WO2020040068A1 - Sound processing device, sound processing method, and sound processing program - Google Patents

Sound processing device, sound processing method, and sound processing program Download PDF

Info

Publication number
WO2020040068A1
WO2020040068A1 PCT/JP2019/032200 JP2019032200W WO2020040068A1 WO 2020040068 A1 WO2020040068 A1 WO 2020040068A1 JP 2019032200 W JP2019032200 W JP 2019032200W WO 2020040068 A1 WO2020040068 A1 WO 2020040068A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pwm
waveform
input signal
predetermined input
Prior art date
Application number
PCT/JP2019/032200
Other languages
French (fr)
Japanese (ja)
Inventor
宜紀 田森
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2020040068A1 publication Critical patent/WO2020040068A1/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/02Delta modulation, i.e. one-bit differential modulation

Definitions

  • the present disclosure relates to an audio processing device, an audio processing method, and an audio processing program. More specifically, the present invention relates to a digital audio signal output process.
  • a high-resolution sound source which are audio data with a sound quality exceeding that of music CDs.
  • a signal recorded in a DSD (Direct Stream Digital) format is used.
  • the input signal is converted into a PWM (Pulse Width Modulation) format, and an operating voltage is determined based on the PWM format input signal (hereinafter referred to as a “PWM signal”).
  • PWM Pulse Width Modulation
  • a so-called digital amplifier that generates a drive signal by switching is often used.
  • a technique relating to a digital amplifier a technique capable of removing switching distortion and obtaining a reproduced signal as faithful as possible to an original signal is known.
  • a waveform of a positive (+) PWM output and a waveform of a negative ( ⁇ ) PWM output corresponding to input data of a PWM signal are linear within one cycle of the carrier frequency. It is considered that a symmetrical waveform is desirable in terms of sound quality.
  • the pulse width of the input PWM signal may be limited due to the nature of the amplifier (amplifier circuit).
  • a signal having a narrow pulse width less than the limit hereinafter, referred to as “narrow pulse”
  • noise may be generated or a device may be adversely affected.
  • a high-resolution sound source has a very high sampling frequency, and thus tends to easily generate a narrow pulse.
  • a signal having a somewhat wide pulse width in which generation of a narrow pulse is suppressed is generated.
  • this causes an asymmetric waveform to be generated within one carrier frequency of the PWM signal, or the modulation degree of the PWM signal is reduced. As a result, the output audio may lose its original audio characteristics.
  • the present disclosure proposes an audio processing device, an audio processing method, and an audio processing program that can generate a signal that does not impair the audio characteristics.
  • an audio processing device is based on an asymmetry of a waveform in one carrier frequency when a predetermined input signal is converted into a PWM (Pulse Width Modulation) signal.
  • a correction unit that corrects the predetermined input signal
  • a PWM conversion unit that converts the predetermined input signal corrected by the correction unit into a PWM signal.
  • FIG. 1 is a diagram illustrating a configuration example of an audio processing system according to a first embodiment of the present disclosure.
  • FIG. 3 is a diagram (1) illustrating an example of a waveform of a PWM signal;
  • FIG. 4 is a diagram (2) illustrating an example of a waveform of a PWM signal.
  • FIG. 6 is a diagram (3) illustrating an example of a waveform of a PWM signal.
  • FIG. 4 is a conceptual diagram illustrating an input signal according to the present disclosure by a sine wave.
  • FIG. 3 is a diagram (1) illustrating a correction process according to the present disclosure.
  • FIG. 15 is a diagram (2) illustrating a correction process according to the present disclosure.
  • 5 is a flowchart illustrating a process flow according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram (1) illustrating an example of a waveform of a PWM signal
  • FIG. 4 is a diagram (2) illustrating an example of a waveform of a PWM signal.
  • FIG. 6 is a diagram illustrating a configuration example of a sound processing system according to a second embodiment of the present disclosure.
  • 13 is a flowchart illustrating a flow of a process according to a second embodiment of the present disclosure.
  • FIG. 11 is a diagram for describing an example of a waveform of a PWM signal according to a modified example of the present disclosure.
  • FIG. 3 is a hardware configuration diagram illustrating an example of a computer that realizes functions of a voice processing device.
  • FIG. 1 shows an audio processing system 1 including an audio processing device 100 that executes information processing according to the first embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of the audio processing system 1 according to the first embodiment of the present disclosure. As shown in FIG. 1, the audio processing system 1 includes an audio source 10, an audio output device 20, and an audio processing device 100.
  • the audio source 10 indicates a medium on which an audio signal processed by the audio processing device 100 is recorded.
  • the audio source 10 holds an audio signal recorded in the DSD format (hereinafter, referred to as “DSD signal”). Then, the audio signal recorded in the audio source 10 is input to the audio processing device 100 via a dedicated playback device or the like.
  • DSD signal an audio signal recorded in the DSD format
  • the DSD signal is a ⁇ modulated PDM (PulseulDensity Modulation) signal.
  • the DSD signal is sampled at 64 times the frequency of 44.1 kHz (hereinafter referred to as “Fs”) which is the sampling frequency of CD.
  • Fs 44.1 kHz
  • an audio signal such as a DSD signal may be represented by a combination of a sampling frequency and a bit depth.
  • a 64DSD signal may be expressed as [64FS, 1 bit].
  • the audio output device 20 is a device that outputs a signal output from the audio processing device 100 as sound.
  • the audio output device 20 is a headphone, a speaker, or the like.
  • the audio processing device 100 is a device that executes information processing according to the present disclosure, and has a function as a so-called digital amplifier that amplifies an audio signal and sends the amplified audio signal to the audio output device 20. Specifically, the audio processing device 100 acquires a DSD signal from the audio source 10 and performs a predetermined correction on the DSD signal. Then, the audio processing device 100 converts the corrected signal into a PWM signal, amplifies the PWM signal with an amplifier unit (the amplification unit 140 illustrated in FIG. 1), and sends the amplified audio signal to the audio output device 20. .
  • the audio processing apparatus 100 includes a DSP (Digital Signal Processor) 110, a ⁇ modulator 120, a PWM conversion unit 130, and an amplification unit 140.
  • DSP Digital Signal Processor
  • the audio processing device 100 operates each processing unit under the control of the control unit and executes information processing according to the present disclosure.
  • the control unit is configured such that a program (for example, an audio processing program according to the present disclosure) stored in the audio processing device 100 is stored in a RAM (Random Access Memory) by a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or the like. And the like as a work area.
  • the control unit may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the audio processing device 100 may include a storage unit (not illustrated in FIG. 1) for storing information to be processed.
  • the storage unit is realized by a semiconductor memory device such as a RAM and a flash memory (Flash @ Memory), or a storage device such as a hard disk and an optical disk.
  • the DSP 110 performs a predetermined correction process on the input DSD signal.
  • the DSP 110 has a low-pass filter 111 and a correction unit 112.
  • the audio processing device 100 passes the acquired DSD signal to the low-pass filter 111.
  • the low-pass filter 111 cuts the high frequency component of the DSD signal, and converts the DSD signal into a PCM signal having a predetermined number of bits as preprocessing of the correction unit 112. In the example of FIG. 1, the low-pass filter 111 converts the DSD signal into a 16-bit PCM signal. Then, the low-pass filter 111 passes the converted PCM signal [64 FS, 16 bits] to the correction unit 112 (Step S12).
  • the correction unit 112 performs a predetermined correction process on the PCM signal. The details of such correction processing will be described later.
  • the correction unit 112 sends the corrected PCM signal [64 FS, 16 bits] to the ⁇ modulator 120 (step S13).
  • the ⁇ modulator 120 quantizes the PCM signal [64 FS, 16 bit] corrected by the correction unit 112 into a signal [64 FS, 1 bit]. Then, the ⁇ modulator 120 sends the quantized signal [64 FS, 1 bit] to the PWM conversion unit 130 (Step S14).
  • the PWM conversion unit 130 converts the signal quantized by the ⁇ modulator 120 (in other words, the signal corrected by the correction unit 112) [64 FS, 1 bit] into a PWM signal [64 FS, 1 bit]. Then, the PWM conversion unit 130 sends the converted PWM signal [64 FS, 1 bit] to the amplification unit 140 (step S15).
  • the amplification unit 140 amplifies the PWM signal [64 FS, 1 bit] converted by the PWM conversion unit 130 and generates an output signal that is a signal output as sound.
  • the amplification unit 140 is a processing unit corresponding to an amplification circuit of a so-called digital amplifier. That is, the amplifying unit 140 receives a PWM signal whose cycle is constant and whose duty cycle of the pulse width changes according to the level (magnitude) of the input signal, and performs switching control based on the PWM signal, Generate an output signal.
  • the amplification unit 140 generates an output signal based on a PWM signal having two types of pulse widths illustrated in FIG. Then, the amplifier 140 sends the generated output signal to the audio output device 20 (Step S16).
  • the audio output device 20 outputs audio corresponding to the DSD signal stored in the audio source 10 based on the output signal sent from the amplifier 140.
  • the sound processing apparatus 100 corrects a predetermined input signal by the correction unit 112, and converts the corrected signal into a PWM signal. Details of this processing will be described with reference to FIG.
  • FIG. 2A is a diagram (1) illustrating an example of a waveform of a PWM signal.
  • a waveform 30 shown in FIG. 2A shows an example of a waveform when a predetermined DSD signal [64 FS, 1 bit] is not converted to a PWM signal as a PDM signal.
  • the optimum shape of the waveform of the PWM signal differs depending on the driver driving method. However, in the first embodiment, it is assumed that the driver driving method employs single-ended driving.
  • the DSD signal outputs either “0” or “1” every 64 Fs which is the sampling frequency.
  • the output may be read as a pulse. Since the DSD signal is a signal modulated by pulse density modulation, the sound corresponding to the DSD signal is determined by the density of the output pulse.
  • a signal corresponding to “1” in the DSD signal is represented by PMW (+)
  • a signal corresponding to “0” in the DSD signal is represented by PMW ( ⁇ ). Called.
  • the waveform 38 indicated by “1” corresponds to PMW (+)
  • the waveform 36 indicated by "0” corresponds to PMW (-).
  • the shape of the waveform of the PWM signal is determined by the resolution, and this resolution is referred to as “slot” in this specification.
  • the resolution is uniquely determined by the master clock that controls the shape of the PWM signal and the carrier frequency of the PWM signal, that is, the sampling frequency of the DSD signal.
  • the master clock is “1024Fs”.
  • width 32 corresponds to a sampling frequency (carrier frequency)
  • width 34 corresponds to a slot.
  • the optimum waveform of the PWM signal in the audio characteristics is that the waveforms of PWM (+) and PWM (-) are each line-symmetric with respect to the center within one carrier frequency.
  • PWM (+) occupies 16 slots and PWM (-) occupies 0 slot.
  • PWM (+) occupies 16 slots and PWM (-) occupies 0 slot.
  • this is line-symmetric, no pulse change is observed within one carrier, and the period at which the edge of the pulse occurs cannot be fixed. Therefore, from the viewpoint of audio performance, as a drive signal for the amplifier corresponding to the DSD signal, Actually, the waveform 30 does not tend to be generated.
  • FIG. 2B is a diagram (2) illustrating an example of a waveform of a PWM signal.
  • a waveform 40 shown in FIG. 2B is a waveform when a predetermined DSD signal [64 FS, 1 bit] is converted into a PWM signal, and is a waveform in which PWM (-) has a minimum width (two slots).
  • the width 42 and the width 44 are the same as the width 32 and the width 34 shown in FIG. 2A, respectively.
  • PWM (+) maintains a line-symmetric shape when PWM (-) has a width of 2 slots
  • PWM (+) will have a width of 14 slots.
  • waveform 46 shows a shape in which PWM (-) has a pulse width of 2 slots.
  • the waveform 48 indicates a shape in which PWM (+) has a pulse width of 14 slots.
  • the pulse width of the waveform 46 is equivalent to two slots, the pulse width is expressed as (1/1024 Fs) ⁇ 2 ⁇ 44 nanoseconds in terms of time.
  • the amplifier 140 of the digital amplifier has a limit on the pulse width that can be input, and the limit is assumed to be 50 nanoseconds. In this case, since a pulse shorter than 50 nanoseconds cannot be input, a desired DSD signal cannot be driven unless the specifications of the amplifier 140 are changed or replaced with a different circuit. That is, the waveform 40 shown in FIG. 2B shows a waveform when a narrow pulse is generated.
  • FIG. 2C is a diagram (3) illustrating an example of a waveform of a PWM signal.
  • a waveform 50 shown in FIG. 2C is a waveform when a predetermined DSD signal [64 FS, 1 bit] is converted into a PWM signal, and the width of PWM (-) when avoiding a narrow pulse is the minimum width (4 slots). This is the waveform.
  • the width 52 and the width 54 are the same as the width 32 and the width 34 shown in FIG. 2A, respectively.
  • PWM (+) maintains a line-symmetric shape when PWM ( ⁇ ) has a width of 4 slots
  • PWM (+) has a width of 12 slots by nature.
  • 2A to 2C show examples in which the master clock is 1024 Fs, but consider an example in which the master clock is 512 Fs.
  • the PWM (-) is set to four slots as described above (in this example, the limitation of the pulse width input to the amplifier 140 is, for example, 100 nanoseconds or the like).
  • PWM (+) also has 4 slots if it is desired to maintain a line-symmetric shape.
  • the waveforms of PWM (-) and PWM (+) have the same shape, and the respective signals are in a state of 50% duty within one carrier frequency, so that a so-called mute state is obtained. This state indicates that conversion to a PWM signal is impossible.
  • the sound processing device 100 generates the waveform 50 illustrated in FIG. 2C.
  • the waveform 56 indicating PWM (-) has a pulse width of 4 slots to avoid a narrow pulse.
  • the waveform 58 indicating PWM (+) maintains the 14-slot pulse width, similarly to the waveform 48 of FIG. 2B, although the PWM (-) has increased the pulse width to avoid narrow pulses. That is, the waveform 50 has a waveform in which PWM ( ⁇ ) and PWM (+) are asymmetric.
  • FIG. 3 is a conceptual diagram showing a sine wave of an input signal according to the present disclosure.
  • FIG. 3 conceptually shows a sine wave in the case where an input signal (PWM signal or DSD signal) is converted into an audio waveform for explanation.
  • the audio processing apparatus 100 can obtain a sine wave as shown in FIG. 3 by passing a PWM signal, a DSD signal, or the like (pulse wave) through a predetermined low-pass filter, for example.
  • the waveform 62 shown in FIG. 3 indicates a case where PWM ( ⁇ ) and PWM (+) are symmetric within one carrier frequency, that is, a sine wave which is an ideal voice waveform.
  • the waveform 62 has the same absolute value of the upper and lower amplitudes (“0.5” in the example of FIG. 3) because the PWM ( ⁇ ) and the PWM (+) are symmetric.
  • the waveform 62 is an ideal waveform in which PWM ( ⁇ ) and PWM (+) are symmetrical within one carrier frequency, as shown in FIGS. 2A and 2B, as a sine wave.
  • the waveform 62 shows the original DSD signal held by the audio source 10 as a sine wave.
  • a waveform 61 shown in FIG. 3 shows a sine wave when PWM ( ⁇ ) and PWM (+) are asymmetric within one carrier frequency, that is, when the audio characteristics are degraded.
  • the waveform 61 has different absolute values of the upper and lower amplitudes because the PWM ( ⁇ ) and the PWM (+) are asymmetric.
  • the level on the plus side is “0.5”
  • the level on the minus side is “ ⁇ (0.5 ⁇ N (N is a predetermined level determined by the degree of asymmetry. Number)) ".
  • the waveform 61 indicates a PWM signal as a sine wave when the correction processing by the DSP 110 according to the present disclosure has not been performed.
  • the waveform 61 has a waveform 62 whose amplitude on the minus side is reduced from “ ⁇ 0.5” to “ ⁇ (0.5 ⁇ N)”. This is because an asymmetric PWM signal is generated in order to suppress the generation of a narrow pulse as described above.
  • the audio processing apparatus 100 obtains an input signal that takes into account (corrected) the rise from the beginning before inputting the original DSD signal to the PWM conversion unit 130, so that the PWM processing unit 130 After the conversion, a PWM signal corresponding to a sine wave having the same upper and lower amplitudes can be obtained.
  • the waveform 63 in FIG. 3 is a sine wave corresponding to the input signal after the above-described correction processing.
  • the waveform 63 is a sine wave whose level on the plus side is “0.5” and whose level on the minus side is “ ⁇ (0.5 ⁇ N)”. That is, the waveform 63 represents a signal input to the PWM conversion unit 130 as a sine wave after the correction processing by the DSP 110. Specifically, such a signal is a signal transmitted in step S13 shown in FIG. 1 represented by a sine wave.
  • the audio processing device 100 performs correction to an input signal corresponding to the waveform 63 shown in FIG. 3 in advance to prevent a decrease in audio characteristics in a finally output signal. Can be.
  • FIG. 4 is a diagram (1) illustrating a correction process according to the present disclosure.
  • FIG. 4 shows the waveforms of the PWM signals shown in FIGS. 2A and 2B and the sine waves corresponding to the PWM signals, respectively.
  • the waveform 30 shown in FIG. 4 corresponds to the waveform 30 shown in FIG. 2A.
  • the sine wave 65 is a sine wave of the PWM signal represented by the waveform 30.
  • a waveform 30 indicates a PWM signal in the case where PWM (+) and PWM ( ⁇ ) can have the maximum pulse width. That is, when expressing the waveform 30 as the sine wave 65, the absolute value of the amplitude becomes the maximum value (in the example of FIG. 4, it is assumed to be "0.5").
  • the audio processing device 100 adds two slots having the minimum pulse width to the PWM (-) (step S21). Thereby, the audio processing device 100 obtains the waveform 40 shown in FIG. 4 as a PWM signal.
  • Waveform 40 corresponds to waveform 40 shown in FIG. 2B.
  • the sine wave 66 is a sine wave of the PWM signal indicated by the waveform 40.
  • the pulse width of PWM (+) is “14/16” and the pulse width of PWM ( ⁇ ) is “2/16”.
  • the audio processing device 100 generates a waveform that is expanded so that the PWM (-) does not become a narrow pulse (step S22). Thereby, the audio processing device 100 obtains the waveform 50 shown in FIG. 4 as a PWM signal.
  • Waveform 50 corresponds to waveform 50 shown in FIG. 2C.
  • the sine wave 67 is a sine wave of the PWM signal indicated by the waveform 50.
  • the waveform 50 has a PWM (+) pulse width of “14/16” and a PWM ( ⁇ ) pulse width of “4/16”.
  • the amplitude of the corresponding sine wave 67 has different absolute values on the plus side and the minus side.
  • the plus side amplitude of the sine wave 67 is obtained from the modulation factor on the assumption that a waveform symmetrical to the PWM (+) side pulse width is obtained in the waveform 50.
  • the pulse width of the PWM (+) of the waveform 50 is “14/16”
  • the pulse width of the temporary PWM ( ⁇ ) is "2/16”.
  • the negative amplitude of the sine wave 67 can be obtained from the modulation factor on the assumption that a waveform symmetrical to the pulse width on the PWM (-) side is obtained in the waveform 50.
  • the pulse width of the PWM ( ⁇ ) of the waveform 50 is “4/16”, and considering the pulse width of the PWM (+) which is symmetrical to this, the pulse width of the temporary PWM (+) is It becomes “12/16”.
  • the sine wave 67 is an asymmetric waveform having a positive amplitude “0.375” and a negative amplitude “ ⁇ 0.25”.
  • FIG. 5 is a diagram (2) illustrating a correction process according to the present disclosure.
  • the waveform 30 shown in FIG. 5 corresponds to the waveform 30 shown in FIG. Further, the sine wave 65 shown in FIG. 5 corresponds to the sine wave 65 shown in FIG.
  • the audio processing apparatus 100 converts the DSD signal into a 16-bit sine wave by passing through the low-pass filter 111. As a result, the amplitude can be corrected as described later.
  • the sound processing device 100 passes the waveform 30 passed through the low-pass filter 111 (more precisely, the input signal indicated by the waveform 30) to the correction unit 112 (step S31).
  • the correction unit 112 corrects the input signal received in step S31 in order to prevent the amplitude of the sine wave converted into the PWM signal by the PWM conversion unit 130 from becoming asymmetric. For example, the correction unit 112 corrects the input signal based on the asymmetry of the waveform within one carrier frequency when the input signal is converted into a PWM signal.
  • the correction unit 112 corrects a value corresponding to the amplitude of the input signal based on the asymmetry of the waveform within one carrier frequency when the input signal is converted into a PWM signal. More specifically, the correction unit 112 corrects the input signal based on the modulation factor when it is assumed that the input signal is converted into a PWM signal so that the waveform within one carrier frequency is symmetric.
  • the sine wave 67 has “0.375” on the plus side and “ ⁇ 0.0. 25 ".
  • the plus side is not corrected because it is the maximum value of PWM (+) that can be assumed when PWM ( ⁇ ) is the minimum (narrow pulse) width.
  • the minus side is obtained by expanding PWM (-) from the minimum width (narrow pulse) to 4 slots, and there is room for correction. Therefore, the audio processing device 100 corrects the value of the amplitude corresponding to the minus side.
  • the correction unit 112 calculates the negative-side amplitude of the sine wave 71 corresponding to the signal subjected to the correction processing by calculating backward from “ ⁇ 0.375” which is the target value of the absolute value of the positive-side amplitude.
  • the correction unit 112 corrects the bit string of the input signal of [64 FS, 16 bits] through the low-pass filter 111.
  • the correction unit 112 corrects the bit sequence of the input signal by multiplying the bit sequence of the input signal by a predetermined numerical value using a predetermined multiplier. Thereby, the correction unit 112 obtains a signal corresponding to the sine wave 71 shown in FIG.
  • the correction unit 112 sends the corrected input signal to the ⁇ modulator 120 and quantizes the input signal, and then sends the input signal to the PWM conversion unit 130 (step S32).
  • the PWM conversion unit 130 generates a waveform 51 in which PWM (+) and PWM ( ⁇ ) are asymmetric in order to avoid a narrow pulse.
  • the sine wave 72 corresponding to the waveform 51 has the same absolute value on the plus side and the minus side.
  • the sine wave 72 is shown as a sine wave having the same absolute value “0.375” in amplitude on the plus side and the minus side.
  • the audio processing apparatus 100 has a symmetrical amplitude in order to avoid a narrow pulse even if the waveform within one carrier frequency of the PWM signal is asymmetric between PWM (+) and PWM (-). Sine wave can be obtained.
  • the correction unit 112 corresponds to the amplitude of the input signal based on the modulation factor when it is assumed that the input signal is converted into the PWM signal so that the waveform within one carrier frequency is symmetric. Increase the value.
  • the correction unit 112 corrects the input signal so as to obtain the sine wave 75 in which the absolute value of the negative amplitude of the sine wave 65 shown in FIG. 5 is increased from “0.5” to “0.75”. I do.
  • the audio processing device 100 can obtain an audio output signal whose audio characteristics are not deteriorated even from a PWM signal that is asymmetric to avoid a narrow pulse.
  • the DSD signal is sampled at a very high frequency, and since there are various types of sampling frequencies, it is difficult for a general digital amplifier to avoid narrow pulses or reproduce a sound source. Or may be.
  • the audio processing device 100 it is possible to input a variety of DSD signals (sound sources) because the signal can be converted into a PWM signal that does not impair the audio characteristics while avoiding narrow pulses.
  • the audio processing according to the present disclosure is realized by a configuration in which the DSP 110 and the ⁇ modulator 120 are installed before the PWM conversion unit 130, and thus does not depend on the performance of the amplification unit 140.
  • a digital amplifier can be manufactured without depending on the performance (characteristics) of the amplifier 140. That is, according to the audio processing according to the present disclosure, the options of the amplification unit 140 can be significantly expanded.
  • the audio processing apparatus 100 receives information (a pulse width that can be input, etc.) relating to the amplifying unit 140 and a value of the master clock in advance, so that the temporary processing when the narrow pulse is avoided as described above.
  • the degree of modulation can be determined.
  • the sound processing device 100 performs the above-described correction processing based on the provisional modulation degree.
  • the audio processing device 100 may acquire the characteristics and the like of the amplification unit 140 in real time, dynamically calculate the temporary modulation degree, and execute the above-described correction processing. Details of such processing will be described in a second embodiment.
  • FIG. 6 is a flowchart illustrating a process flow according to the first embodiment of the present disclosure. Specifically, FIG. 6 illustrates a flow of a process executed by the audio processing device 100 according to the first embodiment.
  • the audio processing device 100 determines whether an input of a DSD signal has been received (step S101). When the input of the DSD signal is not received (Step S101; No), the audio processing device 100 waits until the input of the DSD signal is received.
  • Step S101 when the input of the DSD signal is received (Step S101; Yes), the audio processing device 100 converts the received DSD signal into a PCM signal (Step S102).
  • the audio processing device 100 corrects the PCM signal based on the asymmetry of the waveform when the DSD signal received in step S101 is converted into a PWM signal (step S103). Specifically, the audio processing device 100 calculates a temporary modulation factor based on the asymmetry of the waveform, and corrects the bit string of the PCM signal based on the calculated modulation factor.
  • the audio processing device 100 inputs the corrected PCM signal to the ⁇ modulator 120, and quantizes it (step S104). Subsequently, the audio processing device 100 inputs the quantized input signal to the PWM conversion unit 130 and converts it into a PWM signal (step S105).
  • the amplifier 140 generates an output signal from the PWM signal (step S106).
  • the audio processing apparatus 100 extracts the audio signal from the input signal that has been subjected to the correction processing based on the asymmetry of the waveform in advance, thereby enabling audio output without deteriorating the audio characteristics.
  • the audio processing device 100 receives a DSD format signal from the audio source 10 and performs a correction process on the received DSD signal.
  • the signal corrected by the audio processing device 100 is not limited to the DSD format, and may be any format signal as long as the signal is quantized by pulse density modulation.
  • the audio processing apparatus 100 may convert the DSD signal into a 16-bit PCM signal. That is, the audio processing device 100 may convert the DSD signal into a PCM signal other than 16 bits as long as a signal of a bit sequence that can express the correction processing by the correction unit 112 is obtained.
  • FIG. 7 is a diagram illustrating a configuration example of the audio processing system 2 according to the second embodiment of the present disclosure.
  • the audio processing device 100A according to the second embodiment further includes an analysis unit 150, a switch 160, and a switch 170 as compared with the first embodiment.
  • description of the same configuration as that according to the first embodiment will be omitted.
  • the audio processing apparatus 100 generates an asymmetric waveform in advance based on the characteristics of the amplifying unit 140 (eg, a pulse width that allows input), the sampling frequency of the DSD signal, and the value of the master clock.
  • the degree of modulation is calculated and the DSP 110 performs correction based on the calculated degree of modulation.
  • the audio processing device 100A obtains variables such as the characteristics of the above-described amplifying unit 140 and analyzes those values to enable dynamic correction processing.
  • the analysis unit 150 according to the audio processing device 100A acquires various variables in the process of information processing performed by the audio processing system 2, analyzes the acquired values, and performs dynamic correction processing. Execute
  • the analysis unit 150 analyzes the driving ability of the amplification unit 140 that drives the PWM signal converted by the PWM conversion unit 130. Specifically, the analysis unit 150 analyzes the pulse width of the PWM signal allowed by the amplification unit 140 as the driving capability.
  • the analysis unit 150 determines the waveform of the PWM signal when the narrow pulse is avoided and the PWM signal is symmetric, and the value of the modulation factor or the like. It is acquired (step S51). Also, in the process of the information processing shown in the first embodiment, the analysis unit 150 determines the waveform of the PWM signal when the PWM signal is not asymmetric and the PWM signal is asymmetric, To get. Further, the analysis unit 150 acquires a set value of the master clock in the audio processing, and the like.
  • the analysis unit 150 acquires the audio output signal output from the amplification unit 140, and analyzes whether the acquired waveform is a symmetrical waveform, whether or not distortion has occurred (step S1). S52). In addition, the analysis unit 150 acquires information such as impedance in the audio output device 20 (Step S53). In addition, the analysis unit 150 acquires the sampling frequency of the DSD signal input to the audio processing device 100A, the type of the DSD file, and the like from the audio source 10 (step S54).
  • the analysis unit 150 dynamically determines whether or not the DSP 110 should correct the input signal based on the acquired information. In addition, the analysis unit 150 dynamically calculates a correction value for correction.
  • the analysis unit 150 avoids the narrow pulse from the setting value of the master clock and the sampling frequency of the DSD signal, as in the first embodiment.
  • the degree of modulation in the case can be calculated. Therefore, according to the audio processing device 100A, it is possible to perform correction with an appropriate value without setting the modulation degree and the like to the DSP 110 in advance.
  • the analysis unit 150 since the impedance value of the audio output device 20 can be acquired, a process of adjusting the correction value according to the audio output device 20 can be performed. For example, as the value of the impedance decreases, the value of the current flowing increases, so that the load applied to the amplifier 140 increases. Specifically, the load of the amplification process of the amplification unit 140 increases. In such a case, the analysis unit 150 increases (thickers) the minimum pulse width input to the amplification unit 140 from the current set value. This eliminates the need for the amplification section 140 to perform amplification with a narrow pulse width, and thus reduces the load of amplification. Then, when performing an adjustment to increase the minimum pulse width, the analysis unit 150 newly calculates a correction value corresponding to the changed pulse width.
  • the minimum pulse width when avoiding a narrow pulse is “4 slots”. However, if the width is changed to “6 slots”, the analysis unit 150 A correction value (a value determined based on the modulation factor) that changes accordingly is newly calculated. Then, the analysis unit 150 sets the newly calculated correction value in the DSP 110 (correction unit 112).
  • the correction unit 112 calculates a modulation factor based on the pulse width analyzed by the analysis unit 150, assuming that a predetermined input signal is converted into a PWM signal such that a waveform within one carrier frequency is symmetric. Then, the input signal is corrected based on the calculated degree of modulation.
  • the analysis unit 150 it is possible to analyze the structure of the entire circuit in the audio processing system 2 and dynamically determine an optimal correction value.
  • the analysis unit 150 may determine that the correction processing is to be skipped. For example, it is assumed that the analysis unit 150 analyzes the sampling frequency of the DSD signal acquired from the audio source 10, the set value of the master clock, and the like, and determines that a narrow pulse cannot be generated in the PWM conversion. For example, it is assumed that the analysis unit 150 determines that the minimum pulse width generated in processing a certain DSD signal is always larger than the pulse width permitted by the amplification unit 140. In this case, since the correction process by the correction unit 112 is not required, the process of converting the DSD signal into a PCM signal or the like and the process of re-quantization are wasted.
  • the analysis unit 150 may cause the correction process to be skipped by switching the switches 160 and 170 (step S55). Specifically, when the analysis unit 150 determines that the minimum pulse width satisfies the predetermined condition, the analysis unit 150 switches the switch 160 and sends the DSD signal received from the audio source 10 directly to the PWM conversion unit 130 (Step S56). Further, analysis section 150 switches switch 170 and sends the signal output from PWM conversion section 130 to amplification section 140. If the correction processing is not to be skipped, the analysis unit 150 switches the switch 160 to the DSP 110 (step S57).
  • the correction unit 112 does not correct the predetermined input signal. Further, the PWM conversion unit 130 converts a predetermined input signal before correction by the correction unit 112 (that is, the original DSD signal recorded on the audio source 10) into a PWM signal.
  • the audio processing apparatus 100A can perform the processing without the intervention of the DSP 110 or the like, so that the processing speed can be increased and the processing load can be reduced.
  • FIG. 8 is a flowchart illustrating a flow of a process according to the second embodiment of the present disclosure.
  • the audio processing device 100A analyzes information related to the narrow pulse based on the characteristics of the amplifying unit 140, the set value of the master clock, the sampling frequency of the DSD signal, and the like (step S201).
  • the audio processing device 100A determines whether the input of the DSD signal has been received (step S202). If the input of the DSD signal has not been received (Step S202; No), the audio processing device 100A waits until the input of the DSD signal is received.
  • Step S202 when the input of the DSD signal is received (Step S202; Yes), the audio processing device 100A determines whether the received DSD signal needs to be corrected (Step S203).
  • the audio processing device 100A converts the DSD signal into a PCM signal (step S204). Then, the audio processing device 100A generates the PCM signal based on the asymmetry of the waveform when the DSD signal is converted into the PWM signal (in the second embodiment, information (modulation degree) analyzed by the analysis unit 150). Is corrected (step S205).
  • the audio processing device 100A inputs the corrected PCM signal to the ⁇ modulator 120 and quantizes it (step S206). Subsequently, the audio processing device 100A inputs the quantized input signal to the PWM conversion unit 130, and converts the input signal into a PWM signal (step S207). Note that when the audio processing device 100 determines that the correction process on the DSD signal is not necessary (Step S203; No), the process from Step S204 to Step S206 is skipped, and the process of Step S207 is executed.
  • the amplifier 140 generates an output signal from the PWM signal (step S207).
  • the audio processing device 100A can dynamically perform the correction process by analyzing the variables related to the audio processing system 2, the information processing of the present disclosure is applied to various types of DSD signals. Or the design of the circuit of the amplifier 140 can be flexibly changed.
  • FIG. 9 is a diagram illustrating an example of a waveform of a PWM signal according to a modified example of the present disclosure.
  • a waveform 81 shown in FIG. 9 shows an example of a PWM signal waveform in the balance driving method.
  • the PWM signal has symmetry at the center within one carrier frequency.
  • a waveform 81 a waveform obtained by differentially combining a positive signal and a negative signal has symmetry.
  • a positive signal of PWM (+) (“1” shown in FIG. 9) among the PWM signals is described as “PWM (+ P)”, and a negative signal is described as “PWM (+ N)”. I do.
  • the audio processing device 100 obtains the waveform 82 shown in FIG.
  • a waveform 82 shown in FIG. 9 is an example of a waveform obtained by expanding the pulse widths of PWM ( ⁇ P) and PWM (+ N) in order to avoid a narrow pulse.
  • the PWM ( ⁇ P) and the PWM ( ⁇ N) in one carrier are expanded by expanding the pulse widths of the PWM ( ⁇ P) and the PWM (+ N) with respect to the waveform 81.
  • the waveform of the differential combination of PWM (+ P) and PWM (+ N) in one carrier are asymmetric.
  • the audio processing apparatus 100 performs the final waveform ( For example, it is possible to perform correction so that the amplitude of a sound output wave represented by a sine wave is symmetric. That is, the audio processing device 100 can realize audio processing that does not impair the audio characteristics, regardless of the driving method.
  • the amplification unit 140 may be configured as a single digital amplifier, or may be configured to be included in the audio output device 20.
  • each device shown in the drawings are functionally conceptual, and do not necessarily need to be physically configured as shown in the drawings. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or a part thereof may be functionally or physically distributed / arbitrarily divided into arbitrary units according to various loads and usage conditions. Can be integrated and configured.
  • FIG. 10 is a hardware configuration diagram illustrating an example of a computer 1000 that implements the functions of the audio processing device 100.
  • the computer 1000 has a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, a HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input / output interface 1600.
  • Each unit of the computer 1000 is connected by a bus 1050.
  • the CPU 1100 operates based on a program stored in the ROM 1300 or the HDD 1400, and controls each unit. For example, the CPU 1100 loads a program stored in the ROM 1300 or the HDD 1400 into the RAM 1200, and executes processing corresponding to various programs.
  • the ROM 1300 stores a boot program such as a BIOS (Basic Input Output System) executed by the CPU 1100 when the computer 1000 starts up, a program that depends on the hardware of the computer 1000, and the like.
  • BIOS Basic Input Output System
  • the HDD 1400 is a computer-readable recording medium for non-temporarily recording a program executed by the CPU 1100 and data used by the program.
  • HDD 1400 is a recording medium that records an audio processing program according to the present disclosure, which is an example of program data 1450.
  • the communication interface 1500 is an interface for connecting the computer 1000 to an external network 1550 (for example, the Internet).
  • the CPU 1100 receives data from another device via the communication interface 1500 or transmits data generated by the CPU 1100 to another device.
  • the input / output interface 1600 is an interface for connecting the input / output device 1650 and the computer 1000.
  • the CPU 1100 receives data from an input device such as a keyboard and a mouse via the input / output interface 1600.
  • the CPU 1100 transmits data to an output device such as a display, a speaker, or a printer via the input / output interface 1600.
  • the input / output interface 1600 may function as a media interface that reads a program or the like recorded on a predetermined recording medium (media).
  • the medium is, for example, an optical recording medium such as a DVD (Digital Versatile Disc), a PD (Phase changeable rewritable Disk), a magneto-optical recording medium such as an MO (Magneto-Optical disk), a tape medium, a magnetic recording medium, or a semiconductor memory. It is.
  • an optical recording medium such as a DVD (Digital Versatile Disc), a PD (Phase changeable rewritable Disk), a magneto-optical recording medium such as an MO (Magneto-Optical disk), a tape medium, a magnetic recording medium, or a semiconductor memory. It is.
  • the CPU 1100 of the computer 1000 implements the functions of the DSP 110 and the like by executing the audio processing program loaded on the RAM 1200.
  • the HDD 1400 stores an audio processing program according to the present disclosure and data such as a DSD signal to be subjected to audio processing.
  • the CPU 1100 reads and executes the program data 1450 from the HDD 1400.
  • the CPU 1100 may acquire these programs from another device via the external network 1550.
  • a correction unit that corrects the predetermined input signal based on the asymmetry of the waveform within one carrier frequency when the predetermined input signal is converted into a PWM (Pulse Width Modulation) signal;
  • a PWM conversion unit that converts a predetermined input signal corrected by the correction unit into a PWM signal.
  • the correction unit The audio processing device according to (1), wherein a value corresponding to the amplitude of the predetermined input signal is corrected based on the asymmetry.
  • the correction unit Correcting the predetermined input signal based on the modulation factor when it is assumed that the predetermined input signal is converted into a PWM signal so that the waveform within one carrier frequency is symmetric.
  • (1) or (2) An audio processing device An audio processing device according to claim 1.
  • the correction unit A value corresponding to the amplitude of the predetermined input signal is increased based on a modulation factor when it is assumed that the predetermined input signal is converted into a PWM signal so that a waveform within one carrier frequency is symmetric.
  • the audio processing device according to any one of (1) to (3).
  • An analysis unit that analyzes a driving capability of an amplification unit that drives the PWM signal converted by the PWM conversion unit;
  • the correction unit The audio processing device according to any one of (1) to (4), wherein the predetermined input signal is corrected according to the driving capability analyzed by the analysis unit.
  • the analysis unit Analyzing the pulse width of the PWM signal allowed by the amplification unit as the driving capability, The correction unit, A modulation factor is calculated based on the pulse width analyzed by the analyzer, assuming that the predetermined input signal is converted into a PWM signal so that a waveform within one carrier frequency is symmetric, and the calculated modulation factor is calculated.
  • the audio processing device according to (5), wherein the predetermined input signal is corrected based on the following.
  • the correction unit When the pulse width analyzed by the analyzer satisfies a predetermined condition, the predetermined input signal is not corrected,
  • the PWM converter includes: The audio processing device according to (5) or (6), which converts a predetermined input signal before being corrected by the correction unit into a PWM signal.
  • the predetermined input signal is a signal obtained by converting a signal in a direct stream digital (DSD) format into a pulse code modulation (PCM) format.
  • PCM pulse code modulation
  • Audio processing system 10 audio source 20 audio output device 100, 100A audio processing device 110 DSP 111 Low-pass filter 112 Correction unit 120 ⁇ modulator 130 PWM conversion unit 140 Amplification unit 150 Analysis unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Amplifiers (AREA)

Abstract

A sound processing device (100) is provided with: a correction unit (112) that, on the basis of asymmetry of a waveform in one carrier frequency when a predetermined input signal is converted to a pulse width modulation (PWM) signal, corrects the predetermined input signal; and a PWM conversion unit (130) that converts, to a PWM signal, the predetermined input signal having been corrected by the correction unit (112).

Description

音声処理装置、音声処理方法及び音声処理プログラムAudio processing device, audio processing method, and audio processing program
 本開示は、音声処理装置、音声処理方法及び音声処理プログラムに関する。詳しくは、デジタルオーディオ信号の出力処理に関する。 The present disclosure relates to an audio processing device, an audio processing method, and an audio processing program. More specifically, the present invention relates to a digital audio signal output process.
 近年、音楽用CDを超える音質のオーディオデータであるハイレゾリューション音源による音楽配信が行われるようになってきている。ハイレゾリューション音源の一例として、DSD(Direct Stream Digital)フォーマットで記録された信号が利用されている。このようなデジタルオーディオ信号の再生には、入力信号をPWM(Pulse Width Modulation、パルス幅変調)形式に変換し、PWM形式の入力信号(以下、「PWM信号」と称する)に基づいて動作電圧をスイッチングさせることで駆動信号を生成する、いわゆるデジタルアンプが多く用いられる。 In recent years, music distribution by high-resolution sound sources, which are audio data with a sound quality exceeding that of music CDs, has been performed. As an example of a high-resolution sound source, a signal recorded in a DSD (Direct Stream Digital) format is used. To reproduce such a digital audio signal, the input signal is converted into a PWM (Pulse Width Modulation) format, and an operating voltage is determined based on the PWM format input signal (hereinafter referred to as a “PWM signal”). A so-called digital amplifier that generates a drive signal by switching is often used.
 ここで、デジタルアンプに関する技術として、スイッチング歪みを除去し、できるだけ原信号に忠実な再生信号を得ることのできる技術が知られている。例えば、デジタルアンプの駆動においては、PWM信号の入力データに対応したプラス(+)側のPWM出力の波形と、マイナス(-)側のPWM出力の波形とが、キャリア周波数の1周期内で線対称な波形であることが音質的に望ましいとされる。 Here, as a technique relating to a digital amplifier, a technique capable of removing switching distortion and obtaining a reproduced signal as faithful as possible to an original signal is known. For example, in driving a digital amplifier, a waveform of a positive (+) PWM output and a waveform of a negative (−) PWM output corresponding to input data of a PWM signal are linear within one cycle of the carrier frequency. It is considered that a symmetrical waveform is desirable in terms of sound quality.
特開2000-68835号公報JP-A-2000-68835
 上記の従来技術によれば、回路規模の縮小を図りつつ、出力されるオーディオ信号の特性の向上を図ることが可能である。 According to the above prior art, it is possible to improve the characteristics of the output audio signal while reducing the circuit scale.
 しかしながら、デジタルアンプでは、増幅部(増幅回路)の性質上、入力されるPWM信号のパルス幅が制限される場合がある。制限以下の狭いパルス幅の信号(以下、「狭パルス」と称する)が回路に入力されると、ノイズが発生したり、機器に悪影響を与えたりするおそれがある。特にハイレゾリューション音源は、サンプリング周波数が非常に高いことから、狭パルスが発生しやすい傾向にある。このため、PWM信号の生成処理では、狭パルスの発生を抑えた、ある程度広いパルス幅を有する信号を生成することになる。しかし、これにより、PWM信号の1キャリア周波数内において非対称の波形が生成されたり、PWM信号の変調度が低下したりする。この結果、出力される音声において、本来のオーディオ特性が損なわれるおそれがある。 However, in the digital amplifier, the pulse width of the input PWM signal may be limited due to the nature of the amplifier (amplifier circuit). When a signal having a narrow pulse width less than the limit (hereinafter, referred to as “narrow pulse”) is input to a circuit, noise may be generated or a device may be adversely affected. In particular, a high-resolution sound source has a very high sampling frequency, and thus tends to easily generate a narrow pulse. For this reason, in the generation processing of the PWM signal, a signal having a somewhat wide pulse width in which generation of a narrow pulse is suppressed is generated. However, this causes an asymmetric waveform to be generated within one carrier frequency of the PWM signal, or the modulation degree of the PWM signal is reduced. As a result, the output audio may lose its original audio characteristics.
 そこで、本開示では、オーディオ特性を損なわない信号を生成することのできる音声処理装置、音声処理方法及び音声処理プログラムを提案する。 Therefore, the present disclosure proposes an audio processing device, an audio processing method, and an audio processing program that can generate a signal that does not impair the audio characteristics.
 上記の課題を解決するために、本開示に係る一形態の音声処理装置は、所定の入力信号をPWM(Pulse Width Modulation)信号に変換した場合の1キャリア周波数内の波形の非対称性に基づいて、前記所定の入力信号を補正する補正部と、前記補正部によって補正された後の所定の入力信号をPWM信号に変換するPWM変換部とを備える。 In order to solve the above-described problem, an audio processing device according to an embodiment of the present disclosure is based on an asymmetry of a waveform in one carrier frequency when a predetermined input signal is converted into a PWM (Pulse Width Modulation) signal. A correction unit that corrects the predetermined input signal, and a PWM conversion unit that converts the predetermined input signal corrected by the correction unit into a PWM signal.
本開示の第1の実施形態に係る音声処理システムの構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of an audio processing system according to a first embodiment of the present disclosure. PWM信号の波形の一例を説明するための図(1)である。FIG. 3 is a diagram (1) illustrating an example of a waveform of a PWM signal; PWM信号の波形の一例を説明するための図(2)である。FIG. 4 is a diagram (2) illustrating an example of a waveform of a PWM signal. PWM信号の波形の一例を説明するための図(3)である。FIG. 6 is a diagram (3) illustrating an example of a waveform of a PWM signal. 本開示に係る入力信号を正弦波で示した概念図である。FIG. 4 is a conceptual diagram illustrating an input signal according to the present disclosure by a sine wave. 本開示に係る補正処理を説明するための図(1)である。FIG. 3 is a diagram (1) illustrating a correction process according to the present disclosure. 本開示に係る補正処理を説明するための図(2)である。FIG. 15 is a diagram (2) illustrating a correction process according to the present disclosure. 本開示の第1の実施形態に係る処理の流れを示すフローチャートである。5 is a flowchart illustrating a process flow according to the first embodiment of the present disclosure. 本開示の第2の実施形態に係る音声処理システムの構成例を示す図である。FIG. 6 is a diagram illustrating a configuration example of a sound processing system according to a second embodiment of the present disclosure. 本開示の第2の実施形態に係る処理の流れを示すフローチャートである。13 is a flowchart illustrating a flow of a process according to a second embodiment of the present disclosure. 本開示の変形例に係るPWM信号の波形の一例を説明するための図である。FIG. 11 is a diagram for describing an example of a waveform of a PWM signal according to a modified example of the present disclosure. 音声処理装置の機能を実現するコンピュータの一例を示すハードウェア構成図である。FIG. 3 is a hardware configuration diagram illustrating an example of a computer that realizes functions of a voice processing device.
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the following embodiments, the same portions will be denoted by the same reference numerals, without redundant description.
(1.第1の実施形態)
[1-1.第1の実施形態に係る音声処理システムの構成]
 図1に、第1の実施形態に係る情報処理を実行する音声処理装置100を含む音声処理システム1を示す。図1は、本開示の第1の実施形態に係る音声処理システム1の構成例を示す図である。図1に示すように、音声処理システム1は、オーディオソース10と、音声出力機器20と、音声処理装置100を含む。
(1. First Embodiment)
[1-1. Configuration of Speech Processing System According to First Embodiment]
FIG. 1 shows an audio processing system 1 including an audio processing device 100 that executes information processing according to the first embodiment. FIG. 1 is a diagram illustrating a configuration example of the audio processing system 1 according to the first embodiment of the present disclosure. As shown in FIG. 1, the audio processing system 1 includes an audio source 10, an audio output device 20, and an audio processing device 100.
 オーディオソース10は、音声処理装置100で処理される音声信号を記録した媒体を示す。例えば、オーディオソース10は、DSDフォーマットで記録された音声信号(以下、「DSD信号」と称する)を保持する。そして、オーディオソース10に記録された音声信号は、専用の再生機器等を介して音声処理装置100に入力される。 The audio source 10 indicates a medium on which an audio signal processed by the audio processing device 100 is recorded. For example, the audio source 10 holds an audio signal recorded in the DSD format (hereinafter, referred to as “DSD signal”). Then, the audio signal recorded in the audio source 10 is input to the audio processing device 100 via a dedicated playback device or the like.
 DSD信号は、ΔΣ変調されたPDM(Pulse Density Modulation)信号である。DSD信号は、サンプリング周波数の違いにより複数の種類が存在するが、第1の実施形態では、CDのサンプリング周波数である44.1kHz(以下、「Fs」と称する)の64倍の周波数でサンプリングされたDSD信号(64DSDと称される)を例に挙げて説明する。なお、DSD信号等の音声信号について、以下の説明では、サンプリング周波数とビット深度の組み合わせで表現する場合がある。例えば、以下の説明では、64DSD信号を[64FS、1bit]と表現する場合がある。 The DSD signal is a ΔΣ modulated PDM (PulseulDensity Modulation) signal. Although there are a plurality of types of DSD signals depending on the difference in sampling frequency, in the first embodiment, the DSD signal is sampled at 64 times the frequency of 44.1 kHz (hereinafter referred to as “Fs”) which is the sampling frequency of CD. This will be described by taking a DSD signal (referred to as 64 DSD) as an example. In the following description, an audio signal such as a DSD signal may be represented by a combination of a sampling frequency and a bit depth. For example, in the following description, a 64DSD signal may be expressed as [64FS, 1 bit].
 音声出力機器20は、音声処理装置100から出力された信号を音として出力する機器である。例えば、音声出力機器20は、ヘッドホンやスピーカー等である。 The audio output device 20 is a device that outputs a signal output from the audio processing device 100 as sound. For example, the audio output device 20 is a headphone, a speaker, or the like.
 音声処理装置100は、本開示に係る情報処理を実行する装置であり、音声信号を増幅して音声出力機器20に送る、いわゆるデジタルアンプとしての機能を有する。具体的には、音声処理装置100は、DSD信号をオーディオソース10から取得し、DSD信号に所定の補正を行う。そして、音声処理装置100は、補正後の信号をPWM信号に変換し、当該PWM信号をアンプ部(図1に示す増幅部140)で増幅させ、増幅させた音声信号を音声出力機器20に送る。 The audio processing device 100 is a device that executes information processing according to the present disclosure, and has a function as a so-called digital amplifier that amplifies an audio signal and sends the amplified audio signal to the audio output device 20. Specifically, the audio processing device 100 acquires a DSD signal from the audio source 10 and performs a predetermined correction on the DSD signal. Then, the audio processing device 100 converts the corrected signal into a PWM signal, amplifies the PWM signal with an amplifier unit (the amplification unit 140 illustrated in FIG. 1), and sends the amplified audio signal to the audio output device 20. .
[1-2.第1の実施形態に係る音声処理の概要]
 続いて、音声処理装置100の内部構成とともに、本開示の第1の実施形態に係る音声処理の概要について説明する。
[1-2. Overview of audio processing according to first embodiment]
Subsequently, the outline of the audio processing according to the first embodiment of the present disclosure will be described together with the internal configuration of the audio processing device 100.
 図1に示すように、音声処理装置100は、DSP(Digital Signal Processor)110と、ΔΣ変調器120と、PWM変換部130と、増幅部140とを含む。図1での図示は省略しているが、音声処理装置100は、制御部による制御のもと、各処理部を動作させ、本開示に係る情報処理を実行する。制御部は、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等によって、音声処理装置100内部に記憶されたプログラム(例えば、本開示に係る音声処理プログラム)がRAM(Random Access Memory)等を作業領域として実行されることにより実現される。また、制御部は、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。なお、音声処理装置100は、処理する情報等を記憶するため、図1に図示しない記憶部を有していてもよい。記憶部は、例えば、RAM、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現される。 As shown in FIG. 1, the audio processing apparatus 100 includes a DSP (Digital Signal Processor) 110, a ΔΣ modulator 120, a PWM conversion unit 130, and an amplification unit 140. Although illustration in FIG. 1 is omitted, the audio processing device 100 operates each processing unit under the control of the control unit and executes information processing according to the present disclosure. The control unit is configured such that a program (for example, an audio processing program according to the present disclosure) stored in the audio processing device 100 is stored in a RAM (Random Access Memory) by a CPU (Central Processing Unit), an MPU (Micro Processing Unit), or the like. And the like as a work area. The control unit may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array). Note that the audio processing device 100 may include a storage unit (not illustrated in FIG. 1) for storing information to be processed. The storage unit is realized by a semiconductor memory device such as a RAM and a flash memory (Flash @ Memory), or a storage device such as a hard disk and an optical disk.
 DSP110は、入力されたDSD信号に所定の補正処理を行う。DSP110は、ローパスフィルタ111と、補正部112を有する。 The DSP 110 performs a predetermined correction process on the input DSD signal. The DSP 110 has a low-pass filter 111 and a correction unit 112.
 まず、音声処理装置100は、オーディオソース10に記録されたDSD信号[64FS、1bit]を取得すると(ステップS11)、取得したDSD信号をローパスフィルタ111に渡す。 First, upon acquiring the DSD signal [64 FS, 1 bit] recorded in the audio source 10 (step S11), the audio processing device 100 passes the acquired DSD signal to the low-pass filter 111.
 ローパスフィルタ111は、DSD信号の高周波数分をカットするとともに、補正部112の前処理として、DSD信号を所定のビット数のPCM信号に変換する。図1の例では、ローパスフィルタ111は、DSD信号を16bitのPCM信号に変換するものとする。そして、ローパスフィルタ111は、変換したPCM信号[64FS、16bit]を補正部112に渡す(ステップS12)。 The low-pass filter 111 cuts the high frequency component of the DSD signal, and converts the DSD signal into a PCM signal having a predetermined number of bits as preprocessing of the correction unit 112. In the example of FIG. 1, the low-pass filter 111 converts the DSD signal into a 16-bit PCM signal. Then, the low-pass filter 111 passes the converted PCM signal [64 FS, 16 bits] to the correction unit 112 (Step S12).
 補正部112は、PCM信号に対して、所定の補正処理を行う。かかる補正処理について、詳細は後述する。補正部112は、補正後のPCM信号[64FS、16bit]をΔΣ変調器120に送る(ステップS13)。 The correction unit 112 performs a predetermined correction process on the PCM signal. The details of such correction processing will be described later. The correction unit 112 sends the corrected PCM signal [64 FS, 16 bits] to the ΔΣ modulator 120 (step S13).
 ΔΣ変調器120は、補正部112によって補正された後のPCM信号[64FS、16bit]を信号[64FS、1bit]に量子化する。そして、ΔΣ変調器120は、量子化した信号[64FS、1bit]をPWM変換部130に送る(ステップS14)。 The ΔΣ modulator 120 quantizes the PCM signal [64 FS, 16 bit] corrected by the correction unit 112 into a signal [64 FS, 1 bit]. Then, the ΔΣ modulator 120 sends the quantized signal [64 FS, 1 bit] to the PWM conversion unit 130 (Step S14).
 PWM変換部130は、ΔΣ変調器120によって量子化された信号(言い換えれば、補正部112によって補正された後の信号)[64FS、1bit]を、PWM信号[64FS、1bit]に変換する。そして、PWM変換部130は、変換後のPWM信号[64FS、1bit]を増幅部140に送る(ステップS15)。 The PWM conversion unit 130 converts the signal quantized by the ΔΣ modulator 120 (in other words, the signal corrected by the correction unit 112) [64 FS, 1 bit] into a PWM signal [64 FS, 1 bit]. Then, the PWM conversion unit 130 sends the converted PWM signal [64 FS, 1 bit] to the amplification unit 140 (step S15).
 増幅部140は、PWM変換部130によって変換されたPWM信号[64FS、1bit]を増幅させ、音として出力される信号である出力信号を生成する。増幅部140は、いわゆるデジタルアンプの増幅回路に相当する処理部である。すなわち、増幅部140は、周期が一定であり、入力信号のレベル(大きさ)に応じてパルス幅のデュ-ティサイクルが変化するPWM信号を受け取り、PWM信号に基づきスイッチング制御を行うことで、出力信号を生成する。例えば、本開示では、増幅部140は、後述する図2C等に示した2種類のパルス幅を有するPWM信号に基づき出力信号を生成する。そして、増幅部140は、生成した出力信号を音声出力機器20に送る(ステップS16)。 The amplification unit 140 amplifies the PWM signal [64 FS, 1 bit] converted by the PWM conversion unit 130 and generates an output signal that is a signal output as sound. The amplification unit 140 is a processing unit corresponding to an amplification circuit of a so-called digital amplifier. That is, the amplifying unit 140 receives a PWM signal whose cycle is constant and whose duty cycle of the pulse width changes according to the level (magnitude) of the input signal, and performs switching control based on the PWM signal, Generate an output signal. For example, in the present disclosure, the amplification unit 140 generates an output signal based on a PWM signal having two types of pulse widths illustrated in FIG. Then, the amplifier 140 sends the generated output signal to the audio output device 20 (Step S16).
 音声出力機器20は、増幅部140から送られた出力信号に基づいて、オーディオソース10に記憶されていたDSD信号に対応する音声を出力する。 The audio output device 20 outputs audio corresponding to the DSD signal stored in the audio source 10 based on the output signal sent from the amplifier 140.
 以上のように、音声処理装置100は、補正部112によって所定の入力信号に補正を行い、補正後の信号をPWM信号に変換する。かかる処理の詳細について、図2A以下、PWM信号の波形を示しながら説明する。 As described above, the sound processing apparatus 100 corrects a predetermined input signal by the correction unit 112, and converts the corrected signal into a PWM signal. Details of this processing will be described with reference to FIG.
 図2Aは、PWM信号の波形の一例を説明するための図(1)である。図2Aに示す波形30は、所定のDSD信号[64FS、1bit]をPDM信号のままPWM信号に変換しない場合の波形の一例を示す。なお、PWM信号の波形は、ドライバ駆動方式によって最適な形状が異なるが、第1の実施形態では、ドライバ駆動方式はシングルエンド駆動を採用しているものとする。 FIG. 2A is a diagram (1) illustrating an example of a waveform of a PWM signal. A waveform 30 shown in FIG. 2A shows an example of a waveform when a predetermined DSD signal [64 FS, 1 bit] is not converted to a PWM signal as a PDM signal. The optimum shape of the waveform of the PWM signal differs depending on the driver driving method. However, in the first embodiment, it is assumed that the driver driving method employs single-ended driving.
 DSD信号は、サンプリング周波数である64Fsごとに、「0」か「1」のどちらかの値が出力される。出力は、パルスと読み替えてもよい。DSD信号はパルス密度変調によって変調された信号であることから、DSD信号に対応する音声は、出力されるパルスの密度によって定まる。 The DSD signal outputs either “0” or “1” every 64 Fs which is the sampling frequency. The output may be read as a pulse. Since the DSD signal is a signal modulated by pulse density modulation, the sound corresponding to the DSD signal is determined by the density of the output pulse.
 ここで、説明のため、DSD信号がPWM信号に変換された場合の、DSD信号における「1」に対応する信号をPMW(+)、DSD信号における「0」に対応する信号をPMW(-)と称する。図2Aの例では、「1」で示した波形38がPMW(+)に対応し、「0」と示した波形36がPMW(-)に対応する。 Here, for the sake of explanation, when the DSD signal is converted into a PWM signal, a signal corresponding to “1” in the DSD signal is represented by PMW (+), and a signal corresponding to “0” in the DSD signal is represented by PMW (−). Called. In the example of FIG. 2A, the waveform 38 indicated by "1" corresponds to PMW (+), and the waveform 36 indicated by "0" corresponds to PMW (-).
 また、PWM信号の波形の形状は分解能によって決まるが、かかる分解能を本明細書では「スロット」と称する。分解能は、PWM信号の形状を制御するマスタークロックと、PWM信号のキャリア周波数、すなわちDSD信号のサンプリング周波数により一意に決定される。なお、第1の実施形態では、マスタークロックが「1024Fs」であるものとする。この場合、分解能は、1024FS/64Fs=16となる。これは、1キャリア周波数内に16のスロットが含まれることを示す。図2Aの例では、幅32が、サンプリング周波数(キャリア周波数)に対応し、幅34が、スロットに対応する。 Also, the shape of the waveform of the PWM signal is determined by the resolution, and this resolution is referred to as “slot” in this specification. The resolution is uniquely determined by the master clock that controls the shape of the PWM signal and the carrier frequency of the PWM signal, that is, the sampling frequency of the DSD signal. In the first embodiment, it is assumed that the master clock is “1024Fs”. In this case, the resolution is 1024 FS / 64 Fs = 16. This indicates that 16 slots are included in one carrier frequency. In the example of FIG. 2A, width 32 corresponds to a sampling frequency (carrier frequency), and width 34 corresponds to a slot.
 上述のように、オーディオ特性において最適なPWM信号の波形は、PWM(+)とPWM(-)の波形の各々が、1キャリア周波数内で中心に対して線対称となることである。 As described above, the optimum waveform of the PWM signal in the audio characteristics is that the waveforms of PWM (+) and PWM (-) are each line-symmetric with respect to the center within one carrier frequency.
 ここで、図2Aの波形30を参照すると、PWM(+)が16スロットを占め、PWM(-)が0スロットを占める。これは線対称ではあるが、1キャリア内でパルスの変化が観測されず、パルスのエッジが発生する周期を固定できなくなるため、オーディオ性能の観点で、DSD信号に対応する増幅部の駆動信号としては、実際には波形30は生成されない傾向にある。 Here, referring to the waveform 30 in FIG. 2A, PWM (+) occupies 16 slots and PWM (-) occupies 0 slot. Although this is line-symmetric, no pulse change is observed within one carrier, and the period at which the edge of the pulse occurs cannot be fixed. Therefore, from the viewpoint of audio performance, as a drive signal for the amplifier corresponding to the DSD signal, Actually, the waveform 30 does not tend to be generated.
 そこで、音声処理装置100は、少なくとも、図2Bに示すPWM信号を生成する。図2Bは、PWM信号の波形の一例を説明するための図(2)である。図2Bに示す波形40は、所定のDSD信号[64FS、1bit]がPWM信号に変換された場合の波形であって、PWM(-)が最小の幅(2スロット)となる波形である。なお、幅42や幅44は、それぞれ図2Aに示した幅32や幅34と同一である。 Therefore, the audio processing device 100 generates at least the PWM signal shown in FIG. 2B. FIG. 2B is a diagram (2) illustrating an example of a waveform of a PWM signal. A waveform 40 shown in FIG. 2B is a waveform when a predetermined DSD signal [64 FS, 1 bit] is converted into a PWM signal, and is a waveform in which PWM (-) has a minimum width (two slots). The width 42 and the width 44 are the same as the width 32 and the width 34 shown in FIG. 2A, respectively.
 PWM(-)が2スロットの幅を有する場合にPWM(+)が線対称の形状を維持すると、PWM(+)は、14スロットの幅を有することになる。図2Bに示すように、波形46は、PWM(-)が2スロットのパルス幅を有する形状を示す。また、波形48は、PWM(+)が14スロットのパルス幅を有する形状を示す。 If PWM (+) maintains a line-symmetric shape when PWM (-) has a width of 2 slots, PWM (+) will have a width of 14 slots. As shown in FIG. 2B, waveform 46 shows a shape in which PWM (-) has a pulse width of 2 slots. The waveform 48 indicates a shape in which PWM (+) has a pulse width of 14 slots.
 波形46のパルス幅は2スロット分であるため、パルス幅を時間で表現すると、(1/1024Fs)×2≒44ナノ秒となる。ここで、上述したように、デジタルアンプの増幅部140には、入力可能なパルス幅の制限があり、その制限が仮に50ナノ秒であるとする。この場合、50ナノ秒を下回るパルスは入力できないため、増幅部140の仕様を変更したり、異なる回路に交換したりしなければ、所望のDSD信号を駆動できないことになる。すなわち、図2Bに示す波形40は、狭パルスが発生した際の波形を示している。 Since the pulse width of the waveform 46 is equivalent to two slots, the pulse width is expressed as (1/1024 Fs) × 2 ≒ 44 nanoseconds in terms of time. Here, as described above, the amplifier 140 of the digital amplifier has a limit on the pulse width that can be input, and the limit is assumed to be 50 nanoseconds. In this case, since a pulse shorter than 50 nanoseconds cannot be input, a desired DSD signal cannot be driven unless the specifications of the amplifier 140 are changed or replaced with a different circuit. That is, the waveform 40 shown in FIG. 2B shows a waveform when a narrow pulse is generated.
 このため、音声処理装置100は、図2Bに示す波形40を処理しようとする場合、狭パルスを回避する処理を実行する。例えば、図2Bに示す波形40を、図2Cに示す波形に変換する。図2Cは、PWM信号の波形の一例を説明するための図(3)である。図2Cに示す波形50は、所定のDSD信号[64FS、1bit]がPWM信号に変換された場合の波形であって、狭パルスを回避した際のPWM(-)が最小の幅(4スロット)となる波形である。なお、幅52や幅54は、それぞれ図2Aに示した幅32や幅34と同一である。 Therefore, when trying to process the waveform 40 shown in FIG. 2B, the sound processing device 100 executes a process for avoiding a narrow pulse. For example, the waveform 40 shown in FIG. 2B is converted into the waveform shown in FIG. 2C. FIG. 2C is a diagram (3) illustrating an example of a waveform of a PWM signal. A waveform 50 shown in FIG. 2C is a waveform when a predetermined DSD signal [64 FS, 1 bit] is converted into a PWM signal, and the width of PWM (-) when avoiding a narrow pulse is the minimum width (4 slots). This is the waveform. The width 52 and the width 54 are the same as the width 32 and the width 34 shown in FIG. 2A, respectively.
 PWM(-)が4スロットの幅を有する場合にPWM(+)が線対称の形状を維持すると、PWM(+)は、本来、12スロットの幅を有することになる。しかしながら、このようにPWM(+)のスロット幅を縮めた場合、信号の変調度が低下することが知られている。変調度は、1キャリア周波数における全体の分解能を分母として、PWM信号の片方の信号の分解能から、他の一方の分解能を引くことで求められる。例えば、PWM(+)が16スロットであり、M(-)が0スロットであれば、(16/16)-(0/16)=1となる。上記のように、PWM(-)が4スロットであり、それに合わせてPWM(+)を12スロットとすると、変調度は、(12/16)-(4/16)=0.5となる。 If PWM (+) maintains a line-symmetric shape when PWM (−) has a width of 4 slots, PWM (+) has a width of 12 slots by nature. However, it is known that when the PWM (+) slot width is reduced in this manner, the modulation degree of a signal is reduced. The degree of modulation is obtained by subtracting the resolution of one of the PWM signals from the resolution of one of the PWM signals, using the overall resolution at one carrier frequency as the denominator. For example, if PWM (+) has 16 slots and M (-) has 0 slots, (16/16)-(0/16) = 1. As described above, if PWM (-) has 4 slots and PWM (+) has 12 slots, the modulation degree is (12/16)-(4/16) = 0.5.
 また、図2A乃至図2Cの例では、マスタークロックが1024Fsである例を示しているが、仮にマスタークロックが512Fsである例を考える。この場合、1キャリア周波数の分解能が8スロットとなるため、上記のようにPWM(-)を4スロットとし(この例では、増幅部140へ入力されるパルス幅の制限が、例えば100ナノ秒等であると仮定する)、さらに線対称の形状を維持しようとすると、PWM(+)も4スロットとなる。この場合、PWM(-)とPWM(+)の波形が同形状となり、それぞれの信号が1キャリア周波数内でデューティ50%の状態であるため、いわゆるミュートの状態となる。この状態は、すなわち、PWM信号への変換が不可能であることを示している。 2A to 2C show examples in which the master clock is 1024 Fs, but consider an example in which the master clock is 512 Fs. In this case, since the resolution of one carrier frequency is eight slots, the PWM (-) is set to four slots as described above (in this example, the limitation of the pulse width input to the amplifier 140 is, for example, 100 nanoseconds or the like). ), And PWM (+) also has 4 slots if it is desired to maintain a line-symmetric shape. In this case, the waveforms of PWM (-) and PWM (+) have the same shape, and the respective signals are in a state of 50% duty within one carrier frequency, so that a so-called mute state is obtained. This state indicates that conversion to a PWM signal is impossible.
 そこで、本開示に係る音声処理装置100は、図2Cに示す波形50を生成する。波形50において、PWM(-)を示す波形56は、狭パルスを回避するため、4スロットのパルス幅を有する。一方、PWM(+)を示す波形58は、PWM(-)が狭パルスを回避するためパルス幅を広げたにもかかわらず、図2Bの波形48と同様、14スロットのパルス幅を維持する。すなわち、波形50は、PWM(-)とPWM(+)とが非対称となる波形を有する。 Therefore, the sound processing device 100 according to the present disclosure generates the waveform 50 illustrated in FIG. 2C. In the waveform 50, the waveform 56 indicating PWM (-) has a pulse width of 4 slots to avoid a narrow pulse. On the other hand, the waveform 58 indicating PWM (+) maintains the 14-slot pulse width, similarly to the waveform 48 of FIG. 2B, although the PWM (-) has increased the pulse width to avoid narrow pulses. That is, the waveform 50 has a waveform in which PWM (−) and PWM (+) are asymmetric.
 上述のように、PWM(-)とPWM(+)とが1キャリア周波数内で非対称となると、オーディオ特性が低下するおそれがある。この点について、図3を用いて、音声波形を模式的に示して説明する。 As described above, if PWM (−) and PWM (+) are asymmetric within one carrier frequency, audio characteristics may be degraded. This will be described with reference to FIG.
 図3は、本開示に係る入力信号を正弦波で示した概念図である。図3では、説明のため、入力信号(PWM信号もしくはDSD信号)が音声波形に変換された場合の正弦波を概念的に示す。なお、音声処理装置100は、例えば所定のローパスフィルタにPWM信号やDSD信号等(パルス波)を通すことで、図3に示すような正弦波を得ることができる。 FIG. 3 is a conceptual diagram showing a sine wave of an input signal according to the present disclosure. FIG. 3 conceptually shows a sine wave in the case where an input signal (PWM signal or DSD signal) is converted into an audio waveform for explanation. Note that the audio processing apparatus 100 can obtain a sine wave as shown in FIG. 3 by passing a PWM signal, a DSD signal, or the like (pulse wave) through a predetermined low-pass filter, for example.
 図3に示す波形62は、PWM(-)とPWM(+)とが1キャリア周波数内で対称である場合、すなわち、理想的な音声波形である正弦波を示す。図3に示すように、波形62は、PWM(-)とPWM(+)とが対称であることから、上下の振幅の絶対値が同一(図3の例では「0.5」)となる。具体的には、波形62は、図2Aや図2Bに示した、PWM(-)とPWM(+)とが1キャリア周波数内で対称である理想的な波形を正弦波で示したものである。例えば、波形62は、オーディオソース10が保持していた元のDSD信号を正弦波で示したものである。 波形 The waveform 62 shown in FIG. 3 indicates a case where PWM (−) and PWM (+) are symmetric within one carrier frequency, that is, a sine wave which is an ideal voice waveform. As shown in FIG. 3, the waveform 62 has the same absolute value of the upper and lower amplitudes (“0.5” in the example of FIG. 3) because the PWM (−) and the PWM (+) are symmetric. . Specifically, the waveform 62 is an ideal waveform in which PWM (−) and PWM (+) are symmetrical within one carrier frequency, as shown in FIGS. 2A and 2B, as a sine wave. . For example, the waveform 62 shows the original DSD signal held by the audio source 10 as a sine wave.
 一方、図3に示す波形61は、PWM(-)とPWM(+)とが1キャリア周波数内で非対称である場合、すなわち、オーディオ特性が低下する場合の正弦波を示す。図3に示すように、波形61は、PWM(-)とPWM(+)とが非対称であることから、上下の振幅の絶対値が異なる。具体的には、波形61は、プラス側のレベルが「0.5」であるのに対して、マイナス側のレベルが「-(0.5×N(Nは、非対称性の度合いによって定まる所定数))」となる。このように、上下の振幅が異なる正弦波が音声出力される場合、不自然な倍音が再生されたり歪みが発生したりといった現象が発生し、オーディオ特性が低下する。例えば、波形61は、本開示に係るDSP110による補正処理が行われなかった場合のPWM信号を正弦波で示したものである。 On the other hand, a waveform 61 shown in FIG. 3 shows a sine wave when PWM (−) and PWM (+) are asymmetric within one carrier frequency, that is, when the audio characteristics are degraded. As shown in FIG. 3, the waveform 61 has different absolute values of the upper and lower amplitudes because the PWM (−) and the PWM (+) are asymmetric. Specifically, in the waveform 61, the level on the plus side is “0.5”, while the level on the minus side is “− (0.5 × N (N is a predetermined level determined by the degree of asymmetry. Number)) ". As described above, when a sine wave having different upper and lower amplitudes is output as a sound, a phenomenon such as reproduction of unnatural overtones or distortion occurs, and audio characteristics are deteriorated. For example, the waveform 61 indicates a PWM signal as a sine wave when the correction processing by the DSP 110 according to the present disclosure has not been performed.
 図3を参照すると、波形61は、波形62に対して、マイナス側の振幅が「-0.5」から「-(0.5×N)」に減少している。これは、上述のように、狭パルスの発生を抑えるために、非対称のPWM信号が発生したためである。 を Referring to FIG. 3, the waveform 61 has a waveform 62 whose amplitude on the minus side is reduced from “−0.5” to “− (0.5 × N)”. This is because an asymmetric PWM signal is generated in order to suppress the generation of a narrow pulse as described above.
 ここで、PWM変換部130において非対称の波形が発生することにより、正弦波におけるマイナス側の振幅が上昇するのであれば、PWM変換部130に入力される前段階で入力信号に何らかの補正を行い、最終的に上下の振幅が同一の値となるよう調整することが可能である。具体的には、音声処理装置100は、元のDSD信号をPWM変換部130に入力する前段階で、はじめから上昇分を加味した(補正した)入力信号を得ることで、PWM変換部130による変換後、上下の振幅が同一の正弦波に対応したPWM信号を得られることになる。 Here, if the negative side amplitude of the sine wave increases due to the generation of an asymmetric waveform in the PWM conversion unit 130, some correction is performed on the input signal before input to the PWM conversion unit 130, It is possible to finally adjust the upper and lower amplitudes to have the same value. More specifically, the audio processing apparatus 100 obtains an input signal that takes into account (corrected) the rise from the beginning before inputting the original DSD signal to the PWM conversion unit 130, so that the PWM processing unit 130 After the conversion, a PWM signal corresponding to a sine wave having the same upper and lower amplitudes can be obtained.
 図3の波形63は、上記した補正処理後の入力信号に対応する正弦波である。図3に示すように、波形63は、プラス側のレベルが「0.5」であり、マイナス側のレベルが「-(0.5÷N)」の正弦波である。すなわち、波形63は、DSP110による補正処理ののち、PWM変換部130に入力される信号を正弦波で示したものである。具体的には、かかる信号は、図1に示したステップS13で送信される信号を正弦波で示したものである。 波形 The waveform 63 in FIG. 3 is a sine wave corresponding to the input signal after the above-described correction processing. As shown in FIG. 3, the waveform 63 is a sine wave whose level on the plus side is “0.5” and whose level on the minus side is “− (0.5 ÷ N)”. That is, the waveform 63 represents a signal input to the PWM conversion unit 130 as a sine wave after the correction processing by the DSP 110. Specifically, such a signal is a signal transmitted in step S13 shown in FIG. 1 represented by a sine wave.
 図3を用いて説明したように、本開示に係る補正処理を行わない場合、狭パルスの発生を抑えたPWM信号を変換すると、PWM(-)側のパルス幅が増加することから、正弦波で示したマイナス側の振幅が減少し、正弦波の振幅が非対称となる。結果として、歪みが発生するなど、オーディオ特性の低下が生じる。そこで、本開示に係る音声処理装置100は、予め図3に示す波形63に対応するような入力信号への補正を行うことにより、最終的に出力される信号においてオーディオ特性の低下を防止することができる。 As described with reference to FIG. 3, when the correction processing according to the present disclosure is not performed, when the PWM signal in which the generation of the narrow pulse is suppressed is converted, the pulse width on the PWM (−) side increases. The amplitude on the minus side indicated by the symbol decreases, and the amplitude of the sine wave becomes asymmetric. As a result, audio characteristics are degraded, such as distortion. Therefore, the audio processing device 100 according to the present disclosure performs correction to an input signal corresponding to the waveform 63 shown in FIG. 3 in advance to prevent a decrease in audio characteristics in a finally output signal. Can be.
 以下、音声処理装置100による補正処理について、図4及び図5を用いて、具体的に説明する。図4は、本開示に係る補正処理を説明するための図(1)である。図4では、図2A乃至図2Bで示したPWM信号の波形と、PWM信号に対応する正弦波を各々対応させて示す。 Hereinafter, the correction process performed by the audio processing device 100 will be specifically described with reference to FIGS. 4 and 5. FIG. 4 is a diagram (1) illustrating a correction process according to the present disclosure. FIG. 4 shows the waveforms of the PWM signals shown in FIGS. 2A and 2B and the sine waves corresponding to the PWM signals, respectively.
 図4に示す波形30は、図2Aで示した波形30に対応する。また、正弦波65は、波形30で示されるPWM信号を正弦波で示したものである。図4に示す例では、波形30は、仮にPWM(+)とPWM(-)とが最大のパルス幅をとりうる場合のPWM信号を示している。すなわち、波形30を正弦波65として表現する場合、振幅の絶対値は最大値(図4の例では、「0.5」と仮定する)となる。 4) The waveform 30 shown in FIG. 4 corresponds to the waveform 30 shown in FIG. 2A. The sine wave 65 is a sine wave of the PWM signal represented by the waveform 30. In the example shown in FIG. 4, a waveform 30 indicates a PWM signal in the case where PWM (+) and PWM (−) can have the maximum pulse width. That is, when expressing the waveform 30 as the sine wave 65, the absolute value of the amplitude becomes the maximum value (in the example of FIG. 4, it is assumed to be "0.5").
