WO2006136585A1 - Rotor mit lüfterrad für einen elektronisch kommutierten elektromotor - Google Patents

Rotor mit lüfterrad für einen elektronisch kommutierten elektromotor Download PDF

Info

Publication number
WO2006136585A1
WO2006136585A1 PCT/EP2006/063416 EP2006063416W WO2006136585A1 WO 2006136585 A1 WO2006136585 A1 WO 2006136585A1 EP 2006063416 W EP2006063416 W EP 2006063416W WO 2006136585 A1 WO2006136585 A1 WO 2006136585A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
fan wheel
fan
shaft
bushing
Prior art date
Application number
PCT/EP2006/063416
Other languages
English (en)
French (fr)
Inventor
Gerhard Sturm
Wilhelm Reinhardt
Gunter Streng
Markus Gelbing
Original Assignee
Ebm-Papst Mulfingen Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm-Papst Mulfingen Gmbh & Co. Kg filed Critical Ebm-Papst Mulfingen Gmbh & Co. Kg
Priority to EP06763819A priority Critical patent/EP1897209B1/de
Priority to AT06763819T priority patent/ATE519264T1/de
Publication of WO2006136585A1 publication Critical patent/WO2006136585A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • F04D25/0633Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • F04D25/064Details of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/087Propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber

Definitions

  • the present invention relates to a rotor with a fan, in particular as an external rotor for an electronically commutated electric motor, with a rotor body which is connected via a shaft bushing with a rotor shaft and on its inside magnetic segments, which are covered by a return ring, and on its outside fan blades has,
  • the cylindrical rotor body rotates about the internal fixed stator.
  • the current application in the stator windings occurs wear-free electronically.
  • the rotor consists of permanent magnets, which generate a time constant magnetic field between their poles and a permanent magnet enclosing return ring, which closes the magnetic circuit.
  • a fan drive fan blades are according to the prior art mounted on the outside of the rotor body.
  • jerky discharge currents can flow via the current flow chain rotor-axis-bearing, thereby destroying the bearings by erosive damage to the balls and raceways.
  • the Document DE 203 06 902 111 describes how bearing damage can be avoided by additional insulation elements.
  • the present invention is based on the object of constructing a rotor with fan for an electronically commutated electric motor higher power class such that starting from the prior art, the manufacturing and material costs can be reduced.
  • the encapsulation of metallic return ring with preassembled magnet segments on the one hand and shaft bushing with rotor shaft on the other hand creates a one-piece fan in an advantageously compact design.
  • This fan meets the electrical function of the rotor and is also designed as a fan blade assembly to meet the fluidic tasks.
  • the material use of metal is limited to the return ring and the rotor shaft with pressed shaft bushing, the latter can be produced by material-optimized manufacturing processes, such as drawing.
  • a weight reduction is the result.
  • a surface treatment of the rotor body in the form of corrosion protection is eliminated as a result of the complete plastic encapsulation. The desired reduction of material and manufacturing costs is achieved.
  • FIG. 1 shows a rotor according to the invention with fan
  • Fig. 2 shows the rotor, consisting of a return ring with
  • FIG. 4 shows the rotor according to the invention with a fan in axial section, with a view of the outside,
  • Fig. 5 shows the rotor according to the invention with fan in axial section, with a view into the interior.
  • FIG. 1 shows an overall view of a rotor 2 according to the invention with a fan wheel 4.
  • the fan wheel 4 formed in one piece by a plastic extrusion 3 consists of a substantially cylindrical rotor body 6 which houses the actual rotor 2 (hidden, see FIG. 2) and a shaft bushing 10 (FIG. hidden, see Fig. 3) and molded fan blades 12.
  • a cylindrical wall 14 of the rotor body 6 is closed on the sleeve side via a cone-shaped wall 16 with a top wall 18.
  • the conical wall 16 has external, distributed over the circumference arranged radially-axially extending stiffening ribs 20.
  • top wall 18 On the outer side of the top wall 18 extend between an inner annular web 19 a and an outer annular web 19 b radially extending annular webs 21, in the interior of the cylindrical rotor body 6 as ribs 22 (hidden, see Figs. 4 and 5) continue.
  • the fan blades 12 On the outside of the cylindrical wall 14 of the rotor body 6 are distributed over the circumference similar fan blades 12 are formed.
  • the fan blades 12 have in crescent shape of their front with respect to the direction of rotation R 30 and rear 32 wing edge largely radially outward, starting with an axial offset between the leading edge 30 and wing trailing edge 32, and close with the radially outer edge 34 from.
  • the fan blades 12 are formed between the blade shoulder on the cylindrical wall 14 of the rotor body 6 and the blade end with a twist.
  • flow elements 36 are formed.
  • the flow elements 36 reduce the fluidic losses by hindering the flow around the outer edge 34 from the pressure to the suction side equalizing flow.
  • the flow elements 36 are designed as axial webs along the radially outer edge 34 opposite to the main flow direction, extending toward the suction side.
  • grooves 38 are formed, which serve to receive balancing elements.
  • Fig. 2 shows the rotor 2. This consists of a cylindrical metal ring, the return ring 44, the inside of which is completely lined with magnetic segments 42.
  • the magnet segments 42 are preassembled as shown in the embodiment in two axially adjacent rows of ten magnetic segments 42 and have circumferentially to each other a small circumferential angular displacement phi.
  • single-row magnet segments known from the prior art are also possible.
  • Fig. 3 shows the shaft bushing 10 with a rotor shaft 11.
  • the shaft bushing 10 has a bushing shank 50 into which one end of the rotor shaft 11 is pressed, welded or otherwise secured.
  • the bushing 50 continues to this end in the radial plane as a circular flange 52 with a plurality of holes 54 on.
  • the free end of the rotor shaft 11 is provided with a circumferential thickening 13, which merges into a shoulder 15 of smaller shaft diameter.
  • the arrangements shown in Figs. 2 and 3 are placed in a plastic injection mold and surrounded by the plastic extrusion 3.
  • the fan 4 made by the plastic extrusion 3 with rotor body 6 and fan blades 12 can be seen in Fig. 4 in axial section.
  • a circumferential annular collar 17 is externally formed, from which extend the outer edges of the stiffening ribs 20 to the top wall 18 out.
  • the plastic extrusion encloses the circular flange lying in the radial plane 52 of the shaft bushing 10 and penetrates the bores 54.
  • the bushing shaft 50 of the shaft bushing 10 and a short adjoining the bushing shaft portion 51 of the rotor shaft 11 are formed by the encapsulation of a bushing jacket 56 enclosed by the inner stiffening ribs 22 extend in the radial direction to the inside of the conical wall 16 of the rotor body 6.
  • the cylindrical wall 14 has at its free end to the top wall 18 opposite boundary 46, which is designed as part of a Labyrithdichtung for protection against moisture.
  • the boundary 46 consists in the manner of a double wall of two concentric wall sections 48 a, b, between which a circumferential groove 49 is formed.
  • Fig. 5 shows the interior of the rotor body 6 in axial section.
  • the internal ribs 22 which extend from the bushing jacket 56 in the radial direction outwards to the inside of the conical wall 16 of the rotor body 6.
  • the ribs 22 act as cooling wings.
  • the invention is not limited to the illustrated and described embodiments, but also includes all the same in the context of the invention embodiments. Furthermore, the invention has hitherto not been limited to the feature combination defined in claim 1, but may also be defined by any other combination of specific features of all individually disclosed individual features. This means that in principle virtually every individual feature of claim 1 can be omitted or replaced by at least one individual feature disclosed elsewhere in the application. In this respect, the claim 1 is to be understood only as a first formulation attempt for an invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Rotor (2) mit Lüfterrad (4), insbesondere als Außenläufer für einen elektronisch kommutierten Elektromotor, mit einem Rotorkörper (6), der über eine Wellenbuchse (10) mit einer Rotorwelle ver bunden ist und an seiner Innenseite Magnetsegmente aufweist, die von einem Rückschlussring umfasst sind. An seiner Außenseite besitzt er Lüfterflügel (12). Die Magnetsegmente sind an dem Rückschlussring vormontiert und sind zusammen mit der Wellenbuchse von einer einstückigen Kunststoffumspritzung (3) umgeben, die gleichzeitig das Lüfterrad (4) mit Rotorkörper (6) und Lüfterflügeln (12) ausbildet.

Description

„ Rotor mit Lüfterrad für einen elektronisch kom mutierten Elektromotor"
Die vorliegende Erfindung betrifft einen Rotor mit Lüfterrad, insbesondere als Außenläufer für einen elektronisch kommutierten Elektromotor, mit einem Rotorkörper, der über eine Wellenbuchse mit einer Rotorwelle verbunden ist und an seiner Innenseite Magnetsegmente aufweist, die von einem Rückschlussring umfasst sind, und an seiner Außenseite Lüfterflügel besitzt,
Bei derartigen Außenläufermotoren dreht sich der zylinderförmige Rotorkörper um den innenliegenden feststehenden Stator. Die Stromwendung in den Statorwicklungen erfolgt verschleißfrei auf elektronischem Wege. Der Rotor besteht aus Permanentmagneten, die ein zeitlich konstantes Magnetfeld zwischen ihren Polen erzeugen und einem die Permanentmagnete umschließenden Rückschlussring, der den magnetischen Kreis schließt. In der Anwendung als Ventilatorantrieb sind dem Stand der Technik entsprechend an der Außenseite des Rotorkörpers Lüfterflügel angebracht.
In der Druckschrift DE 20 2004 010 890 LH ist eine solche Ventilatoranordnung als Minilüfter ausgeführt. Bei Lüftern dieser Miniaturgröße ist der Rotorkörper gemäß der Erfindungsbeschreibung bevorzugt aus Kunststoff hergestellt und besitzt in seiner Mitte eine ausgeformte Nabe, in die die Rotorwelle durch Kunststoffumspritzen unmittelbar befestigt ist. Eine Nabe als ursprünglich separates Teil ist nicht vorgesehen.
Bei Lüftermotoren höherer Leistungsklassen ist der Rotorkörper meist als gezogene Blechglocke ausgeführt, die über eine eingeschweißte gedrehte Rotorbuchse mit der Rotorwelle formschlüssig verbunden ist. Die Lüfterflügel sind dem Stand der Technik gemäß angeschraubt oder über eine sogenannte Blechronde auf den Rotor aufgepresst.
Bei derartigen Ausführungen können im Falle elektrostatischer Aufladung des Rotors stoßartige Entladeströme über die Stromflusskette Rotor - Achse - Lager fließen und dabei die Lager durch erosive Schädigung der Kugeln und Laufflächen zerstören. Die Druckschrift DE 203 06 902 111 beschreibt, wie durch zusätzliche Isolationselemente Lagerschäden vermieden werden können.
Als nachteilig erweisen sich bei dem Stand der Technik weiterhin, dass das Lüfterrad, bestehend aus Rotorkörper und Lüfterflügeln, aus einer Vielzahl von Einzelteilen unterschiedlichsten Materials zusammengesetzt ist, wodurch sich der Fertigungsprozess in viele Schritte zergliedert und somit einen erheblichen Faktor der Herstellkosten bildet. Zudem ist der Anteil an Metallbauteilen hoch, was wiederum die Materialkosten und das Gewicht erhöht.
Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, einen Rotor mit Lüfterrad für einen elektronisch kommutierten Elektromotor höherer Leistungsklasse derart zu konstruieren, dass ausgehend von dem Stand der Technik die Fertigungs- und Materialkosten gesenkt werden können.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Magnetsegmente an dem Rückschlussring vormontiert sind und zusammen mit der Wellenbuchse von einer einstückigen Kunststoffumspritzung umgeben sind, die gleichzeitig das Lüfterrad mit Rotorkörper und Lüfterflügeln ausbildet.
Durch die Umspritzung von metallischem Rückschlussring mit vormontierten Magnetsegmenten einerseits und Wellenbuchse mit Rotorwelle andererseits entsteht ein einstückiges Lüfterrad in vorteilhaft kompakter Bauweise. Dieses Lüfterrad erfüllt die elektrotechnische Funktion des Rotors und ist zugleich als Lüfterflügelanordnung zur Erfüllung der strömungstechnischen Aufgaben ausgebildet. Dabei beschränkt sich der Materialeinsatz von Metall auf den Rückschlussring und die Rotorwelle mit aufgepresster Wellenbuchse, wobei letztere durch materialoptimierte Fertigungsverfahren, wie das Ziehen, hergestellt werden kann. Eine Gewichtsreduzierung ist die Folge. Eine Oberflächenbehandlung des Rotorkörpers in Form eines Korrosionsschutzes entfällt in Folge der vollständigen Kunststoffumspritzung. Die angestrebte Senkung der Material- und der Fertigungskosten wird erreicht.
Von besonderem Vorteil ist, dass Ladungsabfluss bei elektrostatisch aufgeladenem Rückschlussring durch einen Leitungsstrom über die Rotorwelle und die Wellenlager nicht auftreten kann, da der Rotor durch den Kunststoff isoliert ist. Eine Isolierung der Rotorwelle erübrigt sich somit.
Weitere vorteilhafte Ausgestaltungsmerkmale der Erfindung werden an Hand eines bevorzugten, in den Zeichnungen veranschaulichten Ausführungsbeispiels erläutert. Es zeigen:
Fig. 1 einen erfindungsgemäßen Rotor mit Lüfterrad,
Fig. 2 den Rotor, bestehend aus einem Rückschlussring mit
Magnetsegmenten,
Fig. 3 eine Wellenbuchse mit einer Rotorwelle, nicht umspritzt,
Fig. 4 den erfindungsgemäßen Rotor mit Lüfterrad im Axialschnitt, mit Blick auf die Außenseite,
Fig. 5 den erfindungsgemäßen Rotor mit Lüfterrad im Axialschnitt, mit Blick in den Innenraum.
Fig. 1 zeigt eine Gesamtdarstellung eines erfindungsgemäßen Rotors 2 mit Lüfterrad 4. Das einstückig durch eine Kunststoffumspritzung 3 geformte Lüfterrad 4 besteht aus einem im Wesentlichen zylindrischen Rotorkörper 6, der den eigentlichen Rotor 2 (verborgen, siehe Fig. 2) und eine Wellenbuchse 10 (verborgen, siehe Fig. 3) umfasst und angeformten Lüfterflügeln 12. Eine zylindrische Wandung 14 des Rotorkörpers 6 ist buchsenseitig über eine konusförmige Wandung 16 mit einer Deckwandung 18 abgeschlossen. Die konusförmige Wandung 16 weist außenliegende, über den Umfang verteilt angeordnete radial-axial verlaufende Versteifungsrippen 20 auf. An der Außenseite der Deckwandung 18 erstrecken sich zwischen einem inneren Ringsteg 19 a und einem äußeren Ringsteg 19 b radial verlaufende Ringstege 21 , die im Innenraum des zylindrischen Rotorkörpers 6 sich als Rippen 22 (verborgen, siehe Fig. 4 und 5) fortsetzen.
An der Außenseite der zylinderförmigen Wandung 14 des Rotorkörpers 6 sind über den Umfang verteilt gleichartige Lüfterflügel 12 geformt. Die Lüfterflügel 12 weisen bei sichelförmigem Verlauf ihrer in Bezug auf die Drehrichtung R vorderen 30 und hinteren 32 Flügelkante weitgehend radial nach außen, beginnend mit einem axialen Versatz zwischen Flügelvorderkante 30 und Flügelhinterkante 32, und schließen mit der radial außenliegenden Kante 34 ab. Die Lüfterflügel 12 sind zwischen Flügelansatz an der zylinderförmigen Wandung 14 des Rotorkörpers 6 und dem Flügelende mit einer Verwindung geformt.
An den Flügelenden sind Strömungselemente 36 ausgeformt. Die Strömungselemente 36 reduzieren die strömungstechnischen Verluste, indem sie die um die außenliegende Kante 34 von der Druck- zur Sogseite fließende Ausgleichsströmung behindern. In der vorliegenden Ausführungsform sind die Strömungselemente 36 als axiale Stege entlang der radial außenliegenden Kante 34 entgegen der Haupt-Strömungsrichtung weisend, zur Saugseite hin verlaufend ausgebildet. Längs der vorderen Flügelkante 30 und der hinteren Flügelkante 32 sind Nuten 38 ausgebildet, die zur Aufnahme von Wuchtelementen dienen.
Fig. 2 zeigt den Rotor 2. Dieser besteht aus einem zylinderförmigen Metallring, dem Rückschlussring 44, dessen Innenseite mit Magnetsegmenten 42 vollständig ausgekleidet ist. Die Magnetsegmente 42 sind wie im Ausführungsbeispiel dargestellt in zwei axial nebeneinanderliegenden Reihen mit jeweils zehn Magnetsegmenten 42 vormontiert und weisen umfänglich zueinander einen geringen Umfangs-Winkelversatz phi auf. Es sind natürlich auch, abhängig von der Motorbaugröße, einreihige aus dem Stand der Technik bekannte Magnetsegmente möglich.
Fig. 3 zeigt die Wellenbuchse 10 mit einer Rotorwelle 11. Die Wellenbuchse 10 weist einen Buchsenschaft 50 auf, in den ein Ende der Rotorwelle 11 eingepresst, eingeschweißt oder auf andere Weise befestigt ist. Der Buchsenschaft 50 setzt sich zu diesem Ende hin in radialer Ebene als kreisförmiger Flansch 52 mit einer Vielzahl von Bohrungen 54 fort. Das freie Ende der Rotorwelle 11 ist mit einer umlaufenden Verdickung 13 versehen, die in einem Absatz 15 geringeren Wellendurchmessers übergeht. Die in den Fig. 2 und 3 dargestellten Anordnungen werden in ein Kunststoffspritzwerkzeug eingelegt und mit der Kunststoffumspritzung 3 umgeben.
Das durch die Kunststoffumspritzung 3 gefertigte Lüfterrad 4 mit Rotorkörper 6 und Lüfterflügeln 12 ist in Fig. 4 im Axialschnitt zu sehen. Man erkennt die zylinderförmige Wandung 14 des Rotorkörpers 6, die sich buchsenseitig als leicht verjüngende, konusförmige Wandung 16 fortsetzt und von der Deckwandung 18 abgeschlossen wird. An dem Übergang der zylinderförmigen Wandung 14 zur konusförmigen Wandung 16 ist außenliegend ein umlaufender Ringkragen 17 ausgebildet, von dem aus sich die Außenkanten der Versteifungsrippen 20 zur Deckwandung 18 hin erstrecken. Zur Formung der Deckwandung 18 umschließt die Kunststoffumspritzung 3 den kreisrunden in radialer Ebene liegenden Flansch 52 der Wellenbuchse 10 und durchdringt dessen Bohrungen 54. Den Buchsenschaft 50 der Wellenbuchse 10 und ein kurzer an den Buchsenschaft 50 angrenzender Abschnitt 51 der Rotorwelle 11 sind durch das Umspritzen von einem Buchsen-Mantel 56 umschlossen, von dem sich innenliegende Versteifungsrippen 22 in radialer Richtung zu der Innenseite der konusförmigen Wandung 16 des Rotorkörpers 6 erstrecken. Die zylinderförmige Wandung 14 weist an ihrem freien Ende eine der Deckwandung 18 gegenüberliegende Berandung 46 auf, die als Teil einer Labyrithdichtung zum Schutz gegen Feuchtigkeit ausgebildet ist. Die Berandung 46 besteht in Art einer Doppelwandung aus zwei konzentrischen Wandungsabschnitten 48 a, b, zwischen denen eine umlaufende Nut 49 ausgebildet ist.
Fig. 5 zeigt den Innenraum des Rotorkörpers 6 im Axialschnitt. Zu erkennen sind die innenliegenden Rippen 22, die von dem Buchsenmantel 56 in radialer Richtung nach außen zu der Innenseite der konusförmigen Wandung 16 des Rotorkörpers 6 verlaufen. Die Rippen 22 wirken als Kühlflügel.
Die Erfindung ist nicht auf die dargestellten und beschriebenen Ausführungsbeispiele beschränkt, sondern umfaßt auch alle im Sinne der Erfindung gleichwirkenden Ausführungen. Ferner ist die Erfindung bislang auch noch nicht auf die im Anspruch 1 definierte Merkmalskombination beschränkt, sondern kann auch durch jede beliebige andere Kombination von bestimmten Merkmalen aller insgesamt offenbarten Einzelmerkmalen definiert sein. Dies bedeutet, dass grundsätzlich praktisch jedes Einzelmerkmal des Anspruchs 1 weggelassen bzw. durch mindestens ein an anderer Stelle der Anmeldung offenbartes Einzelmerkmal ersetzt werden kann. Insofern ist der Anspruch 1 lediglich als ein erster Formulierungsversuch für eine Erfindung zu verstehen.

Claims

Ansprüche:
1. Rotor (2) mit Lüfterrad (4), insbesondere als Außenläufer für einen elektronisch kommutierten Elektromotor, mit einem Rotorkörper (6), der über eine Wellenbuchse (10) mit einer Rotorwelle (11) verbunden ist und an seiner Innenseite Magnetsegmente (42) aufweist, die von einem Rückschlussring (44) umfasst sind, und an seiner Außenseite Lüfterflügel (12) besitzt, dad u rch geken nzei ch n et, dass die Magnetsegmente (42) an dem Rückschlussring (44) vormontiert sind und zusammen mit der Wellenbuchse (10) von einer einstückigen Kunststoffumspritzung (3) umgeben sind, die gleichzeitig das Lüfterrad (4) mit Rotorkörper (6) und Lüfterflügeln (12) ausbildet.
2. Rotor (2) mit Lüfterrad (4) nach Anspruch 1 , dadurch gekennzeichnet, dass die Wellenbuchse (10) an einem Ende der Rotorwelle (10) auf dieser befestigt ist.
3. Rotor (2) mit Lüfterrad (4) nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n et, d a s s das der zylinderförmige Rotorkörper (6) im Innenraum ausgeformte radial-axial verlaufende Rippen (22) mit Kühlfunktion aufweist.
4. Rotor (2) mit Lüfterrad (4) nach einem der Ansprüche 1 bis 3, dad u rch geke n nzei ch n et, dass die Lüfterflügel (12) an ihren vorderen (30) und hinteren (32) Kanten Nuten (38) zur verschiebbaren Aufnahme von Auswuchtelementen aufweisen.
5. Rotor (2) mit Lüfterrad (4) nach einem der Ansprüche 1 bis 4, dad u rch geke n nzei ch n et, dass die Lüfterflügel (12) an ihren radial außen liegenden Kanten (34) ausgeformte stegförmige Strömungselemente (36) zur Minderung der Verlustströmung aufweisen.
6. Rotor (2) mit Lüfterrad (4) nach einem der Ansprüche 1 bis 5, dadurch geken nzeich net, dass der zylinderförmige Rotorkörper (6) eine der Deckwandung (18) gegenüberliegende Berandung (46) aufweist, die zwei durch eine Nut beabstandete Stege als Teil einer Labyrinthdichtung zum Schutz gegen Feuchtigkeit aufweist.
7. Rotor (2) mit Lüfterrad (4) nach einem der Ansprüche 1 bis 6, dad u rch geke n nzei ch n et, dass die Magnetsegmente (42) an dem Rückschlussring (44) angeordnet sind.
8. Rotor (2) mit Lüfterrad (4) nach einem der Ansprüche 1 bis 7, d ad u rc h g e ke n n zei c h n et, dass die Wellenbuchse (10) aus einem Buchsenschaft (50) und einem zu diesem in radialer Ebene ausgebildeten kreisförmigen Flansch (52) besteht, der mit einer Vielzahl von Bohrungen (54) versehen ist.
PCT/EP2006/063416 2005-06-23 2006-06-21 Rotor mit lüfterrad für einen elektronisch kommutierten elektromotor WO2006136585A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06763819A EP1897209B1 (de) 2005-06-23 2006-06-21 Rotor mit lüfterrad für einen elektronisch kommutierten elektromotor
AT06763819T ATE519264T1 (de) 2005-06-23 2006-06-21 Rotor mit lüfterrad für einen elektronisch kommutierten elektromotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202005010000U DE202005010000U1 (de) 2005-06-23 2005-06-23 Rotor mit Lüfterrad für einen elektronisch kommutierten Elektromotor
DE202005010000.5 2005-06-23

Publications (1)

Publication Number Publication Date
WO2006136585A1 true WO2006136585A1 (de) 2006-12-28

Family

ID=36867560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/063416 WO2006136585A1 (de) 2005-06-23 2006-06-21 Rotor mit lüfterrad für einen elektronisch kommutierten elektromotor

Country Status (4)

Country Link
EP (1) EP1897209B1 (de)
AT (1) ATE519264T1 (de)
DE (1) DE202005010000U1 (de)
WO (1) WO2006136585A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104345A2 (de) 2007-02-28 2008-09-04 Sew-Eurodrive Gmbh & Co. Kg Elektromotor
WO2008104274A2 (de) 2007-02-28 2008-09-04 Sew-Eurodrive Gmbh & Co. Kg Elektromotor

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101752935B (zh) * 2008-12-03 2011-07-20 中山大洋电机股份有限公司 一种外转子电机的壳体结构及利用该壳体制造的转子部件
DE102009045655A1 (de) * 2009-10-14 2011-04-21 Robert Bosch Gmbh Vollintegriertes Gebläsemodul
IT1397783B1 (it) * 2010-01-15 2013-01-24 Gate Srl Rotore a magneti permanenti per un motore brushless in corrente continua
WO2012103882A2 (de) * 2011-01-31 2012-08-09 Ixetic Bad Homburg Gmbh Rotor für einen elektromotor und elektromotor
DE102013112922A1 (de) * 2013-11-22 2015-05-28 Ebm-Papst St. Georgen Gmbh & Co. Kg Diagonal- oder Axiallüfter
FR3055240A1 (fr) * 2016-09-01 2018-03-02 Aereco Procede de fabrication d’une turbine d’unite de ventilation
DE102018200202A1 (de) * 2018-01-09 2019-07-11 Volkswagen Aktiengesellschaft Außenläufer-Rotor einer Pumpe und Verfahren zur Herstellung eines Außenläufer-Rotors
DE102018115336A1 (de) * 2018-06-26 2020-01-02 Ebm-Papst St. Georgen Gmbh & Co. Kg Rotor eines Elektromotors
US11670977B2 (en) 2019-04-24 2023-06-06 Black & Decker Inc. Outer rotor brushless motor stator mount
USD938011S1 (en) 2019-12-10 2021-12-07 Regal Beloit America, Inc. Fan blade
USD952830S1 (en) 2019-12-10 2022-05-24 Regal Beloit America, Inc. Fan shroud
US11371517B2 (en) 2019-12-10 2022-06-28 Regal Beloit America, Inc. Hub inlet surface for an electric motor assembly
USD938010S1 (en) 2019-12-10 2021-12-07 Regal Beloit America, Inc. Fan hub
US11859634B2 (en) 2019-12-10 2024-01-02 Regal Beloit America, Inc. Fan hub configuration for an electric motor assembly
US11555508B2 (en) 2019-12-10 2023-01-17 Regal Beloit America, Inc. Fan shroud for an electric motor assembly
USD938009S1 (en) 2019-12-10 2021-12-07 Regal Beloit America, Inc. Fan hub
CN113497502A (zh) * 2020-04-07 2021-10-12 广东德昌电机有限公司 电动工具、电机及其转子
FR3117412A1 (fr) * 2020-12-14 2022-06-17 Valeo Systemes Thermiques Système de ventilation d’un véhicule automobile
FR3117577A1 (fr) * 2020-12-14 2022-06-17 Valeo Systemes Thermiques Système de ventilation d’un véhicule automobile
EP4195472A3 (de) * 2021-12-10 2023-08-02 Black & Decker, Inc. Aussenläufermotoranordnung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4143383A1 (de) * 1991-07-03 1994-02-24 Licentia Gmbh Axialgebläse, insbesondere zur Kühlung eines dem Kühler eines Fahrzeugs vorgeordneten Kondensators einer Klimaanlage
EP0828082A1 (de) * 1996-08-30 1998-03-11 Robert Bosch Gmbh Radiallüfter
DE10204037A1 (de) * 2002-02-01 2003-08-21 Motoren Ventilatoren Gmbh Radialgebläse mit Elektromotor
DE10247310A1 (de) * 2002-10-10 2004-04-22 Siemens Ag Belüftung einer elektrischen Maschine
DE10258346A1 (de) * 2002-12-12 2004-06-24 Steinel Gmbh & Co Kg Bürstenloser Elektromotor
DE202004010088U1 (de) * 2004-06-25 2004-09-09 Ebm-Papst Mulfingen Gmbh & Co. Kg Laufrad, insbesondere für einen Axialventilator
JP2005086967A (ja) * 2003-09-11 2005-03-31 Matsushita Electric Ind Co Ltd 軸流ファンモーター
US20050071985A1 (en) * 2003-10-02 2005-04-07 Bumsuk Won Method for making rotor for permanent magnet electric machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4143383A1 (de) * 1991-07-03 1994-02-24 Licentia Gmbh Axialgebläse, insbesondere zur Kühlung eines dem Kühler eines Fahrzeugs vorgeordneten Kondensators einer Klimaanlage
EP0828082A1 (de) * 1996-08-30 1998-03-11 Robert Bosch Gmbh Radiallüfter
DE10204037A1 (de) * 2002-02-01 2003-08-21 Motoren Ventilatoren Gmbh Radialgebläse mit Elektromotor
DE10247310A1 (de) * 2002-10-10 2004-04-22 Siemens Ag Belüftung einer elektrischen Maschine
DE10258346A1 (de) * 2002-12-12 2004-06-24 Steinel Gmbh & Co Kg Bürstenloser Elektromotor
JP2005086967A (ja) * 2003-09-11 2005-03-31 Matsushita Electric Ind Co Ltd 軸流ファンモーター
US20050071985A1 (en) * 2003-10-02 2005-04-07 Bumsuk Won Method for making rotor for permanent magnet electric machine
DE202004010088U1 (de) * 2004-06-25 2004-09-09 Ebm-Papst Mulfingen Gmbh & Co. Kg Laufrad, insbesondere für einen Axialventilator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 12 5 December 2003 (2003-12-05) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008104345A2 (de) 2007-02-28 2008-09-04 Sew-Eurodrive Gmbh & Co. Kg Elektromotor
WO2008104274A2 (de) 2007-02-28 2008-09-04 Sew-Eurodrive Gmbh & Co. Kg Elektromotor
WO2008104274A3 (de) * 2007-02-28 2008-11-20 Sew Eurodrive Gmbh & Co Elektromotor
WO2008104345A3 (de) * 2007-02-28 2008-11-20 Sew Eurodrive Gmbh & Co Elektromotor

Also Published As

Publication number Publication date
EP1897209A1 (de) 2008-03-12
DE202005010000U1 (de) 2006-11-09
EP1897209B1 (de) 2011-08-03
ATE519264T1 (de) 2011-08-15

Similar Documents

Publication Publication Date Title
EP1897209B1 (de) Rotor mit lüfterrad für einen elektronisch kommutierten elektromotor
DE69835123T2 (de) Wechselstromgenrator mit verbesserten Mitteln zur Kühlung, insbesondere für ein Kraftfahrzeug
EP3031132B1 (de) Rotornabenanordnung, elektrischer lüfter
EP1767786B1 (de) Tauchpumpenaggregat
EP1609996B1 (de) Laufrad, insbesondere für einen Axialventilator
EP2677174A2 (de) Lüfterrad sowie Elektromotor
DE60111879T2 (de) Inline-Pumpe
WO2011038884A1 (de) Diagonalventilator
DE2639914C2 (de)
EP1768233A1 (de) Spaltrohr
DE2042356A1 (de) Seitenkanalverdichter
EP2696480A2 (de) Elektronisch kommutierter Außenläufermotor
WO2021115806A1 (de) Lüfterrad für einen rotor und elektrische maschine
EP1816729A2 (de) Elektromotor
DE102011006487B4 (de) Gebläse, insbesondere Verbrennungsluftgebläse für ein Fahrzeugheizgerät
DE102011121935B4 (de) Lagerbuchse mit Lager zur Verwendung in einer elektrischen Maschine
DE102008007076A1 (de) Elektrische Maschine, insbesondere Drehstrommaschine mit Schleifringläufer
EP1420502B1 (de) Elektromotor
DE102012209487A1 (de) Hydrodynamische Pumpe
EP2332238B1 (de) Elektrische maschine mit einer verdrehsicherung für ein stromkabel
DE102005008794A1 (de) Elektromotorischer Antrieb
WO1992010682A1 (de) Radiallüfter
DE102013215561A1 (de) Rotor für einen Elektromotor, Elektromotor und Klimaanlage
DE102004006933A1 (de) Lüfterradbaugruppe und Lüftervorrichtung mit einer derartigen Lüfterradbaugruppe
EP3698982A1 (de) Drehbares zierelement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2006763819

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006763819

Country of ref document: EP