JP5937086B2 - Electroless metal deposition using highly alkaline plating bath - Google Patents

Electroless metal deposition using highly alkaline plating bath Download PDF

Info

Publication number
JP5937086B2
JP5937086B2 JP2013533061A JP2013533061A JP5937086B2 JP 5937086 B2 JP5937086 B2 JP 5937086B2 JP 2013533061 A JP2013533061 A JP 2013533061A JP 2013533061 A JP2013533061 A JP 2013533061A JP 5937086 B2 JP5937086 B2 JP 5937086B2
Authority
JP
Japan
Prior art keywords
bath
solution
magnesium
substrate
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013533061A
Other languages
Japanese (ja)
Other versions
JP2013540205A (en
Inventor
モルデカイ シュレジンジャー,
モルデカイ シュレジンジャー,
ロバート アンドリュー ペトロ,
ロバート アンドリュー ペトロ,
Original Assignee
ユニバーシティ・オブ・ウィンザー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニバーシティ・オブ・ウィンザー filed Critical ユニバーシティ・オブ・ウィンザー
Publication of JP2013540205A publication Critical patent/JP2013540205A/en
Application granted granted Critical
Publication of JP5937086B2 publication Critical patent/JP5937086B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1658Process features with two steps starting with metal deposition followed by addition of reducing agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/166Process features with two steps starting with addition of reducing agent followed by metal deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1806Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by mechanical pretreatment, e.g. grinding, sanding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1855Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by mechanical pretreatment, e.g. grinding, sanding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • C23C18/24Roughening, e.g. by etching using acid aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemically Coating (AREA)

Description

関連出願
本出願は、2010年10月13日に申請された米国仮出願第61/344,800号,2011年3月30日に申請された米国仮出願第61/457,446号、及び2011年4月26日に申請された米国仮出願第61/457,590号について、合衆国法典第35編119条(e)の利益を主張するものである。
Related Applications This application is a U.S. provisional application 61 / 344,800 filed on Oct. 13, 2010, U.S. provisional application 61 / 457,446 filed on March 30, 2011. No. and US Provisional Application No. 61 / 457,590, filed April 26, 2011, claim the benefit of 35 USC 119 (e).

技術分野
本発明は、基材上に金属を無電解析出又はめっきする方法に関する。具体的には、11.5を超える高pH、最も好ましくはpH13.5〜14において可溶であるめっき金属及びめっき金属合金のための方法に関する。
TECHNICAL FIELD The present invention relates to a method for electroless deposition or plating of a metal on a substrate. Specifically, it relates to methods for plated metals and plated metal alloys that are soluble at high pH above 11.5, most preferably pH 13.5-14.

無電解被覆方法においては、pHが11以上のアルカリ性めっき浴は有害であることが一般に知られている。これは、析出速度が急激に低下し、無電解めっき浴溶液の可使時間が減少するためである。このように溶液可使時間が減少することから、これまで高アルカリ性無電解めっき溶液の使用は商業的に不可能であるとされてきた。更に、高アルカリ性めっき溶液を用いた試験はたいていの場合、pH13以上で金属析出は停止するという結果を示す。 In the electroless coating method, it is generally known that an alkaline plating bath having a pH of 11 or more is harmful. This is because the deposition rate rapidly decreases and the pot life of the electroless plating bath solution decreases. Thus, the use of a highly alkaline electroless plating solution has been considered commercially impossible so far because the solution pot life is reduced. Furthermore, tests using highly alkaline plating solutions often show that metal deposition stops at pH 13 and above.

本出願人は、より反応性の高い基材としては、極めて軽く入手しやすい金属素材であり、良好な構造特性と機械特性を有するマグネシウムが、他のより重い金属に代わる最適な基材であることに気付いた。マグネシウムめっきの大きな課題は、マグネシウムと別の金属とが機械的に接触するとそれらの間に導電性が生じ、ガルバニック効果でマグネシウムが急速に酸化腐食することがあるということである。 The Applicant has a very light and readily available metal material as a more reactive substrate, and magnesium with good structural and mechanical properties is the optimal substrate to replace other heavier metals I realized that. A major problem with magnesium plating is that when magnesium and another metal are in mechanical contact, electrical conductivity is created between them and the magnesium can be rapidly oxidatively corroded by the galvanic effect.

マグネシウムのようなより反応性の高い基材の場合、従来の無電解析出溶液を用いると形成される皮膜が不均一になる傾向がある。これは、基材の表面酸化及び/又は腐食によって無電解析出作用が阻害されるためである。このため、従来の無電解めっき浴溶液は、反応性金属基材表面の酸化及び/又は腐食を防げないばかりかそれらを促進してしまうという難点を有しており、所望の被膜をまばらに析出させることができるにすぎない。 In the case of a more reactive substrate such as magnesium, the coating formed tends to be non-uniform when conventional electroless deposition solutions are used. This is because the electroless deposition action is inhibited by the surface oxidation and / or corrosion of the substrate. For this reason, conventional electroless plating bath solutions have the disadvantage that they do not prevent oxidation and / or corrosion of the surface of the reactive metal substrate but also promote them, and sparsely deposit the desired coating. It can only be made.

現在のところ、マグネシウムの酸化腐食を防止する手段としては、マグネシウムと他の金属とを電気的に絶縁させることが最も効果的である。しかし、そのような絶縁めっき系を適用できる分野は限られており、結果的にマグネシウムの用途を制限することとなっている。 At present, as a means for preventing oxidative corrosion of magnesium, it is most effective to electrically insulate magnesium from other metals. However, the field where such an insulating plating system can be applied is limited, and as a result, the use of magnesium is limited.

従来の無電解めっき方法に付随するこれらの難点の少なくとも幾つかを解消するため、本発明は、2つの別個の調製成分溶液からなる無電解めっき浴を用いためっき方法を検討する。該2つの成分溶液は別々に作製することが好ましく、その後めっき作業の直前、好ましくは約5日前以内に混合する。これにより、約11.5より高いpHを持つ高アルカリ性めっき溶液が得られる。該pHは約13より高いことが好ましく、約13.5〜14であることが最も好ましい。 In order to overcome at least some of these difficulties associated with conventional electroless plating methods, the present invention contemplates a plating method using an electroless plating bath comprised of two separate prepared component solutions. The two component solutions are preferably made separately and then mixed immediately before the plating operation, preferably within about 5 days. This provides a highly alkaline plating solution having a pH higher than about 11.5. The pH is preferably higher than about 13, and most preferably about 13.5-14.

この二液めっき浴の成分溶液の1つは金属塩又はめっき用イオン源を含み、初めはホルムアルデヒド、及びパラホルムアルデヒドを含むもう一方の第二の調製成分溶液とは分離しておく。該ホルムアルデヒド及びパラホルムアルデヒドは、金属塩を基材上に析出させたい金属に還元させるために用いられる。各成分溶液はさらに水酸化ナトリウムを含み、その濃度は、両成分溶液を約0.5:1〜1.5:1、好ましくは0.7:1〜1:1の比率で混合した場合において、得られる混合液が、pHが11.5より高い最終アルカリ性めっき浴溶液となるように選択される。pHは13より高いことが好ましく、約13.5〜14であることが最も好ましい。 One of the component solutions of this two-component plating bath contains a metal salt or a plating ion source and is initially separated from the other second preparation component solution containing formaldehyde and paraformaldehyde. The formaldehyde and paraformaldehyde are used to reduce the metal salt to the metal desired to be deposited on the substrate. Each component solution further contains sodium hydroxide, the concentration of which when mixed in a ratio of about 0.5: 1 to 1.5: 1, preferably 0.7: 1 to 1: 1. The resulting mixture is selected to be a final alkaline plating bath solution having a pH higher than 11.5. The pH is preferably higher than 13, most preferably about 13.5-14.

各成分溶液を予調製液として調製し、めっき作業の7日前まで、好ましくは3.5日以前まで物理的に分離しておくことが好ましい。 It is preferable that each component solution is prepared as a pre-preparation solution and physically separated up to 7 days before the plating operation, preferably up to 3.5 days.

本出願人は、2つの予調製成分溶液を混合してめっき浴溶液を調製する方法により、浴成分の保存可能時間が延び、該溶液の安定性が増し、大規模な商業向け無電解めっき方法における該溶液の使用が可能になることを見出した。詳細には、従来のpHが11.5より高い高アルカリ性めっき溶液を用いると、めっき浴中の水酸化ナトリウムがめっき金属の沈殿を引き起こすことがあり、これにより浴の保存可能時間が減少することを見出した。めっき浴成分溶液同士を分離させておくことにより、両成分溶液は前もって調製される。これらを後に混合することにより、バッチ法又は商業用連続めっき法の一工程として高pHめっき浴を作製することができる。 Applicant has developed a method for preparing a plating bath solution by mixing two pre-prepared component solutions, increasing the shelf-life of the bath components, increasing the stability of the solution, and a large-scale commercial electroless plating method. It has been found that the solution can be used in Specifically, when using a conventional highly alkaline plating solution with a pH higher than 11.5, sodium hydroxide in the plating bath may cause precipitation of the plating metal, thereby reducing the storage time of the bath. I found. By separating the plating bath component solutions from each other, both component solutions are prepared in advance. By mixing these later, a high pH plating bath can be prepared as one step of a batch method or a commercial continuous plating method.

本出願人は、本発明の方法を用いれば、一実施形態において、pH約13.5〜14の高アルカリ性めっき浴中でマグネシウムを所定の金属で有利にめっきできることを見出した。これにより、マグネシウムが他の金属と機械的に接触する際のガルバニック効果を防止できる。このため、本発明の方法により、マグネシウム構造体全体の導電性を維持しつつ、同時にガルバニック・カップルの形成を防ぐことが可能になる。従って、本発明の無電解析出方法は、マグネシウムが、異種素材が機械的に接合している様々な構造体又は集合体において使用されうることを想定する。 Applicants have found that with the method of the present invention, in one embodiment, magnesium can be advantageously plated with a given metal in a highly alkaline plating bath having a pH of about 13.5-14. Thereby, the galvanic effect at the time of magnesium contacting mechanically with another metal can be prevented. For this reason, the method of the present invention makes it possible to prevent the formation of a galvanic couple while maintaining the conductivity of the entire magnesium structure. Thus, the electroless deposition method of the present invention envisions that magnesium can be used in a variety of structures or assemblies in which dissimilar materials are mechanically joined.

