱により Pb La Zr Ti O (
l -x y l -y 3 0. 5≤x≤l、 0. 4≤y≤0. 7)を形成する組成とする。このとき、 yが 0. 7を超えると 充分なヒステリシス特性が得られず、一方、 yが 0. 4未満であるとリーク電流が大きく なり、メモリ素子に使用した際に充分な特性を発現できないほか、絶縁体として使用 できなくなる。
[0026] 強誘電体層を製造するための流動性組成物は、前記結晶性微粒子と上記可溶性 金属化合物と液状媒体とを含む。この流動性組成物は、結晶性微粒子と可溶性金 属化合物とを所定の割合で混合して作製する。このとき、結晶性微粒子と可溶性金 属化合物の含有比率は、 Pb比で [結晶性微粒子] Z [可溶性金属化合物] =5Z95 〜70Z30とする。この範囲より可溶性金属化合物が少なくなると充分な平坦性が得 られず、電気特性の面内ばらつきが顕著になる。一方、この範囲より可溶性金属化 合物が多くなると、結晶性微粒子の添カ卩により強誘電体層全体の配向性を制御する 効果が得られない。なお、混合の方法としては公知の方法を用いることができ、具体 的にはボールミル、ビーズミル、スターラー、還流法などを用いて撹拌する方法が挙 げられる。もちろん、この流動性組成物中には、結晶性微粒子の分散を助けるための 分散剤や、塗膜の濡れ性ゃレべリング性を向上させるための各種添加剤を含んで ヽ てもよい。特に、流動性組成物中にリン酸エステル塩力もなる分散剤を含有させると、 結晶性微粒子の分散性が向上し、かつ、塗布後の結晶性微粒子の際凝集を抑制す る効果が得られやすくなるため好ま 、。
[0027] 上記流動性組成物を基体などの上に所定の厚さに塗布し、加熱乾燥して結晶性微 粒子と可溶性金属化合物とを含む層を形成する。加熱温度は 200〜500°Cが適当 であり、加熱温度が 200°C未満では液状媒体の蒸発が充分に進まないおそれがある 。加熱時間は温度や雰囲気によっても異なるが、好ましくは 10〜60分で行われる。 また、加熱工程において 200°C、 300°C、 500°Cなど段階的に加熱温度を上げること も可能である。上記温度範囲内の比較的高温で加熱を行うことにより可溶性金属化 合物の一部ないし全部が分解して Pb La Zr Ti Oやその前駆体が生成すると
1 3
考えられる。これにより可溶性金属化合物が液状媒体に不溶性となると、その層の上 にさらに上記流動性組成物の塗布が容易に行うことができるようになる。上記流動性 組成物の塗布と加熱乾燥を繰り返すことにより、厚膜の形成が容易となる。 [0028] 所定の厚さの層を形成した後、さらに高温に加熱して可溶性金属化合物を PbxL&i Zr Ti O (0. 5≤x≤l、 0. 4≤y≤0. 7)の結晶に変換する。この結晶化は 500 l 3
°C超〜 700°Cの温度で行う。この結晶化のための加熱を以下焼成ともいう。 700°Cを 超える温度で焼成を行うと鉛の蒸発により組成比のずれが生じるおそれがあるほか、 基体上に電子部品が設けられている場合は電子部品の劣化が生じるおそれがある。 一方 500°C以下の焼成では、結晶化が不十分となるおそれがある。より好ましい焼成 温度は 550〜700°Cである。この焼成により、可溶性金属化合物の熱分解及び Z又 は結晶化を完了させ、緻密な強誘電体層を形成することができる。加熱乾燥力ゝら焼 成までを連続的に行ってもよい。すなわち、加熱乾燥段階と焼成段階を区切ることな く連続的に又は段階的に温度を上昇させて強誘電体層を形成できる。焼成時間は 焼成温度や雰囲気によっても異なる力 好ましくは 10〜120分、より好ましくは 10〜 60分で行われる。焼成工程においては、酸素雰囲気中で赤外線加熱装置を用いる ことが好ましい。
[0029] 製造する強誘電体層の厚さは、特に限定されるものではないが、 20ηπ!〜 10 m であることが好ましい。この内厚さ 20〜300nmのものを以下薄膜といい、 0. 3 ^ πι( 300nm)超〜 10 /z mのものを以下厚膜という。本発明の方法では、薄膜や厚膜であ る任意の厚さの強誘電体層を製造できる。また後述の 2段階の製造によってもこれら の厚さの強誘電体層を製造できる。
[0030] 結晶性微粒子を含む流動性組成物から薄膜を製造する場合には結晶性微粒子の 割合を低くしたほうが良好な物性の強誘電体層が得られやすく、その場合の粒子径 は小さいほうが比較的好ましい。従って、薄膜を製造する場合は、結晶性微粒子と可 溶性金属化合物の含有比率は、 Pb比で [結晶性微粒子] Z [可溶性金属化合物] = 5/95〜30/70とすることが好ましい。この範囲より可溶性金属化合物が少なくなる と充分な平坦性を有する強誘電体層が得られにくぐまた電気特性の面内ばらつき が大きくなるおそれがある。一方、上記範囲より可溶性金属化合物が多くなると、結 晶性微粒子の添カ卩により強誘電体層全体の配向性を制御する効果が得られないお それがある。
