WO2007011012A1 - Power amplification device - Google Patents

Power amplification device Download PDF

Info

Publication number
WO2007011012A1
WO2007011012A1 PCT/JP2006/314452 JP2006314452W WO2007011012A1 WO 2007011012 A1 WO2007011012 A1 WO 2007011012A1 JP 2006314452 W JP2006314452 W JP 2006314452W WO 2007011012 A1 WO2007011012 A1 WO 2007011012A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pulse width
clock
class
width modulation
Prior art date
Application number
PCT/JP2006/314452
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Yoshida
Hiroyuki Ishihara
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2007526061A priority Critical patent/JP4688225B2/en
Publication of WO2007011012A1 publication Critical patent/WO2007011012A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/181Low-frequency amplifiers, e.g. audio preamplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/03Indexing scheme relating to amplifiers the amplifier being designed for audio applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/342Pulse code modulation being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/351Pulse width modulation being used in an amplifying circuit

Definitions

  • the present invention belongs to a technical field of a power amplifying apparatus that performs nonlinear distortion correction.
  • mini-components are required to be miniaturized due to design problems, and miniaturization of each circuit is required.
  • the amplifying device especially the case is large and heavy.
  • miniaturization of power amplification devices that tend to be.
  • a signal input to a power amplifying device such as a PCM (Pulse Code Modulation) signal is applied to pulse width modulation (PWM).
  • PWM pulse width modulation
  • the signal is amplified after being converted to a digitally modulated signal by performing modulation processing such as pulse density modulation (PDM) and output to the analog signal via a low-pass filter.
  • modulation processing such as pulse density modulation (PDM) and output to the analog signal via a low-pass filter.
  • PDM pulse density modulation
  • class D power amplifying apparatus A power amplifying apparatus using this class D power amplifying method (hereinafter referred to as "class D power amplifying apparatus").
  • this power amplifying device corrects nonlinear distortion in the switching element.
  • a predetermined trapezoidal wave signal is generated as a reference signal, the edge width of the input pulse signal is adjusted by changing the slice level, and negative feedback control is performed! /, (For example, Patent Document 1).
  • Patent Document 1 Special Table 2001—517393 (International Publication W098Z44626 Pamphlet)
  • the edge width is adjusted based on the slice level, and therefore depends on the slope of the edge in the generated trapezoidal wave. Therefore, this class D power amplifying device ensures a sufficient amount of correction for edge width correction because the slope of the edge becomes steep when the clock frequency becomes high, and the generated trapezoidal wave becomes close to a rectangular wave. I can't.
  • the present invention solves an example of the above-mentioned problem by accurately preventing nonlinear distortion that occurs when switching processing is performed, and is applicable to high frequencies and can be downsized. It is to provide a class D power amplifier.
  • the invention according to claim 1 is a class D power amplifying device that performs pulse modulation on a sound signal, amplifies the pulse modulated sound signal, and outputs the amplified signal to a speaker
  • a second generation means for amplifying the signal level of the pulse width modulation signal to generate a loud sound signal, a detection means for detecting an error between the generated pulse width modulation signal and the loud sound signal, Generating means for generating a clock signal formed at a clock frequency that varies in accordance with the detected error signal.
  • the first generation means generates the received sound signal force and the pulse width modulation signal based on the clock signal generated by the generation means.
  • FIG. 1 is a block diagram showing a configuration in a first embodiment of a class D power amplifier according to the present application.
  • FIG. 2 is a graph showing a clock frequency range of a clock signal generated by a second clock signal generation unit corresponding to a detected error signal voltage value in the first embodiment.
  • FIG. 3 is a diagram showing signal waveforms at various parts when an error signal is larger than “0” in the generation process of the second clock signal of the first embodiment.
  • FIG. 4 is a diagram showing signal waveforms at various parts when an error signal is smaller than “0” in the generation process of the second clock signal of the first embodiment.
  • FIG. 5 is a timing chart in each part when an error signal is larger than “0” in the pulse width modulation operation of the first exemplary embodiment.
  • FIG. 6 is a timing chart in each part when the error signal is smaller than “0” in the pulse width modulation operation of the first exemplary embodiment.
  • FIG. 7 is another example of the block diagram showing the configuration of the first embodiment of the class D power amplifier according to the present application.
  • FIG. 8 is another example of a graph showing the clock frequency range of the clock signal generated by the second clock signal generation unit corresponding to the voltage value of the detected error signal in the first embodiment.
  • FIG. 9 is a block diagram showing a configuration in a second embodiment of a class D power amplifier according to the present application.
  • FIG. 10 is a diagram showing signal waveforms at various parts when an error signal is larger than “0” in the generation process of the second clock signal of the second embodiment.
  • FIG. 11 is a diagram showing signal waveforms at various parts when an error signal is smaller than “0” in the generation process of the second clock signal of the second embodiment.
  • FIG. 12 is a timing chart in each part when an error signal is larger than “0” in the pulse width modulation operation of the second exemplary embodiment. 13] FIG. 13 is a timing chart in 1--each o section when the error signal is smaller than “0” in the pulse width modulation operation of the second embodiment.
  • FIG. 15 is a block diagram showing a configuration in a third embodiment of a class D power amplifier according to the present application.
  • FIG. 16 is a diagram illustrating an example of signal waveforms in the asynchronous circuit according to the third embodiment. 17] Another example of a block diagram showing the configuration of the third embodiment of the class D power amplifier according to the present application.
  • a PCM signal read from a recording medium recorded as a digital signal such as a CD (Compact Disc) is input, and the signal of the input PCM signal is input.
  • the class D power amplifying apparatus of the present application is applied to a class D amplifying apparatus that amplifies the level and outputs it to a speaker.
  • the following description is also applicable to a class D power amplifying apparatus that uses a lch class D power amplifying apparatus, a stereo, a 5. lch or a 7. lch multi-channel speaker.
  • FIG. 1 is a block diagram showing the configuration of the class D power amplifying apparatus of this embodiment
  • FIG. 2 shows the second clock signal generator corresponding to the voltage value of the detected error signal in this embodiment
  • 5 is a graph showing a clock frequency range of a clock signal generated in response. Also, in the following explanation, an application example in the single sided PWM method is explained.
  • the class D power amplifying apparatus 100 of this embodiment performs pulse width modulation on a PCM signal input based on a predetermined clock signal, and generates a PWM signal.
  • the power supply voltage is switched according to the PWM signal (hereinafter referred to as “switching process”), and the PWM signal with the amplified signal level is output to the speaker.
  • the class D power amplifying apparatus 100 of the present embodiment calculates an error signal between the PWM signal before the switching process and the PWM signal after the switching process are performed as described later.
  • a clock signal whose clock frequency changes according to the change in the calculated error signal is generated.
  • the class D power amplifying apparatus 100 generates the generated clock in order to correct the nonlinear distortion that occurs when the switching process is performed. Based on the signal, pulse width modulation is applied to the PCM signal.
  • This class D power amplifying apparatus 100 includes an oversampling processing unit 101 and a noise shaving circuit 102 for performing over-sampling processing and noise-shaping pink processing as preprocessing on an input PCM signal,
  • a first clock signal generation unit 103 that generates a clock signal (hereinafter referred to as a “first clock signal”) for operating the processing unit 101 and the noise shaving circuit 102, and a preprocessed PCM signal are temporarily stored.
  • the output control unit 105 that controls the output of the PCM signal stored in the buffer 104, and the PCMZPWM conversion unit 106 that generates a PWM signal by performing pulse width modulation on the output-controlled PCM signal. And have.
  • the class D power amplifying apparatus 100 performs switching processing based on the generated PWM signal, and a switching amplification circuit 107 that amplifies the signal level of the PWM signal by k times, and a signal level
  • the first low-pass filter (hereinafter referred to as “first LPF”) 108 that filters the amplified PWM signal to generate an amplified signal, and an amplifier 109 that multiplies the signal level of the expanded signal by lZk.
  • a second low-pass filter (hereinafter referred to as “second LPF”) 110 that performs the same filtering process as the first low-pass filter on the PWM signal output from the PCMZPWM converter 106, and a loudspeaker multiplied by lZk
  • an error signal calculation unit 111 for calculating an error signal between the signal and the PWM signal output from the second low-pass filter.
  • this class D power amplifying apparatus 100 converts the calculated error signal into a DC voltage (DC), that is, an integrator 112 that performs averaging, and a voltage value of the error signal converted into a DC voltage.
  • DC DC voltage
  • a second clock signal generation unit 115 that generates a signal “)” and a waveform shaping circuit 116 that shapes the waveform of the generated second clock signal.
  • the buffer 104 of the present embodiment constitutes the reception means, the first generation means, and the storage means of the present invention
  • the output control unit 105 includes the first generation means and the control means of the present invention.
  • the PCMZPWM converter 106 of the present embodiment constitutes the first generation means and pulse width modulation signal generation means of the present invention
  • the switching amplifier circuit 107 This constitutes a clear second generation means.
  • the error signal calculation unit 111 of the present embodiment constitutes the detection means of the present invention
  • the second clock signal generation unit 115 constitutes the generation means of the present invention.
  • the PCM signal is input to the oversampling processing unit 101 via the input terminal T.
  • the oversampling processing unit 101 generates a first clock signal generated by the first clock signal generation unit 103. Based on one clock signal, an oversampling process is performed on the input PCM signal, and the PCM signal subjected to the oversampling process is output to the noise shaving circuit 102.
  • the oversampling processing unit 101 of the present embodiment executes a process of sampling an input PCM signal, such as 4 times or 8 times, at a sampling frequency that is a predetermined multiple of the sampling frequency of the PCM signal. It is like that.
  • An oversampled PCM signal is input to the noise shaving circuit 102, and the noise shaving circuit 102 receives the first clock signal generated by the first clock signal generator 103. Based on this, the noise PC pink processing is performed to reduce the input PCM signal power quantization bit number to a predetermined bit number (N bits) and shift the quantization noise to a high frequency band. Also, the noise shaving circuit 102 writes the PCM signal that has been subjected to the noise shaving pink process into the buffer 104.
  • the first clock signal generation unit 103 generates a first clock signal based on a predetermined clock frequency, and the oversampling processing unit 101 and the noise shaving circuit 102 generate the generated first clock signal. And output to the buffer 104.
  • the noffer 104 has a predetermined storage capacity, and can temporarily store a PCM signal that has been subjected to oversampling processing and noise shear pink processing. Further, in this buffer 104, input / output timing control is performed independently, and PCM signal writing and reading are performed. The time difference due to the difference is absorbed. [0028] Specifically, the PCM signals output from the noise shaving circuit 102 are sequentially written in the buffer 104 based on the first clock signal. As described later, under the control of the control unit 105, the stored PCM signal is output to the PCMZPWM conversion unit 106 based on a predetermined timing, that is, a clock signal generated based on the second clock signal. It has become.
  • the write rate in the buffer 104 is constant.
  • the storage capacity of the nother 104 of this embodiment is preferably a capacity capable of absorbing a time length equal to or greater than the switching frequency fluctuation width in the switching amplifier circuit 107 described later.
  • the output control section 105 has a frequency divider for the second clock signal output from the waveform shaping circuit 116 (NZ2 N) times, the period of the second clock signal input (NZ2 N)
  • the PCM signal stored in the PCMZPWM conversion unit 106 is output from the notch 104 based on the second clock signal multiplied by (NZ2 N ).
  • N indicates the number of bits of the PCM signal output from the noise shaving circuit 102.
  • the time resolution of the PCMZPWM converter 106 is (2 N ) times that of the PCM signal, (N / 2 N) of the second clock signal used in the PCM / PWM converter 106 described later. ) Read out at double timing!
  • the PCMZPWM converter 106 is configured to receive a PCM signal read at a predetermined timing and subjected to a predetermined pre-processing. Based on the clock signal, the input PCM signal is subjected to pulse width modulation, and a PWM signal is generated and output to the switching amplifier circuit 107 and the second LPF 110.
  • the second clock signal is changed based on the error signal, and the PCMZPWM converter 106 is input based on the changed second clock signal.
  • the pulse width modulation is applied to PCM signals.
  • the switching amplifier circuit 107 is input with a pulse width modulated PWM signal.
  • the switching amplifier circuit 107 is, for example, a MOS (Metal Oxide Semiconductor) transistor, which is a field effect transistor (hereinafter referred to as “FET: Field Effect”). TransistorJ is called. ) FET and DC power supply for applying drive voltage to drive the speaker, perform predetermined control such as switching control of the input PWM signal, and increase the signal level of the PWM signal k times In other words, the signal is amplified to a predetermined signal level.
  • the switching amplifier circuit 107 outputs the amplified PWM signal to the first LPF 108.
  • the switching amplifier circuit 107 may use a bipolar transistor instead of the FET.
  • a PWM signal amplified to a predetermined level is input to the first LPF 108.
  • the first LPF 108 is high in response to the PWM signal input to remove high-frequency noise.
  • the loudspeaker signal is generated by performing the band cut-off process, and the generated loudspeaker signal is output to the speaker and the amplifier 109.
  • Amplified signal generated by the first LPF 108 is input to the amplifier 109, and this amplifier 109 calculates one signal when calculating an error signal, that is, a PCM / PWM converter.
  • the signal level of the input loudspeak signal is amplified (lZk) times, and the loudspeak signal whose signal level is amplified (lZk) times is an error signal. It will be output to the calculation unit 111!
  • the PWM signal output from the PCMZPWM converter 106 is input to the second LPF 110, and this second LPF 110 receives the other signal, that is, the loudspeaker signal when calculating the error signal.
  • the high-frequency cutoff processing similar to that of the first LP F108 is performed on the input PWM signal for consistency, and the signal subjected to the high-frequency cutoff processing is output to the error signal calculation unit 111. Yes.
  • the error signal calculation unit 111 receives a loudspeaker signal whose signal level is multiplied by (lZk) and a signal from which the second LPF 110 force is also output. An error signal is calculated on the basis of each of the signals, and the calculated error signal is output to the integrator 112.
  • the error signal calculation unit 111 of the present embodiment is composed of a subtracter, and the loudness signal power with the signal level multiplied by (lZk) is also subtracted from the signal output from the second LPF 110, resulting in an error. A difference signal is generated! / Speak.
  • the error signal generated by the error signal generation unit is input to the integrator 112.
  • the integrator 112 performs an integration operation on the input error signal to obtain a DC voltage. Digitization (DC digitization), that is, the inputted error signal is averaged and output to the voltage detection unit 113 and the limiter circuit 114.
  • the integrator 112 has a low and low-pass time constant that is equal to or less than the sampling period (F) of the oversampled PCM signal shown in (Equation 1) and satisfies (Equation 2).
  • Fs indicates the sampling frequency of the PCM signal.
  • the voltage detection unit 113 is configured to receive an error signal whose DC value has been input by the integrator 112. The voltage detection unit 113 detects and detects the voltage value of the input error signal. The output of the limiter circuit 114 is controlled based on the voltage value!
  • the limiter circuit 114 is supplied with the averaged error signal output from the integrator 112 and the voltage value output from the voltage detection unit 113. Is an upper limit voltage value (hereinafter, referred to as “upper limit voltage value”) determined based on the voltage value detected by the voltage detection unit 113, and a predetermined lower limit voltage value (hereinafter, “ When the following voltage value is input from the integrator 112 as an error signal, the upper limit voltage value or the lower limit voltage value is output.
  • upper limit voltage value hereinafter, referred to as “upper limit voltage value”
  • the variation range of the clock frequency in the clock signal generated by the second clock signal generation unit 115 is determined in advance, and belongs to this variation range. Based on the voltage value detected by the voltage detector 113, the upper and lower thresholds in the limiter circuit 114 are appropriately determined so as to generate a clock signal formed at the clock frequency. .
  • the limiter circuit 114 may limit the input error signal based on a predetermined upper limit voltage value and lower limit voltage value and output a predetermined voltage value. Good. In this case, the voltage detection unit 113 described above is not necessary.
  • the voltage value output from the limiter circuit 114 is input to the second clock signal generation unit 115.
  • the second clock signal generation unit 115 is generated by the PCMZPWM conversion unit 106.
  • a predetermined clock frequency is generated according to the input voltage value, and the second clock signal formed at the generated clock frequency is sent to the waveform shaping circuit 116. It is designed to output.
  • the second clock signal generator 115 generates a clock signal formed at a clock frequency belonging to a predetermined frequency range in advance by the limiter circuit 114 at the upper limit voltage value and the lower limit voltage value. I'm going to let you go.
  • the second clock signal generator 115 generates a clock frequency within a frequency range from a lower limit frequency F11 to an upper limit frequency F12, When the voltage value is “0” or more, the generated clock frequency is increased. When the voltage value in the error signal is “0” or less, the generated clock frequency is decreased.
  • the second clock signal generation unit 115 generates the clock frequency within the fluctuation range having the center frequency Fc calculated as in (Expression 3) based on (Expression 1). Is starting to occur. However, N in (Equation 3) indicates the number of output bits in the noise shaving circuit 102.
  • the upper limit frequency F12 is a pulse width force of the PWM signal modulated based on the second clock signal formed at the clock frequency F12 in order to prevent malfunction in the switching amplifier circuit 107.
  • the clock frequency F12 is set in advance so that it is larger than the minimum pulse width that can be used by the device!
  • the lower limit frequency F11 is a frequency axis target for the center frequency fc so that the deviation between the center frequency fc, which is the center during operation, and the upper limit frequency fl2, ie, I fl2-fc I or more is satisfied.
  • the second clock signal By configuring the second clock signal in this way, a highly stable configuration is possible.
  • the waveform shaping circuit 116 is supplied with the second clock signal generated by the second clock signal generator 115, and the waveform shaping circuit 116 receives the input second clock.
  • the signal waveform is converted from a sine wave to a rectangular wave, and the second clock signal converted to the rectangular wave is output to the PCMZPWM converter 106 and the output controller 105.
  • FIG. 3 is a diagram showing signal waveforms at various portions when the error signal is larger than “0” in the generation process of the second clock signal of the present embodiment
  • FIG. 4 is a diagram of the first embodiment of the present embodiment
  • FIG. 5 is a diagram showing signal waveforms in respective parts when an error signal is smaller than “0” during the generation process of the two clock signals.
  • FIG. 5 is a timing chart in each part when the error signal is larger than “0” in the pulse width modulation operation of the present embodiment.
  • FIG. 6 shows the nors width modulation of the present embodiment. 6 is a timing chart in each part when the error signal is smaller than “0”.
  • the reproduction signal amplified in the class D power amplifier 100 is input as a PCM signal having a 4-bit PCM value of "0101", and the error signal is larger than "0". If it is smaller than “0”, the case will be described separately.
  • the number of output bits in the noise shaving circuit 102 is 4 bits, and the clock frequency of the first clock signal is 4 Hz. As described above, the number of PWM steps is “16” from each of the conditions, and the center frequency of the clock frequency of the second clock signal is 16 Hz.
  • the reproduction signal shown in FIG. 3 (a) when the reproduction signal shown in FIG. 3 (a) is loudened, if the amplification factor in the switching amplifier circuit 107 is “1”, a predetermined value in each part such as the switching amplifier is given. Based on the processing, the loudspeaker signal containing the noise component shown in Fig. 3 (b) is output to the speaker.
  • the integrator 112 detects the error signal shown in FIG.
  • the limiter circuit 114 outputs the signal shown in (d), and the limiter circuit 114 is based on the upper limit voltage value and the lower limit voltage value determined as described above. Outputs the signal shown in Fig. 3 (e).
  • the second clock signal generation unit 115 generates a sine wave clock signal with a variable clock frequency as shown in FIG. 3 (f) based on the signal shown in FIG. Output to the shaping circuit 116.
  • the waveform shaping circuit 116 shapes the sine wave clock signal into a rectangular wave as described above.
  • error signal calculation section 111 detects the error signal ("0") shown in Fig. 4 (a)
  • integrator 112 shows the error signal shown in Fig. 4 (b) based on the error signal.
  • the limiter circuit 114 outputs a signal shown in FIG. 4 (c) based on the upper limit voltage value and the lower limit voltage value determined as described above.
  • the second clock signal generation unit 115 generates a sine wave clock signal with a variable clock frequency, as shown in FIG. 4 (d), based on the signal in FIG. Output to the shaping circuit 116.
  • the waveform shaping circuit 116 shapes the sine wave clock signal into a rectangular wave as described above.
  • a 4-bit PCM signal having a PCM value of “0101” is input to the input terminal, and oversampling processing and noise are performed based on the first clock signal shown in FIG.
  • the PCM signal written to the notch 104 is generated based on the calculated error signal (> "O"), and the clock frequency shown in FIG.
  • the variable (NZ2 N) multiplied second clock signal is used to read out from PC 104 as the PCM signal shown in Fig. 5 (d)
  • the read PCM signal is shown in Fig. 5 (e).
  • the second clock signal with variable clock frequency shown in Fig. 5 it is converted to the PWM signal shown in Fig. 5 (f).
  • the PCM signal written to the nother 104 is generated based on the calculated error signal ( ⁇ "0"), and the clock frequency shown in Fig. 6 (a) is variable.
  • the second clock signal multiplied by (NZ2 N ) is used to read out from PC 104 as the PCM signal shown in Fig. 6 (b)
  • the read PCM signal is shown in Fig. 6 (c).
  • the second clock signal with variable clock frequency it is converted to the PWM signal shown in Fig. 6 (d).
  • the clock frequency of the second clock signal can be varied based on the error signal! Therefore, the second clock signal with the variable clock frequency can be changed.
  • Output control from the buffer 104 and PCMZPWM conversion based on the The pulse width of the PWM signal amplified by the pushing amplifier circuit 107 can be varied.
  • nonlinear distortion that occurs when switching processing is performed in the switching amplifier circuit 107 that is, nonlinear distortion that occurs due to switching of the DC power supply in the switching amplifier circuit 107.
  • since the clock frequency of the second clock signal varies, the generation of high frequency noise based on the clock frequency can be reduced.
  • the class D power amplifying apparatus 100 of the present embodiment is a class D power amplifying apparatus 100 that performs pulse modulation on a PCM signal, amplifies the pulse modulated PWM signal, and outputs the amplified PWM signal to a speaker.
  • a buffer 104 that receives a PCM signal, which is a digital signal, a PCMZPWM converter 106 that generates a PWM signal by pulse-modulating the received PCM signal, and a power supply voltage that is switched according to the generated PWM signal.
  • a switching amplifier circuit 107 that amplifies the signal level of the signal to generate a loud sound signal, an error signal calculation unit 111 that detects an error between the generated PWM signal and the loud sound signal, and a detected error signal.
  • a second clock signal generation unit 115 for generating a second clock signal formed at a clock frequency that varies with the second clock signal generation unit 1 15.
  • Clock signal Ru has been, a configuration for generating a PCM signal power PWM signal received based on.
  • the class D power amplifying apparatus 100 generates the second clock signal formed at the clock frequency that changes according to the detected error signal, and the generated second clock signal is generated. Using the clock signal, the received PCM signal power also generates a PWM signal.
  • the class D power amplifying apparatus 100 of the present embodiment can also generate a PWM signal from the received PCM signal power using the generated second clock signal, and is amplified by the switching amplifier circuit 107. Since the PWM signal pulse width can be varied, nonlinear distortion that occurs when switching processing is performed in the switching amplifier circuit 107, that is, switching the DC power supply on and off in the switching amplifier circuit 107. As a result, the nonlinear distortion generated by the It is possible to reduce the circuit scale and the dedicated circuit with high accuracy required to make the width of the circuit variable.
  • the clock frequency of the second clock signal fluctuates in the class D power amplifying device 100 of the present embodiment, generation of high frequency noise such as unnecessary radiation based on the clock frequency can be reduced. It becomes an EMI countermeasure (Electro Magnetic Interference) taka when receiving radio waves close to the high-frequency noise, for example, broadcast waves of 500 kHz to 1600 kHz.
  • EMI countermeasure Electro Magnetic Interference
  • the error signal calculation unit 111 is generated when the amplified signal is generated by smoothing the PWM signal whose signal level is amplified. Since the error from the loudspeaker signal is detected while smoothing the PWM signal, the second clock signal can be generated accurately, so that the pulse width modulation must be accurately performed on the PCM signal.
  • the switching amplifier circuit 107 can accurately prevent nonlinear distortion caused by switching the DC power supply on and off.
  • the class D power amplifying apparatus 100 of the present embodiment has an integrator 112 that calculates the average value of the detected error signal, and is formed at a different clock frequency according to the calculated average value.
  • the second clock signal can be generated.
  • the class D power amplifying apparatus 100 of the present embodiment can accurately generate the second clock signal, the overshoot that the waveform temporarily exceeds the specified level, and the waveform that is the specified level. This can prevent tracking of waveform distortion components such as undershoot that temporarily falls below, so that pulse width modulation can be performed accurately on the PCM signal. Nonlinear distortion caused by switching off can be accurately prevented.
  • the class D power amplifying apparatus 100 of the present embodiment since the class D power amplifying apparatus 100 of the present embodiment generates the second clock signal belonging to the frequency range determined in advance by the limiter circuit 114, the second clock signal can be generated stably. It is possible to accurately perform pulse width modulation on PCM signals.
  • the error signal calculation unit performs smoothing processing by the second LPF 110 on the (lZk) -multiplied sound signal and the PWM signal output from the PCMZ PWM conversion unit 106.
  • the error signal is calculated based on the signal that has been subjected to the processing.
  • the PWM signal amplified by the switching amplifier circuit 107 multiplied by (lZk) and the PCMZ PWM converter 106 The error signal may be calculated based on the PWM signal output from. In this case, similar to the above, each signal input to the error signal can be matched, so that the same effect as described above can be obtained.
  • the first clock signal having the same clock frequency is used for the oversampling processing unit 101 and the noise-shaping circuit. You can use different clock signals.
  • a limiter circuit 114 is provided, and the voltage value detected by the voltage detection unit 113 is input to the second clock signal generation unit 115 based on the upper limit voltage value and the lower limit voltage value.
  • the power to control the voltage value is not provided, the limiter circuit 114 is not provided, and the detected voltage value is held and input to the second clock signal generator 115 as shown in FIG. You can do it!
  • the single sided PWM method is described as an example of the PWM modulation method.
  • N in (Expression 1) to (Expression 3) is replaced with (N + 1).
  • the force applied to the single-ended configuration that is, the binary PWM modulation may be applied to the ternary PWM modulation. In this case, if the configuration of the present embodiment is applied to each PWM signal.
  • the oversampling processing unit 101 and the noise shaving circuit 102 of the present embodiment operate based on the first clock signal generated by the first clock signal generation unit 103.
  • Each oversampling processing unit 101 and noise shaping circuit 102 should be provided with a frequency dividing circuit so that it operates based on the divided first clock signal.
  • the PCM signal stored in the buffer in the first embodiment is clocked.
  • a PWM signal is generated with a clock signal having a predetermined clock frequency, written to the buffer, and the second clock signal is generated.
  • the feature is that the written PWM signal is read based on the signal.
  • FIG. 9 is a block diagram showing a configuration of the class D power amplifying apparatus of the present embodiment.
  • this class D power amplifying apparatus 200 performs pulse width modulation on the oversampling processing unit 101 and noise shaving circuit 102 and the noise-shaved PCM signal to generate a PWM signal.
  • PCMZPWM conversion unit 210 that generates the first clock signal generation unit 103 that generates the first clock signal for operating the oversampling processing unit 101, the noise shaving circuit 102, and the PCMZPWM conversion unit 210.
  • a buffer 211 for temporarily storing the PWM signal.
  • this class D power amplifying apparatus 200 includes a switching amplification circuit 107, a first LPF 108, an amplifier 109, a second LPF 110, an error signal calculation unit 111, an integrator 112, a voltage detection unit 113, a limiter circuit 114, a second clock signal generation unit 115, and a waveform shaping circuit 116.
  • the buffer 211 of this embodiment constitutes a receiving means, a first generating means, a storage means, and a control means of the present invention.
  • the PCMZPWM converter 210 of the present embodiment constitutes the receiving means, the first generating means and the pulse width modulation signal generating means of the present invention, and the amplifier circuit constitutes the second generating means of the present invention.
  • the error signal calculation unit 111 of the present embodiment constitutes the detection means of the present invention
  • the second clock signal generation unit 115 constitutes the generation means of the present invention.
  • the PCMZPWM converter 210 is configured to receive the PCM signal that has been subjected to the predetermined preprocessing output from the noise shaving circuit 102, and the PCMZPWM converter 210 receives the first clock signal. Based on the pulse width for the input PCM signal Modulation is performed, and a PWM signal is generated and output to the buffer 211.
  • the nother 211 has a predetermined storage capacity, and can temporarily store a PCM signal that has been subjected to oversampling processing and noise shear pink processing.
  • the input / output timing control is performed independently, and the PWM signal is written and read out. Due to the difference in timing and read timing, the pulse width of the PWM signal that is memorized is changed.
  • the buffer 211 sequentially writes the PWM signals output from the PCMZPWM converter 210 based on the first clock signal.
  • the buffer 211 has a predetermined value. Based on the timing, that is, based on the second clock signal output from the output control circuit 116, the stored PWM signal is output to the switching amplifier circuit 107 and the second LPF 110 based on the second clock signal. ing.
  • the first clock signal generator 103 has the same configuration as that of the first embodiment except that the first clock signal is output to the PCMZPWM converter 210.
  • FIG. 10 is a diagram showing signal waveforms at various parts when the error signal is larger than “0” in the generation process of the second clock signal of the present embodiment
  • FIG. FIG. 7 is a diagram showing signal waveforms in various parts when an error signal is smaller than “0” during the process of generating a two-clock signal.
  • FIG. 12 is a timing chart in each part when the error signal is larger than “0” in the pulse width modulation operation of the present embodiment.
  • FIG. 13 shows the pulse width modulation of the present embodiment. In operation, this is a timing chart in each part when the error signal is smaller than “0”.
  • the reproduction signal power bit amplified by the class D power amplifier 109 is input as a PCM signal having a PCM value of "0101" with bit
  • the error signal is larger than “0” and smaller than “0” will be described separately.
  • the number of output bits in the noise shaving circuit 102 is 4 bits, and the clock frequency of the first clock signal is 2.5 Hz. As described above, the number of PWM steps is “16” from each of the conditions, and the center frequency of the clock frequency of the second clock signal is 10 Hz.
  • the reproduction signal similar to that in the first embodiment is amplified, if the amplification factor in the switching amplifier circuit 107 is “1”, predetermined processing in each unit such as the switching amplifier unit is performed. Based on the above, a loudspeaker signal including a noise component is output to the speaker as in the first embodiment.
  • the integrator 112 when the error signal calculation unit 111 detects the error signal (> “0”) shown in FIG. 10 (&), the integrator 112 generates the error signal shown in FIG. 10 (b) based on the error signal.
  • the limiter circuit 114 outputs the signal shown in FIG. 10 (c) based on the determined upper limit voltage value and lower limit voltage value, as in the first embodiment.
  • the second clock signal generation unit 115 generates a sine wave clock signal with a variable clock frequency based on the signal of FIG. 10 (c), and generates a waveform shaping circuit. Output to 116. Note that the waveform shaping circuit 116 shapes the sine wave clock signal into a rectangular wave as described above.
  • error signal calculation section 111 detects the error signal ("0") shown in Fig. 11 (a)
  • integrator 112 shows the error signal shown in Fig. 11 (b) based on the error signal.
  • the limiter circuit 114 outputs a signal shown in FIG. 11 (c) based on the upper limit voltage value and the lower limit voltage value determined as described above.
  • the second clock signal generation unit 115 generates a sine wave clock signal whose clock frequency is variable based on the signal of FIG. 11 (c), and generates a waveform shaping circuit. Output to 116.
  • the waveform shaping circuit 116 shapes the sine wave clock signal into a rectangular wave as described above.
  • a 4-bit PCM signal having a PCM value of “0101” is input to the input terminal, and the PWM signal is based on the first clock signal shown in FIG. Is generated, the PWM signal shown in FIG.
  • the PWM signal written to the buffer 211 is generated based on the calculated error signal (>"0"), as in the first embodiment, and the clock frequency shown in Fig. 12 (c). Have When the second clock signal is read from the buffer 211, the PWM signal shown in FIG.
  • the PWM signal written to the buffer 211 is generated based on the calculated error signal ( ⁇ 0>) as in the first embodiment, and the clock frequency shown in FIG.
  • the PWM signal shown in FIG. 12 (d) is output to the switching amplifier circuit 107.
  • the clock frequency of the second clock signal can be varied based on the error signal! Therefore, the pulse width of the PWM signal output from the buffer 211 can be changed. It can be made variable. Therefore, in this embodiment, as in the first embodiment, nonlinear distortion that occurs when switching processing is performed in the switching amplifier circuit 107, that is, the DC power supply is turned on and off in the switching amplifier circuit 107. Non-linear distortion caused by switching can be accurately prevented, and the accuracy for making the pulse width of the PWM signal variable is high! No dedicated circuit is required, and the circuit scale can be reduced. . In the present embodiment, since the clock frequency of the second clock signal varies, generation of high frequency noise based on the clock frequency can also be reduced.
  • the class D power amplifying apparatus 200 of the present embodiment is a class D power amplifying apparatus 200 that performs pulse modulation on a PCM signal, amplifies the pulse modulated PWM signal, and outputs the amplified PWM signal to a speaker.
  • receives the PCM signal is a digital signal, the received PCM signal pulse-modulated, 1 ⁇ ⁇ [signal to generate a 1 ⁇ 1 ⁇ 7? 1 ⁇ ⁇ [converting unit 210 Oyobi buffer 211
  • Switching amplifier circuit 107 that switches the power supply voltage according to the generated PWM signal, amplifies the signal level of the PWM signal to generate a loud sound signal, and detects an error between the generated PWM signal and the loud sound signal.
  • the class D power amplifying device 200 of the present embodiment is similar to that of the first embodiment.
  • a second clock signal is generated with a clock frequency that changes according to the detected error signal, and a PWM signal is generated from the PCM signal using the generated second clock signal.
  • the class D power amplifying apparatus 200 of the present embodiment can generate a PWM signal using the generated second clock signal as well as the received PCM signal power, and is amplified by the switching amplifier circuit 107. Since the PWM signal pulse width can be varied, nonlinear distortion that occurs when switching processing is performed in the switching amplifier circuit 107, that is, switching the DC power supply on and off in the switching amplifier circuit 107. In addition to accurately preventing non-linear distortion caused by this, a dedicated circuit with high accuracy for making the pulse width of the PWM signal variable is also reduced, and the circuit scale required is also reduced.
  • the clock frequency of the second clock signal fluctuates in the class D power amplifying apparatus 200 of the present embodiment, generation of high-frequency noise such as unnecessary radiation based on the clock frequency can be reduced.
  • EMI countermeasures are also effective when receiving radio broadcasts close to the high-frequency noise, for example, broadcast waves of 500 kHz to 1600 kHz.
  • the error signal calculation unit is based on the (lZk) -magnified loudspeaker signal and the signal that has been subjected to the smoothing process in the second LPF 110 in the PWM signal output from the buffer 211.
  • the error signal is calculated based on the PWM signal output from the PWM signal buffer 211 amplified by the switching amplifier circuit 107 multiplied by (lZk).
  • An error signal may be calculated. In this case, similar to the above, each signal input to the error signal can be matched, so that the same effect as described above can be obtained.
  • the first sampling signal having the same clock frequency is used for the oversampling processing unit 101 and the noise-shaping circuit.
  • the oversampling processing unit 101 and the noise-shaping circuit are used for the oversampling processing unit 101 and the noise-shaping circuit.
  • a limiter circuit 114 is provided, and is input to the second clock signal generation unit 115 based on the upper limit voltage value and the lower limit voltage value with respect to the voltage value detected by the voltage detection unit 113.
  • the force that controls the voltage value Instead of providing it, keep the detected voltage value and input it to the second clock signal generator 115.
  • the power applied to the single-ended configuration that is, the binary PWM modulation may be applied to the ternary PWM modulation. In this case, if the configuration of the present embodiment is applied to each PWM signal.
  • the oversampling processing unit 101 and the noise shaving circuit 102 operate based on the first clock signal generated by the first clock signal generation unit 103.
  • a frequency dividing circuit may be provided to operate based on the frequency-divided first clock signal.
  • the first clock signal is used when signal processing of the PCM signal and the PWM signal is performed, so that a frequency dividing circuit is required.
  • the single sided PWM method is used as the PWM modulation method
  • the division ratio in (Equation 1) to (Equation 3) of the first embodiment is used, and the Doubly Sided PWM method is used as the PWM modulation method.
  • N the frequency division ratio obtained by replacing N in (Equation 1) to (Equation 3) with (N + 1), that is, N / (2 (N + 1) ) is used.
  • the present embodiment is characterized in that an asynchronous circuit is used instead of the buffer in the first embodiment, and the other points are the same as in the first embodiment, and the same reference numerals are used for the same members. The description is omitted.
  • FIG. 15 is a block diagram showing the configuration of the class D power amplifier of this embodiment
  • FIG. 16 is a diagram showing an example of signal waveforms in the asynchronous circuit of this embodiment.
  • application examples in the single sided PWM method will be described.
  • the class D power amplifying apparatus 300 is preprocessed with an oversampling processing unit 101, a noise shaving circuit 102, and a first clock signal generating unit 103.
  • this class D power amplifying apparatus 300 includes a switching amplification circuit 107, a first LPF 108, an amplifier 109, a second LPF 110, an error signal calculation unit 111, an integrator, as in the first embodiment. 112, a voltage detection unit 113, a limiter circuit 114, a second clock signal generation unit 115, and a waveform shaping circuit 116.
  • the output control unit 311 has a frequency dividing circuit that multiplies the second clock signal output from the waveform shaping circuit 116 by (N / 2 N ), and the first clock signal If, multiplies the second clock signal input (NZ2 N), and the (NZ2 N) multiplied by a second clock signal, based on, and controls the asynchronous circuit 310.
  • Asynchronous circuit 310 is constituted by, for example, a D (Delay) flip-flop or a latch, and as shown in FIG. 16, the PCM output from noise shaving circuit 102 under the control of output control unit 311. The signal is synchronized again and output to the PCMZPWM converter 312.
  • FIG. 16 shows that the width of the input PCM signal, the first clock signal, the output PCM signal, and the second clock signal multiplied by (NZ2 N ) are different in the switching cycle of the asynchronous circuit 310. Is shown. However, MSB (Most Significan Digit) indicates the most significant bit, and LSB (Least Significant Bit) indicates the least significant bit. Further, the write rate in the asynchronous circuit 310 is constant.
  • the class D power amplifying apparatus 300 of the present embodiment is a class D power amplifying apparatus 300 that performs pulse modulation on the PCM signal, amplifies the pulse modulated PWM signal, and outputs the amplified PWM signal to the speaker.
  • Asynchronous circuit 310 that receives the PCM signal, which is a digital signal, and 1 ⁇ ⁇ [ 1 ⁇ [conversion unit 312 that generates a 1 ⁇ ⁇ [signal by pulse-modulating the received PCM signal
  • the switching amplifier circuit 107 that switches the power supply voltage according to the generated PWM signal, amplifies the signal level of the PWM signal to generate a loud sound signal, and calculates an error signal that detects an error between the generated PWM signal and the loud sound signal 111 and a second clock for generating a second clock signal formed at a clock frequency that varies according to the detected error signal.
  • Lock signal generator 115, and PCMZPWM converter 312 receives a PCM signal from the received PCM signal based on the second clock signal generated by second clock signal generator 115. It has a configuration to generate.
  • the class D power amplifying apparatus 300 as in the first embodiment, generates the second clock signal formed at the clock frequency that changes according to the detected error signal. Generate a PWM signal from the received PCM signal using the generated second clock signal.
  • the class D power amplifying apparatus 300 of the present embodiment can generate a PWM signal using the generated second clock signal, and the received PCM signal power can be amplified by the switching amplifier circuit 107. Since the PWM signal pulse width can be varied, nonlinear distortion that occurs when switching processing is performed in the switching amplifier circuit 107, that is, switching the DC power supply on and off in the switching amplifier circuit 107. In addition to accurately preventing non-linear distortion caused by this, a dedicated circuit with high accuracy for making the pulse width of the PWM signal variable is also reduced, and the circuit scale required is also reduced.
  • the class D power amplifying apparatus 300 of the present embodiment varies the clock frequency of the second clock signal, generation of high frequency noise such as unwanted radiation based on the clock frequency can be reduced.
  • EMI countermeasures are also effective when receiving radio broadcasts close to the high-frequency noise, for example, broadcast waves of 500 kHz to 1600 kHz.
  • the error signal calculation unit converts the sound signal multiplied by (lZk) and the signal smoothed by the second LPF 110 in the PWM signal output from the PCMZ PWM conversion unit 312.
  • the error signal is calculated based on the PWM signal amplified by the switching amplifier circuit 107 multiplied by (lZk) and the PWM signal output from the PCMZ PWM converter 312 as shown in FIG.
  • the error signal may be calculated based on the above. In this case, similar to the above, each signal input to the error signal can be matched, so that the same effect as described above can be obtained.
  • the first clock signal having the same clock frequency is used for the oversampling processing unit 101 and the noise shaping circuit. If it can be synchronized, use different clock signals.
  • a limiter circuit 114 is provided, and the voltage value detected by the voltage detection unit 113 is input to the second clock signal generation unit 115 based on the upper limit voltage value and the lower limit voltage value.
  • the force to control the voltage value to be controlled is not provided, and the second clock signal generation unit 115 is made to hold the detected voltage value as in the first embodiment without providing the limiter circuit 114. You can enter it!
  • the single sided PWM method is described as an example of the PWM modulation method.
  • N in (Expression 1) to (Expression 3) is set to (N + Instead of 1), it is also possible to apply the double sided PWM method by setting the frequency division ratio in the output control unit 311 of this embodiment to NZ (2 (N + 1) ).
  • the power applied to the single-ended configuration that is, the binary PWM modulation may be applied to the ternary PWM modulation. In this case, if the configuration of the present embodiment is applied to each PWM signal.
  • the oversampling processing unit 101 and the noise shaving circuit 102 of the present embodiment operate based on the first clock signal generated by the first clock signal generation unit 103.
  • Each oversampling processing unit 101 and noise shaping circuit 102 should be provided with a frequency dividing circuit so that it operates based on the divided first clock signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

There is provided a small-size D class power amplification device capable of preventing nonlinear distortion generated when a switching process is executed and being applied to high frequency. The D class power amplification device (100) calculates an error signal between a PWM signal before a switching process is executed and the PWM signal after the switching process is executed and generates a clock signal varying clock frequency according to the change of the calculated error signal. In accordance with the generated clock signal, a pulse width modulation is executed for the PCM signal.

Description

電力増幅装置  Power amplifier
技術分野  Technical field
[0001] 本発明は、非線形歪み補正を行う電力増幅装置の技術分野に属する。  [0001] The present invention belongs to a technical field of a power amplifying apparatus that performs nonlinear distortion correction.
背景技術  Background art
[0002] 近年、ミニコンポと呼ばれるスピーカ、アンプ、 CDプレーヤなどが一体化されたステ レオシステムにおいて、 2チャンネル再生だけでなぐ 5. 1チャンネルの再生できる仕 様が求められている。その一方で、当該ミニコンポにおいては、デザイン的な問題か ら小型化が要求され、各回路の小型化が必要とされてきており、特に、増幅装置、特 に筐体が大型でかつ重量が大きくなりがちな電力増幅装置の小型化が要求されてい る。  [0002] In recent years, there has been a demand for a specification that can reproduce 5.1 channels in a stereo system that integrates speakers, amplifiers, CD players, etc., called mini-components. On the other hand, mini-components are required to be miniaturized due to design problems, and miniaturization of each circuit is required. Especially, the amplifying device, especially the case is large and heavy. There is a demand for miniaturization of power amplification devices that tend to be.
[0003] 最近では、このような電力増幅装置の小型化の要求から、例えば、 PCM (Pulse Co de Modulation)信号などの電力増幅装置に入力した信号について、パルス幅変調( PWM : Pulse Width Modulation)やパルス密度変調(PDM : Pulse Density Modulatio n)などの変調処理を施してデジタル変調信号に変換した後に信号の増幅を行!、、増 幅された信号を、ローパスフィルタを介してアナログ信号として出力する D級電力増 幅方式を用いた電力増幅装置が普及して 、る。  Recently, due to the demand for downsizing of such a power amplifying device, for example, a signal input to a power amplifying device such as a PCM (Pulse Code Modulation) signal is applied to pulse width modulation (PWM). The signal is amplified after being converted to a digitally modulated signal by performing modulation processing such as pulse density modulation (PDM) and output to the analog signal via a low-pass filter. Power amplifiers using Class D power amplification are becoming popular.
[0004] この D級電力増幅方式を用いた電力増幅装置 (以下、「D級電力増幅装置」と 、う。  [0004] A power amplifying apparatus using this class D power amplifying method (hereinafter referred to as "class D power amplifying apparatus").
)では、入力信号をもとに生成されたデジタル変調信号に基づいて、ローパスフィル タの前段に位置する増幅部分の出力段におけるスイッチング素子を ONZOFFする ことにより、信号の増幅を行うので理論的には 100%の電力効率が得られるようにな つており、このような高効率によって電力増幅装置の小型化が図れるようになつてい る。  ) Theoretically because the signal is amplified by turning on and off the switching elements in the output stage of the amplifying part located in front of the low-pass filter based on the digital modulation signal generated based on the input signal. 100% power efficiency can be obtained, and this high efficiency can reduce the size of the power amplifier.
[0005] 従来、このような D級電力増幅方式を用いた電力増幅装置としては、基準信号に基 づ 、て入力されるパルス信号のエッジの幅調整を行 、、非線形歪みを補正するもの が知られている。  [0005] Conventionally, as a power amplifying apparatus using such a class D power amplifying method, an apparatus that adjusts the edge width of a pulse signal input based on a reference signal to correct nonlinear distortion is known. Are known.
[0006] 具体的には、この電力増幅装置は、スイッチング素子における非線形歪みを補正 するために、基準信号として所定の台形波信号を生成し、スライスレベルを変化させ ることによって入力されるパルス信号のエッジの幅調整を行 、、負帰還制御を行うよう になって!/、る(例えば、特許文献 1)。 [0006] Specifically, this power amplifying device corrects nonlinear distortion in the switching element. In order to achieve this, a predetermined trapezoidal wave signal is generated as a reference signal, the edge width of the input pulse signal is adjusted by changing the slice level, and negative feedback control is performed! /, (For example, Patent Document 1).
特許文献 1 :特表 2001— 517393号公報(国際公開 W098Z44626号パンフレット )  Patent Document 1: Special Table 2001—517393 (International Publication W098Z44626 Pamphlet)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] しかしながら、従来の D級電力増幅装置であっては、パルス信号のエッジの幅調整 を的確に補正するためには、基準信号としての高精度の台形波信号を生成する必 要があり、当該高精度の台形波信号を生成するためには、当該生成回路の規模が 大きくなり、電力増幅装置の小型化に影響を与える場合がある。  [0007] However, in the conventional class D power amplifier, in order to accurately correct the edge width adjustment of the pulse signal, it is necessary to generate a highly accurate trapezoidal wave signal as a reference signal. In order to generate the high-accuracy trapezoidal wave signal, the scale of the generation circuit becomes large, which may affect the miniaturization of the power amplifying device.
[0008] また、この D級電力増幅装置であっては、スライスレベルに基づ 、て、エッジ幅の調 整を行うので、生成された台形波におけるエッジの傾きに依存する。従って、この D 級電力増幅装置は、クロック周波数が高周波数になると、エッジの傾きが急峻となり、 生成される台形波が矩形波に近くなるため、エッジ幅の補正に関して十分な補正量 を確保することができない。  [0008] Further, in this class D power amplifying device, the edge width is adjusted based on the slice level, and therefore depends on the slope of the edge in the generated trapezoidal wave. Therefore, this class D power amplifying device ensures a sufficient amount of correction for edge width correction because the slope of the edge becomes steep when the clock frequency becomes high, and the generated trapezoidal wave becomes close to a rectangular wave. I can't.
[0009] 本発明は、上記の課題の一例を解決するものとして、スイッチング処理が施される際 に生じる非線形歪みを的確に防止するとともに、高周波数に適用可能であり、かつ、 小型化が可能な D級電力増幅装置を提供することにある。  [0009] The present invention solves an example of the above-mentioned problem by accurately preventing nonlinear distortion that occurs when switching processing is performed, and is applicable to high frequencies and can be downsized. It is to provide a class D power amplifier.
課題を解決するための手段  Means for solving the problem
[0010] 上記の課題を解決するために、請求項 1に記載の発明は、音信号をパルス変調し、 当該パルス変調された音信号を増幅してスピーカに出力する D級電力増幅装置であ つて、デジタル信号である音信号を受信する受信手段と、受信された音信号をパル ス変調し、パルス幅変調信号を生成する第 1生成手段と、前記生成されたパルス幅 変調信号に従って電源電圧をスイッチングし、当該パルス幅変調信号の信号レベル を増幅して拡声信号を生成する第 2生成手段と、前記生成されたパルス幅変調信号 と前記拡声信号との誤差を検出する検出手段と、前記検出された誤差信号に応じて 変化するクロック周波数にて形成されるクロック信号を発生させる発生手段と、を備え 、前記第 1生成手段が、前記発生手段にて発生されたクロック信号に基づいて、前記 受信された音信号力 前記パルス幅変調信号を生成する構成を有している。 [0010] In order to solve the above-described problem, the invention according to claim 1 is a class D power amplifying device that performs pulse modulation on a sound signal, amplifies the pulse modulated sound signal, and outputs the amplified signal to a speaker A receiving means for receiving a sound signal that is a digital signal; a first generating means for pulse-modulating the received sound signal to generate a pulse width modulated signal; and a power supply voltage according to the generated pulse width modulated signal. A second generation means for amplifying the signal level of the pulse width modulation signal to generate a loud sound signal, a detection means for detecting an error between the generated pulse width modulation signal and the loud sound signal, Generating means for generating a clock signal formed at a clock frequency that varies in accordance with the detected error signal. The first generation means generates the received sound signal force and the pulse width modulation signal based on the clock signal generated by the generation means.
図面の簡単な説明 Brief Description of Drawings
[図 1]本願に係る D級電力増幅装置の第 1実施形態における構成を示すブロック図で ある。 FIG. 1 is a block diagram showing a configuration in a first embodiment of a class D power amplifier according to the present application.
[図 2]第 1実施形態における検出された誤差信号の電圧値に対応する第 2クロック信 号生成部にて生成されるクロック信号のクロック周波数範囲を示すグラフである。  FIG. 2 is a graph showing a clock frequency range of a clock signal generated by a second clock signal generation unit corresponding to a detected error signal voltage value in the first embodiment.
[図 3]第 1実施形態の第 2クロック信号の生成過程において誤差信号が「0」より大きい ときの各部における信号波形を示す図である。 FIG. 3 is a diagram showing signal waveforms at various parts when an error signal is larger than “0” in the generation process of the second clock signal of the first embodiment.
[図 4]第 1実施形態の第 2クロック信号の生成過程において誤差信号が「0」より小さい ときの各部における信号波形を示す図である。  FIG. 4 is a diagram showing signal waveforms at various parts when an error signal is smaller than “0” in the generation process of the second clock signal of the first embodiment.
[図 5]第 1実施形態のパルス幅変調の動作において、誤差信号が「0」より大きいとき の各部におけるタイミングチャートである。  FIG. 5 is a timing chart in each part when an error signal is larger than “0” in the pulse width modulation operation of the first exemplary embodiment.
[図 6]第 1実施形態のパルス幅変調の動作において、誤差信号が「0」より小さいとき の各部におけるタイミングチャートである。  FIG. 6 is a timing chart in each part when the error signal is smaller than “0” in the pulse width modulation operation of the first exemplary embodiment.
[図 7]本願に係る D級電力増幅装置の第 1実施形態における構成を示すブロック図の その他の例である。  FIG. 7 is another example of the block diagram showing the configuration of the first embodiment of the class D power amplifier according to the present application.
[図 8]第 1実施形態における検出された誤差信号の電圧値に対応する第 2クロック信 号生成部にて生成されるクロック信号のクロック周波数範囲を示すグラフのその他の 例である。  FIG. 8 is another example of a graph showing the clock frequency range of the clock signal generated by the second clock signal generation unit corresponding to the voltage value of the detected error signal in the first embodiment.
[図 9]本願に係る D級電力増幅装置の第 2実施形態における構成を示すブロック図で ある。  FIG. 9 is a block diagram showing a configuration in a second embodiment of a class D power amplifier according to the present application.
[図 10]第 2実施形態の第 2クロック信号の生成過程において誤差信号が「0」より大き いときの各部における信号波形を示す図である。  FIG. 10 is a diagram showing signal waveforms at various parts when an error signal is larger than “0” in the generation process of the second clock signal of the second embodiment.
[図 11]第 2実施形態の第 2クロック信号の生成過程において誤差信号が「0」より小さ いときの各部における信号波形を示す図である。  FIG. 11 is a diagram showing signal waveforms at various parts when an error signal is smaller than “0” in the generation process of the second clock signal of the second embodiment.
[図 12]第 2実施形態のパルス幅変調の動作において、誤差信号が「0」より大きいとき の各部におけるタイミングチャートである。 圆 13]第 2実施形態のパルス幅変調の動作にお 、て、誤差信号が「0」より小さ 、とき の1—各 o部におけるタイミングチャートである。 FIG. 12 is a timing chart in each part when an error signal is larger than “0” in the pulse width modulation operation of the second exemplary embodiment. 13] FIG. 13 is a timing chart in 1--each o section when the error signal is smaller than “0” in the pulse width modulation operation of the second embodiment.
 Yes
圆 14]本願に係る D級電力増幅装置の第 2実施形態における構成を示すブロック図 のその他の例である。 14] Another example of the block diagram showing the configuration of the second embodiment of the class D power amplifier according to the present application.
圆 15]本願に係る D級電力増幅装置の第 3実施形態における構成を示すブロック図 である。 [15] FIG. 15 is a block diagram showing a configuration in a third embodiment of a class D power amplifier according to the present application.
圆 16]第 3実施形態における非同期回路における信号波形の例を示す図である。 圆 17]本願に係る D級電力増幅装置の第 3実施形態における構成を示すブロック図 のその他の例である。 16] FIG. 16 is a diagram illustrating an example of signal waveforms in the asynchronous circuit according to the third embodiment. 17] Another example of a block diagram showing the configuration of the third embodiment of the class D power amplifier according to the present application.
符号の説明 Explanation of symbols
200、 300 … D級電力増幅装置  200, 300… Class D power amplifier
101 … オーバーサンプリング処理部  101… Oversampling processor
102 … ノイズシェービング回路 102… Noise shaving circuit
103 … 第 1クロック信号発生部  103… 1st clock signal generator
104、 211 … ノッファ  104, 211… Nota
105、 311、 312 … 出力制御部  105, 311, 312… Output controller
106、 210 … PCM/PWM変換部  106, 210… PCM / PWM converter
107 … スイッチング増幅回路  107… Switching amplifier circuit
108 … 第 1LPF  108… 1st LPF
109 … 増幅器  109… Amplifier
110 … 第 2LPF  110… 2nd LPF
111 … 誤差信号算出部  111… Error signal calculator
112 … 積分器  112… integrator
113 … 電圧検出部  113… Voltage detector
114 … リミッタ回路  114… Limiter circuit
115 … 第 2クロック信号発生部  115… 2nd clock signal generator
116 … 波形成形回路  116… Waveform shaping circuit
310 … 非同期回路 SP … スピーカ 310… Asynchronous circuit SP… Speaker
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 次に、本願に好適な実施の形態について、図面に基づいて説明する。  Next, embodiments suitable for the present application will be described with reference to the drawings.
[0014] なお、以下に説明する実施形態は、 CD (Compact Disc)等のデジタル信号にて記 録された記録媒体から読み出された PCM信号が入力され、当該入力された PCM信 号の信号レベルを増幅してスピーカに出力する D級増幅装置において、本願の D級 電力増幅装置を適用した場合の実施形態である。また、以下の説明では、 lchの D 級電力増幅装置を用いている力、ステレオ、 5. lchまたは 7. lchのマルチチャンネ ルのスピーカを拡声する D級電力増幅装置においても適用可能である。 In the embodiment described below, a PCM signal read from a recording medium recorded as a digital signal such as a CD (Compact Disc) is input, and the signal of the input PCM signal is input. This is an embodiment in which the class D power amplifying apparatus of the present application is applied to a class D amplifying apparatus that amplifies the level and outputs it to a speaker. The following description is also applicable to a class D power amplifying apparatus that uses a lch class D power amplifying apparatus, a stereo, a 5. lch or a 7. lch multi-channel speaker.
[0015] 〔第 1実施形態〕 [First Embodiment]
初めに、図 1〜図 8を用いて D級電力増幅装置の第 1実施形態について説明する  First, a first embodiment of a class D power amplifying apparatus will be described with reference to FIGS.
[0016] まず、図 1および図 2を用いて本実施形態における D級電力増幅装置の構成につ いて説明する。なお、図 1は、本実施形態の D級電力増幅装置の構成を示すブロック 図であり、図 2は、本実施形態における検出された誤差信号の電圧値に対応する第 2クロック信号生成部にて生成されるクロック信号のクロック周波数範囲を示すグラフ である。また、以下の説明では、 Single Sided PWM方式における適用例について説 明する。 First, the configuration of the class D power amplifying apparatus in the present embodiment will be described using FIG. 1 and FIG. FIG. 1 is a block diagram showing the configuration of the class D power amplifying apparatus of this embodiment, and FIG. 2 shows the second clock signal generator corresponding to the voltage value of the detected error signal in this embodiment. 5 is a graph showing a clock frequency range of a clock signal generated in response. Also, in the following explanation, an application example in the single sided PWM method is explained.
[0017] 本実施形態の D級電力増幅装置 100は、所定のクロック信号に基づいて入力され た PCM信号に対してパルス幅変調を施し、 PWM信号を生成するようになっており、 当該生成された PWM信号に従って電源電圧のスイッチングを行う処理 (以下、「スィ ツチング処理」 t\、う。)を実行して信号レベルが増幅された PWM信号をスピーカに 出力するようになっている。  [0017] The class D power amplifying apparatus 100 of this embodiment performs pulse width modulation on a PCM signal input based on a predetermined clock signal, and generates a PWM signal. The power supply voltage is switched according to the PWM signal (hereinafter referred to as “switching process”), and the PWM signal with the amplified signal level is output to the speaker.
[0018] 特に、本実施形態の D級電力増幅装置 100は、後述するようにスイッチング処理が 為される前の PWM信号と当該スイッチング処理が為された後の PWM信号との誤差 信号を算出し、算出された誤差信号の変化に応じてクロック周波数が変化するクロッ ク信号を発生させるようになつている。そして、この D級電力増幅装置 100は、スイツ チング処理が施される際に生じる非線形歪みを補正するために、発生させたクロック 信号に基づ 、て、 PCM信号に対してパルス幅変調を施すようになって 、る。 In particular, the class D power amplifying apparatus 100 of the present embodiment calculates an error signal between the PWM signal before the switching process and the PWM signal after the switching process are performed as described later. A clock signal whose clock frequency changes according to the change in the calculated error signal is generated. The class D power amplifying apparatus 100 generates the generated clock in order to correct the nonlinear distortion that occurs when the switching process is performed. Based on the signal, pulse width modulation is applied to the PCM signal.
[0019] この D級電力増幅装置 100は、入力された PCM信号に対して前処理としてオーバ 一サンプリング処理およびノイズシヱーピンク処理を行うオーバーサンプリング処理部 101およびノイズシェービング回路 102と、オーバーサンプリング処理部 101およびノ ィズシェービング回路 102を動作させるためのクロック信号 (以下、「第 1クロック信号」 という。)を発生させる第 1クロック信号発生部 103と、前処理された PCM信号を一時 的に記憶するバッファ 104と、バッファ 104に記憶された PCM信号の出力制御を行う 出力制御部 105と、出力制御された PCM信号に対してパルス幅変調を行い、 PWM 信号を生成する PCMZPWM変換部 106と、を有している。 This class D power amplifying apparatus 100 includes an oversampling processing unit 101 and a noise shaving circuit 102 for performing over-sampling processing and noise-shaping pink processing as preprocessing on an input PCM signal, A first clock signal generation unit 103 that generates a clock signal (hereinafter referred to as a “first clock signal”) for operating the processing unit 101 and the noise shaving circuit 102, and a preprocessed PCM signal are temporarily stored. , The output control unit 105 that controls the output of the PCM signal stored in the buffer 104, and the PCMZPWM conversion unit 106 that generates a PWM signal by performing pulse width modulation on the output-controlled PCM signal. And have.
[0020] また、この D級電力増幅装置 100は、生成された PWM信号に基づいてスィッチン グ処理を行 ヽ、当該 PWM信号の信号レベルを k倍に増幅するスイッチング増幅回 路 107と、信号レベルが増幅された PWM信号に対してフィルタ処理を行い、拡声信 号を生成する第 1ローパスフィルタ (以下、「第 1LPF」という。) 108と、拡声信号の信 号レベルを lZk倍する増幅器 109と、 PCMZPWM変換部 106から出力された PW M信号に対して上述の第 1ローパスフィルタと同様のフィルタ処理を行う第 2ローパス フィルタ(以下、「第 2LPF」という。) 110と、 lZk倍された拡声信号と第 2ローバスフ ィルタから出力された PWM信号との誤差信号を算出する誤差信号算出部 111と、を 有している。 [0020] In addition, the class D power amplifying apparatus 100 performs switching processing based on the generated PWM signal, and a switching amplification circuit 107 that amplifies the signal level of the PWM signal by k times, and a signal level The first low-pass filter (hereinafter referred to as “first LPF”) 108 that filters the amplified PWM signal to generate an amplified signal, and an amplifier 109 that multiplies the signal level of the expanded signal by lZk. , A second low-pass filter (hereinafter referred to as “second LPF”) 110 that performs the same filtering process as the first low-pass filter on the PWM signal output from the PCMZPWM converter 106, and a loudspeaker multiplied by lZk And an error signal calculation unit 111 for calculating an error signal between the signal and the PWM signal output from the second low-pass filter.
[0021] さらに、この D級電力増幅装置 100は、算出された誤差信号の直流電圧化 (DC化 )、すなわち、平均化を行う積分器 112と、直流電圧化された誤差信号の電圧値を検 出する電圧検出部 113と、検出された電圧値にリミッタ処理を施すリミッタ回路 114と 、リミッタ処理された電圧値の変化に応じてクロック周波数が変化するクロック信号 (以 下、「第 2クロック信号」という。)を発生させる第 2クロック信号発生部 115と、生成され た第 2クロック信号の波形を整形する波形整形回路 116と、を有している。  Furthermore, this class D power amplifying apparatus 100 converts the calculated error signal into a DC voltage (DC), that is, an integrator 112 that performs averaging, and a voltage value of the error signal converted into a DC voltage. A voltage detector 113 for detecting, a limiter circuit 114 for performing a limiter process on the detected voltage value, and a clock signal whose clock frequency changes in accordance with a change in the limiter-processed voltage value (hereinafter referred to as “second clock”). A second clock signal generation unit 115 that generates a signal “)” and a waveform shaping circuit 116 that shapes the waveform of the generated second clock signal.
[0022] なお、例えば、本実施形態のバッファ 104は、本発明の受信手段、第 1生成手段お よび記憶手段を構成し、出力制御部 105は、本発明の第 1生成手段および制御手段 を構成する。また、本実施形態の PCMZPWM変換部 106は、本発明の第 1生成手 段およびパルス幅変調信号生成手段を構成し、スイッチング増幅回路 107は、本発 明の第 2生成手段を構成する。さらに、例えば、本実施形態の誤差信号算出部 111 は、本発明の検出手段を構成し、第 2クロック信号発生部 115は、本発明の発生手段 を構成する。 [0022] Note that, for example, the buffer 104 of the present embodiment constitutes the reception means, the first generation means, and the storage means of the present invention, and the output control unit 105 includes the first generation means and the control means of the present invention. Constitute. Further, the PCMZPWM converter 106 of the present embodiment constitutes the first generation means and pulse width modulation signal generation means of the present invention, and the switching amplifier circuit 107 This constitutes a clear second generation means. Further, for example, the error signal calculation unit 111 of the present embodiment constitutes the detection means of the present invention, and the second clock signal generation unit 115 constitutes the generation means of the present invention.
[0023] オーバーサンプリング処理部 101には、入力端子 Tを介して PCM信号が入力され るようになっており、このオーバーサンプリング処理部 101は、第 1クロック信号発生 部 103にて生成された第 1クロック信号に基づいて、入力された PCM信号に対して オーバーサンプリング処理を行い、当該オーバーサンプリング処理が為された PCM 信号をノイズシェービング回路 102に出力するようになっている。  [0023] The PCM signal is input to the oversampling processing unit 101 via the input terminal T. The oversampling processing unit 101 generates a first clock signal generated by the first clock signal generation unit 103. Based on one clock signal, an oversampling process is performed on the input PCM signal, and the PCM signal subjected to the oversampling process is output to the noise shaving circuit 102.
[0024] 例えば、本実施形態のオーバーサンプリング処理部 101は、 4倍または 8倍など、 入力された PCM信号に対して当該 PCM信号のサンプリング周波数より所定倍数の サンプリング周波数によりサンプリングする処理を実行するようになっている。  For example, the oversampling processing unit 101 of the present embodiment executes a process of sampling an input PCM signal, such as 4 times or 8 times, at a sampling frequency that is a predetermined multiple of the sampling frequency of the PCM signal. It is like that.
[0025] ノイズシェービング回路 102には、オーバーサンプリングされた PCM信号が入力さ れるようになっており、このノイズシェービング回路 102は、第 1クロック信号発生部 10 3にて生成された第 1クロック信号に基づいて、入力された PCM信号力 量子化ビッ ト数を所定のビット数 (Nビット)に減らし、量子化雑音を高周波数帯域にシフトさせる ノイズシエーピンク処理を施すようになつている。また、このノイズシェービング回路 10 2は、ノイズシエーピンク処理が施された PCM信号をバッファ 104に書き込むようにな つている。  [0025] An oversampled PCM signal is input to the noise shaving circuit 102, and the noise shaving circuit 102 receives the first clock signal generated by the first clock signal generator 103. Based on this, the noise PC pink processing is performed to reduce the input PCM signal power quantization bit number to a predetermined bit number (N bits) and shift the quantization noise to a high frequency band. Also, the noise shaving circuit 102 writes the PCM signal that has been subjected to the noise shaving pink process into the buffer 104.
[0026] 第 1クロック信号発生部 103は、予め定められた一定のクロック周波数に基づいて 第 1クロック信号を生成し、当該生成された第 1クロック信号をオーバーサンプリング 処理部 101およびノイズシェービング回路 102に出力するとともに、バッファ 104に出 力するようになっている。  [0026] The first clock signal generation unit 103 generates a first clock signal based on a predetermined clock frequency, and the oversampling processing unit 101 and the noise shaving circuit 102 generate the generated first clock signal. And output to the buffer 104.
[0027] ノッファ 104は、予め定められた記憶容量を有し、オーバーサンプリング処理およ びノイズシエーピンク処理が施された PCM信号が一時的に記憶されるようになって ヽ る。また、このバッファ 104においては、入出力のタイミング制御が独立的に行われて PCM信号の書き込みおよび読み出しが行われるようになっており、このバッファ 104 は、入出力のそれぞれの書き込みタイミングおよび読み出しタイミングの相違による 時間差を吸収するようになって 、る。 [0028] 具体的には、このバッファ 104には、第 1クロック信号に基づいてノイズシェービング 回路 102から出力された PCM信号が順次書き込まれるようになっており、このノ ッフ ァ 104は、出力制御部 105の制御の下、後述するように、所定のタイミング、すなわち 、第 2クロック信号に基づいて生成されるクロック信号に基づいて、記憶された PCM 信号を PCMZPWM変換部 106に出力するようになっている。 [0027] The noffer 104 has a predetermined storage capacity, and can temporarily store a PCM signal that has been subjected to oversampling processing and noise shear pink processing. Further, in this buffer 104, input / output timing control is performed independently, and PCM signal writing and reading are performed. The time difference due to the difference is absorbed. [0028] Specifically, the PCM signals output from the noise shaving circuit 102 are sequentially written in the buffer 104 based on the first clock signal. As described later, under the control of the control unit 105, the stored PCM signal is output to the PCMZPWM conversion unit 106 based on a predetermined timing, that is, a clock signal generated based on the second clock signal. It has become.
[0029] なお、このバッファ 104における書き込みレートは、一定になっている。また、本実 施形態のノ ッファ 104における記憶容量は、後述するスイッチング増幅回路 107に おけるスイッチング周波数の変動幅以上の時間的長さを吸収することができる容量で あることが好適である。  Note that the write rate in the buffer 104 is constant. In addition, the storage capacity of the nother 104 of this embodiment is preferably a capacity capable of absorbing a time length equal to or greater than the switching frequency fluctuation width in the switching amplifier circuit 107 described later.
[0030] 出力制御部 105は、波形整形回路 116から出力された第 2クロック信号を (NZ2N) 倍にする分周回路を有し、入力された第 2クロック信号の周期を (NZ2N)倍し、当該 周期が(NZ2N)倍された第 2クロック信号に基づいて、ノ ッファ 104から PCMZPW M変換部 106に記憶された PCM信号を出力させるようになつている。 [0030] The output control section 105 has a frequency divider for the second clock signal output from the waveform shaping circuit 116 (NZ2 N) times, the period of the second clock signal input (NZ2 N) The PCM signal stored in the PCMZPWM conversion unit 106 is output from the notch 104 based on the second clock signal multiplied by (NZ2 N ).
[0031] なお、「N」は、ノイズシェービング回路 102から出力される PCM信号のビット数を示 す。また、本実施形態では、 PCMZPWM変換部 106の時間分解能は、 PCM信号 に比べて(2N)倍になるため、後述する PCM/PWM変換部 106において用いる第 2クロック信号の (N/2N)倍のタイミングにて読み出すようになって!/、る。 “N” indicates the number of bits of the PCM signal output from the noise shaving circuit 102. In this embodiment, since the time resolution of the PCMZPWM converter 106 is (2 N ) times that of the PCM signal, (N / 2 N) of the second clock signal used in the PCM / PWM converter 106 described later. ) Read out at double timing!
[0032] PCMZPWM変換部 106には、所定のタイミングにて読み出され、かつ、所定の前 処理が施された PCM信号が入力されるようになっており、この PCMZPWM変換部 106は、第 2クロック信号に基づいて、入力された PCM信号に対してパルス幅変調を 行い、 PWM信号を生成してスイッチング増幅回路 107および第 2LPF110に出力 するようになっている。  [0032] The PCMZPWM converter 106 is configured to receive a PCM signal read at a predetermined timing and subjected to a predetermined pre-processing. Based on the clock signal, the input PCM signal is subjected to pulse width modulation, and a PWM signal is generated and output to the switching amplifier circuit 107 and the second LPF 110.
[0033] 具体的には、本実施形態では、第 2クロック信号が誤差信号に基づいて変化するよ うになつており、 PCMZPWM変換部 106は、変化された第 2クロック信号に基づい て、入力された PCM信号に対してノ ルス幅変調を行うようになっている。  Specifically, in the present embodiment, the second clock signal is changed based on the error signal, and the PCMZPWM converter 106 is input based on the changed second clock signal. In addition, the pulse width modulation is applied to PCM signals.
[0034] スイッチング増幅回路 107には、パルス幅変調された PWM信号が入力されるよう になっている。このスイッチング増幅回路 107は、例えば、 MOS (Metal Oxide Semic onductor)型トランジスタであって、電界効果型トランジスタ(以下、「FET: Field Effect TransistorJという。)FETと、スピーカを駆動するための駆動電圧を印加するための 直流電源と、を有し、入力された PWM信号のスイッチング制御などの所定の制御を 行い、 PWM信号の信号レベルを k倍に、すなわち、所定の信号レベルに増幅するよ うになつている。そして、このスイッチング増幅回路 107は、当該増幅された PWM信 号を第 1LPF108に出力するようになって 、る。 The switching amplifier circuit 107 is input with a pulse width modulated PWM signal. The switching amplifier circuit 107 is, for example, a MOS (Metal Oxide Semiconductor) transistor, which is a field effect transistor (hereinafter referred to as “FET: Field Effect”). TransistorJ is called. ) FET and DC power supply for applying drive voltage to drive the speaker, perform predetermined control such as switching control of the input PWM signal, and increase the signal level of the PWM signal k times In other words, the signal is amplified to a predetermined signal level. The switching amplifier circuit 107 outputs the amplified PWM signal to the first LPF 108.
[0035] なお、本実施形態では、スイッチング増幅回路 107において、 FETに代えてバイポ ーラトランジスタを用いてでもよ 、。  In the present embodiment, the switching amplifier circuit 107 may use a bipolar transistor instead of the FET.
[0036] 第 1LPF108には、所定のレベルに増幅された PWM信号が入力されるようになつ ており、この第 1LPF108は、高域雑音を除去するために入力された PWM信号に対 して高域遮断処理を施して拡声信号を生成し、当該生成された拡声信号をスピーカ および増幅器 109に出力するようになって 、る。  [0036] A PWM signal amplified to a predetermined level is input to the first LPF 108. The first LPF 108 is high in response to the PWM signal input to remove high-frequency noise. The loudspeaker signal is generated by performing the band cut-off process, and the generated loudspeaker signal is output to the speaker and the amplifier 109.
[0037] 増幅器 109には、第 1LPF108にて生成された拡声信号が入力されるようになって おり、この増幅器 109は、誤差信号を算出する際に一方の信号、すなわち、 PCM/ PWM変換部 106から出力された PWM信号との整合性を図るために入力された拡 声信号の信号レベルを (lZk)倍に増幅し、当該信号レベルが(lZk)倍に増幅され た拡声信号を誤差信号算出部 111に出力するようになって!/、る。  [0037] Amplified signal generated by the first LPF 108 is input to the amplifier 109, and this amplifier 109 calculates one signal when calculating an error signal, that is, a PCM / PWM converter. In order to achieve consistency with the PWM signal output from 106, the signal level of the input loudspeak signal is amplified (lZk) times, and the loudspeak signal whose signal level is amplified (lZk) times is an error signal. It will be output to the calculation unit 111!
[0038] 第 2LPF110には、 PCMZPWM変換部 106から出力された PWM信号が入力さ れるようになっており、この第 2LPF110は、誤差信号を算出する際に他方の信号、 すなわち、拡声信号との整合性を図るために入力された PWM信号に対して第 1LP F108と同様の高域遮断処理を施し、当該高域遮断処理が施された信号を誤差信号 算出部 111に出力するようになっている。  [0038] The PWM signal output from the PCMZPWM converter 106 is input to the second LPF 110, and this second LPF 110 receives the other signal, that is, the loudspeaker signal when calculating the error signal. The high-frequency cutoff processing similar to that of the first LP F108 is performed on the input PWM signal for consistency, and the signal subjected to the high-frequency cutoff processing is output to the error signal calculation unit 111. Yes.
[0039] 誤差信号算出部 111には、信号レベルが( lZk)倍された拡声信号と第 2LPF110 力も出力された信号とが入力されるようになっており、この誤差信号算出部 111は、 入力された各信号に基づいて誤差信号を算出し、当該算出された誤差信号を積分 器 112に出力するようになっている。  [0039] The error signal calculation unit 111 receives a loudspeaker signal whose signal level is multiplied by (lZk) and a signal from which the second LPF 110 force is also output. An error signal is calculated on the basis of each of the signals, and the calculated error signal is output to the integrator 112.
[0040] 具体的には、本実施形態の誤差信号算出部 111は、減算器から構成され、信号レ ベルが(lZk)倍された拡声信号力も第 2LPF110から出力された信号を減算し、誤 差信号を生成するようになって!/ヽる。 [0041] 積分器 112には、誤差信号生成部にて生成された誤差信号が入力されるようにな つており、この積分器 112は、入力された誤差信号に対して積分演算して直流電圧 値化 (DC値化)、すなわち、当該入力された誤差信号を平均化して電圧検出部 113 およびリミッタ回路 114に出力するようになっている。 [0040] Specifically, the error signal calculation unit 111 of the present embodiment is composed of a subtracter, and the loudness signal power with the signal level multiplied by (lZk) is also subtracted from the signal output from the second LPF 110, resulting in an error. A difference signal is generated! / Speak. [0041] The error signal generated by the error signal generation unit is input to the integrator 112. The integrator 112 performs an integration operation on the input error signal to obtain a DC voltage. Digitization (DC digitization), that is, the inputted error signal is averaged and output to the voltage detection unit 113 and the limiter circuit 114.
[0042] 例えば、この積分器 112は、(式 1)に示すオーバーサンプリングされた PCM信号 のサンプリング周期(F )以下であって、(式 2)を満たす時定数ての低 、ローパス  [0042] For example, the integrator 112 has a low and low-pass time constant that is equal to or less than the sampling period (F) of the oversampled PCM signal shown in (Equation 1) and satisfies (Equation 2).
PWM  PWM
フィルタから構成されるようになっている。ただし、以下の式において、 Fsは、 PCM信 号のサンプリング周波数を示す。  It consists of filters. In the following equation, Fs indicates the sampling frequency of the PCM signal.
[0043] (数 1) [0043] (Equation 1)
F = Fs Xオーバーサンプリング数 · · · ·(式 1)  F = Fs X Oversampling number (1)
PWM  PWM
[0044] (数 2)  [0044] (Number 2)
τ ≥ l/ (Fs Xオーバーサンプリング数 X (2Ν—1) ) ·…(式 2) τ ≥ l / (Fs X oversampling number X (2 Ν —1)) ··· (Equation 2)
電圧検出部 113には、積分器 112にて DC値ィ匕された誤差信号が入力されるように なっており、この電圧検出部 113は、入力された誤差信号の電圧値を検出し、検出さ れた電圧値に基づ 、てリミッタ回路 114における出力を制御するようになって!/、る。  The voltage detection unit 113 is configured to receive an error signal whose DC value has been input by the integrator 112. The voltage detection unit 113 detects and detects the voltage value of the input error signal. The output of the limiter circuit 114 is controlled based on the voltage value!
[0045] リミッタ回路 114には、積分器 112から出力された平均化された誤差信号と、電圧 検出部 113から出力された電圧値と、が入力されるようになっており、このリミッタ回路 114は、電圧検出部 113にて検出された電圧値に基づいて定められた上限の電圧 値 (以下、「上限電圧値」という。)以上、および、予め定められた下限の電圧値 (以下 、「下限電圧値」という。)以下の電圧値が誤差信号として積分器 112から入力された 際には、上限電圧値または下限電圧値を出力するようになっている。  The limiter circuit 114 is supplied with the averaged error signal output from the integrator 112 and the voltage value output from the voltage detection unit 113. Is an upper limit voltage value (hereinafter, referred to as “upper limit voltage value”) determined based on the voltage value detected by the voltage detection unit 113, and a predetermined lower limit voltage value (hereinafter, “ When the following voltage value is input from the integrator 112 as an error signal, the upper limit voltage value or the lower limit voltage value is output.
[0046] なお、本実施形態では、後述するように、第 2クロック信号発生部 115にて生成され るクロック信号におけるクロック周波数の変動範囲を予め定めるようになっており、こ の変動範囲に属するクロック周波数にて形成されるクロック信号を発生させるように、 電圧検出部 113にて検出された電圧値に基づいて、リミッタ回路 114における上限 値と下限値の閾値を適宜定めるようになって 、る。  In this embodiment, as will be described later, the variation range of the clock frequency in the clock signal generated by the second clock signal generation unit 115 is determined in advance, and belongs to this variation range. Based on the voltage value detected by the voltage detector 113, the upper and lower thresholds in the limiter circuit 114 are appropriately determined so as to generate a clock signal formed at the clock frequency. .
[0047] また、リミッタ回路 114は、予め定められた上限電圧値および下限電圧値に基づい て、入力された誤差信号に対して制限を行い、所定の電圧値を出力するようにしても よい。この場合には、上述の電圧検出部 113は不要となる。 [0047] The limiter circuit 114 may limit the input error signal based on a predetermined upper limit voltage value and lower limit voltage value and output a predetermined voltage value. Good. In this case, the voltage detection unit 113 described above is not necessary.
[0048] 第 2クロック信号発生部 115には、リミッタ回路 114から出力された電圧値が入力さ れるようになっており、この第 2クロック信号発生部 115は、 PCMZPWM変換部 106 にて生成される PWM信号のパルス幅を伸縮させるために、入力された電圧値に応 じて所定のクロック周波数を発生させ、当該発生させたクロック周波数にて形成され る第 2クロック信号を波形成形回路 116に出力するようになっている。  [0048] The voltage value output from the limiter circuit 114 is input to the second clock signal generation unit 115. The second clock signal generation unit 115 is generated by the PCMZPWM conversion unit 106. In order to expand and contract the pulse width of the PWM signal, a predetermined clock frequency is generated according to the input voltage value, and the second clock signal formed at the generated clock frequency is sent to the waveform shaping circuit 116. It is designed to output.
[0049] 具体的には、この第 2クロック信号発生部 115は、リミッタ回路 114にて上限電圧値 および下限電圧値にて予め所定の周波数範囲に属するクロック周波数にて形成され るクロック信号を発生させるようになって ヽる。  Specifically, the second clock signal generator 115 generates a clock signal formed at a clock frequency belonging to a predetermined frequency range in advance by the limiter circuit 114 at the upper limit voltage value and the lower limit voltage value. I'm going to let you go.
[0050] 例えば、図 2に示すように、第 2クロック信号発生部 115は、下限周波数 F11から上 限周波数 F12までの周波数範囲内にてクロック周波数を発生させるようになっており、 誤差信号における電圧値が「0」以上の場合には、発生させるクロック周波数を高くし 、当該誤差信号における電圧値が「0」以下の場合には、発生させるクロック周波数を 低くするようになつている。  For example, as shown in FIG. 2, the second clock signal generator 115 generates a clock frequency within a frequency range from a lower limit frequency F11 to an upper limit frequency F12, When the voltage value is “0” or more, the generated clock frequency is increased. When the voltage value in the error signal is “0” or less, the generated clock frequency is decreased.
[0051] また、例えば、本実施形態において、第 2クロック信号発生部 115は、(式 1)に基づ いて (式 3)のように算出された中心周波数 Fcを有する変動範囲にてクロック周波数 を発生させるようになつている。ただし、(式 3)における Nは、ノイズシェービング回路 102における出力ビット数を示す。  [0051] Further, for example, in the present embodiment, the second clock signal generation unit 115 generates the clock frequency within the fluctuation range having the center frequency Fc calculated as in (Expression 3) based on (Expression 1). Is starting to occur. However, N in (Equation 3) indicates the number of output bits in the noise shaving circuit 102.
[0052] (数 3)  [0052] (Equation 3)
Fc=F X (2N) · · · · (式 3) Fc = FX (2 N )
PWM  PWM
なお、この上限周波数 F12は、スイッチング増幅回路 107における動作不良を防止 するために、クロック周波数 F12にて形成される第 2クロック信号に基づいて変調され た PWM信号のパルス幅力 当該スイッチング増幅回路 107で使用して!/、るデバイス が追従可能な最小のパルス幅より大きくなるように、当該クロック周波数 F12を予め定 めるようになつている。また、下限周波数 F11は、動作する際の中心となる中心周波数 fcと上限周波数 fl2の偏差、すなわち、 I fl2— fc I以上を満たすように、当該中心周 波数 fcに対して周波数軸対象となるように予め定めるようになって!ヽる。このように第 2クロック信号を構成することにより、安定性の高い構成が可能となっている。 [0053] 波形整形回路 116には、第 2クロック信号発生部 115にて生成された第 2クロック信 号が入力されるようになっており、この波形整形回路 116は、入力された第 2クロック 信号の波形を正弦波から矩形波に変換し、当該矩形波に変換された第 2クロック信 号を PCMZPWM変換部 106および出力制御部 105に出力するようになっている。 The upper limit frequency F12 is a pulse width force of the PWM signal modulated based on the second clock signal formed at the clock frequency F12 in order to prevent malfunction in the switching amplifier circuit 107. The clock frequency F12 is set in advance so that it is larger than the minimum pulse width that can be used by the device! In addition, the lower limit frequency F11 is a frequency axis target for the center frequency fc so that the deviation between the center frequency fc, which is the center during operation, and the upper limit frequency fl2, ie, I fl2-fc I or more is satisfied. Come to predetermine like! By configuring the second clock signal in this way, a highly stable configuration is possible. [0053] The waveform shaping circuit 116 is supplied with the second clock signal generated by the second clock signal generator 115, and the waveform shaping circuit 116 receives the input second clock. The signal waveform is converted from a sine wave to a rectangular wave, and the second clock signal converted to the rectangular wave is output to the PCMZPWM converter 106 and the output controller 105.
[0054] 次に、図 3〜図 6を用いて本実施形態における第 2クロック信号の生成過程および パルス幅変調の動作につ 、て説明する。  Next, the generation process of the second clock signal and the operation of the pulse width modulation in this embodiment will be described with reference to FIGS.
[0055] なお、図 3は、本実施形態の第 2クロック信号の生成過程において誤差信号が「0」 より大きいときの各部における信号波形を示す図であり、図 4は、本実施形態の第 2ク ロック信号の生成過程にぉ 、て誤差信号が「0」より小さ 、ときの各部における信号波 形を示す図である。  FIG. 3 is a diagram showing signal waveforms at various portions when the error signal is larger than “0” in the generation process of the second clock signal of the present embodiment, and FIG. 4 is a diagram of the first embodiment of the present embodiment. FIG. 5 is a diagram showing signal waveforms in respective parts when an error signal is smaller than “0” during the generation process of the two clock signals.
[0056] また、図 5は、本実施形態のパルス幅変調の動作において、誤差信号が「0」より大 きいときの各部におけるタイミングチャートであり、図 6は、本実施形態のノルス幅変 調の動作にぉ 、て、誤差信号が「0」より小さ 、ときの各部におけるタイミングチャート である。  FIG. 5 is a timing chart in each part when the error signal is larger than “0” in the pulse width modulation operation of the present embodiment. FIG. 6 shows the nors width modulation of the present embodiment. 6 is a timing chart in each part when the error signal is smaller than “0”.
[0057] 以下の説明において、 D級電力増幅器 100において増幅される再生信号が 4bitで 「0101」の PCM値を有する PCM信号として入力されるものとし、誤差信号が「0」より 大き 、場合と「0」より小さ 、場合に分けて説明する。  [0057] In the following description, it is assumed that the reproduction signal amplified in the class D power amplifier 100 is input as a PCM signal having a 4-bit PCM value of "0101", and the error signal is larger than "0". If it is smaller than “0”, the case will be described separately.
[0058] また、ノイズシェービング回路 102における出力ビット数を 4bitとし、第 1クロック信 号のクロック周波数を 4Hzとする。なお、上述したように、当該各条件から PWMステ ップ数は、「16」となり、第 2クロック信号のクロック周波数の中心周波数は、 16Hzとな る。  [0058] Further, the number of output bits in the noise shaving circuit 102 is 4 bits, and the clock frequency of the first clock signal is 4 Hz. As described above, the number of PWM steps is “16” from each of the conditions, and the center frequency of the clock frequency of the second clock signal is 16 Hz.
[0059] 本実施形態において、図 3 (a)に示す再生信号を拡声する場合に、スイッチング増 幅回路 107における増幅率を「1」とすると、当該スイッチング増幅部などの各部にお ける所定の処理に基づいて、スピーカには、図 3 (b)に示す雑音成分を含む拡声信 号が出力される。  In the present embodiment, when the reproduction signal shown in FIG. 3 (a) is loudened, if the amplification factor in the switching amplifier circuit 107 is “1”, a predetermined value in each part such as the switching amplifier is given. Based on the processing, the loudspeaker signal containing the noise component shown in Fig. 3 (b) is output to the speaker.
[0060] この場合にお 、て、誤差信号算出部 111は、図 3 (c)に示す誤差信号( >「0」)を検 出すると、積分器 112は、当該誤差信号に基づいて図 3 (d)に示す信号を出力し、リ ミッタ回路 114は、上述のように決定された上限電圧値および下限電圧値に基づ!/ヽ て、図 3 (e)に示す信号を出力する。そして、第 2クロック信号発生部 115は、図 3 (e) の信号に基づいて、図 3 (f)に示すように、クロック周波数が可変される正弦波のクロ ック信号を生成し、波形整形回路 116に出力する。なお、波形整形回路 116では、 上述のように、この正弦波のクロック信号を矩形波に整形する。 In this case, when the error signal calculation unit 111 detects the error signal (> “0”) shown in FIG. 3 (c), the integrator 112 detects the error signal shown in FIG. The limiter circuit 114 outputs the signal shown in (d), and the limiter circuit 114 is based on the upper limit voltage value and the lower limit voltage value determined as described above. Outputs the signal shown in Fig. 3 (e). Then, the second clock signal generation unit 115 generates a sine wave clock signal with a variable clock frequency as shown in FIG. 3 (f) based on the signal shown in FIG. Output to the shaping circuit 116. The waveform shaping circuit 116 shapes the sine wave clock signal into a rectangular wave as described above.
[0061] また、誤差信号算出部 111は、図 4 (a)に示す誤差信号 (く「0」)を検出すると、積 分器 112は、当該誤差信号に基づいて図 4 (b)に示す信号を出力し、リミッタ回路 11 4は、上述のように決定された上限電圧値および下限電圧値に基づいて、図 4 (c)に 示す信号を出力する。そして、第 2クロック信号発生部 115は、図 4 (c)の信号に基づ いて、図 4 (d)に示すように、クロック周波数が可変される正弦波のクロック信号を生 成し、波形整形回路 116に出力する。なお、波形整形回路 116では、上述のように、 この正弦波のクロック信号を矩形波に整形する。  [0061] When error signal calculation section 111 detects the error signal ("0") shown in Fig. 4 (a), integrator 112 shows the error signal shown in Fig. 4 (b) based on the error signal. The limiter circuit 114 outputs a signal shown in FIG. 4 (c) based on the upper limit voltage value and the lower limit voltage value determined as described above. Then, the second clock signal generation unit 115 generates a sine wave clock signal with a variable clock frequency, as shown in FIG. 4 (d), based on the signal in FIG. Output to the shaping circuit 116. The waveform shaping circuit 116 shapes the sine wave clock signal into a rectangular wave as described above.
[0062] 一方、上述のように、 4bitで「0101」の PCM値を有する PCM信号が入力端子に 入力され、図 5 (a)に示す第 1クロック信号に基づいて、オーバーサンプリング処理お よびノイズシェービング処理が施されると、図 5 (b)に示す PCM信号がバッファ 104に 書き込まれる。  On the other hand, as described above, a 4-bit PCM signal having a PCM value of “0101” is input to the input terminal, and oversampling processing and noise are performed based on the first clock signal shown in FIG. When the shaving process is performed, the PCM signal shown in FIG.
[0063] そして、ノ ッファ 104に書き込まれた PCM信号は、上述のように、算出された誤差 信号(>「〇」)に基づ 、て生成され、図 5 (c)に示すクロック周波数が可変する(NZ2 N)倍された第 2クロック信号を用いて、ノ ッファ 104から図 5 (d)に示す PCM信号とし て読み出されると、当該読み出された PCM信号は、図 5 (e)に示すクロック周波数が 可変する第 2クロック信号に基づいて、図 5 (f)に示す PWM信号に変換される。  [0063] Then, as described above, the PCM signal written to the notch 104 is generated based on the calculated error signal (> "O"), and the clock frequency shown in FIG. When the variable (NZ2 N) multiplied second clock signal is used to read out from PC 104 as the PCM signal shown in Fig. 5 (d), the read PCM signal is shown in Fig. 5 (e). Based on the second clock signal with variable clock frequency shown in Fig. 5, it is converted to the PWM signal shown in Fig. 5 (f).
[0064] また、ノ ッファ 104に書き込まれた PCM信号は、上述のように、算出された誤差信 号(<「0」)に基づいて生成され、図 6 (a)に示すクロック周波数が可変する (NZ2N) 倍された第 2クロック信号を用いて、ノ ッファ 104から図 6 (b)に示す PCM信号として 読み出されると、当該読み出された PCM信号は、図 6 (c)に示すクロック周波数が可 変する第 2クロック信号に基づいて、図 6 (d)に示す PWM信号に変換される。 [0064] Further, as described above, the PCM signal written to the nother 104 is generated based on the calculated error signal (<"0"), and the clock frequency shown in Fig. 6 (a) is variable. When the second clock signal multiplied by (NZ2 N ) is used to read out from PC 104 as the PCM signal shown in Fig. 6 (b), the read PCM signal is shown in Fig. 6 (c). Based on the second clock signal with variable clock frequency, it is converted to the PWM signal shown in Fig. 6 (d).
[0065] このように、本実施形態では、誤差信号に基づ!/ヽて第 2クロック信号のクロック周波 数を可変させることができるので、当該クロック周波数が可変にされた第 2クロック信 号に基づいて、バッファ 104からの出力制御および PCMZPWM変換を行い、スィ ツチング増幅回路 107にて増幅される PWM信号のパルス幅を可変させることができ るようになっている。このため、本実施形態では、スイッチング増幅回路 107にてスィ ツチング処理が施される際に生じる非線形歪み、すなわち、当該スイッチング増幅回 路 107にて直流電源のオン'オフの切り換えにより発生する非線形な歪みを的確に 防止することができるとともに、 PWM信号のパルス幅を可変にするための精度の高 い専用の回路も必要なぐ回路規模も小さくすることができるようになつている。また、 本実施形態では、第 2クロック信号のクロック周波数が変動するため、当該クロック周 波数に基づく高周波雑音の発生も低減させることができるようになつている。 In this way, in this embodiment, the clock frequency of the second clock signal can be varied based on the error signal! Therefore, the second clock signal with the variable clock frequency can be changed. Output control from the buffer 104 and PCMZPWM conversion based on the The pulse width of the PWM signal amplified by the pushing amplifier circuit 107 can be varied. For this reason, in this embodiment, nonlinear distortion that occurs when switching processing is performed in the switching amplifier circuit 107, that is, nonlinear distortion that occurs due to switching of the DC power supply in the switching amplifier circuit 107. In addition to being able to prevent distortion accurately, it is also possible to reduce the circuit scale that requires a dedicated circuit with high accuracy to make the pulse width of the PWM signal variable. In the present embodiment, since the clock frequency of the second clock signal varies, the generation of high frequency noise based on the clock frequency can be reduced.
[0066] 以上により、本実施形態の D級電力増幅装置 100は、 PCM信号をパルス変調し、 当該パルス変調された PWM信号を増幅してスピーカに出力する D級電力増幅装置 100であって、デジタル信号である PCM信号を受信するバッファ 104と、受信された PCM信号をパルス変調し、 PWM信号を生成する PCMZPWM変換部 106と、生 成された PWM信号に従って電源電圧をスイッチングし、当該 PWM信号の信号レべ ルを増幅して拡声信号を生成するスイッチング増幅回路 107と、生成された PWM信 号と拡声信号との誤差を検出する誤差信号算出部 111と、検出された誤差信号に応 じて変化するクロック周波数にて形成される第 2クロック信号を発生させる第 2クロック 信号発生部 115と、を備え、 PCMZPWM変換部 106が、第 2クロック信号発生部 1 15にて発生された第 2クロック信号に基づいて、受信された PCM信号力 PWM信 号を生成する構成を有して ヽる。  [0066] As described above, the class D power amplifying apparatus 100 of the present embodiment is a class D power amplifying apparatus 100 that performs pulse modulation on a PCM signal, amplifies the pulse modulated PWM signal, and outputs the amplified PWM signal to a speaker. A buffer 104 that receives a PCM signal, which is a digital signal, a PCMZPWM converter 106 that generates a PWM signal by pulse-modulating the received PCM signal, and a power supply voltage that is switched according to the generated PWM signal. A switching amplifier circuit 107 that amplifies the signal level of the signal to generate a loud sound signal, an error signal calculation unit 111 that detects an error between the generated PWM signal and the loud sound signal, and a detected error signal. A second clock signal generation unit 115 for generating a second clock signal formed at a clock frequency that varies with the second clock signal generation unit 1 15. Clock signal Ru has been, a configuration for generating a PCM signal power PWM signal received based on.
[0067] この構成により、本実施形態の D級電力増幅装置 100は、検出された誤差信号に 応じて変化するクロック周波数にて形成される第 2クロック信号を発生させ、当該発生 された第 2クロック信号を用いて、受信された PCM信号力も PWM信号を生成する。  With this configuration, the class D power amplifying apparatus 100 according to the present embodiment generates the second clock signal formed at the clock frequency that changes according to the detected error signal, and the generated second clock signal is generated. Using the clock signal, the received PCM signal power also generates a PWM signal.
[0068] したがって、本実施形態の D級電力増幅装置 100は、発生された第 2クロック信号 を用いて、受信された PCM信号力も PWM信号を生成することができ、スイッチング 増幅回路 107にて増幅される PWM信号のパルス幅を可変させることができるので、 スイッチング増幅回路 107にてスイッチング処理が施される際に生じる非線形歪み、 すなわち、当該スイッチング増幅回路 107にて直流電源のオン'オフの切り換えによ り発生する非線形な歪みを的確に防止することができるとともに、 PWM信号のパル ス幅を可変にするための精度の高い専用の回路も必要なぐ回路規模も小さくするこ とがでさる。 Therefore, the class D power amplifying apparatus 100 of the present embodiment can also generate a PWM signal from the received PCM signal power using the generated second clock signal, and is amplified by the switching amplifier circuit 107. Since the PWM signal pulse width can be varied, nonlinear distortion that occurs when switching processing is performed in the switching amplifier circuit 107, that is, switching the DC power supply on and off in the switching amplifier circuit 107. As a result, the nonlinear distortion generated by the It is possible to reduce the circuit scale and the dedicated circuit with high accuracy required to make the width of the circuit variable.
[0069] そして、本実施形態の D級電力増幅装置 100は、第 2クロック信号のクロック周波数 が変動するため、当該クロック周波数に基づく不要輻射などの高周波雑音の発生も 低減させることができるので、当該高周波雑音に近接するラジオ放送、例えば、 500 kHz〜 1600kHzなどの放送波を受信する際などの EMI対策(Electro Magnetic Inte rference) タカになる。  [0069] Since the clock frequency of the second clock signal fluctuates in the class D power amplifying device 100 of the present embodiment, generation of high frequency noise such as unnecessary radiation based on the clock frequency can be reduced. It becomes an EMI countermeasure (Electro Magnetic Interference) taka when receiving radio waves close to the high-frequency noise, for example, broadcast waves of 500 kHz to 1600 kHz.
[0070] また、本実施形態の D級電力増幅装置 100は、信号レベルが増幅された PWM信 号に対して平滑化して拡声信号を生成する場合に、誤差信号算出部 111が、生成さ れた PWM信号に対して平滑ィ匕しつつ、拡声信号との誤差を検出するので、的確に 第 2クロック信号を発生させることができるので、的確に PCM信号に対してノ ルス幅 変調を行うことができ、スイッチング増幅回路 107にて直流電源のオン'オフの切り換 えにより発生する非線形な歪みを的確に防止することができる。  [0070] Also, in the class D power amplifying apparatus 100 of the present embodiment, the error signal calculation unit 111 is generated when the amplified signal is generated by smoothing the PWM signal whose signal level is amplified. Since the error from the loudspeaker signal is detected while smoothing the PWM signal, the second clock signal can be generated accurately, so that the pulse width modulation must be accurately performed on the PCM signal. The switching amplifier circuit 107 can accurately prevent nonlinear distortion caused by switching the DC power supply on and off.
[0071] また、本実施形態の D級電力増幅装置 100は、検出された誤差信号の平均値を算 出する積分器 112を有し、算出された平均値に応じて異なるクロック周波数にて形成 される第 2クロック信号を発生させる構成を有して ヽる。  In addition, the class D power amplifying apparatus 100 of the present embodiment has an integrator 112 that calculates the average value of the detected error signal, and is formed at a different clock frequency according to the calculated average value. The second clock signal can be generated.
[0072] この構成により、本実施形態の D級電力増幅装置 100は、的確に第 2クロック信号 を発生させることができ、波形が規定レベルを一時的に上回るオーバーシュートおよ び波形が規定レベルを一時的に下回るアンダーシュートなどの波形歪み成分までの 追従を防ぐことができるので、的確に PCM信号に対してパルス幅変調を行うことがで き、スイッチング増幅回路 107にて直流電源のオン'オフの切り換えにより発生する非 線形な歪みを的確に防止することができる。  [0072] With this configuration, the class D power amplifying apparatus 100 of the present embodiment can accurately generate the second clock signal, the overshoot that the waveform temporarily exceeds the specified level, and the waveform that is the specified level. This can prevent tracking of waveform distortion components such as undershoot that temporarily falls below, so that pulse width modulation can be performed accurately on the PCM signal. Nonlinear distortion caused by switching off can be accurately prevented.
[0073] また、本実施形態の D級電力増幅装置 100は、リミッタ回路 114によって予め定め られた周波数範囲に属する第 2クロック信号を発生させるので、安定して第 2クロック 信号を発生させることができ、的確に PCM信号に対してパルス幅変調を行うことがで きる。  In addition, since the class D power amplifying apparatus 100 of the present embodiment generates the second clock signal belonging to the frequency range determined in advance by the limiter circuit 114, the second clock signal can be generated stably. It is possible to accurately perform pulse width modulation on PCM signals.
[0074] なお、本実施形態では、誤差信号算出部は、(lZk)倍された拡声信号と PCMZ PWM変換部 106から出力された PWM信号において第 2LPF110にて平滑化処理 を施した信号とに基づいて誤差信号を算出するようになっているが、図 7に示すよう に、(lZk)倍されたスイッチング増幅回路 107にて増幅された PWM信号と PCMZ PWM変換部 106から出力された PWM信号とに基づいて誤差信号を算出してもよ い。この場合には、上述と同様に、誤差信号に入力される各信号の整合性を図ること ができるので、上述と同様の効果を得ることができる。 [0074] In this embodiment, the error signal calculation unit performs smoothing processing by the second LPF 110 on the (lZk) -multiplied sound signal and the PWM signal output from the PCMZ PWM conversion unit 106. As shown in Fig. 7, the error signal is calculated based on the signal that has been subjected to the processing. However, as shown in Fig. 7, the PWM signal amplified by the switching amplifier circuit 107 multiplied by (lZk) and the PCMZ PWM converter 106 The error signal may be calculated based on the PWM signal output from. In this case, similar to the above, each signal input to the error signal can be matched, so that the same effect as described above can be obtained.
[0075] また、本実施形態では、オーバーサンプリング処理部 101およびノイズシユーピン グ回路には、同一のクロック周波数を有する第 1クロック信号を用いているが、各部に おける同期が取れて 、れば、異なるクロック信号を用いて 、てもよ 、。  Further, in this embodiment, the first clock signal having the same clock frequency is used for the oversampling processing unit 101 and the noise-shaping circuit. You can use different clock signals.
[0076] また、本実施形態では、リミッタ回路 114を設け、電圧検出部 113において検出さ れた電圧値に対して上限電圧値および下限電圧値に基づいて第 2クロック信号発生 部 115に入力される電圧値の制御を行うようになっている力 当該リミッタ回路 114を 設けず、図 8に示すように、検出された電圧値の値を保持させつつ、第 2クロック信号 発生部 115に入力するようにしてもよ!、。  In the present embodiment, a limiter circuit 114 is provided, and the voltage value detected by the voltage detection unit 113 is input to the second clock signal generation unit 115 based on the upper limit voltage value and the lower limit voltage value. The power to control the voltage value is not provided, the limiter circuit 114 is not provided, and the detected voltage value is held and input to the second clock signal generator 115 as shown in FIG. You can do it!
[0077] また、本実施形態では PWM変調方式として Single Sided PWM方式を例にして説 明しているが、(式 1)から (式 3)における Nを (N+ 1)に置き換え、本実施形態の出 力制御部 105における分周比を NZ (2(N+1))にすることによって Double Sided PWM 方式に適用することも可能である。 [0077] In this embodiment, the single sided PWM method is described as an example of the PWM modulation method. However, N in (Expression 1) to (Expression 3) is replaced with (N + 1). It is also possible to apply to the double sided PWM method by setting the frequency division ratio in the output control unit 105 to NZ (2 (N + 1) ).
[0078] また、本実施形態では、シングルエンド構成、すなわち、 2値 PWM変調に適用する ようになつている力 勿論、 3値 PWM変調に適用するようにしてもよい。この場合に、 本実施形態の構成を各 PWM信号毎に適用すればょ 、。  Further, in the present embodiment, the force applied to the single-ended configuration, that is, the binary PWM modulation may be applied to the ternary PWM modulation. In this case, if the configuration of the present embodiment is applied to each PWM signal.
[0079] また、本実施形態のオーバーサンプリング処理部 101およびノイズシェービング回 路 102は、第 1クロック信号発生部 103にて発生された第 1クロック信号に基づいて動 作するようになっている力 各オーバーサンプリング処理部 101およびノイズシエーピ ング回路 102において、分周回路を設け、分周された第 1クロック信号に基づいて動 作するようにしてちょい。  [0079] Further, the oversampling processing unit 101 and the noise shaving circuit 102 of the present embodiment operate based on the first clock signal generated by the first clock signal generation unit 103. Each oversampling processing unit 101 and noise shaping circuit 102 should be provided with a frequency dividing circuit so that it operates based on the divided first clock signal.
[0080] 〔第 2実施形態〕  [0080] [Second Embodiment]
次に、図 9〜図 14を用いて D級電力増幅装置の第 2実施形態について説明する。  Next, a second embodiment of the class D power amplifying device will be described with reference to FIGS.
[0081] 本実施形態では、第 1実施形態にお!、てバッファに記憶された PCM信号を、クロッ ク周波数が所定倍された第 2クロック信号に基づいて PWM信号を生成している点に 代えて、所定のクロック周波数を有するクロック信号にて PWM信号を生成してバッフ ァに書き込み、第 2クロック信号に基づいて当該書き込まれた PWM信号を読み出し ている点に特徴がある。その他の点は、第 1実施形態と同様であり、同一の部材には 同一の符号を付してその説明を省略する。なお、以下の説明では、 Single Sided P WM方式における適用例について説明する。 In this embodiment, the PCM signal stored in the buffer in the first embodiment is clocked. Instead of generating a PWM signal based on a second clock signal whose clock frequency is multiplied by a predetermined frequency, a PWM signal is generated with a clock signal having a predetermined clock frequency, written to the buffer, and the second clock signal is generated. The feature is that the written PWM signal is read based on the signal. The other points are the same as in the first embodiment, and the same members are denoted by the same reference numerals and the description thereof is omitted. In the following description, an application example in the Single Sided P WM method will be described.
[0082] まず、図 9を用いて本実施形態における D級電力増幅装置の構成について説明す る。 First, the configuration of the class D power amplifying device in the present embodiment will be described with reference to FIG.
[0083] なお、図 9は、本実施形態の D級電力増幅装置の構成を示すブロック図である。  Note that FIG. 9 is a block diagram showing a configuration of the class D power amplifying apparatus of the present embodiment.
[0084] この D級電力増幅装置 200は、図 9に示すように、オーバーサンプリング処理部 10 1およびノイズシェービング回路 102と、ノイズシェービング処理された PCM信号に 対してパルス幅変調を行い、 PWM信号を生成する PCMZPWM変換部 210と、ォ 一バーサンプリング処理部 101、ノイズシェービング回路 102および PCMZPWM 変換部 210を動作させるための第 1クロック信号を発生させる第 1クロック信号発生部 103と、生成された PWM信号を一時的に記憶するバッファ 211と、を有している。  As shown in FIG. 9, this class D power amplifying apparatus 200 performs pulse width modulation on the oversampling processing unit 101 and noise shaving circuit 102 and the noise-shaved PCM signal to generate a PWM signal. PCMZPWM conversion unit 210 that generates the first clock signal generation unit 103 that generates the first clock signal for operating the oversampling processing unit 101, the noise shaving circuit 102, and the PCMZPWM conversion unit 210. And a buffer 211 for temporarily storing the PWM signal.
[0085] また、この D級電力増幅装置 200は、第 1実施形態と同様に、スイッチング増幅回 路 107と、第 1LPF108と、増幅器 109と、第 2LPF110と、誤差信号算出部 111と、 積分器 112と、電圧検出部 113と、リミッタ回路 114と、第 2クロック信号発生部 115と 、波形整形回路 116と、を有している。  In addition, as in the first embodiment, this class D power amplifying apparatus 200 includes a switching amplification circuit 107, a first LPF 108, an amplifier 109, a second LPF 110, an error signal calculation unit 111, an integrator 112, a voltage detection unit 113, a limiter circuit 114, a second clock signal generation unit 115, and a waveform shaping circuit 116.
[0086] なお、例えば、本実施形態のバッファ 211は、本発明の受信手段、第 1生成手段、 記憶手段および制御手段を構成する。また、本実施形態の PCMZPWM変換部 21 0は、本発明の受信手段、第 1生成手段およびパルス幅変調信号生成手段を構成し 、増幅回路は、本発明の第 2生成手段を構成する。さら〖こ、例えば、本実施形態の誤 差信号算出部 111は、本発明の検出手段を構成し、第 2クロック信号発生部 115は、 本発明の発生手段を構成する。  [0086] For example, the buffer 211 of this embodiment constitutes a receiving means, a first generating means, a storage means, and a control means of the present invention. Further, the PCMZPWM converter 210 of the present embodiment constitutes the receiving means, the first generating means and the pulse width modulation signal generating means of the present invention, and the amplifier circuit constitutes the second generating means of the present invention. Further, for example, the error signal calculation unit 111 of the present embodiment constitutes the detection means of the present invention, and the second clock signal generation unit 115 constitutes the generation means of the present invention.
[0087] PCMZPWM変換部 210には、ノイズシェービング回路 102から出力された所定 の前処理が施された PCM信号が入力されるようになっており、この PCMZPWM変 換部 210は、第 1クロック信号に基づいて、入力された PCM信号に対してパルス幅 変調を行 、、 PWM信号を生成してバッファ 211に出力するようになって 、る。 [0087] The PCMZPWM converter 210 is configured to receive the PCM signal that has been subjected to the predetermined preprocessing output from the noise shaving circuit 102, and the PCMZPWM converter 210 receives the first clock signal. Based on the pulse width for the input PCM signal Modulation is performed, and a PWM signal is generated and output to the buffer 211.
[0088] ノッファ 211は、予め定められた記憶容量を有し、オーバーサンプリング処理およ びノイズシエーピンク処理が施された PCM信号が一時的に記憶されるようになって ヽ る。 [0088] The nother 211 has a predetermined storage capacity, and can temporarily store a PCM signal that has been subjected to oversampling processing and noise shear pink processing.
[0089] また、このバッファ 211においては、入出力のタイミング制御が独立的に行われて P WM信号の書き込みおよび読み出しが行われるようになっており、このバッファ 211 は、入出力のそれぞれの書き込みタイミングおよび読み出しタイミングの相違により、 記憶されて 、る PWM信号のパルス幅を可変させるようになって!/、る。  Further, in this buffer 211, the input / output timing control is performed independently, and the PWM signal is written and read out. Due to the difference in timing and read timing, the pulse width of the PWM signal that is memorized is changed.
[0090] 具体的には、このバッファ 211には、第 1クロック信号に基づいて PCMZPWM変 換部 210から出力された PWM信号が順次書き込まれるようになっており、このバッフ ァ 211は、所定のタイミング、すなわち、出力制御回路 116から出力された第 2クロッ ク信号に基づ 、て記憶された PWM信号を第 2クロック信号に基づ 、てスイッチング 増幅回路 107および第 2LPF110に出力するようになっている。  Specifically, the buffer 211 sequentially writes the PWM signals output from the PCMZPWM converter 210 based on the first clock signal. The buffer 211 has a predetermined value. Based on the timing, that is, based on the second clock signal output from the output control circuit 116, the stored PWM signal is output to the switching amplifier circuit 107 and the second LPF 110 based on the second clock signal. ing.
[0091] なお、このバッファ 211における書き込みレートは、一定になっている。また、第 1ク ロック信号発生部 103は、 PCMZPWM変換部 210に第 1クロック信号を出力する他 は、第 1実施形態と同様の構成を有している。  Note that the write rate in the buffer 211 is constant. The first clock signal generator 103 has the same configuration as that of the first embodiment except that the first clock signal is output to the PCMZPWM converter 210.
[0092] 次に、図 10〜図 13を用いて本実施形態における第 2クロック信号の生成過程およ びパルス幅変調の動作につ ヽて説明する。  Next, the generation process of the second clock signal and the operation of the pulse width modulation in this embodiment will be described with reference to FIGS.
[0093] なお、図 10は、本実施形態の第 2クロック信号の生成過程において誤差信号が「0 」より大きいときの各部における信号波形を示す図であり、図 11は、本実施形態の第 2クロック信号の生成過程にぉ 、て誤差信号が「0」より小さ 、ときの各部における信 号波形を示す図である。  FIG. 10 is a diagram showing signal waveforms at various parts when the error signal is larger than “0” in the generation process of the second clock signal of the present embodiment, and FIG. FIG. 7 is a diagram showing signal waveforms in various parts when an error signal is smaller than “0” during the process of generating a two-clock signal.
[0094] また、図 12は、本実施形態のパルス幅変調の動作において、誤差信号が「0」より 大きいときの各部におけるタイミングチャートであり、図 13は、本実施形態のノ ルス幅 変調の動作にぉ 、て、誤差信号が「0」より小さ 、ときの各部におけるタイミングチヤ一 トである。  FIG. 12 is a timing chart in each part when the error signal is larger than “0” in the pulse width modulation operation of the present embodiment. FIG. 13 shows the pulse width modulation of the present embodiment. In operation, this is a timing chart in each part when the error signal is smaller than “0”.
[0095] 以下の説明において、第 1実施形態と同様に、 D級電力増幅器 109において増幅 される再生信号力 bitで「0101」の PCM値を有する PCM信号として入力されるもの とし、誤差信号が「0」より大き 、場合と「0」より小さ 、場合に分けて説明する。 [0095] In the following description, as in the first embodiment, the reproduction signal power bit amplified by the class D power amplifier 109 is input as a PCM signal having a PCM value of "0101" with bit The case where the error signal is larger than “0” and smaller than “0” will be described separately.
[0096] また、ノイズシェービング回路 102における出力ビット数を 4bitとし、第 1クロック信 号のクロック周波数を 2. 5Hzとする。なお、上述したように、当該各条件から PWMス テツプ数は、「16」となり、第 2クロック信号のクロック周波数の中心周波数は、 10Hzと なる。 [0096] Further, the number of output bits in the noise shaving circuit 102 is 4 bits, and the clock frequency of the first clock signal is 2.5 Hz. As described above, the number of PWM steps is “16” from each of the conditions, and the center frequency of the clock frequency of the second clock signal is 10 Hz.
[0097] 本実施形態において、第 1実施形態と同様の再生信号を拡声する場合に、スィッチ ング増幅回路 107における増幅率を「1」とすると、当該スイッチング増幅部などの各 部における所定の処理に基づいて、スピーカには、第 1実施形態と同様に雑音成分 を含む拡声信号が出力される。  In the present embodiment, when the reproduction signal similar to that in the first embodiment is amplified, if the amplification factor in the switching amplifier circuit 107 is “1”, predetermined processing in each unit such as the switching amplifier unit is performed. Based on the above, a loudspeaker signal including a noise component is output to the speaker as in the first embodiment.
[0098] この場合において、誤差信号算出部 111は、図 10 (&)に示す誤差信号(>「0」)を 検出すると、積分器 112は、当該誤差信号に基づいて図 10 (b)に示す信号を出力し 、リミッタ回路 114は、第 1実施形態と同様に、決定された上限電圧値および下限電 圧値に基づいて、図 10 (c)に示す信号を出力する。そして、第 2クロック信号発生部 115は、図 10 (c)の信号に基づいて、図 10 (d)に示すように、クロック周波数が可変 される正弦波のクロック信号を生成し、波形整形回路 116に出力する。なお、波形整 形回路 116では、上述のように、この正弦波のクロック信号を矩形波に整形する。  In this case, when the error signal calculation unit 111 detects the error signal (> “0”) shown in FIG. 10 (&), the integrator 112 generates the error signal shown in FIG. 10 (b) based on the error signal. The limiter circuit 114 outputs the signal shown in FIG. 10 (c) based on the determined upper limit voltage value and lower limit voltage value, as in the first embodiment. Then, the second clock signal generation unit 115 generates a sine wave clock signal with a variable clock frequency based on the signal of FIG. 10 (c), and generates a waveform shaping circuit. Output to 116. Note that the waveform shaping circuit 116 shapes the sine wave clock signal into a rectangular wave as described above.
[0099] また、誤差信号算出部 111は、図 11 (a)に示す誤差信号 (く「0」)を検出すると、積 分器 112は、当該誤差信号に基づいて図 11 (b)に示す信号を出力し、リミッタ回路 1 14は、上述のように決定された上限電圧値および下限電圧値に基づいて、図 11 (c) に示す信号を出力する。そして、第 2クロック信号発生部 115は、図 11 (c)の信号に 基づいて、図 11 (d)に示すように、クロック周波数が可変される正弦波のクロック信号 を生成し、波形整形回路 116に出力する。なお、波形整形回路 116では、上述のよう に、この正弦波のクロック信号を矩形波に整形する。  [0099] When error signal calculation section 111 detects the error signal ("0") shown in Fig. 11 (a), integrator 112 shows the error signal shown in Fig. 11 (b) based on the error signal. The limiter circuit 114 outputs a signal shown in FIG. 11 (c) based on the upper limit voltage value and the lower limit voltage value determined as described above. Then, the second clock signal generation unit 115 generates a sine wave clock signal whose clock frequency is variable based on the signal of FIG. 11 (c), and generates a waveform shaping circuit. Output to 116. The waveform shaping circuit 116 shapes the sine wave clock signal into a rectangular wave as described above.
[0100] 一方、第 1実施形態と同様に、 4bitで「0101」の PCM値を有する PCM信号が入 力端子に入力され、図 12 (a)に示す第 1クロック信号に基づいて、 PWM信号が生成 されると、図 12 (b)に示す PWM信号がバッファ 211に書き込まれる。  On the other hand, as in the first embodiment, a 4-bit PCM signal having a PCM value of “0101” is input to the input terminal, and the PWM signal is based on the first clock signal shown in FIG. Is generated, the PWM signal shown in FIG.
[0101] そして、バッファ 211に書き込まれた PWM信号は、第 1実施形態と同様に、算出さ れた誤差信号(>「0」)に基づいて生成され、図 12 (c)に示すクロック周波数を有す る第 2クロック信号を用いてバッファ 211から読み出されると、図 12 (d)に示す PWM 信号がスイッチング増幅回路 107に出力される。 [0101] The PWM signal written to the buffer 211 is generated based on the calculated error signal (>"0"), as in the first embodiment, and the clock frequency shown in Fig. 12 (c). Have When the second clock signal is read from the buffer 211, the PWM signal shown in FIG.
[0102] また、バッファ 211に書き込まれた PWM信号は、第 1実施形態と同様に、算出され た誤差信号(く「0」)に基づいて生成され、図 13 (c)に示すクロック周波数を有する 第 2クロック信号を用いてバッファ 211から読み出されると、図 12 (d)に示す PWM信 号がスイッチング増幅回路 107に出力される。  [0102] Further, the PWM signal written to the buffer 211 is generated based on the calculated error signal (<0>) as in the first embodiment, and the clock frequency shown in FIG. When the second clock signal is read from the buffer 211, the PWM signal shown in FIG. 12 (d) is output to the switching amplifier circuit 107.
[0103] このように、本実施形態では、誤差信号に基づ!/ヽて第 2クロック信号のクロック周波 数を可変させることができるので、バッファ 211からの出力される PWM信号のパルス 幅を可変させることができるようになつている。このため、本実施形態では、第 1実施 形態と同様に、スイッチング増幅回路 107にてスイッチング処理が施される際に生じ る非線形歪み、すなわち、当該スイッチング増幅回路 107にて直流電源のオン'オフ の切り換えにより発生する非線形な歪みを的確に防止することができるとともに、 PW M信号のパルス幅を可変にするための精度の高!、専用の回路も必要なく、回路規模 も小さくすることができる。また、本実施形態では、第 2クロック信号のクロック周波数 が変動するため、当該クロック周波数に基づく高周波雑音の発生も低減させることが できるようになつている。  As described above, according to the present embodiment, the clock frequency of the second clock signal can be varied based on the error signal! Therefore, the pulse width of the PWM signal output from the buffer 211 can be changed. It can be made variable. Therefore, in this embodiment, as in the first embodiment, nonlinear distortion that occurs when switching processing is performed in the switching amplifier circuit 107, that is, the DC power supply is turned on and off in the switching amplifier circuit 107. Non-linear distortion caused by switching can be accurately prevented, and the accuracy for making the pulse width of the PWM signal variable is high! No dedicated circuit is required, and the circuit scale can be reduced. . In the present embodiment, since the clock frequency of the second clock signal varies, generation of high frequency noise based on the clock frequency can also be reduced.
[0104] 以上により、本実施形態の D級電力増幅装置 200は、 PCM信号をパルス変調し、 当該パルス変調された PWM信号を増幅してスピーカに出力する D級電力増幅装置 200であって、デジタル信号である PCM信号を受信するとともに、受信された PCM 信号をパルス変調し、 1\^^[信号を生成する1^1^7?1\^^[変換部210ぉょびバッフ ァ 211と、生成された PWM信号に従って電源電圧をスイッチングし、当該 PWM信 号の信号レベルを増幅して拡声信号を生成するスイッチング増幅回路 107と、生成 された PWM信号と拡声信号との誤差を検出する誤差信号算出部 111と、検出され た誤差信号に応じて変化するクロック周波数にて形成される第 2クロック信号を発生さ せる第 2クロック信号発生部 115と、を備え、 PCM/PWM変換部 210およびバッフ ァ 211は、第 2クロック信号発生部 115にて発生された第 2クロック信号に基づ 、て、 受信された PCM信号カゝら PWM信号を生成する構成を有している。 As described above, the class D power amplifying apparatus 200 of the present embodiment is a class D power amplifying apparatus 200 that performs pulse modulation on a PCM signal, amplifies the pulse modulated PWM signal, and outputs the amplified PWM signal to a speaker. which receives the PCM signal is a digital signal, the received PCM signal pulse-modulated, 1 \ ^^ [signal to generate a 1 ^ 1 ^ 7? 1 \ ^^ [converting unit 210 Oyobi buffer 211 Switching amplifier circuit 107 that switches the power supply voltage according to the generated PWM signal, amplifies the signal level of the PWM signal to generate a loud sound signal, and detects an error between the generated PWM signal and the loud sound signal. An error signal calculation unit 111, and a second clock signal generation unit 115 that generates a second clock signal formed at a clock frequency that changes according to the detected error signal, and a PCM / PWM conversion unit 210. And the buffer 211 generates a second clock signal. Based on the second clock signal generated by the section 115 Te, and has a configuration for generating a received PCM signal Kakara PWM signal.
[0105] この構成により、本実施形態の D級電力増幅装置 200は、第 1実施形態と同様に、 検出された誤差信号に応じて変化するクロック周波数にて形成される第 2クロック信 号を発生させ、当該発生された第 2クロック信号を用いて、 PCM信号から PWM信号 を生成する。 [0105] With this configuration, the class D power amplifying device 200 of the present embodiment is similar to that of the first embodiment. A second clock signal is generated with a clock frequency that changes according to the detected error signal, and a PWM signal is generated from the PCM signal using the generated second clock signal.
[0106] したがって、本実施形態の D級電力増幅装置 200は、発生された第 2クロック信号 を用いて、受信された PCM信号力も PWM信号を生成することができ、スイッチング 増幅回路 107にて増幅される PWM信号のパルス幅を可変させることができるので、 スイッチング増幅回路 107にてスイッチング処理が施される際に生じる非線形歪み、 すなわち、当該スイッチング増幅回路 107にて直流電源のオン'オフの切り換えによ り発生する非線形な歪みを的確に防止することができるとともに、 PWM信号のパル ス幅を可変にするための精度の高い専用の回路も必要なぐ回路規模も小さくするこ とがでさる。  Therefore, the class D power amplifying apparatus 200 of the present embodiment can generate a PWM signal using the generated second clock signal as well as the received PCM signal power, and is amplified by the switching amplifier circuit 107. Since the PWM signal pulse width can be varied, nonlinear distortion that occurs when switching processing is performed in the switching amplifier circuit 107, that is, switching the DC power supply on and off in the switching amplifier circuit 107. In addition to accurately preventing non-linear distortion caused by this, a dedicated circuit with high accuracy for making the pulse width of the PWM signal variable is also reduced, and the circuit scale required is also reduced.
[0107] そして、本実施形態の D級電力増幅装置 200は、第 2クロック信号のクロック周波数 が変動するため、当該クロック周波数に基づく不要輻射などの高周波雑音の発生も 低減させることができるので、当該高周波雑音に近接するラジオ放送、例えば、 500 kHz〜 1600kHzなどの放送波を受信する際などの EMI対策も有効になる。  [0107] Since the clock frequency of the second clock signal fluctuates in the class D power amplifying apparatus 200 of the present embodiment, generation of high-frequency noise such as unnecessary radiation based on the clock frequency can be reduced. EMI countermeasures are also effective when receiving radio broadcasts close to the high-frequency noise, for example, broadcast waves of 500 kHz to 1600 kHz.
[0108] なお、本実施形態では、誤差信号算出部は、(lZk)倍された拡声信号とバッファ 2 11から出力された PWM信号において第 2LPF110にて平滑ィ匕処理を施した信号と に基づいて誤差信号を算出するようになっているが、図 14に示すように、(lZk)倍 されたスイッチング増幅回路 107にて増幅された PWM信号バッファ 211から出力さ れた PWM信号とに基づいて誤差信号を算出してもよい。この場合には、上述と同様 に、誤差信号に入力される各信号の整合性を図ることができるので、上述と同様の効 果を得ることができる。  In the present embodiment, the error signal calculation unit is based on the (lZk) -magnified loudspeaker signal and the signal that has been subjected to the smoothing process in the second LPF 110 in the PWM signal output from the buffer 211. As shown in FIG. 14, the error signal is calculated based on the PWM signal output from the PWM signal buffer 211 amplified by the switching amplifier circuit 107 multiplied by (lZk). An error signal may be calculated. In this case, similar to the above, each signal input to the error signal can be matched, so that the same effect as described above can be obtained.
[0109] また、本実施形態では、オーバーサンプリング処理部 101およびノイズシユーピン グ回路には、同一のクロック周波数を有する第 1クロック信号を用いているが、各部に おける同期が取れて 、れば、異なるクロック信号を用いて 、てもよ 、。  Further, in this embodiment, the first sampling signal having the same clock frequency is used for the oversampling processing unit 101 and the noise-shaping circuit. However, as long as synchronization can be obtained in each unit. You can use different clock signals.
[0110] また、本実施形態では、リミッタ回路 114を設け、電圧検出部 113において検出さ れた電圧値に対して上限電圧値および下限電圧値に基づいて第 2クロック信号発生 部 115に入力される電圧値の制御を行うようになっている力 当該リミッタ回路 114を 設けず、検出された電圧値の値を保持させつつ、第 2クロック信号発生部 115に入力 するようにしてちょい。 Further, in the present embodiment, a limiter circuit 114 is provided, and is input to the second clock signal generation unit 115 based on the upper limit voltage value and the lower limit voltage value with respect to the voltage value detected by the voltage detection unit 113. The force that controls the voltage value Instead of providing it, keep the detected voltage value and input it to the second clock signal generator 115.
[Oil 1] また、本実施形態では、シングルエンド構成、すなわち、 2値 PWM変調に適用する ようになつている力 勿論、 3値 PWM変調に適用するようにしてもよい。この場合に、 本実施形態の構成を各 PWM信号毎に適用すればょ 、。  [Oil 1] In this embodiment, the power applied to the single-ended configuration, that is, the binary PWM modulation may be applied to the ternary PWM modulation. In this case, if the configuration of the present embodiment is applied to each PWM signal.
[0112] また、本実施形態のオーバーサンプリング処理部 101およびノイズシェービング回 路 102は、第 1クロック信号発生部 103にて発生された第 1クロック信号に基づいて動 作するようになっている力 各オーバーサンプリング処理部 101およびノイズシエーピ ング回路 102において、分周回路を設け、分周された第 1クロック信号に基づいて動 作するようにしてもよい。特に、本実施形態では、 PCM信号および PWM信号の信 号処理を行う際に第 1クロック信号を用いているため、分周回路が必要となる。ただし 、この場合において、 PWM変調方式として Single Sided PWM方式を用いる場合に は、第 1実施形態の(式 1)から (式 3)における分周比を用い、 PWM変調方式として D ouble Sided PWM方式を用いる場合には、(式 1)から(式 3)における Nを (N+ 1)に 置き換えた分周比、すなわち、 N/ (2(N+1))を用いるようになっている。 In addition, the oversampling processing unit 101 and the noise shaving circuit 102 according to the present embodiment operate based on the first clock signal generated by the first clock signal generation unit 103. In each oversampling processing unit 101 and noise shaping circuit 102, a frequency dividing circuit may be provided to operate based on the frequency-divided first clock signal. In particular, in the present embodiment, the first clock signal is used when signal processing of the PCM signal and the PWM signal is performed, so that a frequency dividing circuit is required. However, in this case, when the single sided PWM method is used as the PWM modulation method, the division ratio in (Equation 1) to (Equation 3) of the first embodiment is used, and the Doubly Sided PWM method is used as the PWM modulation method. When N is used, the frequency division ratio obtained by replacing N in (Equation 1) to (Equation 3) with (N + 1), that is, N / (2 (N + 1) ) is used.
[0113] 〔第 3実施形態〕  [Third Embodiment]
次に、図 15〜図 17を用いて D級電力増幅装置の第 3実施形態について説明する  Next, a third embodiment of the class D power amplifying device will be described with reference to FIGS.
[0114] 本実施形態では、第 1実施形態においてバッファに代えて非同期回路を用いる点 に特徴があり、その他の点は、第 1実施形態と同様であり、同一の部材には同一の符 号を付してその説明を省略する。 [0114] The present embodiment is characterized in that an asynchronous circuit is used instead of the buffer in the first embodiment, and the other points are the same as in the first embodiment, and the same reference numerals are used for the same members. The description is omitted.
[0115] まず、図 15および図 16を用いて本実施形態における D級電力増幅装置の構成に ついて説明する。なお、図 15は、本実施形態の D級電力増幅装置の構成を示すブ ロック図であり、図 16は、本実施形態における非同期回路における信号波形の例を 示す図である。なお、以下の説明では、 Single Sided PWM方式における適用例に ついて説明する。  [0115] First, the configuration of the class D power amplifying device in the present embodiment will be described with reference to FIGS. 15 and 16. FIG. FIG. 15 is a block diagram showing the configuration of the class D power amplifier of this embodiment, and FIG. 16 is a diagram showing an example of signal waveforms in the asynchronous circuit of this embodiment. In the following description, application examples in the single sided PWM method will be described.
[0116] この D級電力増幅装置 300は、図 15に示すように、オーバーサンプリング処理部 1 01およびノイズシェービング回路 102と、第 1クロック信号発生部 103と、前処理され た PCM信号のタイミングおよびパルス幅を変更する非同期回路 310と、非同期回路 310のタイミングを制御する出力制御部 311と、 じ1^7?1\^^[変換部312と、を有し ている。 As shown in FIG. 15, the class D power amplifying apparatus 300 is preprocessed with an oversampling processing unit 101, a noise shaving circuit 102, and a first clock signal generating unit 103. The PCM signal timing and pulse width, the asynchronous circuit 310, the output control unit 311 for controlling the asynchronous circuit 310 timing, and the same 1 ^ 7? 1 \ ^^ [conversion unit 312 .
[0117] また、この D級電力増幅装置 300は、第 1実施形態と同様に、スイッチング増幅回 路 107と、第 1LPF108と、増幅器 109と、第 2LPF110と、誤差信号算出部 111と、 積分器 112と、電圧検出部 113と、リミッタ回路 114と、第 2クロック信号発生部 115と 、波形整形回路 116と、を有している。  Also, this class D power amplifying apparatus 300 includes a switching amplification circuit 107, a first LPF 108, an amplifier 109, a second LPF 110, an error signal calculation unit 111, an integrator, as in the first embodiment. 112, a voltage detection unit 113, a limiter circuit 114, a second clock signal generation unit 115, and a waveform shaping circuit 116.
[0118] 出力制御部 311は、第 1実施形態と同様に、波形整形回路 116から出力された第 2 クロック信号を (N/2N)倍にする分周回路を有し、第 1クロック信号と、入力された第 2クロック信号を (NZ2N)倍し、当該 (NZ2N)倍された第 2クロック信号と、に基づい て、非同期回路 310を制御するようになっている。 As in the first embodiment, the output control unit 311 has a frequency dividing circuit that multiplies the second clock signal output from the waveform shaping circuit 116 by (N / 2 N ), and the first clock signal If, multiplies the second clock signal input (NZ2 N), and the (NZ2 N) multiplied by a second clock signal, based on, and controls the asynchronous circuit 310.
[0119] 非同期回路 310は、例えば、 D (Delay)フリップフロップまたはラッチにて構成さ れ、図 16に示すように、出力制御部 311の制御の下、ノイズシェービング回路 102か ら出力された PCM信号の同期を再度取り直して PCMZPWM変換部 312に出力す るようになっている。  Asynchronous circuit 310 is constituted by, for example, a D (Delay) flip-flop or a latch, and as shown in FIG. 16, the PCM output from noise shaving circuit 102 under the control of output control unit 311. The signal is synchronized again and output to the PCMZPWM converter 312.
[0120] なお、図 16は、非同期回路 310におけるスイッチング周期において、入力された P CM信号、第 1クロック信号、出力側 PCM信号および (NZ2N)倍された第 2クロック 信号の幅が異なることを示している。ただし、 MSB (Most Significan Digit)は、 最上位ビットを示し、 LSB (Least Significant Bit)は、最下位ビットを示す。また 、非同期回路 310における書き込みレートは一定となっている。 Note that FIG. 16 shows that the width of the input PCM signal, the first clock signal, the output PCM signal, and the second clock signal multiplied by (NZ2 N ) are different in the switching cycle of the asynchronous circuit 310. Is shown. However, MSB (Most Significan Digit) indicates the most significant bit, and LSB (Least Significant Bit) indicates the least significant bit. Further, the write rate in the asynchronous circuit 310 is constant.
[0121] 以上により、本実施形態の D級電力増幅装置 300は、 PCM信号をパルス変調し、 当該パルス変調された PWM信号を増幅してスピーカに出力する D級電力増幅装置 300であって、デジタル信号である PCM信号を受信する非同期回路 310と、受信さ れた PCM信号をパルス変調し、 1\ ^[信号を生成する1^1^7?1\^^[変換部312と 、生成された PWM信号に従って電源電圧をスイッチングし、当該 PWM信号の信号 レベルを増幅して拡声信号を生成するスイッチング増幅回路 107と、生成された PW M信号と拡声信号との誤差を検出する誤差信号算出部 111と、検出された誤差信号 に応じて変化するクロック周波数にて形成される第 2クロック信号を発生させる第 2ク ロック信号発生部 115と、を備え、 PCMZPWM変換部 312が、第 2クロック信号発 生部 115にて発生された第 2クロック信号に基づ ヽて、受信された PCM信号カゝら PW M信号を生成する構成を有して ヽる。 [0121] As described above, the class D power amplifying apparatus 300 of the present embodiment is a class D power amplifying apparatus 300 that performs pulse modulation on the PCM signal, amplifies the pulse modulated PWM signal, and outputs the amplified PWM signal to the speaker. Asynchronous circuit 310 that receives the PCM signal, which is a digital signal, and 1 \ ^ [ 1 ^^^ [conversion unit 312 that generates a 1 \ ^ [signal by pulse-modulating the received PCM signal The switching amplifier circuit 107 that switches the power supply voltage according to the generated PWM signal, amplifies the signal level of the PWM signal to generate a loud sound signal, and calculates an error signal that detects an error between the generated PWM signal and the loud sound signal 111 and a second clock for generating a second clock signal formed at a clock frequency that varies according to the detected error signal. Lock signal generator 115, and PCMZPWM converter 312 receives a PCM signal from the received PCM signal based on the second clock signal generated by second clock signal generator 115. It has a configuration to generate.
[0122] この構成により、本実施形態の D級電力増幅装置 300は、第 1実施形態と同様に、 検出された誤差信号に応じて変化するクロック周波数にて形成される第 2クロック信 号を発生させ、当該発生された第 2クロック信号を用いて、受信された PCM信号から PWM信号を生成する。  [0122] With this configuration, the class D power amplifying apparatus 300 according to the present embodiment, as in the first embodiment, generates the second clock signal formed at the clock frequency that changes according to the detected error signal. Generate a PWM signal from the received PCM signal using the generated second clock signal.
[0123] したがって、本実施形態の D級電力増幅装置 300は、発生された第 2クロック信号 を用いて、受信された PCM信号力も PWM信号を生成することができ、スイッチング 増幅回路 107にて増幅される PWM信号のパルス幅を可変させることができるので、 スイッチング増幅回路 107にてスイッチング処理が施される際に生じる非線形歪み、 すなわち、当該スイッチング増幅回路 107にて直流電源のオン'オフの切り換えによ り発生する非線形な歪みを的確に防止することができるとともに、 PWM信号のパル ス幅を可変にするための精度の高い専用の回路も必要なぐ回路規模も小さくするこ とがでさる。  Therefore, the class D power amplifying apparatus 300 of the present embodiment can generate a PWM signal using the generated second clock signal, and the received PCM signal power can be amplified by the switching amplifier circuit 107. Since the PWM signal pulse width can be varied, nonlinear distortion that occurs when switching processing is performed in the switching amplifier circuit 107, that is, switching the DC power supply on and off in the switching amplifier circuit 107. In addition to accurately preventing non-linear distortion caused by this, a dedicated circuit with high accuracy for making the pulse width of the PWM signal variable is also reduced, and the circuit scale required is also reduced.
[0124] そして、本実施形態の D級電力増幅装置 300は、第 2クロック信号のクロック周波数 が変動するため、当該クロック周波数に基づく不要輻射などの高周波雑音の発生も 低減させることができるので、当該高周波雑音に近接するラジオ放送、例えば、 500 kHz〜 1600kHzなどの放送波を受信する際などの EMI対策も有効になる。  [0124] Since the class D power amplifying apparatus 300 of the present embodiment varies the clock frequency of the second clock signal, generation of high frequency noise such as unwanted radiation based on the clock frequency can be reduced. EMI countermeasures are also effective when receiving radio broadcasts close to the high-frequency noise, for example, broadcast waves of 500 kHz to 1600 kHz.
[0125] なお、本実施形態では、誤差信号算出部は、(lZk)倍された拡声信号と PCMZ PWM変換部 312から出力された PWM信号において第 2LPF110にて平滑化処理 を施した信号とに基づいて誤差信号を算出するようになっているが、図 17に示すよう に、(lZk)倍されたスイッチング増幅回路 107にて増幅された PWM信号と PCMZ PWM変換部 312から出力された PWM信号とに基づいて誤差信号を算出してもよ い。この場合には、上述と同様に、誤差信号に入力される各信号の整合性を図ること ができるので、上述と同様の効果を得ることができる。  [0125] In this embodiment, the error signal calculation unit converts the sound signal multiplied by (lZk) and the signal smoothed by the second LPF 110 in the PWM signal output from the PCMZ PWM conversion unit 312. The error signal is calculated based on the PWM signal amplified by the switching amplifier circuit 107 multiplied by (lZk) and the PWM signal output from the PCMZ PWM converter 312 as shown in FIG. The error signal may be calculated based on the above. In this case, similar to the above, each signal input to the error signal can be matched, so that the same effect as described above can be obtained.
[0126] また、本実施形態では、オーバーサンプリング処理部 101およびノイズシユーピン グ回路には、同一のクロック周波数を有する第 1クロック信号を用いているが、各部に おける同期が取れて 、れば、異なるクロック信号を用いて 、てもよ 、。 Further, in this embodiment, the first clock signal having the same clock frequency is used for the oversampling processing unit 101 and the noise shaping circuit. If it can be synchronized, use different clock signals.
[0127] また、本実施形態では、リミッタ回路 114を設け、電圧検出部 113において検出さ れた電圧値に対して上限電圧値および下限電圧値に基づいて第 2クロック信号発生 部 115に入力される電圧値の制御を行うようになっている力 当該リミッタ回路 114を 設けず、第 1実施形態と同様に、検出された電圧値の値を保持させつつ、第 2クロッ ク信号発生部 115に入力するようにしてもよ!、。  In the present embodiment, a limiter circuit 114 is provided, and the voltage value detected by the voltage detection unit 113 is input to the second clock signal generation unit 115 based on the upper limit voltage value and the lower limit voltage value. The force to control the voltage value to be controlled is not provided, and the second clock signal generation unit 115 is made to hold the detected voltage value as in the first embodiment without providing the limiter circuit 114. You can enter it!
[0128] また、本実施形態では PWM変調方式として Single Sided PWM方式を例にして説 明しているが、第 1実施形態と同様に、(式 1)から (式 3)における Nを (N+ 1)に置き 換え、本実施形態の出力制御部 311における分周比を NZ(2(N+1))にすることによ つて Double Sided PWM方式に適用することも可能である。 In this embodiment, the single sided PWM method is described as an example of the PWM modulation method. However, as in the first embodiment, N in (Expression 1) to (Expression 3) is set to (N + Instead of 1), it is also possible to apply the double sided PWM method by setting the frequency division ratio in the output control unit 311 of this embodiment to NZ (2 (N + 1) ).
[0129] また、本実施形態では、シングルエンド構成、すなわち、 2値 PWM変調に適用する ようになつている力 勿論、 3値 PWM変調に適用するようにしてもよい。この場合に、 本実施形態の構成を各 PWM信号毎に適用すればょ 、。  Further, in the present embodiment, the power applied to the single-ended configuration, that is, the binary PWM modulation may be applied to the ternary PWM modulation. In this case, if the configuration of the present embodiment is applied to each PWM signal.
[0130] また、本実施形態のオーバーサンプリング処理部 101およびノイズシェービング回 路 102は、第 1クロック信号発生部 103にて発生された第 1クロック信号に基づいて動 作するようになっている力 各オーバーサンプリング処理部 101およびノイズシエーピ ング回路 102において、分周回路を設け、分周された第 1クロック信号に基づいて動 作するようにしてちょい。  [0130] Further, the oversampling processing unit 101 and the noise shaving circuit 102 of the present embodiment operate based on the first clock signal generated by the first clock signal generation unit 103. Each oversampling processing unit 101 and noise shaping circuit 102 should be provided with a frequency dividing circuit so that it operates based on the divided first clock signal.

Claims

請求の範囲 The scope of the claims
[1] 音信号をパルス変調し、当該パルス変調された音信号を増幅してスピーカに出力 する D級電力増幅装置であって、  [1] A class D power amplifying apparatus that pulse-modulates a sound signal, amplifies the pulse-modulated sound signal, and outputs the amplified sound signal to a speaker.
デジタル信号である音信号を受信する受信手段と、  Receiving means for receiving a sound signal which is a digital signal;
受信された音信号をパルス変調し、パルス幅変調信号を生成する第 1生成手段と、 前記生成されたパルス幅変調信号に従って電源電圧をスイッチングし、当該パルス 幅変調信号の信号レベルを増幅して拡声信号を生成する第 2生成手段と、  First generation means for pulse-modulating the received sound signal to generate a pulse width modulation signal, and switching the power supply voltage according to the generated pulse width modulation signal, and amplifying the signal level of the pulse width modulation signal A second generation means for generating a loud signal;
前記生成されたパルス幅変調信号と前記拡声信号との誤差を検出する検出手段と 前記検出された誤差信号に応じて変化するクロック周波数にて形成されるクロック 信号を発生させる発生手段と、  Detecting means for detecting an error between the generated pulse width modulation signal and the loud sound signal; and generating means for generating a clock signal formed at a clock frequency that changes in accordance with the detected error signal;
を備え、  With
前記第 1生成手段が、前記発生手段にて発生されたクロック信号に基づいて、前記 受信された音信号力 前記パルス幅変調信号を生成することを特徴とする D級電力 増幅装置。  The class D power amplifying apparatus, wherein the first generation means generates the received sound signal force and the pulse width modulation signal based on the clock signal generated by the generation means.
[2] 請求項 1に記載の D級電力増幅装置にお 、て、  [2] In the class D power amplifying device according to claim 1,
前記第 1生成手段が、前記発生手段にて発生されたクロック信号に基づいて、前記 受信された音信号をパルス幅変調し、前記パルス幅変調信号を生成することを特徴 とする D級電力増幅装置。  The first generation means performs pulse width modulation on the received sound signal based on the clock signal generated by the generation means, and generates the pulse width modulation signal. apparatus.
[3] 請求項 2に記載の D級電力増幅装置において、 [3] In the class D power amplifying device according to claim 2,
前記第 1生成手段が、  The first generation means comprises:
前記受信された音信号が一時的に記憶される記憶手段と、  Storage means for temporarily storing the received sound signal;
前記発生手段にて発生されたクロック信号に基づいて、前記記憶された音信号を 出力する出力制御を行う制御手段と、  Control means for performing output control for outputting the stored sound signal based on the clock signal generated by the generating means;
前記出力制御された音信号をパルス幅変調し、前記発生手段にて発生されたクロ ック信号に基づ!、て、前記パルス幅変調信号を生成するパルス幅変調信号生成手 段と、  A pulse width modulation signal generating means for performing pulse width modulation on the output-controlled sound signal and generating the pulse width modulation signal based on the clock signal generated by the generating means;
を更に有することを特徴とする D級電力増幅装置。 A class D power amplifying apparatus, further comprising:
[4] 請求項 1に記載の D級電力増幅装置にお 、て、 [4] In the class D power amplifying device according to claim 1,
前記第 1生成手段が、  The first generation means comprises:
前記受信された音信号を所定の基準信号に基づ!、てパルス変調し、パルス幅変調 信号を生成するパルス幅変調信号生成手段と、  A pulse width modulation signal generating means for pulse-modulating the received sound signal based on a predetermined reference signal to generate a pulse width modulation signal;
前記生成されたパルス幅変調信号が一時的に記憶される記憶手段と、 前記発生手段にて発生されたクロック信号に基づ 、て、前記記憶されたパルス幅 変調信号の出力制御を行い、前記第 2生成手段および前記検出手段に出力する制 御手段と、  Storage means for temporarily storing the generated pulse width modulation signal, and based on the clock signal generated by the generation means, output control of the stored pulse width modulation signal, Control means for outputting to the second generating means and the detecting means;
を有することを特徴とする D級電力増幅装置。  A class D power amplifying apparatus characterized by comprising:
[5] 請求項 1乃至 4の何れか一項に記載の D級電力増幅装置おいて、 [5] In the class D power amplifying device according to any one of claims 1 to 4,
前記第 2生成手段が、前記信号レベルが増幅されたパルス幅変調信号に対して平 滑化して前記拡声信号を生成する場合に、  When the second generating means generates the loudspeaker signal by smoothing the pulse width modulated signal with the signal level amplified,
前記検出手段が、前記生成されたパルス幅変調信号に対して平滑化しつつ、前記 拡声信号との誤差を検出することを特徴とする D級電力増幅器。  The class D power amplifier, wherein the detection means detects an error from the loudspeaker signal while smoothing the generated pulse width modulation signal.
[6] 請求項 1乃至 5の何れか一項に記載の D級電力増幅装置において、 [6] In the class D power amplifying device according to any one of claims 1 to 5,
前記発生手段が、前記検出された誤差信号の平均値を算出し、算出された平均値 に応じて変化するクロック周波数にて形成されるクロック信号を発生させることを特徴 とする D級電力増幅器。  The class D power amplifier characterized in that the generating means calculates an average value of the detected error signal and generates a clock signal formed at a clock frequency that changes in accordance with the calculated average value.
[7] 請求項 1乃至 6の何れか一項に記載の D級電力増幅装置において、 前記発生手 段が、予め定められた周波数範囲に属するクロック信号を発生させることを特徴とす る D級電力増幅器。 [7] The class D power amplifying device according to any one of claims 1 to 6, wherein the generating means generates a clock signal belonging to a predetermined frequency range. Power amplifier.
PCT/JP2006/314452 2005-07-21 2006-07-21 Power amplification device WO2007011012A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007526061A JP4688225B2 (en) 2005-07-21 2006-07-21 Power amplifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005211400 2005-07-21
JP2005-211400 2005-07-21

Publications (1)

Publication Number Publication Date
WO2007011012A1 true WO2007011012A1 (en) 2007-01-25

Family

ID=37668883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314452 WO2007011012A1 (en) 2005-07-21 2006-07-21 Power amplification device

Country Status (2)

Country Link
JP (1) JP4688225B2 (en)
WO (1) WO2007011012A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121954A1 (en) * 2010-03-31 2011-10-06 パナソニック株式会社 Digital amplifier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06152269A (en) * 1992-11-05 1994-05-31 Fujitsu Ten Ltd Switching amplifier
JP2001517393A (en) * 1997-04-02 2001-10-02 ニールセン,カールステン Pulse reference control method for enhanced power amplification of pulse modulated signal
JP2003032054A (en) * 2001-07-03 2003-01-31 Kyokuko Tsujin Kofun Yugenkoshi Low distortion power amplification method and its system
JP2003110376A (en) * 2001-09-28 2003-04-11 Sony Corp Signal amplifier
JP2006191250A (en) * 2005-01-05 2006-07-20 Nagoya Institute Of Technology Amplifier and amplifier with volume function

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK28398A (en) * 1998-03-03 1999-09-04 Toccata Technology Aps Method of compensating nonlinearities in an amplifier, an amplifier, and uses of the method and amplifier
US6476673B2 (en) * 2000-07-12 2002-11-05 Monolithic Power Systems, Inc. Class D audio amplifier
KR100508062B1 (en) * 2002-10-10 2005-08-17 주식회사 디엠비테크놀로지 Digital audio amplifier including phase lead-lag compensator for increasing self-oscillation frequency

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06152269A (en) * 1992-11-05 1994-05-31 Fujitsu Ten Ltd Switching amplifier
JP2001517393A (en) * 1997-04-02 2001-10-02 ニールセン,カールステン Pulse reference control method for enhanced power amplification of pulse modulated signal
JP2003032054A (en) * 2001-07-03 2003-01-31 Kyokuko Tsujin Kofun Yugenkoshi Low distortion power amplification method and its system
JP2003110376A (en) * 2001-09-28 2003-04-11 Sony Corp Signal amplifier
JP2006191250A (en) * 2005-01-05 2006-07-20 Nagoya Institute Of Technology Amplifier and amplifier with volume function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121954A1 (en) * 2010-03-31 2011-10-06 パナソニック株式会社 Digital amplifier
CN102823128A (en) * 2010-03-31 2012-12-12 松下电器产业株式会社 Digital amplifier
JP5613672B2 (en) * 2010-03-31 2014-10-29 パナソニック株式会社 Digital amplifier
US8896376B2 (en) 2010-03-31 2014-11-25 Panasonic Corporation Digital amplifier

Also Published As

Publication number Publication date
JP4688225B2 (en) 2011-05-25
JPWO2007011012A1 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
US7058464B2 (en) Device and method for signal processing
EP2269301B1 (en) System and method of reducing power consumption for audio playback
US7276963B2 (en) Switching power amplifier and method for amplifying a digital input signal
US6795004B2 (en) Delta-sigma modulation apparatus and signal amplification apparatus
KR100847075B1 (en) Digital class-d audio amplifier
US7612608B2 (en) Sigma-delta based Class D audio or servo amplifier with load noise shaping
EP3229371B1 (en) Audio amplifier system
US10110182B2 (en) Estimating voltage on speaker terminals driven by a class-D amplifier
US7605653B2 (en) Sigma-delta based class D audio power amplifier with high power efficiency
KR100750127B1 (en) Apparatus and method for controlling audio volume in D class amplifier
KR20070121545A (en) Offset adjusting device
US6556159B1 (en) Variable order modulator
US20050116849A1 (en) Feedback steering delta-sigma modulators and systems using the same
US8299866B2 (en) Method and device including signal processing for pulse width modulation
US20030122605A1 (en) Current limiting circuit
JP4564912B2 (en) Signal reproduction device
CN101765968A (en) Semiconductor device
WO2007011012A1 (en) Power amplification device
WO2019060565A1 (en) Digital-to-analog converter and amplifier for headphones
JP4688175B2 (en) Class D power amplifier
JP3902120B2 (en) Delta-sigma modulator and digital amplifier
WO2020040068A1 (en) Sound processing device, sound processing method, and sound processing program
Yu et al. An FPGA-based digital class-D amplifier with power supply error correction
KR20040013826A (en) Method for attenuating click/pop noise of digital audio system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007526061

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06768330

Country of ref document: EP

Kind code of ref document: A1