WO2007007381A1 - 放電加工装置及び放電加工方法 - Google Patents

放電加工装置及び放電加工方法 Download PDF

Info

Publication number
WO2007007381A1
WO2007007381A1 PCT/JP2005/012668 JP2005012668W WO2007007381A1 WO 2007007381 A1 WO2007007381 A1 WO 2007007381A1 JP 2005012668 W JP2005012668 W JP 2005012668W WO 2007007381 A1 WO2007007381 A1 WO 2007007381A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
reference voltage
servo reference
volume resistivity
discharge
Prior art date
Application number
PCT/JP2005/012668
Other languages
English (en)
French (fr)
Inventor
Shinsuke Miki
Hidetaka Katougi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2007524477A priority Critical patent/JP5021474B2/ja
Priority to PCT/JP2005/012668 priority patent/WO2007007381A1/ja
Priority to CN2005800510253A priority patent/CN101222995B/zh
Priority to TW094126152A priority patent/TWI285141B/zh
Publication of WO2007007381A1 publication Critical patent/WO2007007381A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/10Supply or regeneration of working media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/20Electric circuits specially adapted therefor, e.g. power supply for programme-control, e.g. adaptive

Definitions

  • the present invention relates to processing by making a workpiece (processing object) and a machining electrode face each other via a minute machining gap and applying a pulse voltage to the gap between the workpiece and the machining electrode.
  • the present invention relates to an electric discharge machining apparatus and an electric discharge machining method.
  • Electric discharge machining is a machining method that utilizes the phenomenon of melting of a workpiece due to heat generated by electric discharge and the action of a molten portion scattering due to explosive vaporization and expansion of a machining fluid.
  • the melted portion remaining without being scattered by this electric discharge machining is cooled and solidified to form a melt-resolidified layer having a different quality from the workpiece. Since the resolidified layer is subjected to rapid heating and quenching, it becomes hard and brittle, including cracks, and causes crack propagation, cracking, and strength reduction of the workpiece.
  • the machining fluid is altered by the generation of metal scrap, water, carboxylic acid, etc., and the volume resistivity of the machining fluid is reduced. If the arc resistivity flows due to the decrease in volume resistivity and the arc current flows, problems such as a decrease in machining speed and alteration of the surface of the workpiece occur.
  • the electric discharge machining apparatus described in Patent Document 1 monitors the voltage of the machining gap, and when the voltage deviates from the reference value force, normal discharge is performed by servo control. Provide a servo reference voltage for the machining gap as possible. Further, in the conventional electric discharge machining method for the melt-resolidified layer as described above, it is preferable to select a condition with a short discharge time as much as possible when trying to reduce the melt-resolidified layer.
  • Patent Document 1 Japanese Patent No. 3213116 (Figs. 1 and 5)
  • the electric discharge machining apparatus described in Patent Document 1 With the electric discharge machining apparatus described in Patent Document 1, it is possible to avoid abnormal electric discharge.
  • the invention described in Patent Document 1 provides a qualitative guide to the discharge time. However, it does not touch on optimization of processing conditions such as discharge time and downtime. Therefore, with the electric discharge machining apparatus, it is impossible to obtain appropriate machining characteristics and to appropriately reduce the melt-resolidified layer.
  • the machining characteristics of the electric discharge machine here include at least three characteristics of machining speed, low electrode wear, and workpiece surface quality (workpiece surface quality).
  • the present invention avoids the occurrence of abnormal electric discharge while using various types of machining fluids of various alteration degrees, and correspondingly thins the melt-resolidified layer formed on the workpiece. It is another object of the present invention to provide an electric discharge machining apparatus and an electric discharge machining method that have suitable machining characteristics such as machining speed, low electrode wear, and workpiece surface quality (workpiece surface quality).
  • the present invention has been made to achieve the above object.
  • the electrical discharge machining apparatus according to the present invention is:
  • a volume resistivity detector for detecting the volume resistivity of the working fluid in use
  • Servo reference voltage calculation for determining the servo reference voltage applicable to the working fluid in use from the relationship between the volume resistivity and servo reference voltage when using a new machining fluid and the volume resistivity of the working fluid in use
  • a machining condition calculation unit for obtaining a machining condition including a discharge current, a discharge time, and a downtime according to the servo reference voltage obtained by the servo reference voltage calculation unit.
  • optimum machining conditions such as a discharge current, a discharge time, a rest time, and a servo reference voltage according to the physical properties of the machining fluid are obtained, and the workpiece is machined under the machining conditions.
  • a discharge current a discharge current
  • a discharge time a discharge time
  • a rest time a servo reference voltage
  • a servo reference voltage a servo reference voltage
  • FIG. 1 is a block diagram showing a configuration of an electric discharge machining apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a characteristic diagram showing the relationship between processing speed and volume resistivity.
  • FIG. 3 is a characteristic diagram showing the relationship between finished surface roughness and volume resistivity.
  • FIG. 4 is a characteristic diagram showing the relationship between processing energy and melt-resolidified layer thickness.
  • FIG. 5 shows a process for optimizing machining conditions of the electrical discharge machining apparatus according to Embodiment 1 of the present invention. It is a flowchart.
  • FIG. 6 is a waveform diagram showing voltage waveforms during normal discharge and during abnormal discharge.
  • FIG. 1 is a block diagram showing a configuration of an electric discharge machining apparatus according to Embodiment 1 of the present invention.
  • a processing tank 8 is filled with a processing liquid 18 such as i-paraffinic hydrocarbon, and a workpiece (a workpiece) 6 is disposed therein.
  • a machining electrode 4 is provided at the tip of the servo motor 2 disposed above the workpiece (workpiece) 6.
  • the servo reference voltage applied to the machining electrode 4 is determined and generated by the servo control unit 16. Further, the gap between the machining electrode 4 and the workpiece (workpiece) 6 is determined (controlled) by the servo reference voltage.
  • a voltage is applied to the machining electrode 4
  • a discharge is generated from the machining electrode 4 to the workpiece (workpiece) 6 via the machining fluid 18, and the workpiece (workpiece) 6 is machined. Is done.
  • the volume resistivity detector 10 detects the volume resistivity of the working fluid 18 in use.
  • the servo reference voltage calculation unit 11 included in the machining condition calculation unit 12 obtains a range of servo reference voltages applicable to the working fluid 18 in use, as will be described in detail later.
  • the machining condition calculation unit 13 included in the machining condition calculation unit 12 obtains machining conditions (discharge current, discharge time, pause time, and servo reference voltage) as will be described in detail later.
  • the machining condition database storage unit 14 stores a relational expression for determining machining conditions (described later).
  • the obtained check conditions are given from the control device 15 to the servo control unit 16, and the servo control unit 16 controls the servo motor 2 and the force electrode 4 under the processing conditions.
  • the control device 15 gives a pulse generation condition (described later) to the pulse control unit 17, and the pulse control unit 17 responds to the pulse power source 19 according to the pulse generation condition. Then, the generation of a pulse at the machining electrode 4 is instructed
  • the electric discharge machining apparatus shown in FIG. 1 is particularly used in sculpting electric discharge machining.
  • a machining fluid used in die-sinking electrical discharge machining stamping electrical discharge machining
  • low-viscosity hydrocarbon-based machining fluid or low-viscosity hydrocarbon-based compound with anti-oxidation agent and cooling property improver Machining fluid power to which etc. are added Generally used.
  • the machining fluid undergoes heat denaturation and oxidative denaturation due to the discharge energy to produce decomposition products, polymers, fatty acids, fatty acid metal salts, etc., the physical properties change depending on the usage time!
  • Fig. 2 is a characteristic diagram showing the relationship between the machining speed V and the volume resistivity p of the machining fluid.
  • FIG. 5 is a characteristic diagram showing the relationship between the finished surface roughness R and the volume resistivity p of the machining fluid.
  • the characteristic chart of the present invention shows that the inventors of the present invention have additional characteristics (ie, machining speed and finished surface roughness of the workpiece after machining) and machining with respect to new and altered products of the sculpted EDM. This is the result of detailed analysis and evaluation of liquid physical properties (ie, volume resistivity).
  • A, B, C, and D are commercially available machining fluids for electric discharge machining equipment.
  • the machining fluid also contains altered products (A and C).
  • the volume resistivity is reduced due to heat denaturation and oxidative denaturation caused by lug to produce decomposition products, polymers, fatty acids, fatty acid metal salts, etc. and processing waste (metal powder), but at this time, the electrical conductivity is improved. This is because the time to dielectric breakdown is shortened, and as a result, the processing speed is improved.
  • the unevenness of the surface increases. This is because when the machining fluid is altered and the volume resistivity is lowered, the insulation is not sufficiently recovered and concentrated discharge is likely to occur, and spots (black dots) and the like are generated on the workpiece. This is considered to be because the surface roughness decreases and the surface roughness increases.
  • FIG. 4 shows that the inventors of the present invention also show that the processing energy (Ip X T) and the thickness of the molten resolidified layer
  • FIG. 6 is a characteristic diagram of the result of analysis and evaluation of d.
  • the processing energy here is defined as “discharge current X discharge time”. As shown in Figure 4, the processing energy (Ip XT) increases. As a result, the thickness d of the melted and resolidified layer becomes thicker. This is because when the volume resistivity is reduced, the conductivity is improved and the time until dielectric breakdown is shortened, and the energy given to the object to be covered within a certain time is increased. It is estimated that the thickness of the solidified layer is the force that increases the thickness.
  • FIG. 5 is a flowchart showing processing conditions optimization processing of the electrical discharge machining apparatus according to Embodiment 1 of the present invention.
  • FIG. 6 is a waveform diagram showing voltage waveforms during normal normal discharge (FIG. 6 (a)) and during abnormal discharge (FIG. 6 (b)) in the discharge cage. The process for optimizing the machining conditions of the electrical discharge machining equipment is shown with reference to Figs. 1, 5, and 6.
  • the machining condition calculation unit 12 sets machining conditions according to the new machining fluid, and if it is a used machining fluid, Set the latest (final) machining conditions for the previous use (step ST1).
  • the machining conditions are the discharge current, the discharge time, the pause time, and the servo reference voltage, and the specific values of each machining condition are obtained by reading the data stored in the machining condition database storage unit 14. Can be obtained.
  • the machining condition database storage unit 14 accumulates data for each machining fluid and target object.
  • the volume resistivity detector 10 detects the volume resistivity of the working fluid being used (step ST2: volume resistivity detection step).
  • the servo reference voltage calculation unit 11 included in the machining condition calculation unit 12 calculates the volume resistivity R detected by the volume resistivity detection unit 10 and the volume of the new machining fluid from the following relational expression (Equation 1). Servo reference voltage V corresponding to working fluid in use by resistivity R and servo reference voltage V
  • step ST3 Servo reference voltage calculation process.
  • a is a coefficient determined empirically for various experiments.
  • the volume resistivity R and the servo reference voltage V of the new machining fluid are the machining condition database.
  • the servo reference voltage calculator 11 calculates the servo reference voltage V by substituting the volume resistivity R of the working fluid in use in the above equation (Equation 1). Servo required
  • ⁇ 10% of the reference voltage V is the applicable range.
  • the machining condition calculation unit 13 included in the machining condition calculation unit 12 calculates the servo reference voltage obtained in step ST3 and the following relational expression derived by the inventor of the present invention (Expression 2 to From the equation (4), the machining conditions are obtained (step ST4: machining condition calculation step).
  • T is the discharge time
  • T is the downtime
  • V is the servo reference voltage
  • Ip is the discharge current
  • d is the melt
  • the resolidified layer thickness is shown.
  • melt resolidified layer thickness d is the processing condition data.
  • the setting is made in consideration of the work surface quality and the processing speed based on the information in the database storage unit 14. Similarly, when T is substituted in (Equation 3), the quiescent current T
  • the relational expressions shown in the above (Expression 2) to (Expression 4) are stored in the machining condition database storage unit 14.
  • the machining condition calculation unit 13 included in the machining condition calculation unit 12 includes a servo reference voltage value (range of ⁇ 10%) obtained in (Equation 1) and a preset value of the thickness of the molten resolidified layer. From this, the appropriate discharge current Ip, discharge time T, pause time T, and servo reference voltage V are obtained.
  • control device 15 connects the electrode holding portion 2 and the force electrode 4 via the servo control portion 16 and the pulse control portion 17 in accordance with the calculated care conditions.
  • Control and process step ST5.
  • the servo control unit 16 At the time of machining, the servo control unit 16 generates the set servo reference voltage V in the servo motor 2 and at the same time the machining electrode 4
  • control device 15 applies a no-load voltage V to the machining electrode 4 via the pulse control unit 17 as shown in FIG.
  • the control device 15 has a set discharge time T
  • a discharge voltage Veg and a discharge current Ip are generated, and the workpiece (workpiece) 6 is melted and processed by the discharge current Ip.
  • Force that generates machining scraps on the workpiece (workpiece) 6 due to machining Evaporation of the machining fluid 18 during machining 'The machining scraps are blown away by explosion.
  • the force controller 15 that reduces the insulation of the machining fluid 18 is turned on for the set pause time T.
  • the insulation of the machining fluid 18 is restored by stopping the generation of pressure. Thereafter, the control device 15 repeatedly applies the no-load voltage V to the force electrode 8 via the pulse control unit 17.
  • the circuit design is made so that the discharge current Ip is constant, so that the machining liquid 18 is altered and abnormal electric discharge occurs.
  • the volume resistivity R of the working fluid 18 is reduced, and the average discharge voltage is reduced.
  • Figure 6 (b) shows the voltage waveform during such abnormal discharge.
  • a plurality of processing characteristics are inspected by a predetermined inspection device (not shown) to determine whether or not conditions set in advance are satisfied. Duplicate If the deviation is satisfied among the number of machining characteristics! /, If the machining conditions are not set correctly, the process returns to step ST2 and the optimization of the machining conditions is performed again. If all of the machining characteristics are all satisfied, the machining condition optimization process is terminated (steps ST6 and ST7). At the end, the calculated machining conditions are sequentially recorded in the machining condition data base storage unit 14, and the latest machining conditions are stored in order to continue using the same machining fluid.
  • the electric discharge machining apparatus detects the volume resistivity of the working fluid in use, the relational expression between the volume resistivity and the servo reference voltage, and the detected volume resistivity.
  • the servo reference voltage range corresponding to the working fluid in use is determined from the volume resistivity of the new machining fluid and the actual servo reference voltage.
  • the electric discharge machining is performed after calculating the optimum machining conditions according to the physical properties of the machining fluid 18 based on the servo reference voltage and the relational expression stored in the additional condition database storage unit 14. Therefore, the electric discharge machining apparatus according to Embodiment 1 can satisfy desired conditions regarding machining speed, low electrode consumption, and workpiece surface quality while using machining fluids of various types and various degrees of alteration. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

 様々な種類の様々な変質度の加工液を利用しつつも、異常放電の発生を回避し、被加工物上に形成される溶融再凝固層を相応に薄くし、更に、加工速度、低電極消耗、及びワーク面質(被加工物面質)などの加工特性も適切なものとする放電加工装置及び加工方法を得る。このために、使用中の加工液の体積抵抗率を検出する体積抵抗率検出部と、新品加工液を用いた場合の体積抵抗率及びサーボ基準電圧と、使用中の加工液の体積抵抗率との関係から、使用中の加工液に適用可能なサーボ基準電圧を求めるサーボ基準電圧演算部と、上記サーボ基準電圧演算部により求められたサーボ基準電圧に応じて、放電電流、放電時間、及び休止時間を含む加工条件を求める加工条件演算部とからなることを特徴とする放電加工装置を提示する。

Description

明 細 書
放電加工装置及び放電加工方法
技術分野
[0001] 本発明は、被加工物 (加工対象物)と加工電極とを微小な加工間隙を介して対向さ せ、被加工物と加工電極との間隙にパルス状電圧を印加して加工を行う放電加工装 置及び放電加工方法に関する。
背景技術
[0002] 放電加工は、放電によって発生する熱による被加工物の溶融現象と、加工液の爆 発的な気化膨張で溶融部分が飛散する作用とを利用する加工方法である。この放電 加工により飛散し切れずに残存した溶融部分は、冷却凝固して被加工物と質の異な つた溶融再凝固層を形成する。再凝固層は、急熱と急冷を受けることからクラックを 含み硬くて脆いものとなり、被加工物の亀裂進展、割れ、及び強度低下の原因となる 。また、放電加工では、加工による金属屑、水、カルボン酸の発生等により加工液が 変質して加工液の体積抵抗率が低下する。この体積抵抗率の低下により異常放電 が生じてアーク電流が流れるようになると、加工速度の低下や被加工物表面の変質 などの問題が生じる。
[0003] 上記のような異常放電を回避するために、特許文献 1に記載の放電加工装置は、 加工間隙の電圧をモニタリングし、その電圧が基準値力も外れるとサーボコントロー ルによって、正常放電が可能となるように加工間隙に対するサーボ基準電圧を与え る。また、上記のような溶融再凝固層に関して従来の放電加工方法では、溶融再凝 固層を少なくしょうとする場合できるだけ放電時間の短い条件を選択するのがよい、 とされている。
特許文献 1 :特許第 3213116号公報(図 1、図 5)
発明の開示
発明が解決しょうとする課題
[0004] 上記特許文献 1に記載の放電加工装置により、確かに異常放電の回避は可能とな る。しかし、特許文献 1に記載の発明は、放電時間に対する定性的な指針を示すに 過ぎず、放電時間や休止時間等の加工条件の最適化には触れていない。従って、 該放電加工装置では、適切な加工特性を得ることや溶融再凝固層を相応に低減す ることはできない。なお、ここでの放電加工装置の加工特性は、加工速度、低電極消 耗、及びワーク面質 (被加工物面質)の 3つの特性を少なくとも含むものである。
[0005] 本発明は、様々な種類の様々な変質度の加工液を利用しつつも、異常放電の発 生を回避し、被加工物上に形成される溶融再凝固層を相応に薄くし、更に、加工速 度、低電極消耗、及びワーク面質 (被加工物面質)などの加工特性を適切なものとす る放電加工装置及び放電加工方法を得ることを目的とする。
課題を解決するための手段
[0006] 本発明は、上記の目的を達成するためになされたものである。本発明に係る放電 加工装置は、
使用中の加工液の体積抵抗率を検出する体積抵抗率検出部と、
新品加工液を用いた場合の体積抵抗率及びサーボ基準電圧と、使用中の加工液 の体積抵抗率との関係から、使用中の加工液に適用可能なサーボ基準電圧を求め るサーボ基準電圧演算部と、
上記サーボ基準電圧演算部により求められたサーボ基準電圧に応じて、放電電流 、放電時間、及び休止時間を含む加工条件を求める加工条件演算部とからなること を特徴とする。
発明の効果
[0007] 本発明によれば、加工液の物性に応じた放電電流、放電時間、休止時間及びサー ボ基準電圧等の最適加工条件を求め、その加工条件で被加工物を加工することに より、加工液の変質度合いに応じて、適切な加工特性を得られる効果がある。
図面の簡単な説明
[0008] [図 1]本発明の実施の形態 1に係る放電加工装置の構成を示すブロック図である。
[図 2]加工速度と体積抵抗率との関係を示す特性図である。
[図 3]仕上げ面粗さと体積抵抗率との関係を示す特性図である。
[図 4]加工エネルギーと溶融再凝固層厚さとの関係を示す特性図である。
[図 5]本発明の実施の形態 1に係る放電加工装置の加工条件最適化の処理を示す フローチャートである。
[図 6]正常放電時と異常放電時との電圧波形を示す波形図である。
符号の説明
[0009] 2 サーボモータ、 4 加工用電極、 6 ワーク (被カ卩ェ物)、 8 加工槽、 10 体積抵抗 率検出部、 11 サーボ基準電圧演算部、 12 加工条件計算部、 13 加工条件演算 部、 14 加工条件データベース記憶部、 15 制御装置、 16 サーボコントロール部、 17 ノ ノレスコン卜ローノレ咅^ 18 カロェ液、 19 ノ ノレス電源。
発明を実施するための最良の形態
[0010] 以下、図面を参照して本発明に係る好適な実施の形態を説明する。
[0011] 実施の形態 1
図 1は、本発明の実施の形態 1に係る放電加工装置の構成を示すブロック図である 。図 1において、加工槽 8内には、 i パラフィン系炭化水素等の加工液 18が満たさ れ、その中にワーク (被カ卩ェ物) 6が配置されている。ワーク (被カ卩ェ物) 6の上方に配 置されるサーボモータ 2の先端には、加工用電極 4が設けられている。加工用電極 4 に印加されるサーボ基準電圧は、サーボコントロール部 16により決定 '発生される。 更にそのサーボ基準電圧により、加工用電極 4とワーク (被加工物) 6との間隙が決定 (制御)される。加工用電極 4に電圧が印加されると、加工用電極 4から加工液 18を 介してワーク (被カ卩ェ物) 6に対して放電が発生しワーク (被カ卩ェ物) 6が加工される。
[0012] 体積抵抗率検出部 10は、使用中の加工液 18の体積抵抗率を検出する。加工条 件計算部 12に含まれるサーボ基準電圧演算部 11は、後で詳しく説明するように、使 用中の加工液 18に対する適用可能なサーボ基準電圧の範囲を求める。更に、加工 条件計算部 12に含まれる加工条件演算部 13は、後で詳しく説明するように加工条 件 (放電電流、放電時間、休止時間およびサーボ基準電圧)を求める。加工条件デ ータベース記憶部 14は、(後で説明する)加工条件を決定する関係式を記憶してい る。求められたカ卩ェ条件は制御装置 15からサーボコントロール部 16に与えられ、サ ーボコントロール部 16はその加工条件でサーボモータ 2及び力卩ェ用電極 4を制御す る。また、制御装置 15は、(後で説明する)パルス発生条件をパルスコントロール部 1 7に与え、該パルスコントロール部 17はパルス発生条件に従つてパルス電源 19に対 して加工用電極 4でのパルスの発生を指示する。
[0013] 図 1に示す放電加工装置は、特に形彫放電加工で利用される。形彫放電加工で利 用される加工液 (形彫放電加工液)として、低粘度の炭化水素系化合物の加工液、 若しくは低粘度の炭化水素系化合物に酸ィ匕防止剤や冷却特性向上剤等を添加した 加工液力 一般に使用されている。しかし、加工液は、放電エネルギーにより熱変性 や酸化変性を受け、分解物、重合物、脂肪酸、脂肪酸金属塩等を生成するため、使 用時間に応じて物性が変化して!/、く。
[0014] 図 2は、加工速度 Vと加工液の体積抵抗率 pとの関係を示す特性図であり、図 3 w
は、仕上げ面粗さ Rと加工液の体積抵抗率 pとの関係を示す特性図である。これら s
の特性図は、本発明の発明者らが、形彫放電加工液の新品と変質品とに関して、加 ェ特性 (即ち、加工速度、及び加工後の被加工物の仕上げ面粗さ)と加工液物性( 即ち、体積抵抗率)とを詳しく分析'評価した結果である。なお、図 2及び図 3におい て、 A、 B、 C及び Dは、商業的に入手可能な放電加工装置用の加工液である。加工 液には、変質品も含まれている (Aと C)。
[0015] 図 2に示すように、加工液の変質に伴い体積抵抗率 pが低下すると、加工速度 V w は向上する。例えば、体積抵抗率 Pが 1. 0 Χ 1014 Ω ·«ηから 1. 0 Χ 1013 Ω ·«ηに 低下すると、加工速度は V約 1. 6倍に増大している。これは、加工液は、放電エネ w
ルギ一により熱変性や酸化変性を受けて、分解物、重合物、脂肪酸、脂肪酸金属塩 等や加工屑 (金属粉)を生成するため体積抵抗率が低下するが、このとき通電性は 向上することになる力 絶縁破壊までの時間が短くなり、その結果、加工速度が向上 するからである、と考えられる。
[0016] また、図 3に示すように、体積抵抗率 ρが低下すると仕上げ面粗さ Rは大きくなる。
s
即ち、面の凹凸が増加する。これは、加工液が変質して体積抵抗率が低下すると絶 縁性が十分には回復しにくくなり集中放電が生じやすくなつてワークにシミ(黒い点) 等が発生するため、加工面質が低下し面粗さが大きくなるからである、と考えられる。
[0017] 図 4は、やはり本発明の発明者らが、加工エネルギー (Ip X T )と溶融再凝固層厚
ON
さ dとを分析'評価した結果の特性図である。ここでの加工エネルギーは「放電電流 X 放電時間」と定義している。図 4に示すように、加工エネルギー (Ip X T )が増加す ると溶融再凝固層厚さ dが厚くなつている。これは、体積抵抗率が低下すると通電性 が向上し絶縁破壊までの時間が短くなり一定時間内に被カ卩ェ物に与えられるェネル ギ一が増加し、一方で体積抵抗率の低下により再凝固層の厚さは厚くなる力 である 、と推定される。
[0018] このように、加工液の種類やカ卩工液の変質により加工液の体積抵抗率が変化する と、他の条件を変化させずに保持しても同じ加工特性が得られなくなる。従って、所 望の加工特性を維持するためには、加工液の体積抵抗率に応じて加工条件を変更 していく必要がある。例えば、上述のように体積抵抗率が低下した変質カ卩工液では、 新品加工液と比較して絶縁回復が遅いため集中放電が発生しやすい。従って、集中 放電の発生を回避して新品加工液と同等の加工特性を得るには、加工液の体積抵 抗率に応じた加工条件を設定することが必要になる。
[0019] 図 5は、本発明の実施の形態 1に係る放電加工装置の加工条件最適化の処理を示 すフローチャートである。また、図 6は、放電カ卩ェにおける一般的な正常放電時(図 6 (a) )と異常放電時 (図 6 (b) )との電圧波形を示す波形図である。図 1、図 5、図 6を参 照しつつ放電加工装置の加工条件最適化の処理を示す。
[0020] 先ず、加工条件計算部 12は、加工槽 8内で用いられる加工液 18が新品加工液な らば、その新品加工液に応じた加工条件を設定し、使用済みの加工液ならば、前回 使用時の最新 (最終)の加工条件を設定する (ステップ ST1)。ここで、加工条件とは 、放電電流、放電時間、休止時間、及びサーボ基準電圧であり、各加工条件の具体 的な値は、加工条件データベース記憶部 14に記憶されたデータを読み出すことによ り得られる。加工条件データベース記憶部 14には、加工液及び被力卩ェ物別のデー タが蓄積されている。
[0021] 体積抵抗率検出部 10は、使用している加工液の体積抵抗率を検出する (ステップ ST2 :体積抵抗率検出工程)。
[0022] 加工条件計算部 12に含まれるサーボ基準電圧演算部 11は、以下の関係式 (数 1) から、体積抵抗率検出部 10で検出された体積抵抗率 Rと、新品加工液の体積抵抗 率 R及びサーボ基準電圧 V とにより、使用中の加工液に応じたサーボ基準電圧 V
0 SO S の範囲を求める(ステップ ST3 :サーボ基準電圧演算工程)。なお、下式における「 a」は、種々の実験の評価力 経験的に決定される係数である。
[数 1]
[0023] 新品加工液の体積抵抗率 R及びサーボ基準電圧 V は、加工条件データベース
0 so
記憶部 14に記憶されている。サーボ基準電圧演算部 11は、上式 (数 1)に使用中の 加工液の体積抵抗率 Rを代入してサーボ基準電圧 V を求める。求められたサーボ
1 S1
基準電圧 V の例えば ± 10%を適用可能な範囲とする。
S1
[0024] 次に、加工条件計算部 12に含まれる加工条件演算部 13は、ステップ ST3で求め られたサーボ基準電圧と、本発明の発明者が導出した以下に示した関係式 (数 2〜 数 4)とから、加工条件を求める (ステップ ST4 :加工条件演算工程)。下式において、 T は放電時間、 T は休止時間、 Vはサーボ基準電圧、 Ipは放電電流、 dは溶融
ON OFF S
再凝固層厚さを示す。
[数 2]
d = β χ (Ιρ χ ΎΟ Ν Υ
( β、 γは係数で、 β =0. 8〜1. 5、 γ =0. 2〜0. 3)
[数 3]
TOFF = C x EXP(D x TON )
(C、 Dは係数で、 C = 25〜35、 D=0. 01〜0. 02)
(E、 Fは係数で、 E = 200〜250、 F = 0. 2〜0. 4)
[0025] つまり、ステップ ST3で求められたサーボ基準電圧 V を (数 4)の Vsに代入すると、
S1
先ず T が求まる。次に、(数 2)において、予め設定された溶融再凝固層厚さ dと上
ON
記 T を代入すると放流電流 Ipが求まる。ここでの溶融再凝固層厚さ dは加工条件デ
ON
ータベース記憶部 14の情報を基にして被加工物面質や加工速度との兼ね合いで設 定されるのが好ましい。同様に、(数 3)において上記 T を代入すると、休止電流 T
ON O
が求まる。このように加工条件のサーボ基準電圧 V、放電時間 T 、休止時間 T 、放電電流 Ipが決まる。ここで、 Ip>5AZcm3であれば異常電流が発生するとして I
F
pをこの値以下に限定してもよい。
[0026] 上記 (数 2)〜 (数 4)に示した関係式は、加工条件データベース記憶部 14に記憶さ れている。加工条件計算部 12に含まれる加工条件演算部 13は、(数 1)で求めたサ ーボ基準電圧値(± 10%の範囲)と、予め設定される溶融再凝固層の厚さの値とか ら、適切な放電電流 Ip、放電時間 T 、休止時間 T 、及びサーボ基準電圧 Vを求
ON OFF S
めることができる。
[0027] 放電カ卩ェ装置では、算出されたカ卩ェ条件に従って、制御装置 15がサーボコント口 ール部 16及びパルスコントロール部 17を介して電極保持部 2および力卩ェ用電極 4を 制御して、加工を行う(ステップ ST5)。加工時において、サーボコントロール部 16は 、設定されたサーボ基準電圧 Vをサーボモータ 2に発生させ、同時に加工用電極 4
S
とワーク (被カ卩ェ物) 6の間隙を制御する。更に、制御装置 15がパルスコントロール部 17を介して、図 6 (a)に示すように、加工用電極 4に無負荷電圧 Vを印加することに
0
より、無負荷放電時間 Td後に力卩ェ用電極 4及びワーク (被カ卩ェ物) 6間における加工 液 18を絶縁破壊して放電させる。続いて制御装置 15は設定された放電時間 T だ
ON
け放電電圧 Vegおよび放電電流 Ipを発生させ、この放電電流 Ipによりワーク(被加工 物) 6が溶解され加工される。加工によりワーク (被カ卩ェ物) 6の加工屑が発生する力 加工中における加工液 18の気化 '爆発によりその加工屑が吹き飛ばされる。その結 果、加工液 18の絶縁が低下する力 制御装置 15は設定された休止時間 T だけ電
OFF
圧の発生を休止させることにより、加工液 18の絶縁を回復させる。その後制御装置 1 5はパルスコントロール部 17を介して繰り返して力卩ェ用電極 8に無負荷電圧 Vを印
0 加する。
[0028] ところで、本発明で利用するような形彫放電加工装置では、放電電流 Ipが一定にな るように回路設計されているので、加工液 18が変質して異常放電が発生する状態で は、加工液 18の体積抵抗率 Rが低下しており平均放電電圧が低下する。図 6 (b)は 、そのような異常放電時の電圧波形を示す。
[0029] ここで、複数の加工特性 (加工速度、低電極消耗、及びワーク面質)が予め設定し ておいた条件を満たしているか所定の検査装置(図示せず。 )により検査される。複 数の加工特性のうちの!/、ずれかが満たされて!/、な 、場合、加工条件設定に不備が あるものとして、ステップ ST2に戻り、加工条件の最適化の処理がやり直される。複数 の加工特性が全て満たされている場合、加工条件の最適化の処理が終了される (ス テツプ ST6、 ST7)。なお終了時には、算出された加工条件を加工条件データべ一 ス記憶部 14に逐次記録し、継続して同一の加工液を使用する場合のために最新の 加工条件を記憶しておく。
[0030] 以上のように、実施の形態 1に係る放電加工装置は、使用中の加工液の体積抵抗 率を検出し、体積抵抗率とサーボ基準電圧の関係式と、検出された体積抵抗率、新 品加工液の体積抵抗率、及び実際のサーボ基準電圧の夫々の値とにより、使用中 の加工液に応じたサーボ基準電圧の範囲を求める。更にそのサーボ基準電圧と、加 ェ条件データベース記憶部 14に記憶された関係式とにより、加工液 18の物性に応 じた最適な加工条件を算出した上で、放電加工を行う。従って、実施の形態 1に係る 放電加工装置は、様々な種類の様々な変質度の加工液を利用しつつも、加工速度 、低電極消耗、及びワーク面質に関する所望の条件を満たすことができる。
[0031] また、放電カ卩ェ中に図 5に示したカ卩ェ条件の最適化の処理を所定時間毎に逐次 行えば、加工液物性が時々刻々と変化しても、被加工物において加工液の変質度 合いに応じて、適切な加工特性を得られる。

Claims

請求の範囲
[1] 加工液を用いて被加工物を放電加工する放電加工装置において、
使用中の加工液の体積抵抗率を検出する体積抵抗率検出部と、
新品加工液を用いた場合の体積抵抗率及びサーボ基準電圧と、使用中の加工液 の体積抵抗率との関係から、使用中の加工液に適用可能なサーボ基準電圧を求め るサーボ基準電圧演算部と、
上記サーボ基準電圧演算部により求められたサーボ基準電圧に応じて、放電電流 、放電時間、及び休止時間を含む加工条件を求める加工条件演算部とを含むことを 特徴とする放電加工装置。
[2] 上記サーボ基準電圧演算部がサーボ基準電圧を求め上記加工条件演算部が加 ェ条件を演算した後、算出された加工条件に従って被加工物を放電加工し、その後 、複数の加工特性が予め設定された条件を満たして!/、るか否か検査され、 複数の加工特性のうちの 、ずれかが予め設定された条件を満たして!/、な 、場合、 上記体積抵抗率検出部による使用中の加工液の体積抵抗率の検出と、上記サーボ 基準電圧演算部によるサーボ基準電圧の算出と、上記加工条件演算部による加工 条件の算出とが繰り返されることを特徴とする請求項 1に記載の放電加工装置。
[3] 上記サーボ基準電圧演算部は、数 1の新品加工液を用いた場合の体積抵抗率及 びサーボ基準電圧と、使用中の加工液の体積抵抗率との関係式から、使用中の加 ェ液に適用可能なサーボ基準電圧を求め、
上記加工条件演算部は、数 2〜数 4の放電電流、放電時間、休止時間、サーボ基 準電圧、及び溶融再凝固層厚さの関係式に従って、上記加工条件を求めることを特 徴とする請求項 2に記載の放電加工装置。
[数 1]
f so x 0 = « x ' Si x R,
(R
0は新品加工液の体積抵抗率、 V
SOは新品加工液のサーボ基準電圧、 R
1は使用 中の加工液体積抵抗率)
(V は、使用中の加工液に適用可能なサーボ基準電圧)
S1
( αは、係数) [数 2]
d = β χ Ψ7
(dは、溶融再凝固層厚さ)
(Wは" T X Ip"であり、 T は放電時間、 Ipは放電電流)
ON ON
( β、 γは係数で、 β = 0. 8〜1. 5、 γ = 0. 2〜0. 3)
[数 3]
TOFF = C x EXP{D x TON ) (T は休止時間)
OFF
(C、 Dは係数で、 C = 25〜35、 D= 0. 01〜0. 02)
(Vはサーボ基準電圧)
S
(E、 Fは係数で、 E = 200〜250、 F = 0. 2〜0. 4)
加工液を用いて被力卩ェ物を放電カ卩ェする放電カ卩ェ方法にぉ 、て、
使用中の加工液の体積抵抗率を検出する体積抵抗率検出工程と、
新品加工液を用いた場合の体積抵抗率及びサーボ基準電圧と、使用中の加工液 の体積抵抗率との関係から、使用中の加工液に適用可能なサーボ基準電圧を求め るサーボ基準電圧演算工程と、
上記サーボ基準電圧演算工程により求められたサーボ基準電圧に応じて、放電電 流、放電時間、及び休止時間を含む加工条件を求める加工条件演算工程と、 算出された加工条件に従って被加工物を放電加工する放電加工工程と、 複数の加工特性が予め設定された条件を満たしているか否か検査する加工特性 検査工程とを含み、
上記加工特性検査工程にて、複数の加工特性のうちのいずれかが予め設定され た条件を満たしていないと判断した場合に、上記体積抵抗率検出工程と、上記サー ボ基準電圧演算工程と、上記加工条件演算工程と、上記放電加工工程とを繰り返す ことを特徴とする放電加工方法。
899ZT0/S00Zdf/X3d 11 T8C.00/.00Z OAV
PCT/JP2005/012668 2005-07-08 2005-07-08 放電加工装置及び放電加工方法 WO2007007381A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007524477A JP5021474B2 (ja) 2005-07-08 2005-07-08 放電加工装置及び放電加工方法
PCT/JP2005/012668 WO2007007381A1 (ja) 2005-07-08 2005-07-08 放電加工装置及び放電加工方法
CN2005800510253A CN101222995B (zh) 2005-07-08 2005-07-08 放电加工装置及放电加工方法
TW094126152A TWI285141B (en) 2005-07-08 2005-08-02 Electric discharge machine and electric discharge machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/012668 WO2007007381A1 (ja) 2005-07-08 2005-07-08 放電加工装置及び放電加工方法

Publications (1)

Publication Number Publication Date
WO2007007381A1 true WO2007007381A1 (ja) 2007-01-18

Family

ID=37636789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012668 WO2007007381A1 (ja) 2005-07-08 2005-07-08 放電加工装置及び放電加工方法

Country Status (4)

Country Link
JP (1) JP5021474B2 (ja)
CN (1) CN101222995B (ja)
TW (1) TWI285141B (ja)
WO (1) WO2007007381A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI500466B (zh) * 2012-09-25 2015-09-21 Ind Tech Res Inst 調變式放電加工控制裝置與方法
CN103878452B (zh) * 2014-03-26 2016-08-17 哈尔滨东安发动机(集团)有限公司 内部腔体的电火花加工方法
JP6250897B2 (ja) * 2015-07-28 2017-12-20 ファナック株式会社 被加工物の重量を自動算出する機能を有する放電加工機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351599A (en) * 1976-10-21 1978-05-11 Inoue Japax Res Inc Servo apparatus for electrical machining
JPH06262435A (ja) * 1993-03-09 1994-09-20 Sodick Co Ltd 放電加工方法及び装置
JP2005103709A (ja) * 2003-09-30 2005-04-21 Mitsubishi Electric Corp 放電加工装置および放電加工装置用加工液

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581564B2 (ja) * 1987-09-11 1997-02-12 株式会社ソディック 放電加工装置
JP4904654B2 (ja) * 2001-09-26 2012-03-28 三菱電機株式会社 放電加工装置
WO2004103625A1 (ja) * 2003-05-20 2004-12-02 Mitsubishi Denki Kabushiki Kaisha 放電加工装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351599A (en) * 1976-10-21 1978-05-11 Inoue Japax Res Inc Servo apparatus for electrical machining
JPH06262435A (ja) * 1993-03-09 1994-09-20 Sodick Co Ltd 放電加工方法及び装置
JP2005103709A (ja) * 2003-09-30 2005-04-21 Mitsubishi Electric Corp 放電加工装置および放電加工装置用加工液

Also Published As

Publication number Publication date
TWI285141B (en) 2007-08-11
CN101222995B (zh) 2010-12-15
JPWO2007007381A1 (ja) 2009-01-29
CN101222995A (zh) 2008-07-16
TW200702090A (en) 2007-01-16
JP5021474B2 (ja) 2012-09-05

Similar Documents

Publication Publication Date Title
Pramanik et al. Methods and variables in Electrical discharge machining of titanium alloy–A review
EP1658915B1 (en) Methods and systems for monitoring and controlling electroerosion
Sharma et al. Electrochemical drilling of inconel superalloy with acidified sodium chloride electrolyte
US8168914B2 (en) Electric-discharge-machining power supply apparatus and electric discharge machining method
US10259062B2 (en) Pulse and gap control for electrical discharge machining equipment
KR20120064684A (ko) 아크 용해 설비 및 그 아크 용해 설비를 이용한 용탕의 제조 방법
WO2007007381A1 (ja) 放電加工装置及び放電加工方法
US11873572B2 (en) Electropolishing method
WO2005070599A1 (ja) 放電加工機の加工条件最適化方法
TWI246949B (en) Surface treating method by electric discharge, and apparatus therefor
JP4334310B2 (ja) 放電加工装置
JP3866661B2 (ja) 放電加工方法及び装置
Liao et al. The energy aspect of material property in WEDM and its application
Singh et al. Optimizing the EDM parameters to improve the surface roughness of titanium alloy (Ti-6AL-4V)
Song et al. Highly energy-efficient and safe-environment-friendly ultra short electrical arc machining for titanium alloy: Mechanism, characteristics, and parameter estimation
JP2005153492A (ja) 金属皮膜剥離装置および金属皮膜剥離方法
JP4191589B2 (ja) 放電加工方法及び当該放電加工方法を用いた放電加工装置
JP2006130656A (ja) ワイヤ放電加工機の制御装置
JP2998486B2 (ja) 放電加工装置
JP2007253260A (ja) 放電加工制御方法及び放電加工制御装置
Liu et al. Electrochemical discharge machining of particulate reinforced metal matrix composites
RU2697314C1 (ru) Способ электроэрозионной обработки детали
Rout et al. Parametric study of electrodes in Electric Discharge Machining
JP2006265691A (ja) スパーク検出装置及び方法
ONISZCZUK-ŚWIERCZ et al. EDM–analyses of current and voltage waveforms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524477

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580051025.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05758309

Country of ref document: EP

Kind code of ref document: A1