また本出願人は、マグネシウム、マグネシウム合金、及びその他の反応性金属用に確立された高アルカリ性析出浴において、銅等のめっき金属の無電解クラッディングは、限定的ではないことを見出した。別の実施形態において、本願方法はシリコン基材上に銅等の金属めっきを施す際にも好適に用いられる。マグネシウムの場合と異なり、シリコン上に金属を無電解析出させる場合は、腐食を軽減させるための高アルカリ性浴は必要ない。ただし、パラホルムアルデヒドのようなホルムアルデヒド誘導体還元剤を過剰に含む環境の場合、pH11.5を超え、より好ましくはpH13.5付近である高アルカリ性で無電解銅析出を向上させることができる。 The Applicant has also found that electroless cladding of plated metals such as copper is not limiting in highly alkaline precipitation baths established for magnesium, magnesium alloys, and other reactive metals. In another embodiment, the method of the present invention is also suitably used when a metal plating such as copper is applied on a silicon substrate. Unlike the case of magnesium, when electrolessly depositing a metal on silicon, a highly alkaline bath for reducing corrosion is not necessary. However, in the case of an environment containing an excessive formaldehyde derivative reducing agent such as paraformaldehyde, it is possible to improve electroless copper deposition with high alkalinity exceeding pH 11.5, more preferably around pH 13.5.

本発明の高pH無電解被覆浴はまた、他の金属及び合金の皮膜を種々の基材に施すのに有利に用いることができる。基材のさらなる例としてはベリリウム、バナジウム、及びチタンが挙げられるが、これらに限定されない。高pH無電解被覆方法は、様々なめっき用又は被覆用の金属及び合金に有用である。これら金属及び合金の例としては、11.5より高いpH、好ましくは13より高いpH、最も好ましくは13.5〜14のpHにおいて可溶である銀、銅、ニッケル/タングステン、ニッケル、ホウ素、及びその他の金属及び合金が挙げられるが、これらに限定されない。 The high pH electroless coating bath of the present invention can also be advantageously used to apply films of other metals and alloys to various substrates. Additional examples of substrates include, but are not limited to beryllium, vanadium, and titanium. High pH electroless coating methods are useful for various plating or coating metals and alloys. Examples of these metals and alloys include silver, copper, nickel / tungsten, nickel, boron, which are soluble at a pH higher than 11.5, preferably higher than 13, most preferably pH 13.5-14. And other metals and alloys, but are not limited to these.

本発明の二液めっき浴を用いる無電解被覆系はまた、非金属粒子含有のドープされたハイブリッド溶液を含んでいてもよい。非金属粒子としてはダイアモンド、テフロンTM(登録商標)、セラミック、及び/又はモリブデンが挙げられるが、これらに限定されない。 The electroless coating system using the two-part plating bath of the present invention may also include a doped hybrid solution containing non-metallic particles. Non-metallic particles include, but are not limited to, diamond, Teflon , ceramic, and / or molybdenum.

すなわち、本発明の一側面は、めっき金属を基材上に無電解めっきする方法であって、10〜50g/Lの水酸化ナトリウム、40〜120g/Lの酒石酸カリウムナトリウム、及び金属塩を含む第一の浴溶液を調製する工程と、40〜75g/Lのパラホルムアルデヒド及び30〜50g/Lの水酸化ナトリウムを含む前記第一の浴溶液と物理的に分離された第二の浴溶液を調製する工程と、前記第一の浴溶液及び前記第二の浴溶液を混合し、11.5より高いpHを有する混合めっき浴溶液を作製する工程と、めっき対象基材を前記混合溶液に浸漬する工程とを有し、前記金属塩は、Cu、Al、Ni、Au、Ag、及びこれらの合金からなる群より選択されるめっき金属を含む方法である。 That is, one aspect of the present invention is a method for electroless plating of a plated metal on a substrate, which includes 10 to 50 g / L sodium hydroxide, 40 to 120 g / L potassium sodium tartrate, and a metal salt. Preparing a first bath solution; and a second bath solution physically separated from said first bath solution comprising 40-75 g / L paraformaldehyde and 30-50 g / L sodium hydroxide. A step of preparing, a step of mixing the first bath solution and the second bath solution to produce a mixed plating bath solution having a pH higher than 11.5, and dipping a substrate to be plated in the mixed solution And the metal salt includes a plating metal selected from the group consisting of Cu, Al, Ni, Au, Ag, and alloys thereof.

本発明の別の側面は、ニッケル又はニッケル合金めっき金属をマグネシウム金属基材上に無電解めっきする方法であって、25〜60g/Lの塩化ニッケル六水和物を含む第一の浴溶液を調製する工程と、40〜75ml/Lのエチレンジアミン、30〜50g/Lの水酸化ナトリウム、及び3〜8g/Lの水酸化ホウ素ナトリウムを含む前記第一の浴溶液と物理的に分離された第二の浴溶液を調製する工程と、前記第一及び第二の浴溶液を混合して12以上のpHを有する混合めっき液溶液を作製する工程と、基材を前記混合溶液に浸漬する工程とを有する方法である。 Another aspect of the present invention is a method for electroless plating of a nickel or nickel alloy plated metal onto a magnesium metal substrate, wherein a first bath solution containing 25-60 g / L nickel chloride hexahydrate is provided. A first step physically separated from said first bath solution comprising 40-75 ml / L ethylenediamine, 30-50 g / L sodium hydroxide, and 3-8 g / L sodium borohydride. A step of preparing a second bath solution, a step of mixing the first and second bath solutions to prepare a mixed plating solution having a pH of 12 or more, and a step of immersing a substrate in the mixed solution It is the method which has.

本発明の更に別の側面は、基材上に無電解銅めっきを行う方法であって、15〜25g/Lの水酸化ナトリウム、60〜100g/Lの酒石酸カリウムナトリウム、及び35〜40g/LのCuSO・5HOを含む第一の浴成分溶液を調製する工程と、50〜65g/Lのパラホルムアルデヒド及び20〜45g/Lの水酸化ナトリウムを含む前記第一の浴成分溶液と物理的に分離された第二の浴溶液成分を調製する工程と、前記第一及び第二の浴溶液を0.5:1〜1.5:1の比で混合し13以上のpHを有する混合めっき液溶液を作製する工程と、前記浴の使用温度を約17〜32℃とし、めっき対象の基材を前記混合溶液に浸漬する工程とを有する方法である。 Yet another aspect of the present invention is a method of electroless copper plating on a substrate comprising 15-25 g / L sodium hydroxide, 60-100 g / L potassium sodium tartrate, and 35-40 g / L. CuSO 4 · 5H 2 preparing a first bath component solution containing O, the first bath component solution and the physical containing sodium hydroxide paraformaldehyde and 20~45g / L of 50~65g / L of Preparing a second separated bath solution component and mixing the first and second bath solutions in a ratio of 0.5: 1 to 1.5: 1 and having a pH of 13 or greater The method includes a step of preparing a plating solution, and a step of setting the use temperature of the bath to about 17 to 32 ° C. and immersing a substrate to be plated in the mixed solution.

本発明の更に別の側面は、基材上に無電解銅めっきを行う方法であって、10〜30g/Lの水酸化ナトリウム、40〜120g/Lの酒石酸カリウムナトリウム、及び20〜45g/Lの硫酸銅五水和物を含む第一の浴成分溶液を調製する工程と、40〜75g/Lのパラホルムアルデヒド及び20〜50g/Lの水酸化ナトリウムを含む前記第一の浴成分溶液と物理的に分離された第二の浴成分溶液を調製する工程と、前記第一及び第二の浴溶液を混合し、13より高いpHを有する混合めっき液溶液を作製する工程と、めっき対象の基材を前記混合溶液に浸漬する工程とを有し、前記基材はマグネシウム、アルミニウム、及びこれらの合金からなる群より選択される金属を含む方法である。 Yet another aspect of the present invention is a method for electroless copper plating on a substrate, comprising 10-30 g / L sodium hydroxide, 40-120 g / L potassium sodium tartrate, and 20-45 g / L. Preparing a first bath component solution containing 5 mg of copper sulfate pentahydrate, and physical and said first bath component solution comprising 40-75 g / L paraformaldehyde and 20-50 g / L sodium hydroxide Preparing a second separated bath component solution, mixing the first and second bath solutions to produce a mixed plating solution having a pH higher than 13, and a base to be plated Dipping a material in the mixed solution, and the base material includes a metal selected from the group consisting of magnesium, aluminum, and alloys thereof.

本発明の更に別の側面は、マグネシウム基材上にニッケル−ホウ素めっき金属を無電解めっきする方法であって、25〜50g/Lの塩化ニッケル六水和物を含む第一の浴溶液を調製する工程と、50〜75ml/Lのエチレンジアミン、30〜50g/Lの水酸化ナトリウム、及び3〜8g/Lの水素化ホウ素ナトリウムを含む前記第一の浴溶液成分と物理的に分離された第二の浴溶液成分を調製する工程と、前記第一及び第二の浴溶液成分を、13以上、好ましくは約14のpHを有する混合めっき溶液を得られるように選択された比で混合する工程と、マグネシウム基材を前記混合溶液に浸漬する工程とを有する方法である。
この方法では、マグネシウム基材を前記混合溶液に浸漬する時間は約1〜60分であり、好ましくは10〜30分である。
この方法では、第一の浴溶液成分と前記第二の浴溶液成分とを5時間以上、好ましくは72時間以上物理的に分離する。
Yet another aspect of the present invention is a method for electroless plating of nickel-boron plating metal on a magnesium substrate, wherein a first bath solution containing 25-50 g / L nickel chloride hexahydrate is prepared. A first physically separated solution from said first bath solution component comprising 50-75 ml / L ethylenediamine, 30-50 g / L sodium hydroxide, and 3-8 g / L sodium borohydride. Preparing a second bath solution component and mixing the first and second bath solution components in a ratio selected to obtain a mixed plating solution having a pH of 13 or more, preferably about 14. And a step of immersing the magnesium substrate in the mixed solution.
In this method, the time for immersing the magnesium substrate in the mixed solution is about 1 to 60 minutes, preferably 10 to 30 minutes.
In this method, the first bath solution component and the second bath solution component are physically separated for 5 hours or more, preferably 72 hours or more.