 上述のように、波形30は、1キャリア周波数内でパルスのエッジが発生する周期を固定できなくなるため、実際にはPWM信号としては用いられない傾向にある。このため、音声処理装置100は、最小のパルス幅となる2スロット分をPWM(-)に追加する(ステップS21)。これにより、音声処理装置100は、PWM信号として、図4に示す波形40を得る。波形40は、図2Bで示した波形40に対応する。また、正弦波66は、波形40で示されるPWM信号を正弦波で示したものである。 に As described above, the waveform 30 tends to be not actually used as a PWM signal because the period at which a pulse edge occurs within one carrier frequency cannot be fixed. Therefore, the audio processing device 100 adds two slots having the minimum pulse width to the PWM (-) (step S21). Thereby, the audio processing device 100 obtains the waveform 40 shown in FIG. 4 as a PWM signal. Waveform 40 corresponds to waveform 40 shown in FIG. 2B. The sine wave 66 is a sine wave of the PWM signal indicated by the waveform 40.
 図4に示す例では、波形40は、PWM(+)のパルス幅が「14/16」であり、PWM(-)のパルス幅が「2/16」である。この場合、正弦波66の振幅は、変調度を振幅の最大値に乗じることで得られる。波形40の変調度は「(14/16)-(2/16)=0.75」であるため、正弦波66の振幅の絶対値は、「0.5×0.75=0.375」となる。なお、波形40はPWM(+)とPWM(-)とが対称であるため、正弦波66の振幅は、プラス側とマイナス側で同一の絶対値である「0.375」をとる。 で は In the example shown in FIG. 4, in the waveform 40, the pulse width of PWM (+) is “14/16” and the pulse width of PWM (−) is “2/16”. In this case, the amplitude of the sine wave 66 is obtained by multiplying the modulation degree by the maximum value of the amplitude. Since the modulation degree of the waveform 40 is “(14/16) − (2/16) = 0.75”, the absolute value of the amplitude of the sine wave 66 is “0.5 × 0.75 = 0.375”. Becomes In the waveform 40, since the PWM (+) and the PWM (-) are symmetrical, the amplitude of the sine wave 66 has the same absolute value of "0.375" on the plus side and the minus side.
 ここで、波形40に示したPWM(-)が狭パルスと仮定すると、音声処理装置100は、PWM(-)が狭パルスとならない幅に拡張した波形を生成する(ステップS22)。これにより、音声処理装置100は、PWM信号として、図4に示す波形50を得る。波形50は、図2Cで示した波形50に対応する。また、正弦波67は、波形50で示されるPWM信号を正弦波で示したものである。 Here, assuming that the PWM (-) shown in the waveform 40 is a narrow pulse, the audio processing device 100 generates a waveform that is expanded so that the PWM (-) does not become a narrow pulse (step S22). Thereby, the audio processing device 100 obtains the waveform 50 shown in FIG. 4 as a PWM signal. Waveform 50 corresponds to waveform 50 shown in FIG. 2C. The sine wave 67 is a sine wave of the PWM signal indicated by the waveform 50.
 図4に示す例では、波形50は、PWM(+)のパルス幅が「14/16」であり、PWM(-)のパルス幅が「4/16」である。波形50はPWM(+)とPWM(-)とが非対称であるため、対応する正弦波67の振幅は、プラス側とマイナス側とで異なる絶対値をとる。 In the example shown in FIG. 4, the waveform 50 has a PWM (+) pulse width of “14/16” and a PWM (−) pulse width of “4/16”. In the waveform 50, since the PWM (+) and the PWM (-) are asymmetric, the amplitude of the corresponding sine wave 67 has different absolute values on the plus side and the minus side.
 この場合、正弦波67のプラス側の振幅は、波形50においてPWM(+)側のパルス幅と対称の波形が得られたと仮定した場合の変調度から求められる。具体的には、波形50のPWM(+)のパルス幅が「14/16」であり、これと対称となるPWM(-)のパルス幅を考えると、仮のPWM(-)のパルス幅は「2/16」となる。このため、正弦波67のプラス側の振幅は、仮の変調度「(14/16)-(2/16)=0.75」と、最大値「0.5」を乗じて、「0.5×0.75=0.375」と求められる。 In this case, the plus side amplitude of the sine wave 67 is obtained from the modulation factor on the assumption that a waveform symmetrical to the PWM (+) side pulse width is obtained in the waveform 50. Specifically, the pulse width of the PWM (+) of the waveform 50 is “14/16”, and considering the pulse width of the PWM (−) that is symmetrical to this, the pulse width of the temporary PWM (−) is "2/16". For this reason, the plus side amplitude of the sine wave 67 is obtained by multiplying the temporary modulation factor “(14/16) − (2/16) = 0.75” by the maximum value “0.5.” 5 × 0.75 = 0.375 ”.
 一方、正弦波67のマイナス側の振幅は、波形50においてPWM(-)側のパルス幅と対称の波形が得られたと仮定した場合の変調度から求められる。具体的には、波形50のPWM(-)のパルス幅が「4/16」であり、これと対称となるPWM(+)のパルス幅を考えると、仮のPWM(+)のパルス幅は「12/16」となる。このため、正弦波67のマイナス側の振幅は、仮の変調度「(12/16)-(4/16)=0.5」と、最大値「0.5」を乗じて、「0.5×0.5=0.25」と求められる。 On the other hand, the negative amplitude of the sine wave 67 can be obtained from the modulation factor on the assumption that a waveform symmetrical to the pulse width on the PWM (-) side is obtained in the waveform 50. Specifically, the pulse width of the PWM (−) of the waveform 50 is “4/16”, and considering the pulse width of the PWM (+) which is symmetrical to this, the pulse width of the temporary PWM (+) is It becomes “12/16”. For this reason, the amplitude on the minus side of the sine wave 67 is obtained by multiplying the temporary modulation factor “(12/16) − (4/16) = 0.5” by the maximum value “0.5.” 5 × 0.5 = 0.25 ”.
 以上のことから、正弦波67は、プラス側の振幅「0.375」と、マイナス側の振幅「-0.25」の値をとる、非対称の波形となる。 From the above, the sine wave 67 is an asymmetric waveform having a positive amplitude “0.375” and a negative amplitude “−0.25”.
 図4の説明をふまえて、図5を用いて、音声処理装置100が実行する補正処理について説明する。図5は、本開示に係る補正処理を説明するための図(2)である。 補正 Based on the description of FIG. 4, a correction process performed by the audio processing device 100 will be described with reference to FIG. FIG. 5 is a diagram (2) illustrating a correction process according to the present disclosure.
 図5に示す波形30は、図4に示した波形30に対応する。また、図5に示す正弦波65は、図4に示した正弦波65に対応する。 波形 The waveform 30 shown in FIG. 5 corresponds to the waveform 30 shown in FIG. Further, the sine wave 65 shown in FIG. 5 corresponds to the sine wave 65 shown in FIG.
 音声処理装置100は、波形30に対応するDSD信号をDSP110で受け取った場合(図1に示したステップS11)、ローパスフィルタ111を通すことで、16bitで表現可能な正弦波に変換する。これにより、後述するように、振幅の補正を行うことが可能となる。 When the DSP 110 receives the DSD signal corresponding to the waveform 30 by the DSP 110 (step S11 shown in FIG. 1), the audio processing apparatus 100 converts the DSD signal into a 16-bit sine wave by passing through the low-pass filter 111. As a result, the amplitude can be corrected as described later.
 そして、音声処理装置100は、ローパスフィルタ111を通した波形30(正確には、波形30で示される入力信号)を、補正部112に渡す(ステップS31)。 {Circle around (4)} Then, the sound processing device 100 passes the waveform 30 passed through the low-pass filter 111 (more precisely, the input signal indicated by the waveform 30) to the correction unit 112 (step S31).
 補正部112は、PWM変換部130でPWM信号に変換された後の正弦波の振幅が非対称となることを防止するため、ステップS31で受け付けた入力信号を補正する。例えば、補正部112は、入力信号をPWM信号に変換した場合の1キャリア周波数内の波形の非対称性に基づいて、入力信号を補正する。 The correction unit 112 corrects the input signal received in step S31 in order to prevent the amplitude of the sine wave converted into the PWM signal by the PWM conversion unit 130 from becoming asymmetric. For example, the correction unit 112 corrects the input signal based on the asymmetry of the waveform within one carrier frequency when the input signal is converted into a PWM signal.
 具体的には、補正部112は、入力信号をPWM信号に変換した場合の1キャリア周波数内の波形の非対称性に基づいて、入力信号の振幅に対応する値を補正する。より具体的には、補正部112は、1キャリア周波数内の波形が対称になるよう入力信号をPWM信号に変換したと仮定した場合の変調度に基づいて、入力信号を補正する。 {Specifically, the correction unit 112 corrects a value corresponding to the amplitude of the input signal based on the asymmetry of the waveform within one carrier frequency when the input signal is converted into a PWM signal. More specifically, the correction unit 112 corrects the input signal based on the modulation factor when it is assumed that the input signal is converted into a PWM signal so that the waveform within one carrier frequency is symmetric.
 図4を用いて説明したように、狭パルスの発生を抑えた最小のパルス幅を有する非対称な波形50は、正弦波67は、プラス側で「0.375」、マイナス側で「-0.25」となる。このうち、プラス側は、PWM(-)を最小(狭パルス)の幅と仮定した場合にとりうるPWM(+)の最大値であるため、補正しない。一方、マイナス側は、PWM(-)を最小の幅(狭パルス)から4スロットに拡張したものであり、補正の余地がある。このため、音声処理装置100は、マイナス側に対応する振幅の値を補正する。 As described with reference to FIG. 4, in the asymmetrical waveform 50 having the minimum pulse width in which the generation of the narrow pulse is suppressed, the sine wave 67 has “0.375” on the plus side and “−0.0. 25 ". Of these, the plus side is not corrected because it is the maximum value of PWM (+) that can be assumed when PWM (−) is the minimum (narrow pulse) width. On the other hand, the minus side is obtained by expanding PWM (-) from the minimum width (narrow pulse) to 4 slots, and there is room for correction. Therefore, the audio processing device 100 corrects the value of the amplitude corresponding to the minus side.
 図4で説明したように、マイナス側の振幅は、波形50においてPWM(-)側のパルス幅と対称の波形が得られたと仮定した場合の変調度から求められる。すなわち、変調度は、「(12/16)-(4/16)=0.5」である。また、上述のように、PWM信号に変換後の正弦波のプラス側の振幅の絶対値は「0.375」である。 As described with reference to FIG. 4, the amplitude on the minus side is obtained from the modulation factor on the assumption that a waveform symmetrical to the pulse width on the PWM (−) side is obtained in the waveform 50. That is, the modulation degree is “(12/16) − (4/16) = 0.5”. Further, as described above, the absolute value of the amplitude on the positive side of the sine wave after conversion into the PWM signal is “0.375”.
 このため、補正部112は、プラス側の振幅の絶対値の目標値である「-0.375」から逆算して、補正処理を行った信号に対応する正弦波71のマイナス側の振幅を「-0.375÷0.5=-0.75」になるよう、入力信号を補正する。具体的には、補正部112は、ローパスフィルタ111を通して[64FS、16bit]である入力信号のビット列を補正する。例えば、補正部112は、所定の乗算器を用いて、入力信号のビット列に所定の数値を乗算することにより、入力信号のビット列を補正する。これにより、補正部112は、図5に示す正弦波71に対応する信号を得る。 For this reason, the correction unit 112 calculates the negative-side amplitude of the sine wave 71 corresponding to the signal subjected to the correction processing by calculating backward from “−0.375” which is the target value of the absolute value of the positive-side amplitude. The input signal is corrected so that “−0.375 ÷ 0.5 = −0.75”. Specifically, the correction unit 112 corrects the bit string of the input signal of [64 FS, 16 bits] through the low-pass filter 111. For example, the correction unit 112 corrects the bit sequence of the input signal by multiplying the bit sequence of the input signal by a predetermined numerical value using a predetermined multiplier. Thereby, the correction unit 112 obtains a signal corresponding to the sine wave 71 shown in FIG.
 補正部112は、補正後の入力信号をΔΣ変調器120に送って量子化したのち、かかる入力信号をPWM変換部130に送る(ステップS32)。 The correction unit 112 sends the corrected input signal to the ΔΣ modulator 120 and quantizes the input signal, and then sends the input signal to the PWM conversion unit 130 (step S32).
 PWM変換部130では、狭パルスを回避するため、PWM(+)とPWM(-)とが非対称となる波形51を生成する。しかしながら、波形51は補正部112による補正処理がなされているため、波形51に対応する正弦波72は、プラス側とマイナス側が同一の絶対値をとる。具体的には、正弦波72は、プラス側とマイナス側との振幅が同一の絶対値「0.375」をとる正弦波として示される。 The PWM conversion unit 130 generates a waveform 51 in which PWM (+) and PWM (−) are asymmetric in order to avoid a narrow pulse. However, since the waveform 51 has been subjected to the correction processing by the correction unit 112, the sine wave 72 corresponding to the waveform 51 has the same absolute value on the plus side and the minus side. Specifically, the sine wave 72 is shown as a sine wave having the same absolute value “0.375” in amplitude on the plus side and the minus side.
 これにより、音声処理装置100は、狭パルスを回避するため、PWM信号において1キャリア周波数内の波形がPWM(+)とPWM(-)とが非対称となった場合であっても、振幅が対称となる正弦波を得ることができる。 As a result, the audio processing apparatus 100 has a symmetrical amplitude in order to avoid a narrow pulse even if the waveform within one carrier frequency of the PWM signal is asymmetric between PWM (+) and PWM (-). Sine wave can be obtained.
 以上、説明してきたように、補正部112は、1キャリア周波数内の波形が対称になるよう入力信号をPWM信号に変換したと仮定した場合の変調度に基づいて、入力信号の振幅に対応する値を増加させる。例えば、補正部112は、図5に示した正弦波65のマイナス側の振幅の絶対値を「0.5」から「0.75」に増加させた正弦波75を得るよう、入力信号を補正する。これにより、音声処理装置100は、狭パルスを回避するために非対称となったPWM信号からも、オーディオ特性が劣化しない音声出力信号を得ることができる。 As described above, the correction unit 112 corresponds to the amplitude of the input signal based on the modulation factor when it is assumed that the input signal is converted into the PWM signal so that the waveform within one carrier frequency is symmetric. Increase the value. For example, the correction unit 112 corrects the input signal so as to obtain the sine wave 75 in which the absolute value of the negative amplitude of the sine wave 65 shown in FIG. 5 is increased from “0.5” to “0.75”. I do. Thus, the audio processing device 100 can obtain an audio output signal whose audio characteristics are not deteriorated even from a PWM signal that is asymmetric to avoid a narrow pulse.
 上述のように、DSD信号は非常に高い周波数でサンプリングが行われ、また、サンプリング周波数の種別が多様であることから、一般的なデジタルアンプでは、狭パルスを回避したり、音源の再生が困難であったりする場合がある。しかし、本開示に係る音声処理装置100によれば、狭パルスを回避させつつもオーディオ特性を損なわないPWM信号に変換できることから、多様なDSD信号(音源)の入力が可能となる。 As described above, the DSD signal is sampled at a very high frequency, and since there are various types of sampling frequencies, it is difficult for a general digital amplifier to avoid narrow pulses or reproduce a sound source. Or may be. However, according to the audio processing device 100 according to the present disclosure, it is possible to input a variety of DSD signals (sound sources) because the signal can be converted into a PWM signal that does not impair the audio characteristics while avoiding narrow pulses.
 また、上述のように、本開示に係る音声処理は、DSP110及びΔΣ変調器120をPWM変換部130の前に設置する構成で実現されることから、増幅部140の性能に依存しない。これは、増幅部140の性能(特性)によらずにデジタルアンプの製作等を行うことができることを意味する。すなわち、本開示に係る音声処理によれば、増幅部140の選択肢を大幅に拡大することができる。 {Also, as described above, the audio processing according to the present disclosure is realized by a configuration in which the DSP 110 and the ΔΣ modulator 120 are installed before the PWM conversion unit 130, and thus does not depend on the performance of the amplification unit 140. This means that a digital amplifier can be manufactured without depending on the performance (characteristics) of the amplifier 140. That is, according to the audio processing according to the present disclosure, the options of the amplification unit 140 can be significantly expanded.
 なお、音声処理装置100は、予め増幅部140に関する情報(入力可能なパルス幅等)や、マスタークロックの値の入力を受け付けておくことにより、上記のように狭パルスを回避した場合の仮の変調度を求めることができる。音声処理装置100は、かかる仮の変調度に基づいて、上記の補正処理を実行する。なお、音声処理装置100は、増幅部140の特性等をリアルタイムに取得し、動的に仮の変調度を算出し、上記の補正処理を実行してもよい。かかる処理についての詳細は、第2の実施形態で説明する。 Note that the audio processing apparatus 100 receives information (a pulse width that can be input, etc.) relating to the amplifying unit 140 and a value of the master clock in advance, so that the temporary processing when the narrow pulse is avoided as described above. The degree of modulation can be determined. The sound processing device 100 performs the above-described correction processing based on the provisional modulation degree. Note that the audio processing device 100 may acquire the characteristics and the like of the amplification unit 140 in real time, dynamically calculate the temporary modulation degree, and execute the above-described correction processing. Details of such processing will be described in a second embodiment.
[1-3.第1の実施形態に係る情報処理の手順]
 次に、図6を用いて、第1の実施形態に係る情報処理の手順について説明する。図6は、本開示の第1の実施形態に係る処理の流れを示すフローチャートである。具体的には、図6では、第1の実施形態に係る音声処理装置100が実行する処理の流れについて説明する。
[1-3. Information processing procedure according to first embodiment]
Next, an information processing procedure according to the first embodiment will be described with reference to FIG. FIG. 6 is a flowchart illustrating a process flow according to the first embodiment of the present disclosure. Specifically, FIG. 6 illustrates a flow of a process executed by the audio processing device 100 according to the first embodiment.
 図6に示すように、音声処理装置100は、DSD信号の入力を受け付けたか否かを判定する(ステップS101)。DSD信号の入力を受け付けていない場合(ステップS101;No)、音声処理装置100は、DSD信号の入力を受け付けるまで待機する。 (6) As shown in FIG. 6, the audio processing device 100 determines whether an input of a DSD signal has been received (step S101). When the input of the DSD signal is not received (Step S101; No), the audio processing device 100 waits until the input of the DSD signal is received.
 一方、DSD信号の入力を受け付けた場合(ステップS101;Yes)、音声処理装置100は、受け付けたDSD信号をPCM信号に変換する(ステップS102)。 On the other hand, when the input of the DSD signal is received (Step S101; Yes), the audio processing device 100 converts the received DSD signal into a PCM signal (Step S102).
 続けて、音声処理装置100は、ステップS101で受け付けたDSD信号がPWM信号に変換された場合の波形の非対称性に基づいて、PCM信号を補正する(ステップS103)。具体的には、音声処理装置100は、波形の非対称性に基づいて仮の変調度を算出し、算出した変調度に基づいてPCM信号のビット列を補正する。 Subsequently, the audio processing device 100 corrects the PCM signal based on the asymmetry of the waveform when the DSD signal received in step S101 is converted into a PWM signal (step S103). Specifically, the audio processing device 100 calculates a temporary modulation factor based on the asymmetry of the waveform, and corrects the bit string of the PCM signal based on the calculated modulation factor.
 音声処理装置100は、補正したPCM信号をΔΣ変調器120に入力し、量子化する(ステップS104)。続けて、音声処理装置100は、量子化された入力信号をPWM変換部130に入力し、PWM信号に変換する(ステップS105)。 The audio processing device 100 inputs the corrected PCM signal to the ΔΣ modulator 120, and quantizes it (step S104). Subsequently, the audio processing device 100 inputs the quantized input signal to the PWM conversion unit 130 and converts it into a PWM signal (step S105).
 その後、音声処理装置100は、増幅部140において、PWM信号から出力信号を生成する(ステップS106)。このように、音声処理装置100は、波形の非対称性に基づいて予め補正処理を行った入力信号から音声信号を取り出すことで、オーディオ特性を損なわない音声出力が可能となる。 Thereafter, in the audio processing device 100, the amplifier 140 generates an output signal from the PWM signal (step S106). As described above, the audio processing apparatus 100 extracts the audio signal from the input signal that has been subjected to the correction processing based on the asymmetry of the waveform in advance, thereby enabling audio output without deteriorating the audio characteristics.
[1-4.第1の実施形態に係る変形例]
 上記第1の実施形態では、音声処理装置100が、オーディオソース10からDSDフォーマットの信号を受け付け、受け付けたDSD信号に関する補正処理を行う例を示した。しかし、音声処理装置100が補正する信号はDSDフォーマットに限らず、パルス密度変調によって量子化された信号であれば、いずれのフォーマットの信号であってもよい。
[1-4. Modification Example of First Embodiment]
In the first embodiment, an example has been described in which the audio processing device 100 receives a DSD format signal from the audio source 10 and performs a correction process on the received DSD signal. However, the signal corrected by the audio processing device 100 is not limited to the DSD format, and may be any format signal as long as the signal is quantized by pulse density modulation.
 また、上記第1の実施形態では、音声処理装置100が、DSP110においてDSD信号を16bitのPCM信号に変換する例を示したが、16bit以外のPCM信号に変換してもよい。すなわち、音声処理装置100は、上記した補正部112による補正処理を表現可能なビット列の信号が得られるのであれは、DSD信号を16bit以外のPCM信号に変換してもよい。 In the first embodiment, the example in which the audio processing apparatus 100 converts the DSD signal into the 16-bit PCM signal in the DSP 110 has been described. However, the audio processing apparatus 100 may convert the DSD signal into a 16-bit PCM signal. That is, the audio processing device 100 may convert the DSD signal into a PCM signal other than 16 bits as long as a signal of a bit sequence that can express the correction processing by the correction unit 112 is obtained.
(2.第2の実施形態)
[2-1.第2の実施形態に係る音声処理システムの構成]
 次に、図7及び図8を用いて、第2の実施形態について説明する。図7は、本開示の第2の実施形態に係る音声処理システム2の構成例を示す図である。図7に示すように、第2の実施形態に係る音声処理装置100Aは、第1の実施形態と比較して、解析部150と、スイッチ160と、スイッチ170とをさらに有する。なお、以下では、第1の実施形態に係る構成と同様の構成については説明を省略する。
(2. Second Embodiment)
[2-1. Configuration of audio processing system according to second embodiment]
Next, a second embodiment will be described with reference to FIGS. 7 and 8. FIG. 7 is a diagram illustrating a configuration example of the audio processing system 2 according to the second embodiment of the present disclosure. As illustrated in FIG. 7, the audio processing device 100A according to the second embodiment further includes an analysis unit 150, a switch 160, and a switch 170 as compared with the first embodiment. In the following, description of the same configuration as that according to the first embodiment will be omitted.
 第1の実施形態では、音声処理装置100が、増幅部140の特性(入力が許容されるパルス幅等)、DSD信号のサンプリング周波数、及び、マスタークロックの値に基づいて、予め非対称となる波形の変調度を算出し、算出した変調度に基づいてDSP110で補正を行う例を示した。 In the first embodiment, the audio processing apparatus 100 generates an asymmetric waveform in advance based on the characteristics of the amplifying unit 140 (eg, a pulse width that allows input), the sampling frequency of the DSD signal, and the value of the master clock. An example has been shown in which the degree of modulation is calculated and the DSP 110 performs correction based on the calculated degree of modulation.
 第2の実施形態に係る音声処理装置100Aは、上記した増幅部140の特性等の変数を取得し、それらの値を解析することで、動的な補正処理を可能とするものである。具体的には、音声処理装置100Aに係る解析部150は、音声処理システム2で実行される情報処理の過程で種々の変数を取得し、取得した値を解析することで、動的な補正処理を実行する。 The audio processing device 100A according to the second embodiment obtains variables such as the characteristics of the above-described amplifying unit 140 and analyzes those values to enable dynamic correction processing. Specifically, the analysis unit 150 according to the audio processing device 100A acquires various variables in the process of information processing performed by the audio processing system 2, analyzes the acquired values, and performs dynamic correction processing. Execute
 例えば、解析部150は、PWM変換部130によって変換されたPWM信号を駆動させる増幅部140の駆動能力を解析する。具体的には、解析部150は、駆動能力として、増幅部140が許容するPWM信号のパルス幅を解析する。 For example, the analysis unit 150 analyzes the driving ability of the amplification unit 140 that drives the PWM signal converted by the PWM conversion unit 130. Specifically, the analysis unit 150 analyzes the pulse width of the PWM signal allowed by the amplification unit 140 as the driving capability.
 例えば、解析部150は、第1の実施形態で示した情報処理の過程において、狭パルスが回避され、かつ、PWM信号が対称となった場合のPWM信号の波形や、変調度等の値を取得する(ステップS51)。また、解析部150は、第1の実施形態で示した情報処理の過程において、狭パルスが回避されず、かつ、PWM信号が非対称となった場合のPWM信号の波形や、変調度等の値を取得する。また、解析部150は、音声処理におけるマスタークロックの設定値等を取得する。 For example, in the process of the information processing described in the first embodiment, the analysis unit 150 determines the waveform of the PWM signal when the narrow pulse is avoided and the PWM signal is symmetric, and the value of the modulation factor or the like. It is acquired (step S51). Also, in the process of the information processing shown in the first embodiment, the analysis unit 150 determines the waveform of the PWM signal when the PWM signal is not asymmetric and the PWM signal is asymmetric, To get. Further, the analysis unit 150 acquires a set value of the master clock in the audio processing, and the like.
 また、解析部150は、増幅部140から出力された音声出力信号を取得し、取得した波形が対称性のある波形となっているか、歪みが発生していないか否か等を解析する(ステップS52)。また、解析部150は、音声出力機器20におけるインピーダンス等の情報を取得する(ステップS53)。また、解析部150は、オーディオソース10から、音声処理装置100Aに入力されるDSD信号のサンプリング周波数や、DSDファイルの種別等を取得する(ステップS54)。 Further, the analysis unit 150 acquires the audio output signal output from the amplification unit 140, and analyzes whether the acquired waveform is a symmetrical waveform, whether or not distortion has occurred (step S1). S52). In addition, the analysis unit 150 acquires information such as impedance in the audio output device 20 (Step S53). In addition, the analysis unit 150 acquires the sampling frequency of the DSD signal input to the audio processing device 100A, the type of the DSD file, and the like from the audio source 10 (step S54).
 そして、解析部150は、取得した情報に基づいて、DSP110において入力信号を補正すべきであるか否かを動的に決定する。また、解析部150は、補正する場合の補正値を動的に算出する。 {Then, the analysis unit 150 dynamically determines whether or not the DSP 110 should correct the input signal based on the acquired information. In addition, the analysis unit 150 dynamically calculates a correction value for correction.
 例えば、解析部150は、増幅部140の許容するパルス幅が取得できた場合には、第1の実施形態と同様に、マスタークロックの設置値やDSD信号のサンプリング周波数から、狭パルスを回避した場合の変調度を算出することができる。このため、音声処理装置100Aによれば、事前に変調度等の設定をDSP110に人為的に与えておかなくても、適切な値で補正を行うことができる。 For example, when the pulse width allowed by the amplification unit 140 can be obtained, the analysis unit 150 avoids the narrow pulse from the setting value of the master clock and the sampling frequency of the DSD signal, as in the first embodiment. The degree of modulation in the case can be calculated. Therefore, according to the audio processing device 100A, it is possible to perform correction with an appropriate value without setting the modulation degree and the like to the DSP 110 in advance.
 また、解析部150によれば、音声出力機器20のインピーダンスの値を取得可能であるため、音声出力機器20に応じて、補正値を調整する処理を行うことができる。例えば、インピーダンスが小さい値をとるほど流れる電流の値は大きくなるため、増幅部140にかかる負荷が大きくなる。具体的には、増幅部140の増幅処理の負担が大きくなる。このような場合、解析部150は、現時点の設定値よりも、増幅部140に入力される最小のパルス幅を大きくする(太らせる)。これにより、増幅部140は、狭いパルス幅の増幅を行わずにすむため、増幅の負荷が小さくなる。そして、解析部150は、最小のパルス幅を大きくする調整を行った場合には、変化させたパルス幅に応じた補正値を新たに算出する。 According to the analysis unit 150, since the impedance value of the audio output device 20 can be acquired, a process of adjusting the correction value according to the audio output device 20 can be performed. For example, as the value of the impedance decreases, the value of the current flowing increases, so that the load applied to the amplifier 140 increases. Specifically, the load of the amplification process of the amplification unit 140 increases. In such a case, the analysis unit 150 increases (thickers) the minimum pulse width input to the amplification unit 140 from the current set value. This eliminates the need for the amplification section 140 to perform amplification with a narrow pulse width, and thus reduces the load of amplification. Then, when performing an adjustment to increase the minimum pulse width, the analysis unit 150 newly calculates a correction value corresponding to the changed pulse width.
 例えば、第1の実施形態では、狭パルスを回避した場合の最小のパルス幅は「4スロット」であったが、解析部150は、仮にこの幅を「6スロット」に変化させた場合、それに伴い変化する補正値(変調度に基づいて決定される値)を新たに算出する。そして、解析部150は、新たに算出した補正値をDSP110(補正部112)に設定する。 For example, in the first embodiment, the minimum pulse width when avoiding a narrow pulse is “4 slots”. However, if the width is changed to “6 slots”, the analysis unit 150 A correction value (a value determined based on the modulation factor) that changes accordingly is newly calculated. Then, the analysis unit 150 sets the newly calculated correction value in the DSP 110 (correction unit 112).
 すなわち、補正部112は、解析部150によって解析されたパルス幅に基づいて、1キャリア周波数内の波形が対称になるよう所定の入力信号がPWM信号に変換されたと仮定した場合の変調度を算出し、算出した変調度に基づいて、入力信号を補正する。このように、解析部150によれば、音声処理システム2における回路全体の構造を解析し、最適な補正値を動的に決定することができる。 That is, the correction unit 112 calculates a modulation factor based on the pulse width analyzed by the analysis unit 150, assuming that a predetermined input signal is converted into a PWM signal such that a waveform within one carrier frequency is symmetric. Then, the input signal is corrected based on the calculated degree of modulation. As described above, according to the analysis unit 150, it is possible to analyze the structure of the entire circuit in the audio processing system 2 and dynamically determine an optimal correction value.
 また、解析部150は、本開示に係る情報処理において、補正処理をスルーさせる決定を行ってもよい。例えば、解析部150が、オーディオソース10から取得したDSD信号のサンプリング周波数や、マスタークロックの設定値等を解析し、PWM変換において狭パルスが発生しえないと判定したものとする。例えば、解析部150は、あるDSD信号の処理において発生する最小のパルス幅が、増幅部140の許容するパルス幅よりも必ず大きくなると判定したものとする。この場合、補正部112による補正処理が必要なくなるため、DSD信号をPCM信号等に変換する処理や、再び量子化する処理が無駄となる。 In addition, in the information processing according to the present disclosure, the analysis unit 150 may determine that the correction processing is to be skipped. For example, it is assumed that the analysis unit 150 analyzes the sampling frequency of the DSD signal acquired from the audio source 10, the set value of the master clock, and the like, and determines that a narrow pulse cannot be generated in the PWM conversion. For example, it is assumed that the analysis unit 150 determines that the minimum pulse width generated in processing a certain DSD signal is always larger than the pulse width permitted by the amplification unit 140. In this case, since the correction process by the correction unit 112 is not required, the process of converting the DSD signal into a PCM signal or the like and the process of re-quantization are wasted.
 上記のようにパルス幅が所定の条件を満たす場合、解析部150は、スイッチ160及びスイッチ170を切り替えることで、補正処理をスルーさせてもよい(ステップS55)。具体的には、解析部150は、最小のパルス幅が所定条件を満たすと判定した場合、スイッチ160を切り替え、オーディオソース10から受け付けたDSD信号を直接PWM変換部130に送る(ステップS56)。また、解析部150は、スイッチ170を切り替え、PWM変換部130から出力される信号を増幅部140に送る。なお、解析部150は、補正処理をスルーさせない場合、スイッチ160をDSP110に切り替える(ステップS57)。 If the pulse width satisfies the predetermined condition as described above, the analysis unit 150 may cause the correction process to be skipped by switching the switches 160 and 170 (step S55). Specifically, when the analysis unit 150 determines that the minimum pulse width satisfies the predetermined condition, the analysis unit 150 switches the switch 160 and sends the DSD signal received from the audio source 10 directly to the PWM conversion unit 130 (Step S56). Further, analysis section 150 switches switch 170 and sends the signal output from PWM conversion section 130 to amplification section 140. If the correction processing is not to be skipped, the analysis unit 150 switches the switch 160 to the DSP 110 (step S57).
 すなわち、補正部112は、解析部150によって解析されたパルス幅が所定条件を満たす場合には、所定の入力信号を補正しない。また、PWM変換部130は、補正部112によって補正される前の所定の入力信号(すなわち、オーディオソース10に記録されていた元のDSD信号)をPWM信号に変換する。 That is, when the pulse width analyzed by the analysis unit 150 satisfies the predetermined condition, the correction unit 112 does not correct the predetermined input signal. Further, the PWM conversion unit 130 converts a predetermined input signal before correction by the correction unit 112 (that is, the original DSD signal recorded on the audio source 10) into a PWM signal.
 これにより、音声処理装置100Aは、補正処理を行わない場合には、DSP110等を介さずに処理を行うことができるため、処理の高速化や、処理負荷の低減を図ることができる。 Thus, when the correction processing is not performed, the audio processing apparatus 100A can perform the processing without the intervention of the DSP 110 or the like, so that the processing speed can be increased and the processing load can be reduced.
[2-2.第2の実施形態に係る情報処理の手順]
 次に、図8を用いて、第2の実施形態に係る情報処理の手順について説明する。図8は、本開示の第2の実施形態に係る処理の流れを示すフローチャートである。
[2-2. Procedure of information processing according to second embodiment]
Next, an information processing procedure according to the second embodiment will be described with reference to FIG. FIG. 8 is a flowchart illustrating a flow of a process according to the second embodiment of the present disclosure.
 図8に示すように、音声処理装置100Aは、増幅部140の特性やマスタークロックの設定値、DSD信号のサンプリング周波数等に基づいて、狭パルスに関する情報を解析する(ステップS201)。 As shown in FIG. 8, the audio processing device 100A analyzes information related to the narrow pulse based on the characteristics of the amplifying unit 140, the set value of the master clock, the sampling frequency of the DSD signal, and the like (step S201).
 その後、音声処理装置100Aは、DSD信号の入力を受け付けたか否かを判定する(ステップS202)。DSD信号の入力を受け付けていない場合(ステップS202;No)、音声処理装置100Aは、DSD信号の入力を受け付けるまで待機する。 Then, the audio processing device 100A determines whether the input of the DSD signal has been received (step S202). If the input of the DSD signal has not been received (Step S202; No), the audio processing device 100A waits until the input of the DSD signal is received.
 一方、DSD信号の入力を受け付けた場合(ステップS202;Yes)、音声処理装置100Aは、受け付けたDSD信号に対する補正処理が必要か否かを判定する(ステップS203)。 On the other hand, when the input of the DSD signal is received (Step S202; Yes), the audio processing device 100A determines whether the received DSD signal needs to be corrected (Step S203).
 DSD信号に対する補正処理が必要であると判定した場合(ステップS203;Yes)、音声処理装置100Aは、DSD信号をPCM信号に変換する(ステップS204)。そして、音声処理装置100Aは、DSD信号がPWM信号に変換された場合の波形の非対称性(第2の実施形態では、解析部150によって解析された情報(変調度))に基づいて、PCM信号を補正する(ステップS205)。 If it is determined that the DSD signal needs to be corrected (step S203; Yes), the audio processing device 100A converts the DSD signal into a PCM signal (step S204). Then, the audio processing device 100A generates the PCM signal based on the asymmetry of the waveform when the DSD signal is converted into the PWM signal (in the second embodiment, information (modulation degree) analyzed by the analysis unit 150). Is corrected (step S205).
 音声処理装置100Aは、補正したPCM信号をΔΣ変調器120に入力し、量子化する(ステップS206)。続けて、音声処理装置100Aは、量子化された入力信号をPWM変換部130に入力し、PWM信号に変換する(ステップS207)。なお、音声処理装置100は、DSD信号に対する補正処理が必要でないと判定した場合(ステップS203;No)、ステップS204からステップS206までの処理をスルーさせ、ステップS207の処理を実行する。 The audio processing device 100A inputs the corrected PCM signal to the ΔΣ modulator 120 and quantizes it (step S206). Subsequently, the audio processing device 100A inputs the quantized input signal to the PWM conversion unit 130, and converts the input signal into a PWM signal (step S207). Note that when the audio processing device 100 determines that the correction process on the DSD signal is not necessary (Step S203; No), the process from Step S204 to Step S206 is skipped, and the process of Step S207 is executed.
 その後、音声処理装置100Aは、増幅部140において、PWM信号から出力信号を生成する(ステップS207)。このように、音声処理装置100Aは、音声処理システム2に係る変数を解析することで動的に補正処理を行うことができるため、様々な種別のDSD信号に対して本開示の情報処理を適用したり、増幅部140の回路を柔軟に設計変更したりすることができる。 Then, in the audio processing device 100A, the amplifier 140 generates an output signal from the PWM signal (step S207). As described above, since the audio processing device 100A can dynamically perform the correction process by analyzing the variables related to the audio processing system 2, the information processing of the present disclosure is applied to various types of DSD signals. Or the design of the circuit of the amplifier 140 can be flexibly changed.
(3.その他の実施形態)
 上述した各実施形態に係る処理は、上記各実施形態以外にも種々の異なる形態にて実施されてよい。なお、以下では、特に説明のない場合、音声処理装置100及び音声処理装置100Aの双方を含む内容について、単に音声処理装置100と記載する。
(3. Other embodiments)
The processing according to each of the above-described embodiments may be performed in various different forms other than the above-described embodiments. In the following, unless otherwise specified, the content including both the audio processing device 100 and the audio processing device 100A is simply described as the audio processing device 100.
 上記の各実施形態では、音声処理装置100が、シングルエンド駆動方式でPWM信号を駆動させる例を示したが、駆動はバランス駆動方式であってもよい。この点について、図9を用いて説明する。図9は、本開示の変形例に係るPWM信号の波形の一例を説明するための図である。 In each of the above embodiments, an example is described in which the audio processing device 100 drives the PWM signal by a single-end drive method, but the drive may be a balance drive method. This will be described with reference to FIG. FIG. 9 is a diagram illustrating an example of a waveform of a PWM signal according to a modified example of the present disclosure.
 図9に示す波形81は、バランス駆動方式におけるPWM信号の波形の一例を示す。シングル駆動方式の場合、図2A等に示したように、PWM信号は、1キャリア周波数内の中心に対称性を有する。一方、バランス駆動方式では、波形81に示すように、Positiveな信号とNegativeな信号が差動合成された波形が対称性を有する。図9の例では、PWM信号のうちPWM(+)(図9で示す「1」)のPositiveな信号を「PWM(+P)」と表記し、Negativeな信号を「PWM(+N)」と表記する。また、PWM信号のうちPWM(-)(図9で示す「0」)のPositiveな信号を「PWM(-P)」と表記し、Negativeな信号を「PWM(-N)」と表記する。なお、波形81は、PWM(-P)及びPWM(+N)における最小のパルス幅を示しており、図2Bに示した狭パルスの波形に対応する。 波形 A waveform 81 shown in FIG. 9 shows an example of a PWM signal waveform in the balance driving method. In the case of the single drive system, as shown in FIG. 2A and the like, the PWM signal has symmetry at the center within one carrier frequency. On the other hand, in the balance driving method, as shown by a waveform 81, a waveform obtained by differentially combining a positive signal and a negative signal has symmetry. In the example of FIG. 9, a positive signal of PWM (+) (“1” shown in FIG. 9) among the PWM signals is described as “PWM (+ P)”, and a negative signal is described as “PWM (+ N)”. I do. Further, among the PWM signals, a positive signal of PWM (−) (“0” shown in FIG. 9) is expressed as “PWM (−P)”, and a negative signal is expressed as “PWM (−N)”. Note that the waveform 81 indicates the minimum pulse width in PWM (-P) and PWM (+ N), and corresponds to the narrow pulse waveform shown in FIG. 2B.
 波形81の狭パルスを回避するためにPWM(-P)及びPWM(+N)のパルス幅を拡張させた場合(ステップS60)、音声処理装置100は、図9に示す波形82を得る。図9に示す波形82は、狭パルスを回避するためにPWM(-P)及びPWM(+N)のパルス幅を拡張させた波形の一例である。図9に示すように、波形82では、波形81に対してPWM(-P)及びPWM(+N)のパルス幅を拡張させたことにより、1キャリア内のPWM(-P)とPWM(-N)の差動合成の波形、及び、1キャリア内のPWM(+P)とPWM(+N)の差動合成の波形が非対称となる。図9に示すように、バランス駆動方式の場合はシングルエンド駆動方式の場合とPWM信号の波形が異なるものの、音声処理装置100は、上記各実施形態で示した処理と同様、最終的な波形(例えば正弦波で示される音声出力波)の振幅が対称となるよう補正が可能である。すなわち、音声処理装置100は、駆動方式に関わらず、オーディオ特性を損なわない音声処理を実現することができる。 場合 When the pulse widths of PWM (−P) and PWM (+ N) are expanded to avoid the narrow pulse of the waveform 81 (step S60), the audio processing device 100 obtains the waveform 82 shown in FIG. A waveform 82 shown in FIG. 9 is an example of a waveform obtained by expanding the pulse widths of PWM (−P) and PWM (+ N) in order to avoid a narrow pulse. As shown in FIG. 9, in the waveform 82, the PWM (−P) and the PWM (−N) in one carrier are expanded by expanding the pulse widths of the PWM (−P) and the PWM (+ N) with respect to the waveform 81. ) And the waveform of the differential combination of PWM (+ P) and PWM (+ N) in one carrier are asymmetric. As shown in FIG. 9, although the waveform of the PWM signal is different in the case of the balanced drive system from the case of the single-end drive system, the audio processing apparatus 100 performs the final waveform ( For example, it is possible to perform correction so that the amplitude of a sound output wave represented by a sine wave is symmetric. That is, the audio processing device 100 can realize audio processing that does not impair the audio characteristics, regardless of the driving method.
 また、上記各実施形態では、音声処理装置100が増幅部140を備える構成を示した。しかし、増幅部140は、単独のデジタルアンプとして構成されてもよいし、音声出力機器20に含まれる構成であってもよい。 In each of the above embodiments, the configuration in which the audio processing device 100 includes the amplification unit 140 has been described. However, the amplification unit 140 may be configured as a single digital amplifier, or may be configured to be included in the audio output device 20.
 また、上記各実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。 Further, among the processes described in the above embodiments, all or a part of the processes described as being performed automatically may be manually performed, or the processes described as being performed manually may be performed. Can be automatically or entirely performed by a known method. In addition, the processing procedures, specific names, and information including various data and parameters shown in the above documents and drawings can be arbitrarily changed unless otherwise specified. For example, the various information shown in each drawing is not limited to the information shown.
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。 The components of each device shown in the drawings are functionally conceptual, and do not necessarily need to be physically configured as shown in the drawings. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or a part thereof may be functionally or physically distributed / arbitrarily divided into arbitrary units according to various loads and usage conditions. Can be integrated and configured.
 また、上述してきた各実施形態及び変形例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 The embodiments and the modifications described above can be combined as appropriate within a range that does not contradict processing contents.
 また、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。 効果 In addition, the effects described in this specification are merely examples and are not limited, and other effects may be provided.
(4.ハードウェア構成)
 上述してきた各実施形態に係る音声処理装置100等の情報機器は、例えば図10に示すような構成のコンピュータ1000によって実現される。以下、第1の実施形態に係る音声処理装置100を例に挙げて説明する。図10は、音声処理装置100の機能を実現するコンピュータ1000の一例を示すハードウェア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インターフェイス1500、及び入出力インターフェイス1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
(4. Hardware configuration)
The information devices such as the voice processing device 100 according to each embodiment described above are realized by, for example, a computer 1000 having a configuration as shown in FIG. Hereinafter, the audio processing device 100 according to the first embodiment will be described as an example. FIG. 10 is a hardware configuration diagram illustrating an example of a computer 1000 that implements the functions of the audio processing device 100. The computer 1000 has a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, a HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input / output interface 1600. Each unit of the computer 1000 is connected by a bus 1050.
 CPU1100は、ROM1300又はHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。例えば、CPU1100は、ROM1300又はHDD1400に格納されたプログラムをRAM1200に展開し、各種プログラムに対応した処理を実行する。 The CPU 1100 operates based on a program stored in the ROM 1300 or the HDD 1400, and controls each unit. For example, the CPU 1100 loads a program stored in the ROM 1300 or the HDD 1400 into the RAM 1200, and executes processing corresponding to various programs.
 ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるBIOS(Basic Input Output System)等のブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。 The ROM 1300 stores a boot program such as a BIOS (Basic Input Output System) executed by the CPU 1100 when the computer 1000 starts up, a program that depends on the hardware of the computer 1000, and the like.
 HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を非一時的に記録する、コンピュータが読み取り可能な記録媒体である。具体的には、HDD1400は、プログラムデータ1450の一例である本開示に係る音声処理プログラムを記録する記録媒体である。 The HDD 1400 is a computer-readable recording medium for non-temporarily recording a program executed by the CPU 1100 and data used by the program. Specifically, HDD 1400 is a recording medium that records an audio processing program according to the present disclosure, which is an example of program data 1450.
 通信インターフェイス1500は、コンピュータ1000が外部ネットワーク1550(例えばインターネット)と接続するためのインターフェイスである。例えば、CPU1100は、通信インターフェイス1500を介して、他の機器からデータを受信したり、CPU1100が生成したデータを他の機器へ送信したりする。 The communication interface 1500 is an interface for connecting the computer 1000 to an external network 1550 (for example, the Internet). For example, the CPU 1100 receives data from another device via the communication interface 1500 or transmits data generated by the CPU 1100 to another device.
 入出力インターフェイス1600は、入出力デバイス1650とコンピュータ1000とを接続するためのインターフェイスである。例えば、CPU1100は、入出力インターフェイス1600を介して、キーボードやマウス等の入力デバイスからデータを受信する。また、CPU1100は、入出力インターフェイス1600を介して、ディスプレイやスピーカーやプリンタ等の出力デバイスにデータを送信する。また、入出力インターフェイス1600は、所定の記録媒体(メディア)に記録されたプログラム等を読み取るメディアインターフェイスとして機能してもよい。メディアとは、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。 The input / output interface 1600 is an interface for connecting the input / output device 1650 and the computer 1000. For example, the CPU 1100 receives data from an input device such as a keyboard and a mouse via the input / output interface 1600. In addition, the CPU 1100 transmits data to an output device such as a display, a speaker, or a printer via the input / output interface 1600. Further, the input / output interface 1600 may function as a media interface that reads a program or the like recorded on a predetermined recording medium (media). The medium is, for example, an optical recording medium such as a DVD (Digital Versatile Disc), a PD (Phase changeable rewritable Disk), a magneto-optical recording medium such as an MO (Magneto-Optical disk), a tape medium, a magnetic recording medium, or a semiconductor memory. It is.
 例えば、コンピュータ1000が第1の実施形態に係る音声処理装置100として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされた音声処理プログラムを実行することにより、DSP110等の機能を実現する。また、HDD1400には、本開示に係る音声処理プログラムや、音声処理の対象となるDSD信号等のデータが格納される。なお、CPU1100は、プログラムデータ1450をHDD1400から読み取って実行するが、他の例として、外部ネットワーク1550を介して、他の装置からこれらのプログラムを取得してもよい。 For example, when the computer 1000 functions as the audio processing device 100 according to the first embodiment, the CPU 1100 of the computer 1000 implements the functions of the DSP 110 and the like by executing the audio processing program loaded on the RAM 1200. Further, the HDD 1400 stores an audio processing program according to the present disclosure and data such as a DSD signal to be subjected to audio processing. Note that the CPU 1100 reads and executes the program data 1450 from the HDD 1400. However, as another example, the CPU 1100 may acquire these programs from another device via the external network 1550.
 なお、本技術は以下のような構成も取ることができる。
(1)
 所定の入力信号をPWM(Pulse Width Modulation)信号に変換した場合の1キャリア周波数内の波形の非対称性に基づいて、前記所定の入力信号を補正する補正部と、
 前記補正部によって補正された後の所定の入力信号をPWM信号に変換するPWM変換部と
 を備えた音声処理装置。
(2)
 前記補正部は、
 前記非対称性に基づいて、前記所定の入力信号の振幅に対応する値を補正する
 前記(1)に記載の音声処理装置。
(3)
 前記補正部は、
 1キャリア周波数内の波形が対称になるよう前記所定の入力信号をPWM信号に変換したと仮定した場合の変調度に基づいて、当該所定の入力信号を補正する
 前記(1)又は(2)に記載の音声処理装置。
(4)
 前記補正部は、
 1キャリア周波数内の波形が対称になるよう前記所定の入力信号をPWM信号に変換したと仮定した場合の変調度に基づいて、当該所定の入力信号の振幅に対応する値を増加させる
 前記(1)~(3)のいずれかに記載の音声処理装置。
(5)
 前記PWM変換部によって変換されたPWM信号を駆動させる増幅部の駆動能力を解析する解析部をさらに備え、
 前記補正部は、
 前記解析部によって解析された駆動能力に応じて、前記所定の入力信号を補正する
 前記(1)~(4)のいずれかに記載の音声処理装置。
(6)
 前記解析部は、
 前記駆動能力として、前記増幅部が許容するPWM信号のパルス幅を解析し、
 前記補正部は、
 前記解析部によって解析されたパルス幅に基づいて、1キャリア周波数内の波形が対称になるよう前記所定の入力信号がPWM信号に変換されたと仮定した場合の変調度を算出し、算出した変調度に基づいて、前記所定の入力信号を補正する
 前記(5)に記載の音声処理装置。
(7)
 前記補正部は、
 前記解析部によって解析されたパルス幅が所定条件を満たす場合には、前記所定の入力信号を補正せず、
 前記PWM変換部は、
 前記補正部によって補正される前の所定の入力信号をPWM信号に変換する
 前記(5)又は(6)に記載の音声処理装置。
(8)
 前記所定の入力信号は、DSD(Direct Stream Digital)形式の信号をPCM(Pulse Code Modulation)形式に変換した信号である
 前記(1)~(7)のいずれかに記載の音声処理装置。
(9)
 コンピュータが、
 所定の入力信号をPWM(Pulse Width Modulation)信号に変換した場合の1キャリア周波数内の波形の非対称性に基づいて、前記所定の入力信号を補正し、
 補正された後の所定の入力信号をPWM信号に変換する
 音声処理方法。
(10)
 コンピュータを、
 所定の入力信号をPWM(Pulse Width Modulation)信号に変換した場合の1キャリア周波数内の波形の非対称性に基づいて、前記所定の入力信号を補正する補正部と、
 前記補正部によって補正された後の所定の入力信号をPWM信号に変換するPWM変換部と
 として機能させるための音声処理プログラム。
Note that the present technology can also have the following configurations.
(1)
A correction unit that corrects the predetermined input signal based on the asymmetry of the waveform within one carrier frequency when the predetermined input signal is converted into a PWM (Pulse Width Modulation) signal;
A PWM conversion unit that converts a predetermined input signal corrected by the correction unit into a PWM signal.
(2)
The correction unit,
The audio processing device according to (1), wherein a value corresponding to the amplitude of the predetermined input signal is corrected based on the asymmetry.
(3)
The correction unit,
Correcting the predetermined input signal based on the modulation factor when it is assumed that the predetermined input signal is converted into a PWM signal so that the waveform within one carrier frequency is symmetric. (1) or (2) An audio processing device according to claim 1.
(4)
The correction unit,
A value corresponding to the amplitude of the predetermined input signal is increased based on a modulation factor when it is assumed that the predetermined input signal is converted into a PWM signal so that a waveform within one carrier frequency is symmetric. The audio processing device according to any one of (1) to (3).
(5)
An analysis unit that analyzes a driving capability of an amplification unit that drives the PWM signal converted by the PWM conversion unit;
The correction unit,
The audio processing device according to any one of (1) to (4), wherein the predetermined input signal is corrected according to the driving capability analyzed by the analysis unit.
(6)
The analysis unit,
Analyzing the pulse width of the PWM signal allowed by the amplification unit as the driving capability,
The correction unit,
A modulation factor is calculated based on the pulse width analyzed by the analyzer, assuming that the predetermined input signal is converted into a PWM signal so that a waveform within one carrier frequency is symmetric, and the calculated modulation factor is calculated. The audio processing device according to (5), wherein the predetermined input signal is corrected based on the following.
(7)
The correction unit,
When the pulse width analyzed by the analyzer satisfies a predetermined condition, the predetermined input signal is not corrected,
The PWM converter includes:
The audio processing device according to (5) or (6), which converts a predetermined input signal before being corrected by the correction unit into a PWM signal.
(8)
The audio processing device according to any one of (1) to (7), wherein the predetermined input signal is a signal obtained by converting a signal in a direct stream digital (DSD) format into a pulse code modulation (PCM) format.
(9)
Computer
Correcting the predetermined input signal based on the asymmetry of the waveform within one carrier frequency when the predetermined input signal is converted into a PWM (Pulse Width Modulation) signal;
An audio processing method for converting a corrected predetermined input signal into a PWM signal.
(10)
Computer
A correction unit that corrects the predetermined input signal based on the asymmetry of the waveform within one carrier frequency when the predetermined input signal is converted into a PWM (Pulse Width Modulation) signal;
An audio processing program for functioning as a PWM conversion unit that converts a predetermined input signal corrected by the correction unit into a PWM signal.
 1、2 音声処理システム
 10 オーディオソース
 20 音声出力機器
 100、100A 音声処理装置
 110 DSP
 111 ローパスフィルタ
 112 補正部
 120 ΔΣ変調器
 130 PWM変換部
 140 増幅部
 150 解析部
1, 2 audio processing system 10 audio source 20 audio output device 100, 100A audio processing device 110 DSP
111 Low-pass filter 112 Correction unit 120 ΔΣ modulator 130 PWM conversion unit 140 Amplification unit 150 Analysis unit

