WO2007007609A1 - 微生物担体、微生物担体の製造方法、廃水処理方法、及び廃水処理システム - Google Patents

微生物担体、微生物担体の製造方法、廃水処理方法、及び廃水処理システム Download PDF

Info

Publication number
WO2007007609A1
WO2007007609A1 PCT/JP2006/313395 JP2006313395W WO2007007609A1 WO 2007007609 A1 WO2007007609 A1 WO 2007007609A1 JP 2006313395 W JP2006313395 W JP 2006313395W WO 2007007609 A1 WO2007007609 A1 WO 2007007609A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
sludge
acid
carrier
microorganism
Prior art date
Application number
PCT/JP2006/313395
Other languages
English (en)
French (fr)
Inventor
Tetsushi Suzuki
Shigeru Noritake
Kenya Ohtsuka
Kazuo Kamiji
Original Assignee
Sumitomo Heavy Industries, Ltd.
Asahi Breweries, Ltd.
Asahi Beer Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries, Ltd., Asahi Breweries, Ltd., Asahi Beer Engineering Co., Ltd. filed Critical Sumitomo Heavy Industries, Ltd.
Priority to JP2007524593A priority Critical patent/JPWO2007007609A1/ja
Publication of WO2007007609A1 publication Critical patent/WO2007007609A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/16Enzymes or microbial cells immobilised on or in a biological cell
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • Microbial carrier method for producing microbial carrier, wastewater treatment method, and wastewater treatment system
  • the present invention relates to a microorganism carrier, a method for producing a microorganism carrier, a wastewater treatment method, and a wastewater treatment system.
  • the acid generator is mainly used to convert organic matter in wastewater into organic acids by microorganisms, and is installed to facilitate methane fermentation in the UASB type methane fermenter.
  • Acid-producing bacteria include carbohydrate-degrading bacteria Clostridium, Bacillus, Streptococcus J, fiber-degrading bacteria Plectridium spumarum, graduateus cellosaehydrogenicus, protein-degrading bacteria Clostridium, Proteus, Bacterium, Bacillus, fat Clostridium kluyveri is known as a degrading bacterium, and these are collectively called acid-producing bacteria.
  • a granulated product of microorganisms having a diameter of about 0.5 to 3 mm called Dara-Yule sludge.
  • This Dara-Yule sludge is a microbial mass that utilizes the self-immobilization of anaerobic microorganisms, has a high sedimentation rate (20-40mZh), and can have an MLSS concentration of 50000mgZL or higher. COD load and High load processing of 20-30kgZm 3 Zd or more is possible. Due to the action of this granular sludge, a high cell concentration is maintained, and high-speed and stable methane fermentation of the lower fatty acid converted in the acid generator is achieved.
  • the acid generator located upstream of the methane fermentation tank, where the methanogen is fixed for efficient operation and management, the acid generator is located upstream. Due to the wastewater conditions and environmental factors that are often operated and controlled in a floating state, the microflora could easily be killed or out of the system. For this reason, it is desirable to use immobilized acid-producing bacteria that are easy to handle in acid generation tanks and are not easily affected by wastewater conditions or environment (temperature, etc.).
  • Patent Document 1 discloses a technique for fixing acid-producing bacteria using a gel carrier.
  • Patent Document 1 Japanese Patent Laid-Open No. 63-24678
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a microorganism carrier that is excellent in immobilizing microorganisms and that has a low environmental load during disposal.
  • the microorganism carrier according to the present invention is characterized in that the microorganisms in the granular sludge are deactivated or the activity thereof is reduced.
  • the inactivation of microorganisms means that the activity of methanogenic and acidogenic bacteria, which are the main microorganisms in sludge, has been lost.
  • the methanogenic activity was less than Og-CODZg-VSZd and no methane was produced, and it was not consumed even if it was cultured for a day in a medium that used organic substances such as powerful sugar as a substrate.
  • the decrease in microbial activity means that the methanogenic activity is 0. lg-COD. Zg—VSZd or less, indicating that almost no methane is produced, and that almost no consumption occurs even if it is cultured for one day in a medium that uses organic substances such as sugar as a substrate.
  • the microorganism carrier is originally a mass in which microorganisms are aggregated, the structure thereof has conditions suitable for the growth of microorganisms, and the microorganisms are well fixed. In addition, since it is a carrier derived from microorganisms, it can be easily disposed of after use and has a low environmental impact.
  • the microbial carrier according to the present invention may be characterized in that a microorganism is attached to the microbial carrier.
  • the attached microorganism may be an acid-producing bacterium.
  • the acid producing bacteria can be used as seeds for fixation.
  • the microbial carrier according to the present invention is characterized by inactivating or reducing the activity of a methan-producing bacterium having a self-immobilizing action in granular sludge.
  • the inactivation of the methanogen means that the activity of the methanogen in the sludge has been lost.
  • it means that the methane production activity is less than Og-CODZg-VSZd, and no methane production takes place.
  • reducing the activity of methanogenic bacteria means that the methanogenic activity is less than 0.1 lg-CODZg-VSZd, and almost no methanogenesis occurs.
  • this microorganism carrier is originally a mass in which microorganisms are aggregated, its structure has conditions suitable for the growth of microorganisms, and in particular, it is one that inactivates methanogenic bacteria or has reduced activity. For this reason, acid-producing bacteria can be fixed well as microorganisms. In addition, since it is a carrier derived from microorganisms, it can be easily disposed of after use and has a low environmental impact. It is preferable to inactivate or reduce the activity of microorganisms or methanogens by heat treatment.
  • the microbial carrier according to the present invention is characterized in that the activity of a specific microorganism in the granular sludge is superior.
  • the superiority of the activity of specific microorganisms means that the activity of other microorganisms is superior by reducing the activity of methanogens, which is originally dominant in normal sludge, that is, by reducing the methanogenic activity. Say to be.
  • this microorganism carrier is originally a mass in which microorganisms are aggregated, the structure thereof has conditions suitable for the growth of microorganisms, and is particularly advantageous for the activity of specific microorganisms.
  • the specific microorganism can be fixed well.
  • a carrier derived from microorganisms Therefore, disposal after use is easy and the environmental load is small.
  • the microorganism carrier according to the present invention may be characterized in that the specific microorganism is an acid-producing bacterium. In this way, the acid-producing bacteria can be fixed well. In addition, it is preferable to make the activity of a specific microorganism superior by heat treatment.
  • the microorganism carrier according to the present invention may be characterized in that microorganisms are immobilized on the microorganism carrier. In this way, the cell concentration can be increased by the immobilized microorganism.
  • the method for producing a microbial carrier according to the present invention forms dara-yule sludge in a state where methanogens and acid-producing bacteria are mixed, and inactivates methanogens in this dala-yule sludge. Alternatively, the activity is reduced. According to this method, acid-producing bacteria are distributed to the deep part of the granule. Therefore, unless the acid-producing bacteria are completely inactivated, it is not necessary to newly attach acid-producing bacteria.
  • a wastewater treatment method is a method of treating wastewater by a methane fermentation apparatus including an acid production tank and a methane fermentation tank, wherein the microbial carrier described above is added to the acid production tank. And In this way, acid producing bacteria can be fixed in the acid producing tank, and efficient operation and management becomes possible.
  • the acid generation tank may include a main body tank and a microbial carrier, a main body tank and a carrier tank capable of fluid circulation, and the microbial carrier may be added to the carrier tank. In this way, it is possible to fix the acid-producing bacteria in the carrier tank and improve the efficiency of acid generation.
  • the amount of the microbial carrier added to the acid generation tank may be 5% by volume or more with respect to 100% by volume of the total capacity of the acid generation tank. In this way, the efficiency of acid generation can be improved.
  • a wastewater treatment method is a method of treating wastewater by a methane fermentation apparatus including an acid generation tank and a methane fermentation tank.
  • the methane fermentation tank power Dara-Yule sludge is taken out and taken out.
  • the treated dara-yule sludge is heat-treated to inactivate or reduce the activity of at least methanogens, and the heat-treated dala-yule sludge is added to the acid production tank.
  • acid producing bacteria can be fixed in the acid producing tank, and efficient operation and management becomes possible.
  • Dara-Yul sludge is also taken from the methane fermenter Therefore, effective utilization of Dara-Yule sludge is achieved.
  • the acid generation tank may include a main body tank, a main body tank, and a carrier tank capable of fluid circulation, and the heat-treated granule sludge may be added to the carrier tank! In this way, it is possible to fix the acid-producing bacteria in the carrier tank to improve the efficiency of acid generation.
  • the addition amount of the heat-treated granule sludge to the acid generation tank may be 5% by volume or more with respect to 100% by volume of the total capacity of the acid generation tank. In this way, the efficiency of acid generation can be improved.
  • a wastewater treatment system is characterized by comprising a methane fermentation apparatus having an acid generation tank and a methane fermentation tank, and a heat treatment apparatus for heat-treating granular sludge.
  • a microbial carrier in which microorganisms in dala-yule sludge are deactivated or reduced in activity can be obtained by heat-treating granular sludge in a heat treatment apparatus.
  • a microbial carrier in which the methanogen in the dala-yule sludge is inactivated or reduced in activity can be obtained.
  • a microbial carrier in which the activity of specific microorganisms in the Dala-Yule sludge is superior. Then, the obtained microbial carrier can be added to the acid generation tank.
  • microorganism carrier that is excellent in immobilizing microorganisms and has a low environmental load at the time of disposal.
  • FIG. 1 is a diagram schematically showing a configuration of a wastewater treatment system according to an embodiment.
  • FIG. 2 is a graph showing the activity of methanogens when granulated sludge is heated for different times.
  • FIG. 3 is a graph showing the result of sugar consumption by granulated sludge with heat treatment and inactivation of methanogens.
  • FIG. 4 A graph showing the results of organic acid generation by the addition of granulated sludge after heat treatment to inactivate methanogens.
  • FIG.5 Granule sludge that has been inactivated by heat treatment, so that methanogens It is a graph which shows the result of the test which confirms that it has deactivated.
  • FIG. 6 is a graph showing the results of a test for confirming that acid-producing bacteria are inactivated by granulated sludge inactivated by heat treatment.
  • FIG. 7 is a graph showing the result of sugar consumption by the addition of granulated sludge after heat treatment to inactivate microorganisms.
  • FIG. 8 is a graph showing the relationship between the culture time and the maltose concentration in batch culture when the amount of added carrier is changed.
  • FIG. 9 is a graph showing the relationship between the residence time and the total sugar concentration when the medium is continuously fed when the amount of carrier added is changed.
  • FIG. 10 is a diagram showing a two-tank structure of a main body tank and a carrier tank as a modification of the acid generation tank.
  • FIG. 11 is a graph showing the change over time in the concentration of volatile fatty acid (VFA) produced by acid generation (total organic carbon conversion) when the amount of carrier added is changed.
  • VFA volatile fatty acid
  • the microorganism carrier according to the present embodiment is one in which microorganisms in the granular sludge are deactivated.
  • Dara-Yule sludge is a self-granulated methane fermentation sludge consisting of microorganisms related to methane fermentation, and in addition to methanogens, facultative anaerobic bacteria that perform acid fermentation are concentrated at high concentrations. It is a lump.
  • the microbial carrier is contained in the Dara-Yule sludge Inactivated methanogenic bacteria.
  • the granule sludge can be obtained, for example, by collecting it from a UASB type methane fermenter. Further, microorganisms in granular sludge, or deactivation of the methanogens, can be performed by controlling the growth conditions, such as temperature and P H. For pH control, adjust the pH within the range of 4-6. However, temperature control is suitable because pH control is troublesome because it is necessary to return the pH to neutral later.
  • methanogens include mesophilic and thermophilic bacteria, and the optimum temperature is said to be 35 to 55 ° C. Therefore, in order to inactivate the methanogen, the dura-yule sludge is heated at a temperature of 60 ° C or more for 24 hours or more. In addition, to inactivate microorganisms including acid-producing bacteria, the granular sludge is heated at a temperature of about 121 ° C for 1 hour or longer. Examples of the heating method include direct heating using a heater, steam heating, hot water bath in a hot bath, heating by electromagnetic waves, and the like.
  • the granular sludge is a granulated material in which microorganisms are agglomerated, and thus carbonizes in an overheated state.
  • the heating temperature, heating method, and heating time inactivate the granule sludge microorganisms (at least methanogens).
  • the microbial carrier in which all the microorganisms in the above-described granule sludge have been inactivated can be added to the acid production tank of the methane fermentation apparatus as it is to fix the acid producing bacteria.
  • the acid-producing bacteria may be attached to the microorganism carrier and then added to the acid-generating tank. In this way, the attached acid-producing bacteria can be used as seed bacteria.
  • the above-described microbial carrier in which methanogenic bacteria in dala-yule sludge have been inactivated has an advantage in the activity of acid-producing bacteria in gray yule sludge. By adding to the acid production tank, the acid producing bacteria can be fixed.
  • This microbial carrier is a mass in which microorganisms are originally aggregated, and its main component is cellulose or the like, which is the main component of microbial cells. Since it is a mass formed by microorganisms as described above, the structure has conditions suitable for the growth of microorganisms, and the microorganisms are well fixed and function effectively as a carrier. In addition, since it is a microorganism-derived carrier, it is discarded after use. Disposal is easy and the environmental impact is small.
  • FIG. 1 is a diagram schematically showing a configuration of a wastewater treatment system 10 using the above-described microbial carrier.
  • the wastewater treatment system 10 includes a regulating tank 12, a methane fermentation apparatus 14, and a heat treatment apparatus 16.
  • the adjustment tank 12 temporarily stores the wastewater introduced through the line L1, thereby reducing the fluctuation range of the flow rate and concentration of the wastewater and facilitating the operation management of the wastewater treatment system 10.
  • the methane fermentation apparatus 14 has an acid production tank 18 and a methane fermentation tank 20.
  • the acid generation tank 18 generates a lower organic acid by acid-fermenting the wastewater sent from the adjustment tank 12 through line L2 with an acid-producing bacterium.
  • the methane fermentation tank 20 performs methane fermentation of the treatment liquid containing the lower organic acid sent through the line L3 with the methanogen, and discharges the treatment liquid through the line L4.
  • an upward flow methane fermenter such as UASB or EGSB or a fixed bed methane fermenter can be used.
  • UASB and EGSB in which methane fermentation treatment is performed using dartilleur sludge obtained by self-granulating methane fermentation sludge, are preferable because they can be processed efficiently.
  • the heat treatment device 16 heats the granule sludge.
  • the heat treatment device 16 may be one that directly heats the dulla-yule sludge stored in the storage tank using a heater, or may heat the steam. Further, it may be heated by a hot water bath such as a hot bath or may be heated by electromagnetic waves.
  • This heat treatment device 16 is connected to the methane fermentation tank 20 via a line L5, and the dull sludge in the methane fermentation tank 20 can be taken out and supplied directly to the heat treatment device 16. Yes. Further, the heat treatment apparatus 16 is connected to the acid generation tank 18 via a line L6, so that the heated dala-yule sludge can be directly supplied to the acid generation tank 18 as a microorganism carrier.
  • the organic wastewater is charged into the adjustment tank 12 through the line L1. Then, in the adjustment tank 12, the flow rate and concentration of the wastewater are adjusted. On the other hand, a part of the granular sludge is extracted from the methane fermentation tank 20 and is put into the heat treatment apparatus 16 through the line L5. And Karo The granule sludge is heated at a temperature of 60 ° C or higher for 24 hours or more with the heat treatment device 16 to inactivate the methane-producing bacteria. Then, Dara-Yule sludge with deactivated methanogen is added to the acid generator 18 through line L6 as a microorganism carrier.
  • all the microorganisms including acid-producing bacteria may be inactivated by heating the Dara-Yule sludge at about 121 ° C. for 1 hour or longer with the heat treatment device 16.
  • Dara-Yule sludge from which microorganisms have been deactivated may be added to the acid generation tank 18 through line L6 as a microorganism carrier.
  • the waste water sent from the adjustment tank 12 through the line L2 is subjected to an acid fermentation treatment in the acid generation tank 18 to generate a lower organic acid.
  • the acid-producing bacteria can be fixed in the acid generation tank 18, and efficient operation and management are possible.
  • the treatment liquid containing the lower organic acid sent through the line L3 is subjected to methane fermentation treatment using granular sludge in the methane fermentation tank 20.
  • the treated water discharged through line L4 is subjected to advanced treatment as necessary and then discharged to public sewers.
  • a microbial carrier in which methanogens in the granular sludge are deactivated, or a microbial carrier in which all microorganisms in the granule sludge are deactivated. It is added to the acid generator 18. Since this microorganism carrier is originally a mass in which microorganisms are aggregated, its structure has conditions suitable for the growth of microorganisms and can fix acid-producing bacteria. Therefore, the bacterial cell concentration in the acid production tank 18 can be increased, the bacterial cell can be prevented from flowing out of the system, and the acid production tank 18 can be downsized.
  • This microbial carrier can be manufactured within 1 day by heat treatment, and the microbial flora due to microorganisms flowing out by immobilization At the same time, the acid producing bacteria immobilized on the microorganism carrier are less affected by environmental factors such as pH, temperature, and growth inhibitory substances, and the acid producing tank 18 can be operated and managed stably. It becomes like this.
  • it since it is a microorganism-derived carrier, it can be produced at low cost, can be easily discarded after use, and has a low environmental impact. In particular, since the granular sludge is taken from the methane fermentation tank 20, it can be used effectively.
  • 150 ml of granular sludge collected from a UASB type methane fermenter was placed in a coal bottle, and the temperature was raised by a hot bath until the center temperature of the granules in the flask reached 60 ° C. Then, while maintaining the temperature at 60 ° C, multiple dulla-yule sludges were produced when heated for 2 hours, 4 hours, 6 hours, and 24 hours, respectively.
  • the methanogenic activity of the granulated sludge cooled to 35 ° C was measured with a methane specific activity analyzer (manufactured by Kanto Yigaku Co., Ltd.).
  • granule sludge is anaerobically cultured in a sealed measuring vessel, and the amount of methane generated is measured as the gas pressure, which is used as an indicator of the activity of methane-producing bacteria.
  • 50 ml of Dara-Yule sludge and 450 ml of reaction solution are placed in a measurement container, 200 ml of NaOH (20%) solution is added to it, the measurement container is sealed, and the reaction is performed in a thermostatic chamber to generate methane gas.
  • the pressure in the measuring vessel is measured over time while reacting, and the slope of the pressure graph with respect to the elapsed time is used as an indicator of the methanogenic activity.
  • the slope of the graph increases.
  • the methanogenic activity is low or When deactivated, the slope of the graph is gentle or no slope (the amount of gas generation is zero). Divide this amount of methane gas generated per hour [gCOD / h] by the total amount of sludge used in the measurement [gVSS] to calculate the amount of methane gas per day in the amount of granules per unit.
  • the amount of methane production activity [gCODZgVSSZd] is the methane production activity.
  • a plurality of granular sludges were measured by the above method. As shown in Fig. 2, the gas pressure is reduced by the generation of methane gas in dull-yule sludge (line G1) that has been heat-treated and for 2 hours heat-treated sludge (line G2). It rises, and it can be seen that the methanogens in the graeule sludge are not inactivated.
  • 150 ml of granulated sludge collected from a UASB type methane fermenter and 150 ml of water were placed in a 500 ml beaker and heated at 121 ° C for 1 hour by an autoclave to sterilize microbial cells in the Dara-Yule sludge. . After heating, the methanogenic activity of dala-yule sludge cooled to 35 ° C was measured with a methane specific activity analyzer (manufactured by Kanto Igaku).
  • the methanogenic activity is 0 [gCODZgVSSZd], and the methanogenic bacteria in the sardine sludge are considered to be inactivated.
  • 50 ml of this granule sludge was anaerobically cultured in 450 ml of the acid producing medium shown in Table 2 described above.
  • the microorganisms in dartur sludge, including acid-producing bacteria were completely killed and inactivated.
  • the jar fermenter was supplemented with 10% (v / v) of Dara-Yule sludge from which microorganisms had been deactivated. Sag and acid generation Bacteria were mixed and conditioned by batch culture. Then, it culture
  • the residence time was 48 hours, sugar was almost consumed regardless of the addition of granule sludge.
  • the residence time was shortened to 24 hours and 15 hours, the addition of Dara-Yule sludge consumed almost all of the sugar, whereas the one without the addition was about 400 mgZL at a residence time of 24 hours. The sugar was left and it could not be processed after a residence time of 15 hours.
  • anaerobic treated water a supernatant after standing for 1 day was used. About 100ml of granule was prepared in a 300ml plastic container, and it was left in a 60 ° C thermostatic oven for one day, and then cooled with ice for deodorization. The maltose solution was prepared so that 500 mg of maltose was contained in a total volume of 5 ml.
  • the maltose solution is 5 ml, and the total amount of the sample waste water is 200 ml.
  • Six types of sample drainage were prepared. [0064] As an experimental procedure, first, 6 types of sample wastewater were respectively placed in a 300 ml Erlenmeyer flask and stirred in a 35 ° C constant temperature water bath. At this time, 1N NaOH aqueous solution was added to maintain the pH at 6-8. Then, sampling was performed every hour (through a filter), and the sugar concentration was measured (phenol sulfate method). After passing through the filter, the sample was stored frozen until the measurement.
  • FIG. 8 is a graph showing the relationship between the culture time and the maltose concentration in the batch culture thus measured.
  • FIG. 8 also shows a case (0% by volume) in which a heat-treated dollar-yule is used as a support with an additional force.
  • the amount of support added has an effect on the substrate consumption rate, and it can be said that when the substrate consumption rate increases at 5% by volume or more, the acid generation efficiency increases.
  • FIG. 9 is a graph showing the relationship between the residence time and the total sugar concentration when the medium is continuously supplied.
  • the total sugar concentration increased and the organic acid concentration decreased when the residence time was less than 15 hours.
  • the total sugar concentration increased and the organic acid concentration decreased when the residence time was less than 10 hours after continuous feeding of the culture medium was started.
  • the total sugar concentration was almost constant at 400 mgZl, and the decrease in organic acid concentration stopped.
  • the acid generation tank 18 has a two-tank structure of a main body tank 22 and a carrier tank 24.
  • the carrier tank 24 contained 5% by volume of the microbial carrier with respect to the total volume of 100% by volume of the acid generation tank 18, and the main body tank 22 and the carrier tank 24 were capable of fluid circulation.
  • the capacities of the main body tank 22 and the carrier tank 24 were 600 L and 200 L, respectively.
  • the beer wastewater as raw water flowing into the acid generation tank 18 had an F-COD of about 3000 mgZL, and the flow rate was adjusted in two stages: 400 LZh and lOOLZh. Therefore, the residence time in the acid generation tank 18 was 2 hours and 8 hours depending on the respective flow rates.
  • the acid generation tank 18 has a single tank structure with a capacity of 800 L. Other conditions are the same as above.
  • FIG. 11 is a graph showing the change over time of the concentration of volatile fatty acid (VFA) generated by acid generation (in terms of Total Organic Carbon).
  • VFA volatile fatty acid
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the case where the acid-producing bacteria are immobilized on the microorganism carrier in which all the microorganisms in the Dara-Yule sludge have been deactivated has been described.
  • this carrier may be used as a carrier for other bacteria. Can be used.
  • the microbial carrier described as a microorganism carrier in which microorganisms in granular sludge are deactivated or in which methanogenic bacteria in dala-yule sludge are deactivated is described. Even if the granular sludge is heated at a temperature of 60 ° C or higher for 6 hours or more, the activity of the methanogen in the dala-yule sludge is reduced to less than 0. lg-C ODZg- VSSZd. It may be made.
  • the granular sludge is obtained by, for example, recovering from a UASB type methane fermentation tank.
  • the methanogen having a self-fixing effect is granulated in the tank.
  • dorayu sludge is formed in a state where methane-producing bacteria and acid-producing bacteria are mixed, and the microbial carrier is produced by inactivating or reducing the activity of the methane-producing bacteria in the dorayu sewage sludge.
  • the mixture of acid-producing bacteria For example, since acid-producing bacteria are distributed deep in Dala-Yule, it is not necessary to newly attach acid-producing bacteria unless the acid-producing bacteria are completely inactivated.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Water Supply & Treatment (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Activated Sludge Processes (AREA)

Abstract

 微生物担体は、グラニュール汚泥中の微生物を失活または活性を低下させたものである。或いは、グラニュール汚泥中のメタン生成菌を失活または活性を低下させたものである。或いは、グラニュール汚泥中の特定の微生物の活性を優位にしたものである。この微生物担体は、例えばメタン発酵槽20から抜き出したグラニュール汚泥を、加熱処理装置16で加熱処理することで得られる。この微生物担体は、元々微生物が凝集した塊であるため、その構造は微生物が増殖するに適した条件を備えており、微生物の固定化が良好になされる。また、微生物由来の担体であるため、使用後の廃棄も容易であり、環境負荷も小さい。

Description

明 細 書
微生物担体、微生物担体の製造方法、廃水処理方法、及び廃水処理シ ステム
技術分野
[0001] 本発明は、微生物担体、微生物担体の製造方法、廃水処理方法、及び廃水処理 システムに関する。
背景技術
[0002] 嫌気性廃水処理装置として、酸生成槽と、 UASB型メタン発酵槽 (上向流嫌気性汚 泥床: Upflow Anaerobic Sludge Blanket)より構成される 2相式のものが実用化されて いる。酸生成槽は、主に微生物により廃水中の有機物を有機酸にするためのもので あって、 UASB型メタン発酵槽でのメタン発酵を容易にするために設置される。
[0003] このような酸生成槽には酸生成菌が存在し、有機物を低級脂肪酸に変換して!/、る。
酸生成菌としては、炭水化物分解菌として Clostridium属、 Bacillus属、 Streptococcus J禹なと、繊維 分解菌とし Plectridium spumarum、 し aduceus cellosaehydrogenicus 、タンパク質分解菌として Clostridium属、 Proteus属、 Bacterium属、 Bacillus属、脂肪 分解菌として Clostridium kluyveriなどが知られており、これらを総称して酸生成菌と 呼んでいる。
[0004] 酸生成槽の下流にあるメタン発酵槽では、生育速度の遅いメタン生成菌を効率よく 運転'管理するために、嫌気性菌力 なる汚泥を反応槽内に固定することにより、高 負荷 '高効率プロセスを実現することが試みられており、 UASB (上向流嫌気性汚泥 床)、 AF (下向流嫌気性ろ床)、 AFF (上向流嫌気性固定床)、 AFFEB (嫌気性固 定膜膨張床)、 FB (嫌気性固定膜流動床)、 EGSB (膨張汚泥床: Expanded Granula r Sludge Bed)などがこれまで実用化されている。
[0005] 特に、 UASB型メタン発酵槽では、ダラ-ユール汚泥と呼ばれる直径 0. 5〜3mm 程度の微生物の造粒物を使用する。このダラ-ユール汚泥は、嫌気性微生物群の自 己固定化作用(Self-immobilization)を利用した微生物塊であり、沈降速度が大きく( 20〜40mZh)、 MLSS濃度を 50000mgZL以上にすることができ、 COD負荷量と して 20〜30kgZm3Zd以上の高負荷処理が可能である。このグラニュール汚泥の 作用により、高い菌体濃度が維持され、酸生成槽で変換された低級脂肪酸のメタン 発酵の高速化と安定化とが図られている。
[0006] し力しながら、効率的な運転 ·管理を行うためにメタン生成菌の固定ィ匕が行われて いるメタン発酵槽に比べ、その上流側に位置する酸生成槽では、酸生成菌が浮遊状 態で運転'管理されることが多ぐ廃水の条件や環境要因によって簡単に微生物相 の死滅や系外への流出などが発生していた。そのため、酸生成槽においてもハンドリ ングが容易で、廃水の条件や環境 (温度等)の影響を受けにくい固定化された酸生 成菌の使用が望まれる。
[0007] 一方、微生物固定ィ匕法による水処理については、その担体として活性炭 (木炭)、 榭脂系中空担体、プラスチック担体、多孔質体吸水性ゲルなどを用いる複数の方法 が実用化されている。そして、例えば特許文献 1には、ゲル状担体を用いて酸生成 菌を固定ィ匕する技術が開示されている。
特許文献 1:特開昭 63— 24678号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、上記した従来の担体を用いて微生物を固定ィ匕したのでは、使用後の 廃棄につ!、て課題が多ぐ環境負荷が高!、ものであった。
[0009] 本発明は、上記した事情に鑑みてなされたものであり、微生物の固定ィ匕が良好にな され、且つ、廃棄時における環境負荷の小さい微生物担体を提供することを課題と する。
課題を解決するための手段
[0010] 本発明に係る微生物担体は、グラニュール汚泥中の微生物を失活または活性を低 下させたことを特徴とする。ここで、微生物を失活させたとは、汚泥中の主要な微生物 であるメタン生成菌、酸生成菌の活性がなくなつたことを言う。すなわち、メタン生成 活性が Og— CODZg— VSSZd以下となりメタン生成が行われな 、状態であり、力 つ糖のような有機物を基質とした培地により一日培養しても消費されない状態になつ たことを言う。また、微生物の活性を低下させたとは、メタン生成活性が 0. lg-COD Zg— VSSZd以下となり、メタン生成がほとんど行われない状態であり、かつ糖のよ うな有機物を基質とした培地により一日培養してもほとんど消費されない状態になつ たことを言う。
[0011] この微生物担体は、元々微生物が凝集した塊であるため、その構造は微生物が増 殖するに適した条件を備えており、微生物の固定ィ匕が良好になされる。また、微生物 由来の担体であるため、使用後の廃棄も容易であり、環境負荷も小さい。
[0012] 本発明に係る微生物担体では、当該微生物担体に微生物を付着したことを特徴と してもよい。特に、付着する微生物が酸生成菌であることを特徴としてもよい。このよう にすれば、酸生成菌を種菌として利用して固定ィ匕することができる。
[0013] 本発明に係る微生物担体は、グラニュール汚泥中の自己固定化作用を有するメタ ン生成菌を失活または活性を低下させたことを特徴とする。ここで、メタン生成菌を失 活させたとは、汚泥中のメタン生成菌の活性がなくなつたことを言う。すなわち、メタン 生成活性が Og— CODZg— VSSZd以下となりメタン生成が行われな 、状態になつ たことを言う。また、メタン生成菌の活性を低下させたとは、メタン生成活性が 0. lg— CODZg— VSSZd以下となりメタン生成がほとんど行われない状態になったことを
[0014] この微生物担体は、元々微生物が凝集した塊であるため、その構造は微生物が増 殖するに適した条件を備えており、特にメタン生成菌を失活または活性を低下させた ものであるため、微生物として酸生成菌の固定ィ匕が良好になされる。また、微生物由 来の担体であるため、使用後の廃棄も容易であり、環境負荷も小さい。なお、加熱処 理により微生物ないしメタン生成菌を失活または活性を低下させると好ましい。
[0015] 本発明に係る微生物担体は、グラニュール汚泥中の特定の微生物の活性を優位 にしたことを特徴とする。ここで、特定の微生物の活性を優位にしたとは、通常の汚泥 では元々優勢であるメタン生成菌の活性を低下させること、すなわちメタン生成活性 を低下させることにより、他の微生物の活性を優位にすることを言う。
[0016] この微生物担体は、元々微生物が凝集した塊であるため、その構造は微生物が増 殖するに適した条件を備えており、特に特定の微生物の活性を優位にしたものであ るため、当該特定の微生物の固定ィ匕が良好になされる。また、微生物由来の担体で あるため、使用後の廃棄も容易であり、環境負荷も小さい。
[0017] 本発明に係る微生物担体では、特定の微生物が酸生成菌であることを特徴としても よい。このようにすれば、酸生成菌の固定ィ匕が良好になされる。なお、加熱処理によ り特定の微生物の活性を優位にすると好まし 、。
[0018] 本発明に係る微生物担体では、当該微生物担体に微生物を固定化させたことを特 徴としてもよい。このようにすれば、固定化された微生物により菌体濃度を高めること ができる。
[0019] 本発明に係る微生物担体の製造方法は、メタン生成菌と酸生成菌とを混在させた 状態でダラ-ユール汚泥を形成し、このダラ-ユール汚泥中のメタン生成菌を失活ま たは活性を低下させることを特徴とする。この方法によれば、酸生成菌がグラニュー ルの深部まで分布しているため、酸生成菌を完全に失活させなければ、新たに酸生 成菌を付着させる必要がな 、。
[0020] 本発明に係る廃水処理方法は、酸生成槽とメタン発酵槽とを含むメタン発酵装置に より廃水を処理する方法であって、上記した微生物担体を酸生成槽に添加することを 特徴とする。このようにすれば、酸生成槽内で酸生成菌を固定ィ匕することができ、効 率的な運転 ·管理が可能となる。
[0021] このとき、酸生成槽は、本体槽と微生物担体を収容し本体槽と流体循環可能な担 体槽とを含み、微生物担体を担体槽に添加することを特徴としてもよい。このようにす れば、担体槽内で酸生成菌を固定ィ匕して酸生成の効率ィ匕を図ることができる。
[0022] そして、酸生成槽への微生物担体の添加量は、酸生成槽の全容量 100容量%に 対して 5容量%以上であることを特徴としてもよい。このようにすれば、酸生成の効率 ィ匕を図ることができる。
[0023] 本発明に係る廃水処理方法は、酸生成槽とメタン発酵槽とを含むメタン発酵装置に より廃水を処理する方法であって、メタン発酵槽力 ダラ-ユール汚泥を取り出し、取 り出したダラ-ユール汚泥を加熱処理して少なくともメタン生成菌を失活または活性を 低下させ、加熱処理したダラ-ユール汚泥を酸生成槽に添加することを特徴とする。 このようにすれば、酸生成槽内で酸生成菌を固定ィ匕することができ、効率的な運転- 管理が可能となる。特に、ダラ-ユール汚泥はメタン発酵槽カも取り出したものである ため、ダラ-ユール汚泥の有効利用が図られる。
[0024] このとき、酸生成槽は、本体槽と本体槽と流体循環可能な担体槽とを含み、加熱処 理したグラニュール汚泥を担体槽に添加することを特徴としてもよ!、。このようにすれ ば、担体槽内で酸生成菌を固定ィ匕して酸生成の効率ィ匕を図ることができる。
[0025] そして、酸生成槽への加熱処理したグラニュール汚泥の添加量は、酸生成槽の全 容量 100容量%に対して 5容量%以上であることを特徴としてもよい。このようにすれ ば、酸生成の効率ィ匕を図ることができる。
[0026] 本発明に係る廃水処理システムは、酸生成槽、及びメタン発酵槽を有するメタン発 酵装置と、グラニュール汚泥を加熱処理する加熱処理装置と、を備えることを特徴と する。
[0027] この廃水処理システムでは、加熱処理装置においてグラニュール汚泥を加熱処理 することで、ダラ-ユール汚泥中の微生物が失活または活性を低下された微生物担 体を得ることができる。或いは、ダラ-ユール汚泥中のメタン生成菌が失活または活 性を低下された微生物担体を得ることができる。或いは、ダラ-ユール汚泥中の特定 の微生物の活性が優位にされた微生物担体を得ることができる。そして、得られた微 生物担体を酸生成槽に添加することができる。
発明の効果
[0028] 本発明によれば、微生物の固定ィ匕が良好になされ、且つ、廃棄時における環境負 荷の小さ 、微生物担体を提供することができる。
図面の簡単な説明
[0029] [図 1]実施形態に係る廃水処理システムの構成を模式的に示す図である。
[図 2]グラニュール汚泥を異なる時間だけ加熱処理したときのメタン生成菌の活性を 示すグラフである。
[図 3]加熱処理してメタン生成菌を失活させたグラニュール汚泥の添カ卩による糖消費 の結果を示すグラフである。
[図 4]加熱処理してメタン生成菌を失活させたグラニュール汚泥の添カ卩による有機酸 生成の結果を示すグラフである。
[図 5]加熱処理して微生物を失活させたグラニュール汚泥にっ 、て、メタン生成菌が 失活していることを確認する試験の結果を示すグラフである。
[図 6]加熱処理して微生物を失活させたグラニュール汚泥にっ 、て、酸生成菌が失 活していることを確認する試験の結果を示すグラフである。
[図 7]加熱処理して微生物を失活させたグラニュール汚泥の添カ卩による糖消費の結 果を示すグラフである。
[図 8]担体添加量を変化させたときの、回分培養における培養時間とマルトース濃度 との関係を示すグラフである。
[図 9]担体添加量を変化させたときの、培地を連続供給したときの滞留時間と全糖濃 度との関係を示すグラフである。
[図 10]酸生成槽の変形例として本体槽と担体槽のニ槽構造を示す図である。
[図 11]担体添加量を変化させたときの、酸生成により生成した揮発性脂肪酸 (VFA) 濃度 (Total Organic Carbon換算)の経時変化を示すグラフである。
符号の説明
[0030] 10 廃水処理システム
12 調整槽
14 メタン発酵装置
16 加熱処理装置
18 酸生成槽
20 メタン発酵槽
22 本体槽
24 担体槽
発明を実施するための最良の形態
[0031] 以下、図面を参照しながら本発明の実施形態を説明する。なお、以下の説明にお いては、同一の要素には同一の符号を用いることとし、重複する説明は省略する。
[0032] 本実施形態に係る微生物担体は、グラニュール汚泥中の微生物を失活させたもの である。ダラ-ユール汚泥は、メタン発酵に関連する微生物群からなるメタン発酵汚 泥を自己造粒させたものであり、メタン生成菌の他、酸発酵などを行う通性嫌気性菌 が高濃度に集塊されたものである。あるいは、微生物担体は、ダラ-ユール汚泥中の メタン生成菌を失活させたものである。
[0033] ここで、グラニュール汚泥は、例えば UASB型メタン発酵槽から回収することで得る ことができる。また、グラニュール汚泥中の微生物、或いはメタン生成菌の失活は、温 度や PHなどの生育条件を制御することで行うことができる。 pHの制御では、 pHを 4 〜6の範囲で調整する。ただし、 pHの制御では後で pHを中性に戻す必要があり面 倒であるため、温度制御が好適である。
[0034] 一般的に、メタン生成菌は、中温菌と高温菌とが存在し、至適温度は 35〜55°Cと 言われている。従って、メタン生成菌を失活させるには、 60°C以上の温度で 24時間 以上ダラ-ユール汚泥を加熱する。また、さらに酸生成菌を含めて微生物を失活させ るには、 121°C程度の温度で 1時間以上グラニュール汚泥を加熱する。なお、加熱の 方法については、ヒータなどを用いた直接加熱、蒸気加熱、ホットバス等での湯浴、 電磁波による加熱などが挙げられる。
[0035] ここで、グラニュール汚泥は微生物が集塊した造粒物であるため、過加熱状態では 炭化してしまう。炭化してしまった場合、強度的に弱くなり、微生物担体として利用で きないため、加熱温度や加熱方法、加熱時間は、グラニュール汚泥の微生物 (少なく ともメタン生成菌)を失活させるが、ダラ-ユール汚泥を炭化させな 、範囲で選択する
[0036] 上記したグラニュール汚泥中の微生物を全て失活させた微生物担体は、そのままメ タン発酵装置の酸生成槽に添加することで、酸生成菌を固定ィヒすることができるが、 当該微生物担体に酸生成菌を付着させてから酸生成槽に添加してもよい。このよう にすれば、付着させた酸生成菌を種菌として利用することができる。
[0037] また、上記したダラ-ユール汚泥中のメタン生成菌を失活させた微生物担体は、グ ラ-ユール汚泥中の酸生成菌の活性が優位にされているため、そのままメタン発酵 装置の酸生成槽に添加することで、酸生成菌を固定ィ匕することができる。
[0038] この微生物担体は、元々微生物が凝集した塊であり、その主成分は微生物菌体の 主成分であるセルロース等である。このように微生物が形成した塊であるため、その 構造は微生物が増殖するに適した条件を備えており、微生物の固定ィヒが良好になさ れて担体として有効に機能する。また、微生物由来の担体であるため、使用後の廃 棄も容易であり、環境負荷も小さい。
[0039] 図 1は、上記した微生物担体を利用した廃水処理システム 10の構成を模式的に示 す図である。図 1に示すように、廃水処理システム 10は、調整槽 12、メタン発酵装置 14、及び加熱処理装置 16を備えている。
[0040] 調整槽 12は、ライン L1を通して導入された廃水を一時貯留することで、廃水の流 量や濃度等の変動幅を小さくし、廃水処理システム 10の運転管理を容易にする。メ タン発酵装置 14は、酸生成槽 18とメタン発酵槽 20を有している。酸生成槽 18は、ラ イン L2を通して調整槽 12から送られてきた廃水を、酸生成菌により酸発酵処理して 低級有機酸を生成する。メタン発酵槽 20は、ライン L3を通して送られてきた低級有 機酸を含む処理液をメタン生成菌によりメタン発酵し、ライン L4を通して処理液を排 出する。
[0041] メタン発酵槽 20としては、 UASBや EGSBといった上向流式メタン発酵槽ゃ、固定 床型メタン発酵槽を用いることができる。特に、メタン発酵汚泥を自己造粒させたダラ 二ユール汚泥を利用してメタン発酵処理する UASBや EGSBは、高効率な処理が可 能であるため好ましい。
[0042] 加熱処理装置 16は、グラニュール汚泥に加熱処理を施す。加熱処理装置 16として は、貯留槽に貯留されたダラ-ユール汚泥をヒータにより直接加熱するものであって もよぐ蒸気加熱するものであってもよい。また、ホットバス等の湯浴により加熱するも のであってもよぐ電磁波により加熱するものであってもよい。この加熱処理装置 16は 、ライン L5を介してメタン発酵槽 20と接続されており、メタン発酵槽 20内のダラ-ュ ール汚泥を取り出して、加熱処理装置 16に直接供給できるようになつている。また、 加熱処理装置 16は、ライン L6を介して酸生成槽 18と接続されており、加熱処理され たダラ-ユール汚泥を、微生物担体として酸生成槽 18に直接供給できるようになって いる。
[0043] 次に、上記した廃水処理システム 10を利用した廃水処理方法について説明する。
[0044] まず、有機性廃水を、ライン L1を通して調整槽 12に投入する。そして、調整槽 12 において、廃水の流量や濃度等を調整する。一方、メタン発酵槽 20からグラニュー ル汚泥を一部抜き出し、ライン L5を通して加熱処理装置 16に投入する。そして、カロ 熱処理装置 16でグラニュール汚泥を 60°C以上の温度で 24時間以上加熱し、メタン 生成菌を失活させる。そして、メタン生成菌が失活されたダラ-ユール汚泥を微生物 担体として、ライン L6を通して酸生成槽 18に添加する。或いは、加熱処理装置 16で ダラ-ユール汚泥を 121°C程度で 1時間以上加熱することにより、酸生成菌をも含め て全ての微生物を失活させてもよい。そして、微生物が失活されたダラ-ユール汚泥 を微生物担体として、ライン L6を通して酸生成槽 18に添加してもよ ヽ。
[0045] 次に、ライン L2を通して調整槽 12から送られてきた廃水を、酸生成槽 18において 酸発酵処理し、低級有機酸を生成する。このとき、酸生成槽 18には微生物担体が添 カロされているため、酸生成槽 18内で酸生成菌を固定ィ匕することができ、効率的な運 転 ·管理が可能である。そして、ライン L3を通して送られてきた低級有機酸を含む処 理液を、メタン発酵槽 20においてグラニュール汚泥を用いてメタン発酵処理する。そ して、ライン L4を通して排出される処理水に必要に応じて高度処理を施した後、公共 下水道などへ放流する。
[0046] 次に、本実施形態に係る微生物担体、廃水処理方法、及び廃水処理システムの作 用及び効果にっ 、て説明する。
[0047] 安定的な嫌気性廃水処理を行うためには、廃水がメタン発酵槽 20に流入するまで に廃水の有機物が十分に酸生成していることが重要である。これは、メタン発酵を行 う主体であるダラ-ユール汚泥中のメタン生成菌は、メタン発酵の基質として酢酸以 外の有機体炭素を利用することができず、廃水中の有機物が酢酸として生成される のは酸生成槽 18であり、酸生成槽 18での有機物の分解が十分でないと、下流のメタ ン発酵槽 20にお 、て十分なメタン発酵が進行しないばかりか、グラニュール汚泥の 浮上を招いてしまうことになるからである。
[0048] 十分なメタン発酵を進行させるためにも、酸生成槽 18における微生物的安定は必 須であるが、従来の酸生成槽では、酸生成菌が浮遊した状態で存在することが多ぐ 廃水の成分やその他環境要因により酸生成菌の死滅や活性低下が発生し易ぐそ の微生物相の回復にも時間がかかり、微生物的安定が図れていな力つた。
[0049] これに対し、本実施形態では、グラニュール汚泥中のメタン生成菌が失活された微 生物担体、或!ヽはグラニュール汚泥中の全ての微生物が失活された微生物担体が 酸生成槽 18に添加されている。この微生物担体は、元々微生物が凝集した塊である ため、その構造は微生物が増殖するに適した条件を備えており、酸生成菌を固定ィ匕 することができる。従って、酸生成槽 18内での菌体濃度を高めることができ、且つ菌 体が系外へ流出するのも防止でき、酸生成槽 18を小型化することができる。また、浮 遊微生物を槽内で増殖させるには時間がかかり、ハンドリングも煩雑である力 この 微生物担体は加熱処理により 1日以内に製造することができ、固定化により流出する 微生物による微生物相の破壊が無くなると同時に、微生物担体に固定化されている 酸生成菌は pHや温度、生育阻害物質などの環境要因に左右されることが少なくなり 、安定的に酸生成槽 18を運転 ·管理できるようになる。また、微生物由来の担体であ るため、安価に製造することができ、使用後の廃棄も容易であり、環境負荷も小さい。 特に、グラニュール汚泥はメタン発酵槽 20から取り出したものであるため、グラニュー ル汚泥の有効利用が図られる。
[0050] 次に、本実施形態に係る微生物担体について、実施例を挙げて更に詳細に説明 する。
[0051] まず、ダラ-ユール汚泥中のメタン生成菌を失活させた微生物担体について説明 する。この実施例では、 UASB型メタン発酵槽より採取したグラニュール汚泥 150ml をコ-カル瓶に入れ、ホットバスでフラスコ内のグラニュールの中心温度が 60°Cにな るまで昇温した。そして、 60°Cに温度を保持したまま、 2時間、 4時間、 6時間、 24時 間、それぞれ加熱した場合の複数のダラ-ユール汚泥を生成した。
[0052] 加熱後、 35°Cまで冷却したグラニュール汚泥のメタン生成活性を、メタン比活性分 析装置 (関東ィ匕学社製)により測定した。この測定では、グラニュール汚泥を密閉され た測定容器内で嫌気培養し、発生するメタン量をガスの圧力として測定して、メタン 生成菌の活性の指標とする。具体的には、測定容器内にダラ-ユール汚泥 50mlと 反応液 450mlを入れ、それに NaOH (20%)溶液を 200ml加えて測定容器を密閉 し、恒温槽で反応させメタンガスを発生させる。反応させながら測定容器内の圧力を 経時的に測定し、経過時間に対する圧力のグラフの傾きをメタン生成活性の指標と する。メタン生成活性が高いダラ-ユール汚泥の場合、反応初期からメタンガスが多 く発生するため、グラフの傾きは大きくなる。一方、メタン生成活性が低い場合または 失活している場合、グラフの傾きは緩やかか或いは全く傾きが出ない (ガス発生量が ゼロ)こととなる。この 1時間当たりのメタンガス発生量 [gCOD/h]を測定に用いた全 汚泥量 [gVSS]で除算して、 1単位当たりのグラニュール量における 1日当たりのメタ ンガス量を算定し、 1日当たりのメタン生成活性量 [gCODZgVSSZd]をメタン生成 活性とする。
上記方法により複数のグラニュール汚泥について測定を行った。図 2に示すように 、加熱処理をしな力つたダラ-ユール汚泥 (ライン G1)、及び、 2時間加熱処理したグ ラ-ユール汚泥 (ライン G2)では、メタンガスが発生することによりガス圧が上昇し、グ ラ-ユール汚泥中のメタン生成菌が失活していないことが分かる。また、加熱処理を 4 時間行ったダラ-ユール汚泥 (ライン G3)、及び 6時間行ったグラニュール汚泥 (ライ ン G4)では、メタンガスの発生が緩やかであることから、メタン生成菌の活性が低下あ るいはメタン生成菌の一部が失活していることが分かる。一方、加熱処理を 24時間行 つたダラ-ユール汚泥 (ライン G5)は、ガス圧がほとんど上昇せず、グラニュール汚泥 を添加しないもの(ライン G6)と同様のガス圧力を示した。よって、メタン生成活性が ゼロであり、ダラ-ユール汚泥内のメタン生成菌は失活したものと思われる。このよう に、グラニュール汚泥を添加しない測定結果を基準として、メタン生成菌の失活を判 断する指標とした。なお、表 1に、それぞれのダラ-ユール汚泥のメタン生成活性を示 す。
[表 1] 熱処理時間 メタン生成活性
(時間) (gCOD/gVSS/D)
0 0.43
2 0.44
4 0.20
6 0.03
24 0.00
グラニュール添加無し 0.00 次に、上記した 60°Cで 24時間加熱処理を行ったグラニュール汚泥を用いて、酸生 成反応の試験を行った。この試験では、まず、表 2に示す組成の培地を 2個生成した 。なお、表 2に(注 1)として示す微量金属溶液の組成を、表 3に示す。
[表 2]
[表 3]
Figure imgf000014_0001
次に、酸生成菌の植菌を目的に、既設廃水処理設備の酸生成槽からの処理水を、 これら培地に添加して培養を行った。その後、表 2に示す組成の培地を連続供給し た。このとき、一方はそのまま連続供給により培養を行った力 他方には途中で 60°C において 24時間加熱処理を行ったグラニュール汚泥を 10% (v/v)添加した。そし て、反応液の糖濃度と有機酸濃度とから、加熱したダラ-ユール汚泥の添加による酸 生成反応の差異を調べた。その結果を、図 3及び図 4に示す。図 3は、加熱処理した ダラ-ユール汚泥の添カ卩による糖消費の結果を示すグラフである。また図 4は、加熱 処理したダラ-ユール汚泥の添カ卩による有機酸生成の結果を示すグラフである。
[0056] 図 3及び図 4に示すように、加熱処理したダラ-ユール汚泥を添カ卩しな力つた系で は、培地の連続供給を開始すると処理水中の全糖濃度は上昇し、有機酸濃度は減 少した。一方、加熱処理したグラニュール汚泥を添加した系では、グラニュール汚泥 を添加するまでは、培地の連続供給を開始すると全糖濃度は上昇し、有機酸濃度が 減少した。しかし、添加後は全糖濃度は再び減少し、有機酸濃度の減少は止まった 。これは、加熱したグラニュール汚泥を添加することにより、酸生成速度が速くなつた ことを示している。このことから、グラニュール汚泥を加熱処理してメタン生成菌を失 活させたものは、酸生成菌を固定化する微生物担体として有効に機能することが分 かる。
[0057] 次に、グラニュール汚泥中の微生物を失活させた微生物担体について説明する。
この実施例では、 UASB型メタン発酵槽より採取したグラニュール汚泥 150mlと水 1 50mlを 500mlビーカーに入れ、オートクレーブにより 121°Cで 1時間加熱し、ダラ- ユール汚泥中の微生物菌体を滅菌した。加熱後、 35°Cまで冷却したダラ-ユール汚 泥のメタン生成活性を、メタン比活性分析装置(関東ィ匕学社製)により測定した。
[0058] その結果、図 5に示すように、メタン生成活性は 0[gCODZgVSSZd]であり、ダラ 二ユール汚泥中のメタン生成菌は失活したものと考えられる。また、このグラニュール 汚泥 50mlを、前述した表 2に示す酸生成用の培地 450mlにより嫌気培養した。その 結果、図 6に示すように、糖が消費されな力つたことから、酸生成菌を含めてダラ-ュ ール汚泥中の微生物は完全に死滅して失活したと思われる。
[0059] 次に、マルトースを基質とした表 2に示す酸生成用の培地により、微生物が失活し たダラ-ユール汚泥が 10% (v/v)となるようにジャーファメンターに添カ卩し、酸生成 菌を混在させ回分培養による馴養を行った。その後、連続培養により培養を行った。 その結果、図 7に示すように、滞留時間が 48時間ではグラニュール汚泥の添加の有 無に関わらず、糖をほとんど消費し尽した。滞留時間を 24時間、 15時間と短くしてい くと、ダラ-ユール汚泥を添加したものは糖をほとんど消費し尽したのに対し、添加し な力つたものは滞留時間 24時間では約 400mgZLの糖を残し、滞留時間 15時間で は処理しきれなくなった。
[0060] この結果から、微生物が失活したグラニュール汚泥に、浮遊している酸生成菌が再 付着し、ダラ-ユール汚泥内に定着して固定ィ匕され、増殖していると思われる。このよ うに、グラニュール汚泥を加熱処理して微生物を失活させたものは、酸生成菌を固定 化する微生物担体として有効に機能することが分かる。これにより、図 1に示すような 廃水処理システムの酸生成槽にこの微生物担体を添加することで、酸生成を安定的 、且つ効率的に運転 ·管理することができる。
[0061] 次に、酸生成槽に添加する微生物担体の量にっ 、て検討する。表 4に示すように、 微生物担体として熱処理ダラ-ユールの添加量が異なる 6つのサンプル排水を用意 した。
[表 4]
o 〇 O o o 〇
o 〇 O o o 〇
C (M C CN CNJ CM
LO ID ID LO
グ全液量溶熱処嫌気処水理理(l)!(l)()(l)ラルスルマニmmCCmュ ^一ー
6 S
LO O LO 〇
O CN
寸 O ID O LO
O 00
d
z Θ Θ @ @
[0062] 嫌気処理水としては、 1日静置後の上澄み液を使用した。熱処理クラ-ユールは、 300mlポリ容器にグラニュール約 100mlを用意し、 60°C恒温機にて 1昼夜放置し、 その後防臭のため氷で冷却した。マルトース溶液は、全量 5ml中にマルトースが 500 mg含まれるように調製した。
[0063] これらを用いて、マルトース溶液を 5mlとし、全量でサンプル排水 200mlとなるよう に、嫌気処理水と熱処理グラニュールの量を種々に変更しながら、熱処理グラニュー ルの添カ卩量の異なる 6種類のサンプル排水を用意した。 [0064] 実験手順としては、まず、 6種類のサンプル排水をそれぞれ 300ml容三角フラスコ に入れ、 35°C恒温水槽に入れて攪拌した。このとき、 1Nの NaOH水溶液を添加し、 pHが 6〜8を保持するようにした。そして、 1時間毎にサンプリング (フィルタ一通し)し 、糖濃度を測定した (フエノール硫酸法)。なお、サンプルはフィルターを通した後、測 定までの期間は冷凍保存した。
[0065] 糖濃度の測定においては、フエノール硫酸法によるマルトースの検量線を作成し、 検量線に基づいて吸光度力 マルトース濃度を測定した。図 8は、このようにして測 定した回分培養における培養時間とマルトース濃度との関係を示すグラフである。な お、図 8においては、参考までに担体として熱処理ダラ-ユールを添カ卩しな力つた場 合 (0容量%)も示している。図 8に示すように、担体添加量は基質消費速度に影響を 及ぼしており、 5容量%以上で基質消費速度が高くなつて、酸生成の効率が高くなる ことが分力ゝる。
[0066] また図 9は、培地を連続供給したときの滞留時間と全糖濃度との関係を示すグラフ である。図 9に示すように、担体として熱処理グラニュールを 1容量%添加した系では 、培地の連続供給を開始すると、滞留時間が 15時間を下回ると全糖濃度は上昇し、 有機酸濃度は減少した。一方、熱処理ダラ-ユールを 5容量%添加した系では、培 地の連続供給を開始すると、滞留時間が 10時間を下回ると全糖濃度は上昇し、有機 酸濃度が減少した。しかし、全糖濃度は 400mgZlでほぼ一定の値を保ち、有機酸 濃度の減少は止まった。
[0067] これら図 8及び図 9の結果から、熱処理グラニュールを 5容量%以上添加すると、酸 生成を効率的に行うことができることが分かる。
[0068] 次に、本実施形態に係る微生物担体をビール排水に添加したときの効果を、実際 のテストプラントで検証した結果を示す。なお、このテストプラントでは、図 10に示すよ うに、酸生成槽 18を本体槽 22と担体槽 24との二槽式の構造とした。担体槽 24には 、微生物担体が酸生成槽 18の全容量 100容量%に対して 5容量%収容されており、 本体槽 22と担体槽 24とは、流体循環可能であった。そして、本体槽 22と担体槽 24 の容量は、それぞれ 600Lと 200Lであった。このように酸生成槽 18を二槽式の構造 とすることで、酸生成槽 18からの微生物担体の流出を抑制し、結果として酸生成の 効率ィ匕を図った。
[0069] 酸生成槽 18に流入される原水としてのビール排水は、 F— CODが約 3000mgZL であり、流量を 400LZhと lOOLZhと 2段階に調整した。従って、酸生成槽 18での 滞留時間は、それぞれの流量に応じて 2時間と 8時間であった。
[0070] 一方、比較のために酸生成槽 18に微生物担体を添加しない場合について、同様 に検証を行った。このとき、酸生成槽 18は容量で 800Lの単槽構造とした。その他の 条件は、上記と同様である。
[0071] 図 11は、酸生成により生成した揮発性脂肪酸 (VFA)濃度 (Total Organic Carbon 換算)の経時変化を示すグラフである。図 11に示すように、流量が lOOLZhでは、担 体を添カ卩しない場合に VFA濃度が 30〜50mgZLであるのに対し、担体を添加した 場合には VFA濃度が 150mgZL程度となり、担体の添カ卩により酸生成が促進される ことが分かる。また、流量を 400LZhとした場合でも、担体を添加しない場合に VFA 濃度が lOOmgZL程度であるのに対し、担体を添加した場合には VFA濃度が 150 mgZL程度となり、担体添カ卩による効果が大きいことが分力る。
[0072] なお、本発明は上記した実施形態に限定されることなぐ本発明の趣旨を逸脱しな い範囲で種々の変形が可能である。例えば、上記実施形態では、ダラ-ユール汚泥 中の全ての微生物を失活させた微生物担体に、酸生成菌を固定ィ匕する場合につい て説明したが、この担体は他の菌の担体としても使用することができる。
[0073] また、上記実施形態では、微生物担体としてグラニュール汚泥中の微生物を失活さ せたもの、或いはダラ-ユール汚泥中のメタン生成菌を失活させたものについて説明 した力 微生物担体は 60°C以上の温度で 6時間以上グラニュール汚泥を加熱するな どして、失活させないまでも、ダラ-ユール汚泥中のメタン生成菌の活性を 0. lg-C ODZg— VSSZd以下に低下させたものであってもよい。
[0074] また、グラニュール汚泥は、例えば UASB型メタン発酵槽から回収することで得る 場合について説明したが、自己固定ィ匕作用を有するメタン生成菌を槽内で造粒させ たものであってもよい。このとき、メタン生成菌と酸生成菌とを混在させた状態でダラ- ユール汚泥を形成し、このダラ-ユール汚泥中のメタン生成菌を失活または活性を低 下させて微生物担体を製造してもよ 、。このように酸生成菌を混在させたものによれ ば、酸生成菌がダラ-ユールの深部まで分布しているため、酸生成菌を完全に失活 させなければ、新たに酸生成菌を付着させる必要がない。

Claims

請求の範囲
[I] ダラ-ユール汚泥中の微生物を失活または活性を低下させたことを特徴とする微生 物担体。
[2] 当該微生物担体に微生物を付着したことを特徴とする請求項 1に記載の微生物担 体。
[3] 付着する微生物が酸生成菌であることを特徴とする請求項 2に記載の微生物担体
[4] グラニュール汚泥中の自己固定ィ匕作用を有するメタン生成菌を失活または活性を 低下させたことを特徴とする微生物担体。
[5] 加熱処理により失活または活性を低下させることを特徴とする請求項 1〜4のいず れかに記載の微生物担体。
[6] グラニュール汚泥中の特定の微生物の活性を優位にしたことを特徴とする微生物 担体。
[7] 前記特定の微生物が酸生成菌であることを特徴とする請求項 6に記載の微生物担 体。
[8] 加熱処理により活性を優位にすることを特徴とする請求項 6又は 7に記載の微生物 担体。
[9] 当該微生物担体に微生物を固定化させたことを特徴とする請求項 1〜8のいずれ かに記載の微生物担体。
[10] メタン生成菌と酸生成菌とを混在させた状態でダラ-ユール汚泥を形成し、このダラ 二ユール汚泥中のメタン生成菌を失活または活性を低下させることを特徴とする微生 物担体の製造方法。
[II] 酸生成槽とメタン発酵槽とを含むメタン発酵装置により廃水を処理する方法であつ て、
請求項 1〜10のいずれかに記載の微生物担体を前記酸生成槽に添加することを 特徴とする廃水処理方法。
[12] 前記酸生成槽は、本体槽と前記微生物担体を収容し該本体槽と流体循環可能な 担体槽とを含み、 前記微生物担体を前記担体槽に添加することを特徴とする請求項 11に記載の廃 水処理方法。
[13] 前記酸生成槽への前記微生物担体の添加量は、該酸生成槽の全容量 100容量 %に対して 5容量%以上であることを特徴とする請求項 11又は 12に記載の廃水処 理方法。
[14] 酸生成槽とメタン発酵槽とを含むメタン発酵装置により廃水を処理する方法であつ て、
前記メタン発酵槽力 グラニュール汚泥を取り出し、
取り出したダラ-ユール汚泥を加熱処理して少なくともメタン生成菌を失活または活 性を低下させ、
加熱処理したダラ-ユール汚泥を前記酸生成槽に添加する、
ことを特徴とする廃水処理方法。
[15] 前記酸生成槽は、本体槽と該本体槽と流体循環可能な担体槽とを含み、
前記加熱処理したグラニュール汚泥を前記担体槽に添加することを特徴とする請 求項 14に記載の廃水処理方法。
[16] 前記酸生成槽への前記加熱処理したグラニュール汚泥の添加量は、該酸生成槽 の全容量 100容量%に対して 5容量%以上であることを特徴とする請求項 14又は 15 に記載の廃水処理方法。
[17] 酸生成槽、及びメタン発酵槽を有するメタン発酵装置と、
グラニュール汚泥を加熱処理する加熱処理装置と、
を備えることを特徴とする廃水処理システム。
PCT/JP2006/313395 2005-07-07 2006-07-05 微生物担体、微生物担体の製造方法、廃水処理方法、及び廃水処理システム WO2007007609A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007524593A JPWO2007007609A1 (ja) 2005-07-07 2006-07-05 微生物担体、微生物担体の製造方法、廃水処理方法、及び廃水処理システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005198946 2005-07-07
JP2005-198946 2005-07-07

Publications (1)

Publication Number Publication Date
WO2007007609A1 true WO2007007609A1 (ja) 2007-01-18

Family

ID=37637003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313395 WO2007007609A1 (ja) 2005-07-07 2006-07-05 微生物担体、微生物担体の製造方法、廃水処理方法、及び廃水処理システム

Country Status (2)

Country Link
JP (1) JPWO2007007609A1 (ja)
WO (1) WO2007007609A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136367A (ja) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd 生物学的排水処理装置及び生物学的排水処理方法
JP2008284427A (ja) * 2007-05-15 2008-11-27 Sumitomo Heavy Industries Environment Co Ltd 排水処理装置及び排水処理方法
JP2012200229A (ja) * 2011-03-28 2012-10-22 Kurita Water Ind Ltd デハロコッコイデス属細菌の培養方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07290088A (ja) * 1994-04-26 1995-11-07 Mitsubishi Kakoki Kaisha Ltd 有機性廃水の生物学的脱窒方法
JP2002336885A (ja) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd 排水の好気性処理方法
JP2003290790A (ja) * 2002-04-03 2003-10-14 Kurita Water Ind Ltd 脱窒装置の立ち上げ方法
JP2005144308A (ja) * 2003-11-14 2005-06-09 Hitachi Plant Eng & Constr Co Ltd 亜硝酸型硝化担体の製造方法及び廃水処理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2567148B1 (fr) * 1984-07-09 1986-11-14 Comp Generale Electricite Procede pour obtenir du methane par fermentation d'algues
JPH0732915B2 (ja) * 1986-12-26 1995-04-12 栗田工業株式会社 有機性廃水の嫌気性処理法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07290088A (ja) * 1994-04-26 1995-11-07 Mitsubishi Kakoki Kaisha Ltd 有機性廃水の生物学的脱窒方法
JP2002336885A (ja) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd 排水の好気性処理方法
JP2003290790A (ja) * 2002-04-03 2003-10-14 Kurita Water Ind Ltd 脱窒装置の立ち上げ方法
JP2005144308A (ja) * 2003-11-14 2005-06-09 Hitachi Plant Eng & Constr Co Ltd 亜硝酸型硝化担体の製造方法及び廃水処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136367A (ja) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd 生物学的排水処理装置及び生物学的排水処理方法
JP2008284427A (ja) * 2007-05-15 2008-11-27 Sumitomo Heavy Industries Environment Co Ltd 排水処理装置及び排水処理方法
JP2012200229A (ja) * 2011-03-28 2012-10-22 Kurita Water Ind Ltd デハロコッコイデス属細菌の培養方法

Also Published As

Publication number Publication date
JPWO2007007609A1 (ja) 2009-01-29

Similar Documents

Publication Publication Date Title
Krakat et al. Methods of ammonia removal in anaerobic digestion: a review
Guo et al. Biohydrogen production from ethanol-type fermentation of molasses in an expanded granular sludge bed (EGSB) reactor
Hickey et al. Start-up, operation, monitoring and control of high-rate anaerobic treatment systems
Vijayaraghavan et al. Biohydrogen generation from palm oil mill effluent using anaerobic contact filter
Sung et al. Performance of temperature-phased anaerobic digestion (TPAD) system treating dairy cattle wastes
Yan et al. Anaerobic digestion of cheese whey using up-flow anaerobic sludge blanket reactor
Patel et al. Effects of temperatures and organic loading rates on biomethanation of acidic petrochemical wastewater using an anaerobic upflow fixed-film reactor
JP2594751B2 (ja) 有機物の分解方法
Wu et al. Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch reactor
Gannoun et al. Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter
CN105543282A (zh) 强化有机废水或废物厌氧生物产氢的方法
Ozturk Evaluation of biogas production yields of different waste materials
US7540961B2 (en) Methods for manufacturing hydrogen using anaerobic digestion
Zheng et al. Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70 C)
Kiani et al. Biogas production from sugarcane vinasse at mesophilic and thermophilic temperatures by static granular bed reactor (SGBR)
Stephenson et al. Evaluation of startup and operation of four anaerobic processes treating a synthetic meat waste
Chu et al. Biohydrogen production performance in a draft tube bioreactor with immobilized cell
CN114317253A (zh) 一种有机物甲烷发酵循环控制一体系统及发酵方法
Suryawanshi et al. Operating procedures for efficient anaerobic digester operation
EP3849948A1 (en) Methods and systems for digesting biosolids and recovering phosphorus
WO2007007609A1 (ja) 微生物担体、微生物担体の製造方法、廃水処理方法、及び廃水処理システム
Zhang et al. Study on the performance of modified UASB process treating sewage
Zeeman et al. Anaerobic treatment of source-separated domestic wastewater
Yılmaz et al. Improved anaerobic acidification of unscreened dairy manure
CN101229938B (zh) 调整运行条件达到控制或减缓膜生物反应器膜污染的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524593

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767901

Country of ref document: EP

Kind code of ref document: A1