[0031] 薄膜を製造する場合に使用する結晶性微粒子の粒子径は 20〜: LOOnmであること が好ましい。粒子径が 20nm未満であると強誘電性が発現しにくぐ一方、 lOOnmを 超えると強誘電体層全体の平坦性をそこなうおそれがある。なお、結晶性微粒子の 粒子径は強誘電体層の層厚の 80%以下であることが好ましぐそれより大きいと強誘 電体層の表面の平坦性が低下するおそれがある。
[0032] 薄膜としての強誘電体層の層厚は 30〜300nmであると好ましぐ特に 80〜300n mであることが好ま Uヽ。これより薄 ヽと所望の耐電圧特性が得られな!/ヽおそれがあ るし、逆にこれ以上厚くするとメモリ特性を発現させるために高電圧が必要となり、回 路上に昇圧回路が必要となり、既存のフラッシュメモリとの差別ィ匕ができないおそれ がある。
[0033] 結晶性微粒子を含む流動性組成物力ゝら厚膜を製造する場合、結晶性微粒子の割 合が少な 、と得られる強誘電体層にクラック等の欠陥が発生するおそれが大きくなり 、それによりリーク電流の増加や比誘電率が低下するおそれが増大する。従って、厚 膜を製造する場合は結晶性微粒子の割合を大きくすることが好ましぐその結晶性微 粒子と可溶性金属化合物の含有比率は、 Pb比で [結晶性微粒子] / [可溶性金属 化合物] = 20Z80〜70Z30とすることが好ましい。この範囲より可溶性金属化合物 が少なくなると、充分な強度を有する強誘電体層が得られないおそれがある。一方、 上記範囲より可溶性金属化合物が多くなると、結晶性微粒子の添カ卩により強誘電体 層全体の配向性を制御し、膜応力を緩和する効果が得られな 、おそれがある。
[0034] また、厚膜を製造する場合に使用する結晶性微粒子の大きさは大きいほうが比較 的好ましぐその粒子径は 30〜300nmであることが好ましい。粒子径が 30nm未満 であると、流動性組成物中の結晶性微粒子の含有比率を上記範囲にすることが困難 になるおそれがあり、一方、 300nmを超えると強誘電体層全体の平坦性をそこなうお それがある。なお、結晶性微粒子の粒子径は強誘電体層の層厚の 40%以下である ことが好ましぐそれより大きいと強誘電体層の表面の平坦性が低下するおそれがあ る。
[0035] 厚膜としての強誘電体層の層厚は 0. 5〜10 μ mであることが好ましい。これより薄 V、と所望の耐電圧特性が得られな 、おそれがあるし、逆にこれ以上厚くすると層中に クラックが発生するおそれがある。 [0036] 本発明はまた、平均一次粒子径が 20〜300nmである Pb La Zr Ti 0 (0. 5 l
≤x≤l、 0≤y< 0. 4)の結晶'性微粒子と、カロ熱により Pb La Zr Ti O (0. 5≤ l -x l
x≤l、0. 4≤y≤0. 7)を形成する可溶性金属化合物と、液状媒体とを含んでなり、 前記結晶性微粒子と前記可溶性金属化合物との含有比率が、 Pb比で [結晶性微粒 子] Z [可溶性金属化合物] = 5Z95〜70Z30である流動性組成物を基体上に塗 布し、液状媒体を除去して前記結晶性微粒子を含む第 1の層を形成し、次いで加熱 により Pb La Zr Ti O (0. 5≤x≤l, 0. 4≤y≤0. 7)を形成する可溶性金属 l -x l
化合物と液状媒体とを含みかつ前記結晶性微粒子を実質的に含まない第 2の流動 性組成物を前記第 1の層上に塗布し、液状媒体を除去して第 2の層を形成し、その 後 500°C超〜 700°Cの温度で加熱することを特徴とする強誘電体層の製造方法で ある。以下この第 2の流動性組成物を使用した強誘電体層の製造方法を 2層形成法 t ヽ、前記第 2の流動性組成物を使用しな 、強誘電体層の製造方法を 1層形成法 という。
[0037] 2層形成法における第 1の層は前記 1層形成法における焼成前の層に相当し、焼 成前までは前記と同じ方法で製造される層である。第 1の層は第 2の層が形成された 後第 2の層とともに焼成され、 2つの層が一体に焼成されて 1つの強誘電体層となる。 2層形成法における第 1の層は第 2の層形成前に 500°C以下の温度に加熱すること が必要である。この加熱は前記 1層形成法にお!ヽて好ま ヽとした加熱条件が採用 される。特に 200〜500°Cの温度が採用される。これにより第 1の層形成に使用した 可溶性金属化合物が液状媒体に不溶性となり、その第 1の層の上に第 2の流動性組 成物の塗布が容易に行うことができるようになる。またこの場合、 500°Cを超える温度 に加熱すると鉛の蒸発により組成比のずれが生じるおそれがある。
[0038] 2層形成法における第 2の層は、加熱により Pb La Zr Ti O (0. 5≤x≤l, 0 l -x l
. 4≤y≤0. 7)を形成する可溶性金属化合物と液状媒体とを含みかつ前記結晶性 微粒子を実質的に含まない第 2の流動性組成物を第 1の層上に塗布し、液状媒体を 除去して形成される。第 2の層形成用の可溶性金属化合物の種類や組成は第 1の層 形成に使用したものと同一であっても異なっていてもよい。しかし通常は実質的に同 一の可溶性金属化合物を使用し、前記結晶性微粒子の有無を除き、 2つの層で実 質的に同一の強誘電体が形成されることが好ましい。第 2の流動性組成物の塗布や 液状媒体の除去は、前記 1層形成法における塗布や乾燥と同様の条件で行うことが できる。焼成前の加熱は任意に行うことができ、その場合前記 1層形成法における焼 成前の加熱と同様の条件で行うことができる。さらに、第 2の層形成後焼成が行われ 、この焼成も前記 1層形成法における焼成と同様の条件で行うことができる。
[0039] 2層形成法により得られる強誘電体層にお ヽて上層(第 2の層から形成される強誘 電体層)を設ける利点の 1つは、下層(第 1の層から形成される強誘電体層)表面の 平滑性を向上し、より平滑な表面を有する強誘電体層を形成しうる点にある。平滑性 の低い強誘電体層では誘電特性のばらつきが大きくなるおそれがある。従って、下 層表面の平滑性が低くなるおそれのある場合 (例えば、結晶性微粒子の粒子径が下 層の厚さに比較して比較的大き 、場合や下層中の結晶性微粒子の含有割合が高 ヽ 場合など)は、上層を設けることが好ましい。上層を設ける場合、その厚さの下限は強 誘電体層の平滑性を改良しうる限り特に限定されるものではないが、上層の厚さは 1 Onm以上が好ましく、特に 20nm以上が好ま U、。
[0040] 2層形成法により得られる強誘電体層が薄膜の場合 (なお、薄膜と厚膜の区別は前 記 1層形成法で得られる強誘電体層の場合と同一)、上層の厚さが厚すぎると下層に 結晶性微粒子を添加したことによる強誘電体層全体の配向性を向上させる効果が得 られにくくなるおそれがある。従って、上層の厚さは 250nm以下が好ましぐ特に 20 Onm以下が好ましい。下層の厚さは前記薄膜の厚さから上層の厚さを引いた厚さで あって、少なくとも 20nmの厚さを有することが好ましい。 2層形成法により得られる強 誘電体層が薄膜の場合の層厚は、 1層形成法により得られる薄膜の場合と同様、 80 〜300nmであると好まし 、。これより薄 、と所望の耐電圧特性が得られな 、おそれ があるし、逆にこれ以上厚くするとメモリ特性を発現させるために高電圧が必要となり 、回路上に昇圧回路が必要となり、既存のフラッシュメモリとの差別ィ匕ができないおそ れがある。
[0041] また、 2層形成法により得られる強誘電体層が厚膜の場合、上層の厚さが厚すぎる と下層に結晶性微粒子を添加したことによる強誘電体層全体の膜応力を緩和する効 果が得られに《なるおそれがある。従って、上層の厚さは 500nm以下が好ましぐ 3 OOnm以下がより好ましい。強誘電体層全体の配向性も考慮すると 200nm以下が特 に好ましい。下層の厚さは前記厚膜の厚さから上層の厚さを引いた厚さであって、少 なくとも 200nmの厚さを有することが好ましい。 2層形成法により得られる強誘電体層 が厚膜の場合の層厚は、 1層形成法により得られる厚膜の場合と同様、 0. 5〜10 mであると好ま 、。これより薄 、と所望の耐電圧特性が得られな 、おそれがあるし、 逆にこれ以上厚くすると層中にクラックが発生するおそれがある。より好まし!/、厚膜の 厚さは 0. 5〜5 πιである。
[0042] さらに本発明は、ガラス結晶化法により前記結晶性微粒子を製造するとともにその 方法により得られた結晶性微粒子を使用して 2層形成法で強誘電体層付き基体を製 造する方法に関する発明、すなわち、下記工程 A〜Dを含むことを特徴とする強誘電 体層付き基体の製造方法である。なお、下記工程 B〜Dは、前記 2層形成法の各ェ 程に対応する。
[0043] 工程 A:ガラスマトリックス中で Pb La Zr Ti O (0. 5≤x≤l , 0≤y< 0. 4) (D
l -x y l -y 3
結晶性微粒子を形成した後、ガラスマトリックス成分を除去して該結晶性微粒子を得 る工程。
工程 B :工程 Aで得られた結晶性微粒子と、加熱により Pb La Zr Ti 0 (0. 5
l -x y l -y 3
