WO2006137271A1 - 楽曲検索装置、楽曲検索方法および楽曲検索プログラム - Google Patents

楽曲検索装置、楽曲検索方法および楽曲検索プログラム Download PDF

Info

Publication number
WO2006137271A1
WO2006137271A1 PCT/JP2006/311519 JP2006311519W WO2006137271A1 WO 2006137271 A1 WO2006137271 A1 WO 2006137271A1 JP 2006311519 W JP2006311519 W JP 2006311519W WO 2006137271 A1 WO2006137271 A1 WO 2006137271A1
Authority
WO
WIPO (PCT)
Prior art keywords
music
search
feature
value
user
Prior art date
Application number
PCT/JP2006/311519
Other languages
English (en)
French (fr)
Inventor
Katsunori Arakawa
Satoshi Odagawa
Fumio Matsushita
Yasuteru Kodama
Takehiko Shioda
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2007522238A priority Critical patent/JP4560544B2/ja
Priority to EP06766492A priority patent/EP1898320A4/en
Publication of WO2006137271A1 publication Critical patent/WO2006137271A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/60Information retrieval; Database structures therefor; File system structures therefor of audio data
    • G06F16/68Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/683Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/60Information retrieval; Database structures therefor; File system structures therefor of audio data
    • G06F16/63Querying
    • G06F16/632Query formulation
    • G06F16/634Query by example, e.g. query by humming
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/60Information retrieval; Database structures therefor; File system structures therefor of audio data
    • G06F16/63Querying
    • G06F16/635Filtering based on additional data, e.g. user or group profiles

Definitions

  • the present invention relates to a music search device, a music search method, and a music search program that automatically search for music that matches a user's preference.
  • the use of the present invention is not limited to the above-described music search device, music search method, and music search program. Background art
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-157285
  • the present invention increases the user's preference in order to solve the above-mentioned problems caused by the prior art. It is an object of the present invention to provide a music search device, a music search method, and a music search program that can efficiently search music reflected in accuracy.
  • the music search device is a feature quantity suitable for the user's preference among the feature quantities representing elements of the music.
  • a feature quantity selection means for selecting only the music data, and a search means for searching for music in accordance with the user's preference based on the feature quantity selected by the feature quantity selection means.
  • the music search method includes a feature quantity selection step of selecting only a feature quantity suitable for the user's preference from among the feature quantities that represent elements of the music.
  • a song acquisition step for acquiring a set of search reference songs as a reference for searching for songs, a calculation step for calculating a variance value of the feature value in each set, and the search target calculated by the calculation step
  • a music search program according to the invention of claim 12 causes a computer to execute the music search method according to claim 11.
  • FIG. 1 is a block diagram showing an example of a functional configuration of a music search apparatus that is useful for an embodiment of the invention.
  • FIG. 2 is a flowchart showing an example of a music search processing procedure of the music search device according to the embodiment.
  • FIG. 3 is a block diagram showing an example of a hardware configuration of a music reproducing device that is effective in the embodiment.
  • FIG. 4 is a diagram for realizing a music search in a music playback device that is powerful in the embodiment. It is a block diagram which shows an example of a functional structure.
  • FIG. 5 is a chart for explaining an example of the feature quantity extracted by the feature quantity extraction unit.
  • FIG. 6 is a chart showing an example of the composition of music data stored in the music database section.
  • FIG. 7 is a diagram illustrating an example of a preference level input screen.
  • FIG. 8 is a diagram showing an example of a music search input screen.
  • FIG. 9 is a flowchart showing an example of a music search processing procedure in the search processing unit.
  • FIG. 10 is a flowchart showing an example of a music search processing procedure using distance calculation.
  • FIG. 1 is a block diagram showing an example of a functional configuration of a music search apparatus that is useful for an embodiment of the present invention.
  • the music search apparatus 100 includes a feature amount selection unit 110, a search unit 120, and a search music provision unit 130.
  • the feature amount selection unit 110 includes a music acquisition unit 111, a calculation unit 112, and a selection unit 113
  • the search unit 120 includes a feature amount comparison unit 121 and a determination unit 122.
  • the feature quantity selection unit 110 selects only the feature quantity suitable for the user's preference based on the search reference music from among the feature quantities as elements representing the structural features of the music. Based on the feature amount suitable for the user's preference selected by the feature amount selection unit 110, the search unit 120 searches the search target music to be searched for music that matches the user's preference.
  • the search music providing unit 130 uses the search results searched by the search unit 120 to provide songs included in the search results (hereinafter referred to as “search songs”) in the order in accordance with the conditions specified by the user. .
  • search songs songs included in the search results
  • the music acquisition unit 111 of the feature amount selection unit 110 includes a search target music selection unit and a search reference music selection unit (not shown).
  • the search target music selection unit selects a search target music from among all searchable music based on information on conditions specified by the user (hereinafter referred to as “condition information”).
  • condition information information on conditions specified by the user
  • this search reference song selection unit selects at least one attribute information of artist name, title name, genre, and tonality (key) of all searchable songs. Used as condition information.
  • the search reference song selection unit selects the search target selected by the search target song selection unit based on the evaluation values given in advance to a plurality of songs among all searchable songs. Select search criteria music as search criteria from the music.
  • the search standard music selection method in the search standard music selection unit may be a method in which the user individually designates the standard music, or for example, for some music, the user A method may be used in which stage evaluation is given and the given stage evaluation is selected as an evaluation value parameter.
  • the music acquisition unit 111 acquires the music selected by the search target music selection unit and the search standard music selection unit, thereby obtaining a set of search target music and a set of search standard music. Can be obtained respectively.
  • the calculation unit 112 obtains a feature amount in each set of the set of search target songs and the set of search reference songs acquired by the song acquisition unit 111, and calculates a variance value of the found feature amounts.
  • This feature quantity is a numerical expression of an element representing the compositional feature of the music, and is included in the music data. There are several types, such as chord change, average BPM (Beat Per Minute), maximum beat level, average signal level, and maximum signal level, and the user can set which feature is used.
  • the variance value is a value representing variation for each feature amount detected from each music piece.
  • the variance of a certain feature value is small, the number of similar songs, for example, the chord change amount, is large throughout the set of songs (search target song or search reference song). It can be said that it is a feature. Therefore, on the contrary, if the variance value is large, it means that there is a variation in the feature amount. Therefore, the feature of the set of songs is expressed!
  • the selection unit 113 compares the variance values of the feature values of the set of search target songs calculated by the calculation unit 112 and the set of search reference music, and features suitable for the user's preference. Select quantity only. Specifically, only feature values smaller than the feature value variance value in the search target song set are selected as feature values suitable for the user's preference from among the feature value variance values in the search reference song set.
  • the feature amount comparison unit 121 of the search unit 120 focuses on only the feature amount selected as the feature amount suitable for the user's preference by the selection unit 113 of the feature amount selection unit 110 described above, and performs all searches.
  • Each feature value of the target music is compared with the average feature value of the set of search reference songs.
  • a method of obtaining the distance between the feature value to be compared and the average value of the feature values can be used, for example, by eugrid distance calculation. . In this case, a shorter distance means that the compared values are closer.
  • the determination unit 122 determines that the music is more in line with the user's preference as the two values compared by the feature amount comparison unit 121 are closer, and outputs the determined result to the search music providing unit 130 as a search result. Also, at this time, how is the result of comparison by the feature quantity comparison unit 121, such as outputting only songs within a certain distance, or arranging the output order in order of increasing distance? You can set it! /.
  • the search music providing unit 130 uses the search result (hereinafter referred to as “search music”) in accordance with the conditions specified by the user. Provide in order. Therefore, the search music providing unit 130 can provide the search music in the desired order by setting various conditions such as the order close to the user's preference and the order far from the user.
  • FIG. 2 shows an example of the music search processing procedure of the music search device that works on this embodiment. It is a flowchart which shows.
  • the music acquisition unit 111 of the feature quantity selection unit 110 obtains a set of search target songs and a set of search reference songs (step S201).
  • the calculation unit 112 calculates a feature value in each set, and calculates a variance value of the calculated feature value (step S202).
  • the selection unit 113 selects only the feature quantity suitable for the user's preference from among the feature quantities using the calculation result of step S202 (step S203).
  • step S204 focusing on the feature value selected by the selection unit 113 in step S203 by the feature value comparison unit 121, for each feature value value of all search target songs, the search reference song The average values of the feature quantities of the sets are compared (step S204). Then, based on the comparison in step S204, the determination unit 122 determines that the music is more in line with the user's preference as the compared values are closer, and searches for music in accordance with the user's preference (step S205). Finally, the search music providing unit 130 uses the search result searched in step S205 to provide the music searched according to the conditions specified by the user (step S206), and a series of music search according to this flowchart. End processing
  • the music search device As described above, according to the music search device, the music search method, and the music search program that are relevant to the embodiment of the present invention, only the feature quantity reflecting the user's preference is used as the search reference. Thus, it is possible to accurately and efficiently search for music that accurately reflects user preferences.
  • FIG. 3 is a block diagram showing an example of a hardware configuration of a music reproducing device that is useful in the embodiment of the present invention.
  • the music playback device 300 includes a DSP (Digital Signal Processor) 301, a CPU 302, a ROM 303, a RAM 304, an HDD (hard disk drive) 305, an HD (node disk) 306, and a media drive 307. Recording media 308 And an image Z music IZF (interface) 309, a display 310, a speaker 311, an input IZF 312, an input key 313, a remote control 314, and a communication IZF315.
  • Each component 301 to 315 is connected by a bus 320.
  • the communication IZF 315 is connected to the network 330.
  • the DSP 301 is a device that specializes in music feature amount extraction processing, and can perform extraction processing faster than the CPU 302.
  • the CPU 302 controls the entire music playback device 300 by performing processing other than the processing of the DSP 301.
  • the ROM 303 stores programs such as a boot program.
  • RAM 304 is used as a work area for DSP 301 and CPU 302.
  • the HDD 305 controls the read Z write of data to the HD 306 according to the control of the DSP 301 and the CPU 302.
  • the HD 306 stores data written under the control of the HDD 305.
  • the media drive 307 controls reading and writing of data to the recording medium 308 according to the control of the DSP 301 and the CPU 302.
  • the recording medium 308 is a detachable recording medium that reads data recorded under the control of the media drive 307, and is, for example, a CD or a DVD. Further, the recording medium that can be written as the recording medium 308 may be, for example, a CD-ROM (CD-R, CD-RW), MO, memory card, or the like.
  • the video / music I / F 309 is connected to a video display display 310 and a speaker 311.
  • the display 310 displays image data when the music data is a music video.
  • the display 310 may be used as a touch panel to output input information to the input I / F 312.
  • the speaker 311 outputs music of music data.
  • headphones may be connected to the video Z music I ZF309, for example, to enjoy music individually.
  • the input IZF 312 is connected to an input key 313 for inputting characters, numerical values, various instructions, and the like, and a remote controller 314 having a part or all of the input function of the input key 313.
  • the input IZF 312 inputs the data transmitted from the input key 313 or the remote controller 314 to hardware according to control from the DSP 301 or the CPU 302.
  • the communication IZF 315 is connected to the network 330 and acquires music data from the network 330.
  • music data is mainly recorded on the HD 306 and the recording medium 308, and some music data has been given a degree of preference by the user.
  • the degree of preference is a numerical value obtained by grading the preference for music. In this embodiment, for example, a degree of preference of 1 to 5 (the higher the numerical value, the higher the user's evaluation) is given to some music data.
  • This music playback device 300 has a music search function. With this music search function, the music data recorded on the HD 306 and the recording medium 308 can be searched for music data according to the user's preference and reproduced by the display 310 or the speaker 311. In addition, when acquiring music data from the network 330 using the communication IZF315, only the music data in accordance with the user's preference can be acquired by the music search function.
  • FIG. 4 is a block diagram showing an example of a functional configuration for realizing music search in the music playback device according to the embodiment of the present invention.
  • the music search function unit 400 of the music playback device 300 is connected to the music registration unit 401 and the input / output unit 402, the DSP processing unit 403, the music database unit 404, the playback control unit 405, and the preference level management unit 407 and the search processing unit 4 08 are configured.
  • the DSP processing unit 403 includes a feature amount extraction unit 406.
  • the music registration unit 401 loads and registers the specified music. Specifically, among the music data recorded on the HD 306 and the recording medium 308 shown in FIG. 3, the music data designated as the music to be searched by the music search function unit 400 and the network via the communication IZF315. The music data acquired from 330 is taken into the music database unit 404 configured in the HD 306 under the control of the CPU 302 and registered.
  • the music data contains basic data (attribute data) such as artist name, title name, and genre name. If there is data that can be registered, only the recorded attribute data may be registered. Acquire attribute data that is missing by connecting, display that the attribute data is insufficient on the display 310, and allow the input key 313 and remote control 314 force to be input by the user. Also good.
  • attribute data such as artist name, title name, and genre name.
  • the input / output unit 402 outputs data input by the user to the music search function unit 400 via the input IZF 312 and outputs the music data output from the music search function unit 400 to the display 310 and the speaker 311. To do.
  • a feature amount extraction unit 406 provided in the DSP processing unit 403 extracts a feature amount from the musical sound signal of the music data registered by the music registration unit 401. Since the DSP processing unit 403 performs only the processing of the feature amount extraction unit 406 by the DSP 301, it is possible to extract the feature amount that normally takes time for processing at high speed. In this embodiment, the processing performed by the DSP processing unit 403 may be performed by the CPU 302 in the same manner as other functional units, for example, by the power performed by the DSP 301. Here, the feature amount to be extracted will be described.
  • FIG. 5 is a chart for explaining an example of the feature amount extracted by the feature amount extraction unit.
  • the feature value extraction unit 406 shows the chord change amount (HVL: Harmony Variation Level), which represents the complexity of chord changes, and the tempo per minute.
  • HVL Harmony Variation Level
  • Average BPM BPM; Beat Per Minute
  • maximum beat level MML representing the maximum signal level of the low frequency signal
  • ASL average signal level
  • MSL maximum signal level representing the maximum signal level
  • an important feature amount is a tone that represents the most dominant tone (key) in the music.
  • the tonality can also be extracted by the feature quantity extraction unit 406 as with other music feature quantities. However, since this tonality is different from other feature values and is not a continuous value, it is treated as one of the song attribute data separately from other feature values.
  • the music database unit 404 includes music data (including attribute data) taken in by the music registration unit 401, musical feature amounts and tones extracted by the feature amount extraction unit 406. Are stored with an ID for each song. Also, the music database unit 404 receives preference level data corresponding to music data from a preference level management unit 407, which will be described later, and stores it in the music database unit 404 as one piece of music data. Here, a configuration of music data stored in the music database unit 404 will be described.
  • FIG. 6 is a chart showing an example of the composition of music data stored in the music database section. As shown in Figure 600, one piece of music is set for each music ID, and the attribute data imported by the music registration unit 401 such as artist, title, and file name, and the feature quantity extracted by the feature quantity extraction unit 406 And the preference level input from the preference level management unit 407 is stored.
  • the preference level management unit 407 allows the user to input the preference level for each piece of music from the input / output unit 402 and sets the preference level corresponding to the input music data to the music data.
  • the preference level is a numerical value obtained by gradual evaluation of the degree of user preference for music. Specific examples include 5 (like), 4 (somewhat like), 3 (normal), 2 (not so much like), 1 (dislike).
  • FIG. 7 is a diagram illustrating an example of a preference level input screen. As shown in the screen 700, when music data is played, the title name 701 and artist name 702 of the music are displayed. The music data to be reproduced is controlled by the operation button 703, and the preference level is selected by the preference level selection unit 704. In addition to the music being played as shown in the example in Fig. 7, for the known music, select the preference level on the screen that displays only the title name.
  • FIG. 8 is a diagram showing an example of a music search input screen.
  • the user designates music 801 as a search reference and music 802 as a search target as search conditions.
  • 'Tonality Major: The music corresponding to the major chord is targeted.
  • the search button 803 is designated to start the music search.
  • the detailed procedure for music search will be described in detail later.
  • the search result of the search processing unit 408 is output to the music database unit 404.
  • the music database unit 404 outputs the music data of the music searched by the search processing unit 408 to the reproduction control unit 405.
  • the reproduction control unit 405 reproduces the input music data and outputs the reproduced music data to the input / output unit 402. At this time, if the music data includes image data, the image data is also output to the input / output unit 402 at the same time.
  • FIG. 9 is a flowchart showing an example of a music search processing procedure in the search processing unit in the music search function unit of the music playback device of this embodiment.
  • a set of search target music pieces and a set of search reference music pieces are acquired (step S901).
  • the weighting coefficient of each feature quantity is determined (step S902).
  • the weighting coefficient is a coefficient given as an evaluation of whether each feature quantity reflects the user's preference. In other words, if a certain feature value reflects the user's preference, the weighting factor is “1”, and if not, the weighting factor is “0”. Feature values with a weighting factor of “0” are not reflected in the following search process because the value is “0”. Therefore, by performing the search process using only the feature quantity that reflects the user's preference, it is possible to search for music that accurately reflects the user's preference. Furthermore, using weighting factors Search processing with features that are not related to user preferences can be omitted, leading to improved processing speed.
  • step S903 a music search is performed using the feature amount reflecting the weighting coefficient determined in step S902 (step S903), and the series of music search processing according to this flowchart ends.
  • a music search using distance calculation between the feature values of the search reference music and the search target music will be described.
  • FIG. 10 is a flowchart showing an example of a music search processing procedure using distance calculation.
  • M is the number of features.
  • step S1002 the average At [j] and variance Vt [j] of the feature value j of the set of search reference songs are calculated (step S1002), and then the variance of the feature value j of the set of search target songs is calculated. Va [j] is calculated (step S 1003).
  • step S1004 When the variance Vt [j] is smaller than the variance Va [j] (step S1004: Yes), the weight coefficient W [j] of the feature quantity [j] is set to 1 (step S1005). If the variance Vt [j] is equal to the variance Va [j] or larger V (step S1004: No), the weight coefficient W [j] of the feature [j] is set to 0 (step S1006). ).
  • step S1007 it is determined whether or not the feature quantity j is smaller than the number M of feature quantities. If the feature quantity j is smaller than the number M of feature quantities (step S1007: Yes), the feature quantity j is shifted to the feature quantity j + 1 (step S1008), and the process proceeds to step S1002. Similarly, the processing of step S 1002 to step S 1007 is performed for the next feature quantity j, and the weighting coefficient is determined. [0059] In the judgment of step S1007, when the feature quantity j is equal to the number M of feature quantities (a larger value is impossible due to the nature of the processing) (step S 1007: No), the weight coefficients of all feature quantities This is the end of the decision.
  • distances D [i] from all songs (N songs) included in the search target song are calculated using the feature amount determined by the weighting factor (step S 1009).
  • the distance of N songs is calculated using the following formula (1) (l ⁇ i ⁇ N).
  • P [i] [j] represents the value of the feature quantity j of the i-th song included in the search target song set.
  • step S1010 the distances D [i] are then sorted in ascending order, that is, sorted in ascending order by distance.
  • step S1010 the power of sorting in ascending order according to distance. This is an example, and sorting may be performed in the other order.
  • step S1004 in the flowchart of FIG.
  • the weighting factor may be the reciprocal of the variance Vt [j] of the feature quantity j of the set of search reference songs.
  • the music search device, the music search method, and the music search program according to the present invention only the feature amount reflecting the user's preference is used as the search criterion, so that the user's preference is improved.
  • Search accurately and efficiently for music that reflects high precision Can do That is, at the time of music search, it is possible to perform a search using only feature quantities with a small variance, that is, a high degree of concentration, for all search target songs that do not use all feature quantities. Therefore, it is possible to eliminate the adverse effect on the music search result due to the use of the feature quantity with no bias in the distribution as in the prior art.
  • the music search device 100 when the music search is performed again, since the processing described in Fig. 9 has already been completed, a large number of search target music and search reference music are determined. As long as the selection is not changed, the previous music search processing result can be used, so that the music search can be performed with almost no processing wait time.
  • the music registration unit 401 designates the search target music, so that the music that does not meet the user's preference can be omitted from the music search processing. Therefore, the number of songs to be searched is limited, and the music search process can be further accelerated.
  • the attribute information such as the power genre or artist that matches the user's preference is a song that is not suitable for the user's preference
  • the song is checked by the music inspection device 100. This can prevent situations that are provided to users.
  • the search target music is specified, the more detailed the conditions are set, the more the music can be searched according to the user's preference and the number of search target music is reduced. Efficiency is also improved.
  • a user switching processing unit is newly provided, and a music database unit 404 is provided for each number of users. Also good.
  • the search target music conditions and the search reference music are switched for each user, and high-accuracy music search can be performed at a high speed as in the case where one user uses the music.
  • music playback device 300 may have a configuration in which a receiving unit that receives digital broadcast waves is provided.
  • the music generation device 300 reproduces content by the display 310 and the speaker 311 via the video Z music IZF 309 by receiving a digital broadcast wave.
  • the user performs stage evaluation by giving a preference level to the music in the content being played back.
  • the content is only a music program It can be a movie, a drama or an information program, or a musical piece used as BGM.
  • Features can also be extracted from music data of music in such content. Therefore, music that is not acquired by the user can be used as a search reference music for music search.
  • the music search method described in this embodiment can be realized by executing a prepared program on a computer such as a personal computer or a workstation.
  • This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, or a DVD, and is executed by being read by the computer.
  • the program may be a transmission medium that can be distributed via a network such as the Internet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Library & Information Science (AREA)
  • Mathematical Physics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Reverberation, Karaoke And Other Acoustics (AREA)

Abstract

 楽曲検索装置(100)は、楽曲の特徴をあらわす要素である特徴量のうち、ユーザの嗜好に適した特徴量のみを選択する特徴量選択部(110)と、特徴量選択部(110)によって抽出された特徴量に基づいて、ユーザの嗜好に沿った楽曲を検索する検索部(120)と、を含み、特徴量選択部(110)は、検索対象となる検索対象楽曲の集合と、楽曲を検索する基準となる検索基準楽曲の集合とを取得する楽曲取得部(111)と、各集合において特徴量の分散値を算出する算出部(112)と、算出部(112)によって算出された検索対象楽曲の集合における特徴量の分散値と、検索基準楽曲の集合における特徴量の分散値とを比較し、ユーザの嗜好に適した特徴量のみを選択する選択部(113)とを備える。

Description

明 細 書
楽曲検索装置、楽曲検索方法および楽曲検索プログラム
技術分野
[0001] この発明は、ユーザの嗜好に合わせた楽曲を自動的に検索する楽曲検索装置、楽 曲検索方法および楽曲検索プログラムに関する。ただし、この発明の利用は、前述の 楽曲検索装置、楽曲検索方法および楽曲検索プログラムにかぎるものではない。 背景技術
[0002] 近年、記録メディアの大容量ィ匕や、通信システムの高速ィ匕に伴 、、膨大な楽曲デ ータを格納した楽曲再生装置や、ネットワーク力 楽曲データを受信して再生を行う 楽曲再生装置が開発されている。このような楽曲再生装置の登場により、ユーザの嗜 好に沿った楽曲を効率よく検索する技術が求められている。
[0003] 従来、楽曲検索を行う技術としては、あらかじめユーザが評価した楽曲ごとの「好き
」あるいは「嫌い」などの評価をもとに、「好き」な楽曲や「嫌い」な楽曲のそれぞれのテ ンポ、和音変化量などの特徴量を抽出して、他の楽曲の特徴量との距離計算を行う ことでユーザの嗜好に沿った楽曲を提供する情報検索装置が開示されている (例え ば、下記特許文献 1参照。)。
[0004] 特許文献 1 :特開 2003— 157285号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、特許文献 1に記載の情報検索装置の場合、「好き」な楽曲および「嫌 い」な楽曲のそれぞれの特徴量における各要素すべてに関して距離計算を行ってお り、計算処理量が膨大になってしまうという問題があった。力!]えて、同じ「好き」に分類 された楽曲でも、特徴量の項目如何によつては、分散が大きくなり、ユーザの嗜好を 反映させるための要素とはなり得ない特徴量も存在していた。そして、いわばノイズと もいえる、このような特徴量が分散した要素も楽曲の特徴量として用いられてしまうた め、楽曲検索に悪影響を与えてしまう可能性があった。
[0006] この発明は、上述した従来技術による問題点を解消するため、ユーザの嗜好を高 精度に反映した楽曲を、効率的に検索することができる楽曲検索装置、楽曲検索方 法および楽曲検索プログラムを提供することを目的とする。
課題を解決するための手段
[0007] 上述した課題を解決し、目的を達成するため、請求項 1の発明にかかる楽曲検索 装置は、楽曲の特徴をあらわす要素である特徴量のうち、ユーザの嗜好に適した特 徴量のみを選択する特徴量選択手段と、前記特徴量選択手段によって選択された 前記特徴量に基づいて、ユーザの嗜好に沿った楽曲を検索する検索手段と、を備え ることを特徴とする。
[0008] また、請求項 11の発明にかかる楽曲検索方法は、楽曲の特徴をあらわす要素であ る特徴量のうち、ユーザの嗜好に適した特徴量のみを選択する特徴量選択工程と、 前記特徴量選択工程によって抽出された前記特徴量に基づいて、ユーザの嗜好に 沿った楽曲を検索する検索工程と、を含み、前記特徴量選択工程は、検索対象とな る検索対象楽曲の集合と、楽曲を検索する基準となる検索基準楽曲の集合とを取得 する楽曲取得工程と、前記各集合において前記特徴量の分散値を算出する算出ェ 程と、前記算出工程によって算出された前記検索対象楽曲の集合における前記特 徴量の分散値と、前記検索基準楽曲の集合における前記特徴量の分散値とを比較 し、ユーザの嗜好に適した特徴量のみを選択する選択工程と、を含むことを特徴とす る。
[0009] また、請求項 12の発明に力かる楽曲検索プログラムは、請求項 11に記載の楽曲検 索方法をコンピュータに実行させることを特徴とする。
図面の簡単な説明
[0010] [図 1]図 1は、発明の実施の形態に力かる楽曲検索装置の機能的構成の一例を示す ブロック図である。
[図 2]図 2は、実施の形態にかかる楽曲検索装置の楽曲検索処理手順の一例を示す フローチャートである。
[図 3]図 3は、実施例に力かる楽曲再生装置のハードウェア構成の一例を示すブロッ ク図である。
[図 4]図 4は、実施例に力かる楽曲再生装置において楽曲検索を実現するための機 能的構成の一例を示すブロック図である。
[図1—
〇 5]図 5は、特徴量抽出部によって抽出する特徴量の一例を説明する図表である。
[図 6]図 6は、楽曲データベース部に格納される楽曲データの構成の一例を示す図 表である。
[図 7]図 7は、嗜好度入力画面の一例を示す図である。
[図 8]図 8は、楽曲検索入力画面の一例を示す図である。
[図 9]図 9は、検索処理部における楽曲検索処理手順の一例を示すフローチャートで ある。
[図 10]図 10は、距離計算を用いた楽曲検索処理手順の一例を示すフローチャート である。
符号の説明
楽曲検索装置
110 特徴量選択部
111 楽曲取得部
112 算出部
113 選択部
120 検索部
121 特徴量比較部
122 判断部
130 検索楽曲提供部
300 楽曲再生装置
301 DSP
302 CPU
303 ROM
304 RAM
305 HDD
306 HD
307 メディアドライブ 308 記録メディア
309 映像 Z音楽 IZF
310 ディスプレイ
311 スピーカ
312 入力 IZF
313 入力キー
314 リモコン
315 通信 IZF
320 バス
330 ネットワーク
発明を実施するための最良の形態
[0012] 以下に添付図面を参照して、この発明にかかる楽曲検索装置、楽曲検索方法およ び楽曲検索プログラムの好適な実施の形態を詳細に説明する。
[0013] (実施の形態)
(楽曲検索装置の機能的構成)
まず、この発明の実施の形態に力かる楽曲検索装置の内容について説明する。図 1は、この発明の実施の形態に力かる楽曲検索装置の機能的構成の一例を示すブ ロック図である。楽曲検索装置 100は、特徴量選択部 110と、検索部 120と、検索楽 曲提供部 130とを備えて構成される。また、特徴量選択部 110は、楽曲取得部 111と 、算出部 112と、選択部 113とを備え、検索部 120は、特徴量比較部 121と、判断部 122とを備えて構成される。
[0014] 特徴量選択部 110は、楽曲の構成的な特徴をあらわす要素としての特徴量のうち、 検索基準楽曲をもとにユーザの嗜好に適した特徴量のみを選択する。検索部 120は 、特徴量選択部 110によって選択されたユーザの嗜好に適した特徴量に基づ 、て、 検索対象となる検索対象楽曲からユーザの嗜好に沿った楽曲を検索する。検索楽 曲提供部 130は、検索部 120によって検索された検索結果を用いて、この検索結果 に含まれる楽曲(以下、「検索楽曲」とする)をユーザが指定した条件に沿った順に提 供する。 [0015] ここで、これら特徴量選択部 110および検索部 120における処理について詳しく説 明する。まず、特徴量選択部 110の楽曲取得部 111は、不図示の検索対象楽曲選 択部と検索基準楽曲選択部とを備えている。検索対象楽曲選択部は、検索可能な すべての楽曲の中からユーザの指定した条件に関する情報 (以下、「条件情報」とす る)に基づいて、検索対象となる検索対象楽曲を選択する。この検索基準楽曲選択 部は、検索対象楽曲を選択する際に、例えば検索可能なすべての楽曲のアーティス ト名、タイトル名、ジャンルおよび調性 (キー)のうち、少なくともいずれか一つの属性 情報を条件情報として用いる。
[0016] 一方、検索基準楽曲選択部は、検索可能なすべての楽曲のうちの複数の楽曲にあ らかじめ付与されている評価値に基づいて、検索対象楽曲選択部によって選択され た検索対象楽曲の中から検索基準となる検索基準楽曲の選択を行う。この検索基準 楽曲選択部における検索基準楽曲の選択方式としては、基準となる楽曲をユーザが 個別に指定する方式であってもよいし、あら力じめいくつかの楽曲に対して、例えば ユーザが段階評価を与え、与えられた段階評価を評価値のパラメータとして選択を 行う方式であってもよい。
[0017] このように、上記楽曲取得部 111では、検索対象楽曲選択部と検索基準楽曲選択 部とにおいて選択された楽曲を取得することで、検索対象楽曲の集合と、検索基準 楽曲の集合とをそれぞれ取得することができる。
[0018] 算出部 112は、楽曲取得部 111によって取得された検索対象楽曲の集合と検索基 準楽曲の集合との、それぞれの集合における特徴量を求め、求めた特徴量の分散 値を算出する。この特徴量とは、楽曲の構成的特徴をあらわす要素を数値的にあら わしたものであり、あら力じめ楽曲のデータに含まれている。そして、例えば和音変化 量、平均 BPM (Beat Per Minute)、最大ビートレべノレ、平均信号レべノレや最大 信号レベル等、数種類あり、どの特徴量を用いるかはユーザによって設定が可能で ある。
[0019] また、分散値は、各楽曲から検出した特徴量ごとのばらつきをあらわす値である。つ まり、ある特徴量の分散値が小さければ、類似している楽曲が多ぐその特徴量、例 えば和音変化量は、楽曲の集合 (検索対象楽曲または検索基準楽曲)全体を通して の特徴といえる。したがって、逆に分散値が大きければ特徴量にばらつきがあるとい うことであるから、楽曲の集合の特徴をあらわして 、るとは 、えな!/、。
[0020] 選択部 113は、算出部 112によって算出された検索対象楽曲の集合と検索基準楽 曲の集合との、それぞれの特徴量の分散値の比較を行い、ユーザの嗜好に適した特 徴量のみを選択する。具体的には、検索基準楽曲の集合における特徴量の分散値 のうち、検索対象楽曲の集合における特徴量の分散値よりも小さい特徴量のみを、 ユーザの嗜好に適した特徴量として選択する。
[0021] 続いて、検索部 120における処理について詳しく説明する。まず、検索部 120の特 徴量比較部 121は、上述した特徴量選択部 110の選択部 113において、ユーザの 嗜好に適した特徴量として選択された特徴量にのみ着目して、すべての検索対象楽 曲のそれぞれの特徴量の値と、検索基準楽曲の集合の特徴量の平均値とをそれぞ れ比較する。この特徴量比較部 121における比較方式の具体例の一つとして、例え ばユーグリッド距離計算により、比較する特徴量の値と特徴量の値の平均値との距離 を求める方式を用いることができる。この場合、より距離が短ければ比較した値同士 が近いことを意味する。
[0022] 判断部 122は、特徴量比較部 121によって比較した両者の値が近いほどユーザの 嗜好に沿った楽曲であると判断し、判断した結果を検索結果として検索楽曲提供部 130へ出力する。また、このとき、距離が一定以内の楽曲のみを出力させる、あるい は出力順を距離が遠い順にするなど、特徴量比較部 121によって比較した結果を、 どのようにして判断にむすびつけるかはユーザが設定してもよ!/、。
[0023] 検索楽曲提供部 130は、検索部 120によって検索された検索結果を用いて、この 検索結果に含まれる楽曲(以下、「検索楽曲」とする)をユーザが指定した条件に沿つ た順に提供する。したがって、検索楽曲提供部 130においては、ユーザの嗜好に近 い順、遠い順など、種々の条件を設けて所望する順に検索楽曲を提供させることが できる。
[0024] (楽曲検索装置の楽曲検索処理手順)
つぎに、この実施の形態に力かる楽曲検索装置の楽曲検索処理手順について説 明する。図 2は、この実施の形態に力かる楽曲検索装置の楽曲検索処理手順の一例 を示すフローチャートである。図 2のフローチャートにおいて、まず、特徴量選択部 11 0の楽曲取得部 111によって、検索対象楽曲の集合と、検索基準楽曲の集合とを取 得する (ステップ S201)。続いて、算出部 112によって、各集合においての特徴量を 求め、求めた特徴量の分散値を算出する (ステップ S202)。その後、選択部 113によ つて、ステップ S202の算出結果を用いて、それぞれの特徴量のうち、ユーザの嗜好 に適した特徴量のみを選択する (ステップ S203)。
[0025] つぎに、特徴量比較部 121によって、ステップ S203において選択部 113により選 択された特徴量に着目して、すべての検索対象楽曲のそれぞれの特徴量の値に対 し、検索基準楽曲の集合の特徴量の平均値をそれぞれ比較する (ステップ S204)。 そして、ステップ S204における比較から、判断部 122によって、比較した両者の値が 近いほどユーザの嗜好に沿った楽曲であると判断し、ユーザの嗜好に沿った楽曲を 検索する (ステップ S205)。最後に、検索楽曲提供部 130によって、ステップ S205に おいて検索された検索結果を用い、ユーザの指定した条件に応じて検索された楽曲 を提供し (ステップ S206)、本フローチャートによる一連の楽曲検索処理を終了する
[0026] 以上説明したように、この発明の実施の形態に力かる楽曲検索装置、楽曲検索方 法および楽曲検索プログラムによれば、ユーザの嗜好を反映した特徴量のみを検索 基準として用いることで、ユーザの嗜好を高精度に反映した楽曲を、正確かつ効率 的に検索することができる。
[0027] つぎに、この発明の実施の形態に力かる実施例について詳細に説明する。ここで は、この発明の実施の形態に力かる楽曲検索装置を、楽曲再生装置に適用した場 合を例示して説明する。
実施例
[0028] (楽曲再生装置のハードウ ア構成)
図 3は、この発明の実施例に力かる楽曲再生装置のハードウェア構成の一例を示 すブロック図である。図 3において、楽曲再生装置 300は、 DSP (Digital Signal P rocessor) 301と、 CPU302と、 ROM303と、 RAM304と、 HDD (ハードディスクド ライブ) 305と、 HD (ノヽードディスク) 306と、メディアドライブ 307と、記録メディア 308 と、映像 Z音楽 IZF (インターフェース) 309と、ディスプレイ 310と、スピーカ 311と、 入力 IZF312と、入力キー 313と、リモコン 314と、通信 IZF315とを備えて構成され ている。また、各構成部 301〜315は、バス 320によってそれぞれ接続されている。ま た、通信 IZF315はネットワーク 330に接続されている。
[0029] DSP301は、この実施例では楽曲の特徴量の抽出処理に特ィ匕したデバイスであり 、 CPU302よりも高速な抽出処理が行える。 CPU302は、 DSP301の処理以外の処 理を行うことで楽曲再生装置 300全体の制御を行う。 ROM303は、ブートプログラム などのプログラムを記憶している。 RAM304は、 DSP301および CPU302のワーク エリアとして使用される。
[0030] HDD305は、 DSP301および CPU302の制御にしたがって、 HD306に対するデ ータのリード Zライトを制御する。 HD306は、 HDD305の制御で書き込まれたデー タを記憶する。メディアドライブ 307は、 DSP301および CPU302の制御にしたがつ て、記録メディア 308に対するデータのリード Zライトを制御する。記録メディア 308は 、メディアドライブ 307の制御で記録されたデータを読み出す着脱可能な記録媒体 であり、例えば CD、 DVD等である。また、記録メディア 308として書き込み可能な記 録媒体は、例えば CD— ROM (CD— R、 CD-RW) , MO,メモリーカード等であつ てもよい。
[0031] 映像/音楽 I/F309は、映像表示用のディスプレイ 310およびスピーカ 311と接続 される。ディスプレイ 310は、楽曲データがミュージックビデオである場合は、画像デ ータを表示させる。また、ディスプレイ 310をタツチパネルにして入力情報を入力 I/F 312へ出力させてもよい。スピーカ 311は、楽曲データの音楽を出力する。またスピ 一力 311の代わりに、例えば個人で楽曲を楽しむために、ヘッドホンを映像 Z音楽 I ZF309に接続してもよい。
[0032] 入力 IZF312は、文字、数値、各種指示などの入力をする入力キー 313や、入力 キー 313の入力機能の一部または全部を備えたリモコン 314と接続されて 、る。入力 IZF312は、入力キー 313またはリモコン 314から送信されたデータを DSP301また は CPU302からの制御に応じたハードウェアへ入力する。通信 IZF315は、ネットヮ ーク 330に接続され、ネットワーク 330から楽曲データを取得する。 [0033] なお、 HD306や記録メディア 308には主として楽曲データが記録されており、楽曲 データには、ユーザによってあら力じめ嗜好度を付与されたものがある。嗜好度とは、 楽曲への好む好まざるを段階評価した数値である。この実施例では、いくつかの楽 曲データに対し、例えば 1〜5 (数値が高いほどユーザの評価が高い)の嗜好度を付 与して ヽることとする。
[0034] この楽曲再生装置 300は、楽曲検索機能を有している。この楽曲検索機能によつ て HD306や記録メディア 308に記録された楽曲データ力もユーザの嗜好に沿った 楽曲データを検索して、ディスプレイ 310やスピーカ 311によって再生させることがで きる。また、通信 IZF315を用いてネットワーク 330から楽曲データを取得する際も、 楽曲検索機能によってユーザの嗜好に沿った楽曲データのみを取得することができ る。
[0035] (楽曲再生装置の楽曲検索における機能的構成)
つぎに、図 3に示した楽曲再生装置 300において楽曲検索を実現するための機能 について詳しく説明する。
[0036] 図 4は、この発明の実施例にかかる楽曲再生装置において楽曲検索を実現するた めの機能的構成の一例を示すブロック図である。楽曲再生装置 300の楽曲検索機 能部 400は、楽曲登録部 401と、入出力部 402とに接続され、 DSP処理部 403と、 楽曲データベース部 404と、再生制御部 405と、嗜好度管理部 407と、検索処理部 4 08と力ら構成される。さら〖こ、 DSP処理部 403は、特徴量抽出部 406を含んだ構成 である。
[0037] 楽曲登録部 401は、指定した楽曲の取り込みと登録を行う。具体的には、図 3に示 した HD306や、記録メディア 308に記録されている楽曲データのうち、楽曲検索機 能部 400による検索対象楽曲として指定された楽曲データと、通信 IZF315を介し てネットワーク 330から取得した楽曲データとを、 CPU302の制御により HD306に構 成された楽曲データベース部 404に取り込んで登録する。
[0038] また、登録の際には、楽曲データにアーティスト名、タイトル名、ジャンル名などの基 本的なデータ (属性データ)が含まれて 、るか否かを確認し、不足して!/、るデータが ある場合は、記録されている属性データのみを登録してもよいが、ネットワーク 330に 接続することにより不足している属性データを取得したり、ディスプレイ 310に属性デ ータが不足している旨の表示を行って、入力キー 313やリモコン 314力もユーザによ つて入力させたりしてもよい。
[0039] 入出力部 402は、ユーザ力も入力されたデータを入力 IZF312を介して楽曲検索 機能部 400へ出力し、楽曲検索機能部 400から出力された楽曲データをディスプレ ィ 310やスピーカ 311へ出力する。
[0040] DSP処理部 403に備えられた特徴量抽出部 406は、楽曲登録部 401によって登 録された楽曲データの楽音信号から特徴量を抽出する。 DSP処理部 403は、 DSP3 01によって、特徴量抽出部 406の処理のみを行うため、本来であれば処理に時間の 力かる特徴量の抽出も高速に行うことができる。なお、この実施例では、 DSP処理部 403の処理は、 DSP301によって行っている力 例えば、他の機能部と同様に CPU 302によって処理を行うような構成でもよい。ここで、抽出する特徴量について説明す る。
[0041] 図 5は、特徴量抽出部によって抽出する特徴量の一例を説明する図表である。図 表 500に示したように、特徴量抽出部 406においては、特徴量として、和音の変化の 複雑さをあらわす和音変化量(HVL ; Harmony Variation Level)と、 1分間あた りのテンポをあらわす平均 BPM (BPM ;Beat Per Minute)と、低域信号の最大 信号レベルをあらわす最大ビートレベル(MBL ; Maximum Beat Level)と、信号 レベルの平均値をあらわす平均信号レベル(ASL; Average Signal Level)と、信 号レベルの最大値をあらわす最大信号レベル(MSL ; Maximum Signal Level) とを用いる。
[0042] また、上述の特徴量以外にも、重要な特徴量として、楽曲中の最も優位な調性 (キ 一)をあらわした調性が挙げられる。調性も他の音楽特徴量と同様に特徴量抽出部 4 06によって抽出することができる。し力しながら、この調性は他の特徴量とは性質が 異なり、連続値ではないため、他の特徴量とは分けて楽曲の属性データの一つとし て扱う。
[0043] 楽曲データベース部 404は、楽曲登録部 401によって取り込まれた楽曲データ(属 性データを含む)と、特徴量抽出部 406によって抽出された音楽的な特徴量と調性と を、楽曲ごとに IDを付与して格納する。また、楽曲データベース部 404には、後述す る嗜好度管理部 407から楽曲データに対応した嗜好度のデータが入力され、楽曲デ ータの一つとして楽曲データベース部 404に格納される。ここで、楽曲データベース 部 404に格納される楽曲データの構成について説明する。
[0044] 図 6は、楽曲データベース部に格納される楽曲データの構成の一例を示す図表で ある。図表 600に示したように、楽曲 IDごとに一つの楽曲が設定され、アーティスト、 タイトル、ファイル名等の楽曲登録部 401によって取り込まれた属性データと、特徴量 抽出部 406によって抽出された特徴量と、嗜好度管理部 407から入力された嗜好度 とが格納されている。
[0045] 図 4に戻り、説明を続けると、嗜好度管理部 407は、入出力部 402からユーザに楽 曲ごとの嗜好度を入力させ、入力された楽曲データに対応した嗜好度を楽曲データ ベース部 404へ格納させる。嗜好度とは、楽曲に対するユーザの好みの度合いを段 階評価した数値である。具体例としては、 5 (好き)、 4 (まあまあ好き)、 3 (普通)、 2 (あ まり好きじやない)、 1 (嫌い)などがある。
[0046] 図 7は、嗜好度入力画面の一例を示す図である。画面 700に示したように、楽曲デ ータが再生されると、楽曲のタイトル名 701、アーティスト名 702が表示される。再生さ れる楽曲データは、操作ボタン 703によって制御され、嗜好度選択部 704によって嗜 好度が選択されるようになっている。図 7に示した例のように再生中の楽曲以外にも、 既知の楽曲に対しては、タイトル名のみを表示させた画面で嗜好度の選択を行って ちょい。
[0047] 図 4に戻り、説明を続けると、検索処理部 408は、入出力部 402を介して入力され たユーザ力 の検索要求に応じて楽曲検索を行う。図 8は、楽曲検索入力画面の一 例を示す図である。楽曲検索の例として、画面 800に示したように、ユーザは検索の 条件として、検索の基準となる楽曲 801と、検索対象となる楽曲 802とを指定する。
[0048] 検索の基準となる楽曲 801は、図 7に示した画面 700によって入力した嗜好度を使 つて表現される。例えば、「嗜好度 > =4」や「嗜好度 = 5」「嗜好度 < = 2」などである 。したがって、嗜好度が低い楽曲のみを基準となる楽曲 801に指定すれば、あえてュ 一ザの好まない楽曲のみ検索させることもできる。 [0049] なお、検索対象となる楽曲 802には、例として下記のような指定を行う。
'全曲:楽曲データベースに登録された全曲を対象とする。
'アーティスト =XXX:アーティスト名が XXXに該当する楽曲を対象とする。
•ジャンル =XXX:ジャンルが XXXに該当する楽曲を対象とする。
• Xく BPMく Y:特徴量のうち BPMの値が Xから Yの間に該当する楽曲を対象とする
'調性 =メジャー:メジャーコードに該当する楽曲を対象とする。
[0050] 検索の基準となる楽曲 801と、検索対象となる楽曲 802との指定が終了すると、検 索ボタン 803を指定して楽曲検索を開始する。なお、楽曲検索の詳細な手順に関し ては後ほど詳しく説明する。検索処理部 408の検索結果は、楽曲データベース部 40 4に出力される。楽曲データベース部 404は、検索処理部 408によって検索された楽 曲の楽曲データを再生制御部 405へ出力する。再生制御部 405は、入力された楽 曲データの再生を行い、再生した音楽データを入出力部 402へ出力する。このとき、 楽曲データに画像データが含まれている場合は、同時に画像データも入出力部 402 へ出力する。
[0051] (楽曲再生装置の楽曲検索処理手順)
つぎに、この実施例の楽曲再生装置の楽曲検索機能部 400 (図 4参照)における楽 曲検索処理の手順について説明する。図 9は、この実施例の楽曲再生装置の楽曲 検索機能部での検索処理部における楽曲検索処理手順の一例を示すフローチヤ一 トである。図 9のフローチャートにおいて、まず、検索対象楽曲の集合と検索基準楽 曲の集合とを取得する (ステップ S901)。つぎに、各特徴量の重み係数を決定する( ステップ S902)。
[0052] 重み係数とは、各特徴量がユーザの嗜好を反映している力否かの評価として付与 する係数である。つまり、ある特徴量がユーザの嗜好を反映している場合は、重み係 数を「1」とし、反映していない場合は、重み係数を「0」とする。重み係数を「0」とした 特徴量は値が「0」になることから以下の検索処理には反映されない。したがって、ュ 一ザの嗜好を反映した特徴量のみを用いて検索処理を行うことで、ユーザの嗜好を 高精度に反映させた楽曲を検索することができる。さらに、重み係数を用いることは、 ユーザの嗜好に関係のない特徴量による検索処理を省くことがきるため、処理速度 の向上にもつながる。
[0053] 最後に、ステップ S902において決定した重み係数を反映させた特徴量により、楽 曲検索を行 、 (ステップ S903)、本フローチャートによる一連の楽曲検索処理を終了 する。つぎに、特徴量を用いた楽曲検索の具体的な処理手順の一例として、検索基 準楽曲の特徴量と検索対象楽曲の特徴量との距離計算を用いた楽曲検索の説明を 行う。
[0054] 図 10は、距離計算を用いた楽曲検索処理手順の一例を示すフローチャートである 。図 10のフローチャートにおいて、まず、特徴量 j = lと、特徴量の数 =Mとを設定す る (ステップ S1001)。特徴量 jとは、楽曲検索に用いる特徴量の種類に対応した番号 である。例えば 1 =HVL, 2 = BPM, 3 = MBLなど(図 5参照)というように、楽曲検 索に用いる特徴量として設定された際に、あらかじめ付与されているか、選択した際 に自動的に付与される。この特徴量の数をあらわすのが Mである。
[0055] つぎに、検索基準楽曲の集合の特徴量 jの平均 At[j]、分散 Vt[j]を算出し (ステツ プ S1002)、続けて、検索対象楽曲の集合の特徴量 jの分散 Va[j]を算出する (ステ ップ S 1003)。
[0056] そして、ステップ S1002および S1003における処理で算出した分散 Vt[j]、分散 V a[j]を用い、つぎに、分散 Vt[j]が分散 Va[j]よりも小さいか否かを判断する (ステツ プ S 1004)。
[0057] 分散 Vt[j]が分散 Va[j]よりも小さい場合 (ステップ S1004 :Yes)は、特徴量 [j]の 重み係数 W [j ]を 1とする (ステップ S 1005)。分散 Vt [j ]が分散 Va [j ]と等し 、か大き V、場合は (ステップ S 1004: No)、特徴量 [j]の重み係数 W[j]を 0とする (ステップ S 1 006)。
[0058] 続いて、特徴量 jが特徴量の数 Mよりも小さいか否かを判断する (ステップ S1007) 。特徴量 jが特徴量の数 Mよりも小さい場合は (ステップ S1007 :Yes)は、特徴量 jを 特徴量 j + 1にシフトさせ (ステップ S 1008)、ステップ S 1002の処理に移行する。つ ぎの特徴量 jも同様にステップ S 1002〜ステップ S 1007の処理を行い、重み係数を 決定する。 [0059] ステップ S1007の判断において、特徴量 jが特徴量の数 Mと等しい(大きいことは処 理の性質上あり得ない)場合 (ステップ S 1007 : No)は、すべての特徴量の重み係数 の決定が終了したことになる。
[0060] つぎに、重み係数が決定した特徴量を用いて、検索対象楽曲に含まれる全曲(N 曲)との距離 D[i]を算出する(ステップ S 1009)。なお、ステップ S1009の処理は、下 記の(1)式を用い、 N曲分の距離計算を行う(l≤i≤N)。また、(1)式において、 P[i ] [j]は、検索対象楽曲の集合に含まれる i番目の楽曲の特徴量 jの値をあらわす。
[0061] [数 1]
Figure imgf000016_0001
[0062] ステップ S1009のすベての距離計算が終了すると、つぎに距離 D[i]を短い順に並 ベて、つまり距離によって昇順にソートして検索結果として出力し (ステップ S 1010)、 本フローチャートによる一連の楽曲検索処理を終了する。なお、上記ステップ S1010 においては、距離によって昇順にソートを行っている力 これは一例であって、その 他の順にソートを行うようにしてもょ 、。
[0063] 上述の距離計算による楽曲検索の他にも、図 10のフローチャートにおけるステップ S 1004の判断を下記の(2)式のようにしてもよ!/、。
[数 2]
Figure imgf000016_0002
[0064] ここで、 αはユーザによって設定が可能であり、(2)式において、 α = 1と設定すれ ばステップ S1004と同じ判断となる。 αの値を 1よりも小さくすると、ユーザの嗜好が 強く表れている特徴量のみを距離計算に使用することができる。
[0065] また、図 10のフローチャートにおけるステップ S1004の判断において、 Yesである 場合、重み係数を検索基準楽曲の集合の特徴量 jの分散 Vt[j]の逆数としてもよい。
[0066] 以上説明したように、本発明にかかる楽曲検索装置、楽曲検索方法および楽曲検 索プログラムによれば、ユーザの嗜好を反映した特徴量のみを検索基準として用いる ことで、ユーザの嗜好を高精度に反映した楽曲を、正確かつ効率的に検索すること ができる。すなわち、楽曲検索時に、すべての特徴量を用いるのではなぐすべての 検索対象楽曲に対して分散の小さい、つまり、集中度が高い特徴量のみを使用して 検索を行うことができる。したがって、従来技術のように分布に偏りのない特徴量を使 つたことによる楽曲検索結果への悪影響を排除できる。また、嗜好度による評価を一 部の楽曲に対して行うだけで、未評価の楽曲からも検索が可能となる。
[0067] また、本発明にかかる楽曲検索装置 100において、再度楽曲検索を行う際は、す でに図 9で説明した処理が終了していることから、大幅な検索対象楽曲および検索 基準楽曲の選択の変更がないかぎり前回の楽曲検索の処理結果を利用することが できるため、ほぼ処理待ち時間なしに楽曲検索を行うことができる。
[0068] なお、本実施例では、楽曲登録部 401において、検索対象楽曲の指定を行うことで 、ユーザの嗜好に沿わない楽曲は、はじめ力も楽曲検索処理から省くことができる。 したがって、検索対象楽曲の曲数が限定され、楽曲検索処理をより高速化させること ができる。また、特徴量に着目した場合にはユーザの嗜好に沿っている力 ジャンル や、アーティストなどの属性情報がユーザの嗜好にそぐわな 、楽曲である場合などに 、これらの楽曲が楽曲検査装置 100によってユーザに提供されるような事態を防ぐこ とができる。なお、検索対象楽曲の指定は、細かく条件を設定するほどユーザの嗜好 に細力べ沿った楽曲検索を行うことができ、検索対象楽曲の数も少なくなることから、 結果として、楽曲検索処理の効率も向上する。
[0069] 力!]えて、本実施例に挙げた楽曲再生装置 300を家族など、複数ユーザで利用する 際は、ユーザ切替処理部を新たに備え、楽曲データベース部 404をユーザ数ごとに 設けてもよい。このような構成を用いることで、ユーザごとに検索対象楽曲の条件や、 検索基準楽曲が切り替わり、一人のユーザが利用している場合と同様に精度の高い 楽曲検索を高速に行うことができる。
[0070] また、楽曲再生装置 300は、図 3に示した構成に加え、デジタル放送波を受信する 受信部を設けた構成でもよい。このような構成の場合、楽曲生成装置 300は、デジタ ル放送波の受信により映像 Z音楽 IZF309を介して、ディスプレイ 310や、スピーカ 311によってコンテンツを再生する。ユーザは、再生中のコンテンツ内の楽曲に対し て嗜好度を付与するなどして、段階評価を行う。コンテンツの内容は、音楽番組のみ にかぎられず、映画、ドラマまたは情報番組であってもよぐ BGMとして用いられた楽 曲であってもよい。このようなコンテンツ内の楽曲の楽曲データからも特徴量を抽出 することができる。したがって、ユーザが取得していない楽曲に関しても、検索基準楽 曲として楽曲検索に活用することができる。
なお、本実施の形態で説明した楽曲検索方法は、あら力じめ用意されたプログラム をパーソナル.コンピュータやワークステーション等のコンピュータで実行することによ り実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、 C D— ROM、 MO、 DVD等のコンピュータで読み取り可能な記録媒体に記録され、コ ンピュータによって記録媒体力 読み出されることによって実行される。またこのプロ グラムは、インターネット等のネットワークを介して配布することが可能な伝送媒体で あってもよい。

Claims

請求の範囲
[1] 楽曲の特徴をあらわす要素である特徴量のうち、ユーザの嗜好に適した特徴量の みを選択する特徴量選択手段と、
前記特徴量選択手段によって選択された前記特徴量に基づ!/ヽて、ユーザの嗜好 に沿った楽曲を検索する検索手段と、
を備えることを特徴とする楽曲検索装置。
[2] 前記検索手段によって検索された検索結果を用いて、当該検索結果に含まれる楽 曲(以下、「検索楽曲」という)をユーザが指定した条件に沿った順に提供する検索楽 曲提供手段を備えたことを特徴とする請求項 1に記載の楽曲検索装置。
[3] 前記特徴量選択手段は、
検索対象となる検索対象楽曲の集合と、楽曲を検索する基準となる検索基準楽曲 の集合とを取得する楽曲取得手段と、
前記各集合において前記特徴量の分散値を算出する算出手段と、
前記算出手段によって算出された前記検索対象楽曲の集合における前記特徴量 の分散値と、前記検索基準楽曲の集合における前記特徴量の分散値とを比較し、ュ 一ザの嗜好に適した特徴量のみを選択する選択手段と、
を備えることを特徴とする請求項 1に記載の楽曲検索装置。
[4] 前記検索手段は、
すべての検索対象楽曲の特徴量と、前記検索基準楽曲の集合の特徴量の平均値 とにおいて、前記選択手段によって選択された前記特徴量に関しての比較を行う特 徴量比較手段と、
前記特徴量比較手段によって比較した両者の値が近いほどユーザの嗜好に沿つ た楽曲であると判断し、検索結果として出力する判断手段と、
を備えることを特徴とする請求項 3に記載の楽曲検索装置。
[5] 前記楽曲取得手段は、
検索可能なすべての楽曲の中からユーザが指定した条件に関する情報 (以下、「 条件情報」という)に基づいて、検索対象となる検索対象楽曲を選択する検索対象楽 曲選択手段と、 前記検索可能なすべての楽曲うちの複数の楽曲にあらかじめ付与されている評価 値に基づいて、前記検索対象楽曲選択手段によって選択された前記検索対象楽曲 の中から検索基準楽曲を選択する検索基準楽曲選択手段と、
を備えることを特徴とする請求項 3に記載の楽曲検索装置。
[6] 前記選択手段は、前記検索基準楽曲の集合における前記特徴量の分散値が、前 記検索対象楽曲の集合における前記特徴量の分散値よりも小さい特徴量を、ユーザ の嗜好に適した特徴量として選択することを特徴とする請求項 3に記載の楽曲検索 装置。
[7] 前記選択手段は、前記検索基準楽曲の集合における前記特徴量の分散値を前記 検索対象楽曲の集合における前記特徴量の分散値で除算して得られた値が、あら 力じめ定められた値よりも小さくなるときの前記特徴量を、ユーザの嗜好をあらわす特 徴量として選択することを特徴とする請求項 3に記載の楽曲検索装置。
[8] 前記特徴量は、前記楽曲の構成的特徴をあらわすパラメータとして、和音変化量、 平均 BPM (Beat Per Minute)、最大ビートレべノレ、平均信号レべノレおよび最大 信号レベルのうち、少なくともいずれか一つによって構成されていることを特徴とする 請求項 1に記載の楽曲検索装置。
[9] 検索対象楽曲選択手段は、前記検索対象楽曲を選択する際に、前記検索可能な すべての楽曲のアーティスト名、タイトル名、ジャンルおよび調性のうち、少なくともい ずれか一つの属性情報を前記条件情報として用いることを特徴とする請求項 5に記 載の楽曲検索装置。
[10] 特徴量比較手段は、ユーグリッド距離計算によって求めた距離が短いほど、前記特 徴量の値と前記特徴量の値の平均値とが近いとすることを特徴とする請求項 4〜9の いずれか一つに記載の楽曲検索装置。
[11] 楽曲の特徴をあらわす要素である特徴量のうち、ユーザの嗜好に適した特徴量の みを選択する特徴量選択工程と、
前記特徴量選択工程によって抽出された前記特徴量に基づいて、ユーザの嗜好 に沿った楽曲を検索する検索工程と、
を含み、 検索対象となる検索対象楽曲の集合と、楽曲を検索する基準となる検索基準楽曲 の集合とを取得する楽曲取得工程と、
前記各集合において前記特徴量の分散値を算出する算出工程と、
前記算出工程によって算出された前記検索対象楽曲の集合における前記特徴量 の分散値と、前記検索基準楽曲の集合における前記特徴量の分散値とを比較し、ュ 一ザの嗜好に適した特徴量のみを選択する選択工程と、
を含むことを特徴とする楽曲検索方法。
請求項 11に記載の楽曲検索方法をコンピュータに実行させることを特徴とする楽 曲検索プログラム。
PCT/JP2006/311519 2005-06-24 2006-06-08 楽曲検索装置、楽曲検索方法および楽曲検索プログラム WO2006137271A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007522238A JP4560544B2 (ja) 2005-06-24 2006-06-08 楽曲検索装置、楽曲検索方法および楽曲検索プログラム
EP06766492A EP1898320A4 (en) 2005-06-24 2006-06-08 DEVICE FOR SEARCHING FOR MUSIC PIECES, METHOD FOR SEARCHING FOR MUSIC PIECES AND PROGRAM FOR SEARCHING FOR MUSIC PIECES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005185511 2005-06-24
JP2005-185511 2005-06-24

Publications (1)

Publication Number Publication Date
WO2006137271A1 true WO2006137271A1 (ja) 2006-12-28

Family

ID=37570304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311519 WO2006137271A1 (ja) 2005-06-24 2006-06-08 楽曲検索装置、楽曲検索方法および楽曲検索プログラム

Country Status (3)

Country Link
EP (1) EP1898320A4 (ja)
JP (1) JP4560544B2 (ja)
WO (1) WO2006137271A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176851A (ja) * 2007-01-18 2008-07-31 Akita Denshi Systems:Kk 音楽選曲再生方法
JP2008268507A (ja) * 2007-04-19 2008-11-06 Taito Corp 楽曲情報付与サーバ、端末、及び楽曲情報付与システム
JP2009181209A (ja) * 2008-01-29 2009-08-13 Funai Electric Co Ltd コンテンツ記憶再生装置およびネットワークシステム
JP2010237916A (ja) * 2009-03-31 2010-10-21 Denso It Laboratory Inc コンテンツ検索装置、方法及びプログラム
JP2012255807A (ja) * 2012-09-04 2012-12-27 Akita Denshi Systems:Kk 音楽選曲再生方法
JP2013025555A (ja) * 2011-07-21 2013-02-04 Sony Corp 情報処理装置、情報処理システム、情報処理方法、及び、プログラム
JP2017522657A (ja) * 2014-06-17 2017-08-10 アリババ・グループ・ホールディング・リミテッドAlibaba Group Holding Limited ユーザ関係データユーザ関係データの結合に基づく検索

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150179181A1 (en) * 2013-12-20 2015-06-25 Microsoft Corporation Adapting audio based upon detected environmental accoustics
KR102358876B1 (ko) * 2020-02-19 2022-02-08 (주)주스 화성학 학습 시스템 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373177A (ja) * 2001-06-15 2002-12-26 Olympus Optical Co Ltd 類似オブジェクト検索方法及び装置
JP2003076717A (ja) * 2001-09-04 2003-03-14 Nippon Telegr & Teleph Corp <Ntt> 情報検索方法及び装置と、情報検索プログラム及びそのプログラムの記録媒体
JP2003150176A (ja) * 2001-11-16 2003-05-23 Mazda Motor Corp 自動車の音楽情報提供装置、自動車の音楽情報提供方法、自動車の音楽情報提供用プログラム、及び、車載の音楽情報提供装置
JP2003157285A (ja) 2001-11-20 2003-05-30 Victor Co Of Japan Ltd 情報検索装置
JP2004171096A (ja) * 2002-11-18 2004-06-17 Pioneer Electronic Corp 楽曲検索方法、楽曲検索装置及び楽曲検索プログラム
JP2005056021A (ja) * 2003-08-08 2005-03-03 Kddi Corp 情報検索装置および方法ならびにコンピュータプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864868A (en) * 1996-02-13 1999-01-26 Contois; David C. Computer control system and user interface for media playing devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002373177A (ja) * 2001-06-15 2002-12-26 Olympus Optical Co Ltd 類似オブジェクト検索方法及び装置
JP2003076717A (ja) * 2001-09-04 2003-03-14 Nippon Telegr & Teleph Corp <Ntt> 情報検索方法及び装置と、情報検索プログラム及びそのプログラムの記録媒体
JP2003150176A (ja) * 2001-11-16 2003-05-23 Mazda Motor Corp 自動車の音楽情報提供装置、自動車の音楽情報提供方法、自動車の音楽情報提供用プログラム、及び、車載の音楽情報提供装置
JP2003157285A (ja) 2001-11-20 2003-05-30 Victor Co Of Japan Ltd 情報検索装置
JP2004171096A (ja) * 2002-11-18 2004-06-17 Pioneer Electronic Corp 楽曲検索方法、楽曲検索装置及び楽曲検索プログラム
JP2005056021A (ja) * 2003-08-08 2005-03-03 Kddi Corp 情報検索装置および方法ならびにコンピュータプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1898320A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008176851A (ja) * 2007-01-18 2008-07-31 Akita Denshi Systems:Kk 音楽選曲再生方法
JP2008268507A (ja) * 2007-04-19 2008-11-06 Taito Corp 楽曲情報付与サーバ、端末、及び楽曲情報付与システム
JP2009181209A (ja) * 2008-01-29 2009-08-13 Funai Electric Co Ltd コンテンツ記憶再生装置およびネットワークシステム
JP2010237916A (ja) * 2009-03-31 2010-10-21 Denso It Laboratory Inc コンテンツ検索装置、方法及びプログラム
JP2013025555A (ja) * 2011-07-21 2013-02-04 Sony Corp 情報処理装置、情報処理システム、情報処理方法、及び、プログラム
JP2012255807A (ja) * 2012-09-04 2012-12-27 Akita Denshi Systems:Kk 音楽選曲再生方法
JP2017522657A (ja) * 2014-06-17 2017-08-10 アリババ・グループ・ホールディング・リミテッドAlibaba Group Holding Limited ユーザ関係データユーザ関係データの結合に基づく検索
US10409874B2 (en) 2014-06-17 2019-09-10 Alibaba Group Holding Limited Search based on combining user relationship datauser relationship data

Also Published As

Publication number Publication date
EP1898320A1 (en) 2008-03-12
JP4560544B2 (ja) 2010-10-13
EP1898320A4 (en) 2010-01-20
JPWO2006137271A1 (ja) 2009-01-08

Similar Documents

Publication Publication Date Title
JP4560544B2 (ja) 楽曲検索装置、楽曲検索方法および楽曲検索プログラム
US11475867B2 (en) Method, system, and computer-readable medium for creating song mashups
US7613736B2 (en) Sharing music essence in a recommendation system
US8073854B2 (en) Determining the similarity of music using cultural and acoustic information
US20160267177A1 (en) Music steering with automatically detected musical attributes
US7805389B2 (en) Information processing apparatus and method, program and recording medium
US20060224260A1 (en) Scan shuffle for building playlists
US20060217828A1 (en) Music searching system and method
CN1729506B (zh) 音频信号分析方法和设备
JP4775626B2 (ja) 情報処理装置および方法、並びにプログラム
JP4659755B2 (ja) コンテンツデータ検索装置
US9037278B2 (en) System and method of predicting user audio file preferences
JP2001306580A (ja) 音楽データベース検索装置
Gurjar et al. Comparative Analysis of Music Similarity Measures in Music Information Retrieval Systems.
JP4496478B2 (ja) 情報処理装置および方法、並びにプログラム
JP2005346347A (ja) 情報検索装置、情報検索方法、情報検索プログラムおよび記録媒体
KR20070048484A (ko) 음악파일 자동 분류를 위한 특징 데이터베이스 생성 장치및 그 방법과, 그를 이용한 재생 목록 자동 생성 장치 및그 방법
JP2006040085A (ja) 情報処理装置および方法、記録媒体、並びにプログラム
JP2010165160A (ja) 楽曲分類装置、楽曲検索システム及びコンピュータプログラム
EP4250134A1 (en) System and method for automated music pitching
JP4573684B2 (ja) 情報検索装置、情報検索方法、情報検索用プログラム、および記録媒体
EP4443421A1 (en) Method for generating a sound effect
JP5195879B2 (ja) 楽曲検索再生装置、楽曲検索再生方法、及び楽曲検索再生プログラム
Kosugi et al. Query-by-humming on internet
JP4447540B2 (ja) カラオケ唱歌録音作品の鑑賞システム

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007522238

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006766492

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE