WO2007007617A1 - Surface treatment in presence of organic solvent - Google Patents

Surface treatment in presence of organic solvent Download PDF

Info

Publication number
WO2007007617A1
WO2007007617A1 PCT/JP2006/313420 JP2006313420W WO2007007617A1 WO 2007007617 A1 WO2007007617 A1 WO 2007007617A1 JP 2006313420 W JP2006313420 W JP 2006313420W WO 2007007617 A1 WO2007007617 A1 WO 2007007617A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface treatment
plating
solvent
hydrophobic solvent
metal salt
Prior art date
Application number
PCT/JP2006/313420
Other languages
French (fr)
Japanese (ja)
Inventor
Takabumi Nagai
Kazuhisa Fujii
Hideaki Asai
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2007007617A1 publication Critical patent/WO2007007617A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions

Definitions

  • the present invention relates to an electrochemical reaction. More specifically, the present invention relates to an electrochemical reaction efficiency technology and a surface treatment technology using the same by adding an aqueous metal salt solution and a hydrophobic solvent.
  • Patent Document 1 Patent No. 3334594
  • Patent Document 2 JP-A-64-25995
  • An object of the present invention is to provide a technique for reducing a metal waste liquid in an electrochemical surface treatment and easily realizing a high-quality metal film with good adhesion and no pinholes. Means for solving the problem
  • Solvents, polysiloxanes, and ionic liquids composed of perfluoroalkyl compounds are known to dissolve a large amount of gas in the solvent as compared to general hydrocarbon solvents. .
  • Table 1 shows the solubility of oxygen. It can be seen that oxygen dissolves well in perfluoro solvents. From this data, the removal of hydrogen, which is the cause of pinholes, can be expected by the coexistence of solvents with high gas solubility such as fluorine solvents.
  • the surfactant solution also has a cleaning effect, it is possible to simplify the steps before and after the surface treatment such as plating, and to reduce waste liquid.
  • the amount of squeezed liquid can be reduced by the amount of the mixed hydrophobic solvent, so that it is possible to reduce the metal waste liquid and the waste liquid treatment cost.
  • the present inventors added a hydrophobic solvent having a high gas solubility to the aqueous metal salt solution, and carried out a surface treatment operation in the state of emulsification or turbidity. Invented.
  • the hydrophobic solvent is a fluorine solvent having a perfluoroalkyl group in the molecule.
  • a method for producing an article having a metal film which comprises subjecting an object to surface treatment in the presence of an aqueous solution containing a metal salt and a hydrophobic solvent.
  • any metal salt aqueous solution and any solvent that can be emulsified can be used.
  • gaseous solvents such as fluorine solvents, silicon-based solvents, chlorofluorocarbons, and ionic liquids can be used.
  • a substance having a high solubility (particularly hydrogen) is effective.
  • chemical, physical stability, nonflammability, and low toxicity are required for safety during operation.
  • a low-viscosity perfluoropolyether compound with a particularly low vapor pressure, which is desirable for a fluorine solvent is desirable.
  • a low viscosity is desirable in consideration of the efficiency of stirring.
  • a fluorine solvent has a low intermolecular force, and therefore has a low viscosity instead of a molecular weight. From the viewpoint of the above stirring efficiency, U is a desirable solvent.
  • the fluorine solvent is a compound in which part or all of the CH bond in the hydrocarbon is replaced with a CF bond.
  • a fluorine solvent having a perfluoroalkyl group in the molecule, perfluoro A fluorine solvent having a polyether group may be mentioned.
  • the fluorine-containing solvent having a perfluoroalkyl group include heptafluorocyclopentane, octafluorocyclopentene, perfluoro oral hexane, perfluorodecalin, perfluorotripropylamine, perfluorotetrahydrofuran. And those obtained by electrolytic fluorination or cobalt fluorination such as perfluorodimethylcyclohexane.
  • fluorine solvent having a perfluoropolyether group for example, a general formula F- (CF
  • n are not 0 at the same time, but are integers from 0 to 50, and n + m ⁇ 50. Regardless of the order of each repeating unit,-(C F 0) — is-(CF CF CF 0)-or-(CF (CF) CF O)-,-(C F O
  • a reether compound may be mentioned.
  • fluorine solvents having a perfluoropolyether group include those represented by the formula: F- (CF)-(OC
  • Examples include compounds containing units. (Where m and ⁇ are non-zero integers of 0-50, satisfy n + m ⁇ 50, 0 is an integer of 0-20, p is an integer of 0-2, q is 1-10 Regardless of the order of each repeating unit,-(OC F)-is-(OCF CF CF)-or-(
  • the above-mentioned fluorine solvent having a perfluoropolyether group can be easily obtained.
  • examples include Galden (manufactured by Solvay Solexis).
  • a fluorine-hydrocarbon hybrid type compound having a fluoroalkyl group listed here in its molecule, such as a hydrated fluoroether (HFE), can function effectively.
  • the silicon-based solvent is a compound having a polyalkyl cage group in the molecule.
  • a polydialkylsiloxane represented by the formula: (R- (Si (R ′) 0) -R ′ ′ (where R, R ′ and R ′ are
  • Each is the same or different and is hydrogen or a hydrocarbon group having 1 to 20 carbon atoms. n represents any positive integer. ); Between the polydialkylsiloxane and other hydrocarbon polymers Copolymer (which may have various substituents); formula (R-Si (OR '), R Si (OR'), or R
  • Fluorocarbons include CFC—113, HCFC-13, HCFC—141b, HCFC—225ca, HCFC—225c b and other HCHF, HFC-365mfc, HFC-c-447ef, HFC-43-lOmee, HFC -Examples of HFCs such as 52-13p and HFEs listed above.
  • Examples of the ionic liquid include tetraalkyl ammonium, tetraalkyl phosphorous, N
  • Examples thereof include organic salts having CH 2 CO 3, Al CI— as a key.
  • the hydrophobic solvent of the present invention widely includes a solvent that is liquid at room temperature (20 to 25 ° C) and separates from water, and has a viscosity that can be stirred at room temperature.
  • a low-viscosity solvent is particularly preferable in order to facilitate stirring.
  • the molecular weight of the hydrophobic solvent is not particularly limited as long as the above conditions are satisfied, but it is, for example, about 250 to 3000.
  • the surface treatment can be sufficiently performed if the amount of the metal salt aqueous solution is 0.01 wt% or more with respect to the hydrophobic solvent. Therefore, the amount of the hydrophobic solvent with respect to the aqueous metal salt solution can be used in the range of about 1 wt% to 99 wt%, preferably 5 to 95 wt%, and more preferably 10 to 90 wt%.
  • the metal salt aqueous solution used in the present invention may be a commercially available product such as a plating solution that does not need to be specially adjusted.
  • Examples of the metal salt used in the present invention include Ni, Co, Cu, Zn, Cr, Sn, W, Fe, Ag, Cd, Ga, As, Cr, Se, Mn, In, Sb, Te, Ru, Rh, Pd, Au, Hg, Tl, Pb, Bi, Po, Re, Os, Ir, Pt, etc. are exemplified, and examples of metal salts include water-soluble salts, bromides, iodides, etc. Examples thereof include organic acid salts such as halides, nitrates, sulfates, sulfamates and acetates, cyanides, oxides, hydroxides and complexes.
  • the metal salt may be one metal salt or a combination of two or more metal salts.
  • concentration of the metal salt can be selected as appropriate according to the metal species, but the practical reaction rate Can be set to 0.01 wt% or more in the metal salt aqueous solution, for example.
  • the surface treatment method of the present invention comprises electrolysis or chemical reaction of water such as electroplating, chemical plating, electroplating, anodizing, electropolishing, electrolytic processing, electrophoretic coating, electrolytic polishing, chemical conversion treatment, and the like.
  • This is a treatment method in which bubbles (for example, hydrogen) are generated at the time of removal, and this bubble is removed by dissolving in a hydrophobic organic solvent, and is characterized in that a high-quality film without pinholes is obtained.
  • a film having no pinholes refers to a film having 1 or less pinholes per 1 cm 2 in diameter. If there are no bubbles, the metal film can be prevented from hydrogen embrittlement and the film strength can be improved.
  • Preferred surface treatments are electroplating, chemical plating, anodizing, electroplating, electropolishing, electrolytic processing, electrolytic polishing, and electrophoretic coating.
  • the addition of a surfactant to emulsify the hydrophobic solvent and the aqueous metal salt solution affects the surface treatment efficiency. Even if a surfactant is not added, it can be electroplated. By adding force, it can be very efficient.
  • the surfactant many conventionally known compounds can be used, including non-one, ar-on, cationic and zwitterionic surfactants, and these constituent elements are also hydrocarbon-based. , Silicon-based, fluorine-based, etc., and at least one of them can be selected and used.
  • the concentration of the surfactant is not particularly limited. For example, it may be about 0.0001 to 20 wt%, preferably about 0.001 to 10 wt% with respect to the aqueous metal salt solution!
  • Preferable surfactants include fluorine-based surfactants, silicon-based surfactants, and hydrocarbon-based surfactants, and more preferable are fluorine-based surfactants and silicon-based surfactants.
  • the fluorine-based surfactant is a surfactant having a polyfluoroalkyl in which at least one of the alkyl hydrogen atoms is substituted with a fluorine atom, and examples thereof include polyfluoroalkylsulfonates and polyfluoroalkylcarboxylic acids.
  • Acid salt polyfluoroalkylbenzenesulfonate, polyfluoroalkyl sulfate, polyfluoroalkyl ether sulfate, polyfluorophenyl ether sulfate, polyfluoroalkyl of sulfosuccinate Derivatives and other key-on compounds;
  • Nonionic compounds such as polyfluoropolyether carboxylic acids;
  • Cationic compounds such as monopolyfluoroalkyl ammonium halides, dipolyfluoroalkyl ammonium halides, tripolyfluoroalkyl ammonium halides; polyfluoroalkyls Examples include amphoteric compounds
  • Examples of the silicon surfactant include polyalkylene glycol, polyol, ester, amide, amino alcohol, alkyl ammonium, alkyl sulfonate, alkyl carboxyl, alkyl phosphate, and the like.
  • Examples thereof include polydimethylsiloxanes having groups and polyalkoxyalkylsilicones. Of these, polydimethylsiloxanes or polyalkoxyalkylsilicones having a group containing polyalkylene glycol are preferred.
  • hydrocarbon-based surfactant examples include ⁇ -olefin sulfonate, alkyl benzene sulfonate, alkyl sulfate ester salt, alkyl ether sulfate ester salt, sulfosuccinate, phosphate ester, ether sulfone.
  • Acid salts alkylphenols, higher alcohols, polyols, polyalkylene glycols, alkylolamides, fatty acid esters, fatty acid amines, alkylamine ethylene oxide adducts, lauryl trimethyl ammonium salts, stearyl trimethyl ammonium salts Hexadecyl pyridi-um salt, imidazolium betaine and the like.
  • polyalkylene glycol is preferred.
  • the temperature and pressure are not particularly limited, and it is not always necessary to heat or pressurize. It is possible to carry out in the range of temperature and pressure required for normal surface treatment.
  • the temperature of the surface treatment step may be about 0 ° C to 200 ° C.
  • the plating temperature depends on the metal, and is about room temperature (20 ° C) to 100 ° C.
  • room temperature 20 ° C
  • it is from room temperature to 80 ° C for nickel and gold, 30 ° C to 70 ° C for palladium, room temperature to 70 ° C for copper, and 50 ° C to 100 ° C for platinum.
  • the pressure in the surface treatment process may be less than 10 atm.
  • a high boiling point solvent should be used when processing at a high temperature. From the viewpoint of safety, it is desirable to perform the surface treatment at 1 to 2 atmospheres by setting such treatment conditions.
  • organic solvents can also be added.
  • alcohols such as methanol, ethanol, propanol, butanol and pentanol
  • ketones such as acetone
  • esters such as ethyl acetate
  • ethers such as ethyl ether
  • chlorofluorocarbons Halides and the like
  • the amount added is 50 wt% or less, preferably about 5 to 10 wt%, based on the hydrophobic solvent.
  • the stirring since the system is a two-phase system, stirring is required.
  • the stirring includes magnetic stirring, mechanical stirring, or mixing by ultrasonic irradiation.
  • the specific number of revolutions varies depending on the type of hydrophobic solvent and metal salt aqueous solution, the scale of the apparatus, and the stirring method, and therefore must be optimized during actual operation.
  • the thickness of the metal film formed by the surface treatment of the present invention is a force that can be appropriately selected depending on the application, plating conditions, etc. For example, about lnm to 1000 ⁇ m, preferably about 10 nm to 100 ⁇ m. .
  • the material of the object to be surface-treated is not particularly limited, and examples thereof include metals, alloys, ceramics, plastics, glasses, and conductive polymers. In the case of non-conductive materials (for example, plastics). Examples include those subjected to surface treatment such as attaching metal particles to the surface. Examples of the shape of the object to be surface-treated include a plate shape, a granular shape, a spherical shape, a curved surface shape, and a cylindrical shape, and the treatment liquid containing the metal salt aqueous solution and the hydrophobic solvent is sufficiently supplied with stirring. The shape is preferred.
  • the invention's effect [0041] According to the surface treatment method of the present invention, a high-quality metal film can be easily formed on an object. As a result, an article having a high-grade metal film can be produced. In addition, the amount of waste liquid such as heavy metals generated during the surface treatment is smaller than that of the existing electrochemical surface treatment.
  • FIG. 1 shows an SEM photograph (magnification 500 times) showing the plating film obtained in Example 1.
  • FIG. 2 shows an SEM photograph (magnification 5000 times) showing the plating film obtained in Example 1.
  • FIG. 3 shows an SEM photograph (magnification 50000 times) showing the plating film obtained in Example 1.
  • FIG. 4 shows an SEM photograph (multiplier 500 times) of the normal bright nickel plating (thickness 5 microns) obtained in Comparative Example 1.
  • FIG. 5 shows a photograph of the sample obtained in Example 4.
  • FIG. 6 shows a photograph of the sample obtained in Example 5.
  • FIG. 7 shows an SEM photograph (magnification 60 times) showing the plating film obtained in Example 6.
  • FIG. 8 shows an SEM photograph (magnification 1000 times) showing the plating film obtained in Example 6.
  • FIG. 9 shows an SEM photograph (magnification: 10,000 times) showing the plating film obtained in Example 6.
  • FIG. 10 shows an SEM photograph (magnification 1000 times) showing the plating film obtained in Example 8.
  • FIG. 11 shows an SEM photograph (magnification 110 times) showing the plating film obtained in Example 9.
  • FIG. 12 shows an SEM photograph (1000 ⁇ magnification) showing the plating film obtained in Example 9.
  • FIG. 13 shows an SEM photograph (magnification 20000 times) showing the plating film obtained in Example 9.
  • nickel plating solution watt bath: nickel sulfate 280 g / L, nickel chloride 60 g / L, boric acid 50 g / L, brightener appropriate amount
  • nickel plating solution watt bath: nickel sulfate 280 g / L, nickel chloride 60 g / L, boric acid 50 g / L, brightener appropriate amount
  • nickel plating solution watt bath: nickel sulfate 280 g / L, nickel chloride 60 g / L, boric acid 50 g / L, brightener appropriate amount
  • a nickel plating solution (Watt bath) 40 mL was placed in a beaker having an internal volume of 50 cc similar to that in Example 1, and a brass plate as a cathode and a pure nickel plate (a surface area of 4 cm 2 each) were attached from the top of the container.
  • the solution was heated to 50 ° C., and stirred with a magnetic stirrer (500 r.p. m) for 5 minutes at 5 A / dm 2 to conduct nickel plating.
  • a magnetic stirrer 500 r.p. m
  • Figure 4 shows a photomicrograph of normal bright nickel plating (5 micron thick).
  • Polypropylene reagent bottle lid-A part of a disc (diameter 3 ⁇ ) was placed on the bottom of the high-pressure apparatus, and 16 mg of organic platinum complex (1,5-cyclooctadiene) dimetylplatinum (II) was placed in this container and sealed. Thereafter, carbon dioxide was introduced, treated at 30 MPa and 120 ° C for 15 hours, then heated to 130 ° C and maintained for 3 hours to activate the catalyst. After decompression, the sample was taken out and washed with water followed by methanol. An active platinum catalyst supported on the sample surface in black was confirmed.
  • organic platinum complex (1,5-cyclooctadiene) dimetylplatinum (II)
  • Fig. 5 shows a photograph of the mating sample.
  • a 2.5cm thick plate (thickness 0.5mm) sample made of the same material as in Example 4 was washed with acetone, dried, then treated with chromic acid-sulfuric acid solution at 60 ° C for 15 minutes to roughen the surface. Turned into. This was immersed in a 0.5 mM-PdCl-0.05 mM-SnCl solution for 30 minutes. After washing with water, the sample is
  • a palladium plating bath (10 g / L of salty palladium to an aqueous solution of ethylenediamine 10 g / L to a beaker with an internal volume of 50 cc, and heat at 60 ° C to make a uniform solution.
  • 2N hydrochloric acid to this solution. The pH was adjusted to 3.) 30 mL and perfluorodimethylcyclohexane 20 mL were added, and F (CF (CF) CF 2 O) CF (CF 3) CO (0
  • Example 6 Palladium plating similar to that in Example 6 was performed using an alkaline bath (Nihon Electo Porting Engineers Co., Ltd., Paradex LF-2) as the plating solution.
  • the obtained plating film was slightly less uniform than Example 6. A better trend was observed in the acidic bath.
  • Acid gold plating solution (High Purity Chemical Laboratories, Inc., Pure Pure Electrolytic Solution K-24EA10) For 30 mL, add 20 mL of perfluorodimethylcyclohexane, and then add F ( CF (CF) CF O) CF (CF) COOCH CH OCH
  • Electrolytic gold plating F (CF (CF) CF O) CF (CF) COOH as a surfactant was added to lOmg as a surfactant in a mixed solution of 30 mL of gold plating solution similar to Example 9 and 20 mL of florinate (FC-77), Similar to Example 9
  • a very thin thin film can be formed with 1 or less pinholes having a diameter of 1 ⁇ m or more per 1 cm 2 .

Abstract

In an electrochemical surface treatment, reduction of a metal waste liquid and formation of a high-quality metal film, which exhibits good adhesion and has no pinhole, are easily realized. Specifically disclosed is a surface treatment method characterized by subjecting an object to a surface treatment in the presence of both an aqueous solution containing a metal salt and a hydrophobic solvent. In this connection, the surface treatment is selected from electrolytic plating, chemical plating, electroforming, anodizing, electrolytic polishing, electrolytic processing, electrophoretic coating, electrolytic refining and chemical conversion coating.

Description

明 細 書  Specification
有機溶媒存在下での表面処理  Surface treatment in the presence of organic solvents
技術分野  Technical field
[0001] 本発明は電気化学反応に関する。さらに詳しくは金属塩水溶液と疎水性の溶媒を 添加すること〖こよる、電気化学反応の効率化技術およびそれを用いた表面処理技術 に関する。  [0001] The present invention relates to an electrochemical reaction. More specifically, the present invention relates to an electrochemical reaction efficiency technology and a surface treatment technology using the same by adding an aqueous metal salt solution and a hydrophobic solvent.
背景技術  Background art
[0002] 電気めつき(電解めつき)ではめつき液の電気分解により発生する水素を原因として 、めっき皮膜上にクラックやピンホールが発生する。これを防ぐために種々の技術が 開発されているが、このうち有力な方法として、界面活性剤の使用により表面張力を 下げるなどして気泡を剥離させる方法が検討されて 、る。特にフッ素系界面活性剤 は他の界面活性剤より高機能であるとされ、種々の化合物が開示されている (特許文 献 1〜2)。  In electroplating (electrolytic plating), cracks and pinholes are generated on the plating film due to hydrogen generated by electrolysis of the plating solution. Various techniques have been developed to prevent this. Among them, as a promising method, a method of peeling bubbles by reducing the surface tension by using a surfactant has been studied. In particular, fluorosurfactants are considered to have higher functionality than other surfactants, and various compounds have been disclosed (Patent Documents 1 and 2).
[0003] し力しながら、これらの方法によっても完全にピンホールレスな金属薄膜を作製する ことは困難であり、通常はコストの許す限り厚塗りすることで回避してきた。あるいはス ノッタなどのドライプロセスが採用されている。  [0003] However, it is difficult to produce a completely pinholeless metal thin film by these methods, and it has been avoided by applying a thick coating as much as the cost permits. Or a dry process such as a notch is used.
特許文献 1:特許第 3334594号明細書  Patent Document 1: Patent No. 3334594
特許文献 2:特開昭 64 - 25995号公報  Patent Document 2: JP-A-64-25995
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明は、電気化学的表面処理において金属廃液の削減と、付き周りが良くピン ホールの無い高品位な金属皮膜を、容易に実現させる技術の提供を目的とする。 課題を解決するための手段 [0004] An object of the present invention is to provide a technique for reducing a metal waste liquid in an electrochemical surface treatment and easily realizing a high-quality metal film with good adhesion and no pinholes. Means for solving the problem
[0005] ペルフルォロアルキル化合物からなる溶媒、ポリシロキサン類、イオン性液体は、一 般の炭化水素系溶媒に比較して、気体をその溶媒中に多量に溶解させることが知ら れている。 [0005] Solvents, polysiloxanes, and ionic liquids composed of perfluoroalkyl compounds are known to dissolve a large amount of gas in the solvent as compared to general hydrocarbon solvents. .
[0006] [表 1] 各種溶媒中への酸素溶解度
Figure imgf000004_0001
[0006] [Table 1] Oxygen solubility in various solvents
Figure imgf000004_0001
[0007] 表 1には酸素の溶解度を示して 、るが、ペルフルォロ溶媒に酸素が良く溶解するこ とが判る。このデータから、フッ素溶媒の様に気体溶解度の高い溶媒の共存により、 ピンホール発生の原因である、水素の除去が期待できる。  [0007] Table 1 shows the solubility of oxygen. It can be seen that oxygen dissolves well in perfluoro solvents. From this data, the removal of hydrogen, which is the cause of pinholes, can be expected by the coexistence of solvents with high gas solubility such as fluorine solvents.
[0008] さらにはめつきなどの電気化学反応場中に共存させるには、化学的に安定で不燃 などの性質が求められる力 この点でもペルフルォロアルキル溶媒は適して 、ると推 測される。  [0008] Furthermore, in order to coexist in an electrochemical reaction field such as fitting, it is estimated that perfluoroalkyl solvents are suitable in this respect as well. The
[0009] 以上を前提とすれば、電気化学反応中基体上に発生する気泡を、共存する疎水性 溶媒が溶解除去できれば、ピンホールの無 、金属皮膜が形成できることが推測され る。さらには金属塩水溶液に比較して、一般の有機溶媒は表面張力が低ぐ特にフッ 素溶媒はその分子間力が小さいことにより、乳化状態が形成できれば、電解質溶液 全体の表面張力が低下する。このため界面活性剤の共存下に、金属塩水溶液と疎 水性溶媒力 形成される乳化状態において、めっきなどの表面処理を行えば、微細 構造の内部まで均一に表面処理を行うことが可能になる。  [0009] Given the above, it is presumed that if a coexisting hydrophobic solvent dissolves and removes bubbles generated on a substrate during an electrochemical reaction, a metal film can be formed without pinholes. Furthermore, the surface tension of a general organic solvent is lower than that of an aqueous metal salt solution. In particular, the surface tension of the electrolyte solution as a whole is reduced if an emulsified state can be formed because the intermolecular force of a fluorine solvent is small. For this reason, if surface treatment such as plating is performed in the emulsified state formed with the aqueous solution of metal salt and hydrophobic solvent in the presence of a surfactant, it is possible to uniformly treat the inside of the microstructure. .
[0010] また界面活性剤溶液は洗浄効果も有するため、めっきなどの表面処理の前後工程 も簡略ィ匕することが可能で、廃液の削減も可能になる。  [0010] Further, since the surfactant solution also has a cleaning effect, it is possible to simplify the steps before and after the surface treatment such as plating, and to reduce waste liquid.
[0011] またさらに本方法によれば、混合した疎水性溶媒分だけめつき液の量を削減できる ため、金属廃液の削減、廃液処理費の削減が可能となる。  [0011] Furthermore, according to the present method, the amount of squeezed liquid can be reduced by the amount of the mixed hydrophobic solvent, so that it is possible to reduce the metal waste liquid and the waste liquid treatment cost.
[0012] ところで、電気めつき以外の化学めつきにおいても、めっきの析出に伴い水素ガス が発生し、ピンホールが発生する。このため、本発明は化学めつきにおいても、ピン ホールレスな皮膜形成に貢献できる  [0012] By the way, in chemical plating other than electric plating, hydrogen gas is generated with the deposition of plating, and pinholes are generated. Therefore, the present invention can contribute to pinholeless film formation even in chemical plating.
以上の推定をもとに本発明者らは、金属塩水溶液に気体溶解度の高い疎水性溶 媒を添加して、これを乳化ないし混濁させた状態で表面処理操作を行うことにより、 以下に示す発明に至った。  Based on the above estimation, the present inventors added a hydrophobic solvent having a high gas solubility to the aqueous metal salt solution, and carried out a surface treatment operation in the state of emulsification or turbidity. Invented.
[1] 金属塩を含む水溶液と疎水性溶媒の共存下に被対象物に表面処理を行うこと を特徴とする表面処理方法。 [1] Surface treatment of an object in the presence of an aqueous solution containing a metal salt and a hydrophobic solvent A surface treatment method characterized by the above.
[2] 攪拌下に金属塩を含む水溶液と疎水性溶媒を乳化させて、表面処理を行うこと を特徴とする、 [1]に記載の方法  [2] The method according to [1], wherein the surface treatment is performed by emulsifying an aqueous solution containing a metal salt and a hydrophobic solvent under stirring.
[3] さらに界面活性剤を添加して乳化させて表面処理を行うことを特徴とする [1]ま たは [2]に記載の方法。  [3] The method according to [1] or [2], wherein a surface treatment is further performed by adding a surfactant and emulsifying.
[4] 疎水性溶媒力 Sフッ素溶媒である、 [1]〜[3]のいずれかに記載の方法。  [4] Hydrophobic solvent power The method according to any one of [1] to [3], which is an S fluorine solvent.
[5] 疎水性溶媒がシリコン系溶媒である、 [1]〜 [3]のいずれかに記載の方法。  [5] The method according to any one of [1] to [3], wherein the hydrophobic solvent is a silicon-based solvent.
[6] さらに他の有機溶媒を添加することを特徴とする [4]または [5]に記載の方法。  [6] The method according to [4] or [5], further comprising adding another organic solvent.
[7] 疎水性溶媒が、分子内にペルフルォロアルキル基を有するフッ素溶媒である、 [7] The hydrophobic solvent is a fluorine solvent having a perfluoroalkyl group in the molecule.
[I]〜[4]、 [6]のいずれかに記載の方法。 The method according to any one of [I] to [4], [6].
[8] 疎水性溶媒が、分子内にペルフルォロポリエーテル基を有するフッ素溶媒であ る、 [1]〜[4]、 [6]のいずれかに記載の方法。  [8] The method according to any one of [1] to [4], [6], wherein the hydrophobic solvent is a fluorine solvent having a perfluoropolyether group in the molecule.
[9] [1]〜[8]のいずれかに記載の方法で得られた、金属皮膜。  [9] A metal film obtained by the method according to any one of [1] to [8].
[10] 金属皮膜を有する物品を製造する方法であって、金属塩を含む水溶液と疎 水性溶媒の共存下に被対象物に表面処理を行うことを特徴とする製造方法。  [10] A method for producing an article having a metal film, which comprises subjecting an object to surface treatment in the presence of an aqueous solution containing a metal salt and a hydrophobic solvent.
[I I] [10]の方法で得られた、金属皮膜を有する物品。  [I I] An article having a metal film obtained by the method of [10].
[0013] 以下、本発明を詳述する。 Hereinafter, the present invention will be described in detail.
[0014] 本発明にお 、て有効な疎水性溶媒としては、金属塩水溶液と乳化できる溶媒全て が使用可能であるが、特にフッ素溶媒、シリコン系溶媒、フロン類、イオン性液体の様 に気体 (特に水素)の溶解度が大きいものが有効である。さらには、操作時の安全性 から、化学的、物理的安定性、不燃性、低毒性が求められる。この点からはフッ素溶 媒が望ましぐ特に蒸気圧の低い、低粘度のペルフルォロポリエーテルィ匕合物が望 ましい。また実施にあたっては攪拌の効率を考慮して粘性の低いものが望ましい。フ ッ素溶媒は分子間力が小さいため、分子量のわりには低粘度であり、上記の攪拌効 率の点からも望ま U、溶媒である。  [0014] As the effective hydrophobic solvent in the present invention, any metal salt aqueous solution and any solvent that can be emulsified can be used. Particularly, gaseous solvents such as fluorine solvents, silicon-based solvents, chlorofluorocarbons, and ionic liquids can be used. A substance having a high solubility (particularly hydrogen) is effective. Furthermore, chemical, physical stability, nonflammability, and low toxicity are required for safety during operation. From this point of view, a low-viscosity perfluoropolyether compound with a particularly low vapor pressure, which is desirable for a fluorine solvent, is desirable. In practice, a low viscosity is desirable in consideration of the efficiency of stirring. A fluorine solvent has a low intermolecular force, and therefore has a low viscosity instead of a molecular weight. From the viewpoint of the above stirring efficiency, U is a desirable solvent.
[0015] フッ素溶媒は、炭化水素中 C-H結合の一部な 、しは全部を C-F結合に置き換えた 化合物であり、例えば、分子内にペルフルォロアルキル基を有するフッ素溶媒、ペル フルォロポリエーテル基を有するフッ素溶媒が挙げられる。 [0016] ペルフルォロアルキル基を有する含フッ素溶媒としては、例えば、ヘプタフルォロシ クロペンタン、ォクタフルォロシクロペンテン、ペルフルォ口へキサン、ペルフルォロデ カリン、ペルフルォロトリプロピルァミン、ペルフルォロテトラヒドロフラン、ペルフルォロ ジメチルシクロへキサンなどの電解フッ素化やコバルトフッ素化により得られるものが 挙げられる。 [0015] The fluorine solvent is a compound in which part or all of the CH bond in the hydrocarbon is replaced with a CF bond. For example, a fluorine solvent having a perfluoroalkyl group in the molecule, perfluoro A fluorine solvent having a polyether group may be mentioned. [0016] Examples of the fluorine-containing solvent having a perfluoroalkyl group include heptafluorocyclopentane, octafluorocyclopentene, perfluoro oral hexane, perfluorodecalin, perfluorotripropylamine, perfluorotetrahydrofuran. And those obtained by electrolytic fluorination or cobalt fluorination such as perfluorodimethylcyclohexane.
[0017] ペルフルォロポリエーテル基を有するフッ素溶媒としては、例えば、一般式 F-(CF  [0017] As a fluorine solvent having a perfluoropolyether group, for example, a general formula F- (CF
2 2
〇) - (C F〇) - (C F〇) - (CF〇) - (CF ) -CF (ここで、 o、 p及び qは 0又は 1を示し、 m 3 6 m 2 4 n 2 p 2 q 3 ○)-(CF ○)-(CF ○)-(CF ○)-(CF) -CF (where o, p and q are 0 or 1, m 3 6 m 2 4 n 2 p 2 q Three
及び nは同時に 0では無い 0〜50の整数であり、 n+m≤50である。各繰り返し単位の順 番は問わず、 - (C F 0)—は、 - (CF CF CF 0) -または- (CF(CF )CF O) -を、 - (C F O  And n are not 0 at the same time, but are integers from 0 to 50, and n + m≤50. Regardless of the order of each repeating unit,-(C F 0) — is-(CF CF CF 0)-or-(CF (CF) CF O)-,-(C F O
3 6 m 2 2 2 m 3 2 m 2 4 3 6 m 2 2 2 m 3 2 m 2 4
) -は、 - (CF CF〇) -または- (CF(CF )〇) -を各々表す。)で表されるペルフルォロポ η 2 2 η 3 η )-Represents-(CF CF0)-or-(CF (CF) 0)-, respectively. ) Perfluoropo η 2 2 η 3 η
リエーテルィ匕合物が挙げられる。  A reether compound may be mentioned.
[0018] 他のペルフルォロポリエーテル基を有するフッ素溶媒としては、式: F-(CF ) - (OC [0018] Other fluorine solvents having a perfluoropolyether group include those represented by the formula: F- (CF)-(OC
2 q 3 2 q 3
F ) - (OC F ) - (OCF ) - (CH ) -で示されるユニットを含む化合物、又は、式:- (CH ) -F)-(OC F)-(OCF)-(CH)-containing a unit represented by-or a formula:-(CH)-
6 m 2 4 η 2 ο 2 ρ 2 ρ6 m 2 4 η 2 ο 2 ρ 2 ρ
(CF Ο) - (C F Ο) - (C F Ο) - (CF ) - (OC F ) - (OC F ) - (OCF ) - (CH ) -で示される(CF Ο)-(C F Ο)-(C F Ο)-(CF)-(OC F)-(OC F)-(OCF)-(CH)-
2 ο 2 4 η 3 6 m 2 q 3 6 m 2 4 η 2 ο 2 ρ ユニットを含む化合物が挙げられる。(ここで、 mおよび ηは同時に 0では無い 0〜50の 整数であり、 n+m≤50を満たし、 0は 0〜20の整数、 pは 0〜2の整数、 qは 1〜10の整数 である。各繰り返し単位の順番は問わず、 - (OC F ) -は、 - (OCF CF CF ) -または- ( 2 ο 2 4 η 3 6 m 2 q 3 6 m 2 4 η 2 ο 2 ρ Examples include compounds containing units. (Where m and η are non-zero integers of 0-50, satisfy n + m≤50, 0 is an integer of 0-20, p is an integer of 0-2, q is 1-10 Regardless of the order of each repeating unit,-(OC F)-is-(OCF CF CF)-or-(
3 6 m 2 2 2 m  3 6 m 2 2 2 m
OCF(CF )CF ) -を、 - (〇C F ) -は、 -(OCF CF ) -または- (OCF(CF》 -を各々表す  OCF (CF) CF)-,-(○ C F)-represents-(OCF CF)-or-(OCF (CF)-
3 2 m 2 4 η 2 2 n 3 n  3 2 m 2 4 η 2 2 n 3 n
o )  o)
上記したペルフルォロポリエーテル基を有するフッ素溶媒は、容易に入手可能であ り、例えば、デムナム (ダイキン工業社製)、クライトツタス (デュポン社製)、フォンプリ ン(ソルべイソレクシス社製)、ガルデン(ソルべイソレクシス社製)などが例示される。 また、ハイド口フルォロエーテル(HFE)などのように、ここに挙げたフルォロアルキル 基を分子内に有するフッ素 炭化水素ハイブリッド型化合物も有効に機能できる。  The above-mentioned fluorine solvent having a perfluoropolyether group can be easily obtained. Examples include Galden (manufactured by Solvay Solexis). In addition, a fluorine-hydrocarbon hybrid type compound having a fluoroalkyl group listed here in its molecule, such as a hydrated fluoroether (HFE), can function effectively.
[0019] シリコン系溶媒は、分子中にポリアルキルケィ素基を有する化合物である。例えば、 式:(R- (Si(R') 0) -R' 'で示されるポリジアルキルシロキサン(ここで R、 R'及び R',は [0019] The silicon-based solvent is a compound having a polyalkyl cage group in the molecule. For example, a polydialkylsiloxane represented by the formula: (R- (Si (R ′) 0) -R ′ ′ (where R, R ′ and R ′ are
2 n  2 n
それぞれ同一又は異なっており、水素又は炭素数 1〜20の炭化水素基である。 nは 任意の正の整数を示す。 );該ポリジアルキルシロキサンと他の炭化水素ポリマーとの 共重合体 (これに種々の置換基を有しても良い);式 (R-Si(OR')、 R Si(OR')、又は R Each is the same or different and is hydrogen or a hydrocarbon group having 1 to 20 carbon atoms. n represents any positive integer. ); Between the polydialkylsiloxane and other hydrocarbon polymers Copolymer (which may have various substituents); formula (R-Si (OR '), R Si (OR'), or R
3 2 2 3 2 2
Si〇R,で示されるアルコキシアルキルシラン(ここで R及び R,はそれぞれ水素又は炭Alkoxyalkylsilane represented by Si ○ R, where R and R are hydrogen or charcoal, respectively.
3 Three
素数 1〜20の炭化水素基である。 )などが例示できる。  It is a hydrocarbon group having 1 to 20 prime numbers. ) And the like.
[0020] フロン類としては、 CFC— 113, HCFC-13, HCFC— 141b, HCFC— 225ca, HCFC— 225c bなどの HCHF類、 HFC- 365mfc, HFC- c- 447ef, HFC- 43- lOmee, HFC- 52- 13pなど の HFC類および先に挙げた HFE類が例示できる。 [0020] Fluorocarbons include CFC—113, HCFC-13, HCFC—141b, HCFC—225ca, HCFC—225c b and other HCHF, HFC-365mfc, HFC-c-447ef, HFC-43-lOmee, HFC -Examples of HFCs such as 52-13p and HFEs listed above.
[0021] イオン性液体としては、テトラアルキルアンモ-ゥム、テトラアルキルホスホ-ゥム、 N[0021] Examples of the ionic liquid include tetraalkyl ammonium, tetraalkyl phosphorous, N
-アルキルピリジ-ゥム、 1,3-ジアルキルイミダゾリゥム、トリアルキルスルホ -ゥムを力 チオンとして有し、 BF―, PF―, SbF―, NO―, CF SO―, (CF SO ) N— , ArSO―, CF CO―, -Alkylpyridium, 1,3-dialkylimidazolium, trialkylsulfo-um as power thione, BF-, PF-, SbF-, NO-, CF SO-, (CF SO) N- , ArSO―, CF CO―,
4 6 6 3 3 3 3 3 2 3 3 2 4 6 6 3 3 3 3 3 2 3 3 2
CH CO ", Al CI—をァ-オンとして有する有機塩類が例示できる。 Examples thereof include organic salts having CH 2 CO 3, Al CI— as a key.
3 2 2 7  3 2 2 7
[0022] なお、本発明の疎水性溶媒は、常温(20〜25°C)で液体である、水と分離する溶 媒を広く包含し、粘性にっ ヽては常温で攪拌できる程度の粘性であれば差し支えな いが、攪拌を容易にするために低粘度の溶媒が特に好ましい。疎水性溶媒の分子 量は、上記の条件を満たす限り特に限定されないが、例えば 250〜3000程度であ る。  [0022] The hydrophobic solvent of the present invention widely includes a solvent that is liquid at room temperature (20 to 25 ° C) and separates from water, and has a viscosity that can be stirred at room temperature. However, a low-viscosity solvent is particularly preferable in order to facilitate stirring. The molecular weight of the hydrophobic solvent is not particularly limited as long as the above conditions are satisfied, but it is, for example, about 250 to 3000.
[0023] 疎水性溶媒と金属塩水溶液との構成比に関して大きな制限は存在しないが、疎水 性溶媒に対して金属塩水溶液の量が 0.01wt%以上あれば充分に表面処理が可能で ある。そのため金属塩水溶液に対する疎水性溶媒の量は lwt%〜99wt%程度で使 用可能であり、 5〜95wt%が望ましぐさらには 10〜90wt%が特に望ましい。  [0023] Although there is no significant limitation on the composition ratio between the hydrophobic solvent and the metal salt aqueous solution, the surface treatment can be sufficiently performed if the amount of the metal salt aqueous solution is 0.01 wt% or more with respect to the hydrophobic solvent. Therefore, the amount of the hydrophobic solvent with respect to the aqueous metal salt solution can be used in the range of about 1 wt% to 99 wt%, preferably 5 to 95 wt%, and more preferably 10 to 90 wt%.
[0024] 本発明で用いる金属塩水溶液は、特別に調整する必要は無ぐめっき液など通常 入手可能な市販製品が使用可能である。  [0024] The metal salt aqueous solution used in the present invention may be a commercially available product such as a plating solution that does not need to be specially adjusted.
[0025] 本発明で使用する金属塩の金属としては Ni, Co, Cu, Zn, Cr, Sn, W, Fe, Ag, Cd, Ga, As, Cr, Se, Mn, In, Sb, Te, Ru, Rh, Pd, Au, Hg, Tl, Pb, Bi, Po, Re, Os, Ir, Pt等が例示され、金属塩としては、これらの水溶性の塩ィ匕物、臭化物、 ヨウ化物などのハロゲンィ匕物、硝酸塩、硫酸塩、スルファミン酸塩、酢酸塩などの有 機酸塩、シアン化物、酸化物、水酸化物、錯体等が例示される。金属塩は 1種の金 属の塩でもよぐ 2種以上の金属の塩を組み合わせて使用してもよい。金属塩の濃度 は、金属種に応じて最適な濃度を適宜選択することができるが、実用的な反応速度 を得るという点から、例えば金属塩水溶液中 0.01wt%以上に設定することができる。 [0025] Examples of the metal salt used in the present invention include Ni, Co, Cu, Zn, Cr, Sn, W, Fe, Ag, Cd, Ga, As, Cr, Se, Mn, In, Sb, Te, Ru, Rh, Pd, Au, Hg, Tl, Pb, Bi, Po, Re, Os, Ir, Pt, etc. are exemplified, and examples of metal salts include water-soluble salts, bromides, iodides, etc. Examples thereof include organic acid salts such as halides, nitrates, sulfates, sulfamates and acetates, cyanides, oxides, hydroxides and complexes. The metal salt may be one metal salt or a combination of two or more metal salts. The concentration of the metal salt can be selected as appropriate according to the metal species, but the practical reaction rate Can be set to 0.01 wt% or more in the metal salt aqueous solution, for example.
[0026] 本発明の表面処理方法は、電気めつき、化学めつき、電铸、陽極酸化、電解研磨、 電解加工、電気泳動塗装、電解精鍊、化成処理などの水の電気分解或いは化学反 応の際に気泡 (例えば水素)が発生する処理方法であり、この気泡が疎水性有機溶 媒に溶解することによって除去され、ピンホールの無い高品質な皮膜を得る点に特 徴を有する。ここでピンホールが無い皮膜とは、径が 1 μ m以上のピンホールが lcm2 当たり 1個以下の皮膜を指す。気泡が無くなれば、ピンホールが無くなるだけでなぐ 金属皮膜の水素脆化が防げ、皮膜強度も向上する。好ましい表面処理は、電気めつ き、化学めつき、陽極酸化、電铸、電解研磨、電解加工、電解精鍊、電気泳動塗装 である。 [0026] The surface treatment method of the present invention comprises electrolysis or chemical reaction of water such as electroplating, chemical plating, electroplating, anodizing, electropolishing, electrolytic processing, electrophoretic coating, electrolytic polishing, chemical conversion treatment, and the like. This is a treatment method in which bubbles (for example, hydrogen) are generated at the time of removal, and this bubble is removed by dissolving in a hydrophobic organic solvent, and is characterized in that a high-quality film without pinholes is obtained. Here, a film having no pinholes refers to a film having 1 or less pinholes per 1 cm 2 in diameter. If there are no bubbles, the metal film can be prevented from hydrogen embrittlement and the film strength can be improved. Preferred surface treatments are electroplating, chemical plating, anodizing, electroplating, electropolishing, electrolytic processing, electrolytic polishing, and electrophoretic coating.
[0027] 本発明では、疎水性溶媒と金属塩水溶液を乳化するため界面活性剤の添加が、 表面処理効率に影響を与える。界面活性剤を添加しなくても電気めつきは可能であ る力 添加する事により非常に効率ィ匕できる。界面活性剤としては、従来から知られ た多くの化合物が使用可能であり、ノ-オン系、ァ-オン系、カチオン系、両性イオン 系の界面活性剤、またこれらの構成元素も炭化水素系、シリコン系、フッ素系などが 挙げられ、これらの中から少なくとも 1種類以上を選択して使用することが出来る。界 面活性剤の濃度は特に制限は無いが、例えば、金属塩水溶液に対し 0.0001〜20wt% 程度、好ましくは 0.001〜 10wt%程度であればよ!/、。  In the present invention, the addition of a surfactant to emulsify the hydrophobic solvent and the aqueous metal salt solution affects the surface treatment efficiency. Even if a surfactant is not added, it can be electroplated. By adding force, it can be very efficient. As the surfactant, many conventionally known compounds can be used, including non-one, ar-on, cationic and zwitterionic surfactants, and these constituent elements are also hydrocarbon-based. , Silicon-based, fluorine-based, etc., and at least one of them can be selected and used. The concentration of the surfactant is not particularly limited. For example, it may be about 0.0001 to 20 wt%, preferably about 0.001 to 10 wt% with respect to the aqueous metal salt solution!
[0028] 好ましい界面活性剤は、フッ素系界面活性剤、シリコン系界面活性剤、炭化水素系 界面活性剤が例示でき、より好ましくはフッ素系界面活性剤又はシリコン系界面活性 剤である。  [0028] Preferable surfactants include fluorine-based surfactants, silicon-based surfactants, and hydrocarbon-based surfactants, and more preferable are fluorine-based surfactants and silicon-based surfactants.
[0029] 界面活性剤の具体例を以下に記載する。  [0029] Specific examples of the surfactant are described below.
[0030] フッ素系界面活性剤としては、アルキルの水素原子の少なくとも 1つがフッ素原子 で置換されたポリフルォロアルキルを有する界面活性剤であり、例えば、ポリフルォロ アルキルスルホン酸塩、ポリフルォロアルキルカルボン酸塩、ポリフルォロアルキルべ ンゼンスルホン酸塩、ポリフルォロアルキル硫酸エステル塩、ポリフルォロアルキルェ 一テル硫酸エステル塩、ポリフルオロフェ-ルエーテル硫酸エステル塩、スルホコハ ク酸エステルのポリフルォロアルキル誘導体などのァ-オン系化合物;ポリフルォロポ リアルキレングリコール、ポリフルォロアルキロールアミド、ポリフルォロ高級アルコー ル、ポリフルォロ脂肪酸エステル、ポリフルォロポリエーテルカルボン酸エステル、ポリ フルォロアルキルアミンエチレンォキシド付カ卩体、ポリフルォロアルキルカルボン酸、 ポリフルォロポリエーテルカルボン酸などのノ-オン系化合物;モノポリフルォロアル キルアンモ-ゥムハライド、ジポリフルォロアルキルアンモ-ゥムハライド、トリポリフル ォロアルキルアンモ-ゥムハライドなどのカチオン系化合物;ポリフルォロアルキルべ タインなどの分子内にカチオンァ-オン両方を有する両性ィ匕合物が挙げられる。そ のうち、ノ-オン系化合物が好ましい。なお、上記のポリフルォロアルキルには、アル キルの水素原子の全てがフッ素原子で置換されたペルフルォロアルキルを含むもの とする。 [0030] The fluorine-based surfactant is a surfactant having a polyfluoroalkyl in which at least one of the alkyl hydrogen atoms is substituted with a fluorine atom, and examples thereof include polyfluoroalkylsulfonates and polyfluoroalkylcarboxylic acids. Acid salt, polyfluoroalkylbenzenesulfonate, polyfluoroalkyl sulfate, polyfluoroalkyl ether sulfate, polyfluorophenyl ether sulfate, polyfluoroalkyl of sulfosuccinate Derivatives and other key-on compounds; Realkylene glycol, polyfluoroalkylol amide, polyfluoro higher alcohol, polyfluoro fatty acid ester, polyfluoropolyether carboxylic acid ester, polyfluoroalkylamine ethylene oxide case, polyfluoroalkyl carboxylic acid, Nonionic compounds such as polyfluoropolyether carboxylic acids; Cationic compounds such as monopolyfluoroalkyl ammonium halides, dipolyfluoroalkyl ammonium halides, tripolyfluoroalkyl ammonium halides; polyfluoroalkyls Examples include amphoteric compounds having both cation ions in the molecule, such as betaine. Of these, non-one compounds are preferred. The above polyfluoroalkyl includes perfluoroalkyl in which all of the alkyl hydrogen atoms are substituted with fluorine atoms.
[0031] シリコン系界面活性剤としては、例えば、ポリアルキレングリコール、ポリオール、ェ ステル、アミド、ァミノアルコール、アルキルアンモ-ゥム、アルキルスルホン酸塩、ァ ルキルカルボキシル、アルキルリン酸塩等を含む基を有するポリジメチルシロキサン 類又はポリアルコキシアルキルシリコン類などが挙げられる。そのうち、ポリアルキレン グリコールを含む基を有するポリジメチルシロキサン類又はポリアルコキシアルキルシ リコン類が好ましい。  [0031] Examples of the silicon surfactant include polyalkylene glycol, polyol, ester, amide, amino alcohol, alkyl ammonium, alkyl sulfonate, alkyl carboxyl, alkyl phosphate, and the like. Examples thereof include polydimethylsiloxanes having groups and polyalkoxyalkylsilicones. Of these, polydimethylsiloxanes or polyalkoxyalkylsilicones having a group containing polyalkylene glycol are preferred.
[0032] 炭化水素系界面活性剤としては、例えば、 α—ォレフインスルホン酸塩、アルキル ベンゼンスルホン酸塩、アルキル硫酸エステル塩、アルキルエーテル硫酸エステル 塩、スルホコハク酸塩、リン酸エステル、エーテルスルホン酸塩、アルキルフエノール 、高級アルコール、ポリオール、ポリアルキレングリコール、アルキロールアミド、脂肪 酸エステル、脂肪酸ァミン、アルキルアミンエチレンォキシド付加体、ラウリルトリメチ ルアンモ -ゥム塩、ステアリルトリメチルアンモ -ゥム塩、へキサデシルピリジ-ゥム塩 、イミダゾリゥムべタインなどが挙げられる。そのうち、ポリアルキレングリコールが好ま しい。  [0032] Examples of the hydrocarbon-based surfactant include α-olefin sulfonate, alkyl benzene sulfonate, alkyl sulfate ester salt, alkyl ether sulfate ester salt, sulfosuccinate, phosphate ester, ether sulfone. Acid salts, alkylphenols, higher alcohols, polyols, polyalkylene glycols, alkylolamides, fatty acid esters, fatty acid amines, alkylamine ethylene oxide adducts, lauryl trimethyl ammonium salts, stearyl trimethyl ammonium salts Hexadecyl pyridi-um salt, imidazolium betaine and the like. Of these, polyalkylene glycol is preferred.
[0033] 表面処理にあたり、温度や圧力は特に限定はなぐ必ずしも加熱ないし加圧する必 要は無い。通常の表面処理に必要な温度及び圧力の範囲で行うことが可能である。  In the surface treatment, the temperature and pressure are not particularly limited, and it is not always necessary to heat or pressurize. It is possible to carry out in the range of temperature and pressure required for normal surface treatment.
[0034] 表面処理工程の温度は 0°Cから 200°C程度であればよい。例えば電気めつきであ れば、その金属に応じためっき温度であり、室温(20°C)から 100°C程度である。例え ば、ニッケルや金では室温から 80°Cであり、パラジウムでは 30°Cから 70°C、銅では 室温から 70°C、また白金では 50°Cから 100°C程度である。 [0034] The temperature of the surface treatment step may be about 0 ° C to 200 ° C. For example, in the case of electrical plating, the plating temperature depends on the metal, and is about room temperature (20 ° C) to 100 ° C. example For example, it is from room temperature to 80 ° C for nickel and gold, 30 ° C to 70 ° C for palladium, room temperature to 70 ° C for copper, and 50 ° C to 100 ° C for platinum.
[0035] 表面処理工程の圧力は 10気圧未満であればよい。処理温度での溶媒の気化によ る圧力上昇を避けるため、高温で処理する際には高沸点の溶媒を使用する。安全上 の面からは、このような処理条件の設定により、 1気圧から 2気圧で表面処理を行うこ とが望ましい。 [0035] The pressure in the surface treatment process may be less than 10 atm. In order to avoid an increase in pressure due to vaporization of the solvent at the processing temperature, a high boiling point solvent should be used when processing at a high temperature. From the viewpoint of safety, it is desirable to perform the surface treatment at 1 to 2 atmospheres by setting such treatment conditions.
[0036] さらに以下に示す有機溶媒 (助溶剤)の添加も可能である。例えばメタノール、エタ ノール、プロパノール、ブタノール、ペンタノールなどのアルコール類;アセトンなどの ケトン類;ァセトニトリル;酢酸ェチルなどのエステル類;ェチルエーテルなどのエーテ ル類;フロン類;塩化メチレン、クロ口ホルムなどのハロゲン化物等が挙げられ、特に 毒性が低く低分子量のものが望ましい。有機溶媒を添加する場合、その添加量は疎 水性溶媒に対し 50wt%以下、好ましくは 5〜10wt%程度であればょ 、。  Furthermore, the following organic solvents (cosolvents) can also be added. For example, alcohols such as methanol, ethanol, propanol, butanol and pentanol; ketones such as acetone; acetonitrile; esters such as ethyl acetate; ethers such as ethyl ether; chlorofluorocarbons; Halides and the like can be mentioned, and those having low toxicity and particularly low toxicity are desirable. When an organic solvent is added, the amount added is 50 wt% or less, preferably about 5 to 10 wt%, based on the hydrophobic solvent.
[0037] なお、本発明においては、系が二相系であるため攪拌が必要とされる。ここで攪拌 とは磁気的攪拌、機械的攪拌、ないしは超音波照射などによるミキシングが挙げられ る。具体的な回転数については、疎水性溶媒や金属塩水溶液の種類や装置の規模 、撹拌方法によっても変わるため、実際の操作のなかで最適化する必要がある。  [0037] In the present invention, since the system is a two-phase system, stirring is required. Here, the stirring includes magnetic stirring, mechanical stirring, or mixing by ultrasonic irradiation. The specific number of revolutions varies depending on the type of hydrophobic solvent and metal salt aqueous solution, the scale of the apparatus, and the stirring method, and therefore must be optimized during actual operation.
[0038] 例えば、磁気的攪拌ないし機械的攪拌の場合、 100〜: LOOOOOrpm、好ましくは 4 00〜: LOOOrpm力 S例示され、超音波照射の場合、 20kHz〜10MHzが例示される。  [0038] For example, in the case of magnetic stirring or mechanical stirring, 100 ~: LOOOOOrpm, preferably 400 ~: LOOOrpm force S is exemplified, and in the case of ultrasonic irradiation, 20kHz ~ 10MHz is exemplified.
[0039] 本発明の表面処理で形成される金属皮膜の厚さは、用途、めっき条件等に応じて 適宜選択できる力 例えば、 lnm〜1000 μ m程度、好ましくは 10nm〜100 μ m程度で ある。  [0039] The thickness of the metal film formed by the surface treatment of the present invention is a force that can be appropriately selected depending on the application, plating conditions, etc. For example, about lnm to 1000 μm, preferably about 10 nm to 100 μm. .
[0040] 表面処理の対象物の材料としては、特に限定されず、金属、合金、セラミック、ブラ スチック、ガラス、導電性高分子などが挙げられ、導電性でない材料 (例えばプラスチ ック)の場合には、表面に金属粒子を付着させるなどの表面処理を行ったものが例示 される。表面処理の対象物の形状は、板状、粒状、球状、曲面状、筒状などが挙げら れ、攪拌下に金属塩水溶液と疎水性溶媒を含む処理液の供給が十分に行われるよ うな形状のものが好まし 、。  [0040] The material of the object to be surface-treated is not particularly limited, and examples thereof include metals, alloys, ceramics, plastics, glasses, and conductive polymers. In the case of non-conductive materials (for example, plastics). Examples include those subjected to surface treatment such as attaching metal particles to the surface. Examples of the shape of the object to be surface-treated include a plate shape, a granular shape, a spherical shape, a curved surface shape, and a cylindrical shape, and the treatment liquid containing the metal salt aqueous solution and the hydrophobic solvent is sufficiently supplied with stirring. The shape is preferred.
発明の効果 [0041] 本発明の表面処理方法によれば、被対象物に対し容易に高品位金属皮膜を作成 することができる。これにより、高品位金属皮膜を有する物品を製造することができる 。またこの表面処理の際に発生する重金属などの廃液量も、既存電気化学的表面処 理に比較して少なくて済む。 The invention's effect [0041] According to the surface treatment method of the present invention, a high-quality metal film can be easily formed on an object. As a result, an article having a high-grade metal film can be produced. In addition, the amount of waste liquid such as heavy metals generated during the surface treatment is smaller than that of the existing electrochemical surface treatment.
図面の簡単な説明  Brief Description of Drawings
[0042] [図 1]実施例 1で得られためっき皮膜を示す SEM写真 (倍率 500倍)を示す。 FIG. 1 shows an SEM photograph (magnification 500 times) showing the plating film obtained in Example 1.
[図 2]実施例 1で得られためっき皮膜を示す SEM写真 (倍率 5000倍)を示す。  FIG. 2 shows an SEM photograph (magnification 5000 times) showing the plating film obtained in Example 1.
[図 3]実施例 1で得られためっき皮膜を示す SEM写真 (倍率 50000倍)を示す。  FIG. 3 shows an SEM photograph (magnification 50000 times) showing the plating film obtained in Example 1.
[図 4]比較例 1で得られた通常の光沢ニッケルめっき (厚さ 5ミクロン)の SEM写真 (倍 率 500倍)を示す。  FIG. 4 shows an SEM photograph (multiplier 500 times) of the normal bright nickel plating (thickness 5 microns) obtained in Comparative Example 1.
[図 5]実施例 4で得られたサンプルの写真を示す。  FIG. 5 shows a photograph of the sample obtained in Example 4.
[図 6]実施例 5で得られたサンプルの写真を示す。  FIG. 6 shows a photograph of the sample obtained in Example 5.
[図 7]実施例 6で得られためっき皮膜を示す SEM写真 (倍率 60倍)を示す。  FIG. 7 shows an SEM photograph (magnification 60 times) showing the plating film obtained in Example 6.
[図 8]実施例 6で得られためっき皮膜を示す SEM写真 (倍率 1000倍)を示す。  FIG. 8 shows an SEM photograph (magnification 1000 times) showing the plating film obtained in Example 6.
[図 9]実施例 6で得られためっき皮膜を示す SEM写真 (倍率 10000倍)を示す。  FIG. 9 shows an SEM photograph (magnification: 10,000 times) showing the plating film obtained in Example 6.
[図 10]実施例 8で得られためっき皮膜を示す SEM写真 (倍率 1000倍)を示す。  FIG. 10 shows an SEM photograph (magnification 1000 times) showing the plating film obtained in Example 8.
[図 11]実施例 9で得られためっき皮膜を示す SEM写真 (倍率 110倍)を示す。  FIG. 11 shows an SEM photograph (magnification 110 times) showing the plating film obtained in Example 9.
[図 12]実施例 9で得られためっき皮膜を示す SEM写真 (倍率 1000倍)を示す。  FIG. 12 shows an SEM photograph (1000 × magnification) showing the plating film obtained in Example 9.
[図 13]実施例 9で得られためっき皮膜を示す SEM写真 (倍率 20000倍)を示す。 発明を実施するための最良の形態  FIG. 13 shows an SEM photograph (magnification 20000 times) showing the plating film obtained in Example 9. BEST MODE FOR CARRYING OUT THE INVENTION
[0043] 以下、本発明を実施例を用いて具体的に説明するが、本発明はこれだけに限定さ れるものでは無い。 [0043] Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[実施例 1]ニッケル電解めつき  [Example 1] Nickel electrolytic plating
内容積が 50ccのビーカーにニッケルめっき液(ワット浴:硫酸ニッケル 280g/L,塩化 ニッケル 60g/L,ホウ酸 50g/L,光沢剤適量) 20mL、及び Perfluorohexane 20mLの混 合物に、界面活性剤として F(CF(CF )CF O) CF(CF )COOCH CH OCHをめつき浴  In a beaker with an internal volume of 50 cc, nickel plating solution (watt bath: nickel sulfate 280 g / L, nickel chloride 60 g / L, boric acid 50 g / L, brightener appropriate amount) 20 mL, and Perfluorohexane 20 mL F (CF (CF) CF O) CF (CF) COOCH CH OCH
3 2 3 3 2 2 3 に対して 0.1wt%入れ、陰極に脱脂した真鍮板、陽極に純ニッケル板 (それぞれ表面 積 4cm2)を取り付けた。この混合物を恒温槽で温度を 50°Cに上げた。スターラー上に 固定し、回転子を 500r.p.mで回転させることで、これらを乳化させた。 5A/dm2で 0.5分 間通電し、ニッケルめっきを行った。通電終了後、陰極板を取り出し、十分な水洗を 行い、顕微鏡で表面観察を行った。皮膜の厚さは 0.5ミクロンであった。顕微鏡写真を 図 1〜3に示す。 0.1 wt% of 3 2 3 3 2 2 3 was added, a degreased brass plate was attached to the cathode, and a pure nickel plate (4 cm 2 each surface area) was attached to the anode. The temperature of the mixture was raised to 50 ° C in a thermostatic bath. On the stirrer These were emulsified by fixing and rotating the rotor at 500 rpm. Nickel plating was performed by energizing at 5 A / dm 2 for 0.5 minutes. After energization, the cathode plate was taken out, thoroughly washed with water, and the surface was observed with a microscope. The film thickness was 0.5 microns. Photomicrographs are shown in Figs.
[0044] 図 1で明らかなようにピンホールは検出されない。また図 2及び 3の SEMによる高倍 率 (それぞれ 5,000倍、 50、 000倍)写真で判るように、非常に細かな結晶により緻密な 皮膜が形成できている。基板上に発生したガスが、フロン溶媒中に溶解除去された ためと考えられる。  [0044] As is apparent from FIG. 1, no pinhole is detected. In addition, as can be seen from the high-magnification images (5,000 and 50,000 times, respectively) obtained by SEM in Figs. 2 and 3, a dense film can be formed with very fine crystals. This is probably because the gas generated on the substrate was dissolved and removed in the fluorocarbon solvent.
[比較例 1]光沢ニッケルめっき  [Comparative Example 1] Bright nickel plating
実施例 1と同様の内容積が 50ccのビーカーにニッケルめっき液(ワット浴) 40mLを 入れ、容器の上から、陰極として真鍮板、陽極として純ニッケル板 (それぞれ表面積 4 cm2)を取り付けた。液温を 50°Cにして、マグネチックスターラーによる攪拌下 (500r.p. m)に、 5A/dm2で 0.5分間通電し、ニッケルめっきを行った。実施例 1と同様の後処理 後、得られためっき皮膜を SEM観察した。図 4に通常の光沢ニッケルめっき (厚さ 5ミク ロン)の顕微鏡写真を示す。 A nickel plating solution (Watt bath) 40 mL was placed in a beaker having an internal volume of 50 cc similar to that in Example 1, and a brass plate as a cathode and a pure nickel plate (a surface area of 4 cm 2 each) were attached from the top of the container. The solution was heated to 50 ° C., and stirred with a magnetic stirrer (500 r.p. m) for 5 minutes at 5 A / dm 2 to conduct nickel plating. After the post-treatment similar to that in Example 1, the obtained plated film was observed by SEM. Figure 4 shows a photomicrograph of normal bright nickel plating (5 micron thick).
[0045] 図 4より、通常の電気めつきでは厚さ 5ミクロン以下の皮膜を形成する場合ピンホー ルが多数発生することが分力つた。  [0045] From FIG. 4, it was found that when a film having a thickness of 5 microns or less is formed with ordinary electric plating, many pinholes are generated.
[実施例 2]ニッケル電解めつき  [Example 2] Nickel electrolytic plating
実施例 1と同じニッケルめっき液 30mLとペルフルォロジメチルシクロへキサン 20m Lの混合物に、界面活性剤として H(CF ) CH OCOCH CH(SO Na)COOCH (CF ) H  In a mixture of 30 mL of the same nickel plating solution as in Example 1 and 20 mL of perfluorodimethylcyclohexane, H (CF) CH OCOCH CH (SO Na) COOCH (CF) H as a surfactant
2 4 2 2 3 2 2 4 をめつき液に対して 0.04wt%を加えた。実施例 1と同様の条件で真鍮板にニッケルめ つきを行った o  0.04 wt% was added to 2 4 2 2 3 2 2 4. Nickel plating was applied to the brass plate under the same conditions as in Example 1.
[実施例 3]ニッケル電解めつき  [Example 3] Nickel electrolytic plating
実施例 1と同じニッケルめっき液 30mLとペルフルォロジメチルシクロへキサン 20m Lの混合物に、界面活性剤として F(CF(CF )CF O) CF(CF )CO(OCH CH ) OCHを  F (CF (CF) CF O) CF (CF) CO (OCH CH) OCH as a surfactant was added to a mixture of 30 mL of the same nickel plating solution as in Example 1 and 20 mL of perfluorodimethylcyclohexane.
3 2 3 3 2 2 7 3 めっき液に対して 0.04wt%をカ卩え、めっきを実施した。実施例 1と同様のニッケル皮膜 が形成できた。  3 2 3 3 2 2 7 3 Plating was performed with 0.04 wt% of plating solution. A nickel film similar to that in Example 1 was formed.
[実施例 4]無電解銅めつき (1)触媒担持工程 [Example 4] Electroless copper plating (1) Catalyst loading process
ポリプロピレン製試薬瓶蓋—円板 (直径 3 Φ)の一部を高圧装置の底に静置し、この 容器に、有機白金錯体 (1,5- Cyclooctadiene)dimetylplatinum(II) 16mgを入れ、封じた のち二酸ィ匕炭素を導入して 30MPa、 120°Cで 15時間処理後、さらに 130°Cに昇温し て 3時間保って、触媒の活性化を行った。減圧後サンプルを取り出し、水続いてメタノ ールで洗浄した。サンプル表面に黒く担持された活性ィ匕白金触媒を確認した。 Polypropylene reagent bottle lid-A part of a disc (diameter 3Φ) was placed on the bottom of the high-pressure apparatus, and 16 mg of organic platinum complex (1,5-cyclooctadiene) dimetylplatinum (II) was placed in this container and sealed. Thereafter, carbon dioxide was introduced, treated at 30 MPa and 120 ° C for 15 hours, then heated to 130 ° C and maintained for 3 hours to activate the catalyst. After decompression, the sample was taken out and washed with water followed by methanol. An active platinum catalyst supported on the sample surface in black was confirmed.
(2)めっき工程 (2) Plating process
上記サンプルを実施例 1と同様の 50mLビーカー中に静置し、これに銅無電解めつ き液 (株式会社高純度化学研究所 C-200LT) 30mLとペルフルォロジメチルシクロ へキサン 20mLを入れ、さらにこの溶液に、界面活性剤として F(CF(CF )CF O) CF(C  Place the above sample in a 50 mL beaker similar to Example 1, and add 30 mL of copper electroless solution (C-200LT, High-Purity Chemical Laboratory Co., Ltd.) and 20 mL of perfluorodimethylcyclohexane. And add F (CF (CF) CF O) CF (C
3 2 3 3 2 3
F )COOCH CH OCHをめつき液に対して 0.6wt%カ卩えた。この反応液を 50。Cで 15分F) COOCH CH OCH was added in an amount of 0.6 wt% with respect to the solution. 50 this reaction. 15 minutes on C
3 2 2 3 3 2 2 3
攪拌した。サンプルを水洗し表面観察を行った。図 5にめつきサンプルの写真を示し た。 Stir. The sample was washed with water and the surface was observed. Fig. 5 shows a photograph of the mating sample.
[実施例 5]無電解銅めつき  [Example 5] Electroless copper plating
実施例 4と同じ材質で 2.5cm各の板状 (厚さ 0.5mm)サンプルをアセトンで表面を洗 浄、乾燥後、クロム酸-硫酸溶液により 60°Cで 15分処理し、表面を粗面化した。これ に 0.5mM- PdCl - 0.05mM- SnCl溶液に 30分浸した。水洗後、サンプルを実施例 1と  A 2.5cm thick plate (thickness 0.5mm) sample made of the same material as in Example 4 was washed with acetone, dried, then treated with chromic acid-sulfuric acid solution at 60 ° C for 15 minutes to roughen the surface. Turned into. This was immersed in a 0.5 mM-PdCl-0.05 mM-SnCl solution for 30 minutes. After washing with water, the sample is
2 2  twenty two
同様の 50mLビーカー中に静置し、これに銅無電解めつき液 (株式会社高純度化学 研究所 C-200LT) 30mLとペルフルォロジメチルシクロへキサン 20mLを入れ、さら にこの溶液に、界面活性剤として F(CF(CF )CF O) CF(CF )COOCH CH OCHをめ Place in a similar 50 mL beaker, and add 30 mL of copper electroless plating solution (C-200LT, High Purity Chemical Laboratory Co., Ltd.) and 20 mL of perfluorodimethylcyclohexane to this solution. F (CF (CF) CF O) CF (CF) COOCH CH OCH as a surfactant
3 2 3 3 2 2 3 つき液に対して 0.6wt%カ卩えた。この反応液を 50°Cで 15分攪拌した。サンプルを水洗 し表面観察を行った。図 6にめつきサンプルの写真を示した。  3 2 3 3 2 2 3 It was 0.6wt% with respect to the attached liquid. The reaction was stirred at 50 ° C for 15 minutes. The sample was washed with water and the surface was observed. Fig. 6 shows a photograph of the mating sample.
[実施例 6]電解パラジウムめっき [Example 6] Electrolytic palladium plating
内容積が 50ccのビーカーにパラジウムめっき浴(ethylenediamine 10g/Lの水溶液に 塩ィ匕パラジウムを 10g/Lを加えて、 60°Cで加熱して均一溶液を作製する。この溶液に 2N塩酸を加えて pHを 3に調整した。)を 30mL、ペルフルォロジメチルシクロへキサン 20mLを入れ、さらにこの溶液に、界面活性剤として F(CF(CF )CF O) CF(CF )CO(0  Add a palladium plating bath (10 g / L of salty palladium to an aqueous solution of ethylenediamine 10 g / L to a beaker with an internal volume of 50 cc, and heat at 60 ° C to make a uniform solution. Add 2N hydrochloric acid to this solution. The pH was adjusted to 3.) 30 mL and perfluorodimethylcyclohexane 20 mL were added, and F (CF (CF) CF 2 O) CF (CF 3) CO (0
3 2 3 3 3 2 3 3
CH CH ) OCHをめつき液に対して 0.6wt%カ卩えた。陰極に脱脂した真鍮板、陽極に チタン板 (それぞれ表面積 4cm2)を取り付けた。この混合物を恒温槽で温度を 60°Cに 上げた。スターラー上に固定し、回転子を 500r.p.mで回転させることで、これらを乳化 させた。 2A/dm2で 0.5分間通電し、ニッケルめっきを行った。通電終了後、陰極板を 取り出し、十分な水洗を行い、顕微鏡で表面観察を行った。図 7〜9に SEM写真を示 した。ピンホールの無い、結晶粒の細かな非常に緻密な皮膜を形成している。また、 ハルセル基板の溝の中までトレース出来ており、付き周りも非常に優れていることも判 る。 CH 2 CH 2 OCH was added in an amount of 0.6 wt% with respect to the solution. Degreased brass plate on the cathode, on the anode Titanium plates (4 cm 2 surface area each) were attached. The temperature of this mixture was raised to 60 ° C in a thermostatic bath. These were emulsified by fixing on a stirrer and rotating the rotor at 500 rpm. Nickel plating was performed by energizing at 2 A / dm 2 for 0.5 minutes. After energization, the cathode plate was taken out, washed thoroughly with water, and the surface was observed with a microscope. Figures 7 to 9 show SEM photographs. A very dense film with fine crystal grains and no pinholes is formed. In addition, it can be traced into the groove of the Hull cell substrate, and the attachment is very good.
[実施例 7]電解パラジウムめっき  [Example 7] Electrolytic palladium plating
めっき液としてアルカリ浴(日本エレクト口プレイティングェンジニヤース (株)パラデ ックス LF-2)を用いて実施例 6と同様のパラジウムめっきを行った。得られためっき皮 膜は実施例 6より若干均一性が低力つた。酸性浴の方が良好な傾向が観られた。  Palladium plating similar to that in Example 6 was performed using an alkaline bath (Nihon Electo Porting Engineers Co., Ltd., Paradex LF-2) as the plating solution. The obtained plating film was slightly less uniform than Example 6. A better trend was observed in the acidic bath.
[実施例 8]電解銅めつき [Example 8] Electrolytic copper plating
銅めつき液として (株)高純度化学研究所— C-100ESを 30mL用い、ペルフルォロ ジメチルシクロへキサン 20mLを入れ、さらにこの溶液に、界面活性剤として F(CF(CF )CF O) CF(CF )CO(OCH CH ) OCHをめつき液に対して 0.6wt%カ卩えた。陰極に真 High purity chemical laboratory Co., Ltd.—30 mL of C-100ES and 20 mL of perfluorodimethylcyclohexane were added as a copper plating solution. Further, F (CF (CF) CF O) CF ( CF 3) CO (OCH 2 CH 3) OCH was added in an amount of 0.6 wt% with respect to the solution. True to cathode
3 2 3 3 2 2 2 3 3 2 3 3 2 2 2 3
鍮板、陽極にチタン板 (それぞれ表面積 4cm2)を取り付け、攪拌下に乳化させた後、 50°Cで 2A/dm2で 0.5分間通電し、銅めつきを行った。図 10に SEM写真を示した。均 一でピンホールの無 、皮膜が得られて!/、る。 A brass plate and a titanium plate (surface area 4 cm 2 each) were attached to the anode, emulsified with stirring, and then energized at 50 ° C. and 2 A / dm 2 for 0.5 minutes to perform copper plating. Figure 10 shows the SEM photograph. A uniform and pinhole-free film can be obtained!
[実施例 9]電解金めつき [Example 9] Electrolytic gold plating
酸性金めつき液( (株)高純度化学研究所一純金電解メツキ液 K-24EA10) 30mL用 い、ペルフルォロジメチルシクロへキサン 20mLを入れ、さらにこの溶液に、界面活性 剤として F(CF(CF )CF O) CF(CF )COOCH CH OCHをめつき液に対して 0.6wt%カロ  Acid gold plating solution (High Purity Chemical Laboratories, Inc., Pure Pure Electrolytic Solution K-24EA10) For 30 mL, add 20 mL of perfluorodimethylcyclohexane, and then add F ( CF (CF) CF O) CF (CF) COOCH CH OCH
3 2 3 3 2 2 3  3 2 3 3 2 2 3
えた。めっき槽の蓋に、陰極に真鍮板、陽極に白金コーティングしたチタン板 (それぞ れ表面積 4cm2)を取り付け、通電しつつめっき液中に浸し、蓋を閉めた。攪拌を開始 してめつき液 ペルフルォロ溶媒を乳化させた後、 50°Cで 0.5A/dm2で 170秒間通電 し(通電時の電圧:約 3V)、金めつきを行った (皮膜厚: 0.7 )。図 11〜13に SEM写 真を示した。ピンホールの無い均一な皮膜が得られた。 Yeah. A brass plate was attached to the cathode of the plating tank and a titanium plate with a platinum coating on the anode (each surface area of 4 cm 2 ) was immersed in the plating solution while energized, and the lid was closed. Stirring was started to emulsify the perfluorinated solvent, and then energized at 0.5 A / dm 2 for 170 seconds at 50 ° C (voltage during energization: approx. 3 V), and gold plating was performed (film thickness: 0.7). Figures 11 to 13 show SEM photographs. A uniform film without pinholes was obtained.
[実施例 10]電解金めつき 実施例 9と同様の金めつき液 30mLとフロリナート(FC-77) 20mLの混合液に、界面 活性剤として F(CF(CF )CF O) CF(CF )COOHを lOmg添カ卩して、実施例 9と同様の [Example 10] Electrolytic gold plating F (CF (CF) CF O) CF (CF) COOH as a surfactant was added to lOmg as a surfactant in a mixed solution of 30 mL of gold plating solution similar to Example 9 and 20 mL of florinate (FC-77), Similar to Example 9
3 2 3 3  3 2 3 3
操作を行った。 The operation was performed.
[実施例 11]  [Example 11]
実施例 1と同様にニッケルめっき液 30mLと CF [(OCF(CF )CF ) (OCF ) ]OCF (ォ  As in Example 1, 30 mL of nickel plating solution and CF [(OCF (CF) CF) (OCF)] OCF (o
3 3 2 x 2 y 3 リゴマー混合物、沸点 = 135°C) 20mLの混合物に、界面活性剤として F(CF(CF )CF  3 3 2 x 2 y 3 Rigomer mixture, boiling point = 135 ° C) F (CF (CF) CF as a surfactant in a 20 mL mixture
3 Three
O) CF(CF )COOCH CH OCHを 20mg添加して、 50°C、電流密度 5A/dm2で 3分間O) CF (CF) COOCH CH Add 20 mg of OCH, 3 minutes at 50 ° C, current density 5A / dm 2
2 3 3 2 2 3 2 3 3 2 2 3
通電し、ニッケルめっきを実施した。 Power was applied and nickel plating was performed.
以上の実施例に記載した様に、本発明によれば、非常に薄い薄膜でも、径が 1 μ m 以上のピンホールが lcm2当たり 1個以下で形成することが可能である。 As described in the above embodiments, according to the present invention, even a very thin thin film can be formed with 1 or less pinholes having a diameter of 1 μm or more per 1 cm 2 .

Claims

請求の範囲 The scope of the claims
[I] 金属塩を含む水溶液と疎水性溶媒の共存下に被対象物に表面処理を行うことを特 徴とする表面処理方法。  [I] A surface treatment method characterized by subjecting an object to surface treatment in the presence of an aqueous solution containing a metal salt and a hydrophobic solvent.
[2] 攪拌下に金属塩を含む水溶液と疎水性溶媒を乳化させて、表面処理を行うことを 特徴とする、請求項 1に記載の方法。  [2] The method according to claim 1, wherein the surface treatment is carried out by emulsifying an aqueous solution containing a metal salt and a hydrophobic solvent under stirring.
[3] さらに界面活性剤を添加して乳化させて表面処理を行うことを特徴とする請求項 1 または 2に記載の方法。 [3] The method according to claim 1 or 2, wherein a surfactant is further added and emulsified to effect surface treatment.
[4] 疎水性溶媒力 Sフッ素溶媒である、請求項 1〜3のいずれかに記載の方法。 [4] Hydrophobic solvent power The method according to any one of claims 1 to 3, which is an S fluorine solvent.
[5] 疎水性溶媒がシリコン系溶媒である、請求項 1〜3のいずれかに記載の方法。 [5] The method according to any one of claims 1 to 3, wherein the hydrophobic solvent is a silicon-based solvent.
[6] さらに他の有機溶媒を添加することを特徴とする請求項 4または 5に記載の方法。 6. The method according to claim 4 or 5, further comprising adding another organic solvent.
[7] 疎水性溶媒が、分子内にペルフルォロアルキル基を有するフッ素溶媒である、請 求項 1〜4、 6のいずれかに記載の方法。 [7] The method according to any one of claims 1 to 4, wherein the hydrophobic solvent is a fluorine solvent having a perfluoroalkyl group in the molecule.
[8] 疎水性溶媒が、分子内にペルフルォロポリエーテル基を有するフッ素溶媒である、 請求項 1〜4、 6のいずれかに記載の方法。 [8] The method according to any one of [1] to [4] and [6], wherein the hydrophobic solvent is a fluorine solvent having a perfluoropolyether group in the molecule.
[9] 請求項 1〜8のいずれかに記載の方法で得られた、金属皮膜。  [9] A metal film obtained by the method according to any one of claims 1 to 8.
[10] 金属皮膜を有する物品を製造する方法であって、金属塩を含む水溶液と疎水性溶 媒の共存下に被対象物に表面処理を行うことを特徴とする製造方法。  [10] A method for producing an article having a metal film, which comprises subjecting an object to surface treatment in the presence of an aqueous solution containing a metal salt and a hydrophobic solvent.
[II] 請求項 10に記載の方法で得られた、金属皮膜を有する物品。  [II] An article having a metal film obtained by the method according to claim 10.
PCT/JP2006/313420 2005-07-08 2006-07-05 Surface treatment in presence of organic solvent WO2007007617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-199927 2005-07-08
JP2005199927 2005-07-08

Publications (1)

Publication Number Publication Date
WO2007007617A1 true WO2007007617A1 (en) 2007-01-18

Family

ID=37637011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313420 WO2007007617A1 (en) 2005-07-08 2006-07-05 Surface treatment in presence of organic solvent

Country Status (1)

Country Link
WO (1) WO2007007617A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273893A (en) * 2007-05-01 2008-11-13 National Univ Corp Shizuoka Univ Bf3 complex and method for producing bf3 complex
CN102251269A (en) * 2011-08-19 2011-11-23 杭州银都餐饮设备有限公司 Electrochemical surface treatment device
CN104532337A (en) * 2015-01-09 2015-04-22 中国矿业大学 Electro erosion method for rapidly preparing iron base super-hydrophobic surface in large area

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339860B2 (en) * 1973-10-18 1978-10-24
JPH0118997B2 (en) * 1982-01-29 1989-04-10 Uemura Kogyo Kk
JPH05263263A (en) * 1992-03-17 1993-10-12 Nippon Dakuro Shamrock:Kk Phosphating composition and phosphated material
JP2000199097A (en) * 1998-12-28 2000-07-18 Canon Inc Method for forming zinc oxide film, and manufacture of solar cell using the zinc oxide film
WO2002016673A1 (en) * 2000-08-24 2002-02-28 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
JP2004043958A (en) * 2002-03-13 2004-02-12 Mitsubishi Chemicals Corp Gold plating liquid and gold plating method
JP2006161081A (en) * 2004-12-03 2006-06-22 Dowa Mining Co Ltd Silvered copper powder, its manufacturing method, and conductive paste

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339860B2 (en) * 1973-10-18 1978-10-24
JPH0118997B2 (en) * 1982-01-29 1989-04-10 Uemura Kogyo Kk
JPH05263263A (en) * 1992-03-17 1993-10-12 Nippon Dakuro Shamrock:Kk Phosphating composition and phosphated material
JP2000199097A (en) * 1998-12-28 2000-07-18 Canon Inc Method for forming zinc oxide film, and manufacture of solar cell using the zinc oxide film
WO2002016673A1 (en) * 2000-08-24 2002-02-28 Hideo Yoshida Electrochemical treating method such as electroplating and electrochemical reaction device therefor
JP2004043958A (en) * 2002-03-13 2004-02-12 Mitsubishi Chemicals Corp Gold plating liquid and gold plating method
JP2006161081A (en) * 2004-12-03 2006-06-22 Dowa Mining Co Ltd Silvered copper powder, its manufacturing method, and conductive paste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273893A (en) * 2007-05-01 2008-11-13 National Univ Corp Shizuoka Univ Bf3 complex and method for producing bf3 complex
CN102251269A (en) * 2011-08-19 2011-11-23 杭州银都餐饮设备有限公司 Electrochemical surface treatment device
CN104532337A (en) * 2015-01-09 2015-04-22 中国矿业大学 Electro erosion method for rapidly preparing iron base super-hydrophobic surface in large area

Similar Documents

Publication Publication Date Title
US7449098B1 (en) Method for planar electroplating
EP1602128B1 (en) Surface-coating method, production of microelectronic interconnections using said method and integrated circuits
US4610762A (en) Method for forming polymer films having bubble release surfaces
US7422677B2 (en) Membrane-mediated electropolishing
Zhang et al. Corrosion resistance of a superhydrophobic dodecyltrimethoxysilane coating on magnesium hydroxide-pretreated magnesium alloy AZ31 by electrodeposition
WO2007007617A1 (en) Surface treatment in presence of organic solvent
Chiu et al. Adsorption and desorption of Bis-(3-sulfopropyl) disulfide during Cu electrodeposition and stripping at Au electrodes
JPH01301722A (en) Formation of polymer film using removable base material
Nguyen et al. An electroplating technique using the post supercritical carbon dioxide mixed watts electrolyte
JP2023553052A (en) An electrolyte medium, an electropolishing process using the electrolyte medium, and an apparatus for performing the electropolishing process
US20070175763A1 (en) Electroplating in presence of co2
JP5937086B2 (en) Electroless metal deposition using highly alkaline plating bath
JP3571627B2 (en) Electrochemical reaction method
JP4150935B2 (en) Surface treatment in the presence of organic solvents
JP2007063675A (en) Surface treatment in presence of organic solvent
TW200404919A (en) Method of making oxide film by anodizing magnesium material
JP2004315675A (en) Surfactant for carbon dioxide solvent
Parkhutik Oscillations of open-circuit potential during immersion plating of silicon in CuSO 4/HF solutions
JP2006291008A (en) Fluorine-contained solvent cleaner
Mohamed et al. Electrocatalytic activities of macro-Porous nickel electrode for hydrogen evolution reaction in alkaline media
JP2009249653A (en) Electroplating method
JPS62263991A (en) Manufacture of plated material
WO2023140011A1 (en) Metal nanowire production method, metal nanowire, dispersion liquid, and conductive film
JP2006265729A (en) Production method of multilayer film structure, multilayer film structure and plating equipment
Hosseinzadeh et al. Microstructure and corrosion resistance of Ni/Cr3C2-NiCr composite coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06780796

Country of ref document: EP

Kind code of ref document: A1