≤x≤l、0. 4≤y≤0. 7)を形成する可溶性金属化合物と、液状媒体とを含んでなり 、前記結晶性微粒子と前記可溶性金属化合物との含有比率が、 Pb比で [結晶性微 粒子] Z [可溶性金属化合物] =5Z95〜70Z30である流動性組成物を基体上に 塗布し、 200〜 500°Cで加熱して第 1の層を形成する工程。
工程 C :前記可溶性金属化合物と、液状媒体とを含み、前記結晶性微粒子を実質 的に含まな!/、流動性組成物を前記第 1の層上に塗布し、 200〜 500°Cで加熱して第 2の層を形成する工程。
工程 D:前記第 1の層と第 2の層とが形成された基体を、 500°C超〜 700°Cの温度 で焼成する工程。
[0044] 本発明における基体としては半導体基板、誘電体基板、導電体基板などの種々の 基板を使用しうる。これら基板は焼結温度に耐えうる基板である必要がある。また、強 誘電体層は基体表面に直接形成することができ、また、基体表面に設けた基体とは 異なる材質の層の上に形成することもできる。特に、半導体基板や誘電体基板の表 面に設けた導電性膜 (図 1や図 2における下部電極 4など)の上に強誘電体層を形成 することが好ましい。 2層形成法では、基体上 (好ましくは半導体基板 14の下部電極 4上)に形成された強誘電体層のうち下層が第 1の層 16となり、上層が第 2の強誘電 体層 17となる(図 2参照)。 1層形成法では形成された強誘電体層全体が強誘電体 層 3となる(図 1参照)。
実施例
[0045] 以下に実施例を挙げて本発明を具体的に説明するが、本発明は以下の実施例に 限定されるわけではない。なお、強誘電体層の層厚は触針式表面粗さ測定装置 (S1 oan社製、 DekTak2020)を用いて測定した。
[0046] [例 1]
酸化鉛、酸化チタン (ルチル)及び酸化ホウ素を、 PbO、 TiO
2及び B O
2 3としてそれ ぞれ 47. 2モル0 /0、 25. 0モル0 /0及び 27. 8モル0 /0含むように秤量し、エタノール少 量を用いて自動乳鉢でよく湿式混合した後乾燥させて原料粉末とした。得られた原 料粉末を、融液滴下用のノズルのついた白金製容器 (ロジウム 10%含有)に充填し、 ケィ化モリブデンを発熱体とした電気炉において 1350°Cで 2時間加熱し、完全に溶 融させた。次いでノズル部を加熱し、融液を電気炉の下に設置された双ロール (ロー ル径 150mm、ロール回転数 50rpm、ロール表面温度 30°C)に滴下しフレーク状固 形物を得た。
[0047] 得られたフレーク状固形物は透明を呈し、粉末 X線回折の結果、非晶質物質であ ることが確認された。このフレーク状固形物を、 500°Cで 12時間加熱することにより、 B Oガラスマトリックス中で強誘電体粒子を結晶化せしめた。次いで、このフレーク
2 3
粉を 80°Cに保った ImolZLの酢酸水溶液中に添加し 6時間撹拌した後、遠心分離 、水洗浄、乾燥を行って白色粉末を得た。
[0048] 得られた白色粉末を粉末 X線回折によって同定したところ、 PbTiO結晶のみから
3
なる粉末であることが判った。また、透過型電子顕微鏡によって観察を行った結果、 この結晶の平均一次粒子径は 32nmであった。
[0049] 上記で得られた PbTiO結晶粉末を、リン酸エステル塩カゝらなる分散剤(ビックケミ 一社製、商品名: Disperbyk (登録商標)— 142)を含む 1—プロパノール中に湿式 ジェットミルを用いて分散させた後、遠心分離により粗大粒を除去して分散液 Aを得 た。分散液 A中の PbTiO結晶微粒子の濃度は 10質量%であり、リン酸エステル塩
3
の濃度は 0. 1質量%であった。
[0050] 次に、酢酸鉛、テトラブチルチタネート、テトラブチルジルコネート及びァセチルァセ トンを、 2—ェトキシプロパノール中に1¾ :21::1 :ァセチルァセトン= 1. 05 : 0. 60 : 0 . 40 : 1. 00 (モル比)となるよう溶解させ、窒素気流中 130°Cで 4時間の還流操作を 行った。この溶液を室温まで冷却し、イオン交換水を (Pb+Zr+Ti)の 2倍 (モル比) となるようゆっくりと添加した。その後、再度窒素気流中 130°Cで 8時間の還流加熱を 行って可溶性金属化合物溶液 Bを得た。なお、金属源の液中濃度は、酸化物換算 で 10質量%とした。
[0051] 上記で得られた分散液 A及び溶液 Bを、 Pb比で 20: 80となるように混合し、固形分 が 10質量%となるように調整した液 (スピンコート液 C)を、 Pt電極付き Si基体上に 30 OOrpmで 20秒間スピンコートした。その後、 120°C、 350°Cで各 10分間加熱し、乾 燥させた。この塗布—加熱力 なる工程を 3回繰り返して第 1の層(層厚: 160nm)を 得た。
[0052] 次に、第 1の層上に、溶液 Bのみを 3000rpmで 20秒間、スピンコートした。その後、 120°C、 350°Cで各 10分間加熱し、乾燥させて第 2の層を得た。こののち、横型酸化 炉を用いて、酸素雰囲気中 650°Cの条件で 60分間焼成して強誘電体層 3を得た。 強誘電体層 3の層厚は 200nmであった。
[0053] [例 2 (比較例 1) ]
上記で得られた分散液 A及び溶液 Bを、 Pb比で 3 : 97となるように混合し、固形分 が 10質量%となるように調整した液をスピンコート液 Dとして使用した以外は例 1と同 様にして第 1の層(層厚: 160nm)を得た。次に、第 1の層上に、例 1と同様にして第 2 の層を積層し、例 1と同様に焼成して強誘電体層を得た。強誘電体層の層厚は 200 nmであつ 7こ。
[0054] [例 3 (比較例 2) ]
Pt電極付き Si基体上に、溶液 Bのみを 3000rpmで 20秒間、スピンコートした。そ の後、 120°C、 350°Cで各 10分間加熱し、乾燥させた。この塗布-乾燥力もなるェ 程を 4回繰り返したのち、横型酸ィ匕炉を用いて、酸素雰囲気中 650°Cの条件で 60分 間焼成して強誘電体層を得た。得られた強誘電体層の層厚は 200nmであった。
[0055] [誘電特性の評価]
例 1〜3で得られた強誘電体層上に 300 μ m角の Au薄膜からなる上部電極 2を真 空蒸着法で形成し、 RTA炉にて 500°Cで、 5分間のポストァニール処理を行って誘 電特性の評価用試料とした。なお、ヒステリシス測定及びリーク電流測定は、東陽テク ユカ製の FCE— 1を用 、て測定した。
表 1に 6Vの三角波を入れた時の最大分極値及び残留分極値を示し、表 2に 3 V印 加時及び 6V印加時のリーク電流特性を示す。
[0056] [表 1]
Figure imgf000018_0001
[0057] [表 2]
Figure imgf000018_0002
[0058] 例 1においては最大分極値、残留分極値が共に例 2、例 3より大きぐ良好な角形性 を示した。また、例 1においては良好なリーク電流特性を示した。
[0059] 次に、例 1〜3で得られた強誘電体層の X線回折結果をそれぞれ図 3〜5に示す。
例 1の XRDパターン(図 3)においては、結晶性微粒子の添カ卩により配向性が制御さ れたことによるピーク(111)及び白金電極の配向に準ずるピーク(100)、 (001)のみ が現れており、例 2の XRDパターン(図 4)において観察される(110)面のピークは現 れていない。このことから、例 1において、例 2よりも優れた角形性が得られる理由は、 結晶性微粒子の添加量を多くすることで、結晶性微粒子の周囲での結晶成長が主 に進み、白金電極上での結晶成長との混和による多結晶化及び(111)面配向性の 変化を防止できるためであると推察される。
[0060] [例 4]
上記で得られたスピンコート液 Cを、 Pt電極付き Si基体上に 3000rpmで 20秒間、 スピンコートした後、 120°C、 350°Cで各 10分間加熱し、乾燥させて第 1の層(層厚: 50 を作製した。
[0061] 次に、第 1の層上に、溶液 Bのみを 3000rpmで例 1と同様にして 20秒間、スピンコ ートした後、 120°C、 350°Cで各 10分間加熱し、乾燥させた。この塗布—乾燥力もな る工程を 3回繰り返して第 2の層を得た。こののち、横型酸ィ匕炉を用いて、酸素雰囲 気中 600°Cの条件下で 60分間焼成して強誘電体層 3を得た。強誘電体層 3の層厚 は 200nmであった。
[0062] [例 5]
焼成温度を 700°Cに変更した以外は例 4と同様にして、強誘電体層 3 (層厚: 200η m)を得た。
[0063] [例 6 (比較例 3) ]
焼成温度を 600°Cに変更した以外は例 3と同様にして、強誘電体層(層厚: 200nm )を得た。
[0064] [例 7 (比較例 4) ]
焼成温度を 700°Cに変更した以外は例 3と同様にして、強誘電体層(層厚: 200nm )を得た。
[0065] [不良率の評価]
例 4〜7で得られた強誘電体層の表面を、走査型電子顕微鏡(日本電子株式会社 製、商品名: JSM— 6340F)により観察した結果をそれぞれ図 6〜9に示す。
[0066] 次に、例 4〜7で得られた強誘電体層上に 300 μ m角及び lmm角の金薄膜からな る上部電極 2を真空蒸着法で形成し、不良率の評価用の試料とした。これらの試料を 用い、各試料ごとに 20箇所の測定領域を目視にて選び、東陽テク-力社製の FCE —1により IV印加時のリーク電流を測定した結果、 1 X 10_4[AZcm2]以上の電流 が流れたものを不良とみなし、不良率 [%] =不良個数 [個] Z20 [個] X 100として算 出した。結果を表 3に示す。
[0067] [表 3]
Figure imgf000020_0001
[0068] まず、図 8 (例 6の走査型電子顕微鏡写真)の左側の部分及び図 9 (例 7の走査型電 子顕微鏡写真)の左上部分には、組成比のずれに起因すると思われるグレインの発 生が認められたのに対し、図 6 (例 4の走査型電子顕微鏡写真)及び図 7 (例 5の走査 型電子顕微鏡写真)においてはグレインの発生は認められな力つた。
[0069] 次に、表 3に示されるとおり、例 6及び例 7においては不良率の著しい増加が認めら れた。特に、上部電極 2の面積を lmm角とした場合に、不良率の増加が顕著にみら れる。このことから、上部電極 2の面積を広くすることで、組成比のずれに起因すると 思われるグレインが電極面積内に取り込まれやすくなる結果、不良率が増加したもの と考えられる。
[0070] [例 8]
酢酸鉛、テトラブチルチタネート、テトラブチルジルコネート及びァセチルアセトンを 、 2 エトキシプロパノール中に Pb : Zr :Ti:ァセチルアセトン = 1. 05 : 0. 60 : 0. 40 : 1. 00 (モル比)となるよう溶解させ、窒素気流中 130°Cで 4時間の還流操作を行った 。この溶液を室温まで冷却し、イオン交換水を (Pb+Zr+Ti)の 2倍 (モル比)となるよ うゆっくりと添加した。その後、再度窒素気流中 130°Cで 8時間の還流加熱を行い、 a テルビネオールを加えて可溶性金属化合物溶液 Eを得た。このとき、金属源の 液中濃度は、酸化物換算で 20質量%とした。
[0071] 上記で得られた分散液 A及び溶液 Eを、 Pb比で 50: 50となるように混合し、固形分 が 20質量%になるように調整した液 (スピンコート液 F)を、 Pt電極付き Si基体上に 1 OOOrpmで 20秒間スピンコートした。その後、 120°C、 350°Cで各 10分間乾燥させた 。この塗布一乾燥力もなる工程を 3回繰り返して第 1の層(層厚: 0. 75 m)を得た。 次に、溶液 Eのみを 2000rpmで 20秒間、スピンコードした後、 120。C、 350。Cで各 1 0分間乾燥させて第 2の層を得た。こののち、横型酸ィ匕炉を用いて、酸素雰囲気中 6 50°Cの条件で 60分間焼成して強誘電体層 3を得た。強誘電体層 3の層厚は 0. 9 μ mであった。
[0072] [例 9 (比較例 5) ]
Pt電極付き Si基体上に、溶液 Eのみを lOOOrpmで 20秒間、スピンコートした。そ の後、 120°C、 350°Cで各 10分間乾燥させた。この塗布—乾燥力もなる工程を 4回 繰り返した。こののち、横型酸ィ匕炉を用いて、酸素雰囲気中 650°Cの条件で 60分間 焼成して強誘電体層を得た。得られた強誘電体層の層厚は 0. 6 mであった。
[0073] [誘電特性の評価]
例 8、 9で得られた強誘電体層上に φ 1mmのアルミニウム薄膜からなる上部電極 2 を真空蒸着法で形成し、上記と同様のポストアニール処理を行って誘電特性の評価 用試料とした。なお、リーク電流測定は Keithley社製のソースメーター 6430を用い て行い、比誘電率測定は、日置電気社製の LCR Hi Tester3532— 50を用いて 行った。
表 4に強誘電体層中のクラックの有無、 10V印加時のリーク電流特性及び 1kHzに おける比誘電率を示す。
[0074] [表 4]
Figure imgf000021_0001
[0075] 例 4は厚膜状であってもクラックが発生せず、かつ良好な誘電体の特性を示した。
[0076] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2005年 8月 19日出願の日本特許出願 (特願 2005— 238816)、 2006年 5月 17日出願の日本特許出願 (特願 2006— 137913)に基づくものであり、その 内容はここに参照として取り込まれる。
産業上の利用可能性
本発明の強誘電体層は半導体回路上のメモリ素子として好適に使用できる。特に、 薄膜状 (層厚 80〜300nm)のものは良好なリーク特性とヒステリシス特性を兼ね備え ており、メモリ素子用及び薄膜コンデンサ用 PZT層として好適に使用できる。一方、 厚膜状 (層厚 0. 3 m超)のものはクラックの発生が抑えられ、良好な比誘電率を有 することから各種センサー、 MEMS (Micro Electro Mechanical Systems) , 無機 ELなどで使用される強誘電体層として適用できる。

Claims

請求の範囲
[1] 平均一次粒子径が 20〜300nmである Pb La Zr Ti O (0. 5≤x≤l, 0≤y
l -x y l -y 3
< 0. 4)の結晶'性微粒子と、カロ熱により Pb La Zr Ti O (0. 5≤x≤l, 0. 4≤y
l -x y l -y 3
≤0. 7)を形成する可溶性金属化合物と、液状媒体とを含んでなり、前記結晶性微 粒子と前記可溶性金属化合物との含有比率が、 Pb比で [結晶性微粒子] Z [可溶性 金属化合物] = 5Z95〜70Z30である流動性組成物を基体上に塗布し、液状媒体 を除去した後 500°C超〜 700°Cの温度で加熱することを特徴とする強誘電体層の製 造方法。
[2] 平均一次粒子径が 20〜300nmである Pb La Zr Ti O (0. 5≤x≤l, 0≤y
l -x y l -y 3
< 0. 4)の結晶'性微粒子と、カロ熱により Pb La Zr Ti O (0. 5≤x≤l, 0. 4≤y
l -x y l -y 3
≤0. 7)を形成する可溶性金属化合物と、液状媒体とを含んでなり、前記結晶性微 粒子と前記可溶性金属化合物との含有比率が、 Pb比で [結晶性微粒子] Z [可溶性 金属化合物] = 5Z95〜70Z30である流動性組成物を基体上に塗布し、液状媒体 を除去して前記結晶性微粒子を含む第 1の層を形成し、次いで加熱により Pb La Zr Ti O (0. 5≤x≤l、 0. 4≤y≤0. 7)を形成する可溶性金属化合物と液状媒 y l -y 3
体とを含みかつ前記結晶性微粒子を実質的に含まない第 2の流動性組成物を前記 第 1の層上に塗布し、液状媒体を除去して第 2の層を形成し、その後 500°C超〜 700 °Cの温度で加熱することを特徴とする強誘電体層の製造方法。
[3] 前記結晶性微粒子力 ガラスマトリックス中で Pb La Zr Ti 0 (0. 5≤x≤l、
l -x y l -y 3
0≤y< 0. 4)の結晶性微粒子を形成した後、ガラスマトリックス成分を除去して得られ た結晶性微粒子である、請求項 1又は 2に記載の強誘電体層の製造方法。
[4] 前記結晶性微粒子の平均一次粒子径が 20〜: LOOnmであり、流動性組成物中の 結晶性微粒子と可溶性金属化合物との含有比率が、 Pb比で [結晶性微粒子] Z [可 溶性金属化合物] =5Z95〜30Z70であり、かつ、得られた強誘電体層の層厚が 8 0〜300nmである請求項 1、 2又は 3に記載の強誘電体層付き基体の製造方法。
[5] 前記結晶性微粒子の平均一次粒子径が 30〜300nmであり、流動性組成物中の 結晶性微粒子と可溶性金属化合物との含有比率が、 Pb比で [結晶性微粒子] Z [可 溶性金属化合物] =20Z80〜70Z30であり、かつ、得られた強誘電体層の層厚が
0. 5〜: LO /z mである請求項 1、 2又は 3に記載の強誘電体層付き基体の製造方法。
[6] 下記工程 A〜Dを含むことを特徴とする強誘電体層付き基体の製造方法。
工程 A:ガラスマトリックス中で Pb La Zr Ti O (0. 5≤x≤l , 0≤y< 0. 4) (D l -x y l -y 3
結晶性微粒子を形成した後、ガラスマトリックス成分を除去して該結晶性微粒子を得 る工程。
工程 B :工程 Aで得られた結晶性微粒子と、加熱により Pb La Zr Ti 0 (0. 5 l -x y l -y 3
≤x≤l、0. 4≤y≤0. 7)を形成する可溶性金属化合物と、液状媒体とを含んでなり 、前記結晶性微粒子と前記可溶性金属化合物との含有比率が、 Pb比で [結晶性微 粒子] Z [可溶性金属化合物] =5Z95〜70Z30である流動性組成物を基体上に 塗布し、 200〜 500°Cで加熱して第 1の層を形成する工程。
工程 C :前記可溶性金属化合物と、液状媒体とを含み、前記結晶性微粒子を実質 的に含まな!/、流動性組成物を前記第 1の層上に塗布し、 200〜 500°Cで加熱して第 2の層を形成する工程。
工程 D :前記第 1の層と第 2の層とが形成された基体を、 500°C超〜 700°Cの温度 で焼成する工程。
[7] 前記結晶性微粒子の平均一次粒子径が 20〜: LOOnmであり、前記工程 Bにおける 流動性組成物中の結晶性微粒子と可溶性金属化合物との含有比率が、 Pb比で [結 晶性微粒子] Z [可溶性金属化合物] =5Z95〜30Z70であり、かつ、得られた強 誘電体層の層厚が 80〜300nmである請求項 6に記載の強誘電体層付き基体の製 造方法。
[8] 前記結晶性微粒子の平均一次粒子径が 20〜300nmであり、前記工程 Bにおける 流動性組成物中の結晶性微粒子と可溶性金属化合物との含有比率が、 Pb比で [結 晶性微粒子] Z [可溶性金属化合物] =20Z80〜70Z30であり、かつ、得られた強 誘電体層の層厚が 0. 5〜: L0 mである請求項 6に記載の強誘電体層付き基体の製 造方法。
PCT/JP2006/316159 2005-08-19 2006-08-17 強誘電体層付き基体の製造方法 WO2007020971A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007531022A JP5029363B2 (ja) 2005-08-19 2006-08-17 強誘電体層付き基体の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005238816 2005-08-19
JP2005-238816 2005-08-19
JP2006137913 2006-05-17
JP2006-137913 2006-05-17

Publications (1)

Publication Number Publication Date
WO2007020971A1 true WO2007020971A1 (ja) 2007-02-22

Family

ID=37757628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316159 WO2007020971A1 (ja) 2005-08-19 2006-08-17 強誘電体層付き基体の製造方法

Country Status (2)

Country Link
JP (1) JP5029363B2 (ja)
WO (1) WO2007020971A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747496C2 (ru) * 2019-10-22 2021-05-05 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Способ получения мультиферроиков на основе ферромагнитной стекломатрицы

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06119811A (ja) * 1992-10-06 1994-04-28 Seiko Epson Corp 強誘電体薄膜素子の製造方法
JP2004152922A (ja) * 2002-10-30 2004-05-27 Fujitsu Ltd 強誘電体膜の製膜方法
WO2004097854A1 (ja) * 2003-04-30 2004-11-11 Asahi Glass Company, Limited 強誘電体薄膜形成用液状組成物および強誘電体薄膜の製造方法
WO2005010895A1 (ja) * 2003-07-28 2005-02-03 Asahi Glass Company, Limited 強誘電体薄膜形成用液状組成物および強誘電体薄膜の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240469A (ja) * 2000-02-28 2001-09-04 Matsushita Electric Ind Co Ltd 誘電体粒子の製造方法および誘電体膜の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06119811A (ja) * 1992-10-06 1994-04-28 Seiko Epson Corp 強誘電体薄膜素子の製造方法
JP2004152922A (ja) * 2002-10-30 2004-05-27 Fujitsu Ltd 強誘電体膜の製膜方法
WO2004097854A1 (ja) * 2003-04-30 2004-11-11 Asahi Glass Company, Limited 強誘電体薄膜形成用液状組成物および強誘電体薄膜の製造方法
WO2005010895A1 (ja) * 2003-07-28 2005-02-03 Asahi Glass Company, Limited 強誘電体薄膜形成用液状組成物および強誘電体薄膜の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747496C2 (ru) * 2019-10-22 2021-05-05 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) Способ получения мультиферроиков на основе ферромагнитной стекломатрицы

Also Published As

Publication number Publication date
JPWO2007020971A1 (ja) 2009-02-26
JP5029363B2 (ja) 2012-09-19

Similar Documents

Publication Publication Date Title
EP1777203B1 (en) Ferroelectric capacitor, semiconductor device, and other element
KR100329533B1 (ko) 페로브스카이트형산화물막을포함한전자장치와그제조방법및강유전체커패시터
KR100274512B1 (ko) 집적회로커패시터 및 그 제조방법
JP3730122B2 (ja) 強誘電体集積回路メモリセルおよびその製造方法
WO2005083726A1 (en) Thin film ferroelectric composites, method of making and capacitor comprising the same
JP2002531943A (ja) 強誘電コンデンサの作成方法および基板上にpzt層を成長させる方法
Wang et al. Lead-based titanate ferroelectric thin films fabricated by a sol–gel technique
JP2001007299A (ja) 多層状電極の鉛ゲルマネート強誘電体構造およびその堆積方法
JPH11502375A (ja) 積層超格子材料の製造方法および同材料を有する電子装置の製造方法
US10943733B2 (en) Ceramic dielectric and method of manufacturing the same and ceramic electronic component and electronic device
TWI324366B (ja)
US6300144B1 (en) Method for fabricating ferro-electric thin films using a sol-gel technique
Calzada Sol–gel electroceramic thin films
JP5029363B2 (ja) 強誘電体層付き基体の製造方法
JP2007173777A (ja) 強誘電体層の製造方法
Geng et al. Influence of precursor solution concentration on the microstructure, leakage current and dielectric tunability of Zn-doped Na0. 5Bi0. 5TiO3 thin films prepared by metal organic decomposition
Adem Preparation of BaxSr1-xTiO3 thin films by chemical solution deposition and their electrical characterization
WO2005010895A1 (ja) 強誘電体薄膜形成用液状組成物および強誘電体薄膜の製造方法
JP2000007430A (ja) 強誘電体材料及び強誘電体メモリ
JP2003318369A (ja) 半導体装置及びその製造方法
JP2006261491A (ja) 強誘電体薄膜、強誘電体キャパシタ及びその製造方法
JP2001072417A (ja) 誘電体膜、それを備えたキャパシタ及びそれを備えたランダムアクセスメモリ
JP2007305847A (ja) 基板内蔵用キャパシタ、その製造方法及び受動部品内蔵基板
JPH08290903A (ja) 薄膜状誘電体およびその製造方法
Goel et al. Ferroelectric films and micro devices.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007531022

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782772

Country of ref document: EP

Kind code of ref document: A1