WO2007013454A1 - フューエルデリバリパイプ - Google Patents

フューエルデリバリパイプ Download PDF

Info

Publication number
WO2007013454A1
WO2007013454A1 PCT/JP2006/314673 JP2006314673W WO2007013454A1 WO 2007013454 A1 WO2007013454 A1 WO 2007013454A1 JP 2006314673 W JP2006314673 W JP 2006314673W WO 2007013454 A1 WO2007013454 A1 WO 2007013454A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication pipe
pipe
fuel
cross
communication
Prior art date
Application number
PCT/JP2006/314673
Other languages
English (en)
French (fr)
Inventor
Eiji Watanabe
Koichi Hayashi
Original Assignee
Usui Kokusai Sangyo Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha, Ltd. filed Critical Usui Kokusai Sangyo Kaisha, Ltd.
Publication of WO2007013454A1 publication Critical patent/WO2007013454A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/46Details, component parts or accessories not provided for in, or of interest apart from, the apparatus covered by groups F02M69/02 - F02M69/44
    • F02M69/462Arrangement of fuel conduits, e.g. with valves for maintaining pressure in the pipes after the engine being shut-down
    • F02M69/465Arrangement of fuel conduits, e.g. with valves for maintaining pressure in the pipes after the engine being shut-down of fuel rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8084Fuel injection apparatus manufacture, repair or assembly involving welding or soldering

Definitions

  • the present invention provides a fuel injector (injection nozzle) for directly injecting fuel supplied from a fuel pressurizing pump force of an electronic fuel injection type automobile engine into each intake passage or cylinder of the engine.
  • a fuel injector injection nozzle
  • This is related to the fuel delivery pipe to be supplied through the fuel, and is intended to reduce pressure pulsation and radiation noise caused by fuel injection.
  • the present invention relates to a cross-sectional structure of a fuel delivery pipe having a fuel passage and an external structure of the fuel delivery pipe, or a pressure pulsation and radiated sound reduction mechanism (mechanism) of the fuel delivery pipe.
  • This fuel delivery pipe is for injecting fuel, which is also supplied with fuel tank power through the underfloor pipe as described above, into the intake pipe or cylinder of the engine from the injection nozzle.
  • a return-type fuel delivery pipe that has a circuit that returns the excess fuel to the fuel tank by a pressure regulator when excess fuel is supplied into the fuel delivery pipe.
  • a returnless type fuel delivery pipe that does not have a circuit to return the supplied fuel to the fuel tank.
  • the method of returning the excess fuel supplied to the fuel delivery pipe to the fuel tank allows the amount of fuel in the fuel delivery pipe to be kept constant at all times, so pressure pulsation associated with fuel injection also occurs. It has the advantage that it does not easily occur.
  • the fuel supplied to the fuel delivery pipe that is placed close to the high-temperature engine cylinder is hot.
  • the excess fuel heated to the high temperature is returned to the fuel tank, and the temperature of gasoline in the fuel tank rises. This rise in temperature is undesirable because it causes gasoline to vaporize and adversely affect the environment, so a returnless fuel delivery pipe that does not return this excess fuel to the fuel tank has been proposed.
  • This returnless type fuel delivery pipe has no piping to return excess fuel to the fuel tank when injection from the injection nozzle to the intake pipe or cylinder, so that the fuel pressure fluctuation in the fuel delivery pipe does not change.
  • a pulsation damper containing a rubber diaphragm is disposed in a returnless type fuel delivery pipe, and the generated pressure pulsation energy is transferred to the pulsation energy.
  • the fuel delivery pipe or the fuel pipe can be absorbed by a vibration damper, or the pipe under the floor from the fuel delivery pipe to the fuel tank side can be fixed under the floor via a vibration absorbing clip. Absorbing vibration generated in the underfloor piping up to the tank.
  • the wall surface of the communication tube is provided with a flexible sub-surface, and the cross-sectional shape perpendicular to the tube axis direction is a bellows shape.
  • the invention described in Patent Document 2 has a waveguide surface on the wall surface of the communication pipe, and a cross-sectional shape perpendicular to the pipe axis direction is formed into a T shape, a dumbbell shape, or an inverted eye mask shape. is doing.
  • the cross-sectional shape in the direction perpendicular to the tube axis direction of the communication pipes in Patent Documents 1 and 2 is the same as the one end force and the other end of the communication pipe. The purpose is to absorb the impact and pulsation by the distortion of the absorber surface of the communication pipe formed as described above, and to reduce the generation of abnormal noise caused by the reflected wave from the injector and the vibration caused by the pulsation pressure. It is said.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-320423
  • Patent Document 2 JP 2000-329031 A
  • the first to fifth inventions of the present application are intended to solve the above-described problems, and absorb the pulsating sound generated on the low frequency side in the communication pipe and the radiated noise generated on the high frequency side. They are trying to reduce the vibration and noise of vehicle components.
  • the first invention of the present application has a fuel passage inside.
  • a communication pipe having a wall surface on the wall, a fuel introduction pipe connected to the communication pipe, one end connected to the communication pipe and the fuel passage, and the other end connected to the rear end of the injection nozzle.
  • a concave part and z or a protrusion are formed in the longitudinal direction on the absorber surface of the communication pipe, and the cross-sectional shape in the direction perpendicular to the pipe axis of the communication pipe is formed. In different places of the communication pipe, make them different! /
  • the second invention of the present application includes a communication pipe having a fuel passage inside and having a wall surface on the wall surface, a fuel introduction pipe connected to the communication pipe, and one end connected to the communication pipe.
  • a fuel delivery pipe having a socket that communicates with the fuel passage and has the other end connected to the rear end of the injection nozzle.
  • a recess and a z or a protrusion are formed in the longitudinal direction on the sub-surface of the communication pipe, and the communication pipe
  • the cross-sectional shape in the direction perpendicular to the tube axis is a substantially goggle type formed by forming one recess on one side of a substantially rectangular shape, and the cross-sectional shape of the substantially goggle type is different at a plurality of locations of the communication pipe. .
  • the third invention of the present application includes a communication pipe having a fuel passage inside and having a wall surface on the wall surface, a fuel introduction pipe connected to the communication pipe, and one end connected to the communication pipe.
  • a fuel delivery pipe having a socket that communicates with the fuel passage and has the other end connected to the rear end of the injection nozzle.
  • the communication pipe is formed with a recess and a Z or a protrusion in the length direction on the sub-surface of the communication pipe.
  • the cross-sectional shape in the direction perpendicular to the tube axis is a substantially mortar shape in which concave portions are formed on two opposing sides of a substantially rectangular shape, and the cross-sectional shape of the substantially mortar shape is defined at a plurality of locations of the communication pipe. It is different.
  • the fourth invention of the present application includes a communication pipe having a fuel passage inside and a wall surface having a gas sorbing surface, a fuel introduction pipe connected to the communication pipe, and one end connected to the communication pipe.
  • a fuel delivery pipe having a socket that communicates with the fuel passage and has the other end connected to the rear end of the injection nozzle.
  • a recess and a z or a protrusion are formed in the longitudinal direction on the sub-surface of the communication pipe, and the communication pipe
  • the cross-sectional shape in the direction perpendicular to the tube axis is a substantially flask-shaped cross-sectional shape in which one protrusion is formed at one end of each of two opposite sides of a substantially rectangular shape. Are different at multiple locations on the communication pipe.
  • the fifth invention of the present application has a fuel passage inside and a wall surface on the wall surface.
  • a recess and a z or a protrusion are formed in the longitudinal direction on the tube surface of the communication pipe, and the cross-sectional shape perpendicular to the tube axis of the communication pipe is different at a plurality of locations of the communication pipe.
  • the shape includes a substantially goggle type in which at least one concave part is formed on one side of a substantially rectangular shape, a substantially mortar type in which one concave part is formed on two opposing sides of a substantially rectangular shape, and a substantially rectangular facing shape 2 Of the substantially mortar-shaped cross-sectional shape formed by forming concave portions on one side, at least two types of cross-sectional shapes are provided at different positions in the tube axis direction of the communication pipe.
  • the cross-sectional shape of the first invention to the fifth invention is a cross-sectional shape obtained by projecting the entire cross-section of the communication pipe from the tube axis direction, and a part of the communication pipe, for example, It includes the meanings of both the concave part of the communication pipe and the partial cross-sectional shape that is contoured by partially projecting the Z or protrusion formation position.
  • the communication pipe may be one in which the wall surface is divided in the vertical direction and connected in the circumferential direction, or may be a pipe type of an integral structure.
  • the socket may be formed in a cylindrical straight shape from one end to the other end.
  • the first to fifth inventions of the present application are configured as described above, wherein a recess and a Z or a protrusion are formed in the length direction of the flexible sub-surface formed on the communication pipe, and the communication is performed.
  • a recess and a Z or a protrusion are formed in the length direction of the flexible sub-surface formed on the communication pipe, and the communication is performed.
  • FIG. 1 is a perspective view of a fuel delivery pipe according to a first embodiment of the present invention, illustrating a side wall side force of a fuel delivery pipe.
  • FIG. 2 is a perspective view of the communicating pipe according to the first embodiment of the present invention as viewed from the upper body side.
  • FIG. 3 is a perspective view of the communication pipe of Example 1 as viewed from the lower body side.
  • FIG. 4 is a plan view of the fuel delivery pipe of Example 1 as viewed from the upper body side.
  • FIG. 5 is a cross-sectional view taken along line AA in FIG.
  • FIG. 6 is a cross-sectional view taken along line BB in FIG.
  • FIG. 7 CC sectional view of Fig. 3.
  • FIG. 8 is a sectional view taken along line D—D in FIG.
  • FIG. 9 is a cross-sectional view taken along line EE in FIG.
  • FIG. 10 is a sectional view taken along line FF in FIG.
  • FIG. 11 GG sectional view of Fig. 3.
  • FIG. 12 is a cross-sectional view taken along line H—H in FIG.
  • FIG. 13 is a line graph showing sound pressure in frequency analysis.
  • Example 2 A perspective view of a communication pipe showing Example 2 which is the second invention of the present application.
  • FIG. 15 is a cross-sectional view taken along (a) I2-12 in FIG. 14 and (b) a cross-sectional view taken along Il-II.
  • Example 4 A perspective view of the communicating pipe showing Example 4 as viewed from the lower body side.
  • FIG. 23 is a perspective view of the communication pipe of Example 5 as viewed from the upper body side.
  • Example 6 A perspective view of the communicating pipe showing Example 6 as viewed from the lower body side.
  • FIG. 27 is a cross-sectional view of (a) Ml-Ml in FIG. 26, and (b) a cross-sectional view of M2-M2.
  • FIG. 29 (a) N2-N2 cross-sectional view of FIG. 28, and (b) Nl-N1 cross-sectional view of FIG. ⁇ 30] A perspective view of the communicating pipe showing the eighth embodiment of the present invention as viewed from the lower body side.
  • FIG. 31 is a cross-sectional view (a) 01-01 in FIG. 30 and a cross-sectional view (b) 02-02 in FIG.
  • FIG. 32 A perspective view of the communicating pipe showing the ninth embodiment of the present invention as viewed from the lower body side.
  • FIG. 33 is a perspective view of the communication pipe of Example 9 as viewed from the upper body side.
  • FIG. 34 (a) Pl-Pl sectional view of FIG. 34, and (b) P2-P2 sectional view.
  • FIG. 36 A perspective view showing the upper body side force of the communication pipe of Example 10.
  • FIG. 37 (a) Ql-Q1 sectional view of FIG. 35, and (b) Q2-Q2 sectional view.
  • Example 11 A perspective view of the communicating pipe showing Example 11 as viewed from the lower body side.
  • Example 12 A perspective view of the communicating pipe showing Example 12 as viewed from the lower body side.
  • Example 13 A perspective view of the communicating pipe showing Example 13 as viewed from the lower body side.
  • FIG. 46 is a cross-sectional view of (a) Tl-T1 in FIG. 44, (b) T2-T2, and (b) T3- ⁇ 3.
  • Example 47 A perspective view of the communicating pipe showing Example 14 as viewed from the lower body side.
  • FIG. 49 is a cross-sectional view of (a) Ul-U1 in FIG. 47, (b) U2-U2, and (b) U3-U3.
  • FIG. 51 is a perspective view of the communication pipe of Example 15 as viewed from the upper body side.
  • Example 16 A perspective view of the communicating tube showing Example 16 as viewed from the lower body side.
  • FIG. 55 (a) Wl-W1 cross-sectional view of FIG. 53, (b) W2-W2 cross-sectional view.
  • FIG. 56 The perspective view which also saw the upper body side force of the communication pipe of Example 17.
  • 58 is a cross-sectional view taken along (a) Xl-XI in FIG. 56, (b) X2-X2, and (b) X3-X3.
  • FIG. 59 is a perspective view of a communication pipe showing Example 18.
  • FIG. 61 is a cross-sectional view of the communication pipe of Comparative Example 1 showing a conventional example.
  • FIG. 62 is a cross-sectional view of a communication pipe of Comparative Example 2 showing a conventional example.
  • Embodiment 1 of the present invention will be described with reference to Figs. 1 to 13.
  • (1) is a communication pipe having a substantially flat shape with R at the corners. Then, as shown in Fig. 3, this communication pipe (1) is divided into two parts in the upper and lower direction, the connection side of the fuel introduction pipe (2) is the upper body (3), and the connection side of the socket (4) is the lower body.
  • the upper body (3) and the lower body (5) are connected and assembled in the circumferential direction, so that the upper wall (6), bottom wall (7), both side walls (7) A wall surface consisting of 8) and both end walls (9) is formed.
  • the upper wall (6) and the bottom wall (7) of the communication pipe (1) are formed as an absorber surface that can be deformed and deformed by receiving pressure generated by fuel injection from the injection nozzle.
  • the communication pipe (1) is formed by dividing it in the vertical direction as described above, but in other different embodiments, it is formed as an integral pipe type. It may be
  • the fuel delivery pipe of the first embodiment will be described in detail.
  • the upper body (3) forming the communication pipe (1) has an upper wall (6) as shown in FIG. ), And a pair of upper side walls (10) and a pair of upper end walls (11) connected to each other with an R portion at the corner, and the overall shape is a flat, substantially rectangular parallelepiped. Further, two upper side wall recesses (12) are formed on one upper side wall (10) of the upper body (3) so as to be recessed in an arc shape inward in the width direction of the upper body (3). Further, a substantially trapezoidal upper side wall bulging portion (13) protruding outward is formed on the other upper side wall (10).
  • the upper wall (6) of the upper body (3) is provided with an upper groove (14) having a U-shaped cross section that is continuous in the axial direction from one end to the other end.
  • the width of the upper concave groove (14) is wide at the center and narrow at both ends as shown in FIG. 2, and the gap between the wide and narrow portions is tapered. It is inclined to.
  • an insertion port (15) for inserting the tip of the fuel introduction pipe (2) is provided at the center in the length direction of the upper concave groove (14) of the upper wall (6).
  • the lower body (5) includes a bottom wall (7) constituting the bottom wall (7) of the communication pipe (1) as shown in FIG.
  • the bottom wall (7) is provided with four circular communication ports (24) at desired intervals in the axial direction, and a lower side wall (16) and a pair of lower end walls (17). Yes.
  • a lower side wall recess (18) having a shape corresponding to the upper side wall recess (12) is formed in the lower side wall (16) at a position corresponding to the position where the upper side wall recess (12) of the upper body (3) is formed.
  • the other lower side wall (16) corresponds to the upper side wall bulging portion (13) at a position corresponding to the position where the upper side wall bulging portion (13) of the upper body (3) is formed.
  • a lower side wall bulging portion (20) having a shape is formed.
  • a lower one-side protrusion (21) having a constant width extending in the axial direction to the other end protrudes.
  • a lower rectangular side projection (22) having a substantially rectangular shape elongated in the axial direction protrudes from the central portion in the axial direction.
  • a rectangular downward concave groove (23) Adjacent to the lower one-side protrusion (21) formed on the bottom wall (7) as described above, a rectangular downward concave groove (23) elongated in the axial direction is formed on both end walls (9) side. Each has one recess. Note that the lower one-side protrusion (21), the lower other-side protrusion (22), and the lower groove (23) do not contact the communication port (24) formed in the bottom wall (7). It is placed at the heel position.
  • the pair of lower side walls (16) and the lower end wall (17) of the lower body (5) formed as described above are used as a pair of upper side walls (10) and an upper end wall ( 11) Insert the upper body (3) and lower body (5) into the inner side of each, and in this state, braze the contact part between the upper body (3) and lower body (5) continuously in the circumferential direction.
  • the upper body (3) and the lower body (5) are fixed to each other to form the communication pipe (1).
  • the pair of upper side walls (10) of the upper body (3) and the pair of lower side walls (16) of the lower body (5) constitute a pair of side walls (8) of the communication pipe (1), and A pair of upper end walls (11) of the rectangular parallelepiped (3) and a pair of lower end walls (17) of the lower body (5) A pair of end walls (9) of 1) are formed.
  • one side wall (8) of the communication pipe (1) as shown in FIG. 3 has an upper side wall recess (12) of the upper body (3) and a lower side wall recess ( 18), an arc-shaped side wall recess (25) is formed, and the other side wall (8) is formed under the upper side wall bulge (13) of the upper body (3) and the lower body (5).
  • a side wall bulge portion (28) is formed by the side wall bulge portion (20).
  • the space formed by the inner surface of the upper body (3) and the inner surface of the lower body (5) of the communication pipe (1) is used as a fuel passage (26) for fuel to pass therethrough.
  • the cross-sectional shape perpendicular to the tube axis direction of the communication pipe (1) is the communication pipe (1) as shown in Figs.
  • the shapes are different at multiple locations.
  • the upper groove (14) formed in the upper body (3) and the lower groove (23) formed in the lower body (5) of Example 1 and Examples 2 to 17 below are the upper groove.
  • a pair of upper groove side wall (30) and lower groove side wall (31) constituting the groove (14) and the lower groove groove (23), the upper groove bottom surface (33) and the lower groove bottom surface (34) force upward It is inclined in a taper shape widened toward the groove opening (35) and the lower groove opening (36).
  • the communication port (24) provided in the bottom wall (7) shown in FIG. 3 has a cylindrical straight shape with the same inner and outer diameters from one end to the other end as shown in FIG.
  • the socket (4) formed in the shape is connected.
  • the elastic wave emitted from the injection nozzle (not shown) is almost stationary on the wall around the fuel inlet (32) of this socket (4) and hardly reflects. It passes through the fuel inlet (32) and propagates to the absorber wall without generating a wave. Therefore, since the pulsation pressure is absorbed by the absorber wall, vibration and noise can be reduced, and noise in a high frequency range radiated from the injection nozzle (not shown) can be reduced.
  • FIG. 13 shows the result of frequency analysis of the sound pressure generated in the communication pipe (1) in the fuel delivery pipe formed as described above.
  • a microphone was installed at a position 500 mm above the upper wall (6) in the center in the length direction and width direction of the upper wall (6) of the communication pipe (1).
  • a communication pipe (50) generally used conventionally as shown in FIG. 61 and FIG. 62, having a cross-sectional shape of a rectangle and a goggle type, and having the same shape from one end to the other end. The same measurement was conducted as Comparative Example 1 and Comparative Example 2 of this example.
  • the peak positions indicated by the broken lines in FIG. 13 are in other Comparative Examples 1 and 2 in the middle and high frequencies of the line graph in FIG. Overall, it was low. That is, in this example, the peak position was lower in the middle region than in Comparative Example 1, and the peak position was lower in the higher region than in Comparative Example 2.
  • the pulsation pressure generated on the low frequency side and the high frequency in the communication pipe (50) of Comparative Examples 1 and 2 are higher. It is clear that both the radiated sound generated on the side is reduced. Therefore, the upper groove (14), the lower groove (23), the lower one-side protrusion (21) in the length direction of the upper wall (6) and the bottom wall (7) of the communication pipe (1) as described above. ) And the lower other protrusion (22), and the communication pipe (1) is formed so that the cross-sectional shape in the direction perpendicular to the pipe axis of the communication pipe (1) is different at multiple locations of the communication pipe (1).
  • the transmission and propagation of the seating sound of the reciprocating spool is suppressed when the fuel injector is opened and closed, and it does not show a significantly high peak in each frequency component as described above. Noise can be reduced without impairing performance, and both vibration and noise of vehicle components can be reduced.
  • the lower one-side protrusion (21) and the lower other-side protrusion (22) protrude from the bottom wall (7) of the lower body (5), and the lower concave groove (23) is recessed in two places.
  • the bottom wall (7) as shown in FIG. 14 is flat.
  • the communication pipe (1) can be easily formed.
  • the lower body (5) has four circular communication ports (24) at desired intervals in the axial direction.
  • the upper body (3) is provided with an upper concave groove (14) having a U-shaped cross section that is continuous in the axial direction up to the other end.
  • an upper concave groove (14) having a U-shaped cross section that is continuous in the axial direction up to the other end.
  • two side wall recesses (25) that are recessed in a gentle arc shape inward in the width direction. There are 4 locations.
  • the cross-sectional shape in the direction perpendicular to the tube axis direction of the communication tube (1) has one recess on one side of a substantially rectangular shape as shown in FIG.
  • the cross-sectional substantially goggle type is formed.
  • the side wall recess (25) a position where the side wall recess (25) is formed as shown in FIGS. 15 (a) and (b), and a position where the side wall recess (25) is not formed.
  • the cross-sectional shapes of the substantially goggles are different from each other.
  • the communication pipe (1) is formed with one upper concave groove (14) in the tube axis direction and side wall recesses (25) on both side walls (8).
  • FIG. 2 An arc-shaped side wall concave part (25) having a smaller curvature than the side wall concave part (25) of the second embodiment is formed on one side wall (8) of the communication pipe (1) as shown in FIG. Forming.
  • the upper wall (6) of the upper body (3) as shown in FIG. 17 has an upper groove (14) that is continuous from one end to the other end and has a different cross-sectional shape in the tube axis direction.
  • the 1st article is formed.
  • the pipe of the communication pipe (1) as shown in Figs. 18 (a) and (b).
  • the cross-sectional shape in the direction perpendicular to the axis is a substantially goggle type with different shapes.
  • two side wall recesses (25) are formed on one side wall (8) of the communication pipe (1) with a gap therebetween.
  • one side wall bulging portion (28) is formed on one side wall (8) of the communication pipe (1).
  • the bottom wall (7) of the lower body (5) has three circular openings (24) at desired intervals in the tube axis direction, and the upper wall (6) of the upper body (3).
  • one end of the upper groove (14) is formed which is continuous to one end force and the other end and has a different cross-sectional shape V in the tube axis direction.
  • the communication pipe (1) By forming the side wall bulging portion (28) and the upper concave groove (14) in the communication pipe (1) as described above, the communication pipe (1) as shown in Figs. 21 (a) and 21 (b)
  • the cross-sectional shapes in the direction perpendicular to the tube axis are substantially goggles with different shapes.
  • the cross-sectional shape in the direction perpendicular to the tube axis of the communication pipe (1) is different at a plurality of locations of the communication pipe (1), so that the spool that reciprocates when the fuel injector is opened and closed.
  • the noise can be reduced without impairing the fuel pulsation absorption performance.
  • the force that forms the side wall recess (25) or the side wall bulging portion (28) on one side wall (8) of the communication pipe (1) is formed with a pair of substantially trapezoidal side wall bulging portions (28) at intervals, and the other side wall (8).
  • a pair of arcuate side wall recesses (25) having a shape different from that of the side wall bulge portion (28) is formed at a position opposite to the position where the side wall bulge portion (28) is formed.
  • the bottom wall (7) of the lower body (5) has four circular communication ports (24) at desired intervals in the tube axis direction, and the upper wall of the upper body (3). (6) includes one end to the other end as shown in FIG.
  • One upper concave groove (14) having a different cross-sectional shape is formed in the tube axis direction.
  • a pair of substantially trapezoidal side wall bulging portions (28) are formed on one side wall (8) of the communication pipe (1) and the other side wall (8)
  • a pair of arc-shaped side wall recesses (25) having a shape different from that of the side wall bulging portion (28) is formed.
  • one side wall of the communication pipe (1) is formed.
  • a pair of substantially trapezoidal side wall bulging portions (28) are formed with an interval, and the other side wall (8) is formed at the position where the pair of side wall bulging portions (28) are formed.
  • a pair of substantially trapezoidal side wall concave portions (25) having a shape corresponding to the side wall bulging portion (28) is formed at a corresponding position.
  • the communication pipe (1) of the sixth embodiment is provided at three desired positions in the tube axis direction of the bottom wall (7) as shown in FIG.
  • a circular communication port (24) is opened.
  • a pair of substantially side wall bulging portions (28) elongated in the direction of the tube axis are formed on one side wall (8) at intervals between the positions where the communication ports (24) are formed.
  • the other side wall (8) has a substantially trapezoidal shape that is long in the tube axis direction and has a shape corresponding to the side wall bulging portion (28) at a position corresponding to the pair of side wall bulging portions (28).
  • a pair of side wall recesses (25) are formed.
  • the shape of the side wall recess (25) is made to correspond to the substantially trapezoidal side wall bulging portion (28) elongated in the tube axis direction, the one side wall (8) and the other side wall (8)
  • the side wall (8) of the pipe is always parallel to the one end force of the communication pipe (1) to the other end.
  • the upper wall (6) of the upper body (3) as shown in FIG. 26 is continuous from one end to the other end, and the upper groove having a constant formation width from one end force to the other end. (14) is formed in the width direction center part of the upper wall (6) in parallel with both side walls (8) of the communication pipe. Also, a substantially trapezoidal protrusion (37) for connecting an inlet pipe (not shown) is provided at one end of the communication pipe (1) in the height direction.
  • the cross-sectional shape in the direction perpendicular to the tube axis of the communication tube (1) obtained by projecting the entire communication tube (1) from the tube axis direction is a substantially goggle type.
  • the cross-sectional shape in the direction perpendicular to the tube axis of the communication pipe (1) is different at a plurality of locations of the communication pipe (1), so that the seating sound of the spool that performs the reciprocating motion when the fuel injector opens and closes.
  • noise can be reduced without impairing fuel pulsation absorption performance.
  • the cross-sectional shape in the direction perpendicular to the tube axis direction of the communication pipe (1) is substantially goggle type in which the one end force of the communication pipe (1) is different in shape at a plurality of locations up to the other end.
  • the cross-sectional shape of the communication pipe (1) in the direction perpendicular to the pipe axis direction is formed by forming concave portions on two opposing sides of a substantially rectangular shape one by one. It is generally mortar type.
  • the seventh embodiment will be described in detail.
  • the communication pipe (1) has a small curvature on both side walls (8), like the communication pipe (1) of the second embodiment as shown in FIG.
  • Arc-shaped side wall recesses (25) are formed at a total of four locations.
  • the upper wall (6) of the upper body (3) has an upper groove (14) having a U-shaped cross section that is continuous in the axial direction from one end to the other end, and is recessed at the center in the width direction of the upper body (3).
  • the bottom wall (7) of the lower body (5) is also provided on the bottom wall (7) at a position corresponding to the upper groove (14).
  • a letter-shaped downward groove (23) is formed.
  • planar shape of the upper concave groove (14) and the lower concave groove (23) is a shape along the shape of both side walls (8) of the communication pipe (1).
  • the cross-sectional shape in the direction perpendicular to the tube axis of the communication pipe (1) is formed so as to be different at a plurality of locations of the communication pipe (1), so that the seating of the spool that performs reciprocating motions when the fuel injector is opened and closed While suppressing the transmission and propagation of sound, it is possible to reduce noise without impairing fuel pulsation absorption performance.
  • the cross-sectional shape in the direction perpendicular to the tube axis direction of the communication tube (1) is a substantially mortar shape having different shapes at a plurality of locations at one end force of the communication tube (1) to the other end.
  • the cross-sectional shape in the direction perpendicular to the tube axis direction of the communication pipe (1) is set at one end of each of the two opposite sides of the substantially rectangular shape at the opposite position. It is formed as a generally flask shape that is formed one by one.
  • the planar shape of the upper ridge (38) and the lower ridge (39) is a shape along the shape of the one side wall (8) of the communication pipe (1). Further, the pair of upper ridge side walls (40) and the lower ridge side wall (41) constituting the upper ridge (38) and the lower ridge (39) are inclined in a tapered shape.
  • the cross-sectional shape in the direction perpendicular to the tube axis of the communication pipe (1) has a plurality of locations in the communication pipe (1).
  • the transmission and propagation of the seating sound of the spool that reciprocates when the fuel injector is opened and closed can be suppressed, and the noise can be reduced without impairing the fuel pulsation absorption performance.
  • the cross-sectional shape of the communication pipe (1) is any one of a substantially goggle type, a substantially mortar type, and a substantially flask type, and at a plurality of locations. Although the shape is different, in Example 9 which is the fifth invention of the present application, the cross-sectional shape of the communication pipe (1) is both a substantially goggle type and a substantially mortar type at different positions of the communication pipe (1). It is assumed that
  • the ninth embodiment will be described in more detail.
  • the lower body (5) of the communication pipe (1) as shown in Fig. 32 has three desired spacings in the axial direction of the bottom wall (7).
  • the circular communication port (24) is opened at the same time, and the lower concave groove (23) having a U-shaped cross section and a substantially rectangular shape is recessed at two intervals in the tube axis direction of the communication tube (1).
  • the upper wall (6) of the upper body (3) has one upper groove (14) that continues to the other end and has a different cross-sectional shape in the tube axis direction as shown in FIG.
  • the substantially mortar type shown in FIG. 34 (a) and the substantially goggles shown in FIG. 34 (b) The cross-sectional shape of the mold can be formed at different positions in the tube axis direction of the communication pipe (1). Therefore, the cross-sectional shape in the direction perpendicular to the tube axis of the communication pipe (1) is different at a plurality of locations of the communication pipe (1), and the seating sound of the reciprocating spool is transmitted and propagated when the fuel indicator is opened and closed. While suppressing, it can achieve low noise without impairing fuel pulsation absorption performance.
  • the lower concave groove (23) having a U-shaped cross section and a substantially rectangular shape is provided in the space between the communication ports (24) of the bottom wall (7) in the direction of the pipe axis of the communication pipe (1).
  • the lower side protrusions (21) are formed on the side walls (8) side of the space (24) of the bottom wall (7) as shown in FIG. )
  • the lower other-side protrusion (22) are formed in four locations, one at a position corresponding to each other.
  • the upper wall (6) of the upper body (3) is formed with a single upper groove (14) that is continuous from one end to the other as shown in FIG.
  • the approximate mortar shown in FIG. The cross-sectional shape of the mold and the substantially goggle type shown in FIG. 37 (b) can be formed at different positions in the tube axis direction of the communication pipe (1). Therefore, since the cross-sectional shape in the direction perpendicular to the tube axis of the communication pipe (1) can be different at a plurality of locations of the communication pipe (1), the seating noise of the spool that reciprocates when the fuel injector is opened and closed. In addition to suppressing transmission and propagation, noise can be reduced without impairing fuel pulsation absorption performance.
  • (7) is formed with a pair of lower one-side protrusions (21) and a lower other-side protrusion (22), and at a distance from the lower one-side protrusions (21) and the lower other-side protrusions (22).
  • One concave groove (23) is formed for each.
  • the side wall (8) side of the communication port (24) of the bottom wall (7) has a substantially rectangular shape with a U-shaped cross section.
  • the lower one-side projection (21) and the lower other-side projection (22) are formed in two locations, one pair each, for a total of four locations.
  • the distance between the pair of lower one-side protrusions (21) and the lower other-side protrusions (22) is longer than the formation length of the lower one-side protrusions (21) and the lower other-side protrusions (22).
  • Two rectangular recesses (23) of short rectangular length are formed, one at a time.
  • the upper wall (6) of the upper body (3) is provided with an upper groove (14) that continues to the other end and has a different cross-sectional shape in the tube axis direction as shown in FIG. Forming
  • the cross-sectional shapes of the substantially goggle type shown in 40 (a) and the different substantially mortar types shown in FIGS. 40 (b) and (c) can be formed at different positions in the tube axis direction of the communication pipe (1). It becomes. Therefore, the cross-sectional shape in the direction perpendicular to the tube axis of the communication pipe (1) will be different at multiple locations on the communication pipe (1), and the seating noise of the reciprocating spool will be transmitted and propagated when the fuel injector is opened and closed. In addition to suppressing the noise, the noise can be reduced without impairing the fuel pulsation absorption performance.
  • Example 12 [0066] In Example 11, a pair of lower one-side protrusions (21) and a lower other-side protrusion (22) are formed on the bottom wall (7), and the lower one-side protrusion (21).
  • the lower concave groove (23) having a shorter formation length than the formation length of the lower other side protrusion (22) is formed, but in Example 12, the bottom wall (7 )
  • a pair of lower one-side protrusions (21) having a U-shaped cross section and a substantially rectangular shape are formed in a total of two locations.
  • the upper wall (6) of the upper body (3) is formed with a single upper concave groove (14) that continues to the other end and has a different cross-sectional shape in the tube axis direction as shown in FIG. is doing
  • the upper concave groove (14), the lower one-side protrusion (21), and the lower concave groove (23) in the communication pipe (1) as described above, as shown in the hatched portion of FIG. It is possible to partially form the cross-sectional shape of the general mortar type of (1) and the general godal type of (b) at different positions in the tube axis direction of the communication pipe (1). Accordingly, since the partial cross-sectional shape in the direction perpendicular to the tube axis of the communication pipe (1) can be different at a plurality of locations of the communication pipe (1), the reciprocating motion is caused when the fuel injector is opened and closed. In addition to suppressing the transmission and propagation of the seating noise of the spool, the noise can be reduced without impairing the fuel pulsation absorption performance.
  • the force in which the partial cross-sectional shape of the communication pipe (1) is a substantially mortar type and a substantially gondal type.
  • the part of the communication pipe (1) Typical cross-sectional shapes include a substantially mortar type, a substantially goggle type, and a compromised cross-sectional shape of a substantially mortar type and a substantially goggle type.
  • the thirteenth embodiment will be described in more detail.
  • the protrusion (21) is formed at two positions with a gap, and is formed adjacent to one side of the lower one-side protrusion (21) and shorter than the formation length of the lower one-side protrusion (21).
  • the upper wall (6) of the upper body (3) has an upper groove (14) which is continuous from one end to the other end and has a different cross-sectional shape in the tube axis direction as shown in FIG. 1 is forming
  • An upper groove (14), a lower one-side protrusion (21), and a lower groove (23) are formed in the communication pipe (1) as described above.
  • the cross-sectional shapes at different positions in the tube axis direction of the communication pipe (1) shown in the hatched part in FIG. It is possible to adopt a mold, and an eclectic type of the substantially goggle type and the substantially mortar type of (c). Therefore, since the cross-sectional shape in the direction perpendicular to the tube axis of the communication pipe (1) can be different at a plurality of locations of the communication pipe (1), transmission of seating sound of the spool that reciprocates when the fuel injector is opened and closed. Noise can be reduced without impairing fuel pulsation absorption performance.
  • the lower wall side (7) has a substantially rectangular lower side projection (21) having a U-shaped cross section on the bottom wall (7).
  • a lower protrusion (39) with a U-shaped cross section is placed on the side wall (8) side of the bottom wall (7) as shown in Fig. 47. It is formed continuously. Adjacent to the lower ridge (39), two lower grooves (23) having a U-shaped cross section are formed at intervals between the communication ports (24). . Further, one side wall bulging portion (28) is formed on the other side wall (8) of the communication pipe (1).
  • the upper wall (6) of the upper body (3) is provided with an upper groove (14) having a one end force continuous to the other end as shown in FIG. , Forming 1 article
  • the partial cross-sectional shape as shown in the part is (a) the approximate mortar type, (b) the approximate goggle type and the approximate mortar type, and (c) the approximate goggle type.
  • the partial cross-sectional shape of the communication pipe (1) is formed in different positions in the direction of the pipe axis of the communication pipe (1), so that the reciprocating motion is performed when the fuel injector is opened and closed. While suppressing the transmission and propagation of the seating sound of the spool, it is possible to reduce the noise without impairing the fuel pulsation absorption performance.
  • the communication pipe (1) having a substantially goggle-shaped and substantially mortar-shaped cross-sectional shape is formed.
  • a communication pipe (1) having a cross-sectional shape of the mold is formed.
  • the present Example 15 will be described in more detail.
  • a lower protrusion (39) having a U-shaped cross section is connected to one side wall (8) side of the bottom wall (7) of the communication pipe (1) as shown in FIG.
  • One end force of the pipe (1) is continuously formed to the other end.
  • the upper wall (6) of the upper body (3) has an upper ridge (38) having a U-shaped cross section at the position opposite to the lower ridge (39) of the lower body (5) as shown in FIG. ) Is continuously formed up to the other end of the communication pipe (1), and two upper concave grooves (14) with a U-shaped cross section are formed at positions opposite the lower concave groove (23) of the lower body (5). Form and do.
  • the lower ridge (39) and the lower groove (23) are formed on the bottom wall (7) of the communication pipe (1) as described above, and the upper ridge (38) and the upper ridge (38) are formed on the upper wall (6).
  • the upper concave groove (14) By forming the upper concave groove (14), the partial cross-sectional shape as shown in the hatched portion of FIG. 52 becomes a substantially mortar shape of (a) and a substantially flask shape of (b). It is possible to form various cross-sectional shapes at different positions in the tube axis direction of the communication tube (1). Therefore, transmission and propagation of the seating sound of the spool that reciprocates when the fuel injector is opened and closed can be suppressed, and noise can be reduced without impairing the fuel pulsation absorption performance.
  • Example 15 the communication pipe (1) having a cross-sectional shape of a substantially mortar type and a substantially flask type is formed, but in this Example 16, a substantially goggle type and a substantially flask type are provided.
  • a communication pipe (1) having a cross-sectional shape is formed.
  • the present Example 16 will be described in more detail.
  • the central portion in the tube axis direction of the communication pipe (1) is on the side wall (8) side of the bottom wall (7) of the communication pipe (1).
  • one lower side protrusion (21) having a tapered U-shaped tapered section that is gently inclined downward toward the bottom wall (7) is formed at both ends from the center.
  • the upper wall (6) of the upper body (3) has an upper protrusion (38) having a U-shaped cross section at a position opposite to the lower one-side protrusion (21) as shown in FIG. Is formed continuously to the other end of the communication pipe (1), and the upper groove (14) having a U-shaped cross section is connected to the upper protrusion side wall (40) of the upper protrusion. Two locations are formed on both ends of (1).
  • a lower one-side protrusion (21) is formed on the bottom wall (7) of the communication pipe (1) as described above, and an upper protrusion (38) and an upper groove (14) are formed on the upper wall (6).
  • FIG. 55 it is possible to form a cross-sectional shape of a substantially goggle type of (a) and a substantially flask type of (b) as shown in FIG. 1) can be formed at different positions in the tube axis direction. wear. Therefore, since the cross-sectional shape in the direction perpendicular to the tube axis of the communication pipe (1) can be different at a plurality of locations of the communication pipe (1), the seating sound of the spool that performs the reciprocating motion when the fuel injector is opened and closed. In addition to suppressing the transmission and propagation of fuel, noise can be reduced without impairing fuel pulsation absorption performance.
  • Example 16 the communication pipe (1) having a substantially goggle type and substantially flask type cross-sectional shape is formed, but in Example 17, a substantially goggle type, a substantially mortar type, And a communication pipe (1) having a substantially flask-shaped cross section.
  • Example 17 will be described in more detail.
  • the one end side force of the communication pipe (1) is applied to the one side wall (8) side of the bottom wall (7) of the communication pipe (1).
  • Forming a U-shaped lower one-side protrusion (21) that is gradually inclined in the height direction toward the height direction, and adjacent to the lower one-side protrusion (21). (23) is formed at one location on one end of the lower body (5).
  • the upper wall (6) of the upper body (3) is provided with an upper ridge (38) having a U-shaped cross section at a position opposed to the lower one-side protrusion (21).
  • an upper concave groove (14) with a U-shaped cross section is formed at one end of the communication pipe (1) and facing the lower concave groove (23). It is formed at two locations in total, one location.
  • the bottom wall (7) of the lower body (5) as described above is formed with the lower one-side protrusion (21) and the lower groove (23), and the upper wall (6) ) Is formed with an upper ridge (38) and an upper groove (14), so that the partial cross-sectional shape shown in the hatched portion of FIG. It becomes a substantially flask shape and a substantially mortar shape of (c), and different partial cross-sectional shapes can be formed at different positions in the tube axis direction of the communication tube (1). Therefore, the cross-sectional shape in the direction perpendicular to the tube axis of the communication pipe (1) can be different at a plurality of locations of the communication pipe (1). In addition to suppressing the transmission and propagation of sound, it is possible to reduce noise without impairing fuel pulsation absorption performance.
  • the communication pipe (1) is divided into two parts in the vertical direction, the connection side of the fuel introduction pipe (2) is the upper body (3), and the connection side of the socket (4) is As the lower body (5), these upper body (3) and The force that connects and assembles the lower body (5) in the circumferential direction
  • the communication pipe (1) as shown in FIGS. 59 and 60 is an integral structure pipe type. Further, a cap (42) is connected to one end and the other end of the communication pipe as shown in FIG.
  • an integrally structured pipe-type communication pipe (1) eliminates the need for brazing work over a large area using an expensive and heavy brazing material. It is possible to obtain In addition, since the brazing work for a long distance is not required, a process such as a leak test for the brazed part is unnecessary, and the reliability of the product against fuel leakage can be improved.
  • the upper body (3) is provided with one upper concave groove (14) having a U-shaped cross section that is continuous in the axial direction to one end force and the other end.
  • the cross-sectional shape in the direction perpendicular to the pipe axis direction of the communication pipe (1) has one recess on one side of a substantially rectangular shape as shown in FIG.
  • the cross-sectional substantially goggle type is formed.
  • a position where the side wall recess (25) is formed as shown in FIGS. 60 (a) and (b) and a position where the side wall recess (25) is not formed.
  • the cross-sectional shapes of the substantially goggles are different from each other.
  • the upper pipe groove (14) is formed in the pipe axis direction of the communication pipe (1) as described above, and the side wall concave part (25) is formed on both side walls (8) to form the pipe of the communication pipe (1).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

  フューエルデリバリパイプの連通管内において低周波側で生じる脈動音を吸収するとともに、高周波側で生じる放射騒音を低減可能とし、車両構成部材の振動及び騒音を、ともに低減可能とする。   内部に燃料通路26を有するとともに壁面にアブゾーブ面を備えた連通管1と、この連通管1に接続された燃料導入管2と、一端を連通管1に接続して燃料通路26に連通するとともに他端を噴射ノズルの後端に接続するソケット4とを備えたフューエルデリバリパイプにおいて、前記連通管1のアブゾーブ面に凹部及び/又は突部を長さ方向に形成し、連通管1の管軸に対する垂直方向の断面形状を、連通管1の複数箇所において異なるものとする。

Description

明 細 書
フューエルデリバリパイプ
技術分野
[0001] 本発明は、電子燃料噴射式自動車用エンジンの燃料加圧ポンプ力ゝら送給された燃 料を、エンジンの各吸気通路或いは気筒内に直接噴射する燃料インジヱクタ (噴射ノ ズル)を介して供給するためのフューエルデリバリパイプに係るもので、燃料噴射によ る圧力脈動及び放射音を低減する事を目的とするものである。また、燃料通路を有 するフューエルデリバリパイプの断面構造及びフューエルデリバリパイプの外部構造 若しくはフューエルデリバリパイプの圧力脈動及び放射音の低減機構 (メカニズム)に 係るものである。
背景技術
[0002] 従来、複数の噴射ノズルを設けてエンジンの複数の気筒にガソリン等の燃料を供給 するフューエルデリバリパイプが知られている。このフューエルデリバリパイプは、燃 料タンクから導入した燃料を、複数の噴射ノズル力も順次、エンジンの複数の吸気管 又は気筒内に噴射し、この燃料を空気と混合させ、この混合気を燃焼させる事によつ てエンジンの出力を発生させている。
[0003] このフューエルデリバリパイプは、上述の如ぐ床下配管を介して燃料タンク力も供 給された燃料を噴射ノズルカゝらエンジンの吸気管又は気筒に噴射する為のものであ るが、供給された燃料がフューエルデリバリパイプ内に余分に供給された場合、その 余分の燃料を圧力レギュレーターにより燃料タンクに戻す回路を有する方式の、リタ ーンタイプのフューエルデリバリパイプが存在する。また、このリターンタイプのフュー エルデリバリパイプとは異なり、供給された燃料を燃料タンクに戻す回路を持たない、 リターンレスタイプのフューエルデリバリパイプが存在する。
[0004] フューエルデリバリパイプに余分に供給された燃料を燃料タンクに戻す方式のもの は、フューエルデリバリパイプ内の燃料の量を、常に一定に保つ事が出来るため、燃 料噴射に伴う圧力脈動も発生しにくい利点を有している。し力しながら、高温のェン ジン気筒に近接して配置して 、るフューエルデリバリパイプに供給された燃料は高温 化し、この高温ィ匕した余分の燃料を燃料タンクに戻す事によって、燃料タンク内のガ ソリンの温度が上昇する。この温度上昇により、ガソリンが気化し、環境に悪影響を及 ぼすものとなり好ましくないため、この余分の燃料を燃料タンクに戻さないリターンレス タイプのフューエルデリバリパイプが提案されている
このリターンレスタイプのフューエルデリバリパイプは、噴射ノズルから吸気管又は 気筒への噴射が行われた場合、余分の燃料を燃料タンクに戻す配管がないため、フ ユーエルデリバリパイプ内の燃料の圧力変動が大きなものとなり大きな圧力波を生じ
、圧力脈動の発生もリターンタイプのフューエルデリバリパイプに比較すると大きなも のとなつている。
[0005] そして、従来技術に於いては、エンジンの吸気管又は気筒への噴射ノズル力もの 燃料噴射によってフューエルデリバリパイプの内部が減圧されると、この急激な減圧 と、燃料噴射の停止によって生じる圧力波力 フューエルデリバリパイプの内部に圧 力脈動を生じさせるものとなる。この圧力脈動は、フューエルデリバリパイプ及びこの フューエルデリバリパイプに接続した接続管から燃料タンク側まで伝播された後、燃 料タンク内の圧力調整弁から反転されて戻され、接続管を介してフューエルデリバリ パイプ迄伝播される。フューエルデリバリパイプには、複数の噴射ノズルが設けられ ており、この複数の噴射ノズルが順次燃料の噴射を行い、圧力脈動を発生させる。
[0006] その結果、床下配管を床下に止めているクリップを介して車内に騒音として伝播さ れ、この騒音が運転者や乗車者に不快感を与えるものとなる。
[0007] 従来、このような圧力脈動による弊害を抑制する方法としては、ゴムのダイアフラム が入ったパルセーシヨンダンパーを、リターンレスタイプのフューエルデリバリパイプ に配置し、発生する圧力脈動エネルギーをこのパルセーシヨンダンパーによって吸 収したり、フューエルデリバリパイプから燃料タンク側までの床下に配設される床下配 管を、振動吸収用のクリップを介して床下に固定する事により、フューエルデリバリパ イブ、もしくはタンクまでの床下配管に発生する振動を吸収する事が行われている。 これらの方法は比較的有効なものであって圧力脈動の発生による弊害を抑制させる 効果がある。
[0008] しかしながらパルセーシヨンダンパーや振動吸収用のクリップは高価なものであり、 部品点数を増やしコスト高となるし、設置スペースの確保にも新たな問題を生じてい る。そこで、特許文献 1及び 2に記載の発明の如ぐこれらのパルセーシヨンダンパー や振動吸収用のクリップを使用する事なぐ圧力脈動を低減させる目的で、フューェ ルデリバリパイプに圧力脈動を吸収し得る、脈動吸収機能を備えたものが提案されて いる。
[0009] 即ち、特許文献 1に記載の発明は、連通管の壁面に可撓性のァブゾーブ面を備え るとともに、管軸方向に対して垂直方向の断面形状を蛇腹形状としている。また、特 許文献 2に記載の発明は、連通管の壁面にァブゾーブ面を備えるとともに、管軸方 向に対して垂直方向の断面形状を T字型、 ダンベル形状、倒立アイマスク形状に形 成している。また、特許文献 1及び 2の連通管の管軸方向に対して垂直方向の断面 形状を、連通管の一端力 他端まで全て同一形状としている。そして、上記の如く形 成した連通管のアブゾーブ面のひずみによって衝撃や脈動を吸収し、インジェクタに よる反射波や脈動圧に起因する振動などにより引き起こされる異音の発生等を低減 することを目的としている。
特許文献 1:特開 2000— 320423号公報
特許文献 2 :特開 2000— 329031号公報
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、上記特許文献 1及び 2に記載の発明では、上記の如く低周波側にお いて発生する脈動音を吸収することは可能となるが、高周波側において発生する放 射騒音について低減することは困難であり、力チカチ音が発生する等、依然として騒 音の問題が生じていた。
[0011] そこで、本願の第 1〜第 5発明は上記の如き課題を解決しょうとするものであって、 連通管内において低周波側で生じる脈動音を吸収するとともに、高周波側で生じる 放射騒音を低減可能とし、車両構成部材の振動及び騒音を、ともに低減可能にしょ うとするちのである。
課題を解決するための手段
[0012] 上述の如き課題を解決するため、本願の第 1発明は、内部に燃料通路を有するとと もに壁面にァブゾーブ面を備えた連通管と、この連通管に接続された燃料導入管と 、一端を連通管に接続して燃料通路に連通するとともに他端を噴射ノズルの後端に 接続するソケットとを備えたフューエルデリバリパイプにお!、て、前記連通管のアブゾ ーブ面に凹部及び z又は突部を長さ方向に形成し、連通管の管軸に対する垂直方 向の断面形状を、連通管の複数箇所にぉ 、て異なるものとして!/、る。
[0013] また、本願の第 2発明は、内部に燃料通路を有するとともに壁面にァブゾーブ面を 備えた連通管と、この連通管に接続された燃料導入管と、一端を連通管に接続して 燃料通路に連通するとともに他端を噴射ノズルの後端に接続するソケットとを備えた フューエルデリバリパイプにおいて、前記連通管のァブゾーブ面に凹部及び z又は 突部を長さ方向に形成し、連通管の管軸に対する垂直方向の断面形状を、略矩形 の一辺に凹部を 1箇所形成して成る略ゴーグル型とするとともに、前記略ゴーグル型 の断面形状を、連通管の複数箇所において異なるものとしている。
[0014] また、本願の第 3発明は、内部に燃料通路を有するとともに壁面にァブゾーブ面を 備えた連通管と、この連通管に接続された燃料導入管と、一端を連通管に接続して 燃料通路に連通するとともに他端を噴射ノズルの後端に接続するソケットとを備えた フューエルデリバリパイプにおいて、前記連通管のァブゾーブ面に凹部及び Z又は 突部を長さ方向に形成し、連通管の管軸に対する垂直方向の断面形状を、略矩形 の対向する 2辺に凹部を 1箇所ずつ形成して成る略臼型とするとともに、前記略臼型 の断面形状を、連通管の複数箇所において異なるものとしている。
[0015] また、本願の第 4発明は、内部に燃料通路を有するとともに壁面にァブゾーブ面を 備えた連通管と、この連通管に接続された燃料導入管と、一端を連通管に接続して 燃料通路に連通するとともに他端を噴射ノズルの後端に接続するソケットとを備えた フューエルデリバリパイプにおいて、前記連通管のァブゾーブ面に凹部及び z又は 突部を長さ方向に形成し、連通管の管軸に対する垂直方向の断面形状を、略矩形 の対向する二辺の一端に突部を対向位置にそれぞれ 1箇所ずつ形成して成る略フ ラスコ型とするとともに、前記略フラスコ型の断面形状を、連通管の複数箇所におい て異なるものとしている。
[0016] また、本願の第 5発明は、内部に燃料通路を有するとともに壁面にァブゾーブ面を 備えた連通管と、この連通管に接続された燃料導入管と、一端を連通管に接続して 燃料通路に連通するとともに他端を噴射ノズルの後端に接続するソケットとを備えた フューエルデリバリパイプにおいて、前記連通管のァブゾーブ面に凹部及び z又は 突部を長さ方向に形成し、連通管の管軸に対する垂直方向の断面形状を連通管の 複数箇所において異なるものとするとともに、前記断面形状には、少なくとも略矩形 の一辺に凹部を 1箇所形成して成る略ゴーグル型、略矩形の対向する 2辺に凹部を 1箇所ずつ形成して成る略臼型、及び略矩形の対向する 2辺に凹部を 1箇所ずつ形 成して成る略臼型の断面形状のうち、少なくとも 2種以上の断面形状を、連通管の管 軸方向にお 、て異なる位置に設けたものである。
[0017] 尚、上記第 1発明〜第 5発明の断面形状とは、連通管の断面を、連通管全体を管 軸方向から投影して輪郭化した断面形状と、連通管の一部分、例えば、連通管の凹 部及び Z又は突部形成位置などを部分的に投影して輪郭化した部分的な断面形状 との両方の意味を含むものとする。
[0018] また、連通管は、壁面を上下方向に分割して周方向に接続したものであっても良く 、一体構造のパイプタイプとしたものであっても良い。また、ソケットは、一端から他端 までを筒型のストレート状に形成したものであっても良い。
発明の効果
[0019] 本願の第 1発明〜第 5発明は上述の如く構成したものであって、連通管に形成した 可撓性のァブゾーブ面の長さ方向に凹部及び Z又は突部を形成し、連通管の管軸 に対する垂直方向の断面形状を、連通管の複数箇所において異なるものとすること により、連通管内において低周波側で発生する脈動音を吸収するとともに高周波側 で発生する放射騒音を低減可能としている。そのため、燃料インジェクター開閉時に 伴 、往復運動を行うスプールの着座音の伝達や伝播を抑制することにより、燃料脈 動吸収性能を損うことなく低騒音化を図り、車両構成部材の振動及び騒音を、ともに 低減可能とするものである。
図面の簡単な説明
[0020] [図 1]本願の第 1発明である実施例 1を示すフューエルデリバリパイプの底壁側力 見 た斜視図。 [図 2]本願の第 1発明である実施例 1の連通管の上方体側から見た斜視図。
[図 3]実施例 1の連通管の下方体側から見た斜視図。
[図 4]実施例 1のフューエルデリバリパイプの上方体側から見た平面図。
[図 5]図 3の A— A線断面図。
[図 6]図 3の B— B線断面図。
[図 7]図 3の C C線断面図。
[図 8]図 3の D— D線断面図。
[図 9]図 3の E— E線断面図。
[図 10]図 3の F— F線断面図。
[図 11]図 3の G— G線断面図。
[図 12]図 3の H— H線断面図。
[図 13]周波数分析における音圧を示す折れ線グラフ。
圆 14]本願の第 2発明である実施例 2を示す連通管の斜視図。
[図 15]図 14の (a)I2- 12断面図、及び (b)Il- II断面図。
圆 16]実施例 3を示す連通管の下方体側カゝら見た斜視図。
圆 17]実施例 3の連通管の上方体側力も見た斜視図。
[図 18]図 17の (a)Jl-Jl断面図、及び (b)J2-J2断面図。
圆 19]実施例 4を示す連通管の下方体側カゝら見た斜視図。
圆 20]実施例 4の連通管の上方体側力も見た斜視図。
[図 21]図 20の (a)Kl- K1断面図、及び (b)K2- K2断面図。
圆 22]実施例 5を示す連通管の下方体側カゝら見た斜視図。
[図 23]実施例 5の連通管の上方体側から見た斜視図。
[図 24]図 22の (a)Ll- L1断面図、及び (b)L2- L2断面図。
圆 25]実施例 6を示す連通管の下方体側カゝら見た斜視図。
圆 26]実施例 6の連通管の上方体側力も見た斜視図。
[図 27]図 26の (a)Ml- Ml断面図、及び (b)M2- M2断面図。
圆 28]本願の第 3発明である実施例 7を示す連通管の下方体側から見た斜視図。
[図 29]図 28の (a)N2- N2断面図、及び (b)Nl- N1断面図。 圆 30]本願の第 4発明である実施例 8を示す連通管の下方体側から見た斜視図。
[図 31]図 30の (a)01- 01断面図、及び (b)02- 02断面図。
圆 32]本願の第 5発明である実施例 9を示す連通管の下方体側から見た斜視図。
[図 33]実施例 9の連通管の上方体側から見た斜視図。
[図 34]図 34の (a)Pl-Pl断面図、及び (b)P2-P2断面図。
圆 35]実施例 10を示す連通管の下方体側カゝら見た斜視図。
圆 36]実施例 10の連通管の上方体側力も見た斜視図。
[図 37]図 35の (a)Ql- Q1断面図、及び (b)Q2- Q2断面図。
圆 38]実施例 11を示す連通管の下方体側カゝら見た斜視図。
圆 39]実施例 11の連通管の上方体側力も見た斜視図。
[図 40]図 38の (a)Rl-Rl断面図、(b)R2-R2、及び (b)R3-R3断面図。
圆 41]実施例 12を示す連通管の下方体側カゝら見た斜視図。
圆 42]実施例 12の連通管の上方体側力も見た斜視図。
[図 43]図 41の (a)Sl-Sl断面図、及び (b)S2-S2断面図。
圆 44]実施例 13を示す連通管の下方体側カゝら見た斜視図。
圆 45]実施例 13の連通管の上方体側力も見た斜視図。
[図 46]図 44の (a)Tl- T1断面図、(b)T2- T2、及び (b)T3- Τ3断面図。
圆 47]実施例 14を示す連通管の下方体側カゝら見た斜視図。
圆 48]実施例 14の連通管の上方体側力も見た斜視図。
[図 49]図 47の (a)Ul- U1断面図、(b)U2- U2、及び (b)U3- U3断面図。
圆 50]実施例 15を示す連通管の下方体側カゝら見た斜視図。
[図 51]実施例 15の連通管の上方体側から見た斜視図。
[図 52]図 50の (a)Vl- VI断面図、(b)V2- V2断面図。
圆 53]実施例 16を示す連通管の下方体側カゝら見た斜視図。
圆 54]実施例 16の連通管の上方体側力も見た斜視図。
[図 55]図 53の (a)Wl- W1断面図、(b)W2- W2断面図。
圆 56]実施例 17を示す連通管の下方体側カゝら見た斜視図。
圆 57]実施例 17の連通管の上方体側力も見た斜視図。 [図 58]図 56の (a)Xl- XI断面図、(b)X2- X2、及び (b)X3- X3断面図。
[図 59]実施例 18を示す連通管の斜視図。
[図 60]図 59の (a)Y2- Y2断面図、(b)Yl- Y1断面図。
[図 61]従来例を示す比較例 1の連通管の断面図。
[図 62]従来例を示す比較例 2の連通管の断面図。
符号の説明
[0021] 1 連通管
2 燃料導入管
4 ソケット
26 燃料通路
実施例 1
[0022] 本発明の実施例 1を図 1〜図 13に於いて説明すると、(1)は連通管であって、角部 に Rを有するほぼ扁平な形状としている。そして、図 3に示す如ぐこの連通管 (1)を上 下方向に二分割し、燃料導入管 (2)の接続側を上方体 (3)、ソケット (4)の接続側を下 方体 (5)として、これら上方体 (3)及び下方体 (5)を周方向に接続して組み付けることに より、連通管 (1)の上壁 (6)、底壁 (7)、両側壁 (8)及び両端壁 (9)からなる壁面を形成し ている。また、この連通管 (1)の上壁 (6)及び底壁 (7)を、噴射ノズルからの燃料噴射に 伴って発生する圧力を受けて歪み変形可能なァブゾーブ面としている。尚、本実施 例及び以下の実施例 2〜17では連通管 (1)を上記の如く上下方向に分割して形成し ているが、他の異なる実施例においては、一体構造のパイプタイプに形成したもので あっても良い。
[0023] 本実施例 1のフューエルデリバリパイプを詳細に説明すると、連通管 (1)を形成して いる上方体 (3)は、図 2に示す如ぐ連通管 (1)の上壁 (6)を構成する上壁 (6)と、角部 に R部を有して連なる一対の上方側壁 (10)及び一対の上方端壁 (11)から成り、全体 形状を扁平な略直方体としている。また、この上方体 (3)の一方の上方側壁 (10)には 、上方体 (3)の幅方向内方に円弧状に凹設した上方側壁凹部 (12)を 2箇所形成して いる。また、他方の上方側壁 (10)には、外方に突出した略台形状の上方側壁膨出部 (13)を形成している。 [0024] また、上方体 (3)の上壁 (6)には、一端から他端まで軸方向に連続した断面コ字型の 上方凹溝 (14)を凹設している。そして、この上方凹溝 (14)の形成幅は、図 2に示す如 く中央部において幅広とするとともに両端部において幅狭なものとしており、幅広部 分と幅狭部分との間隔をテーパ状に傾斜させている。また、この上壁 (6)の上方凹溝 ( 14)の長さ方向中央には、燃料導入管 (2)の先端を挿入する挿入口(15)が設けられ ている。
[0025] また、下方体 (5)は、図 3に示す如ぐ連通管 (1)の底壁 (7)を構成する底壁 (7)と、角 部に R部を有して連なる一対の下方側壁 (16)及び一対の下方端壁 (17)とから成ると ともに、底壁 (7)には、軸方向に 4箇所、所望の間隔で円形の連通口 (24)を開口して いる。また、下方側壁 (16)には、上方体 (3)の上方側壁凹部 (12)の形成位置に対応 する位置に、上方側壁凹部 (12)に対応した形状の下方側壁凹部 (18)を形成するとと もに、他方の下方側壁 (16)には、上方体 (3)の上方側壁膨出部 (13)の形成位置に対 応する位置に、上方側壁膨出部 (13)に対応した形状の下方側壁膨出部 (20)を形成 している。
[0026] また、下方体 (5)の底壁 (7)の一側には、一端力も他端まで軸方向に連続した一定 幅の下方一側突部 (21)を突設するとともに、この底壁 (7)の一側とは反対側の他側に は、軸方向中央部に、軸方向に長尺な略長方形状の下方他側突部 (22)を突設して いる。また、上記の如く底壁 (7)に形成した下方一側突部 (21)に隣接して、軸方向に 長尺な長方形状の下方凹溝 (23)を、両端壁 (9)側にそれぞれ 1箇所ずっ凹設してい る。尚、上記下方一側突部 (21)、下方他側突部 (22)、及び下方凹溝 (23)は、それぞ れ底壁 (7)に形成した連通口 (24)と接触しな ヽ位置に配置されて ヽる。
[0027] そして、上記の如く形成した下方体 (5)の一対の下方側壁 (16)及び下方端壁 (17)を 、上方体 (3)の一対の上方側壁 (10)及び上方端壁 (11)の内側にそれぞれ差し入れて 上方体 (3)と下方体 (5)とを組み付け、この状態で上方体 (3)と下方体 (5)との接触部を 周方向に連続してろう付け等を行うことにより、上方体 (3)と下方体 (5)とを互いに固定 して連通管 (1)を構成している。そして、上方体 (3)の一対の上方側壁 (10)と下方体 (5 )の一対の下方側壁 (16)とにより、連通管 (1)の一対の側壁 (8)を構成するとともに、上 方体 (3)の一対の上方端壁 (11)と下方体 (5)の一対の下方端壁 (17)とにより、連通管( 1)の一対の端壁 (9)を構成して 、る。
[0028] また、図 3に示す如ぐ連通管 (1)の一方の側壁 (8)には、上方体 (3)の上方側壁凹 部 (12)と下方体 (5)の下方側壁凹部 (18)とにより、円弧状の側壁凹部 (25)が形成され るとともに、他方の側壁 (8)には、上方体 (3)の上方側壁膨出部 (13)と下方体 (5)の下 方側壁膨出部 (20)とにより、側壁膨出部 (28)が形成されるものとなる。そして、この連 通管 (1)の上方体 (3)の内面と下方体 (5)の内面とにより形成された空間を、燃料が通 過するための燃料通路 (26)として 、る。
[0029] そして、上記の如く連通管 (1)を形成することにより、連通管 (1)の管軸方向に対して 垂直な断面形状は、図 5〜12に示す如ぐ連通管 (1)の複数箇所においてそれぞれ 異なった形状となる。また、本実施例 1及び以下の実施例 2〜17の上方体 (3)に形成 した上方凹溝 (14)、及び下方体 (5)に形成した下方凹溝 (23)は、この上方凹溝 (14) 及び下方凹溝 (23)を構成する一対の上方凹溝側壁 (30)及び下方凹溝側壁 (31)を、 上方凹溝底面 (33)及び下方凹溝底面 (34)力 上方凹溝開口 (35)及び下方凹溝開 口 (36)に向けて拡開したテーパ状に傾斜して 、る。
[0030] 上記の如く形成した連通管 (1)において、連通管 (1)の上壁 (6)に形成した挿入口 (1 5)に、先端付近を L字型に折曲した燃料導入管 (2)の先端を挿入するとともに、連通 管 (1)と挿入口 (15)との接触部分をろう付けなどにより固定することにより、図 4に示す 如ぐ燃料導入管 (2)を連通管 (1)に接続している。また、この燃料導入管 (2)は、上方 凹溝 (14)の上方に、上方凹溝 (14)に沿って配置している。
[0031] このように燃料導入管 (2)を上方凹溝 (14)の上方に配置することにより、この燃料導 入管 (2)を連通管 (1)の上壁 (6)と接触しにくい状態で連通管 (1)に近接してに配置す ることができるため、フューエルデリバリパイプのレイアウト性を高めることが可能となる 。また、図 1に示す如ぐ連通管 (1)の底壁 (7)には、側壁凹部 (25)の形成位置にブラ ケット (27)をそれぞれ組み付けて 、る。
[0032] また、図 3に示す底壁 (7)に設けられた連通口 (24)には、図 1に示す如ぐ一端から 他端までの内径及び外径を同一寸法として円筒形のストレート状に形成したソケット( 4)を接続している。そのため、噴射ノズル (図示せず)カゝら放出される弾性波は、このソ ケット (4)の燃料流入口 (32)の周囲の壁面にほとんど衝突 ·反射することがなぐ定在 波を生ぜずにそのまま燃料流入口 (32)を通過してァブゾーブ壁面へと伝播する。そ のため、ァブゾーブ壁面において脈動圧が吸収されることから、振動及び騒音を低 減するとともに、噴射ノズル (図示せず)カゝら放射される高周波域の騒音が低減可能と なる。
[0033] 上記の如く形成したフューエルデリバリパイプにおいて、連通管 (1)に生じる音圧を 測定した周波数分析の結果を図 13に示す。尚、この周波数分析では、連通管 (1)の 上壁 (6)の長さ方向及び幅方向中央であって、上壁 (6)の上方 500mmの位置にマイ クを設置して行った。また、図 61及び図 62に示す如ぐ従来より一般的に使用されて いる連通管 (50)であって、断面形状を長方形及びゴーグル型とし、一端から他端ま で同一形状としたものを、本実施例の比較例 1及び比較例 2として同様に測定した。
[0034] その結果、図 13に示す如ぐ本実施例では図 13の折れ線グラフの周波数の中域 及び高域において、図 13の折れ線で示されるピーク位置が他の比較例 1及び比較 例 2と比べて全体的に低いものとなった。即ち、本実施例では、比較例 1よりも中域に おいてピーク位置が低ぐまた、比較例 2よりも高域においてピーク位置が低い結果と なった。
[0035] 以上の結果より、上記の如ぐ本実施例の連通管 (1)内においては、比較例 1及び 2 の連通管 (50)に比べて、低周波側で生じる脈動圧、及び高周波側で生じる放射音が 、ともに低減されることが明らかとなった。従って、上記の如ぐ連通管 (1)の上壁 (6)及 び底壁 (7)の長さ方向に上方凹溝 (14)、下方凹溝 (23)、下方一側突部 (21)及び下方 他側突部 (22)を形成し、連通管 (1)の管軸に対する垂直方向の断面形状を、連通管 ( 1)の複数箇所において異なるよう連通管 (1)を形成して使用することにより、燃料イン ジェクタ一開閉時に伴 、往復運動を行うスプールの着座音の伝達や伝播を抑制する とともに、上記の如ぐ各周波数成分において際だって高いピークを示さないため、 燃料脈動吸収性能を損なうことなく低騒音化を図ることができ、車両構成部材の振動 及び騒音を、ともに低減することを可能としている。
実施例 2
[0036] また、前記実施例 1では、下方体 (5)の底壁 (7)に、下方一側突部 (21)及び下方他 側突部 (22)を突設するとともに、下方凹溝 (23)を 2箇所凹設しているが、本願の第 2 発明である実施例 2では、図 14に示す如ぐ底壁 (7)を平坦なものとしている。そのた め、連通管 (1)の形成が容易なものとなる。また、下方体 (5)には、軸方向に 4箇所、所 望の間隔で円形の連通口 (24)を開口している。
[0037] また、上方体 (3)には、一端力 他端まで軸方向に連続した断面コ字型の上方凹溝 (14)を凹設している。また、図 14に示す如ぐこの連通管 (1)の両側壁 (8)には、幅方 向内方になだらかな弧状に凹設した側壁凹部 (25)を、対向位置に 2対、計 4箇所に 設けている。このように、側壁凹部 (25)を 4箇所形成することにより、側壁凹部 (25)の 内方に、他の部品を配置するためのスペースを確保することが可能となり、連通管 (1) と他の部品とが干渉し合うことなぐレイアウト性を高めることが可能となる。
[0038] 上記の如く連通管 (1)を形成することにより、連通管 (1)の管軸方向に対する垂直方 向の断面形状が、図 15に示す如ぐ略矩形の一辺に凹部を一箇所形成して成る断 面略ゴーグル型となる。そして、上記側壁凹部 (25)を形成することにより、図 15(a)及 び (b)に示す如ぐこの側壁凹部 (25)の形成位置と、側壁凹部 (25)を形成していない 位置とでは、略ゴーグル型の断面形状がそれぞれ異なるものとなる。
[0039] 上記の如ぐ連通管 (1)の管軸方向に上方凹溝 (14)を 1条形成するとともに両側壁( 8)に側壁凹部 (25)を形成して、連通管 (1)の管軸に対する垂直方向の断面形状を、 連通管 (1)の複数箇所において異なるよう形成することにより、燃料インジェクター開 閉時に伴 、往復運動を行うスプールの着座音の伝達や伝播を抑制するとともに、燃 料脈動吸収性能を損なうことなく低騒音化を図ることができる。
実施例 3
[0040] また、前記実施例 2では、連通管 (1)の両側壁 (8)に、なだらかな弧状の側壁凹部 (2 5)を 4箇所設けているが、本実施例 3では、図 16に示す如ぐ連通管 (1)の一方の側 壁 (8)に、前記実施例 2の側壁凹部 (25)よりも曲率の小さい円弧状の側壁凹部 (25)を 、間隔を介して 2箇所形成している。
[0041] また、図 17に示す如ぐ上方体 (3)の上壁 (6)には、一端から他端まで連続するとと もに管軸方向において断面形状が異なった上方凹溝 (14)を、 1条形成している。上 記の如ぐ側壁凹部 (25)を 2箇所形成することにより、側壁凹部 (25)の内方に、他の 部品を配置するためのスペースを確保することが可能となり、連通管 (1)と他の部品と が干渉し合うことなぐレイアウト性を高めることが可能となる。
[0042] 上記の如ぐ連通管 (1)に側壁凹部 (25)及び上方凹溝 (14)を形成することにより、図 18(a)(b)に示す如ぐ連通管 (1)の管軸に対する垂直方向の断面形状が、それぞれ 形状の異なる略ゴーグル型となる。このように、連通管 (1)の管軸に対する垂直方向 の断面形状を、連通管 (1)の複数箇所において異なるものとすることにより、燃料イン ジェクタ一開閉時に伴 、往復運動を行うスプールの着座音の伝達や伝播を抑制する とともに、燃料脈動吸収性能を損なうことなく低騒音化を図ることができる。
実施例 4
[0043] また、前記実施例 3では連通管 (1)の一方の側壁 (8)には、側壁凹部 (25)を間隔を 介して 2箇所形成しているが、本実施例 4では、図 19に示す如ぐ連通管 (1)の一方 の側壁 (8)に、側壁膨出部 (28)を 1箇所形成している。また、下方体 (5)の底壁 (7)には 、管軸方向に 3箇所、所望の間隔で円形の連通口 (24)を開口するとともに、上方体 (3 )の上壁 (6)には、図 20に示す如ぐ一端力 他端まで連続するとともに管軸方向にお V、て断面形状が異なった上方凹溝 (14)を、 1条形成して 、る。
[0044] 上記の如ぐ連通管 (1)に側壁膨出部 (28)及び上方凹溝 (14)を形成することにより、 図 21(a)(b)に示す如ぐ連通管 (1)の管軸に対する垂直方向の断面形状が、それぞ れ形状の異なる略ゴーグル型となる。このように、連通管 (1)の管軸に対する垂直方 向の断面形状を、連通管 (1)の複数箇所において異なるものとすることにより、燃料ィ ンジヱクタ一開閉時に伴 、往復運動を行うスプールの着座音の伝達や伝播を抑制 するとともに、燃料脈動吸収性能を損なうことなく低騒音化を図ることができる。
実施例 5
[0045] また、上記実施例 2〜4では、連通管 (1)の一方の側壁 (8)に側壁凹部 (25)又は側 壁膨出部 (28)を形成している力 本実施例 5では、図 22に示す如ぐ連通管 (1)の一 方の側壁 (8)に、一対の略台形の側壁膨出部 (28)を間隔を設けて形成するとともに、 他方の側壁 (8)には、前記側壁膨出部 (28)の形成位置の対向位置に、上記側壁膨 出部 (28)とは異なる形状である円弧状の一対の側壁凹部 (25)を形成している。
[0046] また、下方体 (5)の底壁 (7)には、管軸方向に 4箇所、所望の間隔で円形の連通口( 24)を開口するとともに、上方体 (3)の上壁 (6)には、図 23に示す如ぐ一端から他端 まで連続するとともに管軸方向にぉ 、て断面形状が異なる上方凹溝 (14)を 1条形成 している。上記の如ぐ連通管 (1)に側壁膨出部 (28)、側壁凹部 (25)、及び上方凹溝 ( 14)を形成することにより、図 24(a)(b)に示す如ぐ連通管 (1)の管軸に対する垂直方 向の断面形状が、それぞれ形状の異なる略ゴーグル型となる。
[0047] このように、連通管 (1)の管軸に対する垂直方向の断面形状を、連通管 (1)の複数箇 所において異なるものとすることにより、燃料インジェクター開閉時に伴い往復運動を 行うスプールの着座音の伝達や伝播を抑制するとともに、燃料脈動吸収性能を損な うことなく低騒音化を図ることができる。
実施例 6
[0048] また、前記実施例 5、連通管 (1)の一方の側壁 (8)に、一対の略台形の側壁膨出部( 28)を形成するとともに、他方の側壁 (8)に、上記側壁膨出部 (28)と異なる形状である 円弧状の一対の側壁凹部 (25)を形成しているが、本実施例 6では、図 25に示す如く 、連通管 (1)の一方の側壁 (8)に、一対の略台形の側壁膨出部 (28)を間隔を設けて形 成するとともに、他方の側壁 (8)には、前記一対の側壁膨出部 (28)の形成位置に対 応する位置に、前記側壁膨出部 (28)に対応する形状の一対の略台形の側壁凹部 (2 5)を形成している。
[0049] 本実施例 6について更に詳細に説明すると、本実施例 6の連通管 (1)は、図 25に示 す如ぐ底壁 (7)の管軸方向に 3箇所、所望の間隔で円形の連通口 (24)を開口してい る。そして、一方の側壁 (8)には、前記連通口 (24)の形成位置の間隔に、一対の管軸 方向に長尺な略台形の側壁膨出部 (28)をそれぞれ形成している。また、他方の側壁 (8)には、この一対の側壁膨出部 (28)に対応する位置に、該側壁膨出部 (28)に対応 する形状の、管軸方向に長尺な略台形の側壁凹部 (25)を一対形成している。
[0050] このように、側壁凹部 (25)の形状を、管軸方向に長尺な略台形の側壁膨出部 (28) に対応させた形状としているため、一方の側壁 (8)と他方の側壁 (8)とが連通管 (1)の 一端力 他端まで常に平行となる。上記の如ぐ連通管の管軸方向に長尺な略台形 の一対の側壁凹部 (25)を形成することにより、側壁凹部 (25)の内方に、他の部品を 配置するためのスペースを確保することが可能となり、連通管 (1)と他の部品とが干渉 し合うことなぐレイアウト性を高めることが可能となる。 [0051] また、図 26に示す如ぐ上方体 (3)の上壁 (6)には、一端から他端まで連続するとと もに、一端力も他端まで形成幅を一定とした上方凹溝 (14)を、連通管の両側壁 (8)と 平行に上壁 (6)の幅方向中央部に 1条形成している。また、連通管 (1)の一端には、ィ ンレットパイプ (図示せず)を接続するための略台形の突出部 (37)を、高さ方向に突設 している。
[0052] 上記の如ぐ連通管 (1)に側壁膨出部 (28)、側壁凹部 (25)及び上方凹溝 (14)を形 成することにより、図 27(a)(b)に示す如ぐ連通管 (1)全体を管軸方向から投影した連 通管 (1)の管軸に対する垂直方向の断面形状が、それぞれ形状の異なる略ゴーグル 型となる。このように、連通管 (1)の管軸に対する垂直方向の断面形状を、連通管 (1) の複数箇所において異なるものとすることにより、燃料インジェクター開閉時に伴い往 復運動を行うスプールの着座音の伝達や伝播を抑制するとともに、燃料脈動吸収性 能を損なうことなく低騒音化を図ることができる。
実施例 7
[0053] また、上記実施例 1〜6では、連通管 (1)の管軸方向に対する垂直方向の断面形状 を、連通管 (1)の一端力も他端まで複数箇所で形状の異なる略ゴーグル型として 、る 力 本願の第 3発明である実施例 7では、連通管 (1)の管軸方向に対する垂直方向の 断面形状を、略矩形の対向する 2辺に凹部を 1箇所ずつ形成して成る略臼型として いる。
[0054] 本実施例 7について詳細に説明すると、連通管 (1)は、図 28に示す如ぐ上記実施 例 2の連通管 (1)と同様に、両側壁 (8)に曲率の小さいなだらかな弧状の側壁凹部 (25 )をそれぞれ計 4箇所に形成している。そして、上方体 (3)の上壁 (6)に、一端から他端 まで軸方向に連続した断面コ字型の上方凹溝 (14)を、上方体 (3)の幅方向中央部に 凹設するともに、下方体 (5)の底壁 (7)にも、上記上方凹溝 (14)に対応する位置に、下 方体 (5)の一端力 他端まで軸方向に連続した断面コ字型の下方凹溝 (23)を形成し ている。
[0055] また、上記上方凹溝 (14)及び下方凹溝 (23)の平面形状を、連通管 (1)の両側壁 (8) の形状に沿った形状としている。上記の如ぐ側壁凹部 (25)を 4箇所形成することに より、側壁凹部 (25)の内方に、他の部品を配置するためのスペースを確保することが 可能となり、連通管 (1)と他の部品とが干渉し合うことなぐレイアウト性を高めることが 可能となる。
[0056] 本実施例の連通管 (1)に側壁凹部 (25)、上方凹溝 (14)、及び下方凹溝 (23)を形成 することにより、図 29(a)及び (b)に示す如ぐ側壁凹部 (25)の形成位置と、側壁凹部( 25)を形成して 、な 、位置とで、断面形状がそれぞれ異なる略臼型の断面形状を形 成することが可能となる。このように、連通管 (1)の管軸に対する垂直方向の断面形状 を、連通管 (1)の複数箇所において異なるよう形成することにより、燃料インジェクター 開閉時に伴!、往復運動を行うスプールの着座音の伝達や伝播を抑制するとともに、 燃料脈動吸収性能を損なうことなく低騒音化を図ることができる。
実施例 8
[0057] また、前記実施例 7では、連通管 (1)の管軸方向に対する垂直方向の断面形状を、 連通管 (1)の一端力も他端まで複数箇所で形状の異なる略臼型としているが、本願の 第 4発明である実施例 8では、連通管 (1)の管軸方向に対する垂直方向の断面形状 を、略矩形の対向する二辺の一端に突部を対向位置にそれぞれ 1箇所ずつ形成し て成る略フラスコ型として 、る。
[0058] 本実施例 8について更に詳細に説明すると、図 30に示す如く連通管 (1)の一側壁( 8)に側壁凹部 (25)を間隔を介して一対形成している。そして、上方体 (3)の上壁 (6)の 一側壁 (8)側に、一端力も他端まで軸方向に連続した断面コ字型の上方突条 (38)を 突設するともに、下方体 (5)の底壁 (7)にも、上記上方突条 (38)の対向位置に、下方 体 (5)の一端力 他端まで軸方向に連続した断面コ字型の下方突条 (39)を形成して いる。
[0059] また、この上方突条 (38)及び下方突条 (39)の平面形状を、連通管 (1)の一側壁 (8) の形状に沿った形状としている。また、上記上方突条 (38)及び下方突条 (39)をそれ ぞれ構成する一対の上方突条側壁 (40)及び下方突条側壁 (41)はテーパ状に傾斜し ている。上記の如く連通管 (1)を形成することにより、図 31(a)(b)に示す如ぐ側壁凹 部 (25)の形成位置と、側壁凹部 (25)を形成していない位置とでは、略フラスコ型の断 面形状がそれぞれ異なるものとなる。
[0060] 従って、連通管 (1)の管軸に対する垂直方向の断面形状が、連通管 (1)の複数箇所 において異なるものとなり、燃料インジェクター開閉時に伴い往復運動を行うスプー ルの着座音の伝達や伝播を抑制するとともに、燃料脈動吸収性能を損なうことなく低 騒音化を図ることができる。
実施例 9
[0061] また、上記実施例 2〜8では、連通管 (1)の断面形状を、略ゴーグル型、略臼型、又 は略フラスコ型のいずれか 1つの断面形状とするとともに、複数箇所で形状の異なる ものとしているが、本願の第 5発明である実施例 9では、連通管 (1)の断面形状が、連 通管 (1)の異なる位置において、略ゴーグル型及び略臼型の両方を有するものとして いる。
[0062] 本実施例 9について更に詳細に説明すると、図 32に示す如ぐ連通管 (1)の下方体 (5)には、底壁 (7)の管軸方向に 3箇所、所望の間隔で円形の連通口 (24)を開口する とともに、この連通口 (24)の間隔に断面コ字型で略長方形の下方凹溝 (23)を連通管 ( 1)の管軸方向に 2箇所凹設している。また、上方体 (3)の上壁 (6)には、図 33に示す 如ぐ一端力 他端まで連続するとともに管軸方向において断面形状が異なった上 方凹溝 (14)を、 1条形成している
上記の如ぐ連通管 (1)に上方凹溝 (14)及び下方凹溝 (23)を設けることにより、図 3 4(a)に示す略臼型、及び図 34(b)に示す略ゴーグル型の断面形状を、連通管 (1)の 管軸方向において異なる位置に形成することが可能となる。従って、連通管 (1)の管 軸に対する垂直方向の断面形状が連通管 (1)の複数箇所において異なるものとなり、 燃料インジヱクタ一開閉時に伴 、往復運動を行うスプールの着座音の伝達や伝播を 抑制するとともに、燃料脈動吸収性能を損なうことなく低騒音化を図ることができる。 実施例 10
[0063] また、前記実施例 9では、底壁 (7)の連通口 (24)の間隔に、断面コ字型で略長方形 の下方凹溝 (23)を連通管 (1)の管軸方向に 2箇所凹設しているが、本実施例 10では 、図 35に示す如く底壁 (7)の連通口 (24)の間隔の両側壁 (8)側に、下方一側突部 (21 )及び下方他側突部 (22)を相互に対応する位置に一対ずつ、計 4箇所に形成してい る。また、上方体 (3)の上壁 (6)には、図 36に示す如ぐ一端から他端まで連続すると ともに管軸方向において断面形状が異なった上方凹溝 (14)を、 1条形成している 上記の如ぐ連通管 (1)に上方凹溝 (14)、下方一側突部 (21)、及び下方他側突部( 22)を形成することにより、図 37(a)に示す略臼型、及び図 37(b)に示す略ゴーグル型 の断面形状を連通管 (1)の管軸方向において異なる位置に形成することが可能とな る。従って、連通管 (1)の管軸に対する垂直方向の断面形状を連通管 (1)の複数箇所 において異なるものとすることができるため、燃料インジェクター開閉時に伴い往復運 動を行うスプールの着座音の伝達や伝播を抑制するとともに、燃料脈動吸収性能を 損なうことなく低騒音化を図ることができる。
実施例 11
[0064] また、前記実施例 10では、底壁 (7)に一対の下方一側突部 (21)及び下方他側突部 (22)を形成している力 本実施例 11では、底壁 (7)に一対の下方一側突部 (21)及び 下方他側突部 (22)を形成するとともに、下方一側突部 (21)及び下方他側突部 (22)と の間隔に下方凹溝 (23)をそれぞれ 1箇所ずつ形成している。
[0065] 本実施例 11を更に詳細に説明すると、図 38に示す如ぐ底壁 (7)の連通口 (24)の 間隔の両側壁 (8)側に、断面コ字型で略長方形の下方一側突部 (21)及び下方他側 突部 (22)を各一対ずつ 2箇所、計 4箇所に形成している。そして、この一対の下方一 側突部 (21)及び下方他側突部 (22)の間隔には、前記下方一側突部 (21)及び下方 他側突部 (22)の形成長さよりも短尺な形成長さの略長方形の下方凹溝 (23)を 1箇所 ずつ、計 2箇所形成している。また、上方体 (3)の上壁 (6)には、図 39に示す如ぐ一 端力 他端まで連続するとともに管軸方向において断面形状が異なった上方凹溝 (1 4)を、 1条形成している
上記の如ぐ連通管 (1)に上方凹溝 (14)、下方一側突部 (21)及び下方他側突部 (2 2)、及び下方凹溝 (23)を形成することにより、図 40(a)に示す略ゴーグル型、図 40(b) (c)に示す、それぞれ異なる略臼型の断面形状を、連通管 (1)の管軸方向において異 なる位置に形成することが可能となる。従って、連通管 (1)の管軸に対する垂直方向 の断面形状が連通管 (1)の複数箇所において異なるものとなり、燃料インジェクター 開閉時に伴!、往復運動を行うスプールの着座音の伝達や伝播を抑制するとともに、 燃料脈動吸収性能を損なうことなく低騒音化を図ることができる。
実施例 12 [0066] また、前記実施例 11では、底壁 (7)に一対の下方一側突部 (21)及び下方他側突部 (22)を形成するとともに、前記下方一側突部 (21)及び下方他側突部 (22)の形成長さ よりも短尺な形成長さの下方凹溝 (23)を形成しているが、本実施例 12では、図 41に 示す如ぐ底壁 (7)の連通口 (24)の間隔の一側壁 (8)側に、断面コ字型で略長方形の 下方一側突部 (21)を一対、計 2箇所に形成するとともに、この一対の下方一側突部( 21)の一側に隣接して、下方一側突部 (21)の形成長さと同一形成長さの略長方形の 下方凹溝 (23)を 1箇所ずつ、計 2箇所形成している。また、上方体 (3)の上壁 (6)には 、図 42に示す如ぐ一端力 他端まで連続するとともに管軸方向において断面形状 が異なった上方凹溝 (14)を、 1条形成している
上記の如ぐ連通管 (1)に上方凹溝 (14)、下方一側突部 (21)、及び下方凹溝 (23)を 形成することにより、図 43のハッチング部分に示す如ぐ(a)の略臼型、及び (b)の略ゴ 一ダル型の断面形状を、連通管 (1)の管軸方向において異なる位置に部分的に形成 することが可能となる。従って、連通管 (1)の管軸に対する垂直方向の部分的な断面 形状を、連通管 (1)の複数箇所において異なるものとすることができるため、燃料イン ジェクタ一開閉時に伴 、往復運動を行うスプールの着座音の伝達や伝播を抑制する とともに、燃料脈動吸収性能を損なうことなく低騒音化を図ることができる。
実施例 13
[0067] また、上記実施例 9〜12では、連通管 (1)の部分的な断面形状を略臼型及び略ゴ 一ダル型としている力 本実施例 13では、連通管 (1)の部分的な断面形状を、略臼 型、略ゴーグル型、及び略臼型と略ゴーグル型との折衷型の断面形状を含むものと している。本実施例 13について更に詳細に説明すると、図 44に示す如ぐ底壁 (7)の 連通口 (24)の間隔の一側壁 (8)側に、断面コ字型で略長方形の下方一側突部 (21) を間隔を設けて 2箇所に形成するとともに、この下方一側突部 (21)の一側に隣接して 、下方一側突部 (21)の形成長さよりも短尺な形成長さの略長方形の下方凹溝 (23)を 計 2箇所形成している。また、上方体 (3)の上壁 (6)には、図 45に示す如ぐ一端から 他端まで連続するとともに管軸方向にぉ 、て断面形状が異なった上方凹溝 (14)を、 1条形成している
上記の如ぐ連通管 (1)に上方凹溝 (14)、下方一側突部 (21)、及び下方凹溝 (23)を 形成することにより、図 46のハッチング部分に示す如ぐ連通管 (1)の管軸方向にお いて異なる位置の部分的な断面形状を、 (a)の略ゴーグル型、 (b)の略臼型、及び (c) の略ゴーグル型と略臼型との折衷型とすることが可能となる。従って、連通管 (1)の管 軸に対する垂直方向の断面形状を連通管 (1)の複数箇所において異なるものとする ことができるため、燃料インジェクター開閉時に伴い往復運動を行うスプールの着座 音の伝達や伝播を抑制するとともに、燃料脈動吸収性能を損なうことなく低騒音化を 図ることができる。
実施例 14
[0068] また、前記実施例 13では、底壁 (7)に断面コ字型で略長方形の下方一側突部 (21) を間隔を設けて 2箇所に形成しているが、本実施例 14では、図 47に示す如ぐ底壁( 7)の一側壁 (8)側に、断面コ字型の下方突条 (39)を連通管 (1)の一端側力 他端側ま でほぼ連続して形成している。また、この下方突条 (39)に隣接して、連通口 (24)の間 隔に断面コ字型の下方凹溝 (23)を、連通口 (24)の間隔に 2箇所形成している。また、 連通管 (1)の他側壁 (8)には、側壁膨出部 (28)を 1箇所形成している。また、上方体 (3 )の上壁 (6)には、図 48に示す如ぐ一端力 他端まで連続するとともに管軸方向にお V、て断面形状が異なった上方凹溝 (14)を、 1条形成して 、る
上記の如ぐ連通管 (1)に側壁膨出部 (28)、上方凹溝 (14)、下方突条 (39)、及び下 方凹溝 (23)を形成することにより、図 49のハッチング部分に示す如ぐ部分的な断面 形状が(a)の略臼型、 (b)の略ゴーグル型と略臼型との折衷型、及び(c)の略ゴーグ ル型となる。このように、連通管 (1)の部分的な断面形状を、連通管 (1)の管軸方向に お!、て異なる位置に形成することにより、燃料インジェクター開閉時に伴!、往復運動 を行うスプールの着座音の伝達や伝播を抑制するとともに、燃料脈動吸収性能を損 なうことなく低騒音化を図ることができる。
実施例 15
[0069] また、上記実施例 9〜14では、略ゴーグル型及び略臼型の断面形状を有する連通 管 (1)を形成しているが、本実施例 15は、略臼型、及び略フラスコ型の断面形状を有 する連通管 (1)を形成している。本実施例 15について更に詳細に説明すると、図 50 に示す如ぐ連通管 (1)の底壁 (7)の一側壁 (8)側に、断面コ字型の下方突条 (39)を連 通管 (1)の一端力も他端まで連続して形成している。また、この下方突条 (39)に隣接 して、連通口 (24)の間隔に断面コ字型の下方凹溝 (23)を、連通口 (24)の間隔に 2箇 所形成している。また、上方体 (3)の上壁 (6)には、図 51に示す如ぐ下方体 (5)の下 方突条 (39)の対向位置に、断面コ字型の上方突条 (38)を連通管 (1)の一端力も他端 まで連続して形成するとともに、下方体 (5)の下方凹溝 (23)の対向位置に断面コ字型 の上方凹溝 (14)を 2箇所形成して 、る。
[0070] 上記の如ぐ連通管 (1)の底壁 (7)に下方突条 (39)及び下方凹溝 (23)を形成すると ともに、上壁 (6)に上方突条 (38)及び上方凹溝 (14)を形成することにより、図 52のハ ツチング部分に示す如ぐ部分的な断面形状が、(a)の略臼型、及び(b)の略フラスコ 型となり、異なる部分的な断面形状を連通管 (1)の管軸方向において異なる位置に 形成することが可能となる。従って、燃料インジェクター開閉時に伴い往復運動を行う スプールの着座音の伝達や伝播を抑制するとともに、燃料脈動吸収性能を損なうこと なく低騒音化を図ることができる。
実施例 16
[0071] また、前記実施例 15では、略臼型、及び略フラスコ型の断面形状を有する連通管( 1)を形成しているが、本実施例 16では、略ゴーグル型及び略フラスコ型の断面形状 を有する連通管 (1)を形成している。本実施例 16について更に詳細に説明すると、図 53に示す如ぐ連通管 (1)の底壁 (7)の一側壁 (8)側であって連通管 (1)の管軸方向中 央部に、中央部から両端側に、底壁 (7)に向力つて下方になだらかに傾斜したテーパ 状の断面コ字型の下方一側突部 (21)を 1箇所形成している。
[0072] また、上方体 (3)の上壁 (6)には、図 54に示す如ぐ前記下方一側突部 (21)の対向 位置に、断面コ字型の上方突条 (38)を連通管 (1)の一端力 他端まで連続して形成 するとともに、この上方突条の上方突条側壁 (40)に連続して、断面コ字型の上方凹 溝 (14)を連通管 (1)の両端に 2箇所形成している。
[0073] 上記の如ぐ連通管 (1)の底壁 (7)に下方一側突部 (21)を形成するとともに、上壁 (6) に上方突条 (38)及び上方凹溝 (14)を形成することにより、図 55に示す如ぐ (a)の略 ゴーグル型、及び(b)の略フラスコ型の断面形状を形成することが可能となり、異なる 部分的な断面形状を連通管 (1)の管軸方向において異なる位置に形成することがで きる。従って、連通管 (1)の管軸に対する垂直方向の断面形状を、連通管 (1)の複数 箇所において異なるものとすることができるため、燃料インジェクター開閉時に伴い往 復運動を行うスプールの着座音の伝達や伝播を抑制するとともに、燃料脈動吸収性 能を損なうことなく低騒音化を図ることができる。
実施例 17
[0074] また、前記実施例 16では、略ゴーグル型及び略フラスコ型の断面形状を有する連 通管 (1)を形成しているが、本実施例 17では、略ゴーグル型、略臼型、及び略フラス コ型の断面形状を有する連通管 (1)を形成して 、る。本実施例 17について更に詳細 に説明すると、図 56に示す如ぐ連通管 (1)の底壁 (7)の一側壁 (8)側に、連通管 (1) の一端側力 他端側に向けて高さ方向に徐々に傾斜した断面コ字型の下方一側突 部 (21)を形成するとともに、この下方一側突部 (21)に隣接して、断面コ字型の下方凹 溝 (23)を、下方体 (5)の一端側に 1箇所形成している。
[0075] また、図 57に示す如ぐ上方体 (3)の上壁 (6)には、下方一側突部 (21)の対向位置 に、断面コ字型の上方突条 (38)を連通管 (1)の一端力 他端まで連続して形成すると ともに断面コ字型の上方凹溝 (14)を連通管 (1)の一端に 1箇所、及び上記下方凹溝( 23)の対向位置に 1箇所、計 2箇所に形成している。
[0076] 上記の如ぐ下方体 (5)の底壁 (7)に下方一側突部 (21)及び下方凹溝 (23)を形成す るとともに、上方体 (3)の上壁 (6)に上方突条 (38)及び上方凹溝 (14)を形成することに より、図 58のハッチング部分に示す如ぐ部分的な断面形状が、(a)の略ゴーグル型、 (b)の略フラスコ型、(c)の略臼型となり、異なる部分的な断面形状を、連通管 (1)の管 軸方向において異なる位置に形成することが可能となる。従って、連通管 (1)の管軸 に対する垂直方向の断面形状が連通管 (1)の複数箇所において異なるものとするこ とができるため、燃料インジェクター開閉時に伴!、往復運動を行うスプールの着座音 の伝達や伝播を抑制するとともに、燃料脈動吸収性能を損なうことなく低騒音化を図 ることがでさる。
実施例 18
[0077] また、上記実施例 1〜17では、連通管 (1)を上下方向に二分割し、燃料導入管 (2) の接続側を上方体 (3)、ソケット (4)の接続側を下方体 (5)として、これら上方体 (3)及び 下方体 (5)を周方向に接続して組み付けている力 本実施例 18では、図 59及び図 6 0に示す如ぐ連通管 (1)を一体構造のパイプタイプとしている。また、図 59に示す如 ぐ連通管の一端と他端には、それぞれキャップ (42)を接続している。
[0078] このように、一体構造のパイプタイプの連通管 (1)を使用することにより、高価で重い ろう材を使用した広い面積でのろう付け作業を不要とするため、廉価で軽量な製品を 得ることを可能とする。また、長い距離のろう付け作業を不要とすることからろう付け部 のリークテスト等の工程も不要となる力極めて少ないものとなり、燃料漏れ等に対する 製品の信頼性を向上することが可能となる。
[0079] また、上方体 (3)には、一端力 他端まで軸方向に連続した断面コ字型の上方凹溝 (14)を 1条凹設している。また、図 59に示す如ぐこの連通管 (1)の両側壁 (8)には、 幅方向内方になだらかな弧状に凹設した側壁凹部 (25)を、対向位置に 2対、計 4箇 所に設けている。このように、側壁凹部 (25)を 4箇所形成することにより、側壁凹部 (2 5)の内方に、他の部品を配置するためのスペースを確保することが可能となり、連通 管 (1)と他の部品とが干渉し合うことなぐレイアウト性を高めることが可能となる。
[0080] 上記の如く連通管 (1)を形成することにより、連通管 (1)の管軸方向に対する垂直方 向の断面形状が、図 60に示す如ぐ略矩形の一辺に凹部を一箇所形成して成る断 面略ゴーグル型となる。そして、上記側壁凹部 (25)を形成することにより、図 60(a)及 び (b)に示す如ぐこの側壁凹部 (25)の形成位置と、側壁凹部 (25)を形成していない 位置とでは、略ゴーグル型の断面形状がそれぞれ異なるものとなる。
[0081] 上記の如ぐ連通管 (1)の管軸方向に上方凹溝 (14)を形成するとともに両側壁 (8)に 側壁凹部 (25)を形成して、連通管 (1)の管軸に対する垂直方向の断面形状を、連通 管 (1)の複数箇所において異なるよう形成することにより、燃料インジェクター開閉時 に伴 、往復運動を行うスプールの着座音の伝達や伝播を抑制するとともに、燃料脈 動吸収性能を損なうことなく低騒音化を図ることができる。

Claims

請求の範囲
[1] 内部に燃料通路を有するとともに壁面にァブゾーブ面を備えた連通管と、この連通 管に接続された燃料導入管と、一端を連通管に接続して燃料通路に連通するととも に他端を噴射ノズルの後端に接続するソケットとを備えたフューエルデリバリパイプに おいて、前記連通管のァブゾーブ面に凹部及び Z又は突部を長さ方向に形成し、 連通管の管軸に対する垂直方向の断面形状を、連通管の複数箇所において異なる ものとすることを特徴とするフューエルデリバリパイプ。
[2] 内部に燃料通路を有するとともに壁面にァブゾーブ面を備えた連通管と、この連通 管に接続された燃料導入管と、一端を連通管に接続して燃料通路に連通するととも に他端を噴射ノズルの後端に接続するソケットとを備えたフューエルデリバリパイプに おいて、前記連通管のァブゾーブ面に凹部及び Z又は突部を長さ方向に形成し、 連通管の管軸に対する垂直方向の断面形状を、略矩形の一辺に凹部を 1箇所形成 して成る略ゴーグル型とするとともに、前記略ゴーグル型の断面形状を、連通管の複 数箇所において異なるものとしたことを特徴とするフューエルデリバリパイプ。
[3] 内部に燃料通路を有するとともに壁面にァブゾーブ面を備えた連通管と、この連通 管に接続された燃料導入管と、一端を連通管に接続して燃料通路に連通するととも に他端を噴射ノズルの後端に接続するソケットとを備えたフューエルデリバリパイプに おいて、前記連通管のァブゾーブ面に凹部及び Z又は突部を長さ方向に形成し、 連通管の管軸に対する垂直方向の断面形状を、略矩形の対向する 2辺に凹部を 1箇 所ずつ形成して成る略臼型とするとともに、前記略臼型の断面形状を、連通管の複 数箇所において異なるものとしたことを特徴とするフューエルデリバリパイプ。
[4] 内部に燃料通路を有するとともに壁面にァブゾーブ面を備えた連通管と、この連通 管に接続された燃料導入管と、一端を連通管に接続して燃料通路に連通するととも に他端を噴射ノズルの後端に接続するソケットとを備えたフューエルデリバリパイプに おいて、前記連通管のァブゾーブ面に凹部及び Z又は突部を長さ方向に形成し、 連通管の管軸に対する垂直方向の断面形状を、略矩形の対向する二辺の一端に突 部を対向位置にそれぞれ 1箇所ずつ形成して成る略フラスコ型とするとともに、前記 略フラスコ型の断面形状を、連通管の複数箇所において異なるものとしたことを特徴 とするフューエルデリバリパイプ。
[5] 内部に燃料通路を有するとともに壁面にァブゾーブ面を備えた連通管と、この連通 管に接続された燃料導入管と、一端を連通管に接続して燃料通路に連通するととも に他端を噴射ノズルの後端に接続するソケットとを備えたフューエルデリバリパイプに おいて、前記連通管のァブゾーブ面に凹部及び Z又は突部を長さ方向に形成し、 連通管の管軸に対する垂直方向の断面形状を連通管の複数箇所において異なるも のとするとともに、前記断面形状には、少なくとも略矩形の一辺に凹部を 1箇所形成し て成る略ゴーグル型、略矩形の対向する 2辺に凹部を 1箇所ずつ形成して成る略臼 型、及び略矩形の対向する 2辺に凹部を 1箇所ずつ形成して成る略臼型の断面形状 のうち、少なくとも 2種以上の断面形状を、連通管の管軸方向において異なる位置に 設けたことを特徴とするフューエルデリバリパイプ。
[6] 連通管は、壁面を上下方向に分割したものを組み合わせて周方向に接続したこと を特徴とする請求項 1、 2、 3、 4、または 5のフューエルデリバリパイプ。
[7] 連通管は、一体構造のパイプタイプとしたことを特徴とする請求項 1、 2、 3、 4、また は 5のフューエルデリバリパイプ。
[8] ソケットは、一端力も他端までを筒型のストレート状に形成したことを特徴とする請求 項 1、 2、 3、 4、または 5のフューエルデリバリノィプ。
PCT/JP2006/314673 2005-07-25 2006-07-25 フューエルデリバリパイプ WO2007013454A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005215093A JP2007032374A (ja) 2005-07-25 2005-07-25 フューエルデリバリパイプ
JP2005-215093 2005-07-25

Publications (1)

Publication Number Publication Date
WO2007013454A1 true WO2007013454A1 (ja) 2007-02-01

Family

ID=37683349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314673 WO2007013454A1 (ja) 2005-07-25 2006-07-25 フューエルデリバリパイプ

Country Status (2)

Country Link
JP (1) JP2007032374A (ja)
WO (1) WO2007013454A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075455A3 (en) * 2007-12-27 2009-08-12 Robert Bosch GmbH Self-damping fuel rail
JP2009257282A (ja) * 2008-04-21 2009-11-05 Sanoh Industrial Co Ltd フューエルインジェクションレール
EP2491919B1 (en) 2009-10-23 2016-05-11 Jiangsu Tasly Diyi Pharmaceutical Co., Ltd. Pharmaceutical solution of taxanes comprising ph regulator and preparation method thereof
EP3812574A1 (en) * 2019-10-25 2021-04-28 Vitesco Technologies GmbH Fuel rail assembly for an internal combustion engine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5384161B2 (ja) * 2009-03-26 2014-01-08 三桜工業株式会社 フューエルレール
JP5938305B2 (ja) * 2012-08-30 2016-06-22 マルヤス工業株式会社 直噴エンジン用高圧燃料デリバリパイプ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230461A (ja) * 1999-02-10 2000-08-22 Suzuki Motor Corp 内燃機関の燃料分配管構造
WO2004033894A1 (ja) * 2002-10-11 2004-04-22 Usui Kokusai Sangyo Kaisha, Ltd. フューエルデリバリパイプ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230461A (ja) * 1999-02-10 2000-08-22 Suzuki Motor Corp 内燃機関の燃料分配管構造
WO2004033894A1 (ja) * 2002-10-11 2004-04-22 Usui Kokusai Sangyo Kaisha, Ltd. フューエルデリバリパイプ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075455A3 (en) * 2007-12-27 2009-08-12 Robert Bosch GmbH Self-damping fuel rail
EP2405125A1 (en) * 2007-12-27 2012-01-11 Robert Bosch Gmbh Self-damping fuel rail
JP2009257282A (ja) * 2008-04-21 2009-11-05 Sanoh Industrial Co Ltd フューエルインジェクションレール
EP2491919B1 (en) 2009-10-23 2016-05-11 Jiangsu Tasly Diyi Pharmaceutical Co., Ltd. Pharmaceutical solution of taxanes comprising ph regulator and preparation method thereof
EP2491919B2 (en) 2009-10-23 2019-06-26 Jiangsu Tasly Diyi Pharmaceutical Co., Ltd. Pharmaceutical solution of taxanes comprising ph regulator and preparation method thereof
EP3812574A1 (en) * 2019-10-25 2021-04-28 Vitesco Technologies GmbH Fuel rail assembly for an internal combustion engine

Also Published As

Publication number Publication date
JP2007032374A (ja) 2007-02-08

Similar Documents

Publication Publication Date Title
US7188609B2 (en) Fuel delivery pipe
WO2007013454A1 (ja) フューエルデリバリパイプ
US6901913B1 (en) Fuel pressure pulsation suppressing system
JP4032385B2 (ja) フユーエルデリバリパイプ
KR100981355B1 (ko) 연료송출관
US6807944B2 (en) Method and apparatus for attenuating pressure pulsation in opposed engines
JP4794871B2 (ja) フューエルデリバリパイプ
JP2004028076A (ja) フユーエルデリバリパイプ
JP2000320422A (ja) フユーエルデリバリパイプ
JP4759420B2 (ja) フューエルデリバリパイプ
KR101207803B1 (ko) 차량용 레조네이터 어셈블리
US10302055B2 (en) Gasoline delivery pipe
JP5508132B2 (ja) フューエルデリバリパイプ
JP4029424B2 (ja) フユーエルデリバリパイプ
JP4053340B2 (ja) フユーエルデリバリパイプ
JP4127216B2 (ja) 燃料供給装置
JP4173464B2 (ja) フューエルデリバリパイプ
JP4029423B2 (ja) フユーエルデリバリパイプ
JP3997512B2 (ja) フユーエルデリバリパイプ
JP2005127195A (ja) フューエルデリバリパイプ
JP4324514B2 (ja) フューエルデリバリパイプ
KR20180006115A (ko) 차량의 연료레일 조립체
JP5106613B2 (ja) フューエルデリバリパイプ
JP2002106438A (ja) 燃料配管系の脈動吸収システム
JP4634294B2 (ja) フューエルデリバリパイプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781585

Country of ref document: EP

Kind code of ref document: A1