Claims (10)

  1.  所定の入力信号をPWM(Pulse Width Modulation)信号に変換した場合の1キャリア周波数内の波形の非対称性に基づいて、前記所定の入力信号を補正する補正部と、
     前記補正部によって補正された後の所定の入力信号をPWM信号に変換するPWM変換部と
     を備えた音声処理装置。
    A correction unit that corrects the predetermined input signal based on the asymmetry of the waveform within one carrier frequency when the predetermined input signal is converted into a PWM (Pulse Width Modulation) signal;
    A PWM conversion unit that converts a predetermined input signal corrected by the correction unit into a PWM signal.
  2.  前記補正部は、
     前記非対称性に基づいて、前記所定の入力信号の振幅に対応する値を補正する
     請求項1に記載の音声処理装置。
    The correction unit,
    The audio processing device according to claim 1, wherein a value corresponding to the amplitude of the predetermined input signal is corrected based on the asymmetry.
  3.  前記補正部は、
     1キャリア周波数内の波形が対称になるよう前記所定の入力信号をPWM信号に変換したと仮定した場合の変調度に基づいて、当該所定の入力信号を補正する
     請求項1に記載の音声処理装置。
    The correction unit,
    The audio processing apparatus according to claim 1, wherein the predetermined input signal is corrected based on a modulation factor when it is assumed that the predetermined input signal is converted into a PWM signal so that a waveform within one carrier frequency is symmetric. .
  4.  前記補正部は、
     1キャリア周波数内の波形が対称になるよう前記所定の入力信号をPWM信号に変換したと仮定した場合の変調度に基づいて、当該所定の入力信号の振幅に対応する値を増加させる
     請求項1に記載の音声処理装置。
    The correction unit,
    A value corresponding to the amplitude of the predetermined input signal is increased based on a modulation factor when it is assumed that the predetermined input signal is converted into a PWM signal so that a waveform within one carrier frequency is symmetric. An audio processing device according to claim 1.
  5.  前記PWM変換部によって変換されたPWM信号を駆動させる増幅部の駆動能力を解析する解析部をさらに備え、
     前記補正部は、
     前記解析部によって解析された駆動能力に応じて、前記所定の入力信号を補正する
     請求項1に記載の音声処理装置。
    An analysis unit that analyzes a driving capability of an amplification unit that drives the PWM signal converted by the PWM conversion unit;
    The correction unit,
    The audio processing device according to claim 1, wherein the predetermined input signal is corrected according to the driving ability analyzed by the analysis unit.
  6.  前記解析部は、
     前記駆動能力として、前記増幅部が許容するPWM信号のパルス幅を解析し、
     前記補正部は、
     前記解析部によって解析されたパルス幅に基づいて、1キャリア周波数内の波形が対称になるよう前記所定の入力信号がPWM信号に変換されたと仮定した場合の変調度を算出し、算出した変調度に基づいて、前記所定の入力信号を補正する
     請求項5に記載の音声処理装置。
    The analysis unit,
    Analyzing the pulse width of the PWM signal allowed by the amplification unit as the driving capability,
    The correction unit,
    A modulation factor is calculated based on the pulse width analyzed by the analyzer, assuming that the predetermined input signal is converted into a PWM signal so that a waveform within one carrier frequency is symmetric, and the calculated modulation factor is calculated. The audio processing device according to claim 5, wherein the predetermined input signal is corrected based on the following.
  7.  前記補正部は、
     前記解析部によって解析されたパルス幅が所定条件を満たす場合には、前記所定の入力信号を補正せず、
     前記PWM変換部は、
     前記補正部によって補正される前の所定の入力信号をPWM信号に変換する
     請求項5に記載の音声処理装置。
    The correction unit,
    When the pulse width analyzed by the analyzer satisfies a predetermined condition, the predetermined input signal is not corrected,
    The PWM converter includes:
    The audio processing device according to claim 5, wherein a predetermined input signal before being corrected by the correction unit is converted into a PWM signal.
  8.  前記所定の入力信号は、DSD(Direct Stream Digital)形式の信号をPCM(Pulse Code Modulation)形式に変換した信号である
     請求項1に記載の音声処理装置。
    The audio processing device according to claim 1, wherein the predetermined input signal is a signal obtained by converting a signal in a DSD (Direct Stream Digital) format into a PCM (Pulse Code Modulation) format.
  9.  コンピュータが、
     所定の入力信号をPWM(Pulse Width Modulation)信号に変換した場合の1キャリア周波数内の波形の非対称性に基づいて、前記所定の入力信号を補正し、
     補正された後の所定の入力信号をPWM信号に変換する
     音声処理方法。
    Computer
    Correcting the predetermined input signal based on the asymmetry of the waveform within one carrier frequency when the predetermined input signal is converted into a PWM (Pulse Width Modulation) signal;
    An audio processing method for converting a corrected predetermined input signal into a PWM signal.
  10.  コンピュータを、
     所定の入力信号をPWM(Pulse Width Modulation)信号に変換した場合の1キャリア周波数内の波形の非対称性に基づいて、前記所定の入力信号を補正する補正部と、
     前記補正部によって補正された後の所定の入力信号をPWM信号に変換するPWM変換部と
     として機能させるための音声処理プログラム。
    Computer
    A correction unit that corrects the predetermined input signal based on the asymmetry of the waveform within one carrier frequency when the predetermined input signal is converted into a PWM (Pulse Width Modulation) signal;
    An audio processing program for functioning as a PWM conversion unit that converts a predetermined input signal corrected by the correction unit into a PWM signal.
PCT/JP2019/032200 2018-08-24 2019-08-16 Sound processing device, sound processing method, and sound processing program WO2020040068A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018157619 2018-08-24
JP2018-157619 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020040068A1 true WO2020040068A1 (en) 2020-02-27

Family

ID=69592915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032200 WO2020040068A1 (en) 2018-08-24 2019-08-16 Sound processing device, sound processing method, and sound processing program

Country Status (1)

Country Link
WO (1) WO2020040068A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003030373A1 (en) * 2001-09-28 2003-04-10 Sony Corporation Delta-sigma modulation apparatus and signal amplification apparatus
JP2003110376A (en) * 2001-09-28 2003-04-11 Sony Corp Signal amplifier
US20100329482A1 (en) * 2009-06-26 2010-12-30 Lee Yong-Hee Audio digital to analog converter and audio processing apparatus including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003030373A1 (en) * 2001-09-28 2003-04-10 Sony Corporation Delta-sigma modulation apparatus and signal amplification apparatus
JP2003110376A (en) * 2001-09-28 2003-04-11 Sony Corp Signal amplifier
US20100329482A1 (en) * 2009-06-26 2010-12-30 Lee Yong-Hee Audio digital to analog converter and audio processing apparatus including the same

Similar Documents

Publication Publication Date Title
US7058464B2 (en) Device and method for signal processing
EP2843841B1 (en) Method and device for driving digital speaker based on code conversion
US20100318205A1 (en) Signal processing apparatus and signal processing method
US8315302B2 (en) Pulse width modulator using interpolator
US8866544B2 (en) Class D pulse width modulator with dual feedback
JP2002223132A (en) Sound reproducing device and method
JP4882353B2 (en) Pulse width modulation amplifier
KR20110029776A (en) Half-bridge 3-level pwm amplifier, method of driving the same and audio processing apparatus
KR102695383B1 (en) Digital-to-analog converters and amplifiers for headphones
US10361672B2 (en) Controlling a power amplification stage of an audio signal amplifier
JP5852139B2 (en) Audio signal output method and audio signal output apparatus using the same
WO2020040068A1 (en) Sound processing device, sound processing method, and sound processing program
US7782129B2 (en) System and method to reduce audio artifacts from an audio signal by reducing the order of the control loop
US10200053B2 (en) Magnitude compensation technique for processing single-bit wide data
US10965307B2 (en) Signal processing apparatus, signal processing method, and program
WO2021039037A1 (en) Signal processing device and adjustment method
JP3388173B2 (en) Feedback circuit
US20220191074A1 (en) Signal processing device, signal processing method, and program
JP4688225B2 (en) Power amplifier
JP3857154B2 (en) Pulse code modulation signal regeneration device
JP5541113B2 (en) DA converter using delta-sigma type modulation circuit, DA conversion method, and program
JP6129858B2 (en) Audio signal output audio signal processing device
JP2019213126A (en) Signal processing device and multiple sound emitting device
JP2011029787A (en) Signal processor
JPH1168570A (en) Delta-sigma type d/a converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP