WO2007010869A1 - センサタグ、センサタグ装置、受電力回路、センサタグ装置の電力供給方法 - Google Patents

センサタグ、センサタグ装置、受電力回路、センサタグ装置の電力供給方法 Download PDF

Info

Publication number
WO2007010869A1
WO2007010869A1 PCT/JP2006/314095 JP2006314095W WO2007010869A1 WO 2007010869 A1 WO2007010869 A1 WO 2007010869A1 JP 2006314095 W JP2006314095 W JP 2006314095W WO 2007010869 A1 WO2007010869 A1 WO 2007010869A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
circuit
sensor tag
microprocessor
tag device
Prior art date
Application number
PCT/JP2006/314095
Other languages
English (en)
French (fr)
Inventor
Hitoshi Kitayoshi
Kunio Sawaya
Original Assignee
Tohoku University
Intelligent Cosmos Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University, Intelligent Cosmos Research Institute filed Critical Tohoku University
Priority to JP2007526000A priority Critical patent/JP4725979B2/ja
Priority to US11/995,691 priority patent/US8493181B2/en
Publication of WO2007010869A1 publication Critical patent/WO2007010869A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/0701Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management
    • G06K19/0713Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips at least one of the integrated circuit chips comprising an arrangement for power management the arrangement including a power charge pump
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/73Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for taking measurements, e.g. using sensing coils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Sensor tag Sensor tag, sensor tag device, power receiving circuit, sensor tag device power supply method
  • the present invention relates to a sensor tag. Specifically, the present invention is used in a wireless tag device with a passive sensor that does not have a battery. For example, when an event occurs, the cause of the event and sensor data (event detection) Data, etc.) and event information such as event occurrence time is stored in an internal non-volatile memory, and the stored information is wirelessly returned in response to a wireless query from an interrogator.
  • event detection event detection
  • event information such as event occurrence time
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-258254 “Temperature Recording Device”
  • a sensor tag device is a device that can be attached to an article, a container, or the like to measure temperature information that changes one after another at regular intervals, and then read the temperature history using a wireless communication line. is there.
  • the sensor tag device can be easily read by being attached to many objects and places in a wide variety of types. Therefore, if network connection is possible, it will be an elemental technology that realizes a completely new future network society infrastructure called sensor fusion.
  • the history of environmental temperature changes and the history of light, vibration, etc. may be confirmed later for food and some industrial products, and in some cases, the load received by buildings and large structures after an earthquake, etc. There are cases where you want to check the history such as (distortion and acceleration) later.
  • the following Various conditions such as a monitoring target and a history target that are different for each field are called events.
  • a management system can be constructed.
  • FIG. 5 shows a conventional sensor tag device disclosed in Patent Document 1 described above, and is a block diagram of the sensor tag device.
  • the thermistor 503 is connected to an internal bridge, and its output temperature signal is converted into digital information by an AD converter 511. This operation is performed intermittently, and the output information is stored in the nonvolatile memory 512. The temperature recording interval is set by an external command. These operations are controlled by the microcomputer 515 and necessary operations are performed. The operation power is supplied from a power supply circuit 514 through a supply path 517 indicated as power supply (1). During this period, a necessary clock is constantly supplied from the oscillation circuit 516.
  • the internal measurement recording circuit also operates the power source of the battery 504 for a short period of time for measuring and recording the temperature, but during the pause period, a minimum circuit such as a clock circuit and a monitoring circuit is used. Only works and saves battery consumption.
  • the external reader / writer force also causes the coil 501 to pass a high-frequency current modulated by a digital signal.
  • the coil 502 demodulates the digital information and transmits it to the microcomputer 515.
  • the high-frequency electromotive force induced in the coil 502 is rectified and smoothed to become a power source, which is supplied to the memory 512 and the microcomputer 515 through the supply path 518 indicated as power source (2).
  • the device can be instructed to initialize and start reading.
  • the dotted arrow 519 in Fig. 5 shows the flow of information.
  • the device side force when the device side force also returns information to the outside, the information is read from the memory in accordance with an instruction from the microcomputer 515, modulated by the rectification / demodulation / modulation circuit 513 to a high frequency and transmitted to the outside. Since this modulation method is a method of modulating a high frequency supplied from an external force through the coil 501, internal power is not required, and consumption of the battery 504 can be avoided.
  • such a configuration is an active type incorporating a primary battery or a secondary battery 504, and has the following drawbacks in order to perform power feeding and communication by electromagnetic induction.
  • the present invention has been made in view of the above circumstances, and the object of the present invention is that there is no need for maintenance such as battery replacement, and reading is possible even with a positional force of 10 m or more away.
  • the purpose is to realize a sensor tag device.
  • the sensor tag according to claim 1 includes a stub resonance RF booster circuit and a ladder booster in a power receiver circuit that incorporates a transmission / reception antenna, a power receiver circuit, and a microprocessor and enables two-way communication using radio waves. It is characterized by combining with a rectifier circuit.
  • a timer circuit is operated using a battery to measure time, but in the present invention, the time is measured using the discharge phenomenon of the time constant circuit without using a battery. did.
  • the sensor tag according to claim 2 is characterized in that a two-divided microstrip antenna is used for the transmission / reception antenna.
  • the sensor tag according to claim 3, wherein the two-divided microstrip antenna is a strip thereof.
  • the split position of the conductor is deviated from the center of the length of the strip conductor.
  • the sensor tag according to claim 4 is characterized in that a signal is extracted from an intermediate stage of the ladder boosting rectifier circuit and a part of the power receiving circuit is used as an ASK demodulating circuit.
  • the sensor tag according to claim 6 supplies power sufficient for initialization and reception sequence operation to the microprocessor by inputting a reset signal to the microprocessor in synchronization with the charge pump operation. It is characterized by doing so.
  • the reset signal is transmitted with an interrogator force period T, and the microprocessor enables an output for continuously supplying power after the power-on sequence ends.
  • the internal power flag is set and the power supply voltage stabilizes the microprocessor. It is characterized by detecting that it is above the operating threshold value.
  • the sensor tag according to claim 8 uses a first-order lag circuit with a long time constant and a first-order lag circuit with a short time constant for the ASK demodulated signal, respectively, to generate a reset signal and a serial data signal, respectively. It is characterized by being taken out and used.
  • the sensor tag device has one or more power generation means utilizing environmental changes, power supply voltage rise control means, and power source synthesis means, and an environmental change is an event, and when the event occurs Event data is stored in the microprocessor at the same time as power is supplied to the microprocessor.
  • the sensor tag device has a time constant circuit capable of charging electric charges under the control of the microprocessor, and reads information on the elapsed time of the charging force by the microprocessor.
  • a sensor tag device is provided with the sensor tag according to any one of claims 1 to 8, and includes one or more power generation means and power supply voltage rise control means using environmental changes, and It has a power supply synthesis means, and changes in the environment are used as events. Event data is transmitted simultaneously with supplying power to the microprocessor, and the event data is stored in the microprocessor.
  • the sensor tag device further comprising a time constant circuit capable of charging a charge under the control of the microprocessor, and reading information on an elapsed time of a charging force by the microprocessor.
  • the sensor tag device is characterized in that when an event occurs, the event cause and the sensor data are wirelessly returned to the interrogator carrier signal.
  • the sensor tag device stores event cause, sensor data, and occurrence time information in the nonvolatile memory inside the microprocessor when an event occurs, and when an inquiry from the interrogator is received, It is characterized in that information is returned wirelessly.
  • the sensor tag device stores the time information and sensor information inside the tag in the nonvolatile memory inside the microprocessor when a write request is received from the interrogator, and an inquiry about the interrogator power is received. When that information is wirelessly returned
  • the power receiving circuit according to claim 16 includes a stub resonator and a ladder step-up rectifier circuit, and is connected to an antenna feeding point via a capacitive feeding impedance, and is supplied from the antenna feeding point.
  • the power receiving circuit according to claim 17, wherein the ladder step-up rectifier circuit is a Cockcroft Walton circuit including a plurality of diodes, a plurality of ground side capacitors, and a plurality of power receiving side capacitors.
  • the first diode on the side is removed, and the capacitance value of the power receiving side capacitor is further made smaller than the capacitance value of the ground side capacitor.
  • a power supply method for a sensor tag device includes a stub resonator and a ladder boost rectifier circuit, and is connected via an antenna feed point and a capacitive feed impedance.
  • the stub resonator and the capacitive feed impedance are in series resonance, and the stub resonator and the capacitive load impedance composed of the ladder boost rectifier circuit are resonated in parallel, and the antenna feed point power is supplied. It is characterized by boosting the signal and supplying power to an external load.
  • the power receiving circuit and the ASK demodulating circuit can be made common, the circuit configuration can be simplified and the utility value of the received radio wave energy is increased. be able to.
  • a general-purpose microprocessor can be used, and low power and low load (for example, 1. Even with a drive power supply, the wireless communication distance can be further expanded with the realization of lower power than the power if the microprocessor can operate.
  • the sensor tag can be used at a distance of about 30m, for example, 2.
  • the distance that can be used in the 45GHz band was within 3m.
  • the passive sensor tag device can realize the powerful sensation of sensing data for each occurrence of an event that can only be performed by the active sensor tag device even in the state where no radio wave is received.
  • the detection of the event occurrence time that can only be performed by the active sensor tag device can be realized by the passive sensor tag device.
  • real-time event detection and sensing data notification which can be performed only by the active sensor tag device can be realized by the passive sensor tag device.
  • the powerful sensor tag device can realize the event data stagnation for each event occurrence, which can only be performed by the active sensor tag device, even when it does not receive radio waves. it can.
  • the passive sensor tag device can realize the sensation of sensing data for each measurement request command that can only be performed by the active sensor tag device.
  • a high output voltage can be supplied to the load with a small number of circuit elements.
  • the power receiving circuit of the present invention is used for a device that needs to supply a high voltage based on a weak signal received from an antenna, such as an RFID tag device or a sensor tag device, high voltage power supply, power conversion efficiency An effect can be produced in the improvement.
  • a stub resonator is used as L of the resonant circuit, and the capacitive impedance of the ladder rectifier circuit and the stub are resonated in parallel to achieve a high Q value and improve power conversion efficiency.
  • the powerful sensor fusion that can be realized only with the active type sensor tag device can be realized also with the passive type sensor tab device, and the communication distance can be increased. Can be realized.
  • FIG. 1 is a block configuration diagram of a passive sensor tag device according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a basic configuration of a passive sensor tag device according to an embodiment of the present invention.
  • FIG. 3 is a principle diagram of a frequency reading error prevention circuit using the Doppler effect.
  • FIG. 4 is a waveform of a received signal from an interrogator at point A in FIG.
  • the U7 DO waveform between a and b is shown enlarged between a 'and b'.
  • FIG. 5 is a block diagram of a conventional active sensor tag device.
  • Control circuit microprocessor 'non-volatile memory' AD change
  • FIG. 1 is a block diagram of a passive sensor tag device according to an embodiment of the present invention.
  • Fig. 1 is an antenna (2 split microstrip antenna), 2 is modulation means, 3 is Transmitter, 4 is a composite circuit including a step-up rectifier circuit and an ASK demodulator circuit, 5 is a charge pump, 6 is a power generation means (A), 7 is a power generation means (B), 8 is a rise control circuit, 9 is a power supply synthesis circuit, 10 is a time constant circuit, 11 is a sensor, and 12 is a control circuit (microprocessor, non-volatile memory 'AD converter built-in).
  • ASK demodulating means is provided by using a part of a boost rectifier circuit (see Japanese Patent Application No. 2004-304876) called a Cockcroft-Aulton circuit in which a plurality of rectifier diodes and a plurality of capacitors are ladder-connected.
  • the output signal from the ASK demodulator is used for microprocessor reset and supply voltage charge pump operation.
  • Power generation means that uses one or more environmental changes (vibration, temperature, pressure, light, etc.), power supply voltage rise control means, and power supply synthesis means. Power supply and the cause of the event.
  • It has a time constant circuit that starts charging under the control of the microprocessor, and the elapsed charging time information can be read by the microprocessor.
  • event information such as the cause of the event, sensor data and event occurrence time is stored in the microprocessor's internal non-volatile memory. Can be returned wirelessly.
  • event information such as the cause of the event, sensor data and event occurrence time is stored in the microprocessor's internal non-volatile memory. Can be returned wirelessly.
  • the cause of the event, the sensor data, and the event occurrence time can be wirelessly returned to the interrogator carrier signal.
  • FIG. 2 shows a circuit diagram of the basic configuration of the passive sensor tag device according to the embodiment of the present invention, and is a more detailed block diagram shown in FIG. The following is based on Fig. 2.
  • the sensor tag device according to the present embodiment will be specifically described below.
  • L1 and L2 are strip conductors, connected by varactor diodes D1 and D2, and combined with the ground plane conductor (GND) to form a two-part microstrip antenna.
  • GND ground plane conductor
  • L3 is a ⁇ ⁇ ⁇ ⁇ ⁇ 4 short stub, and a boost rectifier circuit is constituted by Schottky barrier diodes D3, D4, and D5 and capacitors CI, C2, C3, and C4.
  • Resistors Rl and R2 apply bias voltage to varactor diodes Dl and D2 to change the operating characteristics of the two-divided microstrip antenna, thereby modulating and reflecting the incident carrier signal to return information. Use.
  • Zener diode so that the output voltage of the boost rectifier circuit formed by ⁇ Z4 short stub L3, Schottky barrier diode D3, D4, D5 and capacitor CI, C2, C3, C4 does not exceed a certain value
  • the voltage is limited by D20 and resistor R7.
  • Capacitor C5 smoothes the output of the boost rectifier circuit and suppresses voltage fluctuations due to load fluctuations.
  • the Zener diode D19 is used to restrict the output voltage from exceeding a certain value.
  • this output signal taken out by the resistor R3 can respond to the ASK modulation signal input to the ladder rectifier circuit with a short time constant compared to the output of the last stage of the ladder rectifier circuit.
  • the Schottky rear diode D8 is used to charge the capacitor C6 with the output taken from the middle stage of the ladder rectifier circuit.
  • the charge stored in capacitor C6 is used as the power source for logic circuits Ul, U2, and U3.
  • the resistor R4 prevents the reverse leakage current of the Schottky diode D8 from affecting the input voltage when the output signal taken from the middle stage of the ladder rectifier circuit is applied to the logic circuit U1 for waveform shaping.
  • the output of the inverting logic circuit U1 is composed of a reset signal detection circuit having a time constant of 2 to 3 ms composed of a diode D9, a resistor R5 and a capacitor C7, and a diode D10, a resistor R6 and a capacitor C8. Connected to a data signal detection circuit with a time constant of about 2 ms.
  • the output signal of the reset signal detection circuit is waveform-shaped by the non-inverting logic circuit U2, and the output signal of the data signal detection circuit is waveform-shaped by the open drain type inverting logic circuit U3.
  • the reset signal output from the non-inverting logic circuit U2 is differentiated by a differentiation circuit including a capacitor C9 and resistors RIO and R11 to drive the NPN transistor Q2, and the reset signal terminal of the micro-port processor U7. (Reset) input.
  • the reset signal pin (Reset) input of the microprocessor U7 is internally pulled up to the power supply pin voltage VDD of the microprocessor U7 by a resistor of about 100k ⁇ ! /.
  • the reset signal output from the non-inverted logic circuit U2 charges the output voltage of the boost rectifier circuit (the voltage charged in the capacitor C5) through the resistor R8, the capacitor C10, and the diodes D6 and D7 to charge the capacitor C11. Charge.
  • the voltage of capacitor C11 can be boosted to about 1.5 times the voltage charged in capacitor C5.
  • the electric charge charged in C11 serves as a power source for the logic circuits U4 and U5, and also charges the capacitor C12 via the logical product inversion output logic circuit U4 and the diode D11. Also supply power to circuit U8.
  • the operation of the logically inverted output logic circuit U4 is performed while the reset signal is output from the non-inverted logic circuit U2 to one input force SLow level by the resistors R9, R12 and the NPN transistor Q1.
  • the microprocessor U7 operates to identify the power ON state, outputs a high level to the power-on output terminal (PON), and is converted to a low level by the inverting logic circuit U5, and the other input force is set to a low level. Then, power is supplied to the microprocessor U7 and the oscillation circuit U8 via the diode D11.
  • the reason for adopting such a mechanism is that if the microprocessor U7 and the oscillation circuit U8 perform a reset operation or power-on sequence under power supply voltage conditions that are insufficient for operation, a relatively large current is continuously generated. This is to prevent wasteful consumption of the electric charge charged in the capacitor C5. After the reset and power-on sequence is completed, the operating threshold power supply voltage and current consumption of the micro-porter U7 decrease.
  • the power-on output terminal (PON) of the microprocessor U7 is tri-stated (High, Low, high impedance), it remains in a high impedance state until the power-on sequence is completed. Insert a resistor R13 to fix the input of the inverting logic circuit U5 to the low level for the purpose of preventing did.
  • the resistor R14 is a pull-up resistor for adjusting the data signal output level of the open drain type inverting logic circuit U3 to the operating signal level of the microprocessor U7.
  • the data signal output of the open drain type inverting logic circuit U3 is input to the data input terminal (DIN) of the microprocessor U7.
  • the power generation means A and B are power generation means (piezo element, Peltier element, solar cell, micro-generator (receives mechanical power) that generate power by one or more environmental changes (for example, vibration 'heat' light 'pressure, etc.) An electric machine that generates electric power and is extremely small))).
  • the output of power generation means A charges capacitor C13 via diode D15 and resistor R18.
  • the output of generator B charges capacitor C 14 via diode D16 and resistor R19.
  • the Zener diodes D22 and D23 are inserted / exposed so that the voltage formed by the electric charge charged in the capacitor C13 or the capacitor C14 does not exceed a certain value.
  • the voltage formed by the electric charges of the capacitors C13 and C14 is combined via the diodes D13 and D14 to be a power source for the Schmitt trigger type inverting logic circuit U6.
  • This voltage is also connected to the collector of NPN transistor Q3 via resistor R17, and is also connected to the base of NPN transistor Q3 by resistor R15, Zener diode D21 and resistor R16.
  • the Zener diode D21 operates the NPN transistor Q3 when the power supply voltage of the Schmitt trigger type inverting logic circuit U6 becomes equal to or higher than a certain value, and sets the input of the Schmitt trigger type inverting logic circuit U6 to Low level. As a result, the output terminal of the Schmitt trigger type inverting logic circuit U6 becomes High, and power is supplied to the microprocessor U7 and the power supply terminal VDD of the oscillation circuit U8 via the diode D12. That is, even if the high frequency power supply from the RFID tag antenna is insufficient or not at all, the power generation means A or the power generation means B operates the circuit in the sensor tag device depending on the environmental conditions. Electric power can be supplied, and the occurrence of an event by the sensor tag device can be recorded.
  • Resistors R20 and R21 connect the output states of the power generation means A and B to the CA and CB input terminals of the microprocessor U7.
  • Diodes D17 and D18 are used to prevent the voltage exceeding the operating level of microprocessor U7 from being input to CA and CB.
  • Microprocessor U7 checks the input state of input terminals CA and CB after the power-on sequence is completed, identifies the cause of the event, and measures the voltage value of analog signal input terminals AD1 and A D2 inputs to measure microprocessor U7. Record digital data in the non-volatile memory.
  • the output terminal VO of the microprocessor U7 takes three states and also receives the interrogator power, it is set to High level only during the period of the constant circuit charge command (the DIN terminal power of the microprocessor U7 is also input), and other conditions Then, it will be in a high impedance state.
  • the output terminal VO of the microprocessor U7 charges the capacitor C15 via the resistor R22. Zener diode D24 prevents the charging voltage of capacitor C15 from exceeding a certain value.
  • the voltage of the capacitor C15 gradually decreases over time due to the minute leakage current of the Zener diode D24.
  • the change in voltage of capacitor C15 can be measured by measuring the input voltage level at analog input terminal A D1.
  • the microprocessor U7 When measuring the voltage value of the analog input terminals AD1 and AD2, the microprocessor U7 sets the output terminal VPO to High level, and generates a constant voltage at the Zener diode D25 via the resistor R23.
  • the voltage of the Zener diode D25 is input to the reference voltage input terminal VREF of the microprocessor U7 and becomes the reference voltage for analog-digital (AD) variation.
  • Capacitor C17 is inserted for the purpose of preventing the reference voltage input terminal VREF from being affected by noise.
  • the output terminal VPO is connected to the drain of the N-channel MOS transistor Q4, and the voltage of C15 is monitored by the resistor R24 with the source follower and becomes the AD1 input. Capacitor C16 is used to prevent the effects of noise. VPO is also connected to the drain of N-channel MOS transistor Q5, and supplies the voltage generated in Zener diode D25 to resistor R25 and thermistor element RS by the source follower. A voltage VS divided by the resistor R25 and the thermistor element RS is supplied to the analog input terminal AD2. The temperature of the tag can be determined by measuring the resistance change of the thermistor element RS by measuring the input voltage at the analog input terminal AD2.
  • the oscillation circuit U8 oscillates at a constant frequency.
  • the output terminal DO of the microprocessor U7 controls the signal output at the output terminal OUT of the oscillation circuit U8. That is, the output of the output terminal DO of the microprocessor U7 is ASK modulated on the oscillation output of the oscillation circuit U8 (which becomes a carrier for return information).
  • the output terminal OUT of the oscillator U8 applies a bias voltage to the varactor diodes Dl and D2 of the RFID tag antenna via the resistor R2 to periodically change the operating conditions of the RFID tag antenna connected to the varactor diodes D1 and D2. Since it changes, a return signal (a modulated reflected wave of the incident electromagnetic wave) is generated.
  • N gZ4 short stub (g is the effective wavelength of the transmission line—N is an odd number and 1 or 3 is used).
  • N is an odd number and 1 or 3 is used.
  • the power described in the example using the power generation means A and B may be increased or decreased as necessary.
  • the type of power generation means is selected according to the purpose of use as a product.
  • the type of elements and the circuit constants (resistance, capacitor, etc.) of Fig. 2 described above are examples used by the inventors in the trial production of the sensor tag device of the present invention. It is not limited to.
  • the storage capacity of the capacitor C is appropriately set depending on the operating environment such as the number and types of U1 to U7 used.
  • real-time monitoring can be performed by using an oscillation element whose oscillation frequency changes with temperature and pressure in the oscillation circuit U8.
  • the oscillation frequency depends on the temperature and pressure as shown in FIG.
  • an oscillator 30 that outputs a signal that is a mixture of the output signal (frequency fs) of the oscillation circuit 31 and the output signal (frequency fc) of the fixed frequency oscillation circuit 32
  • fo is the carrier frequency from the interrogator and fd is the Doppler frequency.
  • the following anti-collision protocol can be used.
  • the interrogator sends a tag reset signal (also used for activation) and an inquiry ID code about every 100 ms.
  • the tag reset signal from the interrogator is set to “0” output (carrier stop) for 2 to 3 ms.
  • the tag When the tag is active, it gives reset synchronization timing (inquiry ID code reception preparation). Gives 'on' reset action.
  • ID code Stop bit After receiving ID code Start bit, record the ID code bit of 0.4ms width that is received at intervals of about 1.2ms.
  • the number of ID code bits N to receive is in the range of 0-24.
  • the interrogator output "0" of about lms shall be received (ID code Stop bit).
  • the ID code should be 24 bits at the maximum. Since a 0 bit for retiming is inserted every 5 bits, it should be equivalent to 20 bits. At the retiming bit position, resynchronization is performed to correct the clock error of the microprocessor.
  • the interrogator can search the tag ID using the information of the matching ID code and return signal timing.
  • the impedance conversion boosting method and ladder boosting method using stub resonance are considered By using a combined circuit, it is possible to obtain a reception voltage that is more than five times that of the conventional method.
  • the sensor tag device of the present invention is used as a wireless tag device with a passive sensor that does not have a battery, ensures a long wireless communication distance, and can be used at a distance of about 30 m in the 2.45 GHz band. Since the power supply to the processor is power-saving and event data can always be detected by the sensor tag even when it is not receiving radio waves, for example, when an event occurs, the cause of the event and the sensor data (event detection) Data) and event information such as event occurrence time is stored in the internal non-volatile memory, and the stored information can be returned wirelessly in response to a wireless inquiry from the interrogator. Therefore, for example, when the history of changes in environmental temperature and the history of light, vibration, etc.
  • the sensor tag device of the present invention can be used by handling various conditions such as monitoring targets and history targets as events.
  • sensor tag devices of the present invention that do not require maintenance such as battery replacement are deployed in a wide range and with a lot of effort, so that a new information system and safety management system that analyzes event data in a complex and integrated manner can be developed. Can be used for construction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Near-Field Transmission Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

 電波を受けない状態であっても常時イベントデータをセンサタグで検出することができ、しかも、マイクロプロセッサに対する電源供給を省電力とし得て、無線通信距離を拡大することができるセンサタグ装置を提供する。  1以上の環境変化を利用した発電手段6,7と電源電圧の立ち上がり制御手段8及び電源合成手段9を有し、環境の変化をイベントとし、そのイベント発生時にマイクロプロセッサ12に対して電源を供給すると同時にイベントデータをマイクロプロセッサ12に格納する。送受信アンテナと受電力回路及びマイクロプロセッサを内蔵して電波による双方向通信を可能とした受電力回路に、スタブ共振RF昇圧回路とラダー昇圧整流回路とを組み合わせたことを特徴とする。

Description

明 細 書
センサタグ、センサタグ装置、受電力回路、センサタグ装置の電力供給方 法
技術分野
[0001] 本発明はセンサタグに係り、詳細には電池を持たないパッシブ型のセンサ付き無線 タグ装置等に用いられるものでありながら、例えば、イベント発生時にそのイベント発 生原因とセンサデータ (イベント検出データ等)及びイベント発生時刻等のイベント情 報を内部不揮発メモリに記憶し、質問器からの無線問 、合わせに対してそれらの記 憶情報を無線返送するセンサタグ装置に係る。
背景技術
[0002] 特許文献 1:特開 2000— 258254号公報「温度記録デバイス」
[0003] 物品やコンテナなどに取り付けて次々刻々変化する温度の情報を一定時間毎に測 定し、後からそれらの温度履歴を無線通信回線を利用して読み出すことができる装 置としてセンサタグ装置がある。
[0004] このセンサタグ装置は、多種類広範囲に多くの物や場所に取り付けられると共に簡 単に読み取ることができる。従って、ネットワーク接続が可能であれば、センサフュー ジョンと呼ばれる全く新しい未来のネットワーク社会のインフラストラクチャを実現する 要素技術になると考えられる。
[0005] 現時点にぉ 、ては、電池を持ったアクティブ型のセンサタグ装置や、履歴機能を持 たずに数 10cm程度の近距離で利用するパッシブ型のセンサタグ装置の研究開発 が主に進められている。
[0006] そこで、電池を不要としたパッシブ型で且つ履歴機能を有し、し力も、 10m以上離 れた位置力 でも読み取りが可能なセンサタグ装置が実現できれば、その応用範囲 はさらに広がると考えられる。尚、このような読み取りには、質問器が使用される。
[0007] 例えば、食品や一部工業製品で環境温度変化の履歴や光,振動等の履歴を後で 確認した 、場合も有るし、建物や大型構造物で地震等の後にそれらが受けた負荷( 歪や加速度)等の履歴を後で確認したいといった場合がある。尚、以下、このような業 界毎に異なる監視対象'履歴対象といった各種条件をイベントと称する。
[0008] このように電池交換等のメンテナンスの必要がな 、センサタグ装置を多種類広範囲 に、し力も多く配備することによって、イベントデータを複合的 ·統合的に解析する新 たな情報システムや安全管理システムの構築が可能となる。
[0009] 図 5は、上述した特許文献 1に開示の従来型のセンサタグ装置を示し、センサタグ 装置のブロック構成図である。
サーミスタ 503は内部のブリッジに接続され、その出力温度信号は AD変換器 511 でデジタル情報に変換される。この動作は間欠的に行われ、その出力情報は不揮発 性メモリ 512に格納される。温度の記録間隔は外部指令で設定される。これらの動作 はマイクロコンピュータ 515により制御されまた必要な演算が施される。またその動作 電源は電源回路 514から電源(1)と記した供給路 517により供給される。この間に必 要なクロックは発振回路 516から常時供給されている。
[0010] 上記のセンサタグ装置において、温度の測定記録をする短い期間は内部の測定記 録回路が電池 504の電源力も動作するが、その間の休止期間には時計回路と監視 回路など最小限の回路のみ動作し、電池の消耗を節約する。
[0011] 今、このデバイスを外部から制御しまた情報を読み出すときは、外部のリーダライタ 力もコイル 501にデジタル信号により変調された高周波電流を流す。コイル 502はこ れに感応してデジタル情報を復調しこれをマイクロコンピュータ 515に伝える。同時に コイル 502に誘起された高周波起電力は整流平滑されて電源となり電源 (2)と記した 供給路 518を通じてメモリ 512、マイクロコンピュータ 515に供給される。上記の動作 により初期設定、読み取り開始などをデバイス側に指令することができる。尚、図 5中 の点線の矢印 519などは情報の流れを示す。
[0012] 次にデバイス側力も外部に情報を返すときはマイクロコンピュータ 515の指示により メモリから情報が読み出され、整流'復調 ·変調回路 513で高周波に変調されて外部 に伝えられる。この変調方式はコイル 501を通じて外部力 供給される高周波を変調 する方式のため、内部の電力を必要とせず、電池 504の消耗を避けることができる。
[0013] 尚、コイル 501を通じて外部から供給される高周波を変調するかわりに、内部で発 振した高周波を変調して用いれば、リーダライタ (質問器)との距離を大きく取ることが できる。ただし、この場合、発振電力は電池 504から供給されるので、電池の消耗量 は多くなる。
発明の開示
発明が解決しょうとする課題
[0014] ところで、このような構成では、一次電池又は二次電池 504を内蔵したアクティブ型 であり、電磁誘導による給電及び通信を行うために、以下に示すような欠点があった
[0015] (1)常時内部タイマ回路を動作させる必要があり、常時電力を消費して定期的に電 池交換又は充電が必要であった。
(2)電磁誘導による充電及び通信を行うために数 10cm程度の近距離間でセンサタ グ装置と質問器との無線通信を行う必要があった。
[0016] そこで、本発明は、上記実情に鑑みてなされたものであり、その目的とするところは 、電池交換等のメンテナンスの必要がなぐかつ、 10m以上離れた位置力もでも読み 取りが可能なセンサタグ装置の実現を目的としている。
課題を解決するための手段
[0017] 請求項 1に記載のセンサタグは、送受信アンテナと受電力回路及びマイクロプロセ ッサを内蔵して電波による双方向通信を可能とした受電力回路に、スタブ共振 RF昇 圧回路とラダー昇圧整流回路とを組み合わせたことを特徴とする。
すなわち、従来方式では電池を使ってタイマ回路を動作させて時間の計測を行う のに対して、本発明では電池を用いないで時定数回路の放電現象を利用して時間 の計測を行うこととした。
[0018] 請求項 2に記載のセンサタグは、前記送受信アンテナに 2分割マイクロストリップァ ンテナが用いられて 、ることを特徴とする。
また、従来方式では電磁誘導による充電及び通信を行うのに対して、本発明では 2 分割マイクロストリップアンテナとスタブ共振器及びラダー昇圧整流方式を組み合わ せた回路に ASK復調回路とチャージポンプ及びリセット回路を追加した電波による 受電及び通信方式を採用した。
[0019] 請求項 3に記載のセンサタグは、前記 2分割マイクロストリップアンテナは、そのストリ ップ導体の分割位置が該ストリップ導体の長さ中心からずれていることを特徴とする。
[0020] 請求項 4に記載のセンサタグは、前記ラダー昇圧整流回路の途中段から信号を取 り出して ASK復調回路として受電力回路の一部を利用することを特徴とする。
[0021] 請求項 5に記載のセンサタグは、前記 ASK復調回路力 の出力信号を利用して、 前記ラダー昇圧整流回路の最終段の出力電圧をチャージポンプして前記マイクロプ 口セッサの電源電圧とすることを特徴とする。
[0022] 請求項 6に記載のセンサタグは、前記チャージポンプ動作と同期して、前記マイクロ プロセッサにリセット信号を入力することによって、初期化及び受信シーケンス動作に 十分な電力を前記マイクロプロセッサに供給するようにしたことを特徴とする。
[0023] 請求項 7に記載のセンサタグは、前記リセット信号が質問器力 周期 Tで送出される ものとして、前記マイクロプロセッサでは電源 ONシーケンス終了後に継続して電源を 供給するための出力を有効としてから内部のパワーフラグをリセットし、前記リセット周 期 Tより少し短い時間のタイマ待ちをセットした後に、そのタイマ待ちが終了したとき は内部のパワーフラグをセットして電源電圧が前記マイクロプロセッサの安定動作閾 値以上であることを検出することを特徴とする。
[0024] 請求項 8に記載のセンサタグは、前記 ASK復調信号に対して、時定数の長い一次 遅れ回路と時定数の短い一次遅れ回路とを用いて、それぞれ、リセット信号とシリア ルデータ信号とを取り出して利用することを特徴とする。
[0025] 請求項 9に記載のセンサタグ装置は、 1以上の環境変化を利用した発電手段と電 源電圧の立ち上がり制御手段及び電源合成手段を有し、環境の変化をイベントとし、 そのイベント発生時にマイクロプロセッサに対して電源を供給すると同時にイベントデ ータを前記マイクロプロセッサに格納することを特徴とする。
[0026] 請求項 10に記載のセンサタグ装置は、前記マイクロプロセッサからの制御で電荷 のチャージが可能な時定数回路を有し、チャージ力もの経過時間の情報を前記マイ クロプロセッサによって読み取ることを特徴とする。
[0027] 請求項 11に記載のセンサタグ装置は、請求項 1乃至請求項 8の何れかに記載のセ ンサタグを備え、 1以上の環境変化を利用した発電手段と電源電圧の立ち上がり制 御手段及び電源合成手段を有し、環境の変化をイベントとし、そのイベント発生時に 前記マイクロプロセッサに対して電源を供給すると同時にイベントデータを送信して 前記マイクロプロセッサにイベントデータを格納することを特徴とする。
[0028] 請求項 12に記載のセンサタグ装置は、前記マイクロプロセッサからの制御で電荷 のチャージが可能な時定数回路を有し、チャージ力もの経過時間の情報を前記マイ クロプロセッサによって読み取ることを特徴とする。
[0029] 請求項 13に記載のセンサタグ装置は、イベント発生時にイベント原因とセンサデー タとを質問器キャリア信号に対して無線返送するようにしたことを特徴とする。
[0030] 請求項 14に記載のセンサタグ装置は、イベント発生時にイベント原因とセンサデー タ及び発生時刻の情報をマイクロプロセッサ内部の不揮発メモリに記憶し、質問器か らの問い合わせがあつたとき、それらの情報を無線返送するようにしたことを特徴とす る。
[0031] 請求項 15に記載のセンサタグ装置は、質問器から書き込み要求があつたときタグ 内部の時刻情報とセンサ情報をマイクロプロセッサ内部の不揮発メモリに記憶し、質 問器力 の問い合わせがあつたとき、それらの情報を無線返送することを特徴とする
[0032] 請求項 16に記載の受電力回路は、スタブ共振器とラダー昇圧整流回路とから構成 され、アンテナ給電点と容量性給電インピーダンスを介し接続し、前記アンテナ給電 点から供給される入力信号を昇圧整流して外部負荷に電力を供給する回路であり、 前記スタブ共振器と、前記容量性給電インピーダンスとを直列共振させ、さらに前記 スタブ共振器と、前記ラダー昇圧整流回路からなる容量性負荷インピーダンスとを並 列共振させることを特徴とする。
[0033] 請求項 17に記載の受電力回路は、前記ラダー昇圧整流回路が、複数のダイォー ドと、複数の接地側コンデンサーと、複数の受電側コンデンサーとからなるコッククロ フト 'ウォルトン回路において、入力側の第一番目のダイオードを取り除き、さらに前 記受電側コンデンサーの容量値を前記接地側コンデンサーの容量値よりも小さくした 回路であることを特徴とする。
[0034] 請求項 18に記載のセンサタグ装置の電力供給方法は、スタブ共振器とラダー昇圧 整流回路とを備え、アンテナ給電点と容量性給電インピーダンスとを介して接続する と共に、前記スタブ共振器と前記容量性給電インピーダンスとを直列共振させ且つ前 記スタブ共振器と前記ラダー昇圧整流回路からなる容量性負荷インピーダンスとを 並列共振させ、前記アンテナ給電点力 供給される入力信号を昇圧整流して外部負 荷に電力を供給することを特徴とする。
発明の効果
[0035] 請求項 1に記載の発明によれば、電磁誘導による充電及び通信を行う必要が無 、 ため、無線通信距離を長く確保することができる。
[0036] 請求項 2に記載の発明によれば、送受信アンテナの受信効率を向上させることがで きる。
[0037] 請求項 3に記載の発明によれば、送受信アンテナの受信効率をさらに向上させるこ とがでさる。
[0038] 請求項 4に記載の発明によれば、受電回路と ASK復調回路とを共通化させること ができるので、回路構成を簡素化することができとともに、受電した電波エネルギー の利用価値を高めることができる。
[0039] 請求項 5に記載の発明によれば、マイクロプロセッサに汎用品のものを用いることが できると共に、低電力で負荷の低い(例えば、 1. OVで 2 八すなゎち5001^0程度 の負荷)駆動電源であってもマイクロプロセッサの動作をすることができるば力りでな ぐ低電力化の実現に伴って無線通信距離をさらに拡大することができる。
[0040] 請求項 6に記載の発明によれば、消費最大電力が要求されるタイミングに合わせて 、電源電圧を上げると共に出力インピーダンスを下げることによって動作条件を満足 させることがでさる。
例えば、全体動作時間のうち 1%の区間だけ 1. 8Vで 50ΚΩの負荷を駆動させる 必要があり、残りの 99%の区間は 1. OVで 500ΚΩ程度の負荷を駆動させれば良い 場合、常に 1. 8Vで 50ΚΩ負荷を駆動する電源を必要とはせず、 1. OVで 500Κ Ω 負荷を駆動させる電源があれば、 1%の区間だけ1. 8Vで 50ΚΩ負荷を駆動できれ ば良いこととなる。
これは、電波による微弱な電源供給のみによって動作するパッシブ型の無線タグに とってみれば非常に重要な事項となり、本発明の請求項 1乃至請求項 3と本請求項を 用いることで例えば、 2. 45GHz帯で利用可能な距離が 3m以内であったセンサタグ 力 30m程度の距離で利用可能となる。
[0041] 請求項 7に記載の発明によれば、誤動作による不要な応答を減らすことができる。
[0042] 請求項 8に記載の発明によれば、マイクロプロセッサへの入力信号の段階でデータ 信号とリセット信号とが分離されて 、るので、マイクロプロセッサが誤動作して ヽても 確実にリセット動作ができ、マイクロプロセッサの正常動作を確保することができると 共に、タグ動作の一層の安定性が実現できる。
[0043] 請求項 9に記載の発明によれば、アクティブ型センサタグ装置でしかできな力つたィ ベントの検出を電波を受けない状態であっても、パッシブ型のセンサタグで検出する ことができ、し力も、マイクロプロセッサに対する電源供給を省電力とし得て、無線通 信距離を拡大することができる。
[0044] 請求項 10に記載の発明によれば、アクティブ型のセンサタグでしかできな力つた時 間の計測を、電波を受けな 、状態であってもノ ッシブ型のセンサタグで実現すること ができる。
[0045] 請求項 11に記載の発明によれば、アクティブ型センサタグ装置でしかできな力つた イベント発生毎のセンシングデータの口ギングが電波を受けない状態でもパッシブ型 センサタグ装置で実現することができる。
[0046] 請求項 12に記載の発明によれば、アクティブ型センサタグ装置でしかできな力つた イベント発生時刻の検出をパッシブ型センサタグ装置で実現することができる。
[0047] 請求項 13に記載の発明によれば、アクティブ型センサタグ装置でしかできな力つた リアルタイムのイベント検出とセンシングデータの通知とをパッシブ型センサタグ装置 で実現することができる。
[0048] 請求項 14に記載の発明によれば、アクティブ型センサタグ装置でしかできな力つた イベント発生毎のイベントデータの口ギングが電波を受けない状態でもパッシブ型の センサタグ装置で実現することができる。
[0049] 請求項 15に記載の発明によれば、アクティブ型センサタグ装置でしかできな力つた 測定要求指令ごとのセンシングデータの口ギングがパッシブ型センサタグ装置で実 現することができる。 [0050] 請求項 16に記載の発明によれば、少ない回路素子で高い出力電圧を負荷に対し 供給することができる。例えば、 RFIDタグ装置やセンサタグ装置など、アンテナから受 信した微弱な信号をもとに高い電圧の給電を行う必要がある装置に本発明の受電力 回路を用いる場合、高電圧給電、電力変換効率向上に効果を奏することができる。ま た、共振回路の Lとしてスタブ共振器を用い、ラダー整流回路の容量性インピーダン スとスタブとを並列共振させることによって高い Q値を実現し電力変換効率を向上す ることがでさる。
[0051] 請求項 17に記載の発明によれば、入力負荷容量を小さくし、かつ、直流ショートで 高周波高インピーダンス受電を可能とすることができる。
[0052] 請求項 18に記載の発明によれば、アクティブ型のセンサタグ装置でしか実現し得 な力つたセンサフュージョンをパッシブ型のセンサタブ装置にも実現することができ、 しかも、通信距離の拡大を実現することができる。
図面の簡単な説明
[0053] [図 1]本発明の実施の形態に係るパッシブ型センサタグ装置のブロック構成図である
[図 2]本発明の実施の形態に係るパッシブ型センサタグ装置の基本構成の回路図で ある。
[図 3]ドップラー効果を利用した周波数読み取り誤差防止回路の原理図である。
[図 4]図 2の A点における質問器からの受信信号波形である。 a—b間の U7の DOの 波形は、 a' -b'間に拡大して示してある。
[図 5]従来のアクティブ型センサタグ装置のブロック構成図である。
符号の説明
[0054] 1 · "アンテナ(2分割マイクロストリップアンテナ)
2…変調手段
3…発信器
4· ··昇圧整流回路 'ASK復調回路
5…チャージポンプ
6…発電手段 A 7…発電手段 B
8…立ち上がり制御回路
9· ··電源合成回路
10…時定数回路
11 · ··センサ
12· ··制御回路 (マイクロプロセッサ'不揮発メモリ 'AD変騰)
D1、D2 バラクタダイオード
D3〜D18 ショットキーバリアダイオード
D19〜D25 ツエナーダイオード
Q1〜Q3 NPNトランジスタ
Q4, Q5 Nチャネル MOSFET
RS サーミスタ
LI , L2 ストリップ導体
L3 λ /4ショートスタブ
C1〜C18 コンデンサー
R1〜R25 抵抗器
U1 反転論理回路
U2 非反転 (バッファ)論理回路
U3 オープンドレイン型反転論理回路
U4 論理積反転出力論理回路
U5 反転論理回路
U6 シュミットトリガ型反転論理回路
U7 マイクロプロセッサ
U8 発振回路
発明を実施するための最良の形態
図 1は本発明の実施の形態に係るパッシブ型センサタグ装置のブロック構成図を示 す。
図 1において、 1はアンテナ(2分割マイクロストリップアンテナ)、 2は変調手段、 3は 発信器、 4は昇圧整流回路と ASK復調回路を含む複合回路、 5はチャージポンプ、 6は発電手段 (A)、 7は発電手段 (B)、 8は立ち上がり制御回路、 9は電源合成回路 、 10は時定数回路、 11はセンサ、 12は制御回路(マイクロプロセッサ.不揮発メモリ' AD変換器を内蔵)である。
[0056] 本形態に係るセンサタグ装置は、
(1)複数の整流ダイオードと複数のコンデンサーとをラダー接続したコッククロフト ·ゥ オルトン回路と呼ばれる昇圧整流回路 (特願 2004— 304876号参照)の一部を利用 して、 ASK復調手段を提供する。
(2) ASK復調手段からの出力信号をマイクロプロセッサのリセット及び電源電圧のチ ヤージポンプ動作用として利用する。
(3) ASK復調手段からの出力信号をマイクロプロセッサへのデータ入力用として利 用する。
(4) 1以上の環境変化 (振動、温度、圧力、光など)を利用した発電手段と電源電圧 の立ち上がり制御手段及び電源合成手段を有し、環境変化 (イベント発生)時にマイ クロプロセッサに対して電源の供給とイベント発生原因を知らせる。
(5)マイクロプロセッサの制御で充電を開始する時定数回路を有し、充電経過時間 情報をマイクロプロセッサによって読み取る事ができる。
[0057] これらにより、本形態に係るセンサタグ装置では、以下機能を実現することができる 。 (ァ)ベント発生時に、そのイベント発生原因とセンサデータ及びイベント発生時刻 等のイベント情報をマイクロプロセッサの内部不揮発メモリに記憶し、質問器力もの問 V、合わせコマンドを受け取ったとき、それらの情報を無線返送することができる。 (ィ)イベント発生時にイベント発生原因とセンサデータとイベント発生時刻とを質問器 キャリア信号に対して、無線返送することができる。
(ゥ)質問器からの書き込みコマンドを受け取ったとき、そのコマンド IDコードと共にセ ンサタグ内部の時刻情報やセンサ情報を内部不揮発メモリに記憶し、質問器からの 問!、合わせコマンドを受け取ったとき、それらの情報を無線返送することができる。
[0058] 図 2は本発明の実施の形態に係るパッシブ型センサタグ装置の基本構成の回路図 を示し、図 1に示したブロック構成図をより詳細にしたものである。以下、この図 2に基 づいて本形態に係るセンサタグ装置を具体的に説明する。
[0059] L1及び L2はストリップ導体であり、バラクタダイオード D1及び D2で連絡されており 、地板導体 (GND)と組み合わされて 2分割マイクロストリップアンテナを構成する。
[0060] L3は λ Ζ4ショートスタブであり、ショットキーバリアダイオード D3, D4、 D5及びコ ンデンサー CI, C2, C3, C4によって昇圧整流回路を構成する。
[0061] 抵抗 Rl, R2は、バラクタダイオード Dl, D2に対してバイアス電圧を印加し、 2分割 マイクロストリップアンテナの動作特性を変化させる事によって、入射キャリア信号を 変調反射させて情報返送するために用いる。
[0062] λ Z4ショートスタブ L3、ショットキーバリアダイオード D3, D4, D5及びコンデンサ 一 CI, C2, C3, C4によって形成される昇圧整流回路の出力電圧が一定値以上に ならな 、ようにツエナーダイオード D20と抵抗 R7とで電圧制限をかけて 、る。コンデ ンサー C5で昇圧整流回路の出力を平滑ィ匕し負荷変動による電圧変動を抑制する。
[0063] 抵抗 R3によってラダー整流回路の途中段の出力電圧を取り出すので、ツエナーダ ィオード D19で、出力電圧が一定値以上にならないように制限する。また、抵抗 R3 によって取り出されたこの出力信号はラダー整流回路の最終段の出力と比較して、 電圧値は低ぐラダー整流回路に入力された ASK変調信号に対して短い時定数で 応答できる。
[0064] ショットキーノ リアダイオード D8はラダー整流回路の途中段から取り出した出力で コンデンサー C6を充電するために用いられて!/、る。コンデンサー C6に蓄電された電 荷は論理回路 Ul, U2, U3の電源として利用する。抵抗 R4はラダー整流回路の途 中段から取り出した出力信号を論理回路 U1に印カロして波形整形するとき、ショットキ ーノ リアダイオード D8の逆方向リーク電流が入力電圧に影響しないようにする。
[0065] 反転論理回路 U1の出力はダイオード D9、抵抗 R5及びコンデンサー C7で構成さ れる 2〜3msの時定数を有するリセット信号検出回路と、ダイオード D10、抵抗 R6及 びコンデンサー C8で構成される 0. 2ms程度の時定数を有するデータ信号検出回路 に接続される。リセット信号検出回路の出力信号は非反転論理回路 U2によって波形 整形され、データ信号検出回路の出力信号はオープンドレイン型反転論理回路 U3 によって波型整形される。 [0066] 非反転論理回路 U2から出力されるリセット信号は、コンデンサー C9、抵抗 RIO, R 11で構成される微分回路で微分されて NPNトランジスタ Q2を駆動して、マイクロプ 口セッサ U7のリセット信号端子(Reset)入力となる。マイクロプロセッサ U7のリセット 信号端子 (Reset)入力は内部で約 100k Ωの抵抗によりマイクロプロセッサ U7の電 源端子電圧 VDDにプルアップされて!/、る。
[0067] 非反転論理回路 U2から出力されるリセット信号で抵抗 R8、コンデンサー C10、ダ ィオード D6, D7を通じて昇圧整流回路の出力電圧 (コンデンサー C5に充電された 電圧)をチャージポンプしてコンデンサー C11を充電する。リセット信号でコンデンサ 一 C 11を充電すると、コンデンサー C5に充電された電圧の約 1. 5倍までコンデンサ 一 C 11の電圧は昇圧できる。
[0068] C11に充電された電荷は、論理回路 U4, U5の電源となるとともに、論理積反転出 力論理回路 U4及びダイオード D11を経由してコンデンサー C12を充電して、マイク 口プロセッサ U7及び発振回路 U8にも電源供給する。
[0069] ここで、論理積反転出力論理回路 U4の動作は、非反転論理回路 U2からリセット信 号が出力されている期間、抵抗 R9, R12及び NPNトランジスタ Q1によって一方の入 力力 SLowレベルになる力 マイクロプロセッサ U7が動作して電源 ON状態を識別し、 パワーオン出力端子 (PON)に Highレベルを出力して反転論理回路 U5によって Lo wレベルに変換されてもう一方の入力力Lowレベルになるとダイオード D11を経由し てマイクロプロセッサ U7及び発振回路 U8に電源供給する。このような仕組みを取る 理由は、マイクロプロセッサ U7及び発振回路 U8がもし動作に不十分な電源電圧条 件下において、リセット動作又は電源 ONのシーケンスを実行しょうとすると比較的大 きな電流が連続して流れ、コンデンサー C5にチャージされた電荷を無駄に消費して しまうことを防止するためである。リセット及び電源 ONのシーケンス終了後マイクロプ 口セッサ U7の動作閾値電源電圧及び消費電流は減少する。
[0070] なお、マイクロプロセッサ U7のパワーオン出力端子(PON)はトライステート(High 、 Low,高インピーダンス)を取るので、電源 ONシーケンスが終了するまで高インピ 一ダンス状態となり、電源 ONシーケンスの期間に論理が確定しな!ヽことを防止する 目的で反転論理回路 U5の入力を Lowレベルに確定させるために抵抗 R13を挿入 した。また、抵抗 R14は、オープンドレイン型反転論理回路 U3のデータ信号出カレ ベルをマイクロプロセッサ U7の動作信号レベルに合わせるためのプルアップ抵抗で ある。オープンドレイン型反転論理回路 U3のデータ信号出力がマイクロプロセッサ U 7のデータ入力端子 (DIN)に入力される。
[0071] 発電手段 A, Bは、 1以上の環境変化 (例えば、振動'熱 '光'圧力等)によって発電 する発電手段 (ピエゾ素子 ·ペルチェ素子 ·ソーラセル ·マイクロ発電機 (機械動力を 受けて電力を発生する電気機械で、極めて小型のもの))などである。発電手段 Aの 出力はダイオード D15、抵抗 R18を経由してコンデンサー C13を充電する。発電手 段 Bの出力はダイオード D16、抵抗 R19を経由してコンデンサー C 14を充電する。ッ ェナーダイオード D22, D23はコンデンサー C 13或いはコンデンサー C 14に充電さ れた電荷によって形成される電圧がそれぞれ一定値を越えな ヽように挿入して!/ヽる。
[0072] コンデンサー C13, C14の電荷によって形成される電圧はダイオード D13, D14を 経由して合成されることによってシュミットトリガ型反転論理回路 U6の電源となる。ま た、この電圧は抵抗 R17を経由して NPNトランジスタ Q3のコレクタに接続され、抵抗 R15、ツエナーダイオード D21及び抵抗 R16によって NPNトランジスタ Q3のベース にも接続される。
[0073] ツエナーダイオード D21はシュミットトリガ型反転論理回路 U6の電源電圧が一定値 以上になったときに NPNトランジスタ Q3を動作させてシュミットトリガ型反転論理回路 U6の入力を Lowレベルとする。その結果、シュミットトリガ型反転論理回路 U6の出 力端子が Highになり、ダイオード D12を経由してマイクロプロセッサ U7及び発振回 路 U8の電源端子 VDDに電力を供給する。すなわち、無線タグアンテナからの高周 波電力供給が十分でな 、場合或 、は全く無 、場合であっても、発電手段 A又は発 電手段 Bが環境条件によってセンサタグ装置内の回路を動作させる電力を供給する ことができ、センサタグ装置によるイベントの発生を記録することが可能となる。
[0074] 抵抗 R20及び R21は発電手段 A, Bの出力状態をマイクロプロセッサ U7の CA及 び CB入力端子に連絡する。ダイオード D 17, D18はマイクロプロセッサ U7の動作レ ベルを越える電圧が CA及び CBに入力されないように防止する目的で利用されてい る。 [0075] マイクロプロセッサ U7は電源 ONシーケンス終了後に入力端子 CA及び CBの入力 状態を確認しイベント発生原因を特定するとともに、アナログ信号入力端子 AD1, A D2入力の電圧値を計測してマイクロプロセッサ U7内の不揮発メモリにデジタルデー タを記録する。
[0076] マイクロプロセッサ U7の出力端子 VOは 3ステートを取り、質問器力も受け取った時 定数回路チャージ命令 (マイクロプロセッサ U7の DIN端子力も入力される)期間中の み Highレベルとし、それ以外の条件では高インピーダンス状態となる。マイクロプロ セッサ U7の出力端子 VOは、抵抗 R22を経由してコンデンサー C15をチャージする 。ツエナーダイオード D24によってコンデンサー C15の充電電圧が一定値以上にな ることを防止している。
[0077] コンデンサー C15の電圧はツエナーダイオード D24の微少リーク電流によって長い 時間をかけて徐々に低下する。コンデンサー C15の電圧変化をアナログ入力端子 A D1の入力電圧レベルを測定すれば、時間の経過が計測できる。
[0078] アナログ入力端子 AD1, AD2の電圧値を計測するとき、マイクロプロセッサ U7は 出力端子 VPOを Highレベルとし、抵抗 R23を経由してツエナーダイオード D25に一 定電圧を発生させる。ツエナーダイオード D25の電圧はマイクロプロセッサ U7の基 準電圧入力端子 VREFに入力されて、アナログデジタル (AD)変^^の基準電圧と なる。コンデンサー C17は基準電圧入力端子 VREFがノイズの影響を受けるのを防 止する目的で挿入する。
[0079] また、出力端子 VPOは Nチャンネル MOSトランジスタ Q4のドレインに接続され C1 5の電圧をソースフォロアで抵抗 R24にモニタし AD1入力となる。コンデンサー C16 はノイズの影響を防止する目的で利用する。また、 VPOは Nチャンネル MOSトラン ジスタ Q5のドレインにも接続され、ツエナーダイオード D25に発生した電圧をソース フォロアで抵抗 R25及びサーミスタ素子 RSに供給する。アナログ入力端子 AD2には 、抵抗 R25とサーミスタ素子 RSによって分圧された電圧 VSが供給される。タグの温 度はサーミスタ素子 RSの抵抗変化をアナログ入力端子 AD2の入力電圧を計測して 知ることができる。なお、ノイズの影響を防止する目的でコンデンサー C18をアナログ 入力端子 AD2に挿入する。 [0080] 発振回路 U8は一定周波数で発振する。マイクロプロセッサ U7の出力端子 DOによ つて発振回路 U8の出力端子 OUTの信号出力を制御する。すなわち、マイクロプロ セッサ U7の出力端子 DOの出力信号によって発振回路 U8の発振出力(返送情報 のキャリアになる)を ASK変調する。発振器 U8の出力端子 OUTは抵抗 R2を経由し て無線タグアンテナのバラクタダイオード Dl, D2にバイアス電圧を印加して、バラク タダイオード D1及び D2に接続された無線タグアンテナの動作条件を周期的に変化 するので、返送信号 (入射電磁波の変調反射波)を発生させる。
[0081] ここで、昇圧整流回路としてコッククロフト 'ウォルトン回路を用いた場合、複数の整 流ダイオードとコンデンサーをラダー接続することによって振幅 Viの正弦波信号を Vi より高い直流電圧 K (Vi—lj) [Kはラダー段数、 ljはダイオードの順方向降下電圧]に 整流出力することができる。ただし、この回路を高周波帯 (例えば 2. 45GHz)で使用 しょうとした場合、各ダイオードの接合容量が入力負荷になるため、入力インピーダン スが非常に低くなり出力電圧は低下する。
[0082] 本発明の昇圧整流回路において、 N gZ4ショートスタブ( gは伝送路の実効波 長—Nは奇数で 1または 3を用いる)はえ g付近の入力信号に対して高周波帯におい て高 、Q値を有するインダクタンス等価インピーダンスとすることができる。ラダー昇圧 部が容量性負荷であっても並列共振動作してインダクティブインピーダンスを保つこ とがでさる。
[0083] なお、図 2に示した回路では発電手段 A, Bを用いる例を説明した力 必要に応じて 、発電手段は増減しても良い。また、その発電手段の種類は製品としての使用目的 等に応じたものが使用される。
[0084] また、以上で説明した図 2の素子の種類'数や回路定数 (抵抗、コンデンサ一等)は 発明者等が本発明のセンサタグ装置の試作で使用した一例であり、本発明はこれに 限定されるものではない。この際、使用される U1〜U7の数や種類'機能など、その 動作環境によってコンデンサー Cの蓄電容量は適宜設定されるものである。
[0085] さらに、発振回路 U8に温度や圧力によって発振周波数が変化する発振素子を用 いることにより、リアルタイムモニタリングを行うようにすることもできる。
[0086] この際、発振回路 U8に代えて、図 3に示すような温度や圧力によって発振周波数 が変化する発振回路 31の出力信号 (周波数 fs)と固定周波数の発振回路 32の出力 信号 (周波数 fc)を混合した信号を出力させるようにした発振器 30を用いることにより
、ドップラー効果による読み取り誤差を防止することもできる。
[0087] ここで、 foを質問器からのキャリア周波数、 fdをドップラー周波数とする。ただし
、 fo»fc, fsとする。
[0088] 質問器では、例えば、
fo+fc+fs+fd— (式 1)
及び
fo+fc—fs+fd'.'(式 2)
を受信する。
そうすれば、(式 1) - (式 2) =2fsにより、発振回路 31の出力信号 fsが取り出せる。 また、
fo— fc— fs + fd— (式 3)
及び
fo— fc + fs + fd'.' (式 4)
ち受信することがでさる。
(式 1) (式 4)=2fc
(式 1)+ (式 3)=2(fo+fd)
よって、 fs, fc, fdの計測が可能となる。
[0089] ところで、本形態に係るセンサタグ装置においては、図 4に示すように、以下に示す アンチコリジョンプロトコルを利用することもできる。
[0090] (目的)
複数の無線タグを同時に検出するための無線タグ用質問器と応答無線タグ及びこ れらの通信プロトコルを提供する。以下、アンチコリジョンの方法、タグの起動方法及 び動作限界条件の検出方法を以下に説明する。
[0091] (動作概要)
(1)質問器は約 100msごとにタグリセット信号 (起動にも使用)と問い合わせ I Dコードを送信する。 (2)質問器からのタグリセット信号は 2〜3msの" 0"出力(キャリア停止)とし、タグが起 動中の場合はリセット同期タイミング(問い合わせ IDコード受信準備)を与え、非起動 時にはパワーオン'リセット動作を与える。
(3)タグがパワーオン ·リセット動作した後にパワーフラグをリセットし、 100ms弱のタイ マ待ちの後、パワーフラグをセットする(電源電圧のチェックくクロック誤差 10%以内 >)。
(4)パワーフラグがセットされた状態でリセット動作を行った場合は、約 lmsの質問器 出力" 0"の受信を待つ(IDコード Start bit)。
(5) IDコード Start bit受信後、約 1. 2ms間隔で受信される 0. 4ms幅の IDコード bi tを記録する。受信する IDコードのビット数 Nは 0〜24の範囲とする。 IDコードの終り 部分には約 lmsの質問器出力" 0"を受信するものとする(IDコード Stop bit)。
(6)問い合わせ IDコードは最大で 24bitとする力 5bitごとにリタイミング用の" 0"bit を入れる為、実質 20bitに相当するものとする。リタイミング bit位置ではマイクロプロ セッサのクロック誤差の修正の為の再同期を行う。
(7)問い合わせ IDコードは上位 bitから送信され 24bitに足りない分は Mask bit"M "とする。
(8) IDコード Stop bit受信後、タグ IDと問い合わせ IDコードが一致したとき(Mask bitを含む)、以下のタイミングでバースト 'サブキャリア又はデータを返送する。 幅 75/2m (ms)
遅延 75Z2m X k+x (ms)
ただし、 m≤Mとし、 mの最大値は 6bitとする。
尚、 kはタグ IDコードの下位 m (bit)の数値とし(ただし、 m=0のとき k=0とする)、 X は固定値とする。
(9)質問器は問!、合わせ IDコードと返送信号のタイミングの情報を利用してタグ IDを サーチすることができる。また、タグ位置を検出する場合は、 M = 0として 75msのバ 一スト返送信号を利用して、複数の受信アンテナ間での遅延時間差を特定すること によって双曲線探査を行うことができる。
このように、スタブ共振によるインピーダンス変換昇圧方式とラダー昇圧方式を^ aみ 合わせた回路を採用することにより、従来方式の 5倍以上の受信電圧を得ることがで きる。
産業上の利用可能性
本発明のセンサタグ装置は、電池を持たないパッシブ型のセンサ付き無線タグ装 置として利用され、無線通信距離を長く確保して 2.45GHz帯で 30m程度の距離で利 用可能となること、およびマイクロプロセッサに対する電源供給を省電力とし、電波を 受けない状態であっても常時イベントデータをセンサタグで検出することが可能となる ことから、例えば、イベント発生時にそのイベント発生原因とセンサデータ (イベント検 出データ等)及びイベント発生時刻等のイベント情報を内部不揮発メモリに記憶し、 質問器からの無線問い合わせに対してそれらの記憶情報を無線返送することが可能 となる。したがって例えば、食品や一部工業製品で環境温度変化の履歴や光,振動 等の履歴を後で確認した 、場合、または建物や大型構造物で地震等の後にそれら が受けた負荷 (歪や加速度)等の履歴を後で確認した!/ヽ場合などに、監視対象や履 歴対象といった各種条件をイベントとして扱うことにより本発明のセンサタグ装置を利 用することができる。
さらに、電池交換等のメンテナンスの必要がない本発明のセンサタグ装置を多種類 広範囲に、し力も多く配備することによって、イベントデータを複合的 ·統合的に解析 する新たな情報システムや安全管理システムの構築に利用することができる。

Claims

請求の範囲
[1] 送受信アンテナと受電力回路及びマイクロプロセッサを内蔵して電波による双方向 通信を可能とした受電力回路に、スタブ共振 RF昇圧回路とラダー昇圧整流回路とを 組み合わせたことを特徴とするセンサタグ。
[2] 前記送受信アンテナに 2分割マイクロストリップアンテナが用いられていることを特 徴とするセンサタグ。
[3] 前記 2分割マイクロストリップアンテナは、そのストリップ導体の分割位置が該ストリツ プ導体の長さ中心力 ずれていることを特徴とする請求項 2に記載のセンサタグ。
[4] 前記ラダー昇圧整流回路の途中段から信号を取り出して ASK復調回路として受電 力回路の一部を利用することを特徴とする請求項 1乃至 3のいずれか 1項に記載のセ ンサタグ。
[5] 前記 ASK復調回路力 の出力信号を利用して、前記ラダー昇圧整流回路の最終 段の出力電圧をチャージポンプして前記マイクロプロセッサの電源電圧とすることを 特徴とする請求項 4に記載のセンサタグ。
[6] 前記チャージポンプ動作と同期して、前記マイクロプロセッサにリセット信号を入力 することによって、初期化及び受信シーケンス動作に十分な電力を前記マイクロプロ セッサに供給するようにしたことを特徴とする請求項 5に記載のセンサタグ。
[7] 前記リセット信号が質問器力 周期 Tで送出されるものとして、前記マイクロプロセッ サでは電源 ONシーケンス終了後に継続して電源を供給するための出力を有効とし てから内部のパワーフラグをリセットし、前記リセット周期 Tより少し短い時間のタイマ 待ちをセットした後に、そのタイマ待ちが終了したときは内部のパワーフラグをセットし て電源電圧が前記マイクロプロセッサの安定動作閾値以上であることを検出すること を特徴とする請求項 6に記載のセンサタグ。
[8] 前記 ASK復調信号に対して、時定数の長い一次遅れ回路と時定数の短い一次遅 れ回路とを用いて、それぞれ、リセット信号とシリアルデータ信号とを取り出して利用 することを特徴とする請求項 7に記載のセンサタグ。
[9] 1以上の環境変化を利用した発電手段と電源電圧の立ち上がり制御手段及び電源 合成手段を有し、環境の変化をイベントとし、そのイベント発生時にマイクロプロセッ サに対して電源を供給すると同時にイベントデータを前記マイクロプロセッサに格納 することを特徴とするセンサタグ装置。
[10] 前記マイクロプロセッサ力もの制御で電荷のチャージが可能な時定数回路を有し、 チャージからの経過時間の情報を前記マイクロプロセッサによって読み取ることを特 徴とする請求項 9に記載のセンサタグ装置。
[11] 請求項 1乃至請求項 8の何れかに記載のセンサタグを備え、 1以上の環境変化を利 用した発電手段と電源電圧の立ち上がり制御手段及び電源合成手段を有し、環境 の変化をイベントとし、そのイベント発生時に前記マイクロプロセッサに対して電源を 供給すると同時にイベントデータを送信して前記マイクロプロセッサにイベントデータ を格納することを特徴とするセンサタグ装置。
[12] 前記マイクロプロセッサ力もの制御で電荷のチャージが可能な時定数回路を有し、 チャージからの経過時間の情報を前記マイクロプロセッサによって読み取ることを特 徴とする請求項 11に記載のセンサタグ装置。
[13] イベント発生時にイベント原因とセンサデータとを質問器キャリア信号に対して無線 返送するようにしたことを特徴とする請求項 11又は請求項 12に記載のセンサタグ装 置。
[14] イベント発生時にイベント原因とセンサデータ及び発生時刻の情報をマイクロプロ セッサ内部の不揮発メモリに記憶し、質問器力もの問い合わせがあつたとき、それら の情報を無線返送するようにしたことを特徴とする請求項 11乃至請求項 13の何れか 1項に記載のセンサタグ装置。
[15] 質問器力 書き込み要求があつたときタグ内部の時刻情報とセンサ情報をマイクロ プロセッサ内部の不揮発メモリに記憶し、質問器からの問い合わせがあつたとき、そ れらの情報を無線返送することを特徴とする請求項 11乃至請求項 14の何れか 1項 に記載のセンサタグ装置。
[16] スタブ共振器とラダー昇圧整流回路とから構成され、アンテナ給電点と容量性給電 インピーダンスを介し接続し、前記アンテナ給電点から供給される入力信号を昇圧整 流して外部負荷に電力を供給する回路であり、前記スタブ共振器と、前記容量性給 電インピーダンスとを直列共振させ、さらに前記スタブ共振器と、前記ラダー昇圧整 流回路力 なる容量性負荷インピーダンスとを並列共振させることを特徴とする受電 力回路。
[17] 前記ラダー昇圧整流回路が、複数のダイオードと、複数の接地側コンデンサーと、 複数の受電側コンデンサーとからなるコッククロフト 'ウォルトン回路において、入力側 の第一番目のダイオードを取り除き、さらに前記受電側コンデンサーの容量値を前記 接地側コンデンサーの容量値よりも小さくした回路であることを特徴とする請求項 16 に記載の受電力回路。
[18] スタブ共振器とラダー昇圧整流回路とを備え、アンテナ給電点と容量性給電インピ 一ダンスとを介して接続すると共に、前記スタブ共振器と前記容量性給電インピーダ ンスとを直列共振させ且つ前記スタブ共振器と前記ラダー昇圧整流回路からなる容 量性負荷インピーダンスとを並列共振させ、前記アンテナ給電点から供給される入力 信号を昇圧整流して外部負荷に電力を供給することを特徴とするセンサタグ装置の 電力供給方法。
PCT/JP2006/314095 2005-07-15 2006-07-14 センサタグ、センサタグ装置、受電力回路、センサタグ装置の電力供給方法 WO2007010869A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007526000A JP4725979B2 (ja) 2005-07-15 2006-07-14 センサタグ、センサタグ装置、受電力回路、センサタグ装置の電力供給方法
US11/995,691 US8493181B2 (en) 2005-07-15 2006-07-14 Sensor tag, sensor tag device, power receiving circuit, and sensor tag device power supply method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-207464 2005-07-15
JP2005207464 2005-07-15

Publications (1)

Publication Number Publication Date
WO2007010869A1 true WO2007010869A1 (ja) 2007-01-25

Family

ID=37668750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314095 WO2007010869A1 (ja) 2005-07-15 2006-07-14 センサタグ、センサタグ装置、受電力回路、センサタグ装置の電力供給方法

Country Status (3)

Country Link
US (1) US8493181B2 (ja)
JP (1) JP4725979B2 (ja)
WO (1) WO2007010869A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033955A (ja) * 2007-07-04 2009-02-12 Seiko Epson Corp 送電装置、電子機器及び波形モニタ回路
JP2009187518A (ja) * 2008-02-04 2009-08-20 Shoshun Kagi Kofun Yugenkoshi 電池不要なアクティブ発射回路とその応用
US7847438B2 (en) 2007-07-04 2010-12-07 Seiko Epson Corporation Power transmission device, electronic instrument, and waveform monitoring circuit
WO2012090840A1 (ja) 2010-12-28 2012-07-05 国立大学法人東北大学 マイクロ波帯昇圧整流回路及びこれを用いた無線タグ装置と無線タグシステム
JP2021048680A (ja) * 2019-09-18 2021-03-25 国立大学法人静岡大学 レクテナ装置及びレクテナ装置を設計する方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833512B1 (ko) * 2006-12-08 2008-05-29 한국전자통신연구원 태그의 센싱 데이터 저장 장치 및 그 방법
US8310344B2 (en) * 2009-02-19 2012-11-13 FP Wireless, LLC Long range radio frequency identification system
US8680966B2 (en) * 2009-02-19 2014-03-25 FP Wireless, LLC Long range radio frequency identification system
US8264356B2 (en) * 2009-09-25 2012-09-11 Sensomatic Electronics, LLC EAS alarming tag with RFID features
US20110110171A1 (en) * 2009-11-12 2011-05-12 Em Microelectronic-Marin Sa Powerless external event detection device
US8411505B2 (en) * 2009-11-12 2013-04-02 Em Microelectronic-Marin Sa Self-powered detection device with a non-volatile memory
US8422317B2 (en) * 2009-11-12 2013-04-16 Em Microelectronic-Marin Sa Self-powered detection device with a non-volatile memory
US8422293B2 (en) * 2009-11-12 2013-04-16 Em Microelectronic-Marin Sa Self-powered event detection device
US8561525B2 (en) * 2009-11-30 2013-10-22 International Business Machines Corporation Nano timer control system
JP5853131B2 (ja) * 2011-12-15 2016-02-09 パナソニックIpマネジメント株式会社 無線通信装置、無線通信方法及び無線通信システム
US10395077B2 (en) * 2014-01-17 2019-08-27 Hallmark Cards, Incorporated System and method for near field communication
TWI551965B (zh) * 2014-06-25 2016-10-01 澧達科技股份有限公司 控制系統及其方法
WO2016142956A1 (en) * 2015-03-06 2016-09-15 CUTTINI, Davide Signal transmission apparatus, signal transmission architecture and signal transmission method
CN107528360B (zh) * 2017-07-19 2019-07-19 北京邮电大学 无线传感器网络的充电方法及装置
CN115733522A (zh) * 2022-11-18 2023-03-03 大连理工大学 一种基于能量收集的零功耗高增益远距离传感标签

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261339A (ja) * 1998-03-10 1999-09-24 Hitachi Ltd 非接触型icカードの変調信号入力回路
JP2005228714A (ja) * 2004-02-16 2005-08-25 Framework Creation:Kk Icタグ及びシステムと管理方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4236199A (en) * 1978-11-28 1980-11-25 Rca Corporation Regulated high voltage power supply
JPH01186168A (ja) * 1988-01-20 1989-07-25 Oki Electric Ind Co Ltd 受光用高圧発生回路
US5274271A (en) * 1991-07-12 1993-12-28 Regents Of The University Of California Ultra-short pulse generator
JPH05243840A (ja) * 1992-02-28 1993-09-21 Mitsubishi Electric Corp アンテナ装置
US5325105A (en) * 1992-03-09 1994-06-28 Grumman Aerospace Corporation Ultra-broadband TEM double flared exponential horn antenna
US5383109A (en) * 1993-12-10 1995-01-17 University Of Colorado High power factor boost rectifier apparatus
US5570279A (en) * 1994-09-21 1996-10-29 The Research And Development Institute, Inc. At Montana State University PWM converters for three phase AC power control and AC to DC conversion
US5625549A (en) * 1994-09-23 1997-04-29 Kaman Electronics Corporation Boost-buck rectifier bridge circuit topology with diode decoupled boost stage
US5633793A (en) * 1995-01-23 1997-05-27 Center For Innovative Technology Soft switched three-phase boost rectifiers and voltage source inverters
US5903138A (en) * 1995-03-30 1999-05-11 Micro Linear Corporation Two-stage switching regulator having low power modes responsive to load power consumption
AUPN558295A0 (en) * 1995-09-22 1995-10-19 Borle, Lawrence Joseph Switching regulator, method, and control circuit therefor
US5742151A (en) * 1996-06-20 1998-04-21 Micro Linear Corporation Input current shaping technique and low pin count for pfc-pwm boost converter
JP3434982B2 (ja) * 1996-08-30 2003-08-11 京セラ株式会社 帯域阻止フィルタ
US6812824B1 (en) * 1996-10-17 2004-11-02 Rf Technologies, Inc. Method and apparatus combining a tracking system and a wireless communication system
AU5426298A (en) * 1996-10-17 1998-05-11 Pinpoint Corporation Article tracking system
JPH1117750A (ja) * 1997-06-20 1999-01-22 Matsushita Electric Ind Co Ltd 自動周波数制御装置
US6144981A (en) * 1998-10-19 2000-11-07 Analog Devices, Inc. Programmable pulse slimmer system for low pass ladder filter
JP2001251118A (ja) * 2000-03-07 2001-09-14 Nec Corp 携帯無線機
JP4019261B2 (ja) * 2002-09-10 2007-12-12 ソニー株式会社 コンテンツ提供システム、コンテンツ提供方法、情報処理装置、および情報処理方法
DE10243869A1 (de) * 2002-09-20 2004-04-01 Infineon Technologies Ag Schaltkreis-Anordnung und Signalverarbeitungs-Vorrichtung
GB0304841D0 (en) * 2003-03-04 2003-04-09 Koninkl Philips Electronics Nv Wireless transmission tag, product fitted with such a tag, communication system including such a tag and communication method for such a system
JP4097138B2 (ja) * 2003-03-10 2008-06-11 独立行政法人科学技術振興機構 インピーダンス整合回路とそれを用いた半導体素子及び無線通信装置
US7952534B2 (en) * 2004-03-31 2011-05-31 Toto Ltd. Microstrip antenna
JP4265487B2 (ja) * 2004-06-17 2009-05-20 富士通株式会社 リーダー装置、その装置の送信方法及びタグ
WO2006006201A1 (ja) * 2004-07-07 2006-01-19 Fujitsu Limited 無線タグおよび無線タグ用チップ
JP4983749B2 (ja) * 2008-08-26 2012-07-25 ソニー株式会社 高周波結合器並びに電界信号放射エレメント

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261339A (ja) * 1998-03-10 1999-09-24 Hitachi Ltd 非接触型icカードの変調信号入力回路
JP2005228714A (ja) * 2004-02-16 2005-08-25 Framework Creation:Kk Icタグ及びシステムと管理方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033955A (ja) * 2007-07-04 2009-02-12 Seiko Epson Corp 送電装置、電子機器及び波形モニタ回路
US7847438B2 (en) 2007-07-04 2010-12-07 Seiko Epson Corporation Power transmission device, electronic instrument, and waveform monitoring circuit
JP2009187518A (ja) * 2008-02-04 2009-08-20 Shoshun Kagi Kofun Yugenkoshi 電池不要なアクティブ発射回路とその応用
WO2012090840A1 (ja) 2010-12-28 2012-07-05 国立大学法人東北大学 マイクロ波帯昇圧整流回路及びこれを用いた無線タグ装置と無線タグシステム
JP2012142732A (ja) * 2010-12-28 2012-07-26 Tohoku Univ マイクロ波帯昇圧整流回路及びこれを用いた無線タグ装置と無線タグシステム
US9379666B2 (en) 2010-12-28 2016-06-28 Tohoku University Microwave band booster rectifier circuit, and wireless tag device and wireless tag system employing same
JP2021048680A (ja) * 2019-09-18 2021-03-25 国立大学法人静岡大学 レクテナ装置及びレクテナ装置を設計する方法
JP7290219B2 (ja) 2019-09-18 2023-06-13 国立大学法人静岡大学 レクテナ装置及びレクテナ装置を設計する方法

Also Published As

Publication number Publication date
JPWO2007010869A1 (ja) 2009-01-29
US8493181B2 (en) 2013-07-23
JP4725979B2 (ja) 2011-07-13
US20090121837A1 (en) 2009-05-14

Similar Documents

Publication Publication Date Title
WO2007010869A1 (ja) センサタグ、センサタグ装置、受電力回路、センサタグ装置の電力供給方法
EP1691426B1 (en) Piezo-electric transducers
AU2009289470B2 (en) Combination full-duplex and half-duplex electronic identification tag
CN100405385C (zh) 可变频率标签
US10158401B2 (en) Intelligent network sensor system
US20150048682A1 (en) Device and method for harvesting, collecting or capturing and storing ambient energy
US8400279B2 (en) Wireless communication tag and wireless communication system
CA2696413C (en) Automatic antenna tuner system for rfid
JP2009225551A (ja) 電力伝送システム
JP2004526359A (ja) アンテナ整合回路
CN107623389A (zh) 一种基于射频能量收集的无线充电传感器网络节点硬件系统
US20160275322A1 (en) Uhf rfid wrist strap
Indra et al. Radio frequency identification (RFID) item finder using radio frequency energy harvesting
JP5031913B2 (ja) 無線タグ装置、受電力回路、および無線タグ読み取り方法
JP5697142B2 (ja) マイクロ波帯昇圧整流回路及びこれを用いた無線タグ装置と無線タグシステム
CN108763984B (zh) 一种识别感应电路、控制电路及电源控制电路
Steinhagen et al. A low power read/write transponder ic for high performance identification systems
Mehta Convert UHF RFID tag from passive to semi-passive tag using external power sources
JPH09284171A (ja) 非接触データ送受信方法およびその装置
WO2020128424A1 (en) An rfid system with improved signal transmission characteristics
de la Fuente Ruz et al. SMART SENSOR IDENTIFIER (S2I) APPLICATION AND TRACKING OF SENSITIVE PRODUCTS
JP2008160229A (ja) Icタグ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007526000

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11995691

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 06768255

Country of ref document: EP

Kind code of ref document: A1