WO2007017588A1 - Spectrographe à onde contra-propagative - Google Patents

Spectrographe à onde contra-propagative Download PDF

Info

Publication number
WO2007017588A1
WO2007017588A1 PCT/FR2006/001908 FR2006001908W WO2007017588A1 WO 2007017588 A1 WO2007017588 A1 WO 2007017588A1 FR 2006001908 W FR2006001908 W FR 2006001908W WO 2007017588 A1 WO2007017588 A1 WO 2007017588A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
spectrograph
waves
wave
interferogram
Prior art date
Application number
PCT/FR2006/001908
Other languages
English (en)
Inventor
Etienne Lecoarer
Pierre Benech
Pierre Kern
Gilles Lerondel
Sylvain Blaize
Alain Morand
Original Assignee
Universite Joseph Fourier
Institut National Polytechnique De Grenoble
Universite De Technologie De Troyes
Centre National De La Recherche Scientifique - Cnrs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Joseph Fourier, Institut National Polytechnique De Grenoble, Universite De Technologie De Troyes, Centre National De La Recherche Scientifique - Cnrs filed Critical Universite Joseph Fourier
Priority to EP06794294.6A priority Critical patent/EP1913350B8/fr
Priority to JP2008525597A priority patent/JP5363104B2/ja
Priority to US12/063,214 priority patent/US7995211B2/en
Priority to ES06794294.6T priority patent/ES2575452T3/es
Priority to CA2617959A priority patent/CA2617959C/fr
Publication of WO2007017588A1 publication Critical patent/WO2007017588A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4531Devices without moving parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • G01J3/0259Monolithic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • G01J3/453Interferometric spectrometry by correlation of the amplitudes
    • G01J3/4532Devices of compact or symmetric construction

Definitions

  • the present invention relates to the field of optics.
  • the present invention relates more particularly to a Fourier transform spectrograph in guided optics using contra-propagative waves.
  • the interferogram obtained remains confined in the guide and is not accessible "for spectrometric measurements.
  • the prior art also knows a contra-propagative wave spectrograph described by the publication of Froggat and Amsterdam (Froggat, M. and Amsterdam, T., All-fiber wavemeter and Fourier-transform spectrometer, Optics Letters, 24, 942-944 (1999)).
  • the interferogram as recorded on the detector depends on this angle and the pitch of the Bragg grating.
  • Froggat obtains a period of the fringes: P Progatt ⁇ l / 2 (n eff - ⁇ / ⁇ ).
  • the interferogram obtained in the above-mentioned Labeyrie publication depends solely on the difference in the path of the waves from their point of division. For example in the case of a monochromatic wave, '
  • a propagating wave associated with the injected signal is created. This propagating wave is distinct from the interference field and does not give direct access to the interferogram located in the guide.
  • the system and in particular the periodic Bragg structure, disturbs the wave inside the guide.
  • the invention aims in particular to overcome these disadvantages.
  • the present invention therefore intends to allow access to this interferogram for guided contra-propagative waves.
  • Access to the interference interferogram of contra-propagating waves also has the advantage of not requiring any mobile part for the observation, as is the case, for example, in a Michelson type interferometer.
  • the present invention relates to a spectrograph 11 comprising a waveguide 10 provided with two accesses, a means for injecting two counter-propagating guided waves by each of said accesses so as to create a spatial interference within said guide means for detecting the energy of the evanescent wave of the guided field resulting from the interference of said counter-propagative waves.
  • the interferogram located in the guide is accessed via the evanescent wave of the guided field, which gives real access to this interferogram.
  • said detection means comprises at least one plane guide (14, 14a, 14b) located near said guide and at least one photodetector arranged to detect a wave at the output of said plane guide.
  • said detection means comprises a plurality of local detectors distributed between the two accesses of said guide.
  • said detection means comprises at least one fixed or mobile scattering tip and at least one photodetector.
  • said means for injecting the two waves is a wave separator arranged so as to direct the two parts of the same wave along the two accesses of said waveguide.
  • the invention also relates to a spectroscopic imaging system comprising a plurality of spectrographs according to the invention, arranged in a matrix, the injection means being in the focal plane of an input optics.
  • FIG. 1 illustrates a first embodiment of FIG. the invention in the case of a closed loop counter-propagative spectrograph
  • FIG. 2 illustrates a second embodiment of the invention with detection on an inclined plane
  • Figure 3 illustrates an embodiment of the invention with two prisms
  • FIG. 4 illustrates an embodiment of the invention for a two-input guide
  • FIG. 5 illustrates an embodiment of the invention in which the detection is carried out by a plurality of local detectors located in the evanescent field
  • FIG. 6 illustrates an embodiment of the invention in which the detection is carried out by a scattering tip
  • FIG. 7 illustrates an embodiment of the invention comprising means for varying the phase of the signals
  • FIG. 8 illustrates an embodiment of the invention in which a loop guide and a plurality of local detectors are used
  • FIG. 9 illustrates another embodiment of the invention for a closed loop and a means for varying the phase.
  • the light to be analyzed is introduced into the device 11 at the end of the waveguide 10 either by the connectorisation of an optical fiber or by an injection using an optical fiber device. volume or any other light injection system guided or not.
  • the light propagates to component 12 which separates the wave into two parts.
  • the interferogram is built around the zone 13 which ensures an evanescent wave decoupling of the light of the curved guide.
  • the component 12 ensures the passage of the waves by two separate access means of the guide 10 at the zone 13.
  • the oscillating function illustrated in FIG. 1 at the level of the zone 13 represents the interferogram present in the interference zone 13.
  • the zone 13 is located equidistant from the separation zone 12 of the wave along the two paths connecting them.
  • the device 11 also comprises a plane guide zone 14 so that the light present in the curved guide can leak in the zone 14 radially so that the part of the interferogram that was present in the curved guide is guided.
  • a plane guide zone 14 so that the light present in the curved guide can leak in the zone 14 radially so that the part of the interferogram that was present in the curved guide is guided.
  • R (x) / r where x is the coordinate along the edge, r is the radius of curvature of the guide, and R (x) is the radial distance between the coordinate point x and the center of curvature of the part of the guide that corresponds to it.
  • the pitch of the fringes is adjustable as a function of the ratio of distance R / r of the edge to the center of curvature of the loop, which makes it possible to sample correctly in the sense of Shannon.
  • the zone 14 corresponds for example to a plane guide juxtaposed with the curved guide for controlling the leakage rate of the light coming from the curved guide and for guiding the light to the edge of the component 17. It is understood that for a non-curved guide, the prism 14 can also be used to delocalize the detection.
  • the evanescent wave of the guided field resulting from the interference of the contra-propagative waves is converted into a propagating wave to relocate the detection.
  • Photosensitive detection means 16 is fitted along the tangent zone of the support so as to detect the part of the interferogram extracted from the guide.
  • the reconstruction of the signal must take into account the geometric transformation that projects the curvilinear abscissa along the guide to the x coordinate.
  • x represents the projection geometric distance of the interferogram on the edge of the component .
  • the amount of light extracted from the guide in the decoupling zone 13 of the guide 10 depends on a geometric adaptation or refractive index between the curved guide and the plane guide. It is thus possible to modulate the amount of light that must leak in each location of 13, which thus makes it possible to act on the apodization of the interferogram sampled at the edge of the support 17. Thus a constant adaptation of the leakage rate will lead to has a decreasing exponential distribution of light along the curved guide in area 13 which depends on the direction of arrival of the wave in this part.
  • the size of the system depends on the spacing between the image elements of the detector (pixel). The dimensioning is done for example in the following way:
  • the detector In the frequency range to be analyzed, the detector must be sensitive and the waveguides must be single-mode and propagative.
  • the operating wavelength range is then defined by ⁇ , _ in and X j113x .
  • the sampling at the center of the interferogram must make it possible to place two pixels for a distance which corresponds to the interfrange at the wavelength ⁇ tain / 4 in the medium of index n multiplied by the magnification G due to the plane guide 14 by virtue of Shannon's broadband theorem.
  • the aperture angle A of the prism 14 must correspond to the length of the detector referred to the center of curvature of the loop of the counterpropagating guide.
  • the curvature r of the guide as well as the exact shape of the plane guide 14 is dictated by an electromagnetic calculation known for example in the publication by KR Hiremath et al (KR Hiremath, M. Hammer, R. Stoffer, L. Prkna, J. Ctyroky, Analytical approach to dielectric optical bent slab Optical waveguides and Quantum Electronics 37 (1-3), 37-61 (2005)) depending on the leakage rate that is desired.
  • the guiding zone 14 has an asymmetric shape so that an interferogram can be asymmetrically recorded with respect to the central fringe. Moreover, by cutting the plane 17 obliquely with respect to the symmetry of the system, the fringes corresponding to the center of the interferogram which are richer in information on the spectrum will be better sampled to the detriment of the sampling of the high frequencies which sometimes present a less interest.
  • the spectrograph according to the invention may also comprise a plurality of prisms 14a, 14b, associated with a plurality of detectors 16a, 16b, in order to sample several distinct parts of the interferogram.
  • FIG. 4 it is possible to divide the wave beforehand before the injection in the two accesses of the guide 10a and 10b.
  • This configuration is particularly optimized for measuring the phase of the interferogram.
  • the symmetry of the system ensures a perfect achromaticity, thus an insensitivity of the measurement of the phase to the fluctuation of the wavelengths in the signal to be measured.
  • this variation of the optical path can be a wave separator and delay line system such as a Michelson assembly for example.
  • This variation makes it possible to record other parts of the interferogram and thus to increase the spectral resolution of the system or to improve the sampling of the interferogram.
  • the previously divided wave is injected into the component at 10a and at 10b by the two accesses of a waveguide 10, the wave interferes in the guide and detectors, scattering points or bolometers 19 are placed at the surface of the guide and therefore are sensitive to a fraction of the field present inside the guide.
  • a plurality of fixed local detectors 19 are positioned outside the guide 10.
  • To produce these local detectors it is possible, for example, to use a material sensitive to evanescent waves coming from the guide 10. The detectors 19 then sample the intensity evanescent waves.
  • the detectors are spaced a distance substantially equal to ⁇ / 4, in order to reconstruct the corresponding signal.
  • this distance must be one quarter of the shortest wavelength of the spectrum under study. The lower wavelengths would then be detected with less efficiency or no longer contribute to the interference systems at all.
  • the detector layer 19 therefore comprises, for example, a plurality of equidistant local detectors, paying attention that a regular distribution can cause a disturbance of the transmission of the wave by a Bragg grating effect.
  • photoconductive pn junctions formed on a thinned semiconductor substrate comprising photodiodes and electrodes for collecting a current across the photodiodes.
  • This substrate is adjacent to waveguide 10 either by molecular adhesion or by bonding.
  • the detectors may also be microbolometers by superconducting wires forming a network distributed between the two opposite accesses of the waveguide 10.
  • microantrans photoconductors of the Selenium type or Josephson effect photodetectors.
  • the interferogram generated inside the guide 10 is highly sensitive to the phase difference existing between the two waves at the opposite inputs 10a and 10b of the structure: the interferogram moves along the guide in function of this phase shift. It is therefore possible to record the interferogram during its movement by means of a detector or a single fixed and movable diffuser point placed on the guide.
  • FIG. 7 One way of varying the phase inside the component is shown in FIG. 7, in the case opened by action on the optical path 21, the separation of the wave is external and injected at 10a and 10b. Detection of the interferogram is performed by the tip or the diffusing defect 20.
  • the invention also relates to a spectrometric imaging system comprising a plurality of spectrographs as previously described, arranged in a matrix.
  • the resulting system consists of two lenses that allows to adapt the wave to a single-mode guide.
  • a detector collection is placed in the evanescent field of the guide.
  • a CCD detector array is obtained which must have a pitch less than a quarter of the wavelength, given the index of the medium in which the monomode guide is manufactured.
  • a mosaic composed of such elements must be used in an optical system which divides the wavefront and forms the image simultaneously on both sides of this mosaic.
  • the invention providing a spectrograph with in situ detection is applicable in many fields using spectrographic measurements such as gyrolasers, metrology, or OCT (Optical Coherence Tomography) or the sensorial (detection and chemical and biochemical analysis).
  • spectrographic measurements such as gyrolasers, metrology, or OCT (Optical Coherence Tomography) or the sensorial (detection and chemical and biochemical analysis).

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

La présente invention se rapporte à un spectrographe (11) comprenant un guide d'onde (10) muni de deux accès (10a, 10b, 12), un moyen d'injection de deux ondes guidées contra-propagatives par chacun desdits accès de sorte à créer une interférence spatiale au sein dudit guide, un moyen de détection (19, 20, 14, 16) de l'énergie de l'onde évanescente du champ guidé issu de l'interférence desdites ondes contra-propagatives.

Description

SPECTROGRAPHE À ONDE CONTRA-PROPAGATIVE
La présente invention se rapporte au domaine de 1 ' optique .
La présente invention se rapporte plus particulièrement à un spectrographe à transformée de Fourier en optique guidée utilisant des ondes contra-propagatives .
II est connu que des ondes contra-propagatives dans un guide d'onde créent des interférences comme le montre la publication de Labeyrie et al (Labeyrie, A. and Huignard, J.P. and Loiseaux, B., Optical data storage in microfibers, Optics Letters, 23, 301-303 (1998)). L'interférogramme obtenu est fonction de la différence de chemin optique parcouru par chacune des ondes, et l'analyse de cet interférogramme permet d'obtenir des informations sur les sources lumineuses et/ou sur les milieux traversés par ces ondes .
Cependant, lorsque les ondes contra-propagatives interfèrent au sein d'un guide d'onde, l'interférogramme obtenu reste confiné dans le guide et n'est pas accessible "pour des mesures spectrométriques.
L'art antérieur connaît également un spectrographe par ondes contra-propagatives décrit par la publication de Froggat et Erdogan (Froggat, M. et Erdogan, T., All-fiber wavemeter and Fourier-transform spectrometer, Optics Letters, 24, 942-944 (1999)). Un interférogramme est obtenu en faisant interférer deux ondes contra-propagatives extraites du guide par un réseau de bragg présent à l'intérieur du guide. La lumière est extraite du guide selon un angle qui dépend de la relation entre la longueur d'onde λ et le pas du réseau de Bragg Λ : sin(α)=neff-λ/Λ (p943, coll, 116-24).
Dans ce système, l'utilisation à l'intérieur du guide d'un réseau périodique est absolument nécessaire. Le pas de
1 ' interférogramme tel qu'il est enregistré sur le détecteur dépend de cet angle et du pas du réseau de Bragg. Par exemple, pour une onde monochromatique Froggat obtient une période des franges : PProgatt≈l/2 (neff-λ/Λ) . Au contraire, 1 ' interférogramme obtenu dans la publication de Labeyrie susmentionnée dépend uniquement de la différence de marche des ondes depuis leur point de division. Par exemple dans le cas d'une onde monochromatique,
Figure imgf000004_0001
'
Dans ce système, une onde propagative associée au signal injecté est créée. Cette onde propagative est distincte du champ d'interférence et ne donne pas un accès direct à l ' interférogramme situé dans le guide.
Par ailleurs, le système, et notamment la structure périodique de Bragg, perturbe toutefois l'onde à l'intérieur du guide.
Par ailleurs, le système ci-dessus n'enseigne l'injection que d'une seule onde qui est réfléchie en une onde contra-propagative . Ceci possède l'inconvénient de ne pas permettre l'accès à une frange centrale d'éventuelles interférences .
L'invention vise notamment à pallier ces inconvénients . La présente invention entend donc permettre un accès à cet interférogramme pour des ondes contra-propagatives guidées .
L'accès à l ' interférogramme par interférence d'ondes contra-propagatives possède également l'avantage de ne nécessiter aucune partie mobile pour l'observation, comme c'est par exemple le cas dans un interféromètre classique du type Michelson.
Pour ce faire, la présente invention se rapporte à un spectrographe 11 comprenant un guide d'onde 10 muni de deux accès, un moyen d'injection de deux ondes guidées contra- propagatives par chacun desdits accès de sorte à créer une interférence spatiale au sein dudit guide, un moyen de détection de l'énergie de l'onde évanescente du champ guidé issu de l'interférence desdites ondes contra-propagatives.
Selon l'invention, on accède à l ' interférogramme situé dans le guide par l'intermédiaire de l'onde évanescente du champ guidé, ce qui donne un accès réel à cet interférogramme .
Au contraire, dans la publication de Froggat susmentionnée, c'est un réseau périodique situé au cœur du guide qui extrait chacune des deux ondes pour les faire interférer sur le détecteur constituant un interférogramme différent.
De préférence, ledit moyen de détection comprend au moins un guide plan (14, 14a, 14b) situé à proximité dudit guide et au moins un photodétecteur agencé pour détecter une onde en sortie dudit guide plan. Avantageusement, ledit moyen de détection comprend une pluralité de détecteurs locaux répartis entre les deux accès dudit guide.
Avantageusement, ledit moyen de détection comprend au moins une pointe diffusante fixe ou mobile et au moins un photodétecteur.
Selon un mode de réalisation, ledit moyen d'injection des deux ondes est un séparateur d'onde agencé de sorte à diriger les deux parties d'une même onde selon les deux accès dudit guide.
L'invention concerne également un système d'imagerie spectroscopique comprenant une pluralité de spectrographes selon l'invention, disposés selon une matrice, les moyens d'injections étant dans le plan focal d'une optique d'entrée.
On comprendra mieux l'invention à l'aide de la description, faite ci-après à titre purement explicatif, d'un mode de réalisation de l'invention, en référence aux figures annexées : la figure 1 illustre un premier mode de réalisation de l'invention dans le cas d'un spectrographe contra-propagatif fermé à boucle ; la figure 2 illustre un second mode de réalisation de l'invention avec détection sur un plan incliné ; la figure 3 illustre un mode de réalisation de l'invention avec deux prismes ;
La figure 4 illustre un mode de réalisation de l'invention pour un guide à deux entrées ; la figure 5 illustre un mode de réalisation de l'invention dans lequel la détection est réalisée par une pluralité de détecteurs locaux situés dans le champ évanescent ; la figure 6 illustre un mode de réalisation de l'invention dans lequel la détection est réalisée par une pointe diffusante ; la figure 7 illustre un mode de réalisation de l'invention comprenant un moyen de variation de la phase des signaux ; la figure 8 illustre un mode de réalisation de l'invention dans lequel on utilise un guide en boucle et une pluralité de détecteurs locaux ; la figure 9 illustre un autre mode de réalisation de l'invention pour une boucle fermée et un moyen de variation de la phase.
Selon un premier mode de réalisation illustré figure 1, la lumière à analyser est introduite dans le dispositif 11 au bout du guide d'onde 10 soit par la connectorisation d'une fibre optique, soit par une injection grâce à un dispositif d'optique de volume ou tout autre système d'injection de la lumière guidée ou non.
La lumière se propage jusqu'au composant 12 qui sépare l'onde en deux parties. L ' interférogramme se construit autour de la zone 13 qui assure un découplage par onde évanescente de la lumière du guide courbe. Le composant 12 assure le passage des ondes par deux moyens d'accès distincts du guide 10 au niveau de la zone 13. La fonction oscillante illustrée figure 1 au niveau de la zone 13 représente l 'interférogramme présent dans la zone d'interférence 13. La zone 13 est située à égale distance de la zone 12 de séparation de l'onde suivant les deux chemins les reliant.
Le dispositif 11 comprend également une zone 14 de guide plan de telle façon que la lumière présente dans le guide courbe peut fuir dans la zone 14 de manière radiale si bien que la partie de l ' interférogramme qui était présent dans le guide courbe se trouve guidée dans la direction verticale perpendiculaire au plan de la figure (c'est à dire dans l'épaisseur du composant) jusqu'au bord du support 17 tout en étant agrandie géométriquement dans le plan du système par le rapport R(x)/r où x est la coordonnée le long du bord, r est le rayon de courbure du guide et R(x) est la distance radiale séparant le point de coordonnée x au centre de courbure de la partie du guide qui lui correspond.
Dans ce mode de réalisation, le pas des franges est ajustable en fonction du rapport de distance R/r de l'arête au centre de courbure de la boucle ce qui permet d'échantillonner correctement au sens de Shannon
1 ' interférogramme avec un détecteur dont la dimension des pixels serait plus grandes que le quart de la longueur d'onde contrairement au spectrographe de la publication de
Froggat susmentionnée pour lequel la période des franges dépend uniquement du choix du pas du réseau qui ne donne alors accès qu'à un domaine spectral étroit λ2/(4neff.p) autour de Λ/2.
La zone 14 correspond par exemple à un guide plan juxtaposé au guide courbe servant à contrôler le taux de fuite de la lumière issue du guide courbe et de guider la lumière jusqu'à l'arête du composant 17 . Il est entendu que pour un guide non courbé, le prisme 14 est également utilisable pour délocaliser la détection.
Au sein du prisme 14, l'onde évanescente du champ guidé issu de l'interférence des ondes contra-propagatives est convertie en une onde propagative permettant de délocaliser la détection.
Un moyen de détection photosensible 16 est ajusté le long de la zone tangente du support de façon à détecter la partie de l ' interférogramme extraite du guide .
La reconstruction du signal doit tenir compte de la transformation géométrique gui projette l'abscisse curviligne le long du guide vers la coordonnée x. Cette géométrie fait que pour un détecteur ayant des pixels régulièrement espacés, la loi d'échantillonnage de 1 ' interférogramme est telle que δ=arctan(x/R) .r ; ô est l'abscisse curviligne des différences de marche prises à partir du lieu de la frange centrale pour des chemins optiques égaux à partir de la zone de séparation 12. x représente la distance géométrique de projection de 1 ' interférogramme sur l'arête du composant.
La quantité de lumière extraite du guide dans la zone de découplage 13 du guide 10 dépend d'une adaptation géométrique ou d'indice de réfraction entre le guide courbe et le guide plan. Il est ainsi possible de moduler la quantité de lumière qui doit fuir en chaque lieu de 13, ce qui permet ainsi d'agir sur 1 ' apodisation de 1 ' interférogramme échantillonné au bord du support 17. Ainsi une adaptation constante du taux de fuite conduira a une distribution exponentielle décroissante de la lumière le long du guide courbe dans la zone 13 qui dépend du sens d'arrivée de l'onde dans cette partie. La dimension du système dépend de l'écartement entre les éléments d'image du détecteur (pixel). Le dimensionnement se fait par exemple de la manière suivante :
On part des caractéristiques du détecteur 16, soit dx la dimension du pixel et N le nombre de pixels dans la barrette. La longueur du détecteur 16 est alors L=N. dx. Dans la gamme de fréquences que l'on veut analyser, il faut que le détecteur soit sensible et que les guides d'ondes soient monomodes et propagatifs. On définit alors la plage de longueurs d'ondes de fonctionnement par λ,_in et Xj113x. L'échantillonnage au centre de l ' interférogramme doit permettre de placer deux pixels pour une distance qui correspond à l ' interfrange à la longueur d'onde λtain/4 dans le milieu d'indice n multiplié par le grandissement G dû au guide plan 14 en vertu du théorème de Shannon en bande large. Ce grandissement au centre de l ' interférogramme est G=R/r tel que :
dx=G.λtaia/4n.
L'angle d'ouverture A du prisme 14 doit correspondre à la longueur du détecteur rapporté au centre de courbure de la boucle du guide contra-propagatif .
A=2arctan (L/2R) .
Enfin, la courbure r du guide ainsi que la forme exacte du guide plan 14 est dictée par un calcul électromagnétique connu par exemple dans la publication de K. R. Hiremath et al (K. R. Hiremath, M. Hammer, R. Stoffer, L. Prkna, J. Ctyroky, Analytical approach to dielectric optical bent slab waveguides Optical and Quantum Electronics 37 (1-3), 37-61 (2005)) en fonction du taux de fuite que l'on désire donner.
Selon un second mode de réalisation de l'invention illustré figure 2, la zone de guidage 14 possède une forme dissymétrique de façon à ce que l'on puisse enregistrer de manière asymétrique un interférogramme par rapport à la frange centrale. Par ailleurs en coupant le plan 17 obliquement par rapport à la symétrie du système, les franges correspondant au centre de l ' interférogramme qui sont plus riches en information sur le spectre seront mieux échantillonnées au détriment de l'échantillonnage des hautes fréquences qui présentent parfois un intérêt moindre.
De la manière similaire, il est également possible de rallonger l'un des bras de l ' interféromètre dans une configuration telle que celle illustrée figure 1. De la sorte, l ' interférogramme se trouvera décalé sur la barrette du photodétecteur dans la direction où la boucle du guide 10 a été allongée.
Illustré figure 3, le spectrographe selon l'invention peut également comprendre une pluralité de prismes 14a, 14b, associés à une pluralité de détecteurs 16a, 16b, afin d'échantillonner plusieurs parties distinctes de l ' interférogramme .
Selon un autre mode de réalisation illustré figure 4, il est possible de diviser l'onde au préalable avant l'injection dans les deux accès du guide 10a et 10b. Cette configuration est particulièrement optimisée pour mesurer la phase de l ' interférogramme . La symétrie du système assure une parfaite achromaticité, donc une insensibilité de la mesure de la phase à la fluctuation des longueurs d'ondes dans le signal à mesurer. Par ailleurs il est possible de modifier le chemin optique sur l'une des voies dans le composant lui-même 21, soit par un effet électro-optique qui modifie l'indice du milieu comme c'est le cas pour le niobate de lithium, soit par un effet élasto-optique ou acousto-optique et tout autres procédés. En externe, cette variation du chemin optique peut se faire un système séparateur d'onde et de ligne à retard comme un montage de Michelson par exemple. Cette variation permet d'enregistrer d'autres parties de l ' interférogramme et d'augmenter ainsi la résolution spectrale du système ou d'améliorer l'échantillonnage de l ' interférogramme .
Selon encore une autre variante de l'invention, illustré figure 5, l'onde divisée au préalable est injectée dans le composant en 10a et en 10b par les deux accès d'un guide d'onde 10, l'onde interfère dans le guide et, des détecteurs, des points diffusants ou des bolomètres 19 sont placés en surface du guide et donc sont sensibles à une fraction du champ présent à l'intérieur du guide.
On positionne donc par exemple une pluralité de détecteurs locaux fixes 19 à l'extérieur du guide 10. Pour réaliser ces détecteurs locaux, on peut par exemple utiliser un matériau sensible aux ondes évanescentes issues du guide 10. Les détecteurs 19 échantillonnent alors l'intensité des ondes évanescentes.
L'homme du métier comprendra bien que si l'on désire détecter une longueur d'onde λ, les détecteurs sont espacés d'une distance sensiblement égale à λ/4, afin de reconstruire le signal correspondant. Pour la détection d'un spectre poIychromatique en bande large, cette distance doit être le quart de la longueur d'onde la plus courte du spectre étudié. Les longueurs d'ondes inférieures seraient alors détectées avec une efficacité moindre voire ne plus du tout contribuer aux systèmes d'interférence.
Inversement, pour la détection d'un spectre polychromatique en bande étroite, il est possible de placer des détecteurs à des distances supérieures à λ/4 en vertu du théorème de Shannon en bande étroite si ces détecteurs présentent une dimension inférieure au quart de la longueur d'onde la plus courte du spectre étudié.
La couche détectrice 19 comprend donc par exemple une pluralité de détecteurs locaux équidistants en faisant attention qu'une répartition régulière peut entraîner une perturbation de la transmission de l'onde par un effet de réseau de Bragg.
Pour solutionner ce problème, on peut éventuellement positionner un milieu photosensible continu entre le guide d'onde et les détecteurs locaux régulièrement espacés, ou bien positionner les détecteurs locaux d'une manière apériodique comme par exemple une série d'espacement qui serait définis par la suite des nombres premiers.
On notera que ces détecteurs peuvent être de plusieurs sortes sans limitation pour la portée de l'invention.
Ce sont par exemple des jonctions pn photoconductrices réalisées sur un substrat semi-conducteur aminci comportant des photodiodes et des électrodes pour collecter un courant aux bornes des photodiodes. Ce substrat est adjacent au guide d'onde 10 soit par adhésion moléculaire, soit par collage.
Les détecteurs peuvent également être des microbolomètres par fils supraconducteurs formant un réseau réparti entre les deux accès opposés du guide d'onde 10.
Il est également envisageable d'utiliser des microantennes, des photoconducteurs de type Sélénium ou des photodétecteurs à effet Josephson.
De manière similaire, illustré figure 6, 1 ' interférogramme généré à l'intérieur du guide 10 est fortement sensible au déphasage existant entre les deux ondes aux entrées 10a et 10b opposées de la structure : 1 ' interférogramme se déplace le long du guide en fonction de ce déphasage. Il est donc possible d'enregistrer 1 ' interférogramme au cours de son déplacement à l'aide d'un détecteur ou d'un point diffuseur unique et fixe ou mobile 20 placé sur le guide.
Il est aussi possible de remplacer les photodétecteurs dans le champ évanescent par un ou plusieurs points diffusants de dimension plus petite que le quart de la longueur d'onde la plus courte dans le sens de propagation afin de convertir le champ évanescent et le faire propager vers un détecteur situé en dehors de la zone évanescente rendant possible l'emploi de détecteurs plus gros que la longueur d'onde comme les pixels d'un CCD par exemple.
Soit on impose une variation de phase connue et cela permet d'enregistrer l ' interférogramme (mesures spectrométriques ) , soit on mesure le déplacement de 1 ' interférogramme et cela permet de déterminer le déphasage entre les deux ondes (métrologie), soit enfin on déplace le point diffusant de manière connue pour enregistrer 1 ' interférogramme.
Un moyen de faire varier la phase à l'intérieur du composant est représenté figure 7, dans le cas ouvert par action sur le chemin optique 21, la séparation de l'onde est externe et injectée en 10a et 10b. La détection de 1 ' interférogramme est réalisée par la pointe ou le défaut diffusant 20.
Illustré figure 8, il est possible d'utiliser un guide fermé avec séparation de l'onde muni des détecteurs locaux décrits en référence à la figure 5. Dans ce cas, bien que le guide ne soit pas courbé, on peut également positionner un prisme comme sur la figure 1 pour observer la figure d'interférence au bord du dispositif sans grandissement.
De la même façon, on peut utiliser un élément diffusant en combinaison avec une division interne de l'onde comme illustré figure 9.
Enfin, l'invention concerne également un système d'imagerie spectrométrique comprenant une pluralité de spectrographe tels que précédemment décrits, disposés en matrice. Dans ce cas, le système obtenu composé de deux lentilles qui permet d'adapter l'onde à un guide monomode. Une collection de détecteur est placée dans le champ évanescent du guide. On obtient par exemple une barrette de détecteur CCD qui doit avoir un pas inférieur au quart de la longueur d'onde compte tenu de l'indice du milieu dans lequel est fabriqué le guide monomode. Une mosaïque composée de tels éléments doit être utilisée dans un système optique gui divise le front d'onde et forme l'image simultanément sur les deux faces de cette mosaïque.
L'invention fournissant un spectrographe avec détection in situ est applicable dans de nombreux domaines utilisant des mesures spectrographique tels des gyrolasers, la métrologie, ou l'OCT (Tomographie à Cohérence Optique) ou encore la sensorique (détection et analyse chimique et biochimique ) .

Claims

REVENDICATIONS
1. Spectrographe comprenant
- un guide d'onde (10) muni de deux accès (10a, 10b, 12),
-un moyen d'injection de deux ondes guidées contra- propagatives par chacun desdits accès de sorte à créer une interférence spatiale au sein dudit guide,
-un moyen de détection (19, 20, 14, 16) de l'onde évanescente du champ guidé issu de l'interférence desdites ondes contra-propagatives.
2. Spectrographe selon la revendication 1, caractérisé en ce que ledit moyen de détection comprend au moins un guide plan (14, 14a, 14b) situé à proximité dudit guide et au moins un photodétecteur agencé pour détecter une onde en sortie dudit guide plan.
3. Spectrographe selon la revendication 1, caractérisé en ce que ledit moyen de détection comprend une pluralité de détecteurs locaux répartis entre les deux accès dudit guide.
4. Spectrographe selon la revendication 3 dans lequel lesdits détecteurs locaux sont de dimension inférieure au quart de la longueur d'onde desdites ondes.
5. Spectrographe selon la revendication 1, caractérisé en ce que ledit moyen de détection comprend au moins une pointe diffusante fixe ou mobile et au moins un photodétecteur.
6. Spectrographe selon la revendication 5, dans lequel dans lequel ladite pointe diffusante est de dimension inférieure au quart de la longueur d'onde desdites ondes.
7. Spectrographe selon la revendication 1, caractérisé en ce que ledit moyen d'injection des deux ondes est un séparateur d'onde agencé de sorte à diriger les deux parties d'une même onde selon les deux accès dudit guide.
8. Système d'imagerie spectroscopique caractérisé en ce qu'il comprend une pluralité de spectrographe selon l'une quelconque des revendications précédentes, disposés selon une matrice, les moyens d'injections étant dans le plan focal d'une optique d'entrée.
PCT/FR2006/001908 2005-08-08 2006-08-04 Spectrographe à onde contra-propagative WO2007017588A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06794294.6A EP1913350B8 (fr) 2005-08-08 2006-08-04 Spectrographe à onde contra-propagative
JP2008525597A JP5363104B2 (ja) 2005-08-08 2006-08-04 逆伝播波分光器
US12/063,214 US7995211B2 (en) 2005-08-08 2006-08-04 Contra-propagative wave spectograph
ES06794294.6T ES2575452T3 (es) 2005-08-08 2006-08-04 Espectrómetro de onda contrapropagante
CA2617959A CA2617959C (fr) 2005-08-08 2006-08-04 Spectrographe a onde contra-propagative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0508429A FR2889587B1 (fr) 2005-08-08 2005-08-08 Spectrographie a onde contra-propagative
FR0508429 2005-08-08

Publications (1)

Publication Number Publication Date
WO2007017588A1 true WO2007017588A1 (fr) 2007-02-15

Family

ID=36293479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/001908 WO2007017588A1 (fr) 2005-08-08 2006-08-04 Spectrographe à onde contra-propagative

Country Status (7)

Country Link
US (1) US7995211B2 (fr)
EP (1) EP1913350B8 (fr)
JP (1) JP5363104B2 (fr)
CA (1) CA2617959C (fr)
ES (1) ES2575452T3 (fr)
FR (1) FR2889587B1 (fr)
WO (1) WO2007017588A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516847A (ja) * 2008-03-31 2011-05-26 ユニバーシテ デ テクノロジー デ トロワ 二次元サンプリングのための小型分光器
WO2016146917A1 (fr) 2015-03-16 2016-09-22 Universite Grenoble Alpes Dispositif intégre de tomographie en optique cohérente
WO2017162454A1 (fr) 2016-03-25 2017-09-28 Unity Semiconductor Capteur confosal chromatique intégré

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101919957B1 (ko) * 2014-08-12 2018-11-19 웨이브라이트 게엠베하 순간적 시간 영역 광 간섭 단층 촬영

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111466A (en) * 1990-10-25 1992-05-05 National Research Council Of Canada Optical multilayer structures for harmonic laser emission

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124262A (en) * 1980-03-04 1981-09-29 Nippon Telegr & Teleph Corp <Ntt> Waveguide passage light detecting device
US4773759B1 (en) * 1984-01-23 1996-08-06 Univ Leland Stanford Junior Interferometer with Kerr effect compensation
US4728192A (en) * 1984-02-17 1988-03-01 Stanford University Gated fiber optic rotation sensor with extended dynamic range
US4890922A (en) * 1987-02-20 1990-01-02 Litton Systems, Inc. Thermally compensated reference interferometer and method
US4915503A (en) * 1987-09-01 1990-04-10 Litton Systems, Inc. Fiber optic gyroscope with improved bias stability and repeatability and method
US4938594A (en) * 1988-10-14 1990-07-03 Litton Systems, Inc. Asymmetric
US5074665A (en) * 1989-12-21 1991-12-24 Andrew Corporation Fiber optic gyroscope using dual-section counter-wound coil
JPH0431720A (ja) * 1990-05-28 1992-02-03 Res Dev Corp Of Japan 2次元物体の分光装置
JPH11174268A (ja) * 1997-12-15 1999-07-02 Nec Corp 光機能素子
JP2001215371A (ja) * 2000-02-04 2001-08-10 Sumitomo Osaka Cement Co Ltd モニタ付光導波路型素子
US7689086B2 (en) * 2004-07-30 2010-03-30 University Of Connecticut Resonant leaky-mode optical devices and associated methods
FR2879287B1 (fr) * 2004-12-15 2007-03-16 Univ Grenoble 1 Detecteur et camera speectroscopiques interferentiels
US7835417B2 (en) * 2008-07-15 2010-11-16 Octrolix Bv Narrow spectrum light source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111466A (en) * 1990-10-25 1992-05-05 National Research Council Of Canada Optical multilayer structures for harmonic laser emission

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FROGGAT M ET AL: "ALL-FIBER WAVEMETER AND FOURIER-TRANSFORM SPECTROMETER", OPTICS LETTERS, OSA, OPTICAL SOCIETY OF AMERICA, WASHINGTON, DC, US, vol. 24, no. 14, 15 July 1999 (1999-07-15), pages 942 - 944, XP000860568, ISSN: 0146-9592 *
LABEYRIE A ET AL: "Optical data storage in microfibres", OPTICS LETTERS, OSA, OPTICAL SOCIETY OF AMERICA, WASHINGTON, DC, US, vol. 23, no. 4, 15 February 1998 (1998-02-15), pages 301 - 303, XP002351998, ISSN: 0146-9592 *
NORMANDIN R ET AL: "MONOLITHIC, SURFACE-EMITTING, SEMICONDUCTOR VISIBLE LASERS AND SPECTROMETERS FOR WDM FIBER COMMUNICATION SYSTEMS", IEEE JOURNAL OF QUANTUM ELECTRONICS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 27, no. 6, 1 June 1991 (1991-06-01), pages 1520 - 1530, XP000229850, ISSN: 0018-9197 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516847A (ja) * 2008-03-31 2011-05-26 ユニバーシテ デ テクノロジー デ トロワ 二次元サンプリングのための小型分光器
WO2016146917A1 (fr) 2015-03-16 2016-09-22 Universite Grenoble Alpes Dispositif intégre de tomographie en optique cohérente
WO2017162454A1 (fr) 2016-03-25 2017-09-28 Unity Semiconductor Capteur confosal chromatique intégré
EP3228979A1 (fr) 2016-03-25 2017-10-11 Fogale Nanotech Capteur confocal chromatique intégré
CN109073367A (zh) * 2016-03-25 2018-12-21 Fogale 纳米技术公司 集成彩色共焦传感器

Also Published As

Publication number Publication date
CA2617959A1 (fr) 2007-02-15
JP2009505050A (ja) 2009-02-05
FR2889587A1 (fr) 2007-02-09
EP1913350A1 (fr) 2008-04-23
EP1913350B8 (fr) 2016-06-15
ES2575452T3 (es) 2016-06-28
FR2889587B1 (fr) 2008-02-22
JP5363104B2 (ja) 2013-12-11
CA2617959C (fr) 2016-03-22
US20090219543A1 (en) 2009-09-03
US7995211B2 (en) 2011-08-09
EP1913350B1 (fr) 2016-04-20

Similar Documents

Publication Publication Date Title
EP0242250A2 (fr) Dispositif de détection opto-électronique à distance d&#39;une grandeur physique
EP1825312B1 (fr) Detecteur et camera spectroscopiques interferentiels
EP1482288B1 (fr) Spectromètre statique par transformée de Fourier
CA2641943C (fr) Procede d&#39;analyse de surface d&#39;onde par interferometrie multilaterale a difference de frequence
EP1913350B1 (fr) Spectrographe à onde contra-propagative
EP0971203B1 (fr) Procédé et dispositif pour la mesure de l&#39;épaisseur d&#39;un matériau transparent
WO2009127794A1 (fr) Spectrometre compact a echantillonage bidimensionnel
FR3034577A1 (fr) Dispositif et procede de caracterisation d’une impulsion laser femtoseconde
EP2791636B1 (fr) Lame interferometrique a deux ondes comportant une cavite pleine partiellement resonante et son procede de fabrication
FR3076347A1 (fr) Instrument d&#39;observation comportant un dispositif interferometrique statique a sauts de differences de marche
EP1793212B1 (fr) Spectrophotometre à la large fente d&#39;entrée
EP1793213B9 (fr) Spectrophotomètre à échantillonnage comprenant un interféromètre
WO2016146917A1 (fr) Dispositif intégre de tomographie en optique cohérente
EP3004821A1 (fr) Dispositif interferometrique et spectrometre correspondant
JP2023176881A (ja) 表面プラズモン共鳴センサー
FR2939888A1 (fr) Dispositif de spectrometrie compact et procede de fabrication
FR3064058A1 (fr) Systeme optique et spectrometre miniature equipe d&#39;un tel systeme ainsi que procede d&#39;analyse d&#39;objets a l&#39;aide d&#39;un tel systeme optique
EP0591912A2 (fr) Interféromètre, comprenant un ensemble intégré et un miroir séparés l&#39;un de l&#39;autre par une région de mesure
FR2583516A1 (fr) Spectrometre a modulation d&#39;amplitude selective interferentielle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2617959

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008525597

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006794294

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006794294

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12063214

Country of ref document: US