金属析出用高アルカリ性めっき浴溶液は、金属塩溶液である第一構成成分(溶液A)及び最終浴溶液の溶媒成分である第二構成成分(溶液B)の2つの構成成分から調製する。成分溶液はいずれも水酸化ナトリウムを含む。水酸化ナトリウムの濃度は、各成分の安定性を維持しつつ、2つの成分溶液の混合液が、反応性金属基材及びシリコン系基材のいずれをめっきにする際も基材使用に好適な最終高アルカリ性めっき浴となるように選択する。2つの成分溶液は別々に調製し、製造工程で使用する直前まで分離した状態で保存する。具体的には、好ましくはめっき作業の84時間前以降、より好ましくは72時間前以降に2つの成分溶液を所望の比で混合することで、加工用部材用の最終無電解金属析出浴を作製する。 The highly alkaline plating bath solution for metal deposition is prepared from two components, a first component (solution A) that is a metal salt solution and a second component (solution B) that is a solvent component of the final bath solution. All component solutions contain sodium hydroxide. The concentration of sodium hydroxide maintains the stability of each component, and the mixed solution of the two component solutions is suitable for use as a substrate when plating either a reactive metal substrate or a silicon-based substrate. Select to be the final highly alkaline plating bath. The two component solutions are prepared separately and stored separately until just before use in the manufacturing process. Specifically, a final electroless metal deposition bath for a processing member is prepared by mixing two component solutions in a desired ratio, preferably after 84 hours before plating work, more preferably after 72 hours. To do.

別々に調製し保存した成分溶液を用いることで、pHが約13より高く、好ましくはpHが約13.5〜約14の高アルカリ性無電解銅析出浴とすることができる。また、この最終溶液は、水素含有量が極めて小さい。溶媒成分溶液は従来アノード反応の活性物質として用いられてきたホルムアルデヒドに代わり、パラホルムアルデヒド(最小のポリオキシメチレン)を含むことがより好ましい。 By using separately prepared and stored component solutions, a highly alkaline electroless copper deposition bath having a pH higher than about 13, preferably a pH of about 13.5 to about 14, can be obtained. This final solution also has a very low hydrogen content. It is more preferable that the solvent component solution contains paraformaldehyde (minimum polyoxymethylene) instead of formaldehyde which has been conventionally used as an active material for the anode reaction.

本願方法は、限定はされないが、特にマグネシウム及びマグネシウム合金のめっきにおいて様々な利点を持つと考えられる。本願方法によれば、マグネシウム基材はガルバニック酸化しない別の金属内に完全に被包され、その部材のマグネシウム核のガルバニック酸化を防止できると考えられる。 The method of the present application is not limited, but is believed to have various advantages, particularly in the plating of magnesium and magnesium alloys. According to the method of the present application, it is considered that the magnesium substrate is completely encapsulated in another metal that is not galvanically oxidized, and galvanic oxidation of the magnesium nucleus of the member can be prevented.

加えて、高pH無電解めっき方法用めっき浴を作製するために組み合わされる二液成分溶液は、各々が安定性を維持し、長期保存が可能である。 In addition, each of the two-component solution combined to produce a plating bath for a high pH electroless plating method maintains stability and can be stored for a long time.

また、高pH析出浴を用いれば、表面に所望の金属が析出する前にめっき対象の高反応性金属基材が酸化されることを防止できる。従って、めっき浴が高pHであれば、所望の皮膜の形成を妨げうるような著しい表面酸化が発生する前に、高反応性素材の表面を完全に被覆しうる環境となる。 Moreover, if a high pH precipitation bath is used, it is possible to prevent the highly reactive metal substrate to be plated from being oxidized before the desired metal is deposited on the surface. Therefore, if the plating bath has a high pH, an environment in which the surface of the highly reactive material can be completely covered before significant surface oxidation that may hinder the formation of a desired film occurs.

上記二液成分溶液を用いて、実験用高アルカリ性無電解めっき浴を下記のように調製した。 An experimental high alkaline electroless plating bath was prepared as follows using the two-component solution.

実施例1 −マグネシウム/マグネシウム合金の銅クラッディング Example 1-Copper cladding of magnesium / magnesium alloy

高アルカリ性析出浴からマグネシウム合金を直接無電解銅クラッディングする場合については、成分金属塩溶液と溶媒溶液を調製し混合して析出浴を調製した。溶液の調製は概ね下記のように行った。 In the case of directly electroless copper cladding a magnesium alloy from a highly alkaline precipitation bath, a component metal salt solution and a solvent solution were prepared and mixed to prepare a precipitation bath. The solution was prepared generally as follows.

Figure 0005937086
注:基材がマグネシウムのように析出浴内で腐食しないので、浴内では様々な成分を用いてよい。
Figure 0005937086
Note: Since the substrate does not corrode in the precipitation bath like magnesium, various components may be used in the bath.

試験片の作製 Preparation of test piece

基材としてAZ91D及びAM50マグネシウム合金(組成を表2に示す)を用い、これらをカットし2cm×3cm×0.5cmの金属試片とした。試験片の2×3cm面の上端に穴をあけ、非伝導性のナイロン線で析出浴内に吊るせるようにした。初期表面の均一性を確保するため、試験片をグリット240のSiCエメリー研磨紙で湿式研磨し、蒸留水ですすいだ。 AZ91D and AM50 magnesium alloy (composition is shown in Table 2) were used as the base material, and these were cut into metal specimens of 2 cm × 3 cm × 0.5 cm. A hole was made in the upper end of the 2 × 3 cm surface of the test piece, and it was hung in the precipitation bath with a nonconductive nylon wire. In order to ensure the uniformity of the initial surface, the test specimens were wet-polished with SiC emery abrasive paper of Grit 240 and rinsed with distilled water.

試験用析出浴 Precipitation bath for testing

無電解銅析出試験のための高アルカリ性析出浴を表3〜4に従って調製した。 High alkaline precipitation baths for electroless copper precipitation tests were prepared according to Tables 3-4.

Figure 0005937086
Figure 0005937086

溶液A
溶液Aにおいては、脱イオン水1リットルに対して下記を添加した。
Solution A
In solution A, the following was added to 1 liter of deionized water.

Figure 0005937086
Figure 0005937086

溶液B
溶液Bにおいては、脱イオン水1リットルに対して下記を添加した。
Solution B
In solution B, the following was added to 1 liter of deionized water.

Figure 0005937086
Figure 0005937086

溶液成分A及びBはいずれも高い安定性を示し、室温における保存可能時間が長かった。調製後、成分溶液A及びBを混合し、混合無電解めっき溶液を得た。得られた混合無電解めっき溶液は約13.5〜14の高pHであり、可使時間は室温で48時間以上であった。しかし、使用される混合めっき溶液の保存可能時間は、溶液温度、溶液を用いて行う処理の量、及び溶液Aの溶液Bに対する比に依存することがわかった。これらの変動要素が可使時間に与える影響は下記のようなものである。
1.温度が高いほど溶液の活性時間は短くなる
2.処理負荷が高いほど溶液の活性時間は短くなる。
3.溶液Aに対する溶液Bの比が大きいほど、溶液の活性時間は短くなる。
Solution components A and B both showed high stability, and the storage time at room temperature was long. After the preparation, component solutions A and B were mixed to obtain a mixed electroless plating solution. The obtained mixed electroless plating solution had a high pH of about 13.5 to 14, and the pot life was 48 hours or more at room temperature. However, it has been found that the storable time of the mixed plating solution used depends on the solution temperature, the amount of treatment performed with the solution, and the ratio of solution A to solution B. The effects of these variables on pot life are as follows.
1. 1. The higher the temperature, the shorter the active time of the solution. The higher the processing load, the shorter the solution active time.
3. The greater the ratio of solution B to solution A, the shorter the activity time of the solution.

析出手順 Precipitation procedure

試験片を外気に曝しながらグリット240のSiCエメリー研磨紙を用いて乾式研磨し、急速に形成される酸化/水酸化皮膜を除去した。研磨は、絶縁酸化皮膜の形成をそれ以上促進しないよう、試験片に発生する熱が最少となるように行われた。続いて、試験片を表1に示す温度の無電解析出浴(浴A及びBを1:1で混合したもの)に投入した。 While the test piece was exposed to the outside air, it was dry-polished using a SiC emery abrasive paper of grit 240 to remove the rapidly formed oxidation / hydroxide film. Polishing was performed so that the heat generated on the test piece was minimized so as not to further promote the formation of the insulating oxide film. Then, the test piece was thrown into the electroless deposition bath (Bath A and B mixed 1: 1) of the temperature shown in Table 1.

十分な析出時間をおいた後、試験片を取り出し蒸留水ですすぎ、吊るして乾燥させた。乾燥速度を上げるためには、試験片の基部を非伝導性ワイヤに接触させて、吸着水の流れが試験片と離れる方向に向かうようにすると効果的であることがわかった。 After allowing sufficient precipitation time, the specimen was removed, rinsed with distilled water, hung and dried. In order to increase the drying speed, it has been found that it is effective to bring the base of the test piece into contact with a non-conductive wire so that the flow of adsorbed water is away from the test piece.

結果 result

初めにAZ91DMg合金上で数組の析出を行い、酸化物のはたらきを特定した。2つの試験片を同時に無電解Cuめっき浴に投入した。2つのめっき浴の温度は同一の室温であった。ただし、まず両試験片をグリット240のSiCペーパーで湿式研磨し、3週間外気に曝して乾燥させた。その後の試験片のうち1つを研磨し、本手順に従って、可能な限り速やかに析出浴に投入した。もう一方の試験片は処理しなかった。最後に両試験片を析出浴内に20分間放置し、取り出した。酸化した方の試験片には、析出は実質的に起こらなかった。一方、被覆された試験片上の析出層は質がより良く、肉眼においてもEDSによる観察においてもより連続であった。 First, several sets of precipitations were performed on the AZ91DMg alloy to identify the function of the oxide. Two test pieces were put into the electroless Cu plating bath at the same time. The temperature of the two plating baths was the same room temperature. However, first, both test pieces were wet-polished with SiC paper of grit 240 and dried by exposure to the outside air for 3 weeks. One of the subsequent specimens was polished and placed in the precipitation bath as quickly as possible according to this procedure. The other specimen was not treated. Finally, both test pieces were left in the precipitation bath for 20 minutes and removed. No precipitation occurred on the oxidized test piece. On the other hand, the deposited layer on the coated specimen was of better quality and was more continuous both visually and by EDS observation.

上述の二液溶液を用いれば、下記のような、成分溶液A及びBをバッチ法又は連続無電解めっき系の一工程として混合する商業用マグネシウム/マグネシウム合金めっき方法が得られる。 If the above-mentioned two-component solution is used, a commercial magnesium / magnesium alloy plating method in which the component solutions A and B are mixed as one step of a batch method or a continuous electroless plating system as described below can be obtained.

1.酸化表面皮膜を除去して、被覆対象のマグネシウム合金表面を処理する。表面酸化物は種々の研磨処理によって機械的に除去してもよいし、化学浸漬法を用いてもよい。又は、プラズマによって除去してもよい。
2.その後、被覆対象の合金基材表面を洗浄する。
3.一度酸化皮膜が除去されると、露出したマグネシウム合金が空気に触れ、すぐに酸化し始める。そのため、表面を処理した合金基材は、酸化物除去から30分未満のうちに被覆浴に浸漬することが非常に好ましい。
4.被覆対象のマグネシウム表面は、所望の銅皮膜の厚みに応じて、15〜30分間析出浴に完全に没することが好ましい。
マグネシウム上の銅析出速度は、下記の要因及び変動要素の累積的効果によって決まる。
1. The oxidized surface film is removed and the surface of the magnesium alloy to be coated is treated. The surface oxide may be mechanically removed by various polishing processes, or a chemical immersion method may be used. Alternatively, it may be removed by plasma.
2. Thereafter, the surface of the alloy base material to be coated is washed.
3. Once the oxide film is removed, the exposed magnesium alloy touches the air and begins to oxidize immediately. Therefore, it is highly preferable that the alloy base material whose surface has been treated is immersed in the coating bath within less than 30 minutes after the removal of the oxide.
4). The surface of the magnesium to be coated is preferably completely immersed in the precipitation bath for 15 to 30 minutes depending on the desired thickness of the copper film.
The rate of copper deposition on magnesium depends on the cumulative effects of the following factors and variables.

a.皮膜形成速度は浴温度が高いほど速くなる。現時点では、全有効温度範囲の正確な検証は行われていない。しかし、素材の性質から上限温度は存在し、それは更なる実験によって確定されると思われる。さらに、1浴あたりの最大量の皮膜析出を最短時間でもたらす理想的な温度範囲が存在すると思われる。
b.被覆される表面積の大きさは析出速度に影響する。所与の体積の浴中における表面積が大きいほど、全体としての析出速度は低下する。
c.続けて行われる被覆で使用可能な溶液中の銅残留量。銅濃度は、溶液を通して部材表面を被覆する銅の量の分減少し、また、溶液の経時変化によっても減少していく。すなわち、様々な要因から銅は自然に溶液から沈殿し、溶液中の銅含有量は時間とともに減少する。
a. The film formation rate increases as the bath temperature increases. At present, the full effective temperature range has not been accurately verified. However, due to the nature of the material, there is an upper temperature limit that may be determined by further experimentation. Furthermore, there appears to be an ideal temperature range that provides the maximum amount of film deposition per bath in the shortest time.
b. The size of the surface area to be coated affects the deposition rate. The greater the surface area in a given volume of bath, the lower the overall deposition rate.
c. The amount of copper remaining in the solution that can be used in subsequent coatings. The copper concentration decreases by the amount of copper coating the surface of the member through the solution, and also decreases with time. That is, copper naturally precipitates from solution due to various factors, and the copper content in the solution decreases with time.

5.所望の時間めっき浴に浸漬した後、めっきされた基材を浴から取り出す。取り出した銅被覆マグネシウム合金部材を水又は水酸化ナトリウム溶液ですすぐ。一般に、水ですすぐと光沢銅仕上げとなる。銅めっき物を暗めの外観に仕上げたいときは、水酸化物系洗浄液を用いてもよい。 5. After soaking in the plating bath for a desired time, the plated substrate is removed from the bath. The removed copper-coated magnesium alloy member is rinsed with water or sodium hydroxide solution. In general, rinsing with water results in a bright copper finish. When it is desired to finish the copper plating product with a dark appearance, a hydroxide-based cleaning solution may be used.

実施例2 −前処理−(AM50及びAZ91D)Mg合金上の酸化皮膜の、酸による除去 Example 2-Pretreatment-(AM50 and AZ91D) Removal of oxide film on Mg alloy with acid

金属めっきにおいては、前処理として基材に酸エッチングを施すことがより好ましい。これにより、無電解銅析出とその付着性が向上する。酸エッチングにより、アルミニウム[Al]及びマグネシウム[Mg]を含む種々の金属表面から絶縁酸化物を除去できることはすでに確認されている。また、酸の中には、基材の腐食を招くため、二次析出に際しての酸化物除去には適さないものも存在することも確認されている。 In metal plating, it is more preferable to perform acid etching on the substrate as a pretreatment. Thereby, electroless copper precipitation and its adhesiveness improve. It has already been confirmed that acid etching can remove insulating oxides from various metal surfaces including aluminum [Al] and magnesium [Mg]. It has also been confirmed that some acids are not suitable for removing oxides during secondary deposition because they cause corrosion of the substrate.

Mg合金の場合、塩素[Cl]アニオン及び硫酸[SO 2−]アニオンの存在下で腐食が起こることが知られており、これによって選択腐食領域が形成されることもある。無電解銅[Cu]析出においては、非晶質Cu析出層が準結晶構造を有するため、アニオン成分によって腐食が開始してしまった領域のめっきは困難になる。 In the case of an Mg alloy, it is known that corrosion occurs in the presence of a chlorine [Cl ] anion and a sulfuric acid [SO 4 2− ] anion, and this may form a selective corrosion region. In electroless copper [Cu] precipitation, since the amorphous Cu precipitation layer has a quasicrystalline structure, it is difficult to plate the region where corrosion has started due to the anionic component.

めっき特性を向上させるため、Mg合金表面からの酸化物除去について酒石酸[C]表5及び硫酸[HSO](表6)の検証を行った。試験片をグリット240のSiCエメリー布で乾式研磨し、48時間以上外気に曝して酸化させた後、脱酸化処理をした。いずれの酸も酸化物を除去し、析出を改善できることがわかった。検証例においては、数秒間のみ酸に曝し、酸化物除去工程と析出工程の間にすすぎ浴による処理を行わなかった。これは、蒸留水浴は表面の再酸化を招く可能性があるためである。 In order to improve plating characteristics, tartaric acid [C 4 H 6 O 6 ] Table 5 and sulfuric acid [H 2 SO 4 ] (Table 6) were verified for oxide removal from the Mg alloy surface. The test piece was dry-polished with a SiC emery cloth of Grit 240, oxidized by exposure to the outside air for 48 hours or more, and then deoxidized. Both acids were found to remove oxides and improve precipitation. In the verification example, the sample was exposed to the acid for only a few seconds, and no treatment with a rinsing bath was performed between the oxide removal step and the precipitation step. This is because distilled water baths can lead to surface reoxidation.

更に、上記C浴に、表7に従って硫酸銅五水和物[CuSO・5HO]を添加することを試みた。この場合、単純な置換反応が起こるとともに黒色の不連続な銅皮膜がMg系基材上に形成されるようであった。この処理による黒色の析出層はさほど強く付着しなかったが、続いて行った銅析出は非常に良好に付着するようであった。ただし、浴の可使時間は減少した。 Furthermore, an attempt was made to add copper sulfate pentahydrate [CuSO 4 .5H 2 O] to the C 4 H 6 O 6 bath according to Table 7. In this case, a simple substitution reaction occurred and a black discontinuous copper film appeared to be formed on the Mg-based substrate. The black deposited layer by this treatment did not adhere very strongly, but the subsequent copper deposition appeared to adhere very well. However, the pot life has decreased.

酸化皮膜の酸による除去を含む前処理、及び続く無電解銅めっきに用いた浴は、表4に従って下記のように調製した。 The pretreatment including removal of the oxide film by acid and the bath used for the subsequent electroless copper plating were prepared as follows according to Table 4.

Figure 0005937086
注:酒石酸は濃度53g/Lにおける溶解性に難点があり、30g/LのCuSO・5HOと組み合わせて用いた場合容器の底に白色の沈殿物が生じる。
Figure 0005937086
Note: Tartaric acid has a difficulty in solubility at a concentration of 53 g / L, and when used in combination with 30 g / L of CuSO 4 .5H 2 O, a white precipitate is formed at the bottom of the container.

Figure 0005937086
Figure 0005937086

Figure 0005937086
Figure 0005937086

Figure 0005937086
Figure 0005937086

結果は、ほとんどの酸は酸化シリコン表面を活性化させるには十分でないことを強く示しており、濃度20mL/Lの硝酸[HNO]及び硫酸[HSO]は、5分経過後も該表面にいかなる変化も生じさせることができなかった。 The results strongly indicate that most acids are not sufficient to activate the silicon oxide surface, and nitric acid [HNO 3 ] and sulfuric acid [H 2 SO 4 ] at a concentration of 20 mL / L remain after 5 minutes. No changes could be made to the surface.

マグネシウム基材が一度金属合金皮膜で被包されると、その金属皮膜自体が、その後形成される皮膜の塗付及び析出の土台となる。そのため、最初の皮膜は続いて形成される所望の皮膜に応じて選択される。さらに、金属で被包されたマグネシウムは導電性を維持し、接合部にガルバニック効果や腐食を生じさせることなく異種金属に機械的に接合されうる。 Once the magnesium substrate is encapsulated with a metal alloy film, the metal film itself becomes the basis for the coating and deposition of the film formed thereafter. Therefore, the initial film is selected according to the desired film to be subsequently formed. Furthermore, magnesium encapsulated with metal maintains electrical conductivity and can be mechanically joined to dissimilar metals without causing galvanic effects or corrosion at the joint.

実施例3 −マグネシウム/酸化マグネシウムのニッケル−ホウ素(Ni−B)クラッディング Example 3-Magnesium / magnesium oxide nickel-boron (Ni-B) cladding

マグネシウム基材上へのニッケル−ホウ素金属被覆用の、無電解析出被覆溶液は、表8に示す二液溶液(成分溶液A及びB)から調製した。該二液溶液は、基材の被覆直前に混合した。ニッケル自体は高pHにおいて溶解しないため、最終浴よりもかなり低いpHに保たれた別個の浴溶液Aとして、ニッケル−ホウ素塩溶液を調製した。同浴溶液Aは下記の表に示す成分Aを構成する。 An electroless deposition coating solution for nickel-boron metal coating on a magnesium substrate was prepared from a two-component solution (component solutions A and B) shown in Table 8. The two-part solution was mixed immediately before coating the substrate. Since nickel itself does not dissolve at high pH, a nickel-boron salt solution was prepared as a separate bath solution A that was kept at a pH much lower than the final bath. The bath solution A constitutes component A shown in the following table.

ニッケル−ホウ素析出溶液は脱イオン水と混合された二液系として調製した。 The nickel-boron deposition solution was prepared as a two-part system mixed with deionized water.

Figure 0005937086
Figure 0005937086

溶媒成分溶液Bは、中性又は酸性のpHを持つ溶液内で極めて酸化しやすい水素化ホウ素化合物を含んでいた。そのため、溶液A及びBを最終使用のために混合する際、溶液Aを溶液Bに添加することにより、該水素化ホウ素化合物の酸化を有利に防止できる。さらに、化合物溶液Bに含まれるエチレンジアミンによって、高pH溶液中におけるニッケルの溶解性が促進され、マグネシウム表面にニッケルが析出しやすくなる。一方、ホウ素は同表面にアノード反応により析出する。 The solvent component solution B contained a borohydride compound that was very easily oxidized in a solution having a neutral or acidic pH. Therefore, when the solutions A and B are mixed for final use, the addition of the solution A to the solution B can advantageously prevent oxidation of the borohydride compound. Furthermore, the ethylenediamine contained in the compound solution B promotes the solubility of nickel in the high pH solution, and nickel is likely to be deposited on the magnesium surface. On the other hand, boron is deposited on the same surface by an anodic reaction.

また、エチレンジアミンは極めて銅との反応性に富むという点にも留意すべきである。このことからニッケル−ホウ素被覆中は銅を避けることが好ましい。しかし、本明細書に記載の無電解被覆法を用いて、ニッケル−ホウ素皮膜を銅で被覆することが可能である。 It should also be noted that ethylenediamine is extremely reactive with copper. For this reason, it is preferable to avoid copper during the nickel-boron coating. However, it is possible to coat the nickel-boron film with copper using the electroless coating method described herein.

マグネシウム基材上めっきとしてのニッケル−ホウ素無電解析出は次のように行われる。
1.成分溶液A及びBをそれぞれ物理的に分離された溶液として調製する。
2.続いて、溶液A及びBを室温で混合する。この際、溶液Aを溶液Bに注ぐ。その後、単一のめっき浴として、80〜95℃まで加熱する。
3.被覆対象のマグネシウム基材を機械的、化学的、あるいはプラズマにより洗浄し、マグネシウムから酸化物表面を除去する。
4.酸化物を除去した後、マグネシウム基材の無酸化物表面部を脱イオン水で洗うことにより二次洗浄する。
5.洗浄後のマグネシウム基材を、調製しためっき浴に沈め、目的の皮膜の厚みに応じて、溶液を部材の表面積すべてに最大30分間(この時間に限定されない)接触させる。
6.所望の厚さの皮膜がマグネシウム部材上に析出した後、部材を水または水酸化ナトリウム溶液ですすぐ。
7.コバルトイオン及び/又は亜鉛イオンを浴に添加すると、さらに追加的な好ましい効果が得られる可能性がある。
Electroless nickel-boron deposition as a plating on a magnesium substrate is performed as follows.
1. Component solutions A and B are prepared as physically separated solutions.
2. Subsequently, solutions A and B are mixed at room temperature. At this time, the solution A is poured into the solution B. Then, it heats to 80-95 degreeC as a single plating bath.
3. The magnesium substrate to be coated is cleaned mechanically, chemically or by plasma to remove the oxide surface from the magnesium.
4). After removing the oxide, secondary cleaning is performed by washing the non-oxide surface portion of the magnesium base with deionized water.
5. The washed magnesium substrate is submerged in the prepared plating bath, and the solution is brought into contact with the entire surface area of the member for a maximum of 30 minutes (not limited to this time), depending on the desired film thickness.
6). After the desired thickness of film has been deposited on the magnesium member, the member is rinsed with water or sodium hydroxide solution.
7). If cobalt ions and / or zinc ions are added to the bath, additional favorable effects may be obtained.

マグネシウムのニッケル−ホウ素被覆においては、析出速度は下記の要因及び変動要素の累積的効果に依存する。
a.溶液Bに対する成分溶液Aの比。なお、溶液Aにより、存在する金属塩の体積を調節する。
b.浴の温度(すなわち、80〜95℃)
In a magnesium nickel-boron coating, the deposition rate depends on the following factors and the cumulative effect of variables.
a. Ratio of component solution A to solution B. The volume of the metal salt present is adjusted with the solution A.
b. Bath temperature (ie 80-95 ° C.)

試験片の作製 Preparation of test piece

85〜90℃のNi−B析出浴を5分間用いて行った試験においても、AZ91Dマグネシウム合金上に析出層を得ることができた。Ni−Bの場合、温度は皮膜形成における一つの重要な要素であり、低温であると析出速度が著しく低下してしまう。肉眼で見ると連続な被覆範囲が、微視的には不連続であることが、走査型電子顕微鏡(SEM)及びエネルギー分散X線(EDS)によって観察されたが、EDSで観察された不連続は、部分的には、膜厚の不足によると考えられる。ただ、析出層がこの程度の連続性を有していれば、この後高pHで形成される二次析出層の最低限の土台とするには十分である。なお、高pHは、マグネシウムが露出していた場合に、酸電解中での激しい反応を緩和するために必要である。 Even in a test conducted using an Ni-B precipitation bath at 85 to 90 ° C. for 5 minutes, a precipitation layer could be obtained on the AZ91D magnesium alloy. In the case of Ni-B, the temperature is one important factor in film formation, and the deposition rate is significantly reduced at low temperatures. It was observed by scanning electron microscopy (SEM) and energy dispersive X-rays (EDS) that the continuous coverage was microscopically discontinuous when viewed with the naked eye, but discontinuities observed with EDS. This is thought to be due in part to the lack of film thickness. However, if the precipitation layer has such a degree of continuity, it is sufficient to be a minimum foundation for the secondary precipitation layer formed at a high pH thereafter. Note that a high pH is necessary to alleviate the intense reaction during acid electrolysis when magnesium is exposed.

Ni−B上に二次無電解Cu薄膜を析出させて、肉眼でもSEMにおいてもほぼ連続である皮膜であること観察した。最初のNi−B析出層は、AZ91DMg合金上に5分間以上約87℃で形成され、ある程度不連続な析出層であることが予想された。試験片を蒸留水ですすぎ、15分間空気に曝して吊るし乾燥させた後、室温の無電解銅浴に5分間入れた。その後試験片を蒸留水ですすいで再び外気に曝して吊るし乾燥させた。二次析出工程後の試験片を観察すると、試験片上に限定的な腐食が起こっていたことから、Ni−B皮膜は実際にやや不連続であったものと示唆される。これは、Ni−B「核形成」部位の上に形成し始めたばかりの、初期不連続膜を示すSEMによって確認される。 A secondary electroless Cu thin film was deposited on Ni-B, and it was observed that the film was almost continuous in both the naked eye and SEM. The first Ni—B precipitation layer was formed on the AZ91DMg alloy for about 5 minutes or more at about 87 ° C., and was expected to be a somewhat discontinuous precipitation layer. The specimen was rinsed with distilled water, suspended by exposure to air for 15 minutes, dried, and then placed in an electroless copper bath at room temperature for 5 minutes. Thereafter, the test piece was rinsed with distilled water, again exposed to the outside air, hung and dried. When the test piece after the secondary deposition step was observed, limited corrosion occurred on the test piece, suggesting that the Ni-B coating was actually somewhat discontinuous. This is confirmed by SEM showing an initial discontinuous film that has just begun to form on the Ni-B “nucleation” site.

更なる同様の試験において、15分間約80℃でNi−B析出層を得て、蒸留水ですすぎ7分間乾燥させた後、室温の無電解銅浴に22分間入れた。これにより、SEM及びEDSでほとんど欠点が観察されないより良好な皮膜を得た。二次析出中の試験片を観察したところ、Cu析出層に光沢が見られず、無電解銅浴内で7分間の析出時間を経ても比較的薄い析出層となったことから、Ni−B皮膜は不連続であったことが示唆される。この第二の試験片では連続性が明らかに増しており、表面のSEM画像には研磨処理による摩耗痕跡が被覆されている様子がはっきりと示されている。 In a further similar test, a Ni—B deposited layer was obtained at about 80 ° C. for 15 minutes, rinsed with distilled water and dried for 7 minutes, and then placed in an electroless copper bath at room temperature for 22 minutes. This gave a better film with almost no defects observed with SEM and EDS. When the specimen during the secondary deposition was observed, the Cu deposition layer was not glossy, and a relatively thin deposition layer was obtained even after 7 minutes of deposition in the electroless copper bath. It is suggested that the film was discontinuous. In this second specimen, the continuity is clearly increased, and the SEM image of the surface clearly shows that the wear traces due to the polishing treatment are covered.

最初の層と第二の層の形態を比較するため、下半分のみを二次Cu析出浴に曝した試験片を用意した。最初の無電解Ni−B析出層は、研磨したAZ91D合金試験片上に89℃、5分間以上かけて形成した。EDSはMgによる小さなピークをなお示していたものの、SEMで見ると、析出層はわずかに不良があるのみで連続であった。試験片を蒸留水ですすぎ、吊るして外気に曝し、25分間乾燥させた。乾燥後、試験片の下部を室温の無電解Cu浴にさらに5分間曝し、すすいで乾燥させた。二次析出工程中、析出浴に曝されて、皮膜は下から3分の1より上まで水和された。最初の試験片に要した時間の約4分の1の時間でこの析出が達成できたことから、一次皮膜の連続性は二次析出層の質に関する重要な要素ではあるものの、最初の皮膜が完全に連続でなくとも良好な二次析出層が得られることが明らかとなった。加えて、二次CuクラッディングのSEM分析により、マグネシウムの金属イオン封鎖が向上していたことがわかった。肉眼でNi−B/Cu界面付近に腐食が観察されるかもしれないが、これは試験片を不完全に浸漬したことによるガルバニック腐食と見るのが適当である。 In order to compare the morphology of the first layer and the second layer, a test piece was prepared in which only the lower half was exposed to a secondary Cu precipitation bath. The first electroless Ni—B deposited layer was formed on a polished AZ91D alloy specimen over 89 ° C. for 5 minutes or more. Although EDS still showed a small peak due to Mg, when viewed by SEM, the deposited layer was continuous with only slight defects. The specimen was rinsed with distilled water, hung and exposed to the outside air, and dried for 25 minutes. After drying, the lower part of the test piece was exposed to an electroless Cu bath at room temperature for an additional 5 minutes, rinsed and dried. During the secondary deposition process, the film was hydrated from below to above one third by exposure to a deposition bath. Since this deposition was achieved in about one-fourth of the time required for the first specimen, the continuity of the primary coating is an important factor for the quality of the secondary deposition layer, but the initial coating It became clear that a good secondary precipitation layer could be obtained even if it was not completely continuous. In addition, SEM analysis of secondary Cu cladding showed that magnesium sequestration was improved. Although corrosion may be observed near the Ni-B / Cu interface with the naked eye, it is appropriate to view this as galvanic corrosion due to incomplete immersion of the specimen.

高アルカリ性環境における無電解析出方法を用いれば、特に二次層を析出させる場合に、優れた密着性を有する析出層を良好に形成することができる。ここでは二次析出浴もまた高アルカリ性である。これは、連続であることが期待される皮膜に、ピンホール、隙間、又は不良があっても、容易にガルバック電池が形成されたり腐食が開始したりしないようにするためである。マグネシウムの最初のクラッディングに生じる隙間は、特に銅を用いる場合には、下記の起こりうる作用のいずれか又は両方による絶縁表面酸化物の形成が原因であることがある。 If the electroless deposition method in a highly alkaline environment is used, particularly when a secondary layer is deposited, a deposited layer having excellent adhesion can be formed satisfactorily. Here, the secondary precipitation bath is also highly alkaline. This is to prevent a gullback battery from being easily formed or starting corrosion even if there are pinholes, gaps, or defects in the coating that is expected to be continuous. Gaps that occur in the initial cladding of magnesium can be due to the formation of insulating surface oxides by one or both of the following possible actions, especially when using copper.

1)これまで試験してきた合金はAZ91D及びA50マグネシウム合金であり、これらはそれぞれ名目約9%及び約5%のアルミニウムを含んでいる。アルミニウムは高アルカリ性環境で酸化しやすいため、析出浴内でAl−Mg金属間化合物の酸化が起こり、絶縁酸化物の形成につながると考えられる。この場合は、非アルミニウム合金化マグネシウム合金であれば高アルカリ性析出浴中でより良い性質を示すと考えられる。このことは、現在のところ多種多様なマグネシウム合金を被覆するために十分なクラッディング工程がひとつもないので、マグネシウム合金のクラッディングの著しい発展につながるものでもある。 1) The alloys that have been tested so far are AZ91D and A50 magnesium alloys, which contain nominally about 9% and about 5% aluminum, respectively. Since aluminum is easily oxidized in a highly alkaline environment, it is considered that the Al—Mg intermetallic compound is oxidized in the precipitation bath, leading to the formation of an insulating oxide. In this case, a non-aluminum alloyed magnesium alloy is considered to exhibit better properties in a highly alkaline precipitation bath. This also leads to a significant development of magnesium alloy cladding since there is currently no single cladding process sufficient to coat a wide variety of magnesium alloys.

2)外気に曝してマグネシウム合金を研磨すると、表面、特に凹凸が加熱される可能性があり、この熱が酸化に寄与する。酸化物の絶縁能力についての検証によって、こうした無電解析出技術は、酸化したマグネシウム上に無電解クラッディングを施す上では役に立たないことが確認されている。この課題は、試験片を冷却するか、あるいは酸化を防ぐために不活性ガス雰囲気下で研磨することで容易に解決できるものであるが、本願方法は、適切な処置を行えば絶縁酸化物の形成は管理できることを示している。 2) When a magnesium alloy is polished by exposure to the outside air, the surface, particularly the unevenness, may be heated, and this heat contributes to oxidation. Verification of the insulating ability of oxides has confirmed that such electroless deposition techniques are not useful for electroless cladding on oxidized magnesium. This problem can be easily solved by cooling the test piece or polishing it under an inert gas atmosphere to prevent oxidation. However, the present method can form an insulating oxide if appropriate measures are taken. Indicates that it can be managed.

標準電極電位において銅(+0.340 vs.SHE)とマグネシウム(−2.372 vs.SHE)には明確な差があるにも関わらず銅を析出させることが可能なのは、高アルカリ性析出浴であるためである。高アルカリ性析出浴は基材の腐食防止と活動的なガルバニ電池の形成防止に役立つ。これは、わずかに酸性寄りのpH値(pH≒12)で形成された析出層は基材の腐食を生じさせることから観察されている。こうした理由から、クラッディング用金属としての銅を選択する際、高pH環境における銅の溶解度は重要な要素であった。 It is a highly alkaline precipitation bath that can deposit copper despite the clear difference between copper (+0.340 vs. SHE) and magnesium (-2.372 vs. SHE) at the standard electrode potential. Because. High alkaline deposition baths help prevent substrate corrosion and prevent the formation of active galvanic cells. This is observed because the deposited layer formed at a slightly acidic pH value (pH≈12) causes corrosion of the substrate. For these reasons, the solubility of copper in a high pH environment was an important factor when selecting copper as the cladding metal.

さらに重要なことに、研磨されたMg合金試験片を銅析出浴の浴Aに曝すと、還元剤非存在下でも密着性が良好な銅が試験片表面に形成されることが観察されている。 More importantly, it has been observed that when a polished Mg alloy specimen is exposed to bath A of a copper precipitation bath, copper with good adhesion is formed on the specimen surface even in the absence of a reducing agent. .

実施例4 −アルミニウム合金基材上の無電解銅析出 Example 4-Electroless copper deposition on an aluminum alloy substrate

別の態様において、本発明の方法はアルミニウム又はアルミニウム合金基材上に銅のような金属の皮膜層を無電解析出させる際に用いられうる。 In another embodiment, the method of the present invention can be used in the electroless deposition of a coating layer of a metal such as copper on an aluminum or aluminum alloy substrate.

銅析出浴は二液浴として成分溶液A及びBから下記のように調製した。 The copper precipitation bath was prepared as follows from component solutions A and B as a two-component bath.

銅析出浴 Copper deposition bath

Figure 0005937086
Figure 0005937086

アルミニウム合金基材上における銅被覆においては、下記の方法が用いられる。
1)従来の手段を用いてAl合金から酸化皮膜を除去する。密着性を向上させるため、乾式研磨のような、表面粗さも増加する方法で酸化物を除去することが最も好ましい。
2)Al合金を室温の無電解銅析出浴に約5〜10分間投入する。析出速度及び/又は膜厚を増加させるために、析出時間を長くし温度を高くしてもよい。
3)銅層が形成された後、めっきされた試験片を析出浴から取り出して蒸留水ですすぎ、余分な電解液を除去する。
4)これらにより、光沢があり、平坦/均一で、連続で、密着性の良好な無電解銅クラッディングがAl合金に施される。
In the copper coating on the aluminum alloy substrate, the following method is used.
1) The oxide film is removed from the Al alloy using conventional means. In order to improve the adhesion, it is most preferable to remove the oxide by a method that also increases the surface roughness, such as dry polishing.
2) The Al alloy is put into a room temperature electroless copper deposition bath for about 5 to 10 minutes. In order to increase the deposition rate and / or film thickness, the deposition time may be increased and the temperature may be increased.
3) After the copper layer is formed, the plated specimen is removed from the deposition bath and rinsed with distilled water to remove excess electrolyte.
4) With these, an electroless copper cladding with gloss, flatness / uniformity, continuousness and good adhesion is applied to the Al alloy.

最も好ましい方法に従って無電解Cu析出が行われた試験片においては、研磨が必要であった。研磨していない表面ではほとんど析出は起こらなかった。 Polishing was necessary for the test pieces on which electroless Cu deposition was performed according to the most preferred method. Almost no precipitation occurred on the unpolished surface.

その他のAl合金試験片においては、酸化表面と研磨表面の両方で析出が行われたが、低密着性及び/又は粉体状の析出層となった。研磨により密着性が良好な析出層が得られるかどうかを調べる試験として、析出層の特性を用いることが考えられている。 In the other Al alloy test pieces, precipitation was performed on both the oxidized surface and the polished surface, but a low-adhesion and / or powder-like deposited layer was obtained. As a test for examining whether a deposited layer with good adhesion can be obtained by polishing, it is considered to use the characteristics of the deposited layer.

アルミニウムは一般に、正の標準電極電位Eが示すように、水酸化環境下で急速に(自発的に)酸化するものとして理解されている。そのため、Al合金上に高pH析出浴から無電解析出を行うということは直観に反すると考えられている。 Aluminum is generally, as the positive standard electrode potential E 0, rapidly (spontaneously) under hydroxide environment is understood as oxidation. Therefore, it is considered counterintuitive to perform electroless deposition from a high pH precipitation bath on an Al alloy.

[数1]
Al(s)+3OH (aq)→Al(OH)3(s)+3e=+2.31V
[Equation 1]
Al (s) + 3OH - ( aq) → Al (OH) 3 (s) + 3e - E 0 = + 2.31V

本発明によれば、銅の無電解析出は、高濃度のホルムアルデヒド還元剤をAlN基材に用いて、最大pH13.5の無電解銅浴で行われる。 According to the present invention, the electroless deposition of copper is performed in an electroless copper bath with a maximum pH of 13.5, using a high concentration formaldehyde reducing agent as the AlN substrate.

その他のAlめっきに好適な無電解銅析出方法としては、3003−Al合金上に銅浸漬被覆を施し、その後無電解Ni−P析出を行う方法が挙げられる。銅浸漬皮膜は、CuSO・5HO(30g/l)及びC(酒石酸)(53g/l)を含む25℃の浴に3分間入れて形成する。この被覆は、Alと無電解ニッケル析出溶液が直接接触するのを防ぎ、無電解析出浴の安定性を増加させるために行われる。 Other electroless copper deposition methods suitable for Al plating include a method in which a copper dip coating is applied on a 3003-Al alloy and then electroless Ni-P deposition is performed. The copper immersion film is formed by placing in a 25 ° C. bath containing CuSO 4 .5H 2 O (30 g / l) and C 4 H 6 O 6 (tartaric acid) (53 g / l) for 3 minutes. This coating is performed to prevent direct contact between Al and the electroless nickel deposition solution and to increase the stability of the electroless deposition bath.

本出願人は、本発明を用いれば、浸漬被覆は無電解銅析出をより広範なアルミニウム合金に拡大する手段となりうることを見出した。これに関連して、続いて形成される無電解Ni−P皮膜は従来のpHレベルである約4.5で形成されるので、続いて行われる無電解銅層は酸性であってもよく、アルカリ性であってもよい。 Applicants have found that with the present invention, dip coating can be a means of extending electroless copper deposition to a wider range of aluminum alloys. In this connection, the subsequent electroless Ni-P coating is formed at a conventional pH level of about 4.5, so that the subsequent electroless copper layer may be acidic, It may be alkaline.

実験例では、Al合金試験片に無電解銅クラッディングを実現し、付着させることができている。試験片中のAlはかなりリサイクルされた金属であり、多量の不純物が混入していた。12%Si及び6061Al合金で行った試験では、試験片表面に粉体状で密着性に乏しい析出層を得た。従って、合金そのものの性質も、高度な析出を実施するための寄与因子となりうる。 In the experimental example, electroless copper cladding can be realized and adhered to the Al alloy specimen. Al in the test piece was a considerably recycled metal, and a large amount of impurities were mixed. In a test conducted with 12% Si and a 6061 Al alloy, a precipitate layer having a powdery shape and poor adhesion was obtained on the surface of the test piece. Therefore, the properties of the alloy itself can also be a contributing factor for performing advanced precipitation.

その他の試験片では、析出は研磨された領域と同様に酸化表面でも起こり、析出は研磨から独立したものではなかった。 In other specimens, precipitation occurred on the oxidized surface as well as the polished area, and precipitation was not independent of polishing.

好ましい方法としては、13.5を超えるpH、好ましくはpH13.5〜14の無電解銅析出浴に浸漬するとしているが、アルミニウム合金の特定の組成及び接着力の有無によっては、それより低いpHで銅の無電解析出を実現することも可能であると思われる。より低いpHでの無電解Cuはまた、接着力を有さない合金にもおそらく実施可能である。 A preferred method is to immerse in an electroless copper deposition bath having a pH of over 13.5, preferably pH 13.5 to 14, but a lower pH depending on the specific composition of the aluminum alloy and the presence or absence of adhesive strength. It seems possible to realize electroless deposition of copper. Electroless Cu at lower pH is also probably feasible for alloys that do not have adhesion.

1つの商業利用例として、太陽電池内部において、無電解銅方法を「電子」と「正孔」の再結合に用いられる導電性裏材の形成に適用してもよい。従来、導電性裏材は一般にアルミニウムペーストからなっている。また、本発明の無電解析出方法を、電池前面に接触するグリッド電極を形成する銅層に適用してもよいということはより重要である。一般に電極は、銀ペーストを太陽電池前面及び背面の両方にスクリーン印刷することで形成する。無電解銅めっき方法を用いれば銀ペーストを用いるよりも安価であると同時に、通常グリッドに覆われている表面積が減少するため、従来の印刷方法に代わってさらに太陽電池効率を高めることがきる。 As one example of commercial use, within a solar cell, an electroless copper method may be applied to form a conductive backing used to recombine “electrons” and “holes”. Conventionally, the conductive backing is generally made of an aluminum paste. It is more important that the electroless deposition method of the present invention may be applied to a copper layer that forms a grid electrode that contacts the battery front surface. In general, the electrodes are formed by screen-printing silver paste on both the front and back surfaces of the solar cell. If the electroless copper plating method is used, it is cheaper than using a silver paste, and at the same time the surface area usually covered by the grid is reduced, so that the solar cell efficiency can be further increased in place of the conventional printing method.

実施例5 −シリコン基材上の無電解銅析出− Example 5-Electroless copper deposition on silicon substrate-

本無電解技術はまた、集積回路製造、特にプロセッサ集合体においても効果を発揮するものと見込まれている。 The electroless technique is also expected to be effective in integrated circuit manufacturing, particularly in processor assemblies.

実験結果において、実質的に純シリコンと見られるシリコン試験片に加え、n型シリコン基材上においても、本発明の方法を用いた銅析出の検証が行われている。n型及びp型シリコン作製のためにシリコンをドープするものとすると、析出技術は電子デバイスの組立において用いられる全てのシリコン基材において効果を発揮するものと期待される。加えて、基材の縁、つまり試験片が大型板から切り取られた部分に銅析出層が観察されている点にも留意すべきであり、これは、析出層形成は酸化物不足の結果であって、研磨方法による異常によるものではないことを示している。 In addition to silicon test pieces that are considered to be substantially pure silicon in the experimental results, copper deposition is verified on an n-type silicon substrate using the method of the present invention. Assuming that silicon is doped for n-type and p-type silicon fabrication, the deposition technique is expected to be effective on all silicon substrates used in the assembly of electronic devices. In addition, it should be noted that a copper deposition layer is observed at the edge of the substrate, that is, where the test piece is cut from the large plate. This indicates that it is not caused by an abnormality caused by the polishing method.

析出浴が酸化物成長を促進しシリコン基材と銅クラッディングの間に酸化中間膜が形成されるかどうか、及び析出皮膜の厚みを測定すれば、最適な浴条件を調整することも可能になる。予備測定によればクラッディングと基材の間にはある程度の抵抗接点が存在するようであるが、薄膜の四端子法測定によりその正確性を検証する必要がある。 It is possible to adjust the optimal bath conditions by measuring whether the deposition bath promotes oxide growth and an oxidation intermediate film is formed between the silicon substrate and the copper cladding, and the thickness of the deposited coating. Become. Preliminary measurements indicate that some resistive contact exists between the cladding and the substrate, but its accuracy needs to be verified by thin film four-terminal measurement.

皮膜層の無電解析出により、今日まで実現不能とされてきた極めて多くの分野及び用途で多様なシリコン基材や金属基材の使用が可能になると思われる。非限定的な例としては、被覆マグネシウム/マグネシウム合金基材の使用、コンピュータのハードドライブ、海軍軍艦、航空機及び航空宇宙における応用分野、内燃エンジン頭部及びブロック、トランスミッション及びギア筐体、自動車フレーム集合体などが挙げられるが、これらに限定されない。 The electroless deposition of the coating layer would allow the use of a variety of silicon and metal substrates in a vast number of fields and applications that have been impractical to date. Non-limiting examples include the use of coated magnesium / magnesium alloy substrates, computer hard drives, naval warships, aircraft and aerospace applications, internal combustion engine heads and blocks, transmission and gear housings, automobile frame assemblies Examples include but are not limited to bodies.

また、所与の基材表面に析出する金属の量が、その再利用に影響を与えるということは無い。詳細には、表面皮膜は「不純物」を許容可能範囲内に収められるよう量を調節して形成できる。更に、耐摩耗性が高い被膜又は硬化した皮膜は、マグネシウムのようなより柔軟な金属基材に対して用いてもよい。これにより、良好な表面摩耗特性が求められる分野でそのような金属を使用することが可能になると思われる。 Also, the amount of metal deposited on the surface of a given substrate does not affect its reuse. Specifically, the surface film can be formed by adjusting the amount so that “impurities” are within an allowable range. Furthermore, a highly wear-resistant or hardened film may be used for more flexible metal substrates such as magnesium. This would make it possible to use such metals in fields where good surface wear properties are required.

本明細書は、マグネシウム、アルミニウム、及びシリコン基材を銅及びニッケル−ホウ素で被覆する際の本発明の方法の使用について記載しているが、これらに限定されない。本発明の二液被覆方法は、高アルカリ性めっき浴において可溶である多様な皮膜層を形成するため用いてもよいことがわかっている。 This specification describes, but is not limited to, the use of the method of the invention in coating magnesium, aluminum, and silicon substrates with copper and nickel-boron. It has been found that the two-part coating method of the present invention may be used to form a variety of coating layers that are soluble in highly alkaline plating baths.

本明細書にはめっき方法における種々の好ましい数値が記載されているが、本発明はそれらに限定されない。多くの変形例が近く明らかにされると思われる。本発明の範囲に関しては、添付の請求項を参照されたい。 Although various preferable numerical values in the plating method are described in the present specification, the present invention is not limited thereto. Many variations will appear soon. For the scope of the invention, reference should be made to the appended claims.

Claims (16)

ニッケル又はニッケル合金めっき金属をマグネシウム金属基材上に無電解めっきする方法であって、
25〜60g/Lの塩化ニッケル六水和物を含むpH5の第一の浴溶液を調製する工程と、
40〜75m/Lのエチレンジアミン、
30〜50g/Lの水酸化ナトリウム、及び
3〜8g/Lの水化ホウ素ナトリウム
を含む前記第一の浴溶液と物理的に分離された第二の浴溶液を調製する工程と、
前記第一及び第二の浴溶液を混合して12以上のpHを有する混合めっき液溶液を作製する工程と、
前記第一及び第二の浴溶液を混合してから84時間以内にマグネシウム金属基材を前記混合めっき液溶液に浸漬する工程と
を有する方法。
A method of electroless plating nickel or nickel alloy plating metal on a magnesium metal substrate,
Preparing a first bath solution at pH 5 containing 25-60 g / L nickel chloride hexahydrate;
Ethylenediamine of 40~75m l / L,
And preparing 30 to 50 g / L of sodium hydroxide, and the second bath solution wherein are first bath solution and physically separating containing hydrogen sodium borohydride of 3 to 8 g / L,
Mixing the first and second bath solutions to produce a mixed plating solution having a pH of 12 or higher;
Immersing the magnesium metal substrate in the mixed plating solution within 84 hours after mixing the first and second bath solutions .
前記めっき金属がニッケル−ホウ素合金である請求項1記載の方法。 The method of claim 1, wherein the plating metal is a nickel-boron alloy. 前記混合めっき液溶液のpHが13以上であり、前記マグネシウム金属基材を前記混合めっき液溶液に浸漬する時間が1〜60分間である請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the mixed plating solution has a pH of 13 or more, and the time for immersing the magnesium metal substrate in the mixed plating solution is 1 to 60 minutes. 前記マグネシウム金属基材を前記混合めっき液溶液に浸漬する時間が10〜30分間である請求項3記載の方法。 The method according to claim 3, wherein the magnesium metal substrate is immersed in the mixed plating solution for 10 to 30 minutes. 前記マグネシウム金属基材を浸漬する間前記混合めっき液溶液の温度を80〜95℃に維持する請求項1〜3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the temperature of the mixed plating solution is maintained at 80 to 95 ° C while the magnesium metal substrate is immersed. 前記第一及び第二の浴溶液を、1:1の体積比で、連続バッチ法によって混合する請求項1〜5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the first and second bath solutions are mixed in a volume ratio of 1 : 1 by a continuous batch method. マグネシウム基材上にニッケル−ホウ素めっき金属を無電解めっきする方法であって、
25〜50g/Lの塩化ニッケル六水和物を含むpH5の第一の浴溶液成分を調製する工程と、
50〜75ml/Lのエチレンジアミン、
30〜50g/Lの水酸化ナトリウム、及び
3〜8g/Lの水素化ホウ素ナトリウム
を含む前記第一の浴溶液成分と物理的に分離された第二の浴溶液成分を調製する工程と、
前記第一及び第二の浴溶液成分を、13以上のpHを有する混合めっき溶液を得られるように選択された比で混合する工程と、
前記第一及び第二の浴溶液成分を混合してから84時間以内にマグネシウム基材を前記混合めっき溶液に浸漬する工程と
を有する方法。
A method of electroless plating a nickel-boron plating metal on a magnesium substrate,
Preparing a first bath solution component of pH 5 comprising 25-50 g / L nickel chloride hexahydrate;
50-75 ml / L ethylenediamine,
Preparing a second bath solution component physically separated from said first bath solution component comprising 30-50 g / L sodium hydroxide and 3-8 g / L sodium borohydride;
Mixing the first and second bath solution components in a ratio selected to obtain a mixed plating solution having a pH of 13 or higher;
Immersing the magnesium substrate in the mixed plating solution within 84 hours after mixing the first and second bath solution components .
前記比が、14のpHを有する混合めっき溶液を得られるよう選択された比である請求項7記載の方法。 The method of claim 7, wherein the ratio is a ratio selected to obtain a mixed plating solution having a pH of 14 . 前記マグネシウム基材を浸漬する間、前記混合めっき溶液の使用温度を80〜95℃に維持する請求項7又は8記載の方法。 The method according to claim 7 or 8, wherein a use temperature of the mixed plating solution is maintained at 80 to 95 ° C while the magnesium substrate is immersed. 前記マグネシウム基材を前記混合めっき溶液に浸漬する時間が1〜60分である請求項7〜9のいずれか1項に記載の方法。 The method according to any one of claims 7 to 9, wherein a time for immersing the magnesium substrate in the mixed plating solution is 1 to 60 minutes. 前記マグネシウム基材を前記混合めっき溶液に浸漬する時間が10〜30分である請求項10記載の方法。 The method according to claim 10, wherein the time for immersing the magnesium substrate in the mixed plating solution is 10 to 30 minutes. 前記マグネシウム基材を前記混合めっき溶液に浸漬する時間が最大30分である請求項10又は11記載の方法。The method according to claim 10 or 11, wherein the time for immersing the magnesium substrate in the mixed plating solution is a maximum of 30 minutes. 前記第一の浴溶液成分と前記第二の浴溶液成分とを5時間以上物理的に分離する請求項7〜12のいずれか1項に記載の方法。 The method according to any one of claims 7 to 12 for separating the first bath solution component and the second bath solution and the five hours or more physical components. 前記第一の浴溶液成分と前記第二の浴溶液成分とを72時間以上物理的に分離する請求項13記載の方法。 14. The method of claim 13, wherein the first bath solution component and the second bath solution component are physically separated for at least 72 hours. 前記第一及び第二の浴溶液を混合してから72時間以内にマグネシウム金属基材を前記混合めっき液溶液に浸漬する請求項1〜6のいずれか1項に記載の方法。The method according to any one of claims 1 to 6, wherein a magnesium metal substrate is immersed in the mixed plating solution within 72 hours after mixing the first and second bath solutions. 前記第一及び第二の浴溶液成分を混合してから72時間以内にマグネシウム基材を前記混合めっき溶液に浸漬する請求項7〜14のいずれか1項に記載の方法。The method according to any one of claims 7 to 14, wherein a magnesium substrate is immersed in the mixed plating solution within 72 hours after mixing the first and second bath solution components.
JP2013533061A 2010-10-13 2011-10-12 Electroless metal deposition using highly alkaline plating bath Expired - Fee Related JP5937086B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US34480010P 2010-10-13 2010-10-13
US61/344,800 2010-10-13
US201161457446P 2011-03-30 2011-03-30
US61/457,446 2011-03-30
US201161457590P 2011-04-26 2011-04-26
US61/457,590 2011-04-26
PCT/CA2011/001146 WO2012048412A1 (en) 2010-10-13 2011-10-12 Process for electroless deposition of metals using highly alkaline plating bath

Publications (2)

Publication Number Publication Date
JP2013540205A JP2013540205A (en) 2013-10-31
JP5937086B2 true JP5937086B2 (en) 2016-06-22

Family

ID=45937794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013533061A Expired - Fee Related JP5937086B2 (en) 2010-10-13 2011-10-12 Electroless metal deposition using highly alkaline plating bath

Country Status (9)

Country Link
US (1) US20130209698A1 (en)
EP (1) EP2627798A1 (en)
JP (1) JP5937086B2 (en)
KR (1) KR20140020829A (en)
CN (1) CN103221579B (en)
BR (1) BR112013008950A2 (en)
CA (1) CA2813818A1 (en)
MX (1) MX339242B (en)
WO (1) WO2012048412A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8900998B2 (en) 2012-11-21 2014-12-02 University Of Windsor Process for electroless deposition of gold and gold alloys on silicon
US9326373B2 (en) * 2014-04-09 2016-04-26 Finisar Corporation Aluminum nitride substrate
WO2016163991A1 (en) * 2015-04-07 2016-10-13 Hewlett-Packard Development Company, L.P. Methods of polishing
CN108531895A (en) * 2018-03-29 2018-09-14 西安理工大学 A method of the electroless deposition copper on aluminum oxide film
US11426818B2 (en) 2018-08-10 2022-08-30 The Research Foundation for the State University Additive manufacturing processes and additively manufactured products
CN111455359A (en) * 2020-04-28 2020-07-28 中国科学院兰州化学物理研究所 Preparation method of gold-graphene composite coating on copper surface

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3033703A (en) * 1958-12-08 1962-05-08 Photocircuits Corp Electroless plating of copper
GB1453606A (en) * 1972-12-22 1976-10-27 Siphar Sa Method for synthesis of plus-minus-glaziovine
DE2445319B2 (en) * 1974-09-23 1980-10-30 Robert Bosch Gmbh, 7000 Stuttgart Alkaline bath for the electroless deposition of copper
US5017410A (en) * 1988-05-23 1991-05-21 United Technologies Corporation Wear resistant electroless nickel-boron coating compositions
US4983428A (en) * 1988-06-09 1991-01-08 United Technologies Corporation Ethylenethiourea wear resistant electroless nickel-boron coating compositions
JP3115095B2 (en) * 1992-04-20 2000-12-04 ディップソール株式会社 Electroless plating solution and plating method using the same
JPH0734254A (en) * 1993-07-19 1995-02-03 Okuno Chem Ind Co Ltd Electroless plating method to aluminum material
JP4521947B2 (en) * 2000-08-07 2010-08-11 イビデン株式会社 Pretreatment solution for electroless plating, treatment solution for electroless plating, and method for producing multilayer printed wiring board
CN1890401A (en) * 2003-10-17 2007-01-03 应用材料公司 Selective self-initiating electroless capping of copper with cobalt-containing alloys

Also Published As

Publication number Publication date
BR112013008950A2 (en) 2019-09-24
KR20140020829A (en) 2014-02-19
WO2012048412A1 (en) 2012-04-19
JP2013540205A (en) 2013-10-31
US20130209698A1 (en) 2013-08-15
EP2627798A1 (en) 2013-08-21
CN103221579A (en) 2013-07-24
CN103221579B (en) 2015-04-29
MX339242B (en) 2016-05-18
MX2013003935A (en) 2013-10-17
CA2813818A1 (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5937086B2 (en) Electroless metal deposition using highly alkaline plating bath
CN101243211B (en) Pretreatment of magnesium substrates for electroplating
JP5196102B2 (en) Aluminum oxide film removal solution and surface treatment method of aluminum or aluminum alloy
l Gawad et al. Development of electroless Ni-P-Al2O3 and Ni-P-TiO2 composite coatings from alkaline hypophosphite gluconate baths and their properties
Shoghi et al. Pretreatment-free Ni− P plating on magnesium alloy at low temperatures
JP2015513617A (en) Method for metallizing non-conductive plastic surface
Ogutu et al. Hybrid method for metallization of glass interposers
Farzaneh et al. Effect of Zincating bath additives on structural and electrochemical properties of electroless Ni-P coating on AA6061
US20120028073A1 (en) Process for electroplating of copper
EP3431633B1 (en) Environmentally friendly nickel electroplating compositions and methods
JP6474431B2 (en) Iron-boron alloy film and manufacturing method thereof
KR102116055B1 (en) Electroless nickel strike plating solution
CN111364030A (en) Pretreatment method for improving flatness of electroless NiP plating layer on aluminum substrate
KR101284367B1 (en) Plating method of magnesium alloy using alkali etchant
CN114807918A (en) Metal replacement treatment liquid, and surface treatment method for aluminum or aluminum alloy
CN111485262A (en) Indium electroplating compositions and methods for electroplating indium on nickel
JP6029202B2 (en) Method of electroplating pure iron on aluminum or aluminum alloy material
Lim et al. The effect of inducing uniform Cu growth on formation of electroless Cu seed layer
US20030186071A1 (en) Pretreating method before plating and composites having a plated coat
Cetin et al. Nickel and Gold Coatings of Germanium and Kovar Substrates
KR20230007331A (en) How to Create Functional Coatings on Magnesium
Kostov Cu-Sb ALLOY ELECTRODEPOSITION FROM PYROPHOSPHATE ELECTROLYTES
TW202229653A (en) Carbon steel with corrosion-resistant surface and manufacturing method thereof
JP2022183021A (en) ELECTROLESS Co-W PLATED COATING, AND ELECTROLESS Co-W PLATING SOLUTION
Vairamuthu et al. Effect of α-picoline and quinoline on dc and pulse plating of nickel directly on aluminium

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160511

R150 Certificate of patent or registration of utility model

Ref document number: 5937086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees