WO2007010620A1 - 核酸導入用セルトランスフェクションアレイ - Google Patents

核酸導入用セルトランスフェクションアレイ Download PDF

Info

Publication number
WO2007010620A1
WO2007010620A1 PCT/JP2005/013500 JP2005013500W WO2007010620A1 WO 2007010620 A1 WO2007010620 A1 WO 2007010620A1 JP 2005013500 W JP2005013500 W JP 2005013500W WO 2007010620 A1 WO2007010620 A1 WO 2007010620A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
cell
array
cells
introducing
Prior art date
Application number
PCT/JP2005/013500
Other languages
English (en)
French (fr)
Inventor
Kimi Honma
Takahiro Ochiya
Original Assignee
Koken Co., Ltd.
Dainippon Sumitomo Pharma Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koken Co., Ltd., Dainippon Sumitomo Pharma Co., Ltd. filed Critical Koken Co., Ltd.
Priority to PCT/JP2005/013500 priority Critical patent/WO2007010620A1/ja
Priority to EP05766140A priority patent/EP1921153A4/en
Priority to US11/996,002 priority patent/US8029990B2/en
Publication of WO2007010620A1 publication Critical patent/WO2007010620A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle

Definitions

  • the present invention relates to a novel cell transformation array for introducing a nucleic acid. More specifically, the present invention relates to a cell transformation array for nucleic acid introduction using collagen.
  • nucleic acid into a cell that can be a host which is one of genetic research methods, is a useful method for analyzing gene functions. Specifically, introducing plasmid DNA, viral vectors, antisense oligonucleotides, siRNA, etc. into cells and observing changes in cell function after gene expression or changes in cell function due to gene expression suppression. Done.
  • the genomes of various species have already been deciphered, and in gene research, techniques for analyzing the functions of these genes at the cellular level have attracted a great deal of attention.
  • cell function analyzers such as multi-imaging analyzers and plate readers, it has become possible to analyze the functions of multiple specimen cells cultured in multi-well plates in a short period of time. Functional analysis Gene function analysis at the cellular level combined with devices is becoming increasingly important.
  • nucleic acid introduction is performed by seeding cells in a culture vessel and infecting a virus vector incorporating the nucleic acid to be introduced after the culture, or mixing the nucleic acid with an introduction agent and transferring the mixture to the medium.
  • a virus vector incorporating the nucleic acid to be introduced after the culture or mixing the nucleic acid with an introduction agent and transferring the mixture to the medium.
  • it is necessary to prepare a mixture of a viral vector or a nucleic acid and an introduction agent and it is troublesome.
  • a great amount of labor is required.
  • these methods have a problem in that cell function cannot be accurately determined due to the cytotoxicity of the virus and the introduction agent, which becomes an obstacle during assembly such as cell proliferation and apoptosis.
  • Non-patent Document 1 a transfection method in which a slide glass is provided with a bullying gene, and an introduction agent is added and cells are seeded at the time of use.
  • cells can be produced by promoting or suppressing gene expression using a cell transfection array using a plate pre-coated with a mixture of atelocollagen and nucleic acid.
  • Patent Document 2 There is a report on a method for screening genes based on changes in function.
  • Non-patent literature l Nature 411, 107, 2001
  • Patent Document 1 International Publication WO 03/000297 Pamphlet
  • the present invention can introduce a nucleic acid into a cell and effectively express the cell simply by seeding and culturing the cell on a solid phase equipped with a desired nucleic acid. It is an object of the present invention to provide a cell transformation array for nucleic acid introduction.
  • the present inventor uses a cell transformation array comprising collagen, a nucleic acid introduction agent and a desired nucleic acid in a solid phase before culturing cells.
  • a cell transformation array comprising collagen, a nucleic acid introduction agent and a desired nucleic acid in a solid phase before culturing cells.
  • the present invention comprises the following.
  • Cell-transfusion array for nucleic acid introduction comprising atelocollagen, nucleic acid introduction agent and nucleic acid.
  • nucleic acid introduction agent is selected from ribosome or non-ribosome lipid, viral vector, DEAE dextran, calcium phosphate or dendrimer.
  • nucleic acid introduction agent is a ribosome.
  • the nucleic acid is plasmid DNA, polynucleotide, oligonucleotide, ribozyme or si 5.
  • the cell transfection array according to any one of 1 to 4 above, which is RNA.
  • a method for introducing a nucleic acid into a cell which comprises seeding the cell into the cell transfection array according to any one of the items 1 to 5 described in 1 above.
  • a method for introducing a nucleic acid into a cell comprising the steps of preparing a cell-transfusion array for nucleic acid introduction comprising atelocollagen, a nucleic acid-introducing agent, and a nucleic acid, and seeding the cells in the cell-transfusion array.
  • a step of preparing a cell-transfusion array for nucleic acid introduction comprising providing an amount of atelocollagen that can reduce cytotoxicity, and seeding cells in the cell-transfusion array
  • nucleic acid introduction agent is selected from ribosome or non-ribosome lipid, viral vector, DEA dextran, calcium phosphate or dendrimarker!
  • nucleic acid introduction method according to item 12, wherein the nucleic acid introduction agent is a ribosome.
  • nucleic acid is plasmid DNA, polynucleotide, oligonucleotide, ribozyme or siRNA.
  • a kit for introducing a nucleic acid comprising the cell transfection array according to any one of 1 to 5 in the preceding paragraph.
  • the cell transfer array for nucleic acid introduction of the present invention (hereinafter simply referred to as “cell transfer array”) distinguishes the culture environment for each different nucleic acid. Evaluate the extracellular environment by examining changes in cell secretions by collecting each culture solution It is also possible to do. Furthermore, since a multiwell plate for culture that is widely used can be used as a base material for a cell transfer array, there is an advantage that it can be applied to existing cell function analysis reagents and cell function analysis apparatuses.
  • FIG. 1 is a diagram showing a method for preparing a cell transformation array of the present invention. (Example 1
  • FIG. 2 is a graph showing gene transfer efficiency into PC 12 cells when the concentration of the nucleic acid transfer agent added when preparing the cell transfection array of the present invention is changed.
  • Example 1 [FIG. 3] A graph showing the efficiency of gene introduction into PC 12 cells when the concentration of the nucleic acid introduction agent added in preparing the cell transfection array of the present invention is changed.
  • Example 1 [FIG. 4] A graph showing the efficiency of gene transfer into 293 cells when the concentration of the nucleic acid transfer agent added when preparing the cell transformation array of the present invention is changed.
  • Example 2 [FIG. 5] A graph showing the proliferation of transgenic MCF-7 cells when the concentration of the nucleic acid transducing agent added in preparing the cell transfection array of the present invention is changed.
  • Example 3 A graph showing the efficiency of gene introduction into PC 12 cells when the concentration of the nucleic acid introduction agent added in preparing the cell transfection array of the present invention is changed.
  • Example 1 [FIG. 3] A graph showing the efficiency of gene introduction into PC 12
  • FIG. 6 is a diagram showing the effect on the cell growth by the presence or absence of collagen when preparing the cell transfection array of the present invention. (Experimental example 4)
  • FIG. 7 is a graph showing the effect of the presence or absence of collagen on gene transfer efficiency when preparing the cell transfection array of the present invention. (Cultivation 1st day) (Experiment 4)
  • FIG. 8 is a graph showing the effect of the presence or absence of collagen on gene transfer efficiency when preparing the cell transfection array of the present invention. (Culture day 5) (Experimental example 4)
  • FIG. 9 is a graph showing the effect of the presence or absence of collagen on gene transfer efficiency when preparing the cell transfection array of the present invention. (Experimental example 5)
  • FIG. 10 is a diagram showing the influence of cells on the presence or absence of collagen when preparing the cell transfection array of the present invention. (Experimental example 6)
  • FIG. 11 is a graph showing the effect of the presence or absence of collagen on the gene expression period when preparing the cell transfection array of the present invention. (Experimental example 7)
  • FIG. 12 Immediately after preparing the cell-transfusion array and after storage for each time FIG. 6 is a graph showing the effect on gene transfer efficiency when a transformation array is used. (Experimental example 8)
  • Nucleic acids provided in the cell transfection array of the present invention that can be introduced into cells are not limited to specific types. Specifically, plasmid DNA, polynucleotides, oligonucleotides, ribozymes, short interfering RNAs ( Any nucleic acid such as small interferring RNA (siRNA) can be used, and any of single-stranded, double-stranded and analogs thereof may be used.
  • siRNA small interferring RNA
  • the nucleic acid used in the present invention is double-stranded DNA or double-stranded RNA, it may be either linear or circular.
  • the nucleic acid having a desired sequence may be in the form of a plasmid that may be incorporated into a vector.
  • the plasmid may be an expression plasmid or a non-expression plasmid.
  • the nucleic acid used in the present invention is an oligonucleotide
  • deoxyribonucleotides DNA
  • ribonucleotides 2-0 (2-methoxy) ethyl-modified nucleic acids (2'-MOE-modified nucleic acids)
  • siRNA cross-linked nucleic acids (Locked Nucleic Acid) : LNA; Singh, et al, Chem.
  • nucleic acid introduction agent used in the present invention those known per se can be used, and specific examples include ribosomes, non-ribosomal lipids, viral vectors, DEAE dextran, calcium phosphate, dendrimers and the like.
  • ribosomes preferably, it is a ribosome, and more preferably a cationic ribosome can be used.
  • the amount of the nucleic acid introduction agent used can be appropriately selected in relation to the amount of collagen used.
  • the concentration of the nucleic acid introducing agent solution can be used in any of 0.01 ng / mL to 100 ng / mL, preferably 0.1 ng / mL to 50 ng / mL.
  • commercially available nuclear It can be used in the range of 1/1 to 1/100 of the amount described in the instruction manual for use of the acid introduction agent, preferably in the range of 1/2 to 1/50. .
  • the collagen used in the present invention is preferably atelocollagen, and there is no particular limitation on the type, origin, type, and the like.
  • the type include enzyme-solubilized collagen (atelocollagen) and modified products thereof.
  • As a modified product a side chain amino group, a chemical modification of a carboxyl group, or a chemical / physical cross-linked product can be used.
  • any collagen derived from mammals such as rabbits, pigs, horses, humans, birds, and fish can be used as the origin, but it varies depending on the temperature at which the cells are cultured. It is desirable to have thermal stability. Specifically, collagen derived from mammals or birds is desired or collagen obtained by genetic recombination thereof is desirable. There are no particular restrictions on the type of collagen, but I, II, and cocoon types can be used because of their availability.
  • Collagen can be used in an amount that can reduce toxicity to cells.
  • the nucleic acid transfer agent may cause toxicity to cells.
  • the concentration of the collagen solution can be used in the range of 0.00001 to 3% (0.0001 to 30 mg / mL), preferably 0.0001 to 0.1%, more preferably 0.0005 to 0.05%. Can do.
  • the concentration of the nucleic acid in the collagen, the nucleic acid introduction agent, and the nucleic acid mixed solution can be in the range of 0.001 to 1000 ⁇ g / mL, preferably 0.01 to 200 ⁇ g / mL, more preferably 0.05 to 100 ⁇ m. Can be used in the g / mL range.
  • the cell transfection array of the present invention can be prepared by mixing the nucleic acid and the nucleic acid introduction agent in collagen and providing the mixture on a solid phase.
  • the collagen solution, the nucleic acid introduction agent, and the nucleic acid can be mixed in any order, and can be mixed in any ratio. However, mixing the nucleic acid and the nucleic acid introduction agent is followed by mixing the collagen solution. I like it.
  • the ratio of the solution containing the nucleic acid and the nucleic acid introduction agent and the collagen solution can be mixed in the range of 1:99 to 99: 1, preferably 10:90 to 90:10, more preferably 30:70 to 70. : Can be mixed in the range of 30.
  • the cell transfection array of the present invention can use a solid phase capable of cell culture. That is, any solid phase can be used as long as the cell does not die and does not interfere with the uptake of the nucleic acid into the cell by the introduction of the nucleic acid of the present invention.
  • the above cell culture plate when the above cell culture plate is used, 0.1 to 3000 ⁇ l of a mixed solution of collagen, a nucleic acid introduction agent and a nucleic acid is added to each well.
  • a nucleic acid introduction agent and a nucleic acid is added to each well.
  • it can be prepared by adding in the range of 1 to 1500 ⁇ L / cm 2 .
  • a nucleic acid introduction agent and a nucleic acid in the cell transfection array of the present invention a mixture of a nucleic acid and a nucleic acid introduction agent mixed with a collagen solution may be added to a plate.
  • a solution obtained by adding nucleic acid to a mixed solution of a nucleic acid introduction agent and collagen can be added to the plate.
  • the collagen solution can be added after the nucleic acid and the nucleic acid introduction agent are added to the mixed plate. It is preferable that the nucleic acid and the nucleic acid introduction agent are mixed and allowed to stand at room temperature for a while, and then the collagen solution is mixed and added to the plate.
  • the mixed solution of the nucleic acid to be introduced and the nucleic acid introduction agent and collagen is added to a solid phase such as a plate and then dried, or the nucleic acid, nucleic acid introduction agent and collagen are adsorbed on the plate without drying.
  • the cell transformation array of the present invention can be prepared by any method.
  • Transformed cells can be obtained by seeding and culturing cells in a cell transformation array prepared as described above. Any cell can be used as long as it can serve as a host for a desired gene. For example, yeast, animal cells, insect cells, plant cells and the like can be used. Cells to be added, for example, prepared using a known cell culture medium so that it becomes 10 to 10 6 cells / well, preferably 10 2 to 10 5 cells / well per well of a 96-well microplate Can be used.
  • the present invention relates to the above-described cell transformation array, a method for preparing the same, a method for introducing a nucleic acid using the cell transformation array, and a method for introducing a nucleic acid including the cell transformation array of the present invention. Furthermore, the present invention extends to a kit for preparing a cell transfer array containing a nucleic acid transducing agent and collagen, and further to the cell transfer array described above. It extends to kits for nucleic acid introduction including an exci- tion array.
  • Plasmid DNA was used as the nucleic acid (gene), and pEGFP-N1 (Clontech) that expresses green fluorescent protein (EGFP) was used.
  • pEGFP-N1 Clontech
  • EGFP green fluorescent protein
  • a commercially available lipofectamine 2000 Lipofectamine 2000 (manufactured by Invitrogen), hereinafter referred to simply as “LF” or “LF2000”) containing cationic ribosome was used as a nucleic acid introduction agent.
  • a cell transfer array was prepared according to the flowchart of FIG.
  • a cell transfection array was prepared by mixing a mixture of plasmid DNA (nucleic acid), LF2000 (nucleic acid introduction agent) and atelocollagen (collagen) shown in FIG. 1 and adding it to a 96-well microplate.
  • plasmid DNA nucleic acid
  • LF2000 nucleic acid introduction agent
  • atelocollagen collagen
  • Example 1 cell transformation arrays were prepared in a system using various amounts of LF2000.
  • PC12 cells rat adrenal pheochromocytoma-derived cells
  • PC12 cells were grown in a DMEM medium supplemented with 10% horse serum and 5% rabbit fetal serum (FBS) and adjusted to a cell count of 2 X 10 5 cells / ml. 100 ⁇ L was seeded and cultured for 3 days.
  • FBS rabbit fetal serum
  • the amount of LF2000 reagent used was 0.8 ⁇ g / well, and the amount of force used was changed from 1/2 to 1/10. As shown in Fig. 3, the ability to show gene transfer efficiency depending on the amount of LF2000 used. When the amount of LF2000 used is 1/4 or more, about 25% or more of gene transfer is performed in the same way as conventional nucleic acid transfer methods. Efficiency was observed.
  • Example 1 cell transformation arrays were prepared in a system using various amounts of LF2000. The gene transfer efficiency was confirmed when the gene was transferred to the 293 cells into the cell transfection array.
  • 293 cells human embryonic kidney-derived cells; cells transformed with adenovirus
  • the cells were grown using EM medium supplemented with 10% fetal bovine serum (FBS), adjusted to a cell count of 2 ⁇ 10 5 cells / ml, seeded with 100 L of each well, and cultured for 3 days.
  • FBS fetal bovine serum
  • cell transformation arrays were prepared in a system using various amounts of LF2000.
  • the cell transfection array was seeded with MCF-7 cells (human breast cancer-derived cells), and the effect on the cells and the gene transfer efficiency when the gene was transferred were confirmed.
  • MCF-7 cells were grown in RPMI1640 medium supplemented with 10% ushi fetal serum, and seeded with 100 ⁇ L of each well prepared to a cell count of 2 X 10 4 cells / ml. 7 cultivated daily.
  • Cell proliferation was determined by adding 10 ⁇ L of Tetra color one proliferation assay reagent to each well, incubating in a 37 ° C CO incubator for 1 hour, and then measuring the absorbance at a wavelength of 450 nm (0.
  • LF2000 was used in an amount of 1/40 of the amount used in the package insert, and cell-transfusion arrays were further prepared in a system with and without an added atelocollagen system.
  • MCF-7 cells were seeded on the cell transfection array in the same manner as in Experimental Example 3, and the effect of the presence or absence of collagen on the cells when the gene was introduced and when the gene was not introduced was examined.
  • the degree of cell proliferation was measured in the same manner as in Experimental Example 3, and the method for measuring gene introduction efficiency was the same as in Experimental Example 1.
  • LF2000 was used in an amount of 1/4 of the amount used in the package insert, and cell transformation arrays were added in the system with and without the addition of atelocollagen.
  • PC12 cells were seeded on the cell transfection array in the same manner as in Experimental Example 1, and cultured for 3 days. The effect of the presence or absence of collagen on the cells when the gene was introduced and when the gene was not introduced was examined. The gene transfer was measured by the same method as in Experimental Example 1.
  • a cell transfection array was prepared using LF2000 diluted 2-fold from the amount used in the package insert.
  • the actual Kenrei 1 similarly to HepG2 cells (human hepatoma-derived cells) were grown using media supplemented with 10% ⁇ shea calf serum DMEM medium, a cell count of 1 X 10 5
  • Each well was seeded with 100 L of cells / ml and cultured for 3 days.
  • the same amount of LF2000 reagent as in this method was used, and gene transfer was performed according to the package insert. The state of the cells transfected with each method was confirmed by microscopic observation. Gene transfer was confirmed by observing the expression of EGFP using a fluorescence microscope.
  • Example 1 According to the procedure of Example 1, a gene was introduced into PC12 cells in the same manner as in Experimental Example 1. The results were observed over time using a fluorescent microscope at a magnification of 100 times.
  • Example 1 Immediately after the cell transfection array was prepared according to the method of Example 1 and after storage for each time, the efficiency of gene transfer was examined by seeding the cells and culturing for 3 days to confirm the storage stability. The gene transfer efficiency was measured in the same manner as in Experimental Example 1.
  • the cell transformation array of the present invention when used, genes can be effectively expressed in host cells without the need for addition of a nucleic acid introduction agent or the like at the time of cell seeding. Furthermore, the prepared cell transfer array can withstand storage for about 4 weeks. As a result, the cell transformation array can be transported and passed after preparation. Therefore, by preparing and distributing cell-transfusion arrays plated with many types of nucleic acids, users can analyze the genes of many samples at the cell level simply by seeding the cells into the cell-transfusion array. Therefore, it can be applied to gene function analysis at each research institution, screening for drug discovery, and testing at each clinical laboratory.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、プレート等に核酸を添加したのちに核酸導入試薬や添加剤を添加することなく、そこに細胞を播種、培養するだけで該細胞に核酸を導入し、発現させることができる核酸導入用マイクロアレイを提供することを課題とする。  アテロコラーゲン、遺伝子導入剤および核酸をプレート等に備えた核酸導入用マイクロアレイを調製することによる。該マイクロアレイに核酸導入用細胞を播種し、培養することで、細胞培養後にウイルスベクターや核酸と核酸導入剤の混合物を調製する必要なく、または核酸導入剤や添加剤の添加の必要なく核酸を細胞に導入することができる。

Description

明 細 書
核酸導入用セルトランスフエクシヨンアレイ 技術分野
[0001] 本発明は、新規な核酸導入用セルトランスフエクシヨンアレイに関する。より詳細に は、コラーゲンを用いた核酸導入用セルトランスフエクシヨンアレイに関する。
背景技術
[0002] 遺伝子研究の手法のひとつである宿主となりうる細胞への核酸の導入(トランスフエ クシヨン)は、遺伝子の機能を解析するための有用な方法である。具体的にはプラスミ ド DNA,ウィルスベクター、アンチセンスオリゴヌクレオチド、 siRNAなどを細胞に導 入し、遺伝子発現後の細胞機能の変化、あるいは遺伝子の発現抑制による細胞機 能の変化を観察することが行われる。すでに様々な種のゲノムが解読され、遺伝子 研究にぉ 、てはその遺伝子の機能を細胞レベルで解析する技術がおおいに注目さ れて 、る。近年のマルチイメージングアナライザーやプレートリーダー等の細胞機能 解析装置の発達によって、マルチウエルプレートで培養した多検体の細胞の機能を 短時間に解析することができるようになり、核酸のトランスフエクシヨンと細胞機能解析 装置を組み合わせた細胞レベルでの遺伝子機能解析は、その重要性を増して 、る。
[0003] しかし、従来の核酸の導入は、培養容器に細胞を播種、培養後に導入を目的とす る核酸を組み込んだウィルスベクターを感染させる、あるいは核酸を導入剤と混合し て培地にカ卩えることにより行われており、そのつどウィルスベクターや核酸と導入剤の 混合物を調製する必要があり煩雑で、特に多種多検体の核酸を導入する場合は大 変な労力を要する。またそれらの方法は、ウィルスや導入剤の細胞毒性のために、細 胞増殖、アポトーシス等のアツセィの際の障害となり、正確に細胞機能を判定できな いという問題があった。
[0004] そこでスライドグラスにあらカゝじめ遺伝子を備え、使用時に導入剤の添加、細胞の 播種を行うトランスフエクシヨン方法が開発されている(非特許文献 1)。
[0005] また、ァテロコラーゲンと核酸を混合したものをプレコーティングしたプレートによる セルトランスフエクシヨンアレイを使用して遺伝子発現の促進あるいは抑制による細胞 機能の変化から、遺伝子をスクリーニングする方法についての報告がある(非特許文 献 2、特許文献 1)。
非特許文献 l : Nature 411, 107, 2001
^^特干文献 2: Biochemical and Biophysical Research Communications 289, 1075—10 81(2001)
特許文献 1:国際公開 WO 03/000297号パンフレット
発明の開示
発明が解決しょうとする課題
[0006] 本発明は、細胞に遺伝子を導入するに際し、所望の核酸を備えた固相に細胞を播 種し培養するだけで、該細胞に核酸を導入し、効果的に発現させることができる核酸 導入用セルトランスフエクシヨンアレイを提供することを課題とする。
課題を解決するための手段
[0007] 本発明者は、上記課題を解決するために鋭意研究を重ねた結果、細胞の培養前 に、固相にコラーゲン、核酸導入剤および所望の核酸を備えたセルトランスフエクショ ンアレイを利用することにより、細胞の培養後にウィルスベクターや核酸、核酸導入 剤等を該培養細胞に加える必要なく細胞に核酸を導入しうることを見出し、本発明を 兀成し 7こ。
[0008] 本発明は、以下よりなる。
1.ァテロコラーゲン、核酸導入剤および核酸を備えた核酸導入用セルトランスフエク シヨンアレイ。
2.ァテロコラーゲンを細胞毒性を軽減しうる量備える前項 1に記載の細胞導入用セ ルトランスフエクシヨンアレイ。
3.核酸導入剤が、リボソーム若しくは非リボソーム系脂質、ウィルスベクター、 DEAE デキストラン、リン酸カルシウムまたはデンドリマーから選択される 、ずれかである前 項 1または 2に記載のセルトランスフエクシヨンアレイ。
4.核酸導入剤が、リボソームである前項 1〜3のいずれ力 1に記載のセルトランスフエ クシヨンアレイ。
5.核酸が、プラスミド DNA、ポリヌクレオチド、オリゴヌクレオチド、リボザィムまたは si RNAである前項 1〜4のいずれか 1に記載のセルトランスフエクシヨンアレイ。
6.前項 1〜5のいずれ力 1に記載のセルトランスフエクシヨンアレイの調製方法。
7.前項 1〜5のいずれ力 1に記載のセルトランスフエクシヨンアレイ調製用キット。
8.前項 1〜5のいずれ力 1に記載のセルトランスフエクシヨンアレイを使用する細胞へ の核酸導入方法。
9.前項 1〜5のいずれ力 1に記載のセルトランスフエクシヨンアレイに、細胞を播種す ることを特徴とする細胞への核酸導入方法。
10.ァテロコラーゲン、核酸導入剤および核酸を備えた核酸導入用セルトランスフエ クシヨンアレイを調製する工程と、該セルトランスフエクシヨンアレイに細胞を播種する 工程を含む細胞への核酸導入方法。
11.前項 10の核酸導入方法において、ァテロコラーゲンを細胞毒性を軽減しうる量 備えることを含む核酸導入用セルトランスフエクシヨンアレイを調製する工程と、該セ ルトランスフエクシヨンアレイに細胞を播種する工程を含む細胞への核酸導入方法。
12.核酸導入剤が、リボソーム若しくは非リボソーム系脂質、ウィルスベクター、 DEA Eデキストラン、リン酸カルシウムまたはデンドリマーカも選択される!、ずれかである前 項 10または 11に記載の核酸導入方法。
13.核酸導入剤が、リボソームである前項 12に記載の核酸導入方法。
14.核酸が、プラスミド DNA、ポリヌクレオチド、オリゴヌクレオチド、リボザィムまたは siRNAである前項 10〜13の!、ずれか 1に記載の核酸導入方法。
15.前項 1〜5のいずれ力 1に記載のセルトランスフエクシヨンアレイを含む核酸導入 用キット。
発明の効果
本発明により、核酸導入効率、適当な核酸導入、細胞毒性の軽減された状態で遺 伝子の長期発現が実現され、さらには核酸を導入可能な状態で、核酸導入用セルト ランスフエクシヨンアレイを長期保存することができる。また、本発明の核酸導入用セ ルトランスフエクシヨンアレイ(以下単に「セルトランスフエクシヨンアレイ」とも 、う。)は、 異なる核酸ごとに培養環境が区別されているため、例えば異なる核酸の導入による 細胞の分泌物の変化を、各培養液を回収して調べると 、うような細胞外環境を評価 することも可能となる。さらに、汎用されている培養用マルチウエルプレートをセルトラ ンスフエクシヨンアレイの基材とすることができるため、既存の細胞機能解析用試薬や 細胞機能解析装置に適用できるという利点がある。
図面の簡単な説明
[図 1]本発明のセルトランスフエクシヨンアレイの調製方法を示す図である。(実施例 1
)
[図 2]本発明のセルトランスフエクシヨンアレイを調製する際に添加する核酸導入剤の 濃度を変えたときの、 PC 12細胞への遺伝子導入効率を示す図である。(実験例 1) [図 3]本発明のセルトランスフエクシヨンアレイを調製する際に添加する核酸導入剤の 濃度を変えたときの、 PC 12細胞への遺伝子導入効率を示す図である。(実験例 1) [図 4]本発明のセルトランスフエクシヨンアレイを調製する際に添加する核酸導入剤の 濃度を変えたときの、 293細胞への遺伝子導入効率を示す図である。(実験例 2) [図 5]本発明のセルトランスフエクシヨンアレイを調製する際に添加する核酸導入剤の 濃度を変えたときの、遺伝子導入細胞 MCF— 7細胞の増殖を示す図である。(実験 例 3)
[図 6]本発明のセルトランスフエクシヨンアレイを調製する際のコラーゲンの有無による 細胞増殖に及ぼす効果を示す図である。(実験例 4)
[図 7]本発明のセルトランスフエクシヨンアレイを調製する際のコラーゲンの有無による 遺伝子導入効率に及ぼす効果を示す図である。(培養 1日目)(実験例 4)
[図 8]本発明のセルトランスフエクシヨンアレイを調製する際のコラーゲンの有無による 遺伝子導入効率に及ぼす効果を示す図である。(培養 5日目)(実験例 4)
[図 9]本発明のセルトランスフエクシヨンアレイを調製する際のコラーゲンの有無による 遺伝子導入効率に及ぼす効果を示す図である。(実験例 5)
[図 10]本発明のセルトランスフエクシヨンアレイを調製する際のコラーゲンの有無によ る細胞に及ぼす影響を示す図である。(実験例 6)
[図 11]本発明のセルトランスフエクシヨンアレイを調製する際のコラーゲンの有無によ る遺伝子発現期間に及ぼす効果を示す図である。(実験例 7)
[図 12]セルトランスフエクシヨンアレイを調製した直後および各時間保存した後にセル トランスフエクシヨンアレイを用いた時の遺伝子導入効率に及ぼす効果を示す図であ る。(実験例 8)
発明を実施するための最良の形態
[0011] 本発明のセルトランスフエクシヨンアレイに備えられ、細胞に導入されうる核酸は、そ の種類に制限はなぐ具体的にはプラスミド DNA、ポリヌクレオチド、オリゴヌクレオチ ド、リボザィム、短い干渉 RNA (small interferring RNA: siRNA)等のいかなる核酸 であっても使用することができ、一本鎖、二本鎖およびこれら類縁体のいずれでも良 い。
[0012] 本発明に使用する核酸が、二本鎖 DNAまたは二本鎖 RNAである場合には、直鎖 状または環状のいずれの形態であっても良い。また所望の配列を有する核酸は、ベ クタ一に組み込まれた状態でも良ぐプラスミドの形態であっても良い。当該プラスミド は、発現プラスミドまたは非発現プラスミドであっても良 、。
[0013] 本発明に使用する核酸がオリゴヌクレオチドである場合、導入するオリゴヌクレオチ ドの種類に制限はなぐ一本鎖オリゴヌクレオチド、二本鎖オリゴヌクレオチド、または これらの類縁体のいずれも用いることができる。具体的には、デォキシリボヌクレオチ ド(DNA)、リボヌクレオチド、 2-0 (2-メトキシ)ェチル—修飾核酸(2'-MOE-修飾核 酸)、 siRNA、架橋型核酸(Locked Nucleic Acid:LNA; Singh, et al, Chem. Commu n., 455(1998))、ペプチド核酸(Peptide Nucleic Acid:PNA; Nielsen, et al., Science, 2 54, 1497,1991)またはモルフォリノ'ァンチセンス核酸(\10卬1101 0 antisense; Sumert on and Weller, Antisense & Nucleic Acid Drug Development, 7, 187, 1997)などを挙 げることができる。
[0014] 本発明に使用される核酸導入剤は、自体公知のものを使用することができ、具体的 にはリボソーム、非リボソーム系脂質、ウィルスベクター、 DEAEデキストラン、リン酸 カルシウム、デンドリマー等を挙げることができ、好ましくはリボソームであり、より好ま しくはカチオン性リボソームを使用することができる。
[0015] 核酸導入剤の使用量は、コラーゲン使用量との関係で適宜選択することができる。
具体的には、核酸導入剤溶液の濃度は 0.01ng/mL〜100ng/mL、好ましくは 0.1ng/m L〜50ng/mLの範囲の何れかで使用することができる。例えば市販のものであれば核 酸導入剤の使用取り扱い説明書等に記載の量の 1/1〜1/100の量の範囲で使用す ることができ、好ましくは 1/2〜1/50の範囲で使用することができる。
[0016] 本発明に使用されるコラーゲンは、ァテロコラーゲンが好適であり、その種類、由来 、型等特に制限はない。種類としては酵素可溶化コラーゲン (ァテロコラーゲン)及び その修飾物を挙げることができる。修飾物としては、側鎖アミノ基、カルボキシル基の 化学修飾、あるいは化学的 ·物理的架橋物を用いることができる。また、由来として、 ゥシ、ブタ、ゥマ、ヒト等の哺乳動物、鳥、魚類を由来とするいずれのコラーゲンも用 V、ることが可能であるが、細胞が培養される温度で変化しな 、熱安定性を持つことが 望ましい。具体的には、哺乳動物、鳥由来のコラーゲンが望ましぐ若しくはそれらの 遺伝子組み換えにより得られたコラーゲンが望ましい。コラーゲンの型については、 特に制限はないが、入手の容易さより I、 II, ΠΙ型などを使用することができる。
[0017] コラーゲンは、細胞に及ぼす毒性を軽減しうる量使用することができる。例えば核酸 導入剤によって、細胞に毒性が及ぶことが危惧される。具体的には、コラーゲン溶液 の濃度は 0.00001〜3% (0.0001〜30mg/mL)の範囲で使用することができ、好ましく は 0.0001〜0.1%、より好ましくは 0.0005〜0.05%の範囲で使用することができる。
[0018] コラーゲン、核酸導入剤、核酸混合溶液中の核酸の濃度は、 0.001〜1000 μ g/mL の範囲で可能であり、好ましくは 0.01〜200 μ g/mL,より好ましくは 0.05〜100 μ g/mL の範囲で使用することができる。
[0019] 前記核酸および核酸導入剤をコラーゲンの中に混合し、固相上に備えることで本 発明のセルトランスフエクシヨンアレイを調製することができる。コラーゲン溶液、核酸 導入剤、核酸はどのような順番で混合しても良ぐまたどのような割合でも混合するこ とができるが、核酸と核酸導入剤を混合した後にコラーゲン溶液を混合するのが好ま しい。核酸および核酸導入剤を含む溶液とコラーゲン溶液の割合は、 1 : 99〜99 : 1 の範囲で混合することができ、好ましくは 10 : 90〜90 : 10、より好ましくは 30 : 70〜7 0: 30の範囲で混合することができる。
[0020] 本発明のセルトランスフエクシヨンアレイは、細胞培養が可能な固相を使用すること ができる。すなわち、細胞が死滅せず、かつ本発明の核酸導入による細胞内への核 酸の取り込みに支障をもたらさないものであれば、いかなる固相も使用することができ る。また、異なる核酸ごとに培養環境が区分されている固相であることが好ましぐ具 体的には細胞培養用プレートを使用することができる。より好ましくは 6ゥエル、 24ゥェ ル、 48ゥヱル、 96ゥヱル、 384ゥエル、 1536ゥヱル等の培養環境が区分されているゥェ ルを有する市販の細胞培養用プレートを使用することができる。
[0021] 本発明のセルトランスフエクシヨンアレイの調製に際し、上記細胞培養用プレートを 使用する場合には、コラーゲン、核酸導入剤および核酸の混合液を各ゥエルに 0.1〜 3000 μ
Figure imgf000008_0001
好ましくは 1〜1500 μ L/cm2の範囲で添カ卩して備えることができる。
[0022] コラーゲン、核酸導入剤および核酸を本発明のセルトランスフエクシヨンアレイに備 えるために、核酸と核酸導入剤を混合したものをさらにコラーゲン溶液に混合したも のをプレートに添加することができ、または、核酸導入剤とコラーゲンの混合溶液に 核酸を加えたものをプレートに添加することもできる。さらに、核酸と核酸導入剤を混 合プレートに添加した後に、コラーゲン溶液を添加することもできる。核酸と核酸導入 剤を混合し、しばらく室温にて放置した後に、コラーゲン溶液を混合し、それをプレー トに添加するのが好ましい。
[0023] 導入される核酸と、核酸導入剤およびコラーゲンの混合溶液をプレート等の固相に 添加した後に乾燥させる力 あるいは乾燥させずに核酸、核酸導入剤およびコラー ゲンをプレートに吸着させる等のいずれの方法によっても本発明のセルトランスフエク シヨンアレイを調製することができる。
[0024] 上記のように調製して得られたセルトランスフエクシヨンアレイに、細胞を播種し、培 養し、形質転換細胞を得ることができる。細胞の種類としては、所望の遺伝子の宿主 となりうる細胞であれば良ぐ例えば酵母菌、動物細胞、昆虫細胞、植物細胞等を使 用することができる。添加する細胞は、例えば 96穴のマイクロプレートの 1ゥエルあたり に 10〜 106cells/well、好ましくは 102〜 105cells/wellとなるように公知の細胞培養用 培地を用いて調製したものを使用することができる。
[0025] 本発明は、上記セルトランスフエクシヨンアレイ、その調製方法、上記セルトランスフ ェクシヨンアレイを用いた核酸導入方法並びに本発明のセルトランスフエクシヨンァレ ィを含む核酸導入法に関する。さらに、本発明は核酸導入剤およびコラーゲンを含 むセルトランスフエクシヨンアレイの調製用キットにもおよび、さらに上記セルトランスフ ェクシヨンアレイを含む核酸導入用キットにもおよぶ。
実施例
[0026] 本発明の理解を深めるために、以下に実施例および実験例を示して本発明を具体 的に説明するが、本発明はこれら実施例に限定されるまでもないことが明らかである
[0027] (実施例 1)セルトランスフエクシヨンアレイの調製
1)材料
核酸 (遺伝子)としてプラスミド DNAを用い、緑色蛍光タンパク質 (EGFP)を発現す る pEGFP- N1 (クローンテック社製)を用いた。核酸導入剤としてカチオン性リボソーム を含む市販のリポフエクトァミン 2000 (Lipofectamine2000 (Invitrogen社製)、以下単に 「LF」または「LF2000」という。)を用いた。
2)方法
セルトランスフエクシヨンアレイは図 1のフローチャートに従って調製した。原則として 、図 1に示すプラスミド DNA (核酸)、 LF2000 (核酸導入剤)およびァテロコラーゲン( コラーゲン)を混合したものを 96穴のマイクロプレートに添カ卩したものをセルトランスフ ェクシヨンアレイとした。以下の実験例では、マイクロプレートに添加する条件を各種 変動させたものについて、細胞増殖、遺伝子導入および遺伝子の発現効果等を調 ベた。
[0028] (実験例 1) 核酸導入剤の使用量を変更したときの遺伝子導入効率の確認
実施例 1の手法に従い、各種使用量の LF2000を用いた系でのセルトランスフエクシ ヨンアレイを調製した。該セルトランスフエクシヨンアレイに PC12細胞 (ラット副腎褐色 細胞腫由来細胞)に遺伝子を導入したときの細胞に対する影響および遺伝子導入効 率を確認した。
PC12細胞を DMEM培地にゥマ血清 10%およびゥシ胎児血清(FBS)を 5%添カロし た培地を用いて増殖させ、細胞数 2 X 105cells/mlに調製したものを各ゥエルに 100 μ L 播種し、 3日間培養した。
[0029] 細胞への遺伝子の導入は、細胞に緑色蛍光タンパク質 (EGFP)が発現したことによ る蛍光を観察することにより確認した。遺伝子導入効率は、ある視野における全細胞 あたりの EGFPを発現している細胞の割合で示した。
[0030] LF2000試薬の使用量は添付文書によれば、 0.8 μ g/wellである力 使用量を 1/2か ら 1/10量まで変化させて遺伝子導入効率を確認した結果、図 2および図 3に示すよう に LF2000の使用量依存的に遺伝子導入効率を示した力 LF2000の使用量を 1/4以 上としたときに、従来の核酸導入法と同等に約 25%以上の遺伝子導入効率が認めら れた。
[0031] (実験例 2) 核酸導入剤の使用量を変更したときの遺伝子導入効率の確認
実施例 1の手法に従い、各種使用量の LF2000を用いた系でのセルトランスフエクシ ヨンアレイを調製した。該セルトランスフエクシヨンアレイに 293細胞に遺伝子を導入し たときの遺伝子導入効率を確認した。
293細胞 (ヒト胎児腎由来細胞;アデノウイルスにより形質変換された細胞)は、 DM
EM培地にゥシ胎児血清 (FBS)10%を添加した培地を用いて増殖させ、細胞数 2 X 105 cells/mlに調製したものを各ゥエルに 100 L播種し、 3日間培養した。遺伝子導入効 率の測定は、実験例 1と同様に行った。
[0032] LF2000試薬の使用量を 1/5から 1/10量まで変化させて遺伝子導入効率を確認した 結果、図 4に示すように、 LF2000試薬使用量 1/6量以上のときに安定的に 35%以上 の遺伝子導入が認められた。
[0033] (実験例 3) 核酸導入剤の使用量を変更したときの遺伝子導入効率の確認
実施例 1の手法に従い、各種使用量の LF2000を用いた系でのセルトランスフエクシ ヨンアレイを調製した。該セルトランスフエクシヨンアレイに、 MCF— 7細胞(ヒト乳癌由 来細胞)を播種し、遺伝子を導入したときの細胞に及ぼす影響および遺伝子導入効 率を確認した。
MCF— 7細胞は、 RPMI1640培地にゥシ胎児血清 10%を添加した培地を用いて増 殖させ、細胞数 2 X 104cells/mlに調製したものを各ゥエルに 100 μ L播種し、 5日間培 し 7こ。
[0034] 細胞増殖度は、各ゥエルに、 Tetra color one proliferation assay試薬を 10 μ L添加し 、 37°Cの COインキュベーターで 1時間インキュベート後、波長 450nmでの吸光度(0.
2
D450)を波長 630nmでの吸光度(O.D630)を対照として測定した。遺伝子導入効率は 、実験例 1と同様に行った。
[0035] 上記の結果、添付文書における使用量の 1/40量より少ない LF2000を用いた場合 に細胞毒性が軽減された(図 5)。また、 1/40量を使用した場合に遺伝子の導入効果 が認められた (表 1)。
これにより、 LF2000を添付文書に記載の使用量の 1/40量の核酸導入剤を添加した セルトランスフエクシヨンアレイを使用すると細胞毒性が軽減ィ匕され、遺伝子導入効果 も得られることが確認された。
[表 1]
Figure imgf000011_0001
[0036] (実験例 4) ァテロコラーゲンの有無による細胞および発現効率に対する影響
実施例 1の手法に従い、添付文書における使用量の 1/40量の LF2000を用い、さら にァテロコラーゲンの添カ卩の系および無添カ卩の系でのセルトランスフエクシヨンアレイ を調製した。該セルトランスフエクシヨンアレイに、実験例 3と同様に MCF— 7細胞を 播種し、遺伝子を導入したときおよび遺伝子を導入しな 、ときのコラーゲンの有無に よる細胞に対する影響を検討した。細胞増殖度の測定は実験例 3と同様に行い、遺 伝子導入効率の測定方法は実験例 1と同様に行った。
[0037] 上記の結果、ァテロコラーゲンを用いたセルトランスフエクシヨンアレイに細胞を播種 した場合、良好な細胞の増殖が認められ、細胞毒性が軽減された(図 6)。また 1/20 量、 1/40量の LF2000を用いて調製したセルトランスフエクシヨンアレイでの細胞に遺 伝子の導入が観察された。また、その効果は培養後 1日目および 5日目のいずれの 場合においてもァテロコラーゲンを添カ卩した系のほうが優れていた(図 7、 8)。
これにより、ァテロコラーゲンを添カ卩したセルトランスフエクシヨンアレイを使用すると 高 ヽ遺伝子導入効果が得られることが確認された。
[0038] (実験例 5) ァテロコラーゲンの有無による細胞および導入効率に対する影響
実施例 1の手法に従い、添付文書における使用量の 1/4量の LF2000を用い、さら にァテロコラーゲンの添カ卩の系および無添カ卩の系でのセルトランスフエクシヨンアレイ を調製した。該セルトランスフエクシヨンアレイに、実験例 1と同様に PC12細胞を播種 し、 3日間培養した。遺伝子を導入したときおよび遺伝子を導入しないときのコラーゲ ンの有無による細胞に及ぼす影響を検討した。遺伝子導入については、実験例 1と 同様の手法で測定した。
[0039] 上記の結果、上記セルトランスフエクシヨンアレイに細胞を播種したところ、ァテロコ ラーゲンを添加した系について培養後 3日目において高い遺伝子導入が認められた (図 9)。これにより、ァテロコラーゲンを添カ卩したセルトランスフエクシヨンアレイを使用 すると高 、遺伝子導入効果が得られることが確認された。
[0040] (実験例 6) ァテロコラーゲンの有無による細胞に及ぼす影響
実施例 1の手法に従い、添付文書における使用量から 2倍に希釈した LF2000を用 い、セルトランスフエクシヨンアレイを調製した。該セルトランスフエクシヨンアレイに、実 験例 1と同様に HepG2細胞 (ヒト肝癌由来細胞)を、 DMEM培地にゥシ胎児血清 10 %を添加した培地を用いて増殖させ、細胞数 1 X 105cells/mlに調製したものを各ゥェ ルに 100 L播種し、 3日間培養した。また、従来法として、本法と同量の LF2000試薬 を使用し、添付文書に従って遺伝子導入を行った。顕微鏡観察によりそれぞれの方 法で遺伝子導入した細胞の状態を確認した。遺伝子導入は、蛍光顕微鏡を用いて E GFPの発現を観察することにより確認した。
[0041] 上記の結果、上記セルトランスフエクシヨンアレイに細胞を播種したところ、培養後 3 日目において細胞毒性の軽減が認められた(図 10)。これにより、ァテロコラーゲンを 添加したセルトランスフエクシヨンアレイを使用すると、細胞毒性が軽減され、かつ高 Vヽ遺伝子導入効果が得られることが確認された。
[0042] (実験例 7) ァテロコラーゲンの有無による遺伝子発現期間の違い
実施例 1の手法に従い、実験例 1と同様に PC12細胞に遺伝子を導入した。その結 果を蛍光顕微鏡を用い、倍率 100倍で EGFPの発現を経時的に観察した。
[0043] 上記の結果、上記セルトランスフエクシヨンアレイに細胞を播種したところ、顕微鏡観 察下では培養後 3日後であればァテロコラーゲンの有無に関係なく遺伝子発現が認 められたが、培養後 7日目では、ァテロコラーゲンを添カ卩しない系では EGFPの発現 が激減して 、るのに対して、ァテロコラーゲンを添加した系では EGFPの発現が維持 されており、ァテロコラーゲンの添カ卩により、長期間の遺伝子発現が可能になることが 示された(図 11)。
[0044] (実験例 8) セルトランスフ クシヨンアレイの保存安定性
実施例 1の手法に従ってセルトランスフエクシヨンアレイを調製した直後および各時 間保存した後に細胞を播種して 3日間培養したときの遺伝子導入効率を調べ、保存 安定性を確かめた。遺伝子導入効率の測定は、実験例 1と同様に行った。
[0045] 上記の結果、セルトランスフエクシヨンアレイ調製後 4週間経過後であっても、調製 直後と同等の遺伝子導入効率が確認された(図 12)。それにより、保存安定性がある ことが示された。
産業上の利用可能性
[0046] 上記説明した結果、本発明のセルトランスフエクシヨンアレイを用いると、細胞播種 時に核酸導入剤等の添加の必要なく効果的に宿主細胞中に遺伝子を発現させるこ とが可能となる。さらに、調製したセルトランスフエクシヨンアレイは 4週間程度の保存 に耐えうるものである。これにより、セルトランスフエクシヨンアレイを調製後、運搬、流 通させることができる。そこで、多種類の核酸をプレーティングしたセルトランスフエク シヨンアレイを調製し、流通させれば、ユーザーはそのセルトランスフエクシヨンアレイ に細胞を播種するだけで、多検体の遺伝子を細胞レベルで解析できることが可能と なるため、各研究機関における遺伝子機能解析、創薬におけるスクリーニング、各臨 床検査機関での検査等への応用が期待できる。

Claims

請求の範囲
[I] ァテロコラーゲン、核酸導入剤および核酸を備えた核酸導入用セルトランスフエクショ ンアレイ。
[2] ァテロコラーゲンを細胞毒性を軽減しうる量備える請求の範囲第 1項に記載の細胞 導入用セルトランスフエクシヨンアレイ。
[3] 核酸導入剤が、リボソーム若しくは非リボソーム系脂質、ウィルスベクター、 DEAEデ キストラン、リン酸カルシウムまたはデンドリマーから選択される 、ずれかである請求 の範囲第 1項または第 2項に記載のセルトランスフエクシヨンアレイ。
[4] 核酸導入剤が、リボソームである請求の範囲第 1項〜第 3項のいずれか 1項に記載の セルトランスフエクシヨンアレイ。
[5] 核酸が、プラスミド DNA、ポリヌクレオチド、オリゴヌクレオチド、リボザィムまたは siR
NAである請求の範囲第 1項〜第 4項のいずれか 1項に記載のセルトランスフエクショ ンアレイ。
[6] 請求の範囲第 1項〜第 5項のいずれか 1項に記載のセルトランスフエクシヨンアレイの 調製方法。
[7] 請求の範囲第 1項〜第 5項のいずれか 1項に記載のセルトランスフエクシヨンアレイ調 製用キット。
[8] 請求の範囲第 1項〜第 5項のいずれか 1項に記載のセルトランスフエクシヨンアレイを 使用する細胞への核酸導入方法。
[9] 請求の範囲第 1項〜第 5項のいずれか 1項に記載のセルトランスフエクシヨンアレイに
、細胞を播種することを特徴とする細胞への核酸導入方法。
[10] ァテロコラーゲン、核酸導入剤および核酸を備えた核酸導入用セルトランスフエクショ ンアレイを調製する工程と、該セルトランスフエクションアレイに細胞を播種する工程 を含む細胞への核酸導入方法。
[II] 請求の範囲第 10項の核酸導入方法において、ァテロコラーゲンを細胞毒性を軽減 しうる量備えることを含む核酸導入用セルトランスフエクシヨンアレイを調製する工程と 、該セルトランスフエクシヨンアレイに細胞を播種する工程を含む細胞への核酸導入 方法。
[12] 核酸導入剤が、リボソーム若しくは非リボソーム系脂質、ウィルスベクター、 DEAEデ キストラン、リン酸カルシウムまたはデンドリマーから選択される 、ずれかである請求 の範囲第 10項または第 11項に記載の核酸導入方法。
[13] 核酸導入剤が、リボソームである請求の範囲第 12項に記載の核酸導入方法。
[14] 核酸が、プラスミド DNA、ポリヌクレオチド、オリゴヌクレオチド、リボザィムまたは siR
NAである請求の範囲第 10項〜第 13項の 、ずれか 1に記載の核酸導入方法。
[15] 請求の範囲第 1項〜第 5項のいずれか 1項に記載のセルトランスフエクシヨンアレイを 含む核酸導入用キット。
PCT/JP2005/013500 2005-07-22 2005-07-22 核酸導入用セルトランスフェクションアレイ WO2007010620A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2005/013500 WO2007010620A1 (ja) 2005-07-22 2005-07-22 核酸導入用セルトランスフェクションアレイ
EP05766140A EP1921153A4 (en) 2005-07-22 2005-07-22 CELL TRANSFECTION ARRAY FOR USE IN TRANSFECTION
US11/996,002 US8029990B2 (en) 2005-07-22 2005-07-22 Cell transfection array for introduction of nucleic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/013500 WO2007010620A1 (ja) 2005-07-22 2005-07-22 核酸導入用セルトランスフェクションアレイ

Publications (1)

Publication Number Publication Date
WO2007010620A1 true WO2007010620A1 (ja) 2007-01-25

Family

ID=37668509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013500 WO2007010620A1 (ja) 2005-07-22 2005-07-22 核酸導入用セルトランスフェクションアレイ

Country Status (3)

Country Link
US (1) US8029990B2 (ja)
EP (1) EP1921153A4 (ja)
WO (1) WO2007010620A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000297A1 (fr) 2001-06-20 2003-01-03 Sumitomo Pharmaceuticals Company, Limited Procede facilitant le transfert d'acides nucleiques

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998268B2 (en) * 1995-07-03 2006-02-14 Dainippon Sumitomo Pharma Co. Ltd. Gene preparations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003000297A1 (fr) 2001-06-20 2003-01-03 Sumitomo Pharmaceuticals Company, Limited Procede facilitant le transfert d'acides nucleiques

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BAILEY S.N. ET AL.: "Applications of transfected cell microarrays in high-throughput drug discovery", DRUG DISCOV. THERAPY, vol. 7, 2002, pages S113 - S118, XP008026706 *
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 289, 2001, pages 1075 - 1081
COHEN-SACKS H. ET AL.: "Delivery and expression of pDNA embedded in collagen matrices", J. CONTROL. RELEASE, vol. 95, 2004, pages 309 - 320, XP004492025 *
HONMA K. ET AL.: "Atelocollagen-based gene transfer in cells allows high-throughput screening of gene functions", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 289, 2001, pages 1075 - 1081, XP002957375 *
NATURE, vol. 411, 2001, pages 107
NIELSEN ET AL., SCIENCE, vol. 254, 1991, pages 1497
SINGH ET AL., CHEM. COMMUN., vol. 455, 1998
SUMERTON; WELLER, ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT, vol. 7, 1997, pages 187
TAKESHITA F. ET AL.: "Atelocollagen ni yoru Idenshi Chiryoyo Vector no Seitainai Seigyo", MOLECULAR MEDICINE, vol. 42, February 2005 (2005-02-01), pages 292 - 297, XP003007381 *
VANCHA A.R. ET AL.: "Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer", BMC BIOTECHNOL., vol. 4, no. 1, 2004, pages 23, XP021005940 *

Also Published As

Publication number Publication date
EP1921153A1 (en) 2008-05-14
US20090093058A1 (en) 2009-04-09
EP1921153A4 (en) 2009-07-08
US8029990B2 (en) 2011-10-04

Similar Documents

Publication Publication Date Title
Kim et al. Use of in vivo biotinylation to study protein–protein and protein–DNA interactions in mouse embryonic stem cells
DK1985696T3 (en) cell culture
Yoshikawa et al. Transfection microarray of human mesenchymal stem cells and on-chip siRNA gene knockdown
Gao et al. Design and fabrication of flexible DNA polymer cocoons to encapsulate live cells
JP4580764B2 (ja) 生体分子送達用固体表面およびハイスループットアッセイ
JP4479960B2 (ja) 細胞中へのタンパク質送達のための方法および器具
EP2356249B1 (en) Genetic analysis in microwells
Armknecht et al. High-throughput RNA interference screens in Drosophila tissue culture cells
WO2017075265A1 (en) Multiplex analysis of single cell constituents
WO2001020015A9 (en) Reverse transfection method
CN101336293B (zh) 用于鉴定细胞信号转导调节物的方法
Penalva et al. RNA-binding proteins to assess gene expression states of co-cultivated cells in response to tumor cells
US20110190162A1 (en) Method of nucleic acid delivery into three-dimensional cell culture arrays
WO2010135669A1 (en) Arrays and methods for reverse genetic functional analysis
US7125709B2 (en) Culture device and method for eukaryotic cell transfection
Alterman et al. A high-throughput assay for mRNA silencing in primary cortical neurons in vitro with oligonucleotide therapeutics
JP4585242B2 (ja) 核酸導入用セルトランスフェクションアレイ
WO2007010620A1 (ja) 核酸導入用セルトランスフェクションアレイ
Vidic et al. PREDECT protocols for complex 2D/3D cultures
JP4551903B2 (ja) 真核細胞トランスフェクションのための培養装置および方法
Dias et al. Functional genetic dropout screens and in vivo validation of candidate therapeutic targets using mouse mammary tumoroids
Fujita et al. New methods for reverse transfection with siRNA from a solid surface
EP3199239A1 (en) Method and device for spatially controlled parallel transfection - floating wells
WO2007043523A1 (ja) トランスフェクションデバイス
EP2981616B1 (en) Solid phase transfection of proteins and nucleic acids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005766140

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11996002

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005766140

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP