WO2007004524A1 - Constructional heat-insulating foam board and process for production thereof - Google Patents

Constructional heat-insulating foam board and process for production thereof Download PDF

Info

Publication number
WO2007004524A1
WO2007004524A1 PCT/JP2006/313028 JP2006313028W WO2007004524A1 WO 2007004524 A1 WO2007004524 A1 WO 2007004524A1 JP 2006313028 W JP2006313028 W JP 2006313028W WO 2007004524 A1 WO2007004524 A1 WO 2007004524A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
foam board
foam
insulating building
resin composition
Prior art date
Application number
PCT/JP2006/313028
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuaki Oono
Toru Itaya
Minoru Sugawara
Yasuhiko Otsuki
Chunxiao Zhang
Kazuhiro Baba
Original Assignee
Asahi Fiber Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Company, Limited filed Critical Asahi Fiber Glass Company, Limited
Priority to JP2007524003A priority Critical patent/JPWO2007004524A1/en
Publication of WO2007004524A1 publication Critical patent/WO2007004524A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3469Cell or pore nucleation
    • B29C44/348Cell or pore nucleation by regulating the temperature and/or the pressure, e.g. suppression of foaming until the pressure is rapidly decreased
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0015Insulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment

Definitions

  • the present invention relates to a foam board for a heat insulating building material of a polyolefin resin composition and a method for producing the same.
  • Foams of polyolefin resin compositions are characterized by their excellent balance between performance and cost, and the recyclability of resins that have been sought in recent years. Widely used in packaging cushioning applications.
  • a polypropylene resin or a foam board of polyethylene resin is applied to the inside of a floor or wall of a building, exhibits excellent heat insulating performance, and is widely accepted in the market.
  • the first production method is a so-called bead method, in which a foaming agent such as hydrocarbon is added to a polyolefin resin composition pellet dispersed in water or the like in a pressurized sealed container. After impregnation under high temperature and high pressure, it is rapidly released to atmospheric pressure, so-called pre-expanded particles are produced, the pre-expanded particles are filled in a mold, and heated and cooled to obtain a molded product in the mold. is there.
  • a foaming agent such as hydrocarbon
  • Foam boards made of polyolefin resin composition can be produced by this bead method, but the foam produced by the usual bead method has an average cell diameter of about 200 to 500 xm. Insufficient thermal performance cannot be obtained for use as a heat insulating building material.
  • the bead method is a batch production method, and it is necessary to perform in-steam molding after the pellet production process and pre-expanded particle production process. There is a drawback that the manufacturing cost is higher than possible.
  • the second production method is a so-called extrusion method, and the polyolefin is used as an extruder.
  • Resin composition particles are added, and if necessary, using a hydrocarbon or chemical foaming agent as a foaming agent, melt and knead under heating and pressurization, and then obtain a foam through a die designed in a predetermined shape Is the method.
  • Patent Document 1 a polyfunctional monomer and a thermal decomposable foaming agent are added to a polypropylene resin, melt-mixed in advance, and irradiated with an electron beam to crosslink the polypropylene resin. And a method of further decomposing and foaming the pyrolyzable foaming agent by heating it further.
  • the main component is polypropylene, and the following (1)
  • Patent Document 3 discloses that a thermoplastic polymer (A) and ultrahigh molecular weight polyolefin (b-1) having an intrinsic viscosity [77] of 10 to 40 dl / g are 10 to 50% by weight [r? ] Is 0.:! ⁇ 5dl/g Polyolefin (b-2) 90-50% by weight [The total of (b-1) and (b-2) is 100% by weight.
  • Patent Document 4 a supercritical inert gas, which is a foaming agent, is melted in an extruder by melting a resin composition composed of a thermoplastic resin and a fluoroalkane ester of an aliphatic carboxylic acid. Added to form a completely compatible state of the thermoplastic resin composition and the inert gas. In the gas dissolution process, in the extruder, maintain a pressure above the critical pressure of the inert gas as the blowing agent. In the cooling process that lowers the temperature of the molten resin while holding it, in a die heated above the glass transition temperature of the resin, the pressure is released from the pressure above the critical pressure of the inert gas to the atmospheric pressure.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 07-173317
  • Patent Document 2 W ⁇ 99Z07752 Publication
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-217755
  • Patent Document 4 Japanese Patent Laid-Open No. 10-175248
  • Patent Document 1 has a problem that it is not suitable for continuous mass production because of the large number of steps including a molding step, a crosslinking step, and a foaming step.
  • recycling of plastic molded products has been required due to environmental problems, etc., but melt re-pelletization etc. in the process of recycling the polyolefin resin composition used in such a method.
  • decomposition of the cross-linked product and graph product occurs relatively easily, so the melting characteristics necessary for foaming cannot be maintained, and the recyclability is poor. It was.
  • foams (cells) of the foam are uniformly dispersed because a foam with a relatively low expansion ratio of about 5 times can be easily obtained. Although it is a foam, sufficient heat insulating performance has not been obtained yet. For this reason, in order to obtain even better heat insulation performance, it is conceivable to increase the expansion ratio to 10 times or more. However, if the expansion ratio is 10 times or more, it is difficult to obtain a foam having a uniform and fine cell structure. However, there was a problem that it was impossible to obtain a proper heat insulation performance.
  • polystyrene is mainly used as a thermoplastic resin.
  • a polyolefin resin having crystallinity is foamed.
  • the resin composition at the time of foaming is influenced by the characteristics of the crystalline resin that the melt viscosity and melt tension drop rapidly due to crystal melting.
  • the viscosity and melt tension of the product are significantly reduced, and bubbles (cells) cannot be sufficiently grown and bubbles are broken. In other words, since the cells could not grow sufficiently, it was difficult to obtain a foam having a uniform and fine cell structure at a high expansion ratio of 10 times or more.
  • the object of the present invention is to have excellent extrusion foamability, excellent heat insulation performance, recyclability, low cost and stable continuous production.
  • An object of the present invention is to provide a foam board for a heat insulating building material made of a polyolefin resin composition. Means for solving the problem
  • the present invention has been intensively researched and developed to achieve the above object.
  • a polyolefin resin containing a polypropylene resin a polyolefin resin containing a linear polypropylene resin having a specific range of melt tension is used.
  • a foaming agent containing at least carbon dioxide in a supercritical state preferably under specific conditions, an unprecedented foam board for heat insulating building materials having a foaming ratio of 10 times or more can be obtained.
  • the present invention has been achieved.
  • the present invention has the gist characterized by the following.
  • a polyolefin resin composition containing a linear polypropylene resin having a melt tension of 5 to 30 g at 230 ° C is used with a foaming agent containing at least carbon dioxide in a supercritical state, and the expansion ratio is 10
  • a foam board for heat-insulating building materials characterized by being foamed more than twice.
  • the foam board for heat-insulating building materials according to (1) above having an average cell diameter of 200 ⁇ m or less and a uniform cell diameter distribution with a cell diameter distribution coefficient of 30% or less.
  • a method for producing a foam board for heat-insulating building materials are described in this specification is produced.
  • Extruder force The method for producing a foam board for heat-insulating building materials according to (6) or (7) above, wherein the extrusion discharge amount is 1 to 1000 kg / hr.
  • a heat insulating building material of a polyolefin resin composition that has excellent extrusion foamability, excellent heat insulation performance, is recyclable, and can be stably produced at low cost.
  • a foam board is provided.
  • the polyolefin resin in the polyolefin resin composition of the present invention contains a polypropylene resin, and the polypropylene resin essentially has a melt tension (MT) at 230 ° C of 5 to 30 g.
  • the melt tension can be determined by using a caprograph, with a measurement temperature of 230 ° C, an extrusion speed of 10 mm / min, and a take-up speed of 3. lm / min. If the melt tension is less than 5g, cell breakage will occur at the time of foaming.
  • the melt tension is too high, the cell membrane is prevented from growing, and sufficient cell growth is not performed during foaming, making it difficult to obtain a foam having a sufficient foaming ratio of 10 times or more. Les.
  • the melt tension is preferably 6.5 to 20 g, more preferably 7.5 to 10 g.
  • the polypropylene resin preferably satisfies the following formula (I) between the melt tension at 230 ° C. and the melt flow rate (MFR) at 230 ° C.
  • melt tension and MFR of the polypropylene resin contained in the polyolefin resin composition in the present invention satisfy the above formula (1), the melt fluidity of the resin is simultaneously increased with respect to the increase of the melt tension.
  • the resin pressure at the time of extrusion during foaming is appropriately maintained, and the cell membrane is sufficiently stretched during foaming, so that a high-magnification foam can be easily obtained.
  • the polyolefin resin composition of the present invention may contain other resins in addition to the polypropylene resin having the above specific characteristics.
  • the polypropylene resin having the specific melt tension, and preferably the specific MFR is preferably 50% by mass or more, particularly in the polyolefin resin composition of the present invention. Is preferably contained in an amount of 80% by mass or more in order to satisfactorily achieve the object of the present invention. If the content of the polypropylene resin in the mixed resin is less than 50% by mass, the resulting foam may have insufficient mechanical strength and heat resistance.
  • Examples of the other resin contained in the polyolefin resin composition of the present invention include, for example, polyethylene resin, propylene homopolymer, propylene and one other than propylene copolymerizable with propylene. And a copolymer with olefin.
  • the ⁇ -olefin is not particularly limited, but for example, ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1— Otaten etc. are listed. These other resins may be used alone or in combination of two or more.
  • a propylene homopolymer having a relatively large molecular weight a copolymer of propylene and ethylene mainly composed of propylene, and a mixed resin of polypropylene resin and polyethylene resin are preferably used.
  • the polypropylene resin having the specific characteristics and the other resins used together with the polypropylene resin contained in the polyolefin resin composition of the present invention are substantially linear. It is preferable that in the present invention, the term “linear” means that each molecular chain of the propylene polymer (propylene polymer) constituting the polypropylene resin is a component of the propylene polymer (propylene polymer). This means that the unit propylene monomer and the olefin monomer copolymerizable therewith are practically an aggregate of those polymerized in a single string.
  • the foam board for building material in the present invention is foamed using a foaming agent containing at least carbon dioxide in a supercritical state.
  • foaming is preferably performed using 4 to 20 parts by mass, particularly preferably 5 to 15 parts by mass of a foaming agent containing carbon dioxide in a supercritical state with respect to 100 parts by mass of the polyolefin resin composition. is there. If the amount of carbon dioxide used is less than 4 parts by mass, the foaming ratio is liable to decrease. On the other hand, if it exceeds 20 parts by mass, large voids due to excess carbon dioxide are likely to occur in the foam.
  • the polyolefin resin composition used in the present invention contains a polypropylene resin having the above-mentioned specific physical properties, but the polyolefin resin composition does not impair achievement of the object of the present invention.
  • One or more of various additives such as antimony flame retardants, lubricants, metal damage inhibitors, antistatic agents, fillers, colorants, cell nucleating agents, crystal nucleating agents, etc. may be added. .
  • the cell nucleating agent is not particularly limited, but talc, calcium carbonate. And clay, kaolin, mica, magnesium oxide, zinc oxide, carbon black, glass, quartz, silica, alumina, novaquilite, hydrated alumina, iron, iron oxide, silicon dioxide, titanium oxide and the like.
  • the crystal nucleating agent is not particularly limited, and generally includes a rosin-based crystal nucleating agent, a sorbitol-based crystal nucleating agent, and a phosphate ester-based crystal nucleating agent. It is The rosin-based crystal nucleating agent is not particularly limited as long as it is a rosin-based resin, and examples thereof include dibenzylidene sorbitol (DBS) manufactured by Shin Nippon Rika Co., Ltd. The phosphoric acid ester salt nucleating agent is not particularly limited, and examples thereof include NA_11 manufactured by Asahi Denka Kogyo Co., Ltd. These crystal nucleating agents may be used alone or in combination.
  • a foam board for a heat-insulating building material of the present invention includes a linear polypropylene resin having the above-mentioned specific physical properties using a foaming apparatus having an extruder and a die attached to the tip.
  • the resin composition is mixed with a blowing agent containing at least carbon dioxide in a supercritical state, and is manufactured by melt extrusion at a temperature of 160 to 250 ° C.
  • the melt extrusion temperature is less than 160 ° C, the dissolution and diffusion of supercritical carbon dioxide into the resin is poor, and conversely, when it exceeds 250 ° C, deterioration of the polypropylene resin such as molecular chain breakage due to heat begins to occur. Therefore, it is not preferable.
  • the resin pressure (pressure loss) in the immediate vicinity of the die opening in the extruder is preferably 6 to 20 MPa, released into the atmosphere, and extruded and foamed.
  • the pressure loss is more preferably 7 to 15 MPa, and most preferably 9 to 15 MPa. If the pressure loss is less than 6 MPa, the supercritical carbon dioxide dissolved in the polyolefin resin composition is easily vaporized inside the extruder and inside the die, and foaming occurs inside the apparatus, and It is not preferable because it causes foaming, excessive growth, reduction of expansion ratio, remarkably low appearance and appearance.
  • the extrusion discharge rate in the extruder is preferably 1 to 1000 kg / hr.
  • the amount of extrusion discharge depends on the specifications of the extruder. In general, l to 50 kg / hr is preferable. In a type having a relatively large screw diameter, about 20 to 1000 kg / hr is preferable. If the discharge rate is too large or too small, it will be difficult to maintain a pressure loss suitable for foaming at the die part, and it will not be possible to obtain a foam with a sufficient magnification, or the cells may break. I'll be relaxed.
  • two screws having a screw diameter (D) of preferably 40 to 80 mm and a screw length of (L) (LZD) of preferably 15 to 40 are used.
  • a tandem type extruder configured on the basis of being combined in series is preferable.
  • the resin pressure loss condition and the discharge amount of the die part suitable for foaming can be controlled independently by the number of rotations of each screw, and the above-described polyolefin resin composition of the present invention can be controlled.
  • the foam board having excellent characteristics and excellent characteristics can be manufactured.
  • the shape of the die used in the extruder is not limited, but the number, shape, and thickness of the opening are designed so that the pressure loss per opening is 6 to 20 MPa as described above.
  • a slit die or a multi-hole die is preferable. By selecting a die that satisfies these conditions, it is possible to obtain a foam board for a heat-insulating building material that exhibits sufficient thermal performance.
  • the diameter of the opening in the extruder that is preferably circular is 0.:!-2. Omm is preferred, and 0 ⁇ 3 to 0 ⁇ 7mm is more preferred. It is preferable that a plurality of openings are provided on the front surface of the die, the die depth being preferably 0.1 to 10 mm.
  • the diameter is less than 0.1 mm, the strand diameter of the foam structure is too small, and it is easy to tear off when taken. 2. If the diameter exceeds Omm, the strand diameter is too large. This is preferable because post-molding of the shape becomes difficult. Also, slit-shaped dies having a width of 0.:! To 2.0 mm and a length of 0.1 to 1000 mm can be used.
  • the above polyolefin resin composition is used, for example, in a carbon dioxide supply line having a supercritical carbon dioxide supply capability in the middle of a cylinder barrel.
  • the foamable polyolefin resin composition is heated to a predetermined temperature and uniformly melted and kneaded, and then a predetermined amount of supercritical carbon dioxide is supplied from a supply line to form a board shape. Foam by extruding into A body board is manufactured.
  • the shape and size may be adjusted using a cutting machine, a sandwiching conveyor, or the like in order to adjust the product form of the foam board for heat insulating building materials.
  • a sheet-like material such as an aluminum sheet non-woven fabric or leather is bonded to one side or both sides of the foam board as a face material, and the strength, heat resistance, flame retardancy, etc. Various performances may be imparted.
  • the foam board for heat-insulating building materials of the present invention can have the cell diameter and cell distribution coefficient described later even when the expansion ratio is 10 times or more, and further 15 times or more, particularly Even a foaming ratio of 20 times or more is preferable because it has the cell diameter and cell distribution coefficient and sufficient member thermal performance. Further, it is preferable to use a high expansion ratio because the specific gravity of the foam can be reduced and the cost of the raw materials used can be reduced. On the other hand, if the expansion ratio is too high, the mechanical strength of the foam is reduced. For example, when used as a building material, the foam tends to be damaged by external addition during construction. Nare ,. Therefore, the expansion ratio is preferably 100 times or less, particularly 50 times or less.
  • the foam board for heat-insulating building materials of the present invention preferably has an average cell diameter of 200 ⁇ m or less and 150 ⁇ m or less, and more preferably 50 to 100 / im.
  • the cell diameter distribution coefficient can be 30% or less, more preferably 25% or less, and particularly 20% or less. When the average cell diameter is 200 / m or less and the cell diameter distribution coefficient is 30% or less, the heat insulation performance is particularly excellent when used as a building material.
  • the average cell diameter means that the foam is cut into small test pieces, and the cross-sectional area is randomly determined from an image observed with an electron microscope (SEM) at a magnification of 50 times.
  • the average cell diameter can be obtained by calculating the average cell diameter using the following formula by drawing 10 straight lines with a length of 2 mm and counting the number of cells on the straight line.
  • the cell diameter distribution coefficient is determined from 10 to 20 pieces from an image observed by cutting the foam into test pieces and observing the cross-sectional area with an electron microscope (SEM) at a magnification of 50 times. The average cell diameter and the standard deviation of the cell diameters are calculated, and the cell diameter distribution coefficient can be obtained by the following formula based on these values.
  • Cell system distribution coefficient%) (Standard deviation of cell diameter) / (Average value of cell diameter) X 100
  • the foam board for heat-insulating building materials of the present invention has a thermal conductivity of 20 to 40 mWZmK measured in accordance with JIS-A1412, and can obtain a foam board for heat-insulating building materials having suitable heat insulation properties. it can.
  • the thermal conductivity is more preferably 20 to 37 mW / mK.
  • the thermal insulation performance is not only inferior, but the thermal insulation value is 0.9 or more to obtain a thermal resistance value of 0.9 or more, which is a preferable thermal performance evaluation standard for a thermal insulation construction board. Therefore, when this is used as, for example, a heat insulating material for floors, it becomes larger than the size of the wooden frame of the floor, which may cause problems during construction, which is not preferable.
  • Polypropylene resin A with MFR force 3 at 230 ° C of 3 (g / l0 min) and melt tension at 230 ° C of 7.6 g was supercritical carbon dioxide feeder ( Tandem type single shaft equipped with carbon dioxide supply line from C 02—3) and equipped with die 1 (8 x 48-row multi-hole die with an opening diameter of 0.5 mm) at the second stage tip Supply to an extruder (KGT-50-65 manufactured by Rikita Co., Ltd.), set the carbon dioxide supply rate to 1.2 kgZ hours, and contain 6 parts by mass with respect to 100 parts by mass of polypropylene resin.
  • Example 2 A foam board 1 for a heat insulating building material of a polyolefin resin composition was obtained.
  • the carbon dioxide supply rate is set to 1.5 kg / hour
  • the extrusion amount is adjusted with the screw speed of the first-stage extruder so that 7.5 mass parts is contained per 100 mass parts of the polypropylene resin A
  • a polyolefin resin composition was prepared in the same manner as in Example 1 except that the resin pressure at the die 1 site was adjusted to 8.9 MPa with the screw rotation speed of the second-stage extruder and extruded and foamed.
  • the foam board 2 for heat-insulating building materials was obtained.
  • the carbon dioxide supply rate is set at 1.9 kg / hour
  • the extrusion rate is adjusted with the screw speed of the first-stage extruder so as to contain 6 parts by mass with respect to 100 parts by mass of the polypropylene resin A
  • the die The polyolefin resin composition was prepared in the same manner as in Example 1 except that the resin pressure at one part was adjusted to the screw rotation speed of the second stage extruder so that the pressure was 8.8 MPa, and extrusion foaming was performed.
  • a foam board 4 for heat insulating building materials was obtained.
  • a foamed board 6 for a heat-insulating building material of a polyolefin resin composition was obtained in the same manner as in Example 1 except that the resin pressure at 1 part of the die was 6.5 MPa.
  • polypropylene resin C (homopolypropylene resin A) having 45 parts by mass of polypropylene resin A, MFR at 230 ° C of 6 g / 10 min, and melt tension at 230 ° C of 1/8 g.
  • a foamed board 7 for a heat insulating building material of a polyolefin resin composition was obtained in the same manner as in Example 1 except that the resin pressure was 55 parts by mass and the resin pressure at one part of the die was 8.65 MPa.
  • a foamed board 8 for a heat-insulating building material of a polyolefin resin composition was obtained in the same manner as in Example 1 except that the resin pressure at 1 part of the die was 16. IMPa.
  • Example 1 The same tandem type single-screw extruder used in Example 1 for polypropylene resin C (homopolypropylene resin) with MFR force of S6gZlO at 230 ° C and melt tension of 1.8g at 230 ° C Set the carbon dioxide supply rate to 1.2 kg / hour, and adjust the extrusion amount with the screw speed of the first-stage extruder so that it contains 6 parts by mass with respect to 100 parts by mass of the polypropylene resin. Then, the foam pressure board 6 for the heat insulating building material of the polypropylene resin composition was obtained by adjusting the screw rotation speed of the second stage extruder so that the resin pressure at the die 1 site was 4.5 MPa and by extrusion foaming. .
  • the performance of a commercially available polyethylene foam board manufactured by the bead method with an expansion ratio of 90 times was evaluated.
  • the performance ((a) density, (a) of the polyolefin (polypropylene) resin foam obtained in Examples 1 to 5 and Comparative Examples 1 and 2 and Comparative Example 3 in Comparative Example 3 b) Compressive strength, (c) Average cell diameter, (d) Thermal conductivity, (e) Cell diameter distribution coefficient) were evaluated by the following methods.
  • the foam of the polyolefin resin composition of the present invention has a variety of excellent performance and cost. It can be widely used mainly for heat insulating building materials, automotive parts, and packaging cushioning materials. It should be noted that the entire contents of the Japanese Patent Application 2005-192375, filed on June 30, 2005, and the claims, drawings, and abstract are cited herein, and the description of the present invention is disclosed. It is included as an indication.

Abstract

The invention provides a constructional heat-insulating foam board of a polyolefin resin composition which exhibits excellent extrusion foamability and excellent heat insulation performance and which is recyclable and can be produced at a low cost continuously and stably. A constructional heat-insulating foam board, characterized by being produced by expanding a polyolefin resin composition containing a linear polypropylene resin exhibiting a melt tension of 5 to 30g at 230ºC with a blowing agent containing supercritical carbon dioxide as the essential component at an expansion ratio of 10 or above.

Description

明 細 書  Specification
断熱建材用発泡ボードおよびその製造方法  Foam board for heat insulating building material and method for manufacturing the same
技術分野  Technical field
[0001] 本発明は、ポリオレフイン系樹脂組成物の断熱建材用発泡ボードおよびその製造 方法に関する。  TECHNICAL FIELD [0001] The present invention relates to a foam board for a heat insulating building material of a polyolefin resin composition and a method for producing the same.
背景技術  Background art
[0002] ポリオレフイン系樹脂組成物の発泡体は,その優れた性能とコストのバランス、さら には、近年うたわれる樹脂のリサイクル性等を特徴として、主に、断熱建材用途、自 動車部材用途、包装緩衝材用途などに広く使われている。  [0002] Foams of polyolefin resin compositions are characterized by their excellent balance between performance and cost, and the recyclability of resins that have been sought in recent years. Widely used in packaging cushioning applications.
[0003] 例えば、断熱建材用途としてはポリプロピレン系樹脂やポリエチレン系樹脂の発泡 ボードが建築物の床や壁の内部に施工され、優れた断熱性能を呈し、市場で広く受 け入れられている。 [0003] For example, as a heat insulating building material application, a polypropylene resin or a foam board of polyethylene resin is applied to the inside of a floor or wall of a building, exhibits excellent heat insulating performance, and is widely accepted in the market.
[0004] これらの、ポリオレフイン系樹脂組成物の発泡体は、この様に非常に有用な素材と して広く世の中で使われており、その製造方法も多く研究、実施されている。現在ポリ ォレフィン系樹脂組成物の発泡体の製造方法は、大きく 2つに分類される。  [0004] These foams of a polyolefin resin composition are widely used in the world as such very useful materials, and many production methods have been studied and implemented. Currently, there are roughly two methods for producing foams of polyolefin resin compositions.
[0005] その 1つめの製造方法は、所謂ビーズ法と呼ばれているものであり、加圧密閉容器 中に水などに分散させたポリオレフイン系樹脂組成物ペレットに、炭化水素等の発泡 剤を高温高圧下で含浸させた後に、急激に大気圧下へ放出し、所謂予備発泡粒子 を製造し、その予備発泡粒子を型内に充填し、加熱冷却することにより型内成形物を 得る方法である。  [0005] The first production method is a so-called bead method, in which a foaming agent such as hydrocarbon is added to a polyolefin resin composition pellet dispersed in water or the like in a pressurized sealed container. After impregnation under high temperature and high pressure, it is rapidly released to atmospheric pressure, so-called pre-expanded particles are produced, the pre-expanded particles are filled in a mold, and heated and cooled to obtain a molded product in the mold. is there.
[0006] このビーズ法でも、ポリオレフイン系樹脂組成物の発泡ボードは製造する事が可能 であるが、通常のビーズ法で作成された発泡体は、平均セル径が 200〜500 x m程 度と大きぐ断熱建材用途として熱性能的に充分なものを得ることができない。また、 ビーズ法は、バッチ生産方式であり、ペレット製造工程、予備発泡粒子製造工程に続 き、さらに蒸気型内成形する必要があることより、生産工程数、必要エネルギーも多く 、連続生産が不可能であることより製造コストが高くなつてしまうという欠点がある。  [0006] Foam boards made of polyolefin resin composition can be produced by this bead method, but the foam produced by the usual bead method has an average cell diameter of about 200 to 500 xm. Insufficient thermal performance cannot be obtained for use as a heat insulating building material. In addition, the bead method is a batch production method, and it is necessary to perform in-steam molding after the pellet production process and pre-expanded particle production process. There is a drawback that the manufacturing cost is higher than possible.
[0007] 2つめの製造方法は、所謂押出法と呼ばれるものであり、押出機にポリオレフイン系 樹脂組成物粒子を投入し、必要に応じて、炭化水素や化学発泡剤等を発泡剤として 用いて、加熱'加圧下に溶融混練した後に、所定の形状に設計されたダイスを通じて 発泡体を得る方法である。 [0007] The second production method is a so-called extrusion method, and the polyolefin is used as an extruder. Resin composition particles are added, and if necessary, using a hydrocarbon or chemical foaming agent as a foaming agent, melt and knead under heating and pressurization, and then obtain a foam through a die designed in a predetermined shape Is the method.
[0008] この押出法については、例えば、特許文献 1中に、ポリプロピレン系樹脂に多官能 モノマーと熱分解型発泡剤を添加し、予め溶融混合し、電子線を照射しポリプロピレ ン系樹脂を架橋させた後に、更に加熱して熱分解型発泡剤を分解させ発泡させる方 法等が開示されている。  [0008] Regarding this extrusion method, for example, in Patent Document 1, a polyfunctional monomer and a thermal decomposable foaming agent are added to a polypropylene resin, melt-mixed in advance, and irradiated with an electron beam to crosslink the polypropylene resin. And a method of further decomposing and foaming the pyrolyzable foaming agent by heating it further.
[0009] また、特許文献 2に記載される押出法では、ポリプロピレンを主成分とし、下記(1) [0009] Further, in the extrusion method described in Patent Document 2, the main component is polypropylene, and the following (1)
〜(4)の特性を有するポリプロピレン樹脂組成物を成形することにより、外観および剛 性に優れた大型の各種成形品を得ることができるとされている。すなわち、(1) 230 。C、 2. 16kg荷重下で測定されるメルトフローレート(MFR)が 0. 01~5g/l0min であり、 (2) 135°Cデカリン中で測定される極限粘度 [ η ] 8〜: 13dl/gの高分子量ポ リプロピレンの含有量が 15〜50重量%であり、(3)ジエルの個数が 3000個/ 450c m2以下であり、(4)ゲルパーミエーシヨンクロマトグラフィー(GPC)で測定される分子 量分布 Mw/Mnが 6〜20、かつ Mz/Mwが 3. 5以上とすることにより、高溶融張力 で成形性に優れるとともに剛性に優れ、外観が良好で変形しにくい大型の成形品を 高速成形して効率よく得ることができるポリプロピレン樹脂組成物が開示されている。 It is said that by molding a polypropylene resin composition having the characteristics (4) to (4), various large molded articles excellent in appearance and rigidity can be obtained. (1) 230. C, 2. Melt flow rate (MFR) measured under 16kg load is 0.01 ~ 5g / l0min, (2) Intrinsic viscosity measured in decalin at 135 ° C [η] 8 ~: 13dl / The content of high molecular weight polypropylene in g is 15-50% by weight, (3) the number of dies is 3000/450 cm2, and (4) measured by gel permeation chromatography (GPC). High molecular weight distribution Mw / Mn of 6 to 20 and Mz / Mw of 3.5 or more, large molded products with high melt tension, excellent moldability, excellent rigidity, good appearance and resistance to deformation Polypropylene resin compositions that can be obtained efficiently by high-speed molding are disclosed.
[0010] また、特許文献 3には、熱可塑性重合体 (A)と、極限粘度 [ 77 ]が 10〜40dl/gの 超高分子量ポリオレフイン (b— 1) 10〜50重量%と [ r? ]が 0. :!〜 5dl/gのポリオレ フィン (b— 2) 90〜50重量% [ (b— 1)と(b— 2)の合計を 100重量%とする。 ]とを含 むポリオレフイン組成物(B)とを含有し、(A)と(B)との重量比 [ (A) / (B) ]が 95/5 〜60/40である熱可塑性重合体組成物を発泡することで、 2倍以上の高発泡倍率 で気泡の大きさが微細 ·均一で、かつ押出安定性に優れた熱可塑性重合体の発泡 成形体が開示されている。  [0010] Further, Patent Document 3 discloses that a thermoplastic polymer (A) and ultrahigh molecular weight polyolefin (b-1) having an intrinsic viscosity [77] of 10 to 40 dl / g are 10 to 50% by weight [r? ] Is 0.:!~5dl/g Polyolefin (b-2) 90-50% by weight [The total of (b-1) and (b-2) is 100% by weight. A thermoplastic polymer (B) having a weight ratio [(A) / (B)] of 95/5 to 60/40. By foaming the composition, a foamed molded article of a thermoplastic polymer having a high foaming ratio of 2 times or more, a fine and uniform cell size, and excellent extrusion stability is disclosed.
[0011] また、特許文献 4には、押出機内で、熱可塑性樹脂及び脂肪族カルボン酸のフル ォロアルカンエステルからなる樹脂組成物を溶融し、発泡剤である超臨界状態の不 活性ガスを添加し、熱可塑性樹脂組成物と不活性ガスの完全相溶状態を形成する ガス溶解工程、押出機内で、発泡剤である不活性ガスの臨界圧力以上の圧力を維 持したまま、溶融樹脂の温度を下げる冷却工程、樹脂のガラス転移温度以上に加熱 したダイス内において、不活性ガスの臨界圧力以上の圧力から、最終的には大気圧 へ圧力を解放することでセル核を発生させる核生成工程、並びに、発泡体を熱可塑 性樹脂のガラス転移温度、または結晶化温度以下に冷却しセル径を制御する発泡 制御工程力 なる、熱可塑性樹脂発泡体の製造方法が開示されている。 [0011] In Patent Document 4, a supercritical inert gas, which is a foaming agent, is melted in an extruder by melting a resin composition composed of a thermoplastic resin and a fluoroalkane ester of an aliphatic carboxylic acid. Added to form a completely compatible state of the thermoplastic resin composition and the inert gas. In the gas dissolution process, in the extruder, maintain a pressure above the critical pressure of the inert gas as the blowing agent. In the cooling process that lowers the temperature of the molten resin while holding it, in a die heated above the glass transition temperature of the resin, the pressure is released from the pressure above the critical pressure of the inert gas to the atmospheric pressure. A nucleation step for generating cell nuclei, and a method for producing a thermoplastic resin foam, wherein the foam is cooled to a glass transition temperature or a crystallization temperature of the thermoplastic resin or lower to control the cell diameter. Is disclosed.
特許文献 1 :特開平 07— 173317号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 07-173317
特許文献 2 :W〇99Z07752号公報  Patent Document 2: W〇99Z07752 Publication
特許文献 3:特開 2004— 217755号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-217755
特許文献 4:特開平 10— 175248号公報  Patent Document 4: Japanese Patent Laid-Open No. 10-175248
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] しかしながら、特許文献 1に記載された発明では、成形工程、架橋工程、及び発泡 工程と、工程数が多いので、連続大量生産には適していないという問題があった。ま た、近年、環境問題等によりプラスチック成形品のリサイクル使用等が求められる傾 向にあるが、このような方法で使用されるポリオレフイン系樹脂組成物をリサイクル再 生させる過程で溶融再ペレット化等熱履歴を与える工程を経させる事で、架橋体、グ ラフト体の分解等が比較的容易に生じる為に、発泡に必要な溶融特性を保つことが できず、リサイクル性に乏しいという欠点があった。 [0012] However, the invention described in Patent Document 1 has a problem that it is not suitable for continuous mass production because of the large number of steps including a molding step, a crosslinking step, and a foaming step. In recent years, recycling of plastic molded products has been required due to environmental problems, etc., but melt re-pelletization etc. in the process of recycling the polyolefin resin composition used in such a method. By passing through the process of giving a heat history, decomposition of the cross-linked product and graph product occurs relatively easily, so the melting characteristics necessary for foaming cannot be maintained, and the recyclability is poor. It was.
[0013] また、特許文献 2及び特許文献 3に開示された発明では、 5倍程度の比較的低い 発泡倍率の発泡体を容易に得られるため発泡体の気泡(セル)は均一に分散された 発泡体であるものの、未だ充分な断熱性能は得られてない。このためさらに優れた断 熱性能を得るため、発泡倍率を 10倍以上にすることが考えられるが、 10倍以上の高 発泡倍率にすると均一微細なセル構造を有する発泡体は得難ぐかえって充分な断 熱性能が得られないといった問題を有していた。  [0013] In addition, in the inventions disclosed in Patent Document 2 and Patent Document 3, foams (cells) of the foam are uniformly dispersed because a foam with a relatively low expansion ratio of about 5 times can be easily obtained. Although it is a foam, sufficient heat insulating performance has not been obtained yet. For this reason, in order to obtain even better heat insulation performance, it is conceivable to increase the expansion ratio to 10 times or more. However, if the expansion ratio is 10 times or more, it is difficult to obtain a foam having a uniform and fine cell structure. However, there was a problem that it was impossible to obtain a proper heat insulation performance.
[0014] また、特許文献 4に開示された発明では、その実施例には熱可塑性樹脂として主 にポリスチレンが用いられている力 非晶性のポリスチレンに比べ、結晶性を有する ポリオレフイン系樹脂を発泡させる場合、通常は、結晶融解により急激に溶融粘度や 溶融張力が低下するという結晶性樹脂の特徴に影響を受けて、発泡時の樹脂組成 物に著しい粘度低下、溶融張力低下が生じ、気泡 (セル)の充分な成長ができず破 泡してしまうという不具合が生じる。つまり、セルが充分に成長できないので、 10倍以 上の高発泡倍率で均一微細なセル構造を有する発泡体を得られないとレ、う問題を有 していた。 [0014] In the invention disclosed in Patent Document 4, in the examples, polystyrene is mainly used as a thermoplastic resin. Compared to amorphous polystyrene, a polyolefin resin having crystallinity is foamed. In general, the resin composition at the time of foaming is influenced by the characteristics of the crystalline resin that the melt viscosity and melt tension drop rapidly due to crystal melting. There is a problem that the viscosity and melt tension of the product are significantly reduced, and bubbles (cells) cannot be sufficiently grown and bubbles are broken. In other words, since the cells could not grow sufficiently, it was difficult to obtain a foam having a uniform and fine cell structure at a high expansion ratio of 10 times or more.
[0015] 特に上特許文献 2、 3の発泡体を、建材用の断熱材に用いた場合、 10倍以上の高 い発泡倍率を得ることができないので、実際に建築物等に断熱材として施工する場 合に不都合が生じる。すなわち、その低い発泡倍率故に、断熱材の厚みを増すと断 熱材の重量が大きくなりすぎ、部材としての断熱性能を良好にする為には、部材総重 量の増大、及び原材料コストの増大という問題が発生し、現実的ではない。また、平 均セル径が 200 z m以下、より好ましくは 100 z m以下のものが得られないと、断熱 性能を悪化させる要因の一つであるセル内部の気体の対流の影響が無視できない レベルまで大きくなるので好ましくない。すなわち、軽量で安定的な熱性能を呈する という建築用断熱材特有の要求を充分満たすものではなかった。  [0015] In particular, when the foams of Patent Documents 2 and 3 are used as a heat insulating material for building materials, a high expansion ratio of 10 times or more cannot be obtained. Inconvenience occurs when doing so. In other words, because of its low expansion ratio, increasing the thickness of the heat insulating material increases the weight of the heat insulating material, and in order to improve the heat insulating performance as a member, the total weight of the member and the cost of raw materials increase. This is not realistic. In addition, if an average cell diameter of 200 zm or less, more preferably 100 zm or less cannot be obtained, the effect of gas convection inside the cell, which is one of the factors that deteriorate the heat insulation performance, is greatly increased to a level that cannot be ignored. This is not preferable. In other words, it did not fully meet the unique requirements of a building insulation material that is lightweight and exhibits stable thermal performance.
[0016] したがって、本発明の目的は、上記問題点に鑑み、優れた押出発泡性を有し、優 れた断熱性能を有し、リサイクル可能であり、安価で安定的に連続生産することがで きるポリオレフイン系樹脂組成物の断熱建材用発泡ボードを提供することにある。 課題を解決するための手段  [0016] Therefore, in view of the above problems, the object of the present invention is to have excellent extrusion foamability, excellent heat insulation performance, recyclability, low cost and stable continuous production. An object of the present invention is to provide a foam board for a heat insulating building material made of a polyolefin resin composition. Means for solving the problem
[0017] 本発明は上記の目的を達成すべく鋭意研究開発を進めたところ、ポリプロピレン系 樹脂を含むポリオレフイン系樹脂として、特定範囲の溶融張力を有する直鎖状のポリ プロピレン系樹脂を含むポリオレフイン系樹脂組成物を、超臨界状態の二酸化炭素 を少なくとも含む発泡剤により、好ましくは特定の条件にて溶融押出することにより、 従来にない、 10倍以上発泡倍率を有する断熱建材用発泡ボードが得られることを見 出し、本発明に到達したものである。  [0017] The present invention has been intensively researched and developed to achieve the above object. As a polyolefin resin containing a polypropylene resin, a polyolefin resin containing a linear polypropylene resin having a specific range of melt tension is used. By blowing and extruding the resin composition with a foaming agent containing at least carbon dioxide in a supercritical state, preferably under specific conditions, an unprecedented foam board for heat insulating building materials having a foaming ratio of 10 times or more can be obtained. As a result, the present invention has been achieved.
[0018] 力べして、本発明は、下記を特徴とする要旨を有するものである。  [0018] In summary, the present invention has the gist characterized by the following.
(1) 230°Cにおける溶融張力が 5〜30gである直鎖状のポリプロピレン系樹脂を含む ポリオレフイン系樹脂組成物を、超臨界状態の二酸化炭素を少なくとも含む発泡剤を 用いて、発泡倍率が 10倍以上発泡させてなることを特徴とする断熱建材用発泡ボー ド、。 (2)平均セル径が 200 μ m以下であり、かつセル径分布係数が 30%以下の均一セ ル径分布を有する上記(1)に記載の断熱建材用発泡ボード。 (1) A polyolefin resin composition containing a linear polypropylene resin having a melt tension of 5 to 30 g at 230 ° C is used with a foaming agent containing at least carbon dioxide in a supercritical state, and the expansion ratio is 10 A foam board for heat-insulating building materials, characterized by being foamed more than twice. (2) The foam board for heat-insulating building materials according to (1) above, having an average cell diameter of 200 μm or less and a uniform cell diameter distribution with a cell diameter distribution coefficient of 30% or less.
(3) 230°Cにおける溶融張力が 5〜30gである直鎖状のポリプロピレン系樹脂力 前 記ポリオレフイン系樹脂組成物中に 50質量%以上含有される上記(1)または(2)に 記載の断熱建材用発泡ボード。  (3) A linear polypropylene resin power having a melt tension of 5 to 30 g at 230 ° C. 50% by mass or more in the polyolefin resin composition described in (1) or (2) above Foam board for heat insulating building materials.
(4) JIS_A1412に準拠して測定される熱伝導率力 20〜40mW/mKである、上 記(1)〜(3)のレ、ずれか 1項に記載の断熱建材用発泡ボード。  (4) The foam board for a heat insulating building material according to (1) to (3) above, which has a thermal conductivity power of 20 to 40 mW / mK measured according to JIS_A1412.
(5) JIS-A1412に準拠して測定される熱伝導率力 20〜37mW/mKである上記(1 )〜(4)のレ、ずれか 1項に記載の断熱建材用発泡ボード。  (5) The foam board for heat-insulating building materials according to (1) to (4) above, which has a thermal conductivity of 20 to 37 mW / mK measured according to JIS-A1412.
(6)押出機と、先端に取付けられたダイスとを有する発泡装置を用レ、、 230°Cにおけ る溶融張力が 5〜30gである直鎖状のポリプロピレン系樹脂を含むポリオレフイン系 樹脂組成物と、超臨界状態の二酸化炭素を少なくとも含む発泡剤とを、 160〜250 °Cの温度条件で溶融押出し、ダイス開口部直近樹脂圧力を 6〜20MPaで大気下に 放出し押出発泡することを特徴とする断熱建材用発泡ボードの製造方法。  (6) A polyolefin resin composition containing a linear polypropylene resin having a melt tension of 5 to 30 g at 230 ° C, using a foaming device having an extruder and a die attached to the tip. And a foaming agent containing at least carbon dioxide in a supercritical state are melt-extruded under a temperature condition of 160 to 250 ° C, and the resin pressure immediately at the die opening is released into the atmosphere at 6 to 20 MPa to perform extrusion foaming. A method for producing a foam board for heat-insulating building materials.
(7)ダイス開口部直近樹脂圧力を 7〜: 15MPaで大気下に放出し押出発泡する上記 (6)に記載の断熱建材用発泡ボードの製造方法。  (7) The method for producing a foam board for heat-insulating building materials according to (6), wherein the resin pressure in the immediate vicinity of the die opening is 7 to 15 MPa, and the foam is extruded and foamed.
(8)押出機力 押出吐出量が 1〜: 1000kg/hrのタンデム型押出機である上記(6) 又は(7)に記載の断熱建材用発泡ボードの製造方法。  (8) Extruder force The method for producing a foam board for heat-insulating building materials according to (6) or (7) above, wherein the extrusion discharge amount is 1 to 1000 kg / hr.
発明の効果  The invention's effect
[0019] 本発明によれば、優れた押出発泡性を有し、優れた断熱性能を有し、リサイクル可 能であり、安定的に安価で生産することができるポリオレフイン系樹脂組成物の断熱 建材用発泡ボードが提供される。  [0019] According to the present invention, a heat insulating building material of a polyolefin resin composition that has excellent extrusion foamability, excellent heat insulation performance, is recyclable, and can be stably produced at low cost. A foam board is provided.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 本発明におけるポリオレフイン系樹脂組成物におけるポリオレフイン樹脂は、ポリプ ロピレン系樹脂を含むもので、前記ポリプロピレン系樹脂は、 230°Cにおける溶融張 力(MT)が 5〜30gを必須とする。ここで溶融張力とは、キヤピログラフを用い、測定温 度 230°C、押出速度 10mm/min、引き取り速度 3. lm/分によって求めることがで きる。溶融張力が 5g未満であると発泡時にセルの破泡が生じやすぐ逆に 30gを超 えると溶融張力が高すぎて、セル膜の伸びが抑制され、発泡時に充分なセルの成長 が行われないため 10倍以上の充分な発泡倍率を有する発泡体を得ることが難しくな り好ましくなレ、。溶融張力は、好ましくは 6. 5〜20gであり、より好ましくは 7. 5〜: 10g である。 [0020] The polyolefin resin in the polyolefin resin composition of the present invention contains a polypropylene resin, and the polypropylene resin essentially has a melt tension (MT) at 230 ° C of 5 to 30 g. Here, the melt tension can be determined by using a caprograph, with a measurement temperature of 230 ° C, an extrusion speed of 10 mm / min, and a take-up speed of 3. lm / min. If the melt tension is less than 5g, cell breakage will occur at the time of foaming. In other words, the melt tension is too high, the cell membrane is prevented from growing, and sufficient cell growth is not performed during foaming, making it difficult to obtain a foam having a sufficient foaming ratio of 10 times or more. Les. The melt tension is preferably 6.5 to 20 g, more preferably 7.5 to 10 g.
[0021] 更に、上記のポリプロピレン系樹脂は、上記 230°Cにおける溶融張力と、 230°Cに おけるメルトフローレート(MFR)との関係力 下記の式 (I)を満たすことが好ましい。  Furthermore, the polypropylene resin preferably satisfies the following formula (I) between the melt tension at 230 ° C. and the melt flow rate (MFR) at 230 ° C.
Log (MT) > _ 1. 331og (MFR) + 1. 2 (I) Log (MT)> _ 1. 331og (MFR) + 1.2 (I)
[0022] 本発明でポリオレフイン系樹脂組成物に含有される、ポリプロピレン系樹脂の溶融 張力と MFRが上記式(1)を満たす場合には、溶融張力の増大に対し、樹脂の溶融 流動性が同時に増大し、発泡の際の押出時における樹脂圧力が適正に保持され、 また、発泡時にセル膜の充分な伸びが得られ、高倍率の発泡体が容易に得られるの で極めて好適である。 [0022] When the melt tension and MFR of the polypropylene resin contained in the polyolefin resin composition in the present invention satisfy the above formula (1), the melt fluidity of the resin is simultaneously increased with respect to the increase of the melt tension. The resin pressure at the time of extrusion during foaming is appropriately maintained, and the cell membrane is sufficiently stretched during foaming, so that a high-magnification foam can be easily obtained.
[0023] 本発明のポリオレフイン系樹脂組成物中には、上記特定の特性を有するポリプロピ レン系樹脂の他に、他の樹脂を含有することができる。しかし、他の樹脂を含む場合 にも、上記特定の溶融張力、及び好ましくは、特定の MFRを有するポリプロピレン系 樹脂は、本発明のポリオレフイン系樹脂組成物中に、好ましくは 50質量%以上、特に は 80質量%以上含有することが、本発明の目的を良好に達成するために好ましい。 上記混合樹脂中におけるポリプロピレン系樹脂の含有量が 50質量%未満であると、 得られる発泡体の機械的強度や耐熱性が不充分となることがある。  [0023] The polyolefin resin composition of the present invention may contain other resins in addition to the polypropylene resin having the above specific characteristics. However, even when other resins are included, the polypropylene resin having the specific melt tension, and preferably the specific MFR, is preferably 50% by mass or more, particularly in the polyolefin resin composition of the present invention. Is preferably contained in an amount of 80% by mass or more in order to satisfactorily achieve the object of the present invention. If the content of the polypropylene resin in the mixed resin is less than 50% by mass, the resulting foam may have insufficient mechanical strength and heat resistance.
[0024] 本発明のポリオレフイン系樹脂組成物中に含有される、上記の他の樹脂としては、 例えば、ポリエチレン樹脂、プロピレンの単独重合体、プロピレンと該プロピレンと共 重合可能なプロピレン以外のひ一ォレフインとの共重合体が挙げられる。 α—ォレフ インとしては、特に限定されるものではなレ、が、例えば、エチレン、 1—ブテン、 1—ぺ ンテン、 1—へキセン、 4—メチル一1—ペンテン、 1—ヘプテン、 1—オタテン等が挙 げられる。これらの他の樹脂としては、単独で用いてもよいし、 2種類以が併用して用 レ、てもよレ、。上記他の樹脂としては、なかでも、押出発泡性や、得られる発泡体の性 能が優れることから、比較的分子量の大きなプロピレン単独重合体、プロピレンを主 体とする、プロピレンとエチレンとの共重合体、ポリプロピレン系樹脂とポリエチレン系 樹脂との混合樹脂が好ましく用いられる。 [0024] Examples of the other resin contained in the polyolefin resin composition of the present invention include, for example, polyethylene resin, propylene homopolymer, propylene and one other than propylene copolymerizable with propylene. And a copolymer with olefin. The α-olefin is not particularly limited, but for example, ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1— Otaten etc. are listed. These other resins may be used alone or in combination of two or more. Among these other resins, among others, extrusion foamability and properties of the obtained foam From the viewpoint of excellent performance, a propylene homopolymer having a relatively large molecular weight, a copolymer of propylene and ethylene mainly composed of propylene, and a mixed resin of polypropylene resin and polyethylene resin are preferably used.
[0025] 本発明のポリオレフイン系樹脂組成物に含有される、上記特定の特性を有するポリ プロピレン系樹脂、及び該ポリプロピレン系樹脂と一緒に使用される他の樹脂はいず れも実質上直鎖状であることが好ましい。本発明において、直鎖状とは、ポリプロピレ ン系樹脂を構成してレ、るプロピレン系ポリマー(プロピレン系重合体)の分子鎖のひと つひとつが、プロピレン系ポリマー(プロピレン系重合体)の構成単位であるプロピレ ン単量体及びそれと共重合可能なひーォレフイン単量体が、実質上、相互に 1本の 紐状に重合したものの集合体であることをいう。これにより、化学架橋や、電子線架橋 等の方法を利用した架橋構造や、長鎖分岐等のグラフト構造を実質上有していない 為、製造や品質の管理が比較的容易で、リサイクル時に施される再ペレット化等のェ 程で受ける再三の熱履歴に対しても、その分子構造の劣化が生じにくいため好適に 使用される。  [0025] The polypropylene resin having the specific characteristics and the other resins used together with the polypropylene resin contained in the polyolefin resin composition of the present invention are substantially linear. It is preferable that In the present invention, the term “linear” means that each molecular chain of the propylene polymer (propylene polymer) constituting the polypropylene resin is a component of the propylene polymer (propylene polymer). This means that the unit propylene monomer and the olefin monomer copolymerizable therewith are practically an aggregate of those polymerized in a single string. As a result, there is virtually no cross-linking structure using methods such as chemical cross-linking, electron beam cross-linking, or graft structures such as long-chain branching. It is also suitable for repeated thermal histories received in the process of re-pelletizing and the like because the molecular structure hardly deteriorates.
[0026] 本発明における建材用発泡ボードは、超臨界状態の二酸化炭素を少なくとも含む 発泡剤を用いて発泡される。かかる発泡は、ポリオレフイン系樹脂組成物 100質量部 に対して、超臨界状態の二酸化炭素を含む発泡剤を好ましくは 4〜20質量部、特に 好ましくは 5〜: 15質量部使用するのが好適である。二酸化炭素の使用量が 4質量部 未満であると発泡倍率の低下が生じ易ぐまた、 20質量部を超えると過剰な二酸化 炭素による大きな空隙 (ボイド)が発泡体中に生じ易く好ましくない。  [0026] The foam board for building material in the present invention is foamed using a foaming agent containing at least carbon dioxide in a supercritical state. Such foaming is preferably performed using 4 to 20 parts by mass, particularly preferably 5 to 15 parts by mass of a foaming agent containing carbon dioxide in a supercritical state with respect to 100 parts by mass of the polyolefin resin composition. is there. If the amount of carbon dioxide used is less than 4 parts by mass, the foaming ratio is liable to decrease. On the other hand, if it exceeds 20 parts by mass, large voids due to excess carbon dioxide are likely to occur in the foam.
[0027] 本発明で用いられるポリオレフイン系樹脂組成物は、上記した特定の物性を有する ポリプロピレン系樹脂を含んでいるが、該ポリオレフイン系樹脂組成物には、本発明 の課題達成を阻害しない範囲で、必要に応じて、フヱノール系、リン系、アミン系、硫 黄系等の酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、リン系、 窒素系、ハロゲン系、アンチモン系等の難燃剤、滑剤、金属害防止剤、帯電防止剤 、充填剤、着色剤、セル造核剤、結晶核剤等の各種添加剤の 1種もしくは 2種以上が 添加されてもよい。  [0027] The polyolefin resin composition used in the present invention contains a polypropylene resin having the above-mentioned specific physical properties, but the polyolefin resin composition does not impair achievement of the object of the present invention. If necessary, phenolic, phosphorus, amine, sulfur-based antioxidants (anti-aging agents), heat stabilizers, light stabilizers, UV absorbers, phosphorus-based, nitrogen-based, halogen-based, One or more of various additives such as antimony flame retardants, lubricants, metal damage inhibitors, antistatic agents, fillers, colorants, cell nucleating agents, crystal nucleating agents, etc. may be added. .
[0028] 上記セル造核剤としては、特に限定されるものではなレ、が、タルク、炭酸カルシユウ ム、クレー、カオリン、雲母、酸化マグネシユウム、酸化亜鉛、カーボンブラック、ガラス 、石英、シリカ、アルミナ、ノバキユライト、水和アルミナ、鉄、酸化鉄、二酸化珪素、酸 化チタン等が挙げられる。 [0028] The cell nucleating agent is not particularly limited, but talc, calcium carbonate. And clay, kaolin, mica, magnesium oxide, zinc oxide, carbon black, glass, quartz, silica, alumina, novaquilite, hydrated alumina, iron, iron oxide, silicon dioxide, titanium oxide and the like.
[0029] また、上記結晶核剤としては、特に限定されるものではないが、一般的に、ロジン系 の結晶核剤や、ソルビトール系の結晶核剤、燐酸エステル塩系の結晶核剤が挙げら れる。ロジン系の結晶核剤としては、ロジン系の樹脂であればよぐ特に限定されるも のではないが、例えば、新日本理化 (株)製ジベンジリデンソルビトール(DBS)等が 挙げられる。燐酸エステル塩系の結晶核剤も、特に限定されるものではないが、例え ば、旭電化工業 (株)製 NA_ 11等が挙げられる。これらの結晶核剤は単独または複 数を併用して用いてもよい。  [0029] The crystal nucleating agent is not particularly limited, and generally includes a rosin-based crystal nucleating agent, a sorbitol-based crystal nucleating agent, and a phosphate ester-based crystal nucleating agent. It is The rosin-based crystal nucleating agent is not particularly limited as long as it is a rosin-based resin, and examples thereof include dibenzylidene sorbitol (DBS) manufactured by Shin Nippon Rika Co., Ltd. The phosphoric acid ester salt nucleating agent is not particularly limited, and examples thereof include NA_11 manufactured by Asahi Denka Kogyo Co., Ltd. These crystal nucleating agents may be used alone or in combination.
[0030] 本発明の断熱建材用発泡ボードは、押出機と、先端に取付けられたダイスとを有す る発泡装置を用い、上記特定の物性を有する直鎖状のポリプロピレン系樹脂を含む ポリオレフイン系樹脂組成物と、超臨界状態の二酸化炭素を少なくとも含む発泡剤と を混合させ、温度 160〜250°Cで溶融押出して製造される。溶融押出し温度が 160 °C未満であると超臨界二酸化炭素の樹脂中への溶解及び拡散が劣り、逆に、 250°C を超えるとポリプロピレン系樹脂の熱による分子鎖切断等の劣化が生じはじめるので 好ましくない。また、押出機における、ダイス開口部直近樹脂圧力 (圧力損失)は、好 ましくは、 6〜20MPaで大気下に放出し押出し発泡させることが好適である。なかで も、上記圧力損失は、 7〜: 15MPaであることがより好ましぐ 9〜: 15MPaであることが 最も好ましい。該圧力損失が 6MPa未満であるとポリオレフイン系樹脂組成物中に溶 解している超臨界状態の二酸化炭素が押出機内部、及びダイス内部で気化しやすく なり、発泡が装置内部で生じ、セルの合泡、過剰な成長、発泡倍率の低下、著しレ、 外観性の低下が生じ好ましくない。一方、圧力損失が 20MPaを超えると、発泡にお けるセル形成時に、大きなせん断がセルに力かりやすくなり、セルの破泡、セル構造 の不均一化が生じ好ましくない。この様なセル構造の不完全さは、断熱建材用発泡 ボードとしての、充分な熱性能を呈する為には大きな障害となる。  [0030] A foam board for a heat-insulating building material of the present invention includes a linear polypropylene resin having the above-mentioned specific physical properties using a foaming apparatus having an extruder and a die attached to the tip. The resin composition is mixed with a blowing agent containing at least carbon dioxide in a supercritical state, and is manufactured by melt extrusion at a temperature of 160 to 250 ° C. When the melt extrusion temperature is less than 160 ° C, the dissolution and diffusion of supercritical carbon dioxide into the resin is poor, and conversely, when it exceeds 250 ° C, deterioration of the polypropylene resin such as molecular chain breakage due to heat begins to occur. Therefore, it is not preferable. Further, the resin pressure (pressure loss) in the immediate vicinity of the die opening in the extruder is preferably 6 to 20 MPa, released into the atmosphere, and extruded and foamed. Among them, the pressure loss is more preferably 7 to 15 MPa, and most preferably 9 to 15 MPa. If the pressure loss is less than 6 MPa, the supercritical carbon dioxide dissolved in the polyolefin resin composition is easily vaporized inside the extruder and inside the die, and foaming occurs inside the apparatus, and It is not preferable because it causes foaming, excessive growth, reduction of expansion ratio, remarkably low appearance and appearance. On the other hand, if the pressure loss exceeds 20 MPa, large shearing tends to be applied to the cell during cell formation in foaming, and cell foaming and cell structure non-uniformity are undesirable. Such imperfect cell structure is a major obstacle to exhibiting sufficient thermal performance as a foam board for heat insulating building materials.
[0031] 押出機における押出吐出量は、 1〜: 1000kg/hrが好適である。なかでも、押出吐 出量は、押出機の仕様にもよる力 スクリュー径の比較的小さいタイプにおいては、 概ね l〜50kg/hrが好ましぐまた、スクリュー径の比較的大きいタイプにおいては、 概ね 20〜: 1000kg/hrが好ましい。吐出量が大きすぎたり、小さすぎたりすると、ダイ ス部位において発泡に適した圧力損失を保つ事が難しくなり、充分な倍率の発泡体 を得る事ができなかったり、セルが破泡してしまったりする。 [0031] The extrusion discharge rate in the extruder is preferably 1 to 1000 kg / hr. In particular, the amount of extrusion discharge depends on the specifications of the extruder. In general, l to 50 kg / hr is preferable. In a type having a relatively large screw diameter, about 20 to 1000 kg / hr is preferable. If the discharge rate is too large or too small, it will be difficult to maintain a pressure loss suitable for foaming at the die part, and it will not be possible to obtain a foam with a sufficient magnification, or the cells may break. I'll be relaxed.
[0032] 使用する押出機については、スクリュー直径(D)が好ましくは 40〜80mm、スクリュ 一の長さを(L)としたときの(LZD)が好ましくは 15〜40の 2本のスクリューを直列に 組み合わせることを基本として構成されるタンデム型押出機が好ましい。タンデム型 押出機を使用することにより、発泡に適したダイス部位の樹脂圧力損失条件と吐出量 とを独立して、各スクリューの回転数で制御でき、上記した本発明のポリオレフイン系 樹脂組成物の特性が充分に発揮され、優れた特性の発泡体ボードが製造できる。  [0032] For the extruder to be used, two screws having a screw diameter (D) of preferably 40 to 80 mm and a screw length of (L) (LZD) of preferably 15 to 40 are used. A tandem type extruder configured on the basis of being combined in series is preferable. By using a tandem type extruder, the resin pressure loss condition and the discharge amount of the die part suitable for foaming can be controlled independently by the number of rotations of each screw, and the above-described polyolefin resin composition of the present invention can be controlled. The foam board having excellent characteristics and excellent characteristics can be manufactured.
[0033] 押出機において使用されるダイスについてはその形状は問わないが、一つあたりの 開口部の圧力損失が上記した 6〜20MPaになるように開口部の数、形状、厚みが設 計されたものであるのが望ましぐ例えば、スリットダイス、または多ホールダイス等が 挙げられる。このような条件を満たしたダイスを選択することにより、充分な熱性能を 呈する断熱建材用発泡ボードを得ることができる。  [0033] The shape of the die used in the extruder is not limited, but the number, shape, and thickness of the opening are designed so that the pressure loss per opening is 6 to 20 MPa as described above. For example, a slit die or a multi-hole die is preferable. By selecting a die that satisfies these conditions, it is possible to obtain a foam board for a heat-insulating building material that exhibits sufficient thermal performance.
[0034] また、発泡後の成形体の外観性、形状の整えやすさの観点から、押出機における ダイス開口部は円形であることが好ましぐ開口部の直径は 0.:!〜 2. Ommが好まし く、 0· 3〜0· 7mmがより好ましレ、。ダイスの深さは 0. 1〜: 10mmが好ましぐ開口部 はダイス前面上に複数個備えられていることが好ましい。  [0034] In addition, from the viewpoint of the appearance of the molded product after foaming and the ease of adjusting the shape, the diameter of the opening in the extruder that is preferably circular is 0.:!-2. Omm is preferred, and 0 · 3 to 0 · 7mm is more preferred. It is preferable that a plurality of openings are provided on the front surface of the die, the die depth being preferably 0.1 to 10 mm.
[0035] 前記直径が 0. 1mm未満であると発泡体構成のストランド直径が小さすぎ、引き取 り時にちぎれやすくなり好ましくなぐ 2. Ommを超えるとストランドの直径が大きすぎ 平滑性をだす為のボード状の後成形が困難となり好ましくなレ、。また、巾 0.:!〜 2. 0 mm、長さ 0. 1〜: 1000mmのスリット状のダイス等も用いる事が可能である。  [0035] If the diameter is less than 0.1 mm, the strand diameter of the foam structure is too small, and it is easy to tear off when taken. 2. If the diameter exceeds Omm, the strand diameter is too large. This is preferable because post-molding of the shape becomes difficult. Also, slit-shaped dies having a width of 0.:! To 2.0 mm and a length of 0.1 to 1000 mm can be used.
[0036] 本発明の断熱建材用発泡ボードの製造方法の具体的例としては、上記ポリオレフ イン系樹脂組成物を、例えば、シリンダーバレルの途中に超臨界二酸化炭素供給機 力 の二酸化炭素供給ラインの備えた押出成形機を用いて、上記発泡性ポリオレフ イン系樹脂組成物を所定温度に加熱し均一に溶融混練した後、所定量の超臨界状 態の二酸化炭素を供給ラインから供給し、ボード状に押出成形することにより、発泡 体ボードが製造される。 [0036] As a specific example of the method for producing a foam board for heat-insulating building materials of the present invention, the above polyolefin resin composition is used, for example, in a carbon dioxide supply line having a supercritical carbon dioxide supply capability in the middle of a cylinder barrel. Using the provided extrusion molding machine, the foamable polyolefin resin composition is heated to a predetermined temperature and uniformly melted and kneaded, and then a predetermined amount of supercritical carbon dioxide is supplied from a supply line to form a board shape. Foam by extruding into A body board is manufactured.
[0037] 更に、必要ならば、断熱建材用発泡ボードの商品形態を整える為に、形状の調整、 サイズの調整を、裁断機や挟み込みコンベア一等を用いて行ってもよい。  [0037] Furthermore, if necessary, the shape and size may be adjusted using a cutting machine, a sandwiching conveyor, or the like in order to adjust the product form of the foam board for heat insulating building materials.
[0038] また、必要ならば、発泡ボードの片面、または両面に、例えば、アルミニウム製シー トゃ不織布、皮革等シート状のものを面材として貼り合せ、強度や、耐熱性、難燃性 等、様々な性能を付与してもよい。  [0038] Further, if necessary, for example, a sheet-like material such as an aluminum sheet non-woven fabric or leather is bonded to one side or both sides of the foam board as a face material, and the strength, heat resistance, flame retardancy, etc. Various performances may be imparted.
[0039] このようにして、本発明の断熱建材用発泡ボードは、発泡倍率 10倍以上としても後 述するセル径、セル分布係数を有することが可能であり、更に、 15倍以上、特には、 20倍以上の発泡倍率であっても、前記セル径、セル分布係数を有する上に、充分な 部材熱性能を有するため好ましい。また、高発泡倍率にすることは、発泡体の比重を 小さくし、かつ使用する原材料のコストも小さくできるため好適である。一方、発泡倍 率は、過度に高すぎる場合は、発泡体の機械的強度が低下し、例えば、建材用途な どとして用いる場合に施工時における外的付加などにより発泡体に損傷しやすくなり 好ましくなレ、。したがって、発泡倍率は、好ましくは 100倍以下、特には 50倍以下で あるのが好ましい。  Thus, the foam board for heat-insulating building materials of the present invention can have the cell diameter and cell distribution coefficient described later even when the expansion ratio is 10 times or more, and further 15 times or more, particularly Even a foaming ratio of 20 times or more is preferable because it has the cell diameter and cell distribution coefficient and sufficient member thermal performance. Further, it is preferable to use a high expansion ratio because the specific gravity of the foam can be reduced and the cost of the raw materials used can be reduced. On the other hand, if the expansion ratio is too high, the mechanical strength of the foam is reduced. For example, when used as a building material, the foam tends to be damaged by external addition during construction. Nare ,. Therefore, the expansion ratio is preferably 100 times or less, particularly 50 times or less.
[0040] また、本発明の断熱建材用発泡ボードは、平均セル径が 200 μ m以下で、 150 μ m以下であることが好ましぐ更には 50〜: 100 /i mとすることが可能となり、また、セル 径分布係数が 30%以下、より好ましくは 25%以下で、特には 20%以下とすることを 可能とする。前記平均セル径が 200 / m以下、及び前記セル径分布係数が 30%以 下とすることにより、建材として用いた場合に特に断熱性能が優れたものになり好まし レ、。  [0040] In addition, the foam board for heat-insulating building materials of the present invention preferably has an average cell diameter of 200 µm or less and 150 µm or less, and more preferably 50 to 100 / im. In addition, the cell diameter distribution coefficient can be 30% or less, more preferably 25% or less, and particularly 20% or less. When the average cell diameter is 200 / m or less and the cell diameter distribution coefficient is 30% or less, the heat insulation performance is particularly excellent when used as a building material.
[0041] なお、本発明において、平均セル径とは、発泡体を試験小片に裁断し、その断面 積を電子顕微鏡(SEM)で 50倍の倍率にして観察される画像から、無作為に実質 2 mmの長さにあたる直線を 10本引き、その直線上のセル個数を数えることにより、下 記の式により平均セル径を算出することにより求めることができる。  [0041] In the present invention, the average cell diameter means that the foam is cut into small test pieces, and the cross-sectional area is randomly determined from an image observed with an electron microscope (SEM) at a magnification of 50 times. The average cell diameter can be obtained by calculating the average cell diameter using the following formula by drawing 10 straight lines with a length of 2 mm and counting the number of cells on the straight line.
(平均セル径 μ m) = (2000 X 10) Z (10本の直線上にあるセル個数) [0042] また、本発明において、セル径分布係数は発泡体を試験小片に裁断し、その断面 積を電子顕微鏡(SEM)で 50倍の倍率にして観察される画像から、 10から 20個の セルのセル径の平均値、及びセル径の標準偏差を算出し、それらの値を元に、下記 の式によりセル径分布係数を求めることができる。 (Average cell diameter μ m) = (2000 X 10) Z (number of cells on 10 straight lines) [0042] Further, in the present invention, the cell diameter distribution coefficient is determined from 10 to 20 pieces from an image observed by cutting the foam into test pieces and observing the cross-sectional area with an electron microscope (SEM) at a magnification of 50 times. The average cell diameter and the standard deviation of the cell diameters are calculated, and the cell diameter distribution coefficient can be obtained by the following formula based on these values.
(セル系分布係数%) = (セル径の標準偏差) / (セル径の平均値) X 100 (Cell system distribution coefficient%) = (Standard deviation of cell diameter) / (Average value of cell diameter) X 100
[0043] さらに、本発明の断熱建材用発泡ボードは、 JIS—A1412に準拠して測定される熱 伝導率が、 20〜40mWZmKとなり、好適な断熱性を有する断熱建材用発泡ボード を得ることができる。さらに、熱伝導率は、 20〜37mW/mKであることがより好ましい 。前記熱伝導率が 40mW/mKを超えると、断熱性能が劣るばかりでなぐ断熱建材 ボードとして好ましい熱性能の評価基準である熱抵抗値 0. 9以上を得るために断熱 建材ボードの厚みを 36mm以上にしなければならいため、これを、例えば床用断熱 材として用いる場合、床の木枠の寸法以上になり、施工の際に不具合を生じる場合 があり好ましくない。 [0043] Further, the foam board for heat-insulating building materials of the present invention has a thermal conductivity of 20 to 40 mWZmK measured in accordance with JIS-A1412, and can obtain a foam board for heat-insulating building materials having suitable heat insulation properties. it can. Furthermore, the thermal conductivity is more preferably 20 to 37 mW / mK. When the thermal conductivity exceeds 40 mW / mK, the thermal insulation performance is not only inferior, but the thermal insulation value is 0.9 or more to obtain a thermal resistance value of 0.9 or more, which is a preferable thermal performance evaluation standard for a thermal insulation construction board. Therefore, when this is used as, for example, a heat insulating material for floors, it becomes larger than the size of the wooden frame of the floor, which may cause problems during construction, which is not preferable.
実施例  Example
[0044] 本発明をさらに詳しく説明する為に、以下に実施例を挙げるが、本発明はこれら実 施例のみに限定されるものでは無い。  [0044] In order to describe the present invention in more detail, examples will be given below, but the present invention is not limited to these examples.
[0045] 実施例 1 [0045] Example 1
230°Cにおける MFR力 3 (g/l0分)であり、 230°Cにおける溶融張力が 7. 6gで あるポリプロピレン系樹脂 Aを、一段目に超臨界二酸化炭素供給機((株)力ヮタ製 C 02— 3)からの二酸化炭素供給ラインが装着され、二段目先端にダイス 1 (開口部の 直径が 0. 5mmの 8 X 48列の多ホールダイス)が装着されたタンデム型単軸押出機( (株)力ヮタ製 KGT— 50— 65)に供給し、二酸化炭素供給量を 1. 2kgZ時間に設 定して、ポリプロピレン系樹脂 100質量部に対して 6質量部含有するように押出量を 一段目の押出機のスクリュー回転数で調整し、ダイス 1部位の樹脂圧力が 8. 7MPa になる様に二段目の押出機のスクリュー回転数で調整し、押出発泡することによりポ リオレフイン系樹脂組成物の断熱建材用発泡ボード 1を得た。 [0046] 実施例 2 Polypropylene resin A with MFR force 3 at 230 ° C of 3 (g / l0 min) and melt tension at 230 ° C of 7.6 g was supercritical carbon dioxide feeder ( Tandem type single shaft equipped with carbon dioxide supply line from C 02—3) and equipped with die 1 (8 x 48-row multi-hole die with an opening diameter of 0.5 mm) at the second stage tip Supply to an extruder (KGT-50-65 manufactured by Rikita Co., Ltd.), set the carbon dioxide supply rate to 1.2 kgZ hours, and contain 6 parts by mass with respect to 100 parts by mass of polypropylene resin. The amount of extrusion is adjusted by the screw speed of the first-stage extruder, and the resin pressure at the first stage of the die is adjusted by the screw speed of the second-stage extruder so that the pressure is 8.7 MPa. A foam board 1 for a heat insulating building material of a polyolefin resin composition was obtained. [0046] Example 2
二酸化炭素供給量を 1. 5kg/時間に設定し、ポリプロピレン系樹脂 A100質量部 に対して 7. 5質量部含有するように押出量を一段目の押出機のスクリュー回転数で 調整し、かつ、ダイス 1部位の樹脂圧力が 8. 9MPaになるように二段目の押出機のス クリュー回転数で調整し、押出発泡したほかは実施例 1と同様に実施することによりポ リオレフイン系樹脂組成物の断熱建材用発泡ボード 2を得た。  The carbon dioxide supply rate is set to 1.5 kg / hour, the extrusion amount is adjusted with the screw speed of the first-stage extruder so that 7.5 mass parts is contained per 100 mass parts of the polypropylene resin A, and A polyolefin resin composition was prepared in the same manner as in Example 1 except that the resin pressure at the die 1 site was adjusted to 8.9 MPa with the screw rotation speed of the second-stage extruder and extruded and foamed. The foam board 2 for heat-insulating building materials was obtained.
[0047] 実施例 3 [0047] Example 3
二酸化炭素供給量を 1. 8kgZ時間に設定し、ポリプロピレン系樹脂 A100質量部 に対して 9質量部含有するように押出量を一段目の押出機のスクリュー回転数で調 整し、かつ、ダイス 1部位の樹脂圧力が 9. 2MPaになるように二段目の押出機のスク リュー回転数で調整し、押出発泡したほかは実施例 1と同様に実施することによりポリ ォレフィン系樹脂組成物の断熱建材用発泡ボード 3を得た。  Set the carbon dioxide supply amount to 1.8 kgZ hours, adjust the extrusion amount with the screw speed of the first-stage extruder so that it is 9 parts by mass with respect to 100 parts by mass of polypropylene resin A, and dice 1 Insulation of the polyolefin resin composition is carried out in the same manner as in Example 1 except that the resin pressure at the part is adjusted to 9.2 MPa with the screw speed of the second-stage extruder and extruded and foamed. A foam board 3 for building materials was obtained.
[0048] 実施例 4 [0048] Example 4
二酸化炭素供給量を 1. 9kg/時間に設定し、ポリプロピレン系樹脂 A100質量部 に対して 6質量部含有するように押出量を一段目の押出機のスクリュー回転数で調 整し、かつ、ダイス 1部位の樹脂圧力が 8· 8MPaになるように二段目の押出機のスク リュー回転数で調整し、押出発泡したほかは実施例 1と同様に実施することによりポリ ォレフィン系樹脂組成物の断熱建材用発泡ボード 4を得た。  The carbon dioxide supply rate is set at 1.9 kg / hour, the extrusion rate is adjusted with the screw speed of the first-stage extruder so as to contain 6 parts by mass with respect to 100 parts by mass of the polypropylene resin A, and the die The polyolefin resin composition was prepared in the same manner as in Example 1 except that the resin pressure at one part was adjusted to the screw rotation speed of the second stage extruder so that the pressure was 8.8 MPa, and extrusion foaming was performed. A foam board 4 for heat insulating building materials was obtained.
[0049] 実施例 5 [0049] Example 5
二酸化炭素供給量を 1. 2kg/時間に設定し、 230°Cにおける溶融張力が 8. 5gで あるポリプロピレン系樹脂 B100質量部に対して 6質量部含有するように押出量を一 段目の押出機のスクリュー回転数で調整し、かつ、ダイス A部位の樹脂圧力が 8. 8 MPaになるように二段目の押出機のスクリュー回転数で調整し、押出発泡したほか は実施例 1と同様に実施することによりポリオレフイン系樹脂組成物の断熱建材用発 泡ボード 5を得た。  Set the carbon dioxide supply rate to 1.2 kg / hour, and the extrusion rate in the first stage to contain 6 parts by mass with respect to 100 parts by mass of the polypropylene resin B having a melt tension of 8.5 g at 230 ° C. Same as in Example 1 except that the pressure was adjusted by the screw speed of the machine and the screw speed of the second stage extruder was adjusted so that the resin pressure at the die A part was 8.8 MPa. The foamed board 5 for a heat insulating building material of the polyolefin resin composition was obtained by carrying out the above.
[0050] 実施例 6 [0050] Example 6
ダイス 1部位の樹脂圧力が 6. 5MPaとした以外は実施例 1と同様にしてポリオレフィ ン系樹脂組成物の断熱建材用発泡ボード 6を得た。 [0051] 実施例 7 A foamed board 6 for a heat-insulating building material of a polyolefin resin composition was obtained in the same manner as in Example 1 except that the resin pressure at 1 part of the die was 6.5 MPa. [0051] Example 7
ポリオレフイン樹脂組成物として、ポリプロピレン系樹脂 Aを 45質量部、 230°Cにお ける MFRが 6g/10分であり、 230°Cにおける溶融張力が 1 · 8gであるポリプロピレン 系樹脂 C (ホモポリプロピレン系樹脂) 55質量部とし、ダイス 1部位の樹脂圧力を 8. 6 5MPaとした以外は実施例 1と同様にしてポリオレフイン系樹脂組成物の断熱建材用 発泡ボード 7を得た。  As the polyolefin resin composition, polypropylene resin C (homopolypropylene resin A) having 45 parts by mass of polypropylene resin A, MFR at 230 ° C of 6 g / 10 min, and melt tension at 230 ° C of 1/8 g. Resin) A foamed board 7 for a heat insulating building material of a polyolefin resin composition was obtained in the same manner as in Example 1 except that the resin pressure was 55 parts by mass and the resin pressure at one part of the die was 8.65 MPa.
[0052] 実施例 8 [0052] Example 8
ダイス 1部位の樹脂圧力が 16. IMPaとした以外は実施例 1と同様にしてポリオレフ イン系樹脂組成物の断熱建材用発泡ボード 8を得た。  A foamed board 8 for a heat-insulating building material of a polyolefin resin composition was obtained in the same manner as in Example 1 except that the resin pressure at 1 part of the die was 16. IMPa.
[0053] 比較例 1 [0053] Comparative Example 1
230°Cにおける MFR力 S6gZlO分であり、 230°Cにおける溶融張力が 1. 8gである ポリプロピレン系樹脂 C (ホモポリプロピレン系樹脂)を、実施例 1で使用したのと同じ タンデム型単軸押出機供給し、二酸化炭素供給量を 1. 2kg/時間に設定して、ポリ プロピレン系樹脂 100質量部に対して 6質量部含有するように押出量を一段目の押 出機のスクリュー回転数で調整し、ダイス 1部位の樹脂圧力が 4· 5MPaになるように 二段目の押出機のスクリュー回転数で調整し、押出発泡することによりポリプロピレン 系樹脂組成物の断熱建材用発泡ボード 6を得た。  The same tandem type single-screw extruder used in Example 1 for polypropylene resin C (homopolypropylene resin) with MFR force of S6gZlO at 230 ° C and melt tension of 1.8g at 230 ° C Set the carbon dioxide supply rate to 1.2 kg / hour, and adjust the extrusion amount with the screw speed of the first-stage extruder so that it contains 6 parts by mass with respect to 100 parts by mass of the polypropylene resin. Then, the foam pressure board 6 for the heat insulating building material of the polypropylene resin composition was obtained by adjusting the screw rotation speed of the second stage extruder so that the resin pressure at the die 1 site was 4.5 MPa and by extrusion foaming. .
[0054] 比較例 2 [0054] Comparative Example 2
230。Cにおける MFR力 S3. 3g/10分であり、 230。Cにおける溶融張力力 7. 6gで あるポリプロピレン系樹脂 Aを、実施例 1で使用したのと同じタンデム型単軸押出機に 供給し、二酸化炭素供給量を 1. 2KG/時間として、ポリプロピレン系樹脂 100質量 部に対して 6質量部含有するように押出量を、一段目の押出機のスクリュー回転数で 調整し、ダイス 2 (開口部の直径が 0. 8mmの 8 X 48列の多ホールダイス)部位の樹 脂圧力が 5. IMPaになるように二段目の押出機のスクリュー回転数で調整し、押出 発泡することによりポリプロピレン系樹脂組成物の断熱建材用発泡ボード 7を得た。  230. MFR force in C S3. 3g / 10min, 230. Polypropylene resin A having a melt tension force of 7.6 g in C is supplied to the same tandem single screw extruder used in Example 1, and the carbon dioxide supply rate is 1.2 KG / hour. Adjust the amount of extrusion so that it contains 6 parts by mass with respect to 100 parts by mass with the screw speed of the first stage extruder, and dice 2 (8 x 48 rows of multi-hole dies with an opening diameter of 0.8 mm). ) The resin pressure at the site was adjusted to 5. IMPa by adjusting the screw speed of the second-stage extruder, and extrusion foaming was performed to obtain a foamed board 7 for heat-insulating building materials of a polypropylene resin composition.
[0055] 比較例 3 [0055] Comparative Example 3
発泡倍率が 90倍であるビーズ法によって製造された市販のポリエチレン発泡ボー ドについて、性能を評価した。 上記実施例 1〜実施例 5、並びに、比較例 1及び比較例 2で得られたポリオレフイン (ポリプロピレン)系樹脂発泡体と、比較例 3にポリエチレン系発泡ボードについての 性能((a)密度、(b)圧縮強度、(c)平均セル径、(d)熱伝導率、(e)セル径分布係数 )を以下の方法で評価した。 The performance of a commercially available polyethylene foam board manufactured by the bead method with an expansion ratio of 90 times was evaluated. The performance ((a) density, (a) of the polyolefin (polypropylene) resin foam obtained in Examples 1 to 5 and Comparative Examples 1 and 2 and Comparative Example 3 in Comparative Example 3 b) Compressive strength, (c) Average cell diameter, (d) Thermal conductivity, (e) Cell diameter distribution coefficient) were evaluated by the following methods.
(a) 密度…得られた発泡体を 20 X 20 X 2. 5 (cm)の試験小片に裁断し、その重 量と各辺の長さを計測し、以下の算式に従って発泡体密度を求めた。 (a) Density: The obtained foam is cut into test pieces of 20 X 20 X 2.5 (cm), the weight and length of each side are measured, and the foam density is obtained according to the following formula. It was.
(発泡体密度 G/L) = (発泡体重量 G) / (発泡体体積 L) (Foam density G / L) = (Foam weight G) / (Foam volume L)
(b) 圧縮強度 · · 'JISK— 6767 (ポリエチレンフォーム試験方法)に準拠して、発泡 体の 25%圧縮硬さ(kPa)を測定した。  (b) Compressive strength · The 25% compression hardness (kPa) of the foam was measured according to 'JISK-6767 (polyethylene foam test method).
(c) 平均セル径' · '発泡体を試験小片に裁断し、その断面積を、(株)島津製作所 製 SEMスーパースキャン 220を用いて電子顕微鏡(SEM)で 50倍の倍率にして観 察される画像から、無作為に実質 2mmの長さにあたる直線を 10本引き、その直線上 のセル個数を数えることにより平均セル径を次の式により算出して求めた。 (c) Average cell diameter '·' The foam was cut into test pieces, and the cross-sectional area was observed with an electron microscope (SEM) at a magnification of 50 times using SEM Superscan 220 manufactured by Shimadzu Corporation. The average cell diameter was calculated by the following formula by drawing 10 straight lines with a length of 2 mm at random from the image and counting the number of cells on the straight line.
(平均セル径 τα) = (2000 X 10) / ( 10本の直線上にあるセル個数) (Average cell diameter τα) = (2000 X 10) / (number of cells on 10 straight lines)
(d) 熱伝導率 · · 'JISA— 1412に準拠して、得られた発泡体を 20 X 20 X 2 (cm)の 試験小片に裁断し、英弘精機社製の熱伝導率測定装置 HC— 074を用いて熱伝導 率を測定した。 (d) Thermal conductivity ··· The foam obtained was cut into 20 X 20 X 2 (cm) test pieces according to 'JISA-1412', and the thermal conductivity measuring device HC— The thermal conductivity was measured using 074.
(e) セル径分布係数' · ·得られた発泡体を試験小片に裁断し、その断面積を (株) 島津製作所 SEMスーパースキャン 220を用いて 50倍の倍率で観察し、およそ 10か ら 20個のセルのセル径の平均値、及びセル径の標準偏差を算出した。それらの値を 元に、次の算式によりセル径分布係数を求めた。 (セル径分布係数) = (セル径の標準偏差) / (セル径の平均値) (e) Cell diameter distribution coefficient '· · The resulting foam is cut into test pieces, and the cross-sectional area is observed with a 50x magnification using Shimadzu Corporation SEM Superscan 220. The average value of the cell diameter of 20 cells and the standard deviation of the cell diameter were calculated. Based on these values, the cell diameter distribution coefficient was obtained by the following formula. (Cell diameter distribution coefficient) = (Standard deviation of cell diameter) / (Average value of cell diameter)
(f) 溶融張力…キヤピログラフ 1C (東洋精機社製)を用い、測定温度 230°C、押出 速度 10mmZmin、引き取り速度 3. lmZ分によって求めた。なお、測定には、長さ が 8mm、直径が 2. 095mmのオリフィスを使用した。 (f) Melt tension: Determined using a Capillograph 1C (manufactured by Toyo Seiki Co., Ltd.) at a measurement temperature of 230 ° C, an extrusion speed of 10 mmZmin, and a take-up speed of 3. lmZ. For the measurement, an orifice with a length of 8 mm and a diameter of 2.095 mm was used.
(g)発泡体倍率' · '樹脂の比重と(a)によって得られた密度の測定結果から下記の 式にしたがって求めた。 (g) Foam magnification ratio “·” It was determined according to the following formula from the specific gravity of the resin and the measurement result of the density obtained in (a).
(発泡体倍率) = (樹脂の比重) / (発泡体の密度) 表 1に、本発明で用いた配合組成、押出条件、及び得られた発泡体の物性を纏め て示す。 (Foaming ratio) = (Specific gravity of resin) / (Density of foam) Table 1 summarizes the blending composition, extrusion conditions, and physical properties of the obtained foam used in the present invention.
[表 1] [table 1]
Figure imgf000017_0001
Figure imgf000017_0001
0058 表 2 Table 2
Figure imgf000018_0001
産業上の利用可能性
Figure imgf000018_0001
Industrial applicability
[0059] 本発明のポリオレフイン系樹脂組成物の発泡体は,その優れた性能とコストのバラ ンス、さらには、優れたリサイクル性などを生力 て、主に、断熱建材用途、自動車部 材用途、包装緩衝材用途などに広く使用可能である。 なお、 2005年 6月 30曰に出願された曰本特許出願 2005— 192375号の明糸田書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。 [0059] The foam of the polyolefin resin composition of the present invention has a variety of excellent performance and cost. It can be widely used mainly for heat insulating building materials, automotive parts, and packaging cushioning materials. It should be noted that the entire contents of the Japanese Patent Application 2005-192375, filed on June 30, 2005, and the claims, drawings, and abstract are cited herein, and the description of the present invention is disclosed. It is included as an indication.

Claims

請求の範囲 The scope of the claims
[1] 230°Cにおける溶融張力が 5〜30gである直鎖状のポリプロピレン系樹脂を含むポ リオレフイン系樹脂組成物を、超臨界状態の二酸化炭素を少なくとも含む発泡剤を用 いて、発泡倍率が 10倍以上発泡させてなることを特徴とする断熱建材用発泡ボード  [1] A polyolefin resin composition containing a linear polypropylene resin having a melt tension of 5 to 30 g at 230 ° C. is used with a blowing agent containing at least carbon dioxide in a supercritical state, and the expansion ratio is Foam board for heat-insulating building materials, characterized by being foamed 10 times or more
[2] 平均セル径が 200 μ m以下であり、かつセル径分布係数が 30%以下の均一セル 径分布を有する請求項 1に記載の断熱建材用発泡ボード。 [2] The foam board for heat-insulating building materials according to claim 1, wherein the foamed board has a uniform cell diameter distribution with an average cell diameter of 200 μm or less and a cell diameter distribution coefficient of 30% or less.
[3] 230°Cにおける溶融張力が 5〜30gである直鎖状のポリプロピレン系樹脂が、前記 ポリオレフイン系樹脂組成物中に 50質量%以上含有される請求項 1または 2に記載 の断熱建材用発泡ボード。 [3] The heat insulating building material according to claim 1 or 2, wherein a linear polypropylene resin having a melt tension at 230 ° C of 5 to 30 g is contained in the polyolefin resin composition in an amount of 50% by mass or more. Foam board.
[4] JIS— A1412に準拠して測定される熱伝導率力 20〜40mW/mKである、請求項[4] The thermal conductivity power measured in accordance with JIS—A1412 is 20-40 mW / mK.
:!〜 3のいずれか 1項に記載の断熱建材用発泡ボード。 The foam board for heat-insulating building materials according to any one of: to!
[5] JIS-A1412に準拠して測定される熱伝導率力 20〜37mW/mKである、請求項[5] The thermal conductivity power measured in accordance with JIS-A1412 is 20 to 37 mW / mK.
1〜4のいずれか 1項に記載の断熱建材用発泡ボード。 The foam board for heat-insulating building materials according to any one of 1 to 4.
[6] 押出機と、先端に取付けられたダイスとを有する発泡装置を用レ、、 230°Cにおける 溶融張力が 5〜30gである直鎖状のポリプロピレン系樹脂を含むポリオレフイン系樹 脂組成物と、超臨界状態の二酸化炭素を少なくとも含む発泡剤とを、 160〜250°C の温度条件で溶融押出し、ダイス開口部直近樹脂圧力を 6〜20MPaで大気下に放 出し押出発泡することを特徴とする断熱建材用発泡ボードの製造方法。 [6] A polyolefin resin composition containing a linear polypropylene resin having a melt tension of 5 to 30 g at 230 ° C., using a foaming apparatus having an extruder and a die attached to the tip. And a foaming agent containing at least carbon dioxide in a supercritical state are melt-extruded under a temperature condition of 160 to 250 ° C, and are extruded and foamed to the atmosphere at a resin pressure in the immediate vicinity of the die opening of 6 to 20 MPa. The manufacturing method of the foam board for heat insulation building materials.
[7] ダイス開口部直近樹脂圧力を 7〜: 15MPaで大気下に放出し押出発泡することを特 徴とする請求項 6に記載の断熱建材用発泡ボードの製造方法。 [7] The method for producing a foam board for a heat-insulating building material according to claim 6, wherein the resin pressure in the immediate vicinity of the die opening is 7 to 15 MPa, and the foam is extruded and foamed.
[8] 押出機が、押出吐出量が 1〜: 1000kg/hrのタンデム型押出機である請求項 6又 は 7に記載の断熱建材用発泡ボードの製造方法。 [8] The method for producing a foam board for heat-insulating building materials according to [6] or [7], wherein the extruder is a tandem type extruder having an extrusion discharge rate of 1 to 1000 kg / hr.
PCT/JP2006/313028 2005-06-30 2006-06-29 Constructional heat-insulating foam board and process for production thereof WO2007004524A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007524003A JPWO2007004524A1 (en) 2005-06-30 2006-06-29 Foam board for heat insulating building material and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005192375 2005-06-30
JP2005-192375 2005-06-30

Publications (1)

Publication Number Publication Date
WO2007004524A1 true WO2007004524A1 (en) 2007-01-11

Family

ID=37604391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313028 WO2007004524A1 (en) 2005-06-30 2006-06-29 Constructional heat-insulating foam board and process for production thereof

Country Status (4)

Country Link
JP (1) JPWO2007004524A1 (en)
KR (1) KR20080042046A (en)
CN (1) CN101203552A (en)
WO (1) WO2007004524A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063561A (en) * 2005-08-31 2007-03-15 Chi Lin Technology Co Ltd Method of making foamed polymer bead
WO2009084523A1 (en) 2007-12-27 2009-07-09 Asahi Fiber Glass Company, Limited Process for producing polypropylene resin foam
JP2010037367A (en) * 2008-07-31 2010-02-18 Asahi Fiber Glass Co Ltd Polyolefin resin foam and production method thereof
EP2174771A1 (en) * 2007-06-27 2010-04-14 Asahi Fiber Glass Company, Limited Foam board of polyolefin resin, and method for production thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103450558A (en) * 2013-07-16 2013-12-18 汪永辉 Extruded foam insulation board and preparation method thereof
CN104705871A (en) * 2015-03-17 2015-06-17 陕西理工学院 Blended rubber special protective fabric

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348452A (en) * 2000-06-05 2001-12-18 Nitto Denko Corp Polyolefinic resin foam and manufacturing method therefor
JP2003147110A (en) * 2001-11-09 2003-05-21 Mitsui Chemicals Inc Foam of polyolefin composition and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100779776B1 (en) * 2000-06-23 2007-11-27 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Foam and Method of Making

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348452A (en) * 2000-06-05 2001-12-18 Nitto Denko Corp Polyolefinic resin foam and manufacturing method therefor
JP2003147110A (en) * 2001-11-09 2003-05-21 Mitsui Chemicals Inc Foam of polyolefin composition and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063561A (en) * 2005-08-31 2007-03-15 Chi Lin Technology Co Ltd Method of making foamed polymer bead
EP2174771A1 (en) * 2007-06-27 2010-04-14 Asahi Fiber Glass Company, Limited Foam board of polyolefin resin, and method for production thereof
EP2174771A4 (en) * 2007-06-27 2013-06-05 Asahi Fibreglass Co Foam board of polyolefin resin, and method for production thereof
WO2009084523A1 (en) 2007-12-27 2009-07-09 Asahi Fiber Glass Company, Limited Process for producing polypropylene resin foam
JP2009154441A (en) * 2007-12-27 2009-07-16 Asahi Fiber Glass Co Ltd Manufacturing method of polypropylene-based resin foam
US20100273904A1 (en) * 2007-12-27 2010-10-28 Itadani Toru Process for producing polypropylene resin foam
CN101909853A (en) * 2007-12-27 2010-12-08 旭玻璃纤维股份有限公司 Process for producing polypropylene resin foam
JP2010037367A (en) * 2008-07-31 2010-02-18 Asahi Fiber Glass Co Ltd Polyolefin resin foam and production method thereof

Also Published As

Publication number Publication date
KR20080042046A (en) 2008-05-14
JPWO2007004524A1 (en) 2009-01-29
CN101203552A (en) 2008-06-18

Similar Documents

Publication Publication Date Title
JP5498162B2 (en) Polypropylene resin foamed particles and molded articles thereof
EP1625174B1 (en) High temperature resistant, flexible, low density polypropylene foams
US20040162358A1 (en) Composition for polyolefin resin foam and foam thereof, and method for producing foam
US8222310B2 (en) Extruded polypropylene resin foam and process for producing the same
JP2011132420A (en) Method for producing polypropylene-based resin foam and polypropylene-based resin foam
JP2011207958A (en) Foamed resin sheet and method for producing the same
WO2007004524A1 (en) Constructional heat-insulating foam board and process for production thereof
JP4906363B2 (en) Method for producing polypropylene resin foam
JP5314411B2 (en) Method for producing polypropylene resin expanded particle molded body, and molded body
JP2008274155A (en) Polypropylenic resin foam and production method thereof
JPWO2009001934A1 (en) Polyolefin resin foam board and method for producing the same
WO2018178323A1 (en) Foam material comprising polyphenylene sulfide polymer (pps)
JP2011207959A (en) Foamed resin sheet and method for producing the same
JP2010037367A (en) Polyolefin resin foam and production method thereof
JP2011089140A (en) Olefinic resin composition for foam-molding and foam
JP4855138B2 (en) Polypropylene resin foam particles and method for producing the same
JP2007291233A (en) Resin composition for expansion molding and foam obtained therefrom
US11286363B2 (en) Foam material comprising polyphenylene sulfide polymer (PPS)
KR20110085443A (en) High fuse-bondable polypropylene composition for expanded polypropylene
JP5905660B2 (en) Method for producing crosslinked polyolefin resin foam and laminated product using the resin foam
JP2009154441A (en) Manufacturing method of polypropylene-based resin foam
JP6551589B2 (en) Polypropylene-based resin foam sheet
JP4134323B2 (en) Foamable resin composition and propylene-based resin foam
JP2002086646A (en) Foamed laminated sheet of polypropylene resin and molded container
JP2005153468A (en) Propylene-based resin foamed sheet and vessel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680019467.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524003

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077030391

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767645

Country of ref document: EP

Kind code of ref document: A1