WO2007020709A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2007020709A1
WO2007020709A1 PCT/JP2005/015153 JP2005015153W WO2007020709A1 WO 2007020709 A1 WO2007020709 A1 WO 2007020709A1 JP 2005015153 W JP2005015153 W JP 2005015153W WO 2007020709 A1 WO2007020709 A1 WO 2007020709A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
semiconductor device
operational amplifier
input terminal
input terminals
Prior art date
Application number
PCT/JP2005/015153
Other languages
French (fr)
Japanese (ja)
Inventor
Junko Nakamoto
Naoaki Naka
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2005/015153 priority Critical patent/WO2007020709A1/en
Publication of WO2007020709A1 publication Critical patent/WO2007020709A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a differential input buffer circuit suitable for use in a differential transmission system.
  • FIG. 10 shows a configuration of a conventional differential input buffer circuit.
  • a conventional differential input buffer circuit 100 is configured by using an operational amplifier 101 and has a pair of signal input terminals INP1 and INN1.
  • Positive logic signal input terminal INP1 is connected to the positive logic input terminal of the operational amplifier 101 (non-inverting input terminal) INP2, and the negative logic signal input terminal INN1 is the negative logic input terminal of the operational amplifier 101 (inverting input terminal) Connected to INN2. Also, a termination resistor Rt corresponding to the transmission method is connected between the pair of signal input terminals INP 1 and INN1.
  • the differential signals input from the pair of signal input terminals INP1 and INN1 are input to the operational amplifier 101 via the respective transmission paths. Then, it is amplified by the operational amplifier 101 and output from the output terminal OUT.
  • the differential input buffer circuit 100 shown in FIG. 10 is used, for example, in a receiving side device in a differential transmission system.
  • communication is performed by connecting a transmitting device and a receiving device via a cable or the like.
  • a cable or the like For example, when a cable or the like is removed, an input with no signal input to the receiving device is opened. It will end up in a state.
  • the level of the signal input to the input terminals INP2 and INN2 of the operational amplifier 101 becomes unstable (for example, there is no level difference between the input signals), and the output signal from the output terminal OUT also becomes unstable.
  • the potential difference between the input terminals INP2 and INN2 of the operational amplifier 101 by the pull-up resistor Ru and the pull-down resistor Rd is, for example, 10 mV to 20 mV.
  • the resistance value of the termination resistor Rt provided between the transmission paths of the signals constituting the differential signal is relatively small.
  • the resistance value of the termination resistor Rt is 100 ⁇ (ohm). For this reason, the current 12 expressed by the above-described equation (1) is a large current.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-152658
  • An object of the present invention is to obtain a stable output with a small current consumption even when the input of a differential input buffer circuit is in an open state.
  • the semiconductor device of the present invention includes an operational amplifier, four resistors, and a termination resistor.
  • One end of the first resistor is connected to the positive logic input terminal of the operational amplifier, and the first potential is supplied to the other end.
  • the second resistor has one end connected to the negative logic input terminal of the operational amplifier and the other end connected to the second Is supplied.
  • the third resistor is connected between one of the pair of signal input terminals of the semiconductor device and the positive logic input terminal of the operational amplifier.
  • the fourth resistor is connected between the other of the pair of signal input terminals and the negative logic input terminal of the operational amplifier.
  • the terminator is connected between a pair of signal input terminals.
  • the third resistor, the terminating resistor, and the fourth resistor are connected in series between the positive logic input terminal and the negative logic input terminal of the operational amplifier. Therefore, when the input is open, the potential difference across the series circuit consisting of the third resistor, termination resistor, and fourth resistor is given between the input terminals of the operational amplifier. A stable potential difference can be generated between the input terminals with a small current consumption.
  • FIG. 1 is a diagram showing a configuration example of a semiconductor device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration example of a semiconductor device according to a second embodiment of the present invention.
  • FIG. 3 is a diagram showing a specific configuration example of a semiconductor device according to a second embodiment.
  • FIG. 4 is a diagram showing a specific configuration example of the semiconductor device according to the second embodiment.
  • FIG. 5 is a diagram showing a configuration example of a semiconductor device according to a third embodiment of the present invention.
  • FIG. 6 is a diagram showing a specific configuration example of the semiconductor device according to the third embodiment.
  • FIG. 7 is a diagram showing a specific configuration example of the semiconductor device according to the third embodiment.
  • FIG. 8 is a diagram showing a specific configuration example of the semiconductor device according to the third embodiment.
  • FIG. 9 is a diagram showing a configuration example of a semiconductor device according to a fourth embodiment of the present invention.
  • FIG. 10 is a diagram showing a configuration of a conventional differential input buffer circuit.
  • FIG. 1 is a diagram showing a configuration example of a differential input canuffer circuit to which the semiconductor device according to the first embodiment of the present invention is applied. Note that the differential input buffer circuit in each of the first to third embodiments including the second and third embodiments described later is configured as one semiconductor device.
  • the differential input buffer circuit 1 includes an operational amplifier 10 and four resistors R1, R2, R3, R4 and termination resistor Rt.
  • the pair of signal input terminals of the differential input buffer circuit 1 has a positive logic signal input terminal INP1 connected to the positive logic input terminal (non-inversion side input terminal) INP2 of the operational amplifier 10 via the resistor R3.
  • the negative logic signal input terminal INN1 is connected to the negative logic input terminal (inverting input terminal) INN2 of the operational amplifier 10 through the resistor R4.
  • one end of the resistor R3 is connected to the positive logic signal input terminal IN PI of the pair of signal input terminals, and the other end is connected to the positive logic input terminal INP2 of the operational amplifier 10.
  • one end of the resistor R4 is connected to the negative logic signal input terminal INN1 of the pair of signal input terminals, and the other end is connected to the negative logic input terminal INN2 of the operational amplifier 10.
  • the resistance values of the resistors R3 and R4 are preferably the same in order to prevent the transmission paths of the two signals constituting the differential signal from becoming unbalanced.
  • the resistors R3 and R4 may also have a function as a protective resistor for preventing the occurrence of electrostatic breakdown in the operational amplifier 10 (more specifically, each element constituting the operational amplifier 10).
  • the resistor R1 is connected between the positive logic input terminal INP2 of the operational amplifier 10 and the signal line supplying the first potential VI, and the negative logic input terminal INN2 of the operational amplifier 10 and the second potential V2 are supplied.
  • a resistor R2 is connected to the signal line to be connected.
  • one end of the resistor R1 is connected to the interconnection point between the positive logic input terminal INP2 and the resistor R3 of the operational amplifier 10, and the first potential VI is supplied to the other end.
  • one end of the resistor R2 is connected to the interconnection point between the negative logic input terminal INN2 of the operational amplifier 10 and the resistor R4, and the second potential V2 is supplied to the other end.
  • the first potential VI and the second potential V2 are different potentials.
  • the power supply voltage VDD may be used for the first potential V 1
  • the reference potential VSS ground level GND or the like
  • the first and second potentials VI and V2 are not limited to these and are arbitrary.
  • a termination resistor Rt is connected between the pair of signal input terminals INP1 and INN1 of the differential input buffer circuit 1. Specifically, one end of the termination resistor Rt is connected to the interconnection point between the positive logic signal input terminal INP1 and the resistor R3, and the other end is connected to the interconnection point between the negative logic signal input terminal INN1 and the resistor R4. .
  • This termination resistor Rt is, for example, a standard for differential transmission. It is determined by the case.
  • the differential signals input from INN1 are input to the input terminals INP2 and INN2 of the operational amplifier 10 via resistors R3 and R4, respectively. Then, it is amplified by the operational amplifier 10 and output from the output terminal OUT.
  • connection line (cable, etc.) for inputting the differential signal is also removed from the pair of signal input terminals INP1 and INN1, and the input of the differential input canoffer circuit 1 is The case where it will be in an open state is demonstrated.
  • resistors Rl, R3, Rt, R4, and R2 are connected in series between the first potential VI and the second potential V2. It is connected to the.
  • the positive logic input terminal INP2 of the operational amplifier 10 is connected to the interconnection point of the resistors R1 and R3, and the negative logic input terminal INN2 of the operational amplifier 10 is connected to the interconnection point of the resistors R4 and R2.
  • the input terminals INP2 and INN2 of the op-amp 10 are fixed at different predetermined potentials. Specifically, the input terminal INP2 of the operational amplifier 10 becomes the potential at the interconnection point of the resistors R1 and R3, and the input terminal INN2 of the operational amplifier 10 becomes the potential at the interconnection point of the resistors R4 and R2.
  • the input terminals INP2 and INP of the operational amplifier 10 The current II for generating the potential difference Voff set between N2 is much smaller than the current 12 that has been required conventionally. Therefore, according to this embodiment, even if the input of the differential input buffer circuit is in an open state, a stable output can be obtained with a small current consumption.
  • the resistors Rl and R2 are connected between the terminating resistor Rt and the input terminals INP2 and INN2 of the operational amplifier 10 via the resistors R3 and R4.
  • the resistance values of the resistors Rl and R2 can be increased, and the influence on the transmission characteristics such as the transmission waveform and voltage on the differential transmission system in data transmission can be suppressed.
  • the resistors Rl and R2 in the first embodiment described above are configured by MOS (metal oxide semiconductor) transistors, respectively.
  • FIG. 2 is a diagram illustrating a configuration example of a differential input buffer circuit to which the semiconductor device according to the second embodiment is applied.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
  • Ml and M2 are MOS transistors, which correspond to the resistors Rl and R2 in the first embodiment shown in FIG. That is, one of the source and drain of the MOS transistor Ml is connected to the positive logic input terminal I NP2 of the operational amplifier 10, and the first potential VI is supplied to the other. Similarly, one of the source and drain of the MOS transistor M2 is connected to the negative logic input terminal INN2 of the operational amplifier 10, and the second potential V2 is supplied to the other.
  • the potential difference between both ends of the resistors R3, Rt, and R4 connected in series is between the input terminals INP2 and INN2 of the operational amplifier 10. Occurs.
  • the current required to generate the potential difference Voff set between the input terminals INP2 and INN2 of the operational amplifier 10 is (Voff set) / (R3 + R4 + Rt). The That is, the same effect as that of the first embodiment described above can be obtained in the second embodiment. For example, even if the input of the differential input buffer circuit is in an open state, it is possible to stabilize the input of the operational amplifier 10 with a small current consumption to prevent the operation from becoming unstable, and to obtain a stable output.
  • FIG. 3 is a diagram illustrating an example of a specific configuration of the differential input canoffer circuit according to the second embodiment.
  • constituent elements having the same functions as those shown in FIGS. 1 and 2 are given the same reference numerals, and redundant descriptions are omitted.
  • the differential input buffer circuit shown in FIG. 3 uses an N-channel MOS transistor NT1 as the data M2 in the differential input buffer circuit shown in FIG.
  • one of the source and drain of the P-channel MOS transistor PT1 is connected to the positive logic input terminal INP2 of the op amp 10, and the first potential VI is supplied to the other.
  • the control voltage VC1 is supplied to the gate of the P-channel MOS transistor PT1.
  • one of the source and the drain of the N-channel MOS transistor NT1 is connected to the negative logic input terminal INN2 of the op amp 10, and the second potential V2 is supplied to the other.
  • the control voltage VC2 is supplied to the gate of the N-channel MOS transistor NT1.
  • MOS transistors PT1 and NT1 corresponding to resistors Rl and R2 are used as switching elements, and MOS transistors PT1 and NT1 are controlled on the user side by control voltages VC1 and VC2. It becomes possible to control. Note that any voltage may be supplied as the control voltages V Cl and VC2 depending on the use situation or the like.
  • FIG. 4 is a diagram showing another example of a specific configuration of the differential input canoffer circuit according to the second embodiment.
  • components having the same functions as those shown in FIGS. 1 and 2 are given the same reference numerals, and redundant descriptions are omitted.
  • the differential input buffer circuit shown in FIG. 4 uses N-channel MOS transistors NT2 and NT3 as MOS transistors M1 and M2 in the differential input buffer circuit shown in FIG.
  • one of the source and drain of the N-channel MOS transistor NT2 is connected to the positive logic input terminal INP2 of the op amp 10, and the first potential VI is supplied to the other.
  • Ma The control voltage VC3 is supplied to the gate of the N-channel MOS transistor NT2.
  • one of the source and drain of the N-channel MOS transistor NT3 is connected to the negative logic input terminal INN2 of the op amp 10, and the second potential V2 is supplied to the other.
  • the control voltage VC4 is supplied to the gate of the N-channel MOS transistor NT3.
  • MOS transistors NT2 and NT3 corresponding to resistors Rl and R2 are used as switching elements, and MOS transistors NT2 and NT3 are controlled on the user side by control voltages VC3 and VC4. It becomes possible to control. As the control voltages V C3 and VC4, any voltage may be supplied according to the usage situation. It becomes easy.
  • the resistors R3 and R4 in the first embodiment described above are configured by MOS transistors, respectively.
  • FIG. 5 is a diagram illustrating a configuration example of a differential input buffer circuit to which the semiconductor device according to the third embodiment is applied.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
  • M3 and M4 are MOS transistors, and correspond to the resistors R3 and R4 in the first embodiment shown in FIG. That is, the positive logic signal input terminal INP1 and the positive logic input terminal INP2 of the operational amplifier 10 are connected via the MOS transistor M3, and the negative logic signal input terminal INN1 and the negative logic input terminal INN2 of the operational amplifier 10 are connected via the MOS transistor M4. Connected.
  • one of the source and drain of the MOS transistor M3 is connected to the positive logic signal input terminal INP1, and the other is connected to the positive logic input terminal INP2 of the operational amplifier 10.
  • one of the source and drain of the MOS transistor M4 is connected to the negative logic signal input terminal INN1, and the other is connected to the negative logic input terminal INN2 of the operational amplifier 10.
  • the operation of the differential input buffer circuit shown in FIG. 5 is the same as that of the first embodiment described above, description thereof is omitted.
  • the third embodiment when the input of the differential input buffer circuit is in an open state, a potential difference is generated between the input terminals INP2 and INN2 of the operational amplifier 10 due to the MOS transistors M3 and M4 and the termination resistor Rt. If the resistance values of the MOS transistors M3 and M4 are R3, R4 ', the current required to generate the potential difference Voffset between the input terminals INP2 and INN2 of the operational amplifier 10 is (Voffset) / (R3' + R4, + Rt). Therefore, the same effects as those of the first embodiment described above can be obtained in the third embodiment.
  • FIG. 6 is a diagram illustrating an example of a specific configuration of the differential input canffer circuit according to the third embodiment.
  • constituent elements having the same functions as those shown in FIGS. 1 and 5 are given the same reference numerals, and redundant descriptions are omitted.
  • the differential input buffer circuit shown in FIG. 6 uses N-channel MOS transistors NT4 and NT5 as the MOS transistors M3 and M4 in the differential input buffer circuit shown in FIG.
  • one of the source and drain of the N-channel MOS transistor NT4 is connected to the positive logic signal input terminal INP1, and the other is connected to the positive logic input terminal INP2 of the operational amplifier 10.
  • one of the source and drain of the N-channel MOS transistor NT5 is connected to the negative logic signal input terminal INN1, and the other is connected to the negative logic input terminal INN2 of the operational amplifier 10.
  • N-channel MOS transistors NT4 and NT5 are composed of transistors having the same characteristics, and the same control voltage VC5 is supplied to each gate.
  • the MOS transistors NT4 and NT5 corresponding to the resistors R3 and R4 are used as switching elements, and can be controlled by the control voltage VC5 on the user side.
  • using only an N-channel MOS transistor as the MOS transistor facilitates manufacturing.
  • FIG. 7 is a diagram showing another example of a specific configuration of the differential input canoffer circuit according to the third embodiment.
  • constituent elements having the same functions as those shown in FIGS. 1 and 5 are given the same reference numerals, and redundant descriptions are omitted.
  • the differential input buffer circuit shown in FIG. 7 uses P-channel MOS transistors PT2 and PT3 as the MOS transistors M3 and M4 in the differential input buffer circuit shown in FIG.
  • one of the source and drain of the ⁇ channel MOS transistor ⁇ 2 is connected to the positive logic signal input terminal INP1, and the other is connected to the positive logic input terminal ⁇ 2 of the operational amplifier 10.
  • one of the source and drain of the channel MOS transistor ⁇ 3 is connected to the negative logic signal input terminal INN1, and the other is connected to the negative logic input terminal ⁇ 2 of the operational amplifier 10.
  • ⁇ channel MOS transistors ⁇ 2 and ⁇ 3 are composed of transistors having the same characteristics, and the same control voltage VC6 is supplied to each gate.
  • the MOS transistors PT2 and ⁇ 3 corresponding to the resistors R3 and R4 are used as switching elements, and can be controlled on the user side by the control voltage VC6.
  • FIG. 8 is a diagram showing another example of a specific configuration of the differential input canoffer circuit according to the third embodiment.
  • components having the same functions as those shown in FIGS. 1 and 5 are given the same reference numerals, and redundant descriptions are omitted.
  • the differential input buffer circuit shown in FIG. 8 includes one ⁇ -channel MOS transistor ⁇ 6 and ⁇ 7 and one ⁇ -channel MOS transistor ⁇ ⁇ ⁇ 4, as MOS transistors ⁇ 3 and ⁇ 4 in the differential input buffer circuit shown in FIG. This uses a pass transistor consisting of ⁇ 5.
  • a pair of ⁇ channel ⁇ OS transistor ⁇ 6 and ⁇ channel MOS transistor ⁇ 4 in which the sources are connected and the drains are connected is the positive logic signal input terminal INP1 and the operational amplifier 10 positive logic. Connected to the input terminal INP2.
  • a combination of an N-channel MOS transistor NT7 and a P-channel MOS transistor PT5, whose sources are connected and their drains are connected. Negative logic signal input terminal INN1 and negative logic input terminal of operational amplifier 10 INN2 Connected between.
  • N-channel MOS transistors NT6 and NT7 are composed of transistors having the same characteristics so that each pass transistor has the same resistance value, and the same control voltage VC7 is supplied to each gate.
  • Transistors PT4 and ⁇ 5 are composed of transistors with the same characteristics, and the same control voltage VC8 is supplied to each gate. This prevents the transmission paths of the two signals that make up the differential signal from becoming unbalanced.
  • the differential input buffer circuit is configured as one semiconductor device.
  • the fourth embodiment described below is a terminal in the differential input buffer circuit.
  • a resistor is provided outside the semiconductor device in which other elements in the differential input buffer circuit are configured.
  • FIG. 9 is a diagram illustrating a configuration example of a differential input buffer circuit to which the semiconductor device according to the fourth embodiment is applied.
  • the same components as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted.
  • Rta is a termination resistor connected between the pair of signal input terminals IN Pl and INN1, and corresponds to the termination resistor Rt in the first embodiment shown in FIG. That is, one end of the termination resistor Rta is connected to the interconnection point between the positive logic signal input terminal INP 1 and the resistor R3, and the other end is connected to the interconnection point between the negative logic signal input terminal INN1 and the resistor R4.
  • differential input buffer circuit shown in FIG. 9 is the same in configuration and operation as the first embodiment described above except that the termination resistor Rta is provided outside the semiconductor device. is there.
  • the same effect as in the first embodiment described above can be obtained. Furthermore, by providing the termination resistor Rta in the differential input buffer circuit outside the semiconductor device, it is possible to reduce the characteristic variation in the termination resistor Rta and improve the accuracy, and to change it on the user side. Become.
  • the differential input buffer circuit in the first embodiment shown in FIG. 9 the differential input buffer circuit in the first embodiment shown in FIG. Although the case where the termination resistance of the path is provided outside the semiconductor device is shown as an example, similarly, the termination resistance of the differential input buffer circuit in the second and third embodiments is provided outside the semiconductor device. Also good.
  • the force using a MOS transistor as a transistor used instead of a resistor is not limited to this.
  • a transistor used in place of the resistor for example, an arbitrary field effect transistor (FET) can be applied.
  • FET field effect transistor
  • the third resistor, the termination resistor, and the fourth resistor connected in series with respect to the input terminals of the operational amplifier.
  • a stable potential difference can be generated between the input terminals of the operational amplifier between the input terminals of the operational amplifier with a smaller current consumption than in the past.
  • a stable output can be obtained with a small current consumption.

Abstract

A first resistor is connected between a positive logic input terminal of an operational amplifier and a first potential. A second resistor is connected between a negative logic input of the operational amplifier and a second potential. A third resistor is connected between one of a pair of signal input terminals and the positive logic input terminal. A fourth resistor is connected between the other signal input terminal and the negative logic input terminal of the operational amplifier. A terminating resistor is connected between the paired signal input terminals. When the input is open, the potential difference between the ends of a circuit composed of the third resistor connected in series between the input terminals of the operational amplifier, the terminating resistor, and the fourth resistor is applied between the input terminals of the operational amplifier. With this, a stable potential difference is caused between the input terminals with a small consumption current compared to the prior art, and a stable output is obtained.

Description

明 細 書  Specification
半導体装置  Semiconductor device
技術分野  Technical field
[0001] 本発明は、半導体装置に関し、詳しくは、差動伝送システムに用いて好適な差動入 力バッファ回路に関する。  The present invention relates to a semiconductor device, and more particularly to a differential input buffer circuit suitable for use in a differential transmission system.
背景技術  Background art
[0002] 従来の差動入力バッファ回路の構成を図 10に示す。  FIG. 10 shows a configuration of a conventional differential input buffer circuit.
図 10に示すように従来の差動入力バッファ回路 100は、オペアンプ 101を用いて 構成され、 1対の信号入力端子 INP1、 INN1を有している。  As shown in FIG. 10, a conventional differential input buffer circuit 100 is configured by using an operational amplifier 101 and has a pair of signal input terminals INP1 and INN1.
[0003] 正論理信号入力端子 INP1がオペアンプ 101の正論理入力端子 (非反転側入力 端子) INP2に接続され、負論理信号入力端子 INN1がオペアンプ 101の負論理入 力端子 (反転側入力端子) INN2に接続されている。また、 1対の信号入力端子 INP 1、 INN1の間には、伝送方式に応じた終端抵抗 Rtが接続されている。  [0003] Positive logic signal input terminal INP1 is connected to the positive logic input terminal of the operational amplifier 101 (non-inverting input terminal) INP2, and the negative logic signal input terminal INN1 is the negative logic input terminal of the operational amplifier 101 (inverting input terminal) Connected to INN2. Also, a termination resistor Rt corresponding to the transmission method is connected between the pair of signal input terminals INP 1 and INN1.
[0004] 差動入力バッファ回路において、 1対の信号入力端子 INP1、 INN1より入力された 差動信号は、それぞれの伝送経路を介してオペアンプ 101に入力される。そして、ォ ぺアンプ 101により増幅され出力端子 OUTより出力される。  [0004] In the differential input buffer circuit, the differential signals input from the pair of signal input terminals INP1 and INN1 are input to the operational amplifier 101 via the respective transmission paths. Then, it is amplified by the operational amplifier 101 and output from the output terminal OUT.
[0005] ここで、図 10に示した差動入力バッファ回路 100は、例えば差動伝送システムにお ける受信側デバイスに用いられる。このような差動伝送システムでは、ケーブル等を 介して送信側デバイスと受信側デバイスを接続し通信が行われるが、例えばケープ ル等が取り外されると、受信側デバイスに対する信号入力がなぐ入力がオープン状 態となつてしまう。その結果、オペアンプ 101の入力端子 INP2、 INN2に入力される 信号のレベルが不安定 (例えば、入力信号のレベル差がないなど)となり、出力端子 OUTからの出力信号も不安定になる。  Here, the differential input buffer circuit 100 shown in FIG. 10 is used, for example, in a receiving side device in a differential transmission system. In such a differential transmission system, communication is performed by connecting a transmitting device and a receiving device via a cable or the like. For example, when a cable or the like is removed, an input with no signal input to the receiving device is opened. It will end up in a state. As a result, the level of the signal input to the input terminals INP2 and INN2 of the operational amplifier 101 becomes unstable (for example, there is no level difference between the input signals), and the output signal from the output terminal OUT also becomes unstable.
[0006] そこで、受信側デバイスの入力がオープンになった場合に、上述のような不具合の 発生を防止する 1つの方法として、図 10に示したように 1対の信号入力端子 INP1、 I NN1にプルアップ抵抗 Ru及びプルダウン抵抗 Rdを接続する方法が提案されて 、る (例えば、特許文献 1参照。)。 [0007] これによれば、入力がオープンになったとしても、差動入力バッファ回路の信号入 力端子 INP1、 INN1は、プルアップ抵抗 Ru及びプルダウン抵抗 Rdにより所定電位 に固定される。したがって、オペアンプ 101への入力が安定し、動作が不安定となる ことを防止できる。 [0006] Therefore, as one method for preventing the occurrence of the above-described problems when the input of the receiving device is open, a pair of signal input terminals INP1, I NN1 as shown in FIG. A method of connecting a pull-up resistor Ru and a pull-down resistor Rd is proposed (see, for example, Patent Document 1). [0007] According to this, even if the input is opened, the signal input terminals INP1 and INN1 of the differential input buffer circuit are fixed to a predetermined potential by the pull-up resistor Ru and the pull-down resistor Rd. Accordingly, it is possible to prevent the input to the operational amplifier 101 from being stabilized and the operation from becoming unstable.
[0008] ここで、プルアップ抵抗 Ru及びプルダウン抵抗 Rdによるオペアンプ 101の入力端 子 INP2、 INN2間の電位差は、例えば 10mV〜20mVの電位差が得られることが望 ましい。また、入力端子 INP2、 INN2間の電位差が大きいほど、ノイズ等の影響を受 けに《なり安定した動作が期待できる。  [0008] Here, it is desirable that the potential difference between the input terminals INP2 and INN2 of the operational amplifier 101 by the pull-up resistor Ru and the pull-down resistor Rd is, for example, 10 mV to 20 mV. In addition, the larger the potential difference between the input terminals INP2 and INN2, the more stable the operation can be expected under the influence of noise.
[0009] しカゝしながら、図 10に示した従来例のようにプルアップ抵抗 Ru及びプルダウン抵抗 Rdを用いて、入力端子 INP2、 INN2間(信号入力端子 INP1、 INN1間)に安定した 電位差 Voff setを生じさせるには、式(1)により示される電流 12が必要となる。  However, a stable potential difference between the input terminals INP2 and INN2 (between the signal input terminals INP1 and INN1) using the pull-up resistor Ru and the pull-down resistor Rd as in the conventional example shown in FIG. In order to generate Voff set, the current 12 shown by the equation (1) is required.
I2= (Voffset) / (Rt)  I2 = (Voffset) / (Rt)
[0010] 通常、差動入力バッファ回路において、差動信号を構成する各信号の伝送経路間 に設ける終端抵抗 Rtの抵抗値は比較的小さい。例えば、 LVDS (Low Voltage Differ ential Signaling)インタフェースにおいて、終端抵抗 Rtの抵抗値は 100 Ω (ohm)であ る。そのため、上述した式(1)により表される電流 12は、大きい電流となる。  [0010] Normally, in the differential input buffer circuit, the resistance value of the termination resistor Rt provided between the transmission paths of the signals constituting the differential signal is relatively small. For example, in the LVDS (Low Voltage Differential Signaling) interface, the resistance value of the termination resistor Rt is 100 Ω (ohm). For this reason, the current 12 expressed by the above-described equation (1) is a large current.
[0011] また、図 10に示した従来例のようにプルアップ抵抗 Ru及びプルダウン抵抗 Rdを接 続すると、データ伝送を行う際に、伝送波形や電圧等の伝送特性に悪影響を与える 。すなわち、 LVDS等の差動伝送システムにおいては、その伝送波形や電圧等の伝 送特性が規格ィ匕されて 、るにもかかわらず、プルアップ抵抗 Ru及びプルダウン抵抗 Rdを接続することで伝送特性が規格カゝら外れてしまうおそれがある。  [0011] When the pull-up resistor Ru and the pull-down resistor Rd are connected as in the conventional example shown in FIG. 10, transmission characteristics such as a transmission waveform and voltage are adversely affected when data transmission is performed. In other words, in a differential transmission system such as LVDS, transmission characteristics such as transmission waveform and voltage are standardized, but the transmission characteristics can be obtained by connecting pull-up resistor Ru and pull-down resistor Rd. May fall out of specification.
[0012] 特許文献 1 :特開平 6— 152658号公報  Patent Document 1: Japanese Patent Laid-Open No. 6-152658
発明の開示  Disclosure of the invention
[0013] 本発明の目的は、差動入力バッファ回路の入力がオープン状態になったとしても、 小さ 、消費電流で、安定した出力が得られるようにすることである。  An object of the present invention is to obtain a stable output with a small current consumption even when the input of a differential input buffer circuit is in an open state.
[0014] 本発明の半導体装置は、オペアンプと 4つの抵抗と終端抵抗とを有する。第 1の抵 抗は、一端がオペアンプの正論理入力端子に接続され、他端に第 1の電位が供給さ れる。第 2の抵抗は、一端がオペアンプの負論理入力端子に接続され、他端に第 2 の電位が供給される。第 3の抵抗は、半導体装置が有する 1対の信号入力端子の一 方とオペアンプの正論理入力端子の間に接続される。第 4の抵抗は、 1対の信号入 力端子の他方とオペアンプの負論理入力端子の間に接続される。終端抵抗は、 1対 の信号入力端子間に接続される。 The semiconductor device of the present invention includes an operational amplifier, four resistors, and a termination resistor. One end of the first resistor is connected to the positive logic input terminal of the operational amplifier, and the first potential is supplied to the other end. The second resistor has one end connected to the negative logic input terminal of the operational amplifier and the other end connected to the second Is supplied. The third resistor is connected between one of the pair of signal input terminals of the semiconductor device and the positive logic input terminal of the operational amplifier. The fourth resistor is connected between the other of the pair of signal input terminals and the negative logic input terminal of the operational amplifier. The terminator is connected between a pair of signal input terminals.
[0015] 本発明によれば、オペアンプの正論理入力端子と負論理入力端子の間には、第 3 の抵抗と終端抵抗と第 4の抵抗とが直列接続される。したがって、入力がオープン状 態になった場合に、第 3の抵抗と終端抵抗と第 4の抵抗とからなる直列回路の両端の 電位差がオペアンプの入力端子間に与えられるので、従来と比較して小さい消費電 流で入力端子間に安定した電位差を生じさせることができる。 [0015] According to the present invention, the third resistor, the terminating resistor, and the fourth resistor are connected in series between the positive logic input terminal and the negative logic input terminal of the operational amplifier. Therefore, when the input is open, the potential difference across the series circuit consisting of the third resistor, termination resistor, and fourth resistor is given between the input terminals of the operational amplifier. A stable potential difference can be generated between the input terminals with a small current consumption.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]図 1は、本発明の第 1の実施形態による半導体装置の構成例を示す図である。  FIG. 1 is a diagram showing a configuration example of a semiconductor device according to a first embodiment of the present invention.
[図 2]図 2は、本発明の第 2の実施形態による半導体装置の構成例を示す図である。  FIG. 2 is a diagram showing a configuration example of a semiconductor device according to a second embodiment of the present invention.
[図 3]図 3は、第 2の実施形態による半導体装置の具体的な構成例を示す図である。  FIG. 3 is a diagram showing a specific configuration example of a semiconductor device according to a second embodiment.
[図 4]図 4は、第 2の実施形態による半導体装置の具体的な構成例を示す図である。  FIG. 4 is a diagram showing a specific configuration example of the semiconductor device according to the second embodiment.
[図 5]図 5は、本発明の第 3の実施形態による半導体装置の構成例を示す図である。  FIG. 5 is a diagram showing a configuration example of a semiconductor device according to a third embodiment of the present invention.
[図 6]図 6は、第 3の実施形態による半導体装置の具体的な構成例を示す図である。  FIG. 6 is a diagram showing a specific configuration example of the semiconductor device according to the third embodiment.
[図 7]図 7は、第 3の実施形態による半導体装置の具体的な構成例を示す図である。  FIG. 7 is a diagram showing a specific configuration example of the semiconductor device according to the third embodiment.
[図 8]図 8は、第 3の実施形態による半導体装置の具体的な構成例を示す図である。  FIG. 8 is a diagram showing a specific configuration example of the semiconductor device according to the third embodiment.
[図 9]図 9は、本発明の第 4の実施形態による半導体装置の構成例を示す図である。  FIG. 9 is a diagram showing a configuration example of a semiconductor device according to a fourth embodiment of the present invention.
[図 10]図 10は、従来の差動入力バッファ回路の構成を示す図である。  FIG. 10 is a diagram showing a configuration of a conventional differential input buffer circuit.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018] (第 1の実施形態) [0018] (First embodiment)
図 1は、本発明の第 1の実施形態による半導体装置を適用した差動入カノ ッファ回 路の構成例を示す図である。なお、後述する第 2及び第 3の実施形態を含む第 1〜 第 3の各実施形態における差動入力バッファ回路は、 1つの半導体デバイスとして構 成されるものとする。  FIG. 1 is a diagram showing a configuration example of a differential input canuffer circuit to which the semiconductor device according to the first embodiment of the present invention is applied. Note that the differential input buffer circuit in each of the first to third embodiments including the second and third embodiments described later is configured as one semiconductor device.
[0019] 差動入力バッファ回路 1は、図 1に示すようにオペアンプ 10と 4つの抵抗 R1、R2、 R3、 R4と終端抵抗 Rtとを有する。 As shown in FIG. 1, the differential input buffer circuit 1 includes an operational amplifier 10 and four resistors R1, R2, R3, R4 and termination resistor Rt.
[0020] 差動入力バッファ回路 1の 1対の信号入力端子は、正論理信号入力端子 INP1が 抵抗 R3を介してオペアンプ 10の正論理入力端子 (非反転側入力端子) INP2に接 続され、負論理信号入力端子 INN1が抵抗 R4を介してオペアンプ 10の負論理入力 端子 (反転側入力端子) INN2に接続される。  [0020] The pair of signal input terminals of the differential input buffer circuit 1 has a positive logic signal input terminal INP1 connected to the positive logic input terminal (non-inversion side input terminal) INP2 of the operational amplifier 10 via the resistor R3. The negative logic signal input terminal INN1 is connected to the negative logic input terminal (inverting input terminal) INN2 of the operational amplifier 10 through the resistor R4.
[0021] すなわち、抵抗 R3の一端が 1対の信号入力端子における正論理信号入力端子 IN PIに接続され、他端がオペアンプ 10の正論理入力端子 INP2に接続される。同様 に抵抗 R4の一端が 1対の信号入力端子における負論理信号入力端子 INN1に接 続され、他端がオペアンプ 10の負論理入力端子 INN2に接続される。  That is, one end of the resistor R3 is connected to the positive logic signal input terminal IN PI of the pair of signal input terminals, and the other end is connected to the positive logic input terminal INP2 of the operational amplifier 10. Similarly, one end of the resistor R4 is connected to the negative logic signal input terminal INN1 of the pair of signal input terminals, and the other end is connected to the negative logic input terminal INN2 of the operational amplifier 10.
[0022] なお、抵抗 R3、 R4の抵抗値は、差動信号を構成する 2信号の伝送経路が不均衡 となることを防止するために同じ抵抗値であることが望ましい。また、これら抵抗 R3、 R 4は、オペアンプ 10 (より詳細にはそれを構成する各素子)における静電破壊の発生 を防止するための保護抵抗としての機能を兼ね備えるようにしても良い。  [0022] It should be noted that the resistance values of the resistors R3 and R4 are preferably the same in order to prevent the transmission paths of the two signals constituting the differential signal from becoming unbalanced. The resistors R3 and R4 may also have a function as a protective resistor for preventing the occurrence of electrostatic breakdown in the operational amplifier 10 (more specifically, each element constituting the operational amplifier 10).
[0023] また、オペアンプ 10の正論理入力端子 INP2と第 1の電位 VIを供給する信号線と の間に抵抗 R1が接続され、オペアンプ 10の負論理入力端子 INN2と第 2の電位 V2 を供給する信号線との間に抵抗 R2が接続される。  [0023] The resistor R1 is connected between the positive logic input terminal INP2 of the operational amplifier 10 and the signal line supplying the first potential VI, and the negative logic input terminal INN2 of the operational amplifier 10 and the second potential V2 are supplied. A resistor R2 is connected to the signal line to be connected.
[0024] 具体的には、抵抗 R1の一端がオペアンプ 10の正論理入力端子 INP2と抵抗 R3と の相互接続点に接続され、他端には第 1の電位 VIが供給される。また、抵抗 R2の 一端がオペアンプ 10の負論理入力端子 INN2と抵抗 R4との相互接続点に接続され 、他端には第 2の電位 V2が供給される。  Specifically, one end of the resistor R1 is connected to the interconnection point between the positive logic input terminal INP2 and the resistor R3 of the operational amplifier 10, and the first potential VI is supplied to the other end. Also, one end of the resistor R2 is connected to the interconnection point between the negative logic input terminal INN2 of the operational amplifier 10 and the resistor R4, and the second potential V2 is supplied to the other end.
[0025] ここで、第 1の電位 VIと第 2の電位 V2とは異なる電位である。例えば、第 1の電位 V 1には電源電圧 VDDを用い、第 2の電位 V2には基準電位 VSS (グランドレベル GN Dなど)を用いれば良い。なお、第 1及び第 2の電位 VI、 V2は、これに限定されるも のではなぐ任意である。  [0025] Here, the first potential VI and the second potential V2 are different potentials. For example, the power supply voltage VDD may be used for the first potential V 1, and the reference potential VSS (ground level GND or the like) may be used for the second potential V 2. The first and second potentials VI and V2 are not limited to these and are arbitrary.
[0026] また、差動入力バッファ回路 1の 1対の信号入力端子 INP1、 INN1間に終端抵抗 Rtが接続される。具体的には、終端抵抗 Rtの一端が正論理信号入力端子 INP1と 抵抗 R3との相互接続点に接続され、他端が負論理信号入力端子 INN1と抵抗 R4と の相互接続点に接続される。この終端抵抗 Rtは、例えば差動伝送の伝送方式の規 格等により定められるものである。 Further, a termination resistor Rt is connected between the pair of signal input terminals INP1 and INN1 of the differential input buffer circuit 1. Specifically, one end of the termination resistor Rt is connected to the interconnection point between the positive logic signal input terminal INP1 and the resistor R3, and the other end is connected to the interconnection point between the negative logic signal input terminal INN1 and the resistor R4. . This termination resistor Rt is, for example, a standard for differential transmission. It is determined by the case.
[0027] 上述のように構成した差動入力バッファ回路 1において、 1対の信号入力端子 INPIn the differential input buffer circuit 1 configured as described above, a pair of signal input terminals INP
1、 INN1より入力された差動信号は、それぞれ抵抗 R3、 R4を介してオペアンプ 10 の入力端子 INP2、 INN2に入力される。そして、オペアンプ 10により増幅され出力 端子 OUTより出力される。 1. The differential signals input from INN1 are input to the input terminals INP2 and INN2 of the operational amplifier 10 via resistors R3 and R4, respectively. Then, it is amplified by the operational amplifier 10 and output from the output terminal OUT.
[0028] ここで、 1対の信号入力端子 INP1、INN1に対して外部力も差動信号を入力する ための接続線 (ケーブルなど)が取り外されたりして、差動入カノッファ回路 1の入力 がオープン状態になった場合について説明する。 [0028] Here, the connection line (cable, etc.) for inputting the differential signal is also removed from the pair of signal input terminals INP1 and INN1, and the input of the differential input canoffer circuit 1 is The case where it will be in an open state is demonstrated.
[0029] 図 1に示すように、本実施形態における差動入力バッファ回路 1においては、第 1の 電位 VIと第 2の電位 V2との間に抵抗 Rl、 R3、 Rt、 R4、 R2が直列に接続されてい る。その抵抗 R1と R3の相互接続点にオペアンプ 10の正論理入力端子 INP2が接続 され、抵抗 R4と R2の相互接続点にオペアンプ 10の負論理入力端子 INN2が接続さ れている。 As shown in FIG. 1, in the differential input buffer circuit 1 according to the present embodiment, resistors Rl, R3, Rt, R4, and R2 are connected in series between the first potential VI and the second potential V2. It is connected to the. The positive logic input terminal INP2 of the operational amplifier 10 is connected to the interconnection point of the resistors R1 and R3, and the negative logic input terminal INN2 of the operational amplifier 10 is connected to the interconnection point of the resistors R4 and R2.
[0030] したがって、差動入力バッファ回路 1の入力がオープン状態になった場合には、ォ ぺアンプ 10の入力端子 INP2、 INN2は互いに異なる所定電位に固定される。具体 的には、オペアンプ 10の入力端子 INP2が抵抗 R1と R3の相互接続点における電位 になり、オペアンプ 10の入力端子 INN2が抵抗 R4と R2の相互接続点における電位 になる。  [0030] Therefore, when the input of the differential input buffer circuit 1 is in an open state, the input terminals INP2 and INN2 of the op-amp 10 are fixed at different predetermined potentials. Specifically, the input terminal INP2 of the operational amplifier 10 becomes the potential at the interconnection point of the resistors R1 and R3, and the input terminal INN2 of the operational amplifier 10 becomes the potential at the interconnection point of the resistors R4 and R2.
[0031] すなわち、オペアンプ 10の入力端子 INP2、 INN2間には、直列接続された抵抗 R 3、 Rt、 R4の両端における電位差が生じる。したがって、差動入力バッファ回路 1の 入力がオープン状態になっても、オペアンプ 10の入力が安定してその動作が不安 定〖こなることを防止することができる。  That is, a potential difference occurs between both ends of the resistors R 3, Rt, and R 4 connected in series between the input terminals INP 2 and INN 2 of the operational amplifier 10. Therefore, even if the input of the differential input buffer circuit 1 is in an open state, it is possible to prevent the input of the operational amplifier 10 from being stable and unstable.
[0032] ここで、図 1に示した差動入力バッファ回路において、出力端子 OUTから安定した 出力を得るために必要なオペアンプ 10の入力端子 INP2、 INN2間の電位差を Voff setとすると、この電位差 Voff setを生じさせるには、式(2)により示される電流 IIが必 要となる。  Here, in the differential input buffer circuit shown in FIG. 1, if the potential difference between the input terminals INP2 and INN2 of the operational amplifier 10 necessary for obtaining a stable output from the output terminal OUT is Voff set, this potential difference In order to generate Voff set, the current II shown by Equation (2) is required.
11 = (Voffset) / (R3+R4+Rt) · ,· (2)  11 = (Voffset) / (R3 + R4 + Rt),, (2)
[0033] 上述した式(1)と比較すれば明らかなように、オペアンプ 10の入力端子 INP2、 IN N2間に電位差 Voff setを生じさせるための電流 IIは、従来必要とされた電流 12と比 較して非常に小さくなる。したがって、本実施形態によれば、差動入力バッファ回路 の入力がオープン状態になったとしても、小さい消費電流で、安定した出力を得るこ とがでさる。 [0033] As is clear from the above equation (1), the input terminals INP2 and INP of the operational amplifier 10 The current II for generating the potential difference Voff set between N2 is much smaller than the current 12 that has been required conventionally. Therefore, according to this embodiment, even if the input of the differential input buffer circuit is in an open state, a stable output can be obtained with a small current consumption.
[0034] また、本実施形態によれば、抵抗 Rl、 R2を終端抵抗 Rtとオペアンプ 10の入力端 子 INP2、 INN2との間に抵抗 R3、 R4を介して接続することにより、従来と比較して、 抵抗 Rl、 R2の抵抗値を大きくすることが可能になり、データ伝送において差動伝送 システム上の伝送波形や電圧等の伝送特性に及ぼす影響を抑制することができる。  [0034] Further, according to the present embodiment, the resistors Rl and R2 are connected between the terminating resistor Rt and the input terminals INP2 and INN2 of the operational amplifier 10 via the resistors R3 and R4. Thus, the resistance values of the resistors Rl and R2 can be increased, and the influence on the transmission characteristics such as the transmission waveform and voltage on the differential transmission system in data transmission can be suppressed.
[0035] (第 2の実施形態)  [0035] (Second Embodiment)
次に、本発明の第 2の実施形態について説明する。  Next, a second embodiment of the present invention will be described.
以下に説明する第 2の実施形態は、上述した第 1の実施形態における抵抗 Rl、 R2 を、それぞれ MOS (metal oxide semiconductor)トランジスタにより構成したものであ る。  In the second embodiment described below, the resistors Rl and R2 in the first embodiment described above are configured by MOS (metal oxide semiconductor) transistors, respectively.
[0036] 図 2は、第 2の実施形態による半導体装置を適用した差動入力バッファ回路の構成 例を示す図である。この図 2において、図 1に示した構成要素と同一の構成要素には 同一の符号を付し、重複する説明は省略する。  FIG. 2 is a diagram illustrating a configuration example of a differential input buffer circuit to which the semiconductor device according to the second embodiment is applied. In FIG. 2, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
[0037] 図 2に示す差動入力バッファ回路において、 Ml、 M2は MOSトランジスタであり、 図 1に示した第 1の実施形態における抵抗 Rl、 R2にそれぞれ対応する。すなわち、 MOSトランジスタ Mlのソース、ドレインの一方がオペアンプ 10の正論理入力端子 I NP2に接続され、他方に第 1の電位 VIが供給される。同様に、 MOSトランジスタ M 2のソース、ドレインの一方がオペアンプ 10の負論理入力端子 INN2に接続され、他 方に第 2の電位 V2が供給される。  In the differential input buffer circuit shown in FIG. 2, Ml and M2 are MOS transistors, which correspond to the resistors Rl and R2 in the first embodiment shown in FIG. That is, one of the source and drain of the MOS transistor Ml is connected to the positive logic input terminal I NP2 of the operational amplifier 10, and the first potential VI is supplied to the other. Similarly, one of the source and drain of the MOS transistor M2 is connected to the negative logic input terminal INN2 of the operational amplifier 10, and the second potential V2 is supplied to the other.
[0038] 図 2に示す差動入力バッファ回路の動作は、上述した第 1の実施形態と同様である ので説明は省略する。  Since the operation of the differential input buffer circuit shown in FIG. 2 is the same as that of the first embodiment described above, description thereof is omitted.
[0039] 第 2の実施形態においても、差動入力バッファ回路の入力がオープン状態になると 、オペアンプ 10の入力端子 INP2、 INN2間には、直列接続された抵抗 R3、 Rt、 R4 の両端における電位差が生じる。また、オペアンプ 10の入力端子 INP2、 INN2間に 電位差 Voff setを生じさせるのに必要な電流は、(Voff set) / (R3+R4+Rt)であ る。すなわち、第 2の実施形態においても上述した第 1の実施形態と同様の効果が得 られる。例えば、差動入力バッファ回路の入力がオープン状態になっても、小さい消 費電流でオペアンプ 10の入力を安定させて動作が不安定になることを防止し、安定 した出力を得ることができる。 [0039] Also in the second embodiment, when the input of the differential input buffer circuit is in an open state, the potential difference between both ends of the resistors R3, Rt, and R4 connected in series is between the input terminals INP2 and INN2 of the operational amplifier 10. Occurs. In addition, the current required to generate the potential difference Voff set between the input terminals INP2 and INN2 of the operational amplifier 10 is (Voff set) / (R3 + R4 + Rt). The That is, the same effect as that of the first embodiment described above can be obtained in the second embodiment. For example, even if the input of the differential input buffer circuit is in an open state, it is possible to stabilize the input of the operational amplifier 10 with a small current consumption to prevent the operation from becoming unstable, and to obtain a stable output.
[0040] 図 3は、第 2の実施形態における差動入カノッファ回路の具体的な構成の一例を 示す図である。この図 3において、図 1、図 2に示した構成要素と同一の機能を有する 構成要素には同一の符号を付し、重複する説明は省略する。  FIG. 3 is a diagram illustrating an example of a specific configuration of the differential input canoffer circuit according to the second embodiment. In FIG. 3, constituent elements having the same functions as those shown in FIGS. 1 and 2 are given the same reference numerals, and redundant descriptions are omitted.
[0041] 図 3に示す差動入力バッファ回路は、図 2に示した差動入力バッファ回路における タ M2として Nチャネル MOSトランジスタ NT1を用いたものである。  The differential input buffer circuit shown in FIG. 3 uses an N-channel MOS transistor NT1 as the data M2 in the differential input buffer circuit shown in FIG.
[0042] すなわち、 Pチャネル MOSトランジスタ PT1のソース及びドレインの一方がォペア ンプ 10の正論理入力端子 INP2に接続され、他方に第 1の電位 VIが供給される。ま た、 Pチャネル MOSトランジスタ PT1のゲートには制御電圧 VC1が供給される。  That is, one of the source and drain of the P-channel MOS transistor PT1 is connected to the positive logic input terminal INP2 of the op amp 10, and the first potential VI is supplied to the other. The control voltage VC1 is supplied to the gate of the P-channel MOS transistor PT1.
[0043] 同様に、 Nチャネル MOSトランジスタ NT1のソース及びドレインの一方がオペアン プ 10の負論理入力端子 INN2に接続され、他方に第 2の電位 V2が供給される。また 、 Nチャネル MOSトランジスタ NT1のゲートには制御電圧 VC2が供給される。  Similarly, one of the source and the drain of the N-channel MOS transistor NT1 is connected to the negative logic input terminal INN2 of the op amp 10, and the second potential V2 is supplied to the other. The control voltage VC2 is supplied to the gate of the N-channel MOS transistor NT1.
[0044] 図 3に示す差動入力バッファ回路においては、抵抗 Rl、 R2に相当する MOSトラン ジスタ PT1、 NT1をスイッチング素子として用い、制御電圧 VC1、 VC2によりユーザ 一側で MOSトランジスタ PT1、 NT1を制御することが可能になる。なお、制御電圧 V Cl、 VC2としては、使用状況等に応じて任意の電圧を供給するようにすれば良い。  [0044] In the differential input buffer circuit shown in Fig. 3, MOS transistors PT1 and NT1 corresponding to resistors Rl and R2 are used as switching elements, and MOS transistors PT1 and NT1 are controlled on the user side by control voltages VC1 and VC2. It becomes possible to control. Note that any voltage may be supplied as the control voltages V Cl and VC2 depending on the use situation or the like.
[0045] 図 4は、第 2の実施形態における差動入カノッファ回路の具体的な構成の他の例 を示す図である。この図 4において、図 1、図 2に示した構成要素と同一の機能を有 する構成要素には同一の符号を付し、重複する説明は省略する。  FIG. 4 is a diagram showing another example of a specific configuration of the differential input canoffer circuit according to the second embodiment. In FIG. 4, components having the same functions as those shown in FIGS. 1 and 2 are given the same reference numerals, and redundant descriptions are omitted.
[0046] 図 4に示す差動入力バッファ回路は、図 2に示した差動入力バッファ回路における MOSトランジスタ Ml、 M2として Nチャネル MOSトランジスタ NT2、 NT3を用いたも のである。  The differential input buffer circuit shown in FIG. 4 uses N-channel MOS transistors NT2 and NT3 as MOS transistors M1 and M2 in the differential input buffer circuit shown in FIG.
[0047] すなわち、 Nチャネル MOSトランジスタ NT2のソース及びドレインの一方がォペア ンプ 10の正論理入力端子 INP2に接続され、他方に第 1の電位 VIが供給される。ま た、 Nチャネル MOSトランジスタ NT2のゲートには制御電圧 VC3が供給される。 That is, one of the source and drain of the N-channel MOS transistor NT2 is connected to the positive logic input terminal INP2 of the op amp 10, and the first potential VI is supplied to the other. Ma The control voltage VC3 is supplied to the gate of the N-channel MOS transistor NT2.
[0048] 同様に、 Nチャネル MOSトランジスタ NT3のソース及びドレインの一方がオペアン プ 10の負論理入力端子 INN2に接続され、他方に第 2の電位 V2が供給される。また 、 Nチャネル MOSトランジスタ NT3のゲートには制御電圧 VC4が供給される。 Similarly, one of the source and drain of the N-channel MOS transistor NT3 is connected to the negative logic input terminal INN2 of the op amp 10, and the second potential V2 is supplied to the other. The control voltage VC4 is supplied to the gate of the N-channel MOS transistor NT3.
[0049] 図 4に示す差動入力バッファ回路においては、抵抗 Rl、 R2に相当する MOSトラン ジスタ NT2、 NT3をスイッチング素子として用い、制御電圧 VC3、 VC4によりユーザ 一側で MOSトランジスタ NT2、 NT3を制御することが可能になる。なお、制御電圧 V C3、 VC4としては、使用状況等に応じて任意の電圧を供給するようにすれば良い。 容易となる。 [0049] In the differential input buffer circuit shown in Fig. 4, MOS transistors NT2 and NT3 corresponding to resistors Rl and R2 are used as switching elements, and MOS transistors NT2 and NT3 are controlled on the user side by control voltages VC3 and VC4. It becomes possible to control. As the control voltages V C3 and VC4, any voltage may be supplied according to the usage situation. It becomes easy.
[0050] (第 3の実施形態) [0050] (Third embodiment)
次に、本発明の第 3の実施形態について説明する。  Next, a third embodiment of the present invention will be described.
以下に説明する第 3の実施形態は、上述した第 1の実施形態における抵抗 R3、 R4 を、それぞれ MOSトランジスタにより構成したものである。  In the third embodiment described below, the resistors R3 and R4 in the first embodiment described above are configured by MOS transistors, respectively.
[0051] 図 5は、第 3の実施形態による半導体装置を適用した差動入力バッファ回路の構成 例を示す図である。この図 5において、図 1に示した構成要素と同一の構成要素には 同一の符号を付し、重複する説明は省略する。  FIG. 5 is a diagram illustrating a configuration example of a differential input buffer circuit to which the semiconductor device according to the third embodiment is applied. In FIG. 5, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.
[0052] 図 5に示す差動入力バッファ回路において、 M3、 M4は MOSトランジスタであり、 図 1に示した第 1の実施形態における抵抗 R3、 R4にそれぞれ対応する。すなわち、 正論理信号入力端子 INP1とオペアンプ 10の正論理入力端子 INP2が MOSトラン ジスタ M3を介して接続され、負論理信号入力端子 INN1とオペアンプ 10の負論理 入力端子 INN2が MOSトランジスタ M4を介して接続される。  In the differential input buffer circuit shown in FIG. 5, M3 and M4 are MOS transistors, and correspond to the resistors R3 and R4 in the first embodiment shown in FIG. That is, the positive logic signal input terminal INP1 and the positive logic input terminal INP2 of the operational amplifier 10 are connected via the MOS transistor M3, and the negative logic signal input terminal INN1 and the negative logic input terminal INN2 of the operational amplifier 10 are connected via the MOS transistor M4. Connected.
[0053] 具体的には、 MOSトランジスタ M3のソース及びドレインの一方が正論理信号入力 端子 INP1に接続され、他方がオペアンプ 10の正論理入力端子 INP2に接続される 。同様に、 MOSトランジスタ M4のソース及びドレインの一方が負論理信号入力端子 INN1に接続され、他方がオペアンプ 10の負論理入力端子 INN2に接続される。  Specifically, one of the source and drain of the MOS transistor M3 is connected to the positive logic signal input terminal INP1, and the other is connected to the positive logic input terminal INP2 of the operational amplifier 10. Similarly, one of the source and drain of the MOS transistor M4 is connected to the negative logic signal input terminal INN1, and the other is connected to the negative logic input terminal INN2 of the operational amplifier 10.
[0054] 図 5に示す差動入力バッファ回路の動作は、上述した第 1の実施形態と同様である ので説明は省略する。 [0055] 第 3の実施形態においても、差動入力バッファ回路の入力がオープン状態になると 、オペアンプ 10の入力端子 INP2、 INN2間には、 MOSトランジスタ M3、 M4及び 終端抵抗 Rtにより電位差が生じる。また、 MOSトランジスタ M3、 M4の抵抗値を R3, 、 R4'とすると、オペアンプ 10の入力端子 INP2、 INN2間に電位差 Voffsetを生じさ せるのに必要な電流は、 (Voffset) / (R3' +R4, +Rt)である。したがって、第 3の 実施形態においても上述した第 1の実施形態と同様の効果が得られる。 Since the operation of the differential input buffer circuit shown in FIG. 5 is the same as that of the first embodiment described above, description thereof is omitted. Also in the third embodiment, when the input of the differential input buffer circuit is in an open state, a potential difference is generated between the input terminals INP2 and INN2 of the operational amplifier 10 due to the MOS transistors M3 and M4 and the termination resistor Rt. If the resistance values of the MOS transistors M3 and M4 are R3, R4 ', the current required to generate the potential difference Voffset between the input terminals INP2 and INN2 of the operational amplifier 10 is (Voffset) / (R3' + R4, + Rt). Therefore, the same effects as those of the first embodiment described above can be obtained in the third embodiment.
[0056] 図 6は、第 3の実施形態における差動入カノ ッファ回路の具体的な構成の一例を 示す図である。この図 6において、図 1、図 5に示した構成要素と同一の機能を有する 構成要素には同一の符号を付し、重複する説明は省略する。  FIG. 6 is a diagram illustrating an example of a specific configuration of the differential input canffer circuit according to the third embodiment. In FIG. 6, constituent elements having the same functions as those shown in FIGS. 1 and 5 are given the same reference numerals, and redundant descriptions are omitted.
[0057] 図 6に示す差動入力バッファ回路は、図 5に示した差動入力バッファ回路における MOSトランジスタ M3、 M4として Nチャネル MOSトランジスタ NT4、 NT5を用いたも のである。  The differential input buffer circuit shown in FIG. 6 uses N-channel MOS transistors NT4 and NT5 as the MOS transistors M3 and M4 in the differential input buffer circuit shown in FIG.
[0058] すなわち、 Nチャネル MOSトランジスタ NT4のソース及びドレインの一方が正論理 信号入力端子 INP1に接続され、他方がオペアンプ 10の正論理入力端子 INP2に 接続される。同様に、 Nチャネル MOSトランジスタ NT5のソース及びドレインの一方 が負論理信号入力端子 INN1に接続され、他方がオペアンプ 10の負論理入力端子 INN2に接続される。  That is, one of the source and drain of the N-channel MOS transistor NT4 is connected to the positive logic signal input terminal INP1, and the other is connected to the positive logic input terminal INP2 of the operational amplifier 10. Similarly, one of the source and drain of the N-channel MOS transistor NT5 is connected to the negative logic signal input terminal INN1, and the other is connected to the negative logic input terminal INN2 of the operational amplifier 10.
[0059] ここで、上述したように差動信号を構成する 2信号の伝送経路が不均衡となることを 防止するために、 Nチャネル MOSトランジスタ NT4、 NT5が示す抵抗値は同じであ ることが望ましい。そこで、 Nチャネル MOSトランジスタ NT4、 NT5を同じ特性を示す トランジスタで構成し、各ゲートには同じ制御電圧 VC5を供給する。  [0059] Here, in order to prevent the transmission paths of the two signals constituting the differential signal from becoming unbalanced as described above, the resistance values of the N-channel MOS transistors NT4 and NT5 must be the same. Is desirable. Therefore, N-channel MOS transistors NT4 and NT5 are composed of transistors having the same characteristics, and the same control voltage VC5 is supplied to each gate.
[0060] 図 6に示す差動入力バッファ回路においては、抵抗 R3、 R4に相当する MOSトラン ジスタ NT4、 NT5をスイッチング素子として用い、ユーザー側で制御電圧 VC5により 制御することが可能になる。また、 MOSトランジスタとして Nチャネル MOSトランジス タのみを用いることで製造が容易となる。  In the differential input buffer circuit shown in FIG. 6, the MOS transistors NT4 and NT5 corresponding to the resistors R3 and R4 are used as switching elements, and can be controlled by the control voltage VC5 on the user side. In addition, using only an N-channel MOS transistor as the MOS transistor facilitates manufacturing.
[0061] 図 7は、第 3の実施形態における差動入カノッファ回路の具体的な構成の他の例 を示す図である。この図 7において、図 1、図 5に示した構成要素と同一の機能を有 する構成要素には同一の符号を付し、重複する説明は省略する。 [0062] 図 7に示す差動入力バッファ回路は、図 5に示した差動入力バッファ回路における MOSトランジスタ M3、 M4として Pチャネル MOSトランジスタ PT2、 ΡΤ3を用いたも のである。 FIG. 7 is a diagram showing another example of a specific configuration of the differential input canoffer circuit according to the third embodiment. In FIG. 7, constituent elements having the same functions as those shown in FIGS. 1 and 5 are given the same reference numerals, and redundant descriptions are omitted. The differential input buffer circuit shown in FIG. 7 uses P-channel MOS transistors PT2 and PT3 as the MOS transistors M3 and M4 in the differential input buffer circuit shown in FIG.
[0063] すなわち、 Ρチャネル MOSトランジスタ ΡΤ2のソース及びドレインの一方が正論理 信号入力端子 INP1に接続され、他方がオペアンプ 10の正論理入力端子 ΙΝΡ2に 接続される。同様に、 Ρチャネル MOSトランジスタ ΡΤ3のソース及びドレインの一方 が負論理信号入力端子 INN1に接続され、他方がオペアンプ 10の負論理入力端子 ΙΝΝ2に接続される。  That is, one of the source and drain of the Ρchannel MOS transistor ΡΤ2 is connected to the positive logic signal input terminal INP1, and the other is connected to the positive logic input terminal ΙΝΡ2 of the operational amplifier 10. Similarly, one of the source and drain of the channel MOS transistor ΡΤ3 is connected to the negative logic signal input terminal INN1, and the other is connected to the negative logic input terminal ΙΝΝ2 of the operational amplifier 10.
[0064] ここで、上述したように差動信号を構成する 2信号の伝送経路が不均衡となることを 防止するために、 Ρチャネル MOSトランジスタ ΡΤ2、 ΡΤ3が示す抵抗値は同じである ことが望ましい。そこで、 Ρチャネル MOSトランジスタ ΡΤ2、 ΡΤ3を同じ特性を示すト ランジスタで構成し、各ゲートには同じ制御電圧 VC6を供給する。  Here, in order to prevent the transmission paths of the two signals constituting the differential signal from becoming unbalanced as described above, the resistance values indicated by the Ρchannel MOS transistors ΡΤ2 and ΡΤ3 must be the same. desirable. Therefore, Ρchannel MOS transistors ΡΤ2 and ΡΤ3 are composed of transistors having the same characteristics, and the same control voltage VC6 is supplied to each gate.
[0065] 図 7に示す差動入力バッファ回路においては、抵抗 R3、 R4に相当する MOSトラン ジスタ PT2、 ΡΤ3をスイッチング素子として用い、ユーザー側で制御電圧 VC6により 制御することが可能になる。  In the differential input buffer circuit shown in FIG. 7, the MOS transistors PT2 and ΡΤ3 corresponding to the resistors R3 and R4 are used as switching elements, and can be controlled on the user side by the control voltage VC6.
[0066] 図 8は、第 3の実施形態における差動入カノッファ回路の具体的な構成のその他 の例を示す図である。この図 8において、図 1、図 5に示した構成要素と同一の機能を 有する構成要素には同一の符号を付し、重複する説明は省略する。  FIG. 8 is a diagram showing another example of a specific configuration of the differential input canoffer circuit according to the third embodiment. In FIG. 8, components having the same functions as those shown in FIGS. 1 and 5 are given the same reference numerals, and redundant descriptions are omitted.
[0067] 図 8に示す差動入力バッファ回路は、図 5に示した差動入力バッファ回路における MOSトランジスタ Μ3、 Μ4として、 1つの Νチャネル MOSトランジスタ ΝΤ6、 ΝΤ7と 1 つの Ρチャネル MOSトランジスタ ΡΤ4、 ΡΤ5とからなるパストランジスタを用いたもの である。  [0067] The differential input buffer circuit shown in FIG. 8 includes one Ν-channel MOS transistor ΝΤ6 and ΝΤ7 and one Ρ-channel MOS transistor と し て 4, as MOS transistors Μ3 and Μ4 in the differential input buffer circuit shown in FIG. This uses a pass transistor consisting of ΡΤ5.
[0068] 具体的には、ソース同士が接続され、かつドレイン同士が接続された Νチャネル Μ OSトランジスタ ΝΤ6と Ρチャネル MOSトランジスタ ΡΤ4との組が、正論理信号入力 端子 INP1とオペアンプ 10の正論理入力端子 INP2との間に接続される。同様に、ソ ース同士が接続され、かつドレイン同士が接続された Nチャネル MOSトランジスタ N T7と Pチャネル MOSトランジスタ PT5との組力 負論理信号入力端子 INN1とオペ アンプ 10の負論理入力端子 INN2との間に接続される。 [0069] また、各パストランジスタが同じ抵抗値を示すように、 Nチャネル MOSトランジスタ N T6、NT7を同じ特性を示すトランジスタで構成して各ゲートに同じ制御電圧 VC7を 供給するとともに、 Pチャネル MOSトランジスタ PT4、 ΡΤ5を同じ特性を示すトランジ スタで構成して各ゲートに同じ制御電圧 VC8を供給する。これにより、差動信号を構 成する 2信号の伝送経路が不均衡となることを防止することができる。 [0068] Specifically, a pair of Νchannel Μ OS transistor ΝΤ6 and Ρchannel MOS transistor ΡΤ4 in which the sources are connected and the drains are connected is the positive logic signal input terminal INP1 and the operational amplifier 10 positive logic. Connected to the input terminal INP2. Similarly, a combination of an N-channel MOS transistor NT7 and a P-channel MOS transistor PT5, whose sources are connected and their drains are connected. Negative logic signal input terminal INN1 and negative logic input terminal of operational amplifier 10 INN2 Connected between. [0069] Further, N-channel MOS transistors NT6 and NT7 are composed of transistors having the same characteristics so that each pass transistor has the same resistance value, and the same control voltage VC7 is supplied to each gate. Transistors PT4 and ΡΤ5 are composed of transistors with the same characteristics, and the same control voltage VC8 is supplied to each gate. This prevents the transmission paths of the two signals that make up the differential signal from becoming unbalanced.
[0070] (第 4の実施形態)  [0070] (Fourth embodiment)
次に、本発明の第 4の実施形態について説明する。  Next, a fourth embodiment of the present invention will be described.
上述した第 1〜第 3の実施形態においては、差動入力バッファ回路は 1つの半導体 デバイスとして構成されるものとしていたが、以下に説明する第 4の実施形態は、差 動入力バッファ回路における終端抵抗を差動入力バッファ回路におけるその他の素 子が構成される半導体デバイス外部に設けるようにしたものである。  In the first to third embodiments described above, the differential input buffer circuit is configured as one semiconductor device. However, the fourth embodiment described below is a terminal in the differential input buffer circuit. A resistor is provided outside the semiconductor device in which other elements in the differential input buffer circuit are configured.
[0071] 図 9は、第 4の実施形態による半導体装置を適用した差動入力バッファ回路の構成 例を示す図である。この図 9において、図 1に示した構成要素と同一の構成要素には 同一の符号を付し、重複する説明は省略する。  FIG. 9 is a diagram illustrating a configuration example of a differential input buffer circuit to which the semiconductor device according to the fourth embodiment is applied. In FIG. 9, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted.
[0072] 図 9に示す差動入力バッファ回路においては、 1つの半導体デバイスとしてその内 部に破線枠 la内に含まれる素子が構成される。また、 Rtaは 1対の信号入力端子 IN Pl、 INNl間に接続された終端抵抗であり、図 1に示した第 1の実施形態における終 端抵抗 Rtに対応する。すなわち、終端抵抗 Rtaの一端が正論理信号入力端子 INP 1と抵抗 R3との相互接続点に接続され、他端が負論理信号入力端子 INN1と抵抗 R 4との相互接続点に接続される。  In the differential input buffer circuit shown in FIG. 9, the elements included in the broken line frame la are formed as one semiconductor device. Rta is a termination resistor connected between the pair of signal input terminals IN Pl and INN1, and corresponds to the termination resistor Rt in the first embodiment shown in FIG. That is, one end of the termination resistor Rta is connected to the interconnection point between the positive logic signal input terminal INP 1 and the resistor R3, and the other end is connected to the interconnection point between the negative logic signal input terminal INN1 and the resistor R4.
[0073] なお、図 9に示す差動入力バッファ回路は、終端抵抗 Rtaを半導体デバイスの外部 に設けることが異なるだけで、それ以外は上述した第 1の実施形態と構成及び動作 等は同様である。  Note that the differential input buffer circuit shown in FIG. 9 is the same in configuration and operation as the first embodiment described above except that the termination resistor Rta is provided outside the semiconductor device. is there.
[0074] したがって、第 4の実施形態においても、上述した第 1の実施形態と同様の効果が 得られる。さらに、差動入力バッファ回路における終端抵抗 Rtaを半導体デバイスの 外部に設けることで、終端抵抗 Rtaにおける特性バラツキを緩和して精度を向上させ ることができるとともに、ユーザー側で変更することが可能になる。  Therefore, also in the fourth embodiment, the same effect as in the first embodiment described above can be obtained. Furthermore, by providing the termination resistor Rta in the differential input buffer circuit outside the semiconductor device, it is possible to reduce the characteristic variation in the termination resistor Rta and improve the accuracy, and to change it on the user side. Become.
[0075] なお、図 9においては、図 1に示した第 1の実施形態における差動入力バッファ回 路の終端抵抗を半導体デバイス外部に設けた場合を一例として示したが、同様にし て、第 2及び第 3の実施形態における差動入力バッファ回路の終端抵抗を半導体デ バイス外部に設けるようにしても良 、。 In FIG. 9, the differential input buffer circuit in the first embodiment shown in FIG. Although the case where the termination resistance of the path is provided outside the semiconductor device is shown as an example, similarly, the termination resistance of the differential input buffer circuit in the second and third embodiments is provided outside the semiconductor device. Also good.
[0076] また、上述した各実施形態では、抵抗に代えて用いるトランジスタとして MOSトラン ジスタを用いている力 これに限定されるものではない。抵抗に代えて用いるトランジ スタとしては、例えば、任意の電界効果トランジスタ (FET)が適用可能である。 Further, in each of the above-described embodiments, the force using a MOS transistor as a transistor used instead of a resistor is not limited to this. As a transistor used in place of the resistor, for example, an arbitrary field effect transistor (FET) can be applied.
[0077] また、上記実施形態は、何れも本発明を実施するにあたっての具体化のほんの一 例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈され てはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴 力も逸脱することなぐ様々な形で実施することができる。 [0077] In addition, each of the above-described embodiments is merely an example of a specific example for carrying out the present invention, and the technical scope of the present invention should not be construed as being limited thereto. Is. That is, the present invention can be implemented in various forms without departing from the technical idea or the main characteristic power thereof.
産業上の利用可能性  Industrial applicability
[0078] 以上のように、本発明によれば、入力がオープン状態になった場合に、オペアンプ の入力端子間に対して直列に接続された第 3の抵抗と終端抵抗と第 4の抵抗とにより 、従来と比較して小さい消費電流でオペアンプの入力端子間に入力端子間に安定し た電位差を生じさせることができる。これにより、入力がオープン状態になったとしても 、小さい消費電流で安定した出力を得ることができる。 As described above, according to the present invention, when the input is in an open state, the third resistor, the termination resistor, and the fourth resistor connected in series with respect to the input terminals of the operational amplifier. As a result, a stable potential difference can be generated between the input terminals of the operational amplifier between the input terminals of the operational amplifier with a smaller current consumption than in the past. As a result, even when the input is in an open state, a stable output can be obtained with a small current consumption.

Claims

請求の範囲 The scope of the claims
[1] 1対の信号入力端子を有する半導体装置であって、  [1] A semiconductor device having a pair of signal input terminals,
オペアンプと、  An operational amplifier,
上記オペアンプの正論理入力端子に一端が接続され、他端に第 1の電位が供給さ れる第 1の抵抗と、  A first resistor having one end connected to the positive logic input terminal of the operational amplifier and a first potential supplied to the other end;
上記オペアンプの負論理入力端子に一端が接続され、他端に上記第 1の電位とは 異なる第 2の電位が供給される第 2の抵抗と、  A second resistor having one end connected to the negative logic input terminal of the operational amplifier and a second potential different from the first potential supplied to the other end;
上記オペアンプの正論理入力端子に一端が接続され、上記 1対の信号入力端子 の一方に他端が接続された第 3の抵抗と、  A third resistor having one end connected to the positive logic input terminal of the operational amplifier and the other end connected to one of the pair of signal input terminals;
上記オペアンプの負論理入力端子に一端が接続され、上記 1対の信号入力端子 の他方に他端が接続された第 4の抵抗と、  A fourth resistor having one end connected to the negative logic input terminal of the operational amplifier and the other end connected to the other of the pair of signal input terminals;
上記第 3及び第 4の抵抗の他端間に接続された終端抵抗とを有することを特徴とす る半導体装置。  A semiconductor device comprising: a terminating resistor connected between the other ends of the third and fourth resistors.
[2] 上記第 1の抵抗は第 1のトランジスタで構成され、上記第 2の抵抗は第 2のトランジス タで構成されていることを特徴とする請求項 1記載の半導体装置。  2. The semiconductor device according to claim 1, wherein the first resistor is constituted by a first transistor, and the second resistor is constituted by a second transistor.
[3] 上記第 1のトランジスタは Pチャネル MOSトランジスタであり、上記第 2のトランジスタ は Nチャネル MOSトランジスタであることを特徴とする請求項 2記載の半導体装置。 3. The semiconductor device according to claim 2, wherein the first transistor is a P-channel MOS transistor, and the second transistor is an N-channel MOS transistor.
[4] 上記第 1及び第 2のトランジスタは、 Nチャネル MOSトランジスタであることを特徴と する請求項 2記載の半導体装置。 4. The semiconductor device according to claim 2, wherein the first and second transistors are N-channel MOS transistors.
[5] 上記第 1及び第 2の抵抗の抵抗値を制御可能にしたことを特徴とする請求項 2記載 の半導体装置。 5. The semiconductor device according to claim 2, wherein resistance values of the first and second resistors can be controlled.
[6] 上記第 3の抵抗は第 1のトランジスタで構成され、上記第 4の抵抗は第 2のトランジス タで構成されていることを特徴とする請求項 1記載の半導体装置。  6. The semiconductor device according to claim 1, wherein the third resistor is constituted by a first transistor, and the fourth resistor is constituted by a second transistor.
[7] 上記第 1及び第 2のトランジスタは、 Nチャネル MOSトランジスタであることを特徴と する請求項 6記載の半導体装置。  7. The semiconductor device according to claim 6, wherein the first and second transistors are N-channel MOS transistors.
[8] 上記第 1及び第 2のトランジスタは、 Pチャネル MOSトランジスタであることを特徴と する請求項 6記載の半導体装置。  8. The semiconductor device according to claim 6, wherein the first and second transistors are P-channel MOS transistors.
[9] 上記第 1及び第 2のトランジスタは、それぞれ、ソースが互いに接続され、かつドレイ ンが互いに接続された 1組の Nチャネル MOSトランジスタと Pチャネル MOSトランジ スタであることを特徴とする請求項 6記載の半導体装置。 [9] The first and second transistors each have a source connected to each other and a drain. 7. The semiconductor device according to claim 6, wherein the semiconductor device is a pair of N-channel MOS transistor and P-channel MOS transistor connected to each other.
[10] 上記第 3及び第 4の抵抗の抵抗値を制御可能にしたことを特徴とする請求項 6記載 の半導体装置。 10. The semiconductor device according to claim 6, wherein the resistance values of the third and fourth resistors can be controlled.
[11] 上記第 3及び第 4の抵抗は、静電破壊防止用の保護抵抗を兼ねていることを特徴と する請求項 1記載の半導体装置。  [11] The semiconductor device according to [1], wherein the third and fourth resistors also serve as protective resistors for preventing electrostatic breakdown.
[12] 上記終端抵抗を除いて上記半導体装置が構成される半導体デバイスの外部に、 上記終端抵抗を設け、上記 1対の信号入力端子の各々に接続される伝送経路間に 上記終端抵抗が接続されていることを特徴とする請求項 1記載の半導体装置。  [12] The termination resistor is provided outside the semiconductor device constituting the semiconductor device except for the termination resistor, and the termination resistor is connected between transmission paths connected to the pair of signal input terminals. 2. The semiconductor device according to claim 1, wherein the semiconductor device is formed.
[13] 1対の信号入力端子を有する半導体装置であって、  [13] A semiconductor device having a pair of signal input terminals,
オペアンプと、  An operational amplifier,
上記オペアンプの正論理入力端子に一端が接続され、他端に第 1の電位が供給さ れる第 1の抵抗と、  A first resistor having one end connected to the positive logic input terminal of the operational amplifier and a first potential supplied to the other end;
上記オペアンプの負論理入力端子に一端が接続され、他端に上記第 1の電位とは 異なる第 2の電位が供給される第 2の抵抗と、  A second resistor having one end connected to the negative logic input terminal of the operational amplifier and a second potential different from the first potential supplied to the other end;
上記オペアンプの正論理入力端子又は負論理入力端子に一端が接続され、上記 1対の信号入力端子の一方に他端が接続された第 3の抵抗と、  A third resistor having one end connected to the positive logic input terminal or negative logic input terminal of the operational amplifier and the other end connected to one of the pair of signal input terminals;
上記第 3の抵抗の他端に一端が接続され、上記 1対の信号入力端子の他方に他端 が接続された終端抵抗とを有することを特徴とする半導体装置。  A semiconductor device comprising: a termination resistor having one end connected to the other end of the third resistor and the other end connected to the other of the pair of signal input terminals.
[14] 1対の信号入力端子を有する半導体装置であって、 [14] A semiconductor device having a pair of signal input terminals,
第 1の電位を供給する信号線と上記第 1の電位とは異なる第 2の電位を供給する信 号線との間に直列接続された第 1の抵抗、第 2の抵抗、終端抵抗、第 3の抵抗、及び 第 4の抵抗と、  A first resistor, a second resistor, a termination resistor, a third resistor connected in series between a signal line that supplies a first potential and a signal line that supplies a second potential different from the first potential. And the fourth resistor,
上記第 1の抵抗と上記第 2の抵抗の相互接続点に正論理入力端子が接続され、上 記第 3の抵抗と上記第 4の抵抗の相互接続点に負論理入力端子が接続されたオペ アンプとを有し、  A positive logic input terminal is connected to the interconnection point between the first resistor and the second resistor, and a negative logic input terminal is connected to the interconnection point between the third resistor and the fourth resistor. With an amplifier,
上記第 2の抵抗と上記終端抵抗の相互接続点、及び上記第 3の抵抗と上記終端抵 抗の相互接続点が上記 1対の信号入力端子に接続されていることを特徴とする半導 体装置。 An interconnection point between the second resistor and the termination resistor, and an interconnection point between the third resistor and the termination resistor are connected to the pair of signal input terminals. Body equipment.
上記第 1の抵抗と上記第 4の抵抗を組とし、上記第 2の抵抗と上記第 3の抵抗を組と して、少なくとも一方の組の各抵抗が電界効果トランジスタでそれぞれ構成されて ヽ ることを特徴とする請求項 14記載の半導体装置。  The first resistor and the fourth resistor may be used as a set, and the second resistor and the third resistor may be used as a set. At least one of the resistors may be configured by a field effect transistor. 15. The semiconductor device according to claim 14, wherein:
PCT/JP2005/015153 2005-08-19 2005-08-19 Semiconductor device WO2007020709A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/015153 WO2007020709A1 (en) 2005-08-19 2005-08-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/015153 WO2007020709A1 (en) 2005-08-19 2005-08-19 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2007020709A1 true WO2007020709A1 (en) 2007-02-22

Family

ID=37757381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015153 WO2007020709A1 (en) 2005-08-19 2005-08-19 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2007020709A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507933A (en) * 2008-10-30 2012-03-29 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Differential online termination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152357A (en) * 1980-04-25 1981-11-25 Nec Corp Offset potential applying method
JPS6035661U (en) * 1984-07-05 1985-03-12 日本電気株式会社 Offset potential application circuit
JPH05335932A (en) * 1992-06-02 1993-12-17 Nec Corp Signal transmission circuit
JPH0697967A (en) * 1992-09-10 1994-04-08 Nec Corp Data transmission system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152357A (en) * 1980-04-25 1981-11-25 Nec Corp Offset potential applying method
JPS6035661U (en) * 1984-07-05 1985-03-12 日本電気株式会社 Offset potential application circuit
JPH05335932A (en) * 1992-06-02 1993-12-17 Nec Corp Signal transmission circuit
JPH0697967A (en) * 1992-09-10 1994-04-08 Nec Corp Data transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507933A (en) * 2008-10-30 2012-03-29 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. Differential online termination

Similar Documents

Publication Publication Date Title
KR100747328B1 (en) Differential amplifier 0perable in wide range
JP3967321B2 (en) Semiconductor integrated circuit
JP4766769B2 (en) Semiconductor integrated circuit
JP3334548B2 (en) Constant current drive circuit
US9136904B2 (en) High bandwidth equalizer and limiting amplifier
US6611157B2 (en) Differential signal output circuit
JP5372464B2 (en) Differential output buffer
JP4744325B2 (en) Signal amplifier
US7550999B2 (en) Receiver capable of increasing operation speed with suppressing increase of power consumption
JP6498386B2 (en) Mismatched differential circuit
US8405460B2 (en) Circuitry for biasing amplifiers
US6538513B2 (en) Common mode output current control circuit and method
US20110291759A1 (en) Rail-to-rail amplifier
US10389373B2 (en) Current source noise cancellation
US8008972B2 (en) Differential signal generator circuit
EP1804375B1 (en) Differential amplifier circuit operable with wide range of input voltages
JP4371618B2 (en) Differential amplifier circuit
WO2007020709A1 (en) Semiconductor device
US7130412B2 (en) Telecommunication line driver having synthesized output impedance derived from output current sensing circuit
US6686794B1 (en) Differential charge pump
US6798263B1 (en) Reset feature for a low voltage differential latch
US6636109B2 (en) Amplification circuit with constant output voltage range
JP2020048060A (en) Semiconductor integrated circuit, receiver, and communication system
JP4841343B2 (en) Receiver amplifier circuit
US10128824B2 (en) Common-mode clamping circuit and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05772800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP