WO2007002681A2 - Electrically conductive polymer compositions - Google Patents
Electrically conductive polymer compositions Download PDFInfo
- Publication number
- WO2007002681A2 WO2007002681A2 PCT/US2006/025012 US2006025012W WO2007002681A2 WO 2007002681 A2 WO2007002681 A2 WO 2007002681A2 US 2006025012 W US2006025012 W US 2006025012W WO 2007002681 A2 WO2007002681 A2 WO 2007002681A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrically conductive
- fluorinated
- acid
- ether
- polymer composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 0 *c1c[n](*)cc1* Chemical compound *c1c[n](*)cc1* 0.000 description 4
- UIQVUNQAUXDKFI-UHFFFAOYSA-N CC(C(C(OC(C(F)(F)F)(C(OOC(C(C(F)(F)F)(OC(C(C(F)(F)F)(F)F)(F)F)F)=O)=O)F)(F)F)(F)F)(F)F Chemical compound CC(C(C(OC(C(F)(F)F)(C(OOC(C(C(F)(F)F)(OC(C(C(F)(F)F)(F)F)(F)F)F)=O)=O)F)(F)F)(F)F)(F)F UIQVUNQAUXDKFI-UHFFFAOYSA-N 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Nc1ccccc1 Chemical compound Nc1ccccc1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/18—Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/12—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L27/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
- C08L27/02—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L27/12—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08L27/18—Homopolymers or copolymers or tetrafluoroethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L41/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L65/00—Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D165/00—Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
- C09D179/02—Polyamines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/124—Intrinsically conductive polymers
- H01B1/127—Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
- H10K85/1135—Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/26—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L73/00—Compositions of macromolecular compounds obtained by reactions forming a linkage containing oxygen or oxygen and carbon in the main chain, not provided for in groups C08L59/00 - C08L71/00; Compositions of derivatives of such polymers
- C08L73/02—Polyanhydrides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
Definitions
- Organic electronic devices define a category of products that include an active layer. Such devices convert electrical energy into radiation, detect signals through electronic processes, convert radiation into electrical energy, or include one or more organic semiconductor layers.
- OLEDs are organic electronic devices comprising an organic layer capable of electroluminescence.
- OLEDs containing conducting polymers can have the following configuration:
- the anode is typically any material that has the ability to inject holes into the EL material, such as, for example, indium/tin oxide (ITO).
- ITO indium/tin oxide
- the anode is optionally supported on a glass or plastic substrate.
- EL materials include fluorescent compounds, fluorescent and phosphorescent metal complexes, conjugated polymers, and mixtures or combinations thereof.
- the cathode is typically any material (such as, e.g., Ca or Ba) that has the ability to inject electrons into the EL material.
- the buffer layer is typically an electrically conducting polymer and facilitates the injection of holes from the anode into the EL material layer.
- Typical conducting polymers employed as buffer layers include polyaniline and polydioxythiophenes such as poly(3,4-ethylenedioxythiophene) (PEDT). These materials can be prepared by polymerizing aniline or dioxythiophene monomers in aqueous solution in the presence of a water soluble polymeric acid, such as poly(styrenesulfonic acid) (PSS), as described in, for example, U.S. Patent No. 5,300,575.
- PSS poly(styrenesulfonic acid)
- aqueous electrically conductive polymer dispersions synthesized with water soluble polymeric sulfonic acids have undesirably low pH levels. Low pH can contribute to decreased stress life of an EL device containing such a buffer layer, and contribute to corrosion within the device. Accordingly, there is a need for compositions and layers prepared therefrom having improved properties.
- Electrically conducting polymers which have the ability to carry a high current when subjected to a low electrical voltage also have utility as electrodes for electronic devices, such as thin film field effect transistors.
- an organic semiconducting film that has high mobility for electron and/or hole charge carriers is present between source and drain electrodes.
- a gate electrode is on the opposite side of the semiconducting polymer layer.
- the electrically conducting polymers and the liquids for dispersing or dissolving the electrically conducting polymers have to be compatible with the semiconducting polymers and the solvents for the semiconducting polymers to avoid re-dissolution of either conducting polymers or semiconducting polymers.
- Many conductive polymers have conductivities that are too low for use as electrodes. Accordingly, there is a need for improved conductive polymers.
- an electrically conductive polymer composition comprising an electrically conductive copolymer and a fluorinated acid polymer.
- an aqueous dispersion of an electrically conductive copolymer and a fluorinated acid polymer is provided.
- a method for producing an electrically conductive polymer composition comprising forming a combination of water, at least two precursor monomers, at least one fluorinated acid polymer, and an oxidizing agent, in any order, provided that at least a portion of the fluorinated acid polymer is present when the conductive monomers are added or when the oxidizing agent is added.
- electronic devices comprising at least one layer comprising the new conductive polymer composition are provided.
- Figure 1 is a diagram illustrating contact angle.
- Figure 2 is a schematic diagram of an organic electronic device. Skilled artisans appreciate that objects in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the objects in the figures may be magnified relative to other objects to help to improve understanding of embodiments.
- an electrically conductive polymer composition comprising an electrically conductive copolymer and a fluorinated acid polymer.
- the term "copolymer” refers to a polymer or oligomer made from two or more different monomers.
- the term “two or more different monomers” refers to two or more separate monomers that can be polymerized together directly, and to two or more different monomers that are reacted to form a single intermediate monomer, and then polymerized. Monomers are considered different if, by way of example comparing two monomers, they have different structural repeat units or have the same structural repeat unit with different substituents on each.
- electrically conductive refers to a material that is inherently or intrinsically capable of electrical conductivity without the addition of carbon black or conductive metal particles.
- the electrically conductive copolymer is conductive in a protonated form and not conductive in an unprotonated form.
- fluorinated acid polymer refers to a polymer having acidic groups, where at least some of the hydrogens have been replaced by fluorine.
- acidic group refers to a group capable of ionizing to donate a hydrogen ion to a base to form a salt.
- the composition may comprise one or more different conductive copolymers and one or more different fluorinated acid polymers.
- any electrically conductive copolymer can be used in the new composition.
- the electrically conductive copolymer will form a film having a conductivity of at least 10 "7 S/cm.
- the conductive copolymers suitable for the new composition are made from at least one monomer which, when polymerized alone, forms an electrically conductive homopolymer. Such monomers are referred to herein as "conductive precursor monomers.” Monomers which, when polymerized alone form homopolymers which are not electrically conductive, are referred to as "non-conductive precursor monomers.”
- the conductive copolymers suitable for the new composition can be made from two or more conductive precursor monomers or from a combination of one or more conductive precursor monomers and one or more non- conductive precursor monomers. 1. Conductive precursor monomers
- the conductive copolymer is made from at least one conductive precursor monomer selected from thiophenes, pyrroles, anilines, and polycyclic aromatics.
- polycyclic aromatic refers to compounds having more than one aromatic ring. The rings may be joined by one or more bonds, or they may be fused together.
- aromatic ring is intended to include heteroaromatic rings.
- a "polycyciic heteroaromatic” compound has at least one heteroaromatic ring.
- thiophene monomers contemplated for use to form the electrically conductive copolymer in the new composition comprise Formula I below:
- R 1 is independently selected so as to be the same or different at each occurrence and is selected from hydrogen, alkyl, alkenyl, alkoxy, alkanoyl, alkythio, aryloxy, alkylthioalkyl, alkylaryl, arylalkyl, amino, alkylamino, dialkylamino, aryl, alkylsulfinyl, alkoxyalkyl, alkylsulfonyl, arylthio, arylsulfinyl, alkoxycarbonyl, arylsulfonyl, acrylic acid, phosphoric acid, phosphonic acid, halogen, nitro, cyano, hydroxyl, epoxy, silane, siloxane, alcohol, benzyl, carboxylate, ether, ether carboxylate, amidosulfonate, ether sulfonate, ester sulfonate, and urethane; or both R 1 groups together may form an alkylene or al
- alkyl refers to a group derived from an aliphatic hydrocarbon and includes linear, branched and cyclic groups which may be unsubstituted or substituted.
- heteroalkyl is intended to mean an alkyl group, wherein one or more of the carbon atoms within the alkyl group has been replaced by another atom, such as nitrogen, oxygen, sulfur, and the like.
- alkylene refers to an alkyl group having two points of attachment.
- alkenyl refers to a group derived from an aliphatic hydrocarbon having at least one carbon-carbon double bond, and includes linear, branched and cyclic groups which may be unsubstituted or substituted.
- heteroalkenyl is intended to mean an alkenyl group, wherein one or more of the carbon atoms within the alkenyl group has been replaced by another atom, such as nitrogen, oxygen, sulfur, and the like.
- alkenylene refers to an alkenyl group having two points of attachment.
- R 3 is a single bond or an alkylene group
- R 4 is an alkylene group
- R 5 is an alkyl group
- R 6 is hydrogen or an alkyl group
- p is 0 or an integer from 1 to 20
- Z is H, alkali metal, alkaline earth metal, N(R 5 ) 4 or R 5
- Any of the above groups may further be unsubstituted or substituted, and any group may have F substituted for one or more hydrogens, including perfluor ⁇ nated groups.
- the alkyl and alkylene groups have from 1 -20 carbon atoms.
- both R 1 together form -O-(CHY) m -O- , where m is 2 or 3, and Y is the same or different at each occurrence and is selected from hydrogen, halogen, alkyl, alcohol, amidosulfonate, benzyl, carboxylate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane, where the Y groups may be partially or fully fluorinated. In one embodiment, all Y are hydrogen.
- the polythiophene is poly(3,4-ethylenedioxythiophene).
- at least one Y group is not hydrogen.
- at least one Y group is a substituent having F substituted for at least one hydrogen.
- at least one Y group is perfluorinated.
- the thiophene monomer has Formula Ia:
- R 7 is the same or different at each occurrence and is selected from hydrogen, alkyl, heteroalkyl, alkenyl, heteroalkenyl, alcohol, amidosulfonate, benzyl, carboxylate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane, with the proviso that at least one R 7 is not hydrogen, and m is 2 or 3.
- m is two, one R 7 is an alkyl group of more than 5 carbon atoms, and all other R 7 are hydrogen.
- at least one R 7 group is fluorinated.
- at least one R 7 group has at least one fluorine substituent.
- the R 7 group is fully fluorinated.
- the R 7 substituents on the fused alicyclic ring on the thiophene offer improved solubility of the monomers in water and facilitate polymerization in the presence of the fluorinated acid polymer.
- m is 2, one R 7 is sulfonic acid- propylene-ether-methylene and all other R 7 are hydrogen. In one embodiment, m is 2, one R 7 is propyl-ether-ethylene and all other R 7 are hydrogen. In one embodiment, m is 2, one R 7 is methoxy and all other R 7 are hydrogen. In one embodiment, one R 7 is sulfonic acid difluoromethylene ester methylene (-CH2-O-C(O)-CF2-SO3H), and all other R 7 are hydrogen.
- pyrrole monomers contemplated for use to form the copolymer in the new composition comprise Formula Il below.
- R 1 is independently selected so as to be the same or different at each occurrence and is selected from hydrogen, alkyl, alkenyl, alkoxy, alkanoyl, alkythio, aryloxy, alkylthioalkyl, alkylaryl, arylalkyl, amino, alkylamino, dialkylamino, aryl, alkylsulfinyl, alkoxyalkyl, alkylsulfonyl, arylthio, arylsulfinyl, alkoxycarbonyl, arylsulfonyl, acrylic acid, phosphoric acid, phosphonic acid, halogen, nitro, cyano, hydroxyl, epoxy, silane, siloxane, alcohol, benzyl, carboxylate, ether, amidosulfonate, ether carboxylate, ether sulfonate, ester sulfonate, and urethane; or both R 1 groups together may form an alkylene or al
- R 1 is the same or different at each occurrence and is independently selected from hydrogen, alkyl, alkenyi, alkoxy, cycloalkyl, cycloalkenyl, alcohol, benzyl, carboxylate, ether, amidosulfonate, ether carboxylate, ether sulfonate, ester sulfonate, urethane, epoxy, silane, siloxane, and alkyl substituted with one or more of sulfonic acid, carboxylic acid, acrylic acid, phosphoric acid, phosphonic acid, halogen, nitro, cyano, hydroxyl, epoxy, silane, or siloxane moieties.
- R 2 is selected from hydrogen, alkyl, and alkyl substituted with one or more of sulfonic acid, carboxylic acid, acrylic acid, phosphoric acid, phosphonic acid, halogen, cyano, hydroxyl, epoxy, silane, or siloxane moieties.
- the pyrrole monomer is unsubstituted and both R 1 and R 2 are hydrogen.
- both R 1 together form a 6- or 7-membered alicyclic ring, which is further substituted with a group selected from alkyl, heteroalkyl, alcohol, benzyl, carboxylate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane. These groups can improve the solubility of the monomer and the resulting polymer.
- both R 1 together form a 6- or 7-membered alicyclic ring, which is further substituted with an alkyl group.
- both R 1 together form a 6- or 7-membered alicyclic ring, which is further substituted with an alkyl group having at least 1 carbon atom.
- both R 1 together form -O-(CHY) m -O- , where m is 2 or 3, and Y is the same or different at each occurrence and is selected from hydrogen, alkyl, alcohol, benzyl, carboxylate, amidosulfonate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane.
- at least one Y group is not hydrogen.
- at least one Y group is a substituent having F substituted for at least one hydrogen.
- at least one Y group is perfluorinated.
- aniline monomers contemplated for use to form the copolymer in the new composition comprise Formula III below.
- R 1 is independently selected so as to be the same or different at each occurrence and is selected from hydrogen, alkyl, alkenyl, alkoxy, alkanoyl, alkythio, aryloxy, alkylthioalkyl, alkylaryl, arylalkyl, amino, alkylamino, dialkylamino, aryl, alkylsulfinyl, alkoxyalkyl, alkylsulfonyl, arylthio, arylsulfinyl, alkoxycarbonyl, arylsulfonyl, acrylic acid, phosphoric acid, phosphonic acid, halogen, nitro, cyano, hydroxyl, epoxy, silane, siloxane, alcohol, benzyl, carboxylate, ether, ether carboxylate, amidosulfonate
- the aniline monomeric unit can have Formula IV(a) or Formula IV(b) shown below, or a combination of both formulae.
- a is not 0 and at least one R 1 is fiuorinated. In one embodiment, at least one R 1 is perfluorinated.
- fused polycylic heteroaromatic monomers contemplated for use to form copolymers in the new composition have two or more fused aromatic rings, at least one of which is heteroaromatic.
- the fused polycyclic heteroaromatic monomer has Formula V:
- Q is S or NR 6 ;
- R 6 is hydrogen or alkyl
- R 8 , R 9 , R 10 , and R 11 are independently selected so as to be the same or different at each occurrence and are selected from hydrogen, alkyl, alkenyl, alkoxy, alkanoyl, alkythio, aryloxy, alkylthioalkyl, alkylaryl, arylalkyl, amino, alkylamino, dialkylamino, aryl, alkylsulfinyl, alkoxyalkyl, alkylsulfonyl, arylthio, arylsulfinyl, alkoxycarbonyl, arylsulfonyl, acrylic acid, phosphoric acid, phosphonic acid, halogen, nitro, nitrile, cyano, hydroxyl, epoxy, silane, siloxane, alcohol, benzyl, carboxylate, ether, ether carboxylate, amidosulfonate, ether sulfonate, este
- the fused polycyclic heteroaromatic monomer has Formula V(a), V(b), V(c), V(d), V(e), V(f), and V(g):
- Q is S or NH
- T is the same or different at each occurrence and is selected from S, NR 6 , O 1 SiR 6 2, Se, and PR 6 ;
- R 6 is hydrogen or alkyl.
- the fused polycyclic heteroaromatic monomers may be further substituted with groups selected from alkyl, heteroalkyl, alcohol, benzyl, carboxylate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane.
- the substituent groups are fluorinated. In one embodiment, the substituent groups are fully fluorinated.
- the fused polycyclic heteroaromatic monomer is a thieno(thiophene).
- thieno(thiophene) is selected from thieno(2,3-b)thiophene, thieno(3,2-b)thiophene, and thieno(3,4-b)thiophene.
- the thieno(thiophene) monomer is substituted with at least one group selected from alkyl, heteroalkyl, alcohol, benzyl, carboxylate, ether, ether carboxylate, ether sulfonate, ester sulfonate, and urethane.
- the substituent groups are fluorinated. In one embodiment, the substituent groups are fully fluorinated.
- polycyclic heteroaromatic monomers contemplated for use to form the copolymer in the new composition comprise Formula Vl: wherein: Q is S or NR 6 ;
- T is selected from S, NR 6 , O, SiR 6 2 , Se, and PR 6 ;
- E is selected from alkenylene, arylene, and heteroarylene;
- R 6 is hydrogen or alkyl;
- R 12 is the same or different at each occurrence and is selected from hydrogen, alkyl, alkenyl, alkoxy, alkanoyl, alkythio, aryloxy, alkylthioalkyl, alkylaryl, arylalkyl, amino, alkylamino, dialkylamino, aryl, alkylsulfinyl, alkoxyalkyl, alkylsulfonyl, arylthio, arylsulfinyl, alkoxycarbonyl, arylsulfonyl, acrylic acid, phosphoric acid, phosphonic acid, halogen, nitro, nitrile, cyano, hydroxyl, epoxy, silane, siloxane, alcohol, benzyl, carboxylate, ether, ether carboxylate, amidosulfonate, ether sulfonate, ester sulfonate, and urethane; or two R 12 groups together may form an alkylene or alken
- the electrically conductive copolymer is a copolymer of two or more conductive precursor monomers.
- the conductive precursor monomers are selected from thiophenes, pyrroles, anilines, and polycyclic aromatics.
- the electrically conductive copolymer is formed by oxidative polymerization of two or more conductive precursor monomers. 2. Non-conductive precursor monomers
- the electrically conductive copolymer is a copolymer of at least one conductive precursor monomer and at least one non-conductive precursor monomer. Any type of non-conductive precursor monomer can be used, so long as it does not detrimentally affect the desired properties of the copolymer.
- the non-conductive precursor monomer comprises no more than 50% of the copolymer, based on the total number of monomer units. In one embodiment, the non-conductive precursor monomer comprises no more than 30%, based on the total number of monomer units. In one embodiment, the non-conductive precursor monomer comprises no more than 10%, based on the total number of monomer units.
- non-conductive precursor monomers include, but are not limited to, alkenyl, alkynyl, arylene, and heteroarylene.
- non-conductive monomers include, but are not limited to, fluorene, oxadiazole, thiadiazole, benzothiadiazole, phenylenevinylene, phenyleneethynylene, pyridine, diazines, and triazines, all of which may be further substituted.
- the copolymers are made by first forming an intermediate precursor monomer having the structure A-B-C, where A and C represent conductive precursor monomers, which can be the same or different, and B represents a non-conductive precursor monomer.
- the A-B-C intermediate precursor monomer can be prepared using standard synthetic organic techniques, such as Yamamoto, Stille, Grignard metathesis, Suzuki, and Negishi couplings.
- the copolymer is then formed by oxidative polymerization of the intermediate precursor monomer alone, or with one or more additional conductive precursor monomers. 3.
- the fluorinated acid polymer can be any polymer which is fluorinated and has acidic groups with acidic protons.
- fluorinated means that at least one hydrogen bonded to a carbon has been replaced with a fluorine. The term includes partially and fully fluorinated materials.
- the fluorinated acid polymer is highly fluorinated.
- highly fluorinated means that at least 50% of the available hydrogens bonded to a carbon, have been replaced with fluorine.
- the acidic groups supply an ionizable proton.
- the acidic proton has a pKa of less than 3.
- the acidic proton has a pKa of less than 0.
- the acidic proton has a pKa of less than -5.
- the acidic group can be attached directly to the polymer backbone, or it can be attached to side chains on the polymer backbone.
- Examples of acidic groups include, but are not limited to, carboxylic acid groups, sulfonic acid groups, sulfonimide groups, phosphoric acid groups, phosphonic acid groups, and combinations thereof.
- the acidic groups can all be the same, or the polymer may have more than one type of acidic group.
- the fluorinated acid polymer is water-soluble. In one embodiment, the fluorinated acid polymer is dispersible in water.
- the fluorinated acid polymer is organic solvent wettable.
- organic solvent wettable refers to a material which, when formed into a film, is wettable by organic solvents.
- the term also includes polymeric acids which are not film-forming alone, but which form an electrically conductive polymer composition which is wettable.
- wettable materials form films which are wettable by phenylhexane with a contact angle no greater than 40°.
- contact angle is intended to mean the angle ⁇ shown in Figure 1. For a droplet of liquid medium, angle ⁇ is defined by the intersection of the plane of the surface and a line from the outer edge of the droplet to the surface.
- angle ⁇ is measured after the droplet has reached an equilibrium position on the surface after being applied, i.e., "static contact angle".
- the film of the organic solvent wettable fluorinated polymeric acid is represented as the surface.
- the contact angle is no greater than 35°. In one embodiment, the contact angle is no greater than 30°. The methods for measuring contact angles are well known.
- the polymer backbone is fluorinated.
- suitable polymeric backbones include, but are not limited to, polyolefins, polyacrylates, polymethacrylates, polyimides, polyamides, polyaramids, polyacrylamides, polystyrenes, and copolymers thereof.
- the polymer backbone is highly fluorinated.
- the polymer backbone is fully fluorinated.
- the acidic groups are selected from sulfonic acid groups and sulfonimide groups.
- the acidic groups are on a fluorinated side chain.
- the fluorinated side chains are selected from alkyl groups, alkoxy groups, amido groups, ether groups, and combinations thereof.
- the fluorinated acid polymer has a fluorinated olefin backbone, with pendant fluorinated ether sulfonate, fluorinated ester sulfonate, or fluorinated ether sulfonimide groups.
- the polymer is a copolymer of 1 ,1-difluoroethylene and 2-(1 ,1-difluoro ⁇ 2- (trifluoromethyl)allyloxy)-1 ,1 ,2,2-tetrafluoroethanesulfonic acid.
- the polymer is a copolymer of ethylene and 2-(2-(1,2,2- trifluorovinyloxy)-1 ,1 ,2,3,3,3-hexafluoropropoxy)-1 ,1 ,2,2- tetrafluoroethanesulfonic acid.
- These copolymers can be made as the corresponding sulfonyl fluoride polymer and then can be converted to the sulfonic acid form.
- the fluorinated acid polymer is homopolymer or copolymer of a fluorinated and partially sulfonated poly(arylene ether sulfone).
- the copolymer can be a block copolymer.
- comonomers include, but are not limited to butadiene, butylene, isobutylene, styrene, and combinations thereof.
- the fluroinated acid polymer is a homopolymer or copolymer of monomers having Formula VII:
- b is an integer from 1 to 5
- R 13 is OH or NHR 14
- R 1 is alkyl, fluoroalkyl, sulfonylalkyl, or sulfonylfluoroalkyl.
- the monomer is "SFS" or SFSI” shown below:
- the polymer After polymerization, the polymer can be converted to the acid form.
- the fluorinated acid polymer is a homopolymer or copolymer of a trifluorostyrene having acidic groups.
- the trifluorostyrene monomer has Formula VIII:
- W is selected from (CF 2 ) q , O(CF 2 ) q , S(CF 2 ) q , (CF 2 ) q O(CF 2 ) r , and SO 2 (CF 2 ) C
- b is independently an integer from 1 to 5
- R 13 is OH or NHR 14 .
- R 14 is alkyl, fluoroalkyl, sulfonylalkyl, or sulfonylfluoroalkyl.
- the monomer containing VV equal to S(CF 2 ) O is polymerized then oxidized to give the polymer containing W equal to S ⁇ 2 (CF 2 ) q .
- the polymer containing R 13 equal to F is converted its acid form where R 13 is equal to OH or NHR 14 .
- the fluorinated acid polymer is a sulfonimide polymer having Formula IX:
- Rf is selected from fluorinated alkylene, fluorinated heteroalkylene, fluorinated arylene, or fluorinated heteroarylene
- R g is selected from fluorinated alkylene, fluorinated heteroalkylene, fluorinated arylene, fluorinated heteroarylene, arylene, or heteroarylene
- n is at least 4.
- R f and R 9 are perfluoroalkylene groups. In one embodiment, R f and R 9 are perfluorobutylene groups. In one embodiment, R f and R 9 contain ether oxygens. In one embodiment, n is greater than 20.
- the fluorinated acid polymer comprises a fluorinated polymer backbone and a side chain having Formula X:
- R 15 is a fluorinated alkylene group or a fluorinated heteroalkylene group
- R 16 is a fluorinated alkyl or a fluorinated aryl group; and a is 0 or an integer from 1 to 4.
- the fluorinated acid polymer has Formula Xl:
- R 16 is a fluorinated alkyl or a fluorinated aryl group; a, b, c, d, and e are each independently 0 or an integer from 1 to 4; and n is at least 4.
- the fluorinated acid polymer comprises at least one repeat unit derived from an ethylenically unsaturated compound having the structure (XII):
- d is O, 1 , or 2;
- R 17 to R 20 are independently H, halogen, alkyl or alkoxy of 1 to 10 carbon atoms, Y 1 C(RZ)(ROOR 21 , R 4 Y or OR 4 Y; Y is COE 2 , SO 2 E 2 , or sulfonimide; R 21 is hydrogen or an acid-labile protecting group;
- R f is the same or different at each occurrence and is a fluoroalkyl group of 1 to 10 carbon atoms, or taken together are (CF 2 ) e where e is 2 to 10;
- R 4 is an alkylene group
- E 2 is OH, halogen, or OR 7 ;
- R 5 is an alkyl group; with the proviso that at least one of R 17 to R 20 is Y, R 4 Y or OR 4 Y.
- R 4 , R 5 , and R 17 to R 20 may optionally be substituted by halogen or ether oxygen.
- R 21 is a group capable of forming or rearranging to a tertiary cation, more typically an alkyl group of 1 to 20 carbon atoms, and most typically t-butyl.
- the reaction may be conducted at temperatures ranging from about 0 0 C to about 200 0 C, more typically from about 30 0 C to about 150 0 C in the absence or presence of an inert solvent such as diethyl ether.
- an inert solvent such as diethyl ether.
- a closed reactor is typically used to avoid loss of volatile components.
- the fluorinated acid polymer also comprises a repeat unit derived from at least one ethylenically unsaturated compound containing at least one fluorine atom attached to an ethylenically unsaturated carbon.
- the fluoroolefin comprises 2 to 20 carbon atoms.
- the comonomer is tetrafluoroethylene.
- the fluorinated acid polymer is a colloid-forming polymeric acid.
- colloid-forming refers to materials which are insoluble in water, and form colloids when dispersed into an aqueous medium.
- the colloid-forming polymeric acids typically have a molecular weight in the range of about 10,000 to about 4,000,000. In one embodiment, the polymeric acids have a molecular weight of about 100,000 to about 2,000,000.
- Colloid particle size typically ranges from 2 nanometers (nm) to about 140 nm. In one embodiment, the colloids have a particle size of 2 nm to about 30 nm. Any colloid-forming polymeric material having acidic protons can be used.
- the colloid-forming fluorinated polymeric acid has acidic groups selected from carboxylic groups, sulfonic acid groups, and sulfonimide groups. In one embodiment, the colloid-forming fluorinated polymeric acid is a polymeric sulfonic acid. In one embodiment, the colloid-forming polymeric sulfonic acid is perfluorinated. In one embodiment, the colloid-forming polymeric sulfonic acid is a perfluoroalkylenesulfonic acid.
- the fluorinated acid polymer comprises a polymeric backbone having pendant groups comprising siloxane sulfonic acid.
- the siloxane pendant groups have the formula below:
- R 22 is a non-hydrolyzable group independently selected from the group consisting of alkyl, aryl, and arylalkyl;
- R 23 is a bidentate alkylene radical, which may be substituted by one or more ether oxygen atoms, with the proviso that R 23 has at least two carbon atoms linearly disposed between Si and Rf; and
- Rf is a perfluoralkylene radical, which may be substituted by one or more ether oxygen atoms.
- the fluorinated acid polymer having pendant siloxane groups has a fluorinated backbone.
- the backbone is perfluorinated.
- the fluorinated acid polymer has a fluorinated backbone and pendant groups represented by the Formula (XIV)
- the fluorinated acid polymer has formula (XV)
- the pendant group is present at a concentration of 3-10 mol-%.
- Q 1 is H, k > 0, and Q 2 is F, which may be synthesized according to the teachings of Connolly et al., U.S. Patent 3,282,875.
- Q 1 is H
- Q 2 is H
- g 0
- R f 2 is F
- Still other embodiments may be synthesized according to the various teachings in Drysdale et a!., WO 9831716(A1), and co-pending US applications Choi et al, WO 99/52954(A1), and 60/176,881.
- the colloid-forming polymeric acid is a highly- fluorinated sulfonic acid polymer ("FSA polymer").
- FSA polymer highly- fluorinated sulfonic acid polymer
- “Highly fluorinated” means that at least about 50% of the total number of halogen and hydrogen atoms in the polymer are fluorine atoms, an in one embodiment at least about 75%, and in another embodiment at least about 90%.
- the polymer is perfluorinated.
- sulfonate functional group refers to either to sulfonic acid groups or salts of sulfonic acid groups, and in one embodiment alkali metal or ammonium salts.
- the functional group is represented by the formula -SOsE 5 where E 5 is a cation, also known as a "counterion”.
- E 5 may be H, Li, Na 1 K or N(Ri)(R 2 )(R 3 )(R 4 ), anci R-! > ⁇ 2> ⁇ 3> ancl ⁇ 4 are tne sar ne or different and are and in one embodiment H, CH3 or C2H5.
- E 5 is H, in which case the polymer is said to be in the "acid form”.
- E 5 may also be multivalent, as represented by such ions as Ca ++ , and Al +++ . It is clear to the skilled artisan that in the case of multivalent counterions, represented generally as M x+ , the number of sulfonate functional groups per counterion will be equal to the valence "x".
- the FSA polymer comprises a polymer backbone with recurring side chains attached to the backbone, the side chains carrying cation exchange groups.
- Polymers include homopolymers or copolymers of two or more monomers. Copolymers are typically formed from a nonfunctional monomer and a second monomer carrying the cation exchange group or its precursor, e.g., a sulfonyl fluoride group (-SO 2 F), which can be subsequently hydrolyzed to a sulfonate functional group.
- a sulfonyl fluoride group e.g., a sulfonyl fluoride group (-SO 2 F)
- a first fluorinated vinyl monomer together with a second fluorinated vinyl monomer having a sulfonyl fluoride group (-SO 2 F) can be used.
- Possible first monomers include tetrafluoroethylene (TFE), hexafluoropropylene, vinyl fluoride, vinylidine fluoride, trifluoroethylene, chlorotrifluoroethylene, perfluoro(alkyl vinyl ether), and combinations thereof.
- TFE is a preferred first monomer.
- the polymers may be of the type referred to herein as random copolymers, that is, copolymers made by polymerization in which the relative concentrations of the comonomers are kept as constant as possible, so that the distribution of the monomer units along the polymer chain is in accordance with their relative concentrations and relative reactivities.
- Block copolymers such as those disclosed in European Patent Application No. 1 026 152 A1 , may also be used.
- the FSA polymers include, for example, polymers disclosed in U.S. Patent No. 3,282,875 and in U.S. Patent Nos. 4,358,545 and 4,940,525.
- An example of a preferred FSA polymer comprises a perfluorocarbon backbone and the side chain represented by the formula
- TFE tetrafluoroethylene
- PDMMOF perfluoro(3,6-dioxa-4-methyl-7- octenesulfonyl fluoride)
- polymer of the type disclosed in U.S. Patent Nos. 4,358,545 and 4,940,525 has the side chain -0-CF 2 CF 2 SO 3 E 5 , wherein E 5 is as defined above.
- the FSA polymers for use in this invention typically have an ion exchange ratio of less than about 33.
- "ion exchange ratio" or “IXR” is defined as number of carbon atoms in the polymer backbone in relation to the cation exchange groups. Within the range of less than about 33, IXR can be varied as desired for the particular application. In one embodiment, the IXR is about 3 to about 33, and in another embodiment about 8 to about 23.
- equivalent weight is defined to be the weight of the polymer in acid form required to neutralize one equivalent of sodium hydroxide.
- equivalent weight range which corresponds to an IXR of about 8 to about 23 is about 750 EW to about 1500 EW.
- IXR sulfonate polymers disclosed in U.S. Patent Nos. 4,358,545 and 4,940,525, e.g., the polymer having the side chain -O-CF2CF2SO3H (or a salt thereof), the equivalent weight is somewhat lower because of the lower molecular weight of the monomer unit containing a cation exchange group.
- the corresponding equivalent weight range is about 575 EW to about 1325 EW.
- the FSA polymers can be prepared as colloidal aqueous dispersions. They may also be in the form of dispersions in other media, examples of which include, but are not limited to, alcohol, water-soluble ethers, such as tetrahydrofuran, mixtures of water-soluble ethers, and combinations thereof. In making the dispersions, the polymer can be used in acid form.
- U.S. Patent Nos. 4,433,082, 6,150,426 and WO 03/006537 disclose methods for making of aqueous alcoholic dispersions. After the dispersion is made, concentration and the dispersing liquid composition can be adjusted by methods known in the art.
- Aqueous dispersions of the colloid-forming polymeric acids typically have particle sizes as small as possible and an EW as small as possible, so long as a stable colloid is formed.
- Aqueous dispersions of FSA polymer are available commericially as Nafion® dispersions, from E. I. du Pont de Nemours and Company (Wilmington, DE). 4. Preparation of conductive compositions
- the new electrically conductive copolymer composition is prepared by (i) polymerizing the precursor monomers in the presence of the fluorinated acid polymer; or (ii) first forming the electrically conductive copolymer and combining it with the fluorinated acid polymer. (D Polymerizing precursor monomers in the presence of the fluorinated acid polymer
- the electrically conductive copolymer composition is formed by the oxidative polymerization of the precursor monomers in the presence of the fluorinated acid polymer.
- the precursor monomers comprise two or more conductive precursor monomers.
- the precursor monomers comprise one or more interemediate precursor monomers.
- the precursor monomers comprise one or more conductive precursor monomers and one or more intermediate precursor monomers.
- the oxidative polymerization is carried out in a homogeneous aqueous solution. In another embodiment, the oxidative polymerization is carried out in an emulsion of water and an organic solvent. In general, some water is present in order to obtain adequate solubility of the oxidizing agent and/or catalyst. Oxidizing agents such as ammonium persulfate, sodium persulfate, potassium persulfate, and the like, can be used. A catalyst, such as ferric chloride, or ferric sulfate may also be present.
- the resulting polymerized product will be a solution, dispersion, or emulsion of the conductive copolymer in association with the fluorinated acid polymer.
- the electrically conductive copolymer is positively charged, and the charges are balanced by the fluorinated acid polymer anion.
- the method of making an aqueous dispersion of the new conductive copolymer composition includes forming a reaction mixture by combining water, at least two precursor monomers, at least one fluorinated acid polymer, and an oxidizing agent, in any order, provided that at least a portion of the fluorinated acid polymer is present when at least one of the precursor monomers and the oxidizing agent is added.
- the method of making the new conductive copolymer composition comprises:
- step (b) adding an oxidizer to the solutions or dispersion of step (a);
- step (c) adding at least two precursor monomers to the mixture of step (b).
- the precursor monomers are added to the aqueous solution or dispersion of the fluorinated acid polymer prior to adding the oxidizer. Step (b) above, which is adding oxidizing agent, is then carried out.
- a mixture of water and the precursor monomers is formed, in a concentration typically in the range of about 0.5% by weight to about 4.0% by weight total precursor monomer.
- This precursor monomer mixture is added to the aqueous solution or dispersion of the fluorinated acid polymer, and steps (b) above which is adding oxidizing agent is carried out.
- the aqueous polymerization mixture may include a polymerization catalyst, such as ferric sulfate, ferric chloride, and the like.
- the catalyst is added before the last step.
- a catalyst is added together with an oxidizing agent.
- the polymerization is carried out in the presence of co-dispersing liquids which are miscible with water.
- suitable co-dispersing liquids include, but are not limited to ethers, alcohols, alcohol ethers, cyclic ethers, ketones, nitriles, sulfoxides, amides, and combinations thereof.
- the co-dispersing liquid is an alcohol.
- the co-dispersing liquid is an organic solvent selected from n-propanol, isopropanol, t-butanol, dimethylacetamide, dimethylf ⁇ rmamide, N-methylpyrrolidone, and mixtures thereof.
- the amount of co-dispersing liquid should be less than about 60% by volume. In one embodiment, the amount of co- dispersing liquid is less than about 30% by volume. In one embodiment, the amount of co-dispersing liquid is between 5 and 50% by volume.
- the use of a co-dispersing liquid in the polymerization significantly reduces particle size and improves filterability of the dispersions. In addition, buffer materials obtained by this process show an increased viscosity and films prepared from these dispersions are of high quality.
- the co-dispersing liquid can be added to the reaction mixture at any point in the process.
- the polymerization is carried out in the presence of a co-acid which is a Br ⁇ nsted acid.
- the acid can be an inorganic acid, such as HCI, sulfuric acid, and the like, or an organic acid, such as acetic acid or p-toluenesulfonic acid.
- the acid can be a water soluble polymeric acid such as poly(styrenesulfonic acid), poly(2-acrylamido-2-methyl-1-propanesulfonic acid, or the like, or a second fluorinated acid polymer, as described above. Combinations of acids can be used.
- the co-acid can be added to the reaction mixture at any point in the process prior to the addition of either the oxidizer or the precursor monomer, whichever is added last. In one embodiment, the co-acid is added before both the precursor monomers and the fluorinated acid polymer, and the oxidizer is added last. In one embodiment the co-acid is added prior to the addition of the precursor monomers, followed by the addition of the fluorinated acid polymer, and the oxidizer is added last. In one embodiment, the polymerization is carried out in the presence of both a co-dispersing liquid and a co-acid.
- a reaction vessel is charged first with a mixture of water, alcohol co-dispersing agent, and inorganic co-acid. To this is added, in order, the precursor monomers, an aqueous solution or dispersion of fluorinated acid polymer, and an oxidizer. The oxidizer is added slowly and dropwise to prevent the formation of localized areas of high ion concentration which can destabilize the mixture.
- the oxidizer and precursor monomers are injected into the reaction mixture separately and simultaneously at a controlled rate. The mixture is stirred and the reaction is then allowed to proceed at a controlled temperature. When polymerization is completed, the reaction mixture is treated with a strong acid cation resin, stirred and filtered; and then treated with a base anion exchange resin, stirred and filtered.
- Alternative orders of addition can be used, as discussed above.
- the molar ratio of oxidizer to total precursor monomer is generally in the range of 0.1 to 3.0; and in one embodiment is 0.4 to 1.5.
- the molar ratio of fluorinated acid polymer to total precursor monomer is generally in the range of 0.2 to 10. In one embodiment, the ratio is in the range of 1 to 5.
- the overall solid content is generally in the range of about 0.5% to 12% in weight percentage; and in one embodiment of about 2% to 6%.
- the reaction temperature is generally in the range of about 4°C to 50°C; in one embodiment about 20°C to 35°C.
- the molar ratio of optional co-acid to precursor monomer is about 0.05 to 4.
- the addition time of the oxidizer influences particle size and viscosity.
- the particle size can be reduced by slowing down the addition speed.
- the viscosity is increased by slowing down the addition speed.
- the reaction time is generally in the range of about 1 to about 30 hours.
- the electrically conductive copolymers are formed separately from the fluorinated acid polymer.
- the copolymers are prepared by oxidatively polymerizing the corresponding monomers in aqueous solution.
- the oxidative polymerization is carried out in the presence of a water soluble acid.
- the acid is a water-soluble non-flurorinated polymeric acid.
- the acid is a non-fluorinated polymeric sulfonic acid.
- Some non-limiting examples of the acids are poly(styrenesulfonic acid) (“PSSA”), poly(2-acrylamido-2-methyl-1- propanesulfonic acid) (“PAAMPSA”), and mixtures thereof.
- the acid anion provides the counterion for the conductive copolymer.
- the oxidative polymerization is carried out using an oxidizing agent such as ammonium persulfate, sodium persulfate, and mixtures thereof.
- the new electrically conductive polymer composition is prepared by blending the electrically conductive copolymer with the fluorinated acid polymer. This can be accomplished by adding an aqueous dispersion of the electrically conductive copolymer to a dispersion or solution of the polymeric acid. In one embodiment, the composition is further treated using sonication or microfluidization to ensure mixing of the components.
- one or both of the electrically conductive copolymer and fluorinated acid polymer are isolated in solid form.
- the solid material can be redispersed in water or in an aqueous solution or dispersion of the other component.
- electrically conductive copolymer solids can be dispersed in an aqueous solution or dispersion of a fluorinated acid polymer. (iifl pH adjustment
- the aqueous dispersions of the new conductive copolymer composition generally have a very low pH.
- the pH is adjusted to higher values, without adversely affecting the properties in devices.
- the pH of the dispersion is adjusted to about 1.5 to about 4.
- the pH is adjusted to between 3 and 4.It has been found that the pH can be adjusted using known techniques, for example, ion exchange or by titration with an aqueous basic solution.
- the as-synthesized aqueous dispersion is contacted with at least one ion exchange resin under conditions suitable to remove decomposed species, side reaction products, and unreacted monomers, and to adjust pH, thus producing a stable, aqueous dispersion with a desired pH.
- the as-synthesized aqueous dispersion is contacted with a first ion exchange resin and a second ion exchange resin, in any order.
- the as-synthesized aqueous dispersion can be treated with both the first and second ion exchange resins simultaneously, or it can be treated sequentially with one and then the other.
- Ion exchange is a reversible chemical reaction wherein an ion in a fluid medium (such as an aqueous dispersion) is exchanged for a similarly charged ion attached to an immobile solid particle that is insoluble in the fluid medium.
- a fluid medium such as an aqueous dispersion
- the term "ion exchange resin" is used herein to refer to all such substances. The resin is rendered insoluble due to the crosslinked nature of the polymeric support to which the ion exchanging groups are attached.
- Ion exchange resins are classified as cation exchangers or anion exchangers. Cation exchangers have positively charged mobile ions available for exchange, typically protons or metal ions such as sodium ions.
- Anion exchangers have exchangeable ions which are negatively charged, typically hydroxide ions.
- the first ion exchange resin is a cation, acid exchange resin which can be in protonic or metal ion, typically sodium ion, form.
- the second ion exchange resin is a basic, anion exchange resin. Both acidic, cation including proton exchange resins and basic, anion exchange resins are contemplated for use in the practice of the invention.
- the acidic, cation exchange resin is an inorganic acid, cation exchange resin, such as a sulfonic acid cation exchange resin.
- Sulfonic acid cation exchange resins contemplated for use in the practice of the invention include, for example, sulfonated styrene-divinylbenzene copolymers, sulfonated crosslinked styrene polymers, phenol- formaldehyde-sulfonic acid resins, benzene-formaldehyde-sulfonic acid resins, and mixtures thereof.
- the acidic, cation exchange resin is an organic acid, cation exchange resin, such as carboxylic acid, acrylic or phosphorous cation exchange resin.
- mixtures of different cation exchange resins can be used.
- the basic, anionic exchange resin is a tertiary amine anion exchange resin.
- Tertiary amine anion exchange resins contemplated for use in the practice of the invention include, for example, tertiary-aminated styrene-divinylbenzene copolymers, tertiary- aminated crosslinked styrene polymers, tertiary-aminated phenol- formaldehyde resins, tertiary-aminated benzene-formaldehyde resins, and mixtures thereof.
- the basic, anionic exchange resin is a quaternary amine anion exchange resin, or mixtures of these and other exchange resins.
- the first and second ion exchange resins may contact the as- synthesized aqueous dispersion either simultaneously, or consecutively.
- both resins are added simultaneously to an as-synthesized aqueous dispersion of an electrically conducting copolymer, and allowed to remain in contact with the dispersion for at least about 1 hour, e.g., about 2 hours to about 20 hours.
- the ion exchange resins can then be removed from the dispersion by filtration.
- the size of the filter is chosen so that the relatively large ion exchange resin particles will be removed while the smaller dispersion particles will pass through.
- the ion exchange resins quench polymerization and effectively remove ionic and non-ionic impurities and most of unreacted monomer from the as-synthesized aqueous dispersion.
- the basic, anion exchange and/or acidic, cation exchange resins renders the acidic sites more basic, resulting in increased pH of the dispersion. In general, about one to five grams of ion exchange resin is used per gram of new conductive copolymer composition.
- the basic ion exchange resin can be used to adjust the pH to the desired level.
- the pH can be further adjusted with an aqueous basic solution such as a solution of sodium hydroxide, ammonium hydroxide, tetra-methylammonium hydroxide, or the like.
- more conductive dispersions are formed by the addition of highly conductive additives to the aqueous dispersions of the new conductive copolymer composition.
- the conductive additives especially metal additives, are not attacked by the acid in the dispersion.
- suitable conductive additives include, but are not limited to metal particles and nanoparticles, nanowires, carbon nanotubes, graphite fibers or particles, carbon particles, and combinations thereof. 5. Buffer layers
- buffer layers deposited from aqueous dispersions comprising the new conductive polymer composition.
- buffer layer or “buffer material” are intended to mean electrically conductive or semiconductive materials and may have one or more functions in an organic electronic device, including but not limited to, planarization of the underlying layer, charge transport and/or charge injection properties, scavenging of impurities such as oxygen or metal ions, and other aspects to facilitate or to improve the performance of the organic electronic device.
- layer is used interchangeably with the term “film” and refers to a coating covering a desired area. The term is not limited by size.
- the area can be as large as an entire device or as small as a specific functional area such as the actual visual display, or as small as a single sub-pixel.
- Layers and films can be formed by any conventional deposition technique, including vapor deposition, liquid deposition (continuous and discontinuous techniques), and thermal transfer.
- Continuous deposition techniques inlcude but are not limited to, spin coating, gravure coating, curtain coating, dip coating, slot-die coating, spray coating, and continuous nozzle coating.
- Discontinuous deposition techniques include, but are not limited to, ink jet printing, gravure printing, and screen printing.
- the dried films of the new conductive copolymer composition are generally not redispersible in water.
- the buffer layer can be applied as multiple thin layers.
- the buffer layer can be overcoated with a layer of different water-soluble or water-dispersible material without being damaged. Buffer layers comprising the new conductive copolymer composition have been surprisingly found to have improved wetability.
- buffer layers deposited from aqueous dispersions comprising the new conductive copolymer composition blended with other water soluble or dispersible materials.
- materials which can be added include, but are not limited to polymers, dyes, coating aids, organic and inorganic conductive inks and pastes, charge transport materials, crosslinking agents, and combinations thereof.
- the other water soluble or dispersible materials can be simple molecules or polymers.
- suitable polymers include, but are not limited to, conductive polymers such as polythiophenes, polyanilines, polypyrroles, polyacetylenes, and combinations thereof. 6. Electronic devices
- electroactive when referring to a layer or material is intended to mean a layer or material that exhibits electronic or electro-radiative properties.
- An electroactive layer material may emit radiation or exhibit a change in concentration of electron-hole pairs when receiving radiation.
- a typical device, 100 has an anode layer 110, a buffer layer 120, an electroactive layer 130, and a cathode layer 150. Adjacent to the cathode layer 150 is an optional electron- injection/transport layer 140.
- the device may include a support or substrate (not shown) that can be adjacent to the anode layer 110 or the cathode layer 150. Most frequently, the support is adjacent the anode layer 110.
- the support can be flexible or rigid, organic or inorganic. Examples of support materials include, but are not limited to, glass, ceramic, metal, and plastic films.
- the anode layer 110 is an electrode that is more efficient for injecting holes compared to the cathode layer 150.
- the anode can include materials containing a metal, mixed metal, alloy, metal oxide or mixed oxide. Suitable materials include the mixed oxides of the Group 2 elements (i.e., Be, Mg, Ca, Sr 1 Ba, Ra), the Group 11 elements, the elements in Groups 4, 5, and 6, and the Group 8-10 transition elements. If the anode layer 110 is to be light transmitting, mixed oxides of Groups 12, 13 and 14 elements, such as indium-tin-oxide, may be used. As used herein, the phrase "mixed oxide” refers to oxides having two or more different cations selected from the Group 2 elements or the Groups 12, 13, or 14 elements.
- anode layer 110 examples include, but are not limited to, indium-tin-oxide ("ITO"), indium-zinc-oxide, aluminum-tin-oxide, gold, silver, copper, and nickel.
- the anode may also comprise an organic material, especially a conducting polymer such as polyaniline, including exemplary materials as described in "Flexible light-emitting diodes made from soluble conducting polymer," Nature vol. 357, pp 477479 (11 June 1992). At least one of the anode and cathode should be at least partially transparent to allow the generated light to be observed.
- the anode layer 110 may be formed by a chemical or physical vapor deposition process or spin-cast process.
- Chemical vapor deposition may be performed as a plasma-enhanced chemical vapor deposition ("PECVD") or metal organic chemical vapor deposition ("MOCVD”).
- Physical vapor deposition can include all forms of sputtering, including ion beam sputtering, as well as e-beam evaporation and resistance evaporation.
- Specific forms of physical vapor deposition include rf magnetron sputtering and inductively-coupled plasma physical vapor deposition ("IMP-PVD"). These deposition techniques are well known within the semiconductor fabrication arts.
- the anode layer 110 is patterned during a lithographic operation.
- the pattern may vary as desired.
- the layers can be formed in a pattern by, for example, positioning a patterned mask or resist on the first flexible composite barrier structure prior to applying the first electrical contact layer material.
- the layers can be applied as an overall layer (also called blanket deposit) and subsequently patterned using, for example, a patterned resist layer and wet chemical or dry etching techniques. Other processes for patterning that are well known in the art can also be used.
- the buffer layer 120 is usually deposited onto substrates using a variety of techniques well-known to those skilled in the art. Typical deposition techniques, as discussed above, include vapor deposition, liquid deposition (continuous and discontinuous techniques), and thermal transfer.
- An optional layer may be present between the buffer layer 120 and the electroactive layer 130.
- This layer may comprise hole transport materials. Examples of hole transport materials for layer 120 have been summarized, for example, in Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, Vol. 18, p. 837-860, 1996, by Y. Wang. Both hole transporting molecules and polymers can be used.
- Commonly used hole transporting molecules include, but are not limited to: 4,4',4"-tris(N,N-diphenyl-amino)-triphenylamine (TDATA); 4,4',4"-tris(N- 3-methylphenyl-N-phenyl-amino)-triphenylamine (MTDATA); N,N l -diphenyl-N,N l -bis(3-methylphenylH1,1 I -biphenyl]-4,4 l -diamine (TPD); 1 ,1-bis[(di-4-tolylamino) phenyl]cyclohexane (TAPC); N,N'-bis(4- methylphenyl)-N,N'-bis(4-ethylphenyl)-[1 ,r-(3,3'-dimethyl)biphenyl]-4,4 1 - diamine (ETPD); tetrakis-(3-methylphenyl)-N
- PDA -2,5- phenylenediamine
- PPS ⁇ -phenyl-4-N,N-diphenylaminostyrene
- DEH p-(diethylamino)benzaldehyde diphenylhydrazone
- triphenylamine TPA
- MPMP bis[4-(N,N-diethylamino)-2-methylphenyl](4-methylphenyI)methane
- MPMP 1-phenyl-3-[p-(diethylamino)styryl]-5-[p-(diethylamino)phenyl] pyrazoiine (PPR or DEASP); 1,2-trans-bis(9H-carbazol-9-yl)cyclobutane (DCZB); N,N,N',N'-tetrakis(4-methylphenyl)-(1 ,r-biphenyl)-4,4 l -diamine (TTB); N,N'-bis(n
- hole transporting polymers include, but are not limited to, poly(9,9,-dioctyl- fluorene-co-N-(4-butylphenyl)diphenylamine), and the like, polyvinylcarbazole, (phenylmethyl)polysilane, poly(dioxythiophenes), polyanilines, and polypyrroles. It is also possible to obtain hole transporting polymers by doping hole transporting molecules such as those mentioned above into polymers such as polystyrene and polycarbonate.
- the electroactive layer 130 can be a light-emitting layer that is activated by an applied voltage (such as in a light-emitting diode or light-emitting electrochemical cell), a layer of material that responds to radiant energy and generates a signal with or without an applied bias voltage (such as in a photodetector).
- the electroactive material is an organic electroluminescent ("EL") material. Any EL material can be used in the devices, including, but not limited to, small molecule organic fluorescent compounds, fluorescent and phosphorescent metal complexes, conjugated polymers, and combinations and mixtures thereof.
- fluorescent compounds include, but are not limited to, pyrene, perylene, rubrene, coumarin, derivatives thereof, and mixtures thereof.
- metal complexes include, but are not limited to, metal chelated oxinoid compounds, such as tris(8-hydroxyquinolato)aluminum (Alq3); tetra(8- hydroxyquinolato)zirconium (ZrQ), cyclometalated iridium and platinum electroluminescent compounds, such as complexes of iridium with phenylpyridine, phenylquinoline, or phenylpyrimidine ligands as disclosed in Petrov et al., U.S.
- Electroluminescent emissive layers comprising a charge carrying host material and a metal complex have been described by Thompson et al., in U.S. Patent 6,303,238, and by Burrows and Thompson in published PCT applications WO 00/70655 and WO 01/41512.
- conjugated polymers include, but are not limited to poly(phenylenevinylenes), polyfluorenes, poly(spirobifluorenes), polythiophenes, poly(p-phenylenes), copolymers thereof, and mixtures thereof.
- Optional layer 140 can function both to facilitate electron injection/transport, and can also serve as a confinement layer to prevent quenching reactions at layer interfaces. More specifically, layer 140 may promote electron mobility and reduce the likelihood of a quenching reaction if layers 130 and 150 would otherwise be in direct contact.
- materials for optional layer 140 include, but are not limited to, metal chelated oxinoid compounds, such as bis(2-methyl-8- quinolinolato)(para-phenyl-phenolato)aluminum(lll) (BAIQ), tetra(8- hydroxyquinolato)zirconium (ZrQ), and tris(8-hydroxyquinolato)aluminum (Alq ⁇ ); azole compounds such as 2-(4-biphenylyl)-5-(4-t-butylphenyl)-
- optional layer 140 may be inorganic and comprise BaO, LiF, U2O, or the like.
- the cathode layer 150 is an electrode that is particularly efficient for injecting electrons or negative charge carriers.
- the cathode layer 150 can be any metal or nonmetal having a lower work function than the first electrical contact layer (in this case, the anode layer 110).
- the term "lower work function” is intended to mean a material having a work function no greater than about 4.4 eV.
- “higher work function” is intended to mean a material having a work function of at least approximately 4.4 eV.
- Materials for the cathode layer can be selected from alkali metals of Group 1 (e.g., Li, Na, K, Rb, Cs,), the Group 2 metals (e.g., Mg, Ca, Ba, or the like), the Group 12 metals, the lanthanides (e.g., Ce, Sm, Eu, or the like), and the actinides (e.g., Th, U, or the like). Materials such as aluminum, indium, yttrium, and combinations thereof, may also be used. Specific non-limiting examples of materials for the cathode layer 150 include, but are not limited to, barium, lithium, cerium, cesium, europium, rubidium, yttrium, magnesium, samarium, and alloys and combinations thereof.
- the cathode layer 150 is usually formed by a chemical or physical vapor deposition process. In some embodiments, the cathode layer will be patterned, as discussed above in reference to the anode layer 110.
- Other layers in the device can be made of any materials which are known to be useful in such layers upon consideration of the function to be served by such layers.
- an encapsulation layer (not shown) is deposited over the contact layer 150 to prevent entry of undesirable components, such as water and oxygen, into the device 100. Such components can have a deleterious effect on the organic layer 130.
- the encapsulation layer is a barrier layer or film.
- the encapsulation layer is a glass lid.
- the device 100 may comprise additional layers. Other layers that are known in the art or otherwise may be used. In addition, any of the above-described layers may comprise two or more sub-layers or may form a laminar structure. Alternatively, some or all of anode layer 110, the buffer layer 120, the electron transport layer 140, cathode layer 150, and other layers may be treated, especially surface treated, to increase charge carrier transport efficiency or other physical properties of the devices.
- the choice of materials for each of the component layers is preferably determined by balancing the goals of providing a device with high device efficiency with device operational lifetime considerations, fabrication time and complexity factors and other considerations appreciated by persons skilled in the art. It will be appreciated that determining optimal components, component configurations, and compositional identities would be routine to those of ordinary skill of in the art.
- the different layers have the following ranges of thicknesses: anode 110, 500-5000 A, in one embodiment 1000- 2000A; buffer layer 120, 50-2000 A, in one embodiment 200-1000 A; optional hole transport layer, 50 -2000 A, in one embodiment 100-1000 A; photoactive layer 130, 10-2000 A, in one embodiment 100-1000 A; optional electron transport layer 140, 50-2000 A, in one embodiment 100- 1000 A; cathode 150, 200-10000 A, in one embodiment 300-5000 A.
- the location of the electron-hole recombination zone in the device, and thus the emission spectrum of the device can be affected by the relative thickness of each layer.
- the thickness of the electron-transport layer should be chosen so that the electron-hole recombination zone is in the light-emitting layer.
- the desired ratio of layer thicknesses will depend on the exact nature of the materials used.
- a voltage from an appropriate power supply (not depicted) is applied to the device 100.
- Current therefore passes across the layers of the device 100. Electrons enter the organic polymer layer, releasing photons.
- OLEDs called active matrix OLED displays
- individual deposits of photoactive organic films may be independently excited by the passage of current, leading to individual pixels of light emission.
- OLEDs called passive matrix OLED displays
- deposits of photoactive organic films may be excited by rows and columns of electrical contact layers.
- the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion.
- a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
- “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
- hole transport when referring to a layer, material, member, or structure, is intended to mean such layer, material, member, or structure facilitates migration of positive charges through the thickness of such layer, material, member, or structure with relative efficiency and small loss of charge.
- electron transport means when referring to a layer, material, member or structure, such a layer, material, member or structure that promotes or facilitates migration of negative charges through such a layer, material, member or structure into another layer, material, member or structure.
- Organic electronic device is intended to mean a device including one or more semiconductor layers or materials.
- Organic electronic devices include, but are not limited to: (1) devices that convert electrical energy into radiation (e.g., a light-emitting diode, light emitting diode display, diode laser, or lighting panel), (2) devices that detect signals through electronic processes (e.g., photodetectors photoconductive cells, photoresistors, photoswitches, phototransistors, phototubes, infrared (“IR”) detectors, or biosensors), (3) devices that convert radiation into electrical energy (e.g., a photovoltaic device or solar cell), and (4) devices that include one or more electronic components that include one or more organic semiconductor layers (e.g., a transistor or diode).
- IR infrared
- This example illustrates the oxidative copolymerization of 3,4- ethylenedioxythiophene (EDT) and pyrrole in the presence of Nafion®.
- the Nafion® was a 23.3% (w/w) aqueous colloidal dispersion of perfluroethylenesulfonic acid with an EW of 1017.7 is made using a procedure similar to the procedure in U.S. Patent No. 6,150,426, Example 1 , Part 2, except that the temperature is approximately 270 0 C.
- Nafion ® is an organic solvent non-wettable acid. 49.62g (11.37 mmoles) of the Nafion® described above was added to a 500 mL resin kettle.
- ferric sulfate solution was made first by dissolving 0.0446g ferric sulfate hydrate (97 %, Sigma-AIdrich Corp., St. Louis, MO, USA) with deionized water to a total weight of 6.8667g. 5.43g (0.0682 mmoles) of the ferric sulfate solution were added to the acid/water mixture.
- a solution of sodium persulfate was made by dissolving 1.23g sodium persulfate (Fluka, Sigma-AIdrich Corp., St. Louis, MO, USA) with deionized water to a total weight of 9.47g (5.17 mmol).
- the sodium persulfate solution and 0.22mL (2.064mmoles) ethylenedioxythiophene (EDT)/0.143mL (2.061 mmoles) pyrrole mixture were added to the acid/water/catalyst mixture in 14 hours at a constant rate while continuous stirring at 200RPM.
- the addition of the monomer mixture and the Na2S2O 8 /water solution was accomplished by placing them in a separate syringe connected to a Teflon® tube. The end of the Teflon® tube connecting the syringe was placed above the reaction mixture such that the injection involved individual drops falling from the end of the tube. The reaction is stopped in 7.4 hours after completion of the addition. An aliquot of 53.2g polymerization mixture was taken and the rest was added with 24.7g of Lewatit MP62WS and 24.9g Lewatit Monoplus S100 ion-exchange resins to the reaction mixture and stirring it further for 5 hours. The ion-exchange resins were finally removed from the dispersion using Whatman No. 4 filter paper. The yield is 20Og.
- the aqueous pyrrole/EDT copolymer dispersion was spun on a 6"x6" glass plate.
- the plate had an ITO thickness of 100 to 150nm and consisted of 16 backlight substrates. Each substrate consisted of 3 pieces of ⁇ mmx ⁇ mm pixel and 1 piece of 2mmx2mm pixel for light emission.
- the spin-coated films as buffer layer layers were then baked at 130C for 5 minutes on a hot plate in air. The thickness of the baked buffer layers was about 80nm.
- a 1% (w/v) p-xylene solution of a green polyfluorene light-emitting polymer was spin-coated on top of the buffer layer films and subsequently baked at 1300C for 10 minutes on a hot plate in an inert atmosphere dry box. The thickness of the baked films was 75nm.
- a 3nm thick barium layer and a 350-400nm aluminum layer were deposited on the green light-emitting polymer films to serve as a cathode.
- the resulting devices have an efficiency of 18cd/A@ 1000cd/m 2 .
- Half-life of the devices is about 400 hours @5,000cd/ m 2 -
- This example illustrates preparation of an organic solvent wettable sulfonic acid polymer to be used in the preparation of a new conductive copolymer composition illustrated in Example 3.
- the acid polymer is a copolymer of tetrafluoroethylene (TFE) and 3,3,4-trifluoro-4- (perfluorosulfonylethoxy)-tricyclo[4.2.1.0 2l5 ]-non-7-ene (NBD-PSEVE), which is subsequently converted to the sulfonic acid form.
- TFE/NBD-PSEVE 3,3,4-trifluoro-4-(perfluorosulfonylethoxy)- tricvclor4.2.1.0 2 5 1-non-7-ene
- a 1000 ml_ Hastelloy C276 reaction vessel was charged with a mixture of 2,5-norbomadiene (98%, Aldrich, 100g), and hydroquinone (0.5 g).
- the vessel was cooled to -6 0 C, evacuated to -20 PSIG, and purged with nitrogen.
- the pressure was again reduced to -20 PSIG and 2-(1,2,2- trifluorovinyloxy)-1 ,1 ,2,2-tetrafluoroethanesulfonyl fluoride (305 g) was added.
- the vessel was agitated and heated to 19O 0 C at which time the inside pressure was 126 PSIG.
- the reaction temperature was maintained at 190 0 C for 6 h.
- the pressure dropped to 47 PSIG at which point the vessel was vented and cooled to 25 0 C.
- the entire content ( ⁇ 376g) of the hydrolyzed mixture was further treated for conversion to acid.
- 3Og protonic exchange resins were added to the mixture and left stirred for 1 hr.
- the resin was filtered and fresh 3Og acidic resins were added and left stirred for 15 hrs and filtered again.
- the filtrate was treated with fresh 2Og acidic resins for half an hour and again the filtrate was treated with fresh 3Og acidic resins for half an hour.
- the final filtrate was then placed in around bottom flask which was immersed in an oil bath heated to 6O 0 C. Once two thirds of the content were removed through evaporation, the oil bath heat was turned off until the content became dried. Dried solid, which was yellowish, weighed 18.5g.
- TFE/NBD-PSEVE oxidative copolymerization of 3,4- ethylenedioxythiophene(EDT) and pyrrole in the presence of TFE/NBD- PSEVE prepared in Example 2.
- the TFE/NBD-PSEVE is a solid and has EW of 462.6.
- the acid film is an organic solvent wettable acid.
- TFE/NBD-PSEVE and 183.5g deionized water will be added to a 500 ml_ resin kettle.
- 0.2448g (2.484 mmoles) 37% (w/w) HCI solution will be added.
- a stock solution of ferric sulfate will be made first by dissolving 0.0446g ferric sulfate hydrate (97 %, Sigma-Aldrich Corp., St. Louis, MO, USA) with deionized water to a total weight of 6.8667g. 5.43g (0.0682 mmoles) of the ferric sulfate solution will be added to the acid/water mixture.
- a solution of sodium persulfate was made by dissolving 1.23g sodium persulfate (Fluka, Sigma-Aldrich Corp., St. Louis, MO, USA) with deionized water to a total weight of 9.47g (5.17 mmol).
- the sodium persulfate solution and 0.22mL (2.064mmoles) ethylenedioxythiophene (EDT)/0.143mL (2.061mmoles) pyrrole mixture will be added to the acid/water/catalyst mixture in 14 hours at a constant rate while continuous stirring at 200RPM.
- the addition of the moomer mixture and the Na2S2 ⁇ s/water solution will be accomplished by placing them in a separate syringe connected to a Teflon® tube.
- the end of the Teflon® tube connecting the syringe will be placed above the reaction mixture such that the injection will involve individual drops falling from the end of the tube.
- the reaction will be stopped in 7.4 hours after completion of the addition by adding 3Og of Lewatit MP62WS and 3Og Lewatit Monoplus S100 ion-exchange resins to the reaction mixture and stirring it further for 5 hours.
- the ion-exchange resins will be removed from the dispersion using a Whatman filter paper. UV/Vis/near-IR and Particle size count and light emitting device will be performed using the dispersion at different pH.
- This example illustrates the preparation of an organic solvent wettable sulfonic acid polymer to be used in the preparation of a new conductive copolymer composition.
- Films made with the new conductive copolymer composition have a low contact angle for improved surface wettability by organic liquids.
- the polymer is a copolymer of 1 ,1- difluoroethylene (“VF 2 ”) and 2-(1 ,1-difluoro-2-(trifluoromethyl)allyloxy)- 1 ,1 ,2,2-tetrafluoroethanesulfonyl fluoride (“PSEBVE”), which has been converted to the sulfonic acid form.
- PSEBVE 2-(1 ,1-difluoro-2-(trifluoromethyl)allyloxy)- 1 ,1 ,2,2-tetrafluoroethanesulfonyl fluoride
- the resulting polymer is referred to as "VF 2 -PSEBVE”.
- a 400 mL Hastelloy C276 reaction vessel was charged with 160 mL of Vertrel® XF, 4 mL of a 20 wt.% solution of HFPO dimer peroxide in Vertrel® XF, and 143 g of PSEBVE (0.42 mol).
- the vessel was cooled to -35 0 C, evacuated to -3 PSIG, and purged with nitrogen. The evacuate/purge cycle was repeated two more times.
- To the vessel was then added 29 g VF 2 (0.45 mol).
- the vessel was heated to 28 0 C, which increased the pressure to 92 PSIG.
- the reaction temperature was maintained at 28 0 C for 18 h. at which time the pressure had dropped to 32 PSIG.
- the vessel was vented and the crude liquid material was recovered.
- the Vertrel® XF was removed in vacuo to afford 110 g of desired copolymer.
- Films made from VF 2 -PSEBVE acid are wettable by organic solvents. Phenylhexane will have a contact angle less than 40° on the films.
- This example illustrates the prepartion of an organic solvent wettable sulfonic acid polymer to be used in the preparation of a new conductive polymer composition.
- Films made with the new conductive polymer composition have a low contact angle for improved surface wettability by organic liquids.
- the polymer is a copolymer of ethylene (“E") and 2-(2-(1 ,2,2-trifluorovinyloxy)-1 ,1 ,2,3,3,3-hexafluoropropoxy)-1 ,1 ,2,2- tetrafluoroethanesulfonyl fluoride (“PSEPVE”), which as been converted to the sulfonic acid form.
- PSEPVE 2-(2-(1 ,2,2-trifluorovinyloxy)-1 ,1 ,2,3,3,3-hexafluoropropoxy)-1 ,1 ,2,2- tetrafluoroethanesulfonyl fluoride
- the resulting polymer is referred to
- Hastelloy C276 reaction vessel was charged with 60 g of PSEPVE (0.13 mol) and 1 mL of a 0.17 M solution of HFPO dimer peroxide in Vertrel® XF. The vessel was cooled to -35 0 C, evacuated to -3 PSIG, and purged with nitrogen. The evacuate/purge cycle was repeated two more times. To the vessel was then added 20 g ethylene (0.71 mol) and an additional 900 PSIG of nitrogen gas. The vessel was heated to 24 0 C, which increased the pressure to 1400 PSIG.
- the reaction temperature was maintained at 24 0 C for 18 h. at which time the pressure had dropped to 1350 PSIG.
- the vessel was vented and 61.4 g of crude material was recovered. 10 g of this material were dried at 85 0 C and 20 milliTorr for 10 h. to give 8.7 g of dried polymer.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Electroluminescent Light Sources (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP06774120A EP1896515A4 (en) | 2005-06-27 | 2006-06-27 | ELECTRICALLY CONDUCTIVE POLYMER COMPOSITIONS |
| JP2008519491A JP2008546898A (ja) | 2005-06-27 | 2006-06-27 | 導電性ポリマー組成物 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US69427805P | 2005-06-27 | 2005-06-27 | |
| US60/694,278 | 2005-06-27 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2007002681A2 true WO2007002681A2 (en) | 2007-01-04 |
| WO2007002681A3 WO2007002681A3 (en) | 2008-01-10 |
Family
ID=37595983
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2006/025012 Ceased WO2007002681A2 (en) | 2005-06-27 | 2006-06-27 | Electrically conductive polymer compositions |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US7722785B2 (enExample) |
| EP (1) | EP1896515A4 (enExample) |
| JP (1) | JP2008546898A (enExample) |
| KR (1) | KR20080030630A (enExample) |
| WO (1) | WO2007002681A2 (enExample) |
Cited By (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008082663A1 (en) | 2006-12-29 | 2008-07-10 | E. I. Du Pont De Nemours And Company | Compositions comprising electrically conducting polymers |
| SG152205A1 (en) * | 2007-10-31 | 2009-05-29 | Air Prod & Chem | Film forming additive formulations of conductive polymers |
| US8153029B2 (en) | 2006-12-28 | 2012-04-10 | E.I. Du Pont De Nemours And Company | Laser (230NM) ablatable compositions of electrically conducting polymers made with a perfluoropolymeric acid applications thereof |
| EP2232527A4 (en) * | 2007-12-27 | 2012-04-18 | Du Pont | BUFFER BIBS FOR ELECTRONIC DEVICES |
| US8241526B2 (en) | 2007-05-18 | 2012-08-14 | E I Du Pont De Nemours And Company | Aqueous dispersions of electrically conducting polymers containing high boiling solvent and additives |
| US8273459B2 (en) | 2006-02-03 | 2012-09-25 | E I Du Pont De Nemours And Company | Transparent composite conductors having high work function |
| US8318046B2 (en) | 2002-09-24 | 2012-11-27 | E I Du Pont De Nemours And Company | Water dispersible polyanilines made with polymeric acid colloids for electronics applications |
| US8338512B2 (en) | 2002-09-24 | 2012-12-25 | E I Du Pont De Nemours And Company | Electrically conducting organic polymer/nanoparticle composites and method for use thereof |
| US8409476B2 (en) | 2005-06-28 | 2013-04-02 | E I Du Pont De Nemours And Company | High work function transparent conductors |
| US8455865B2 (en) | 2002-09-24 | 2013-06-04 | E I Du Pont De Nemours And Company | Electrically conducting organic polymer/nanoparticle composites and methods for use thereof |
| US8585931B2 (en) | 2002-09-24 | 2013-11-19 | E I Du Pont De Nemours And Company | Water dispersible polythiophenes made with polymeric acid colloids |
| US8658061B2 (en) | 2007-04-13 | 2014-02-25 | E I Du Pont De Nemours And Company | Electrically conductive polymer compositions |
| USRE44853E1 (en) | 2005-06-28 | 2014-04-22 | E I Du Pont De Nemours And Company | Buffer compositions |
| US8765022B2 (en) | 2004-03-17 | 2014-07-01 | E I Du Pont De Nemours And Company | Water dispersible polypyrroles made with polymeric acid colloids for electronics applications |
| US8766239B2 (en) | 2008-12-27 | 2014-07-01 | E I Du Pont De Nemours And Company | Buffer bilayers for electronic devices |
| US8785913B2 (en) | 2008-12-27 | 2014-07-22 | E I Du Pont De Nemours And Company | Buffer bilayers for electronic devices |
| US8845933B2 (en) | 2009-04-21 | 2014-09-30 | E I Du Pont De Nemours And Company | Electrically conductive polymer compositions and films made therefrom |
| US8945427B2 (en) | 2009-04-24 | 2015-02-03 | E I Du Pont De Nemours And Company | Electrically conductive polymer compositions and films made therefrom |
| WO2015081095A1 (en) * | 2013-11-27 | 2015-06-04 | Corning Incorporated | Advanced flow reactor synthesis of semiconducting polymers |
| US9351954B2 (en) | 2009-12-04 | 2016-05-31 | Sunovion Pharmaceuticals Inc. | Multicyclic compounds and methods of use thereof |
| US10196403B2 (en) | 2016-07-29 | 2019-02-05 | Sunovion Pharmaceuticals Inc. | Compounds and compositions and uses thereof |
| US10780074B2 (en) | 2017-08-02 | 2020-09-22 | Sunovion Pharmaceuticals Inc. | Compounds and uses thereof |
| US10815249B2 (en) | 2018-02-16 | 2020-10-27 | Sunovion Pharmaceuticals Inc. | Salts, crystal forms, and production methods thereof |
| US11077090B2 (en) | 2016-07-29 | 2021-08-03 | Sunovion Pharmaceuticals Inc. | Compounds and compositions and uses thereof |
| US11129807B2 (en) | 2017-02-16 | 2021-09-28 | Sunovion Pharmaceuticals Inc. | Methods of treating schizophrenia |
| US11136304B2 (en) | 2019-03-14 | 2021-10-05 | Sunovion Pharmaceuticals Inc. | Salts of a heterocyclic compound and crystalline forms, processes for preparing, therapeutic uses, and pharmaceutical compositions thereof |
| US11738002B2 (en) | 2020-04-14 | 2023-08-29 | Sunovion Pharmaceuticals Inc. | Methods of treating neurological and psychiatric disorders |
Families Citing this family (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2041222B1 (en) * | 2006-06-30 | 2012-12-05 | E.I. Du Pont De Nemours And Company | Stabilized compositions of conductive polymers and partially-fluorinated acid polymers |
| US20080193773A1 (en) * | 2006-12-29 | 2008-08-14 | Che-Hsiung Hsu | Compositions of electrically conducting polymers made with ultra-pure fully -fluorinated acid polymers |
| US20080286566A1 (en) * | 2007-05-18 | 2008-11-20 | Shiva Prakash | Process for forming an organic light-emitting diode and devices made by the process |
| US7981323B2 (en) * | 2007-07-13 | 2011-07-19 | Konarka Technologies, Inc. | Selenium containing electrically conductive copolymers |
| US20090140219A1 (en) * | 2007-07-13 | 2009-06-04 | Air Products And Chemicals, Inc. | Selenium Containing Electrically Conductive Polymers and Method of Making Electrically Conductive Polymers |
| US7982055B2 (en) * | 2007-07-13 | 2011-07-19 | Konarka Technologies, Inc. | Heterocyclic fused selenophene monomers |
| US8148548B2 (en) * | 2007-07-13 | 2012-04-03 | Konarka Technologies, Inc. | Heterocyclic fused selenophene monomers |
| US9520563B2 (en) * | 2007-11-21 | 2016-12-13 | The Board Of Trustees Of The Leland Stanford Junior University | Patterning of organic semiconductor materials |
| US8278405B2 (en) * | 2008-12-22 | 2012-10-02 | E I Du Pont De Nemours And Company | Vinylphenoxy polymers |
| US8759818B2 (en) * | 2009-02-27 | 2014-06-24 | E I Du Pont De Nemours And Company | Deuterated compounds for electronic applications |
| WO2010114583A1 (en) | 2009-04-03 | 2010-10-07 | E. I. Du Pont De Nemours And Company | Electroactive materials |
| KR101790854B1 (ko) * | 2009-09-29 | 2017-10-26 | 이 아이 듀폰 디 네모아 앤드 캄파니 | 발광 응용을 위한 중수소화된 화합물 |
| TW201114771A (en) | 2009-10-29 | 2011-05-01 | Du Pont | Deuterated compounds for electronic applications |
| US8282861B2 (en) * | 2009-12-21 | 2012-10-09 | Che-Hsiung Hsu | Electrically conductive polymer compositions |
| US9093193B2 (en) * | 2010-08-02 | 2015-07-28 | University Of Florida Research Foundation, Inc. | Processing method for water soluble polymeric materials |
| US9293716B2 (en) | 2010-12-20 | 2016-03-22 | Ei Du Pont De Nemours And Company | Compositions for electronic applications |
| WO2012087960A1 (en) * | 2010-12-20 | 2012-06-28 | E. I. Du Pont De Nemours And Company | Triazine derivatives for electronic applications |
| JP6401134B2 (ja) * | 2015-09-10 | 2018-10-03 | 信越化学工業株式会社 | 導電性ポリマー複合体及び基板 |
Family Cites Families (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3282875A (en) | 1964-07-22 | 1966-11-01 | Du Pont | Fluorocarbon vinyl ether polymers |
| US3784399A (en) | 1971-09-08 | 1974-01-08 | Du Pont | Films of fluorinated polymer containing sulfonyl groups with one surface in the sulfonamide or sulfonamide salt form and a process for preparing such |
| US4358545A (en) | 1980-06-11 | 1982-11-09 | The Dow Chemical Company | Sulfonic acid electrolytic cell having flourinated polymer membrane with hydration product less than 22,000 |
| US4433082A (en) | 1981-05-01 | 1984-02-21 | E. I. Du Pont De Nemours And Company | Process for making liquid composition of perfluorinated ion exchange polymer, and product thereof |
| DE3223544A1 (de) * | 1982-06-24 | 1983-12-29 | Basf Ag, 6700 Ludwigshafen | Copolymere von pyrrolen, verfahren zu ihrer herstellung sowie ihre verwendung |
| JPH0678492B2 (ja) * | 1986-11-27 | 1994-10-05 | 昭和電工株式会社 | 高電導性重合体組成物及びその製造方法 |
| US4940525A (en) | 1987-05-08 | 1990-07-10 | The Dow Chemical Company | Low equivalent weight sulfonic fluoropolymers |
| JPS6465123A (en) * | 1987-09-04 | 1989-03-10 | Asahi Glass Co Ltd | Electroconductive polymer and its production |
| US5281880A (en) * | 1988-09-14 | 1994-01-25 | Hirozumi Sakai | Rotary machine |
| DE59010247D1 (de) | 1990-02-08 | 1996-05-02 | Bayer Ag | Neue Polythiophen-Dispersionen, ihre Herstellung und ihre Verwendung |
| JPH04306230A (ja) * | 1991-04-03 | 1992-10-29 | Fuji Xerox Co Ltd | アニリン共重合体およびその組成物 |
| US5463005A (en) * | 1992-01-03 | 1995-10-31 | Gas Research Institute | Copolymers of tetrafluoroethylene and perfluorinated sulfonyl monomers and membranes made therefrom |
| EP0593111B1 (en) * | 1992-10-14 | 1998-06-17 | Agfa-Gevaert N.V. | Antistatic coating composition |
| US5281680A (en) | 1993-01-14 | 1994-01-25 | E. I. Du Pont De Nemours And Company | Polymerization of fluorinated copolymers |
| EP0932646B1 (en) | 1996-10-15 | 2001-07-25 | E.I. Du Pont De Nemours And Company | Compositions containing particles of highly fluorinated ion exchange polymer |
| AU5826498A (en) | 1997-01-22 | 1998-08-07 | E.I. Du Pont De Nemours And Company | Grafting of polymers with fluorocarbon compounds |
| WO1998043952A1 (en) | 1997-03-31 | 1998-10-08 | Daikin Industries, Ltd. | Process for producing perfluorovinyl ethersulfonic acid derivatives and copolymer of the same |
| US6132644A (en) * | 1997-05-29 | 2000-10-17 | International Business Machines Corporation | Energy sensitive electrically conductive admixtures |
| US6303238B1 (en) | 1997-12-01 | 2001-10-16 | The Trustees Of Princeton University | OLEDs doped with phosphorescent compounds |
| US6100324A (en) | 1998-04-16 | 2000-08-08 | E. I. Du Pont De Nemours And Company | Ionomers and ionically conductive compositions |
| US6190846B1 (en) * | 1998-10-15 | 2001-02-20 | Eastman Kodak Company | Abrasion resistant antistatic with electrically conducting polymer for imaging element |
| KR100913568B1 (ko) | 1999-05-13 | 2009-08-26 | 더 트러스티즈 오브 프린스턴 유니버시티 | 전계인광에 기초한 고 효율의 유기 발광장치 |
| KR100794975B1 (ko) | 1999-12-01 | 2008-01-16 | 더 트러스티즈 오브 프린스턴 유니버시티 | 유기 led용 인광성 도펀트로서 l2mx 형태의 착물 |
| US6955772B2 (en) * | 2001-03-29 | 2005-10-18 | Agfa-Gevaert | Aqueous composition containing a polymer or copolymer of a 3,4-dialkoxythiophene and a non-newtonian binder |
| US6670645B2 (en) | 2000-06-30 | 2003-12-30 | E. I. Du Pont De Nemours And Company | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
| DE10105139A1 (de) * | 2001-02-06 | 2002-08-22 | Wella Ag | Elektrisch leitfähige Polymere in kosmetischen Mitteln |
| US6723828B2 (en) * | 2001-05-23 | 2004-04-20 | Sri International | Conjugated electroluminescent polymers and associated methods of preparation and use |
| US6875523B2 (en) | 2001-07-05 | 2005-04-05 | E. I. Du Pont De Nemours And Company | Photoactive lanthanide complexes with phosphine oxides, phosphine oxide-sulfides, pyridine N-oxides, and phosphine oxide-pyridine N-oxides, and devices made with such complexes |
| CN100523062C (zh) | 2001-07-13 | 2009-08-05 | 纳幕尔杜邦公司 | 高度氟化离子交换聚合物的溶解方法 |
| CN1533395A (zh) | 2001-07-18 | 2004-09-29 | E.I.���¶��Ű˾ | 含亚胺配体的发光镧系配合物和用这种配合物制备的器件 |
| JP3909666B2 (ja) * | 2001-09-10 | 2007-04-25 | テイカ株式会社 | 導電性高分子およびそれを用いた固体電解コンデンサ |
| JP2005503227A (ja) | 2001-09-27 | 2005-02-03 | ガリル メディカル リミテッド | 乳房の腫瘍の冷凍外科治療のための装置および方法 |
| US7166368B2 (en) | 2001-11-07 | 2007-01-23 | E. I. Du Pont De Nemours And Company | Electroluminescent platinum compounds and devices made with such compounds |
| CN1520702B (zh) | 2001-12-26 | 2010-05-26 | 纳幕尔杜邦公司 | 含有氟化苯基吡啶、苯基嘧啶和苯基喹啉的电致发光铱化合物及用该化合物制备的器件 |
| US6955773B2 (en) * | 2002-02-28 | 2005-10-18 | E.I. Du Pont De Nemours And Company | Polymer buffer layers and their use in light-emitting diodes |
| WO2004042839A2 (en) * | 2002-05-13 | 2004-05-21 | Polyfuel, Inc. | Ion conductive block copolymers |
| US6963005B2 (en) | 2002-08-15 | 2005-11-08 | E. I. Du Pont De Nemours And Company | Compounds comprising phosphorus-containing metal complexes |
| US7118836B2 (en) * | 2002-08-22 | 2006-10-10 | Agfa Gevaert | Process for preparing a substantially transparent conductive layer configuration |
| US7056600B2 (en) | 2002-08-23 | 2006-06-06 | Agfa Gevaert | Layer configuration comprising an electron-blocking element |
| AU2003275203A1 (en) * | 2002-09-24 | 2004-04-19 | E.I. Du Pont De Nemours And Company | Water dispersible polythiophenes made with polymeric acid colloids |
| CA2499364A1 (en) | 2002-09-24 | 2004-04-08 | E. I. Du Pont De Nemours And Company | Water dispersible polyanilines made with polymeric acid colloids for electronics applications |
| US7317047B2 (en) * | 2002-09-24 | 2008-01-08 | E.I. Du Pont De Nemours And Company | Electrically conducting organic polymer/nanoparticle composites and methods for use thereof |
| US7390438B2 (en) * | 2003-04-22 | 2008-06-24 | E.I. Du Pont De Nemours And Company | Water dispersible substituted polydioxythiophenes made with fluorinated polymeric sulfonic acid colloids |
| US7083885B2 (en) | 2003-09-23 | 2006-08-01 | Eastman Kodak Company | Transparent invisible conductive grid |
| TW200516094A (en) * | 2003-09-25 | 2005-05-16 | Showa Denko Kk | Pi-Conjugated copolymer, production method thereof, and capacitor using the copolymer |
| JP4535435B2 (ja) * | 2003-09-25 | 2010-09-01 | 昭和電工株式会社 | π共役系共重合体、その製造方法及びその共重合体を用いたコンデンサ |
| US7338620B2 (en) * | 2004-03-17 | 2008-03-04 | E.I. Du Pont De Nemours And Company | Water dispersible polydioxythiophenes with polymeric acid colloids and a water-miscible organic liquid |
| US7569158B2 (en) * | 2004-10-13 | 2009-08-04 | Air Products And Chemicals, Inc. | Aqueous dispersions of polythienothiophenes with fluorinated ion exchange polymers as dopants |
-
2006
- 2006-06-27 KR KR1020087002162A patent/KR20080030630A/ko not_active Ceased
- 2006-06-27 JP JP2008519491A patent/JP2008546898A/ja active Pending
- 2006-06-27 EP EP06774120A patent/EP1896515A4/en not_active Withdrawn
- 2006-06-27 WO PCT/US2006/025012 patent/WO2007002681A2/en not_active Ceased
- 2006-06-27 US US11/475,702 patent/US7722785B2/en active Active
Non-Patent Citations (1)
| Title |
|---|
| See references of EP1896515A4 * |
Cited By (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8318046B2 (en) | 2002-09-24 | 2012-11-27 | E I Du Pont De Nemours And Company | Water dispersible polyanilines made with polymeric acid colloids for electronics applications |
| US8784692B2 (en) | 2002-09-24 | 2014-07-22 | E I Du Pont De Nemours And Company | Water dispersible polythiophenes made with polymeric acid colloids |
| US8585931B2 (en) | 2002-09-24 | 2013-11-19 | E I Du Pont De Nemours And Company | Water dispersible polythiophenes made with polymeric acid colloids |
| US8455865B2 (en) | 2002-09-24 | 2013-06-04 | E I Du Pont De Nemours And Company | Electrically conducting organic polymer/nanoparticle composites and methods for use thereof |
| US8338512B2 (en) | 2002-09-24 | 2012-12-25 | E I Du Pont De Nemours And Company | Electrically conducting organic polymer/nanoparticle composites and method for use thereof |
| US8765022B2 (en) | 2004-03-17 | 2014-07-01 | E I Du Pont De Nemours And Company | Water dispersible polypyrroles made with polymeric acid colloids for electronics applications |
| US8409476B2 (en) | 2005-06-28 | 2013-04-02 | E I Du Pont De Nemours And Company | High work function transparent conductors |
| USRE44853E1 (en) | 2005-06-28 | 2014-04-22 | E I Du Pont De Nemours And Company | Buffer compositions |
| US8343630B2 (en) | 2006-02-03 | 2013-01-01 | E I Du Pont De Nemours And Company | Transparent composite conductors having high work function |
| US8273459B2 (en) | 2006-02-03 | 2012-09-25 | E I Du Pont De Nemours And Company | Transparent composite conductors having high work function |
| US8153029B2 (en) | 2006-12-28 | 2012-04-10 | E.I. Du Pont De Nemours And Company | Laser (230NM) ablatable compositions of electrically conducting polymers made with a perfluoropolymeric acid applications thereof |
| WO2008082663A1 (en) | 2006-12-29 | 2008-07-10 | E. I. Du Pont De Nemours And Company | Compositions comprising electrically conducting polymers |
| US8491819B2 (en) | 2006-12-29 | 2013-07-23 | E I Du Pont De Nemours And Company | High work-function and high conductivity compositions of electrically conducting polymers |
| US8658061B2 (en) | 2007-04-13 | 2014-02-25 | E I Du Pont De Nemours And Company | Electrically conductive polymer compositions |
| US8241526B2 (en) | 2007-05-18 | 2012-08-14 | E I Du Pont De Nemours And Company | Aqueous dispersions of electrically conducting polymers containing high boiling solvent and additives |
| SG152205A1 (en) * | 2007-10-31 | 2009-05-29 | Air Prod & Chem | Film forming additive formulations of conductive polymers |
| EP2232527A4 (en) * | 2007-12-27 | 2012-04-18 | Du Pont | BUFFER BIBS FOR ELECTRONIC DEVICES |
| US8766239B2 (en) | 2008-12-27 | 2014-07-01 | E I Du Pont De Nemours And Company | Buffer bilayers for electronic devices |
| US8785913B2 (en) | 2008-12-27 | 2014-07-22 | E I Du Pont De Nemours And Company | Buffer bilayers for electronic devices |
| US8845933B2 (en) | 2009-04-21 | 2014-09-30 | E I Du Pont De Nemours And Company | Electrically conductive polymer compositions and films made therefrom |
| US8945427B2 (en) | 2009-04-24 | 2015-02-03 | E I Du Pont De Nemours And Company | Electrically conductive polymer compositions and films made therefrom |
| US10894033B2 (en) | 2009-12-04 | 2021-01-19 | Sunovion Pharmaceuticals Inc. | Multicyclic compounds and methods of use thereof |
| US10085968B2 (en) | 2009-12-04 | 2018-10-02 | Sunovion Pharmaceuticals Inc. | Multicyclic compounds and methods of use thereof |
| US9351954B2 (en) | 2009-12-04 | 2016-05-31 | Sunovion Pharmaceuticals Inc. | Multicyclic compounds and methods of use thereof |
| CN105916574A (zh) * | 2013-11-27 | 2016-08-31 | 康宁公司 | 半导体聚合物的高级流反应器合成 |
| WO2015081095A1 (en) * | 2013-11-27 | 2015-06-04 | Corning Incorporated | Advanced flow reactor synthesis of semiconducting polymers |
| US10196403B2 (en) | 2016-07-29 | 2019-02-05 | Sunovion Pharmaceuticals Inc. | Compounds and compositions and uses thereof |
| US11958862B2 (en) | 2016-07-29 | 2024-04-16 | Sumitomo Pharma America, Inc. | Compounds and compositions and uses thereof |
| US10927124B2 (en) | 2016-07-29 | 2021-02-23 | Sunovion Pharmaceuticals Inc. | Compounds and compositions and uses thereof |
| US11077090B2 (en) | 2016-07-29 | 2021-08-03 | Sunovion Pharmaceuticals Inc. | Compounds and compositions and uses thereof |
| US11129807B2 (en) | 2017-02-16 | 2021-09-28 | Sunovion Pharmaceuticals Inc. | Methods of treating schizophrenia |
| US10780074B2 (en) | 2017-08-02 | 2020-09-22 | Sunovion Pharmaceuticals Inc. | Compounds and uses thereof |
| US11491133B2 (en) | 2017-08-02 | 2022-11-08 | Sunovion Pharmaceuticals Inc. | Heteroaryl-isochroman compounds and uses thereof |
| US11440921B2 (en) | 2018-02-16 | 2022-09-13 | Sunovion Pharmaceuticals Inc. | Salts, crystal forms, and production methods thereof |
| US10815249B2 (en) | 2018-02-16 | 2020-10-27 | Sunovion Pharmaceuticals Inc. | Salts, crystal forms, and production methods thereof |
| US11987591B2 (en) | 2018-02-16 | 2024-05-21 | Sumitomo Pharma America, Inc. | Salts, crystal forms, and production methods thereof |
| US11136304B2 (en) | 2019-03-14 | 2021-10-05 | Sunovion Pharmaceuticals Inc. | Salts of a heterocyclic compound and crystalline forms, processes for preparing, therapeutic uses, and pharmaceutical compositions thereof |
| US11738002B2 (en) | 2020-04-14 | 2023-08-29 | Sunovion Pharmaceuticals Inc. | Methods of treating neurological and psychiatric disorders |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20080030630A (ko) | 2008-04-04 |
| US20070066755A1 (en) | 2007-03-22 |
| US7722785B2 (en) | 2010-05-25 |
| WO2007002681A3 (en) | 2008-01-10 |
| EP1896515A2 (en) | 2008-03-12 |
| JP2008546898A (ja) | 2008-12-25 |
| EP1896515A4 (en) | 2010-03-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7722785B2 (en) | Electrically conductive polymer compositions | |
| US7638072B2 (en) | Electrically conductive polymer compositions | |
| US8568616B2 (en) | Electrically conductive polymer compositions | |
| US8383009B2 (en) | Stabilized compositions of conductive polymers and partially fluorinated acid polymers | |
| US7700008B2 (en) | Buffer compositions | |
| US8658061B2 (en) | Electrically conductive polymer compositions | |
| US7727421B2 (en) | Electrically conductive polymer compositions | |
| EP2008500A1 (en) | High energy-potential bilayer compositions | |
| US20070278458A1 (en) | Electrically conductive polymer compositions | |
| EP2370481A2 (en) | Electrically conductive polymer compositions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2006774120 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2008519491 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020087002162 Country of ref document: KR |