WO2006134277A1 - Souches de levures saccharomyces transformees presentant une production d'ethanol reduite par fermentation - Google Patents
Souches de levures saccharomyces transformees presentant une production d'ethanol reduite par fermentation Download PDFInfo
- Publication number
- WO2006134277A1 WO2006134277A1 PCT/FR2006/001364 FR2006001364W WO2006134277A1 WO 2006134277 A1 WO2006134277 A1 WO 2006134277A1 FR 2006001364 W FR2006001364 W FR 2006001364W WO 2006134277 A1 WO2006134277 A1 WO 2006134277A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- strain
- seq
- saccharomyces
- nadh oxidase
- nadh
- Prior art date
Links
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 title claims abstract description 164
- 240000004808 Saccharomyces cerevisiae Species 0.000 title claims abstract description 114
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 47
- 230000002829 reductive effect Effects 0.000 title claims abstract description 16
- 238000000855 fermentation Methods 0.000 title claims description 61
- 230000004151 fermentation Effects 0.000 title claims description 60
- 108010007843 NADH oxidase Proteins 0.000 claims abstract description 74
- 235000000346 sugar Nutrition 0.000 claims abstract description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 39
- 241000235070 Saccharomyces Species 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 30
- 150000008163 sugars Chemical class 0.000 claims abstract description 30
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 22
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 18
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 18
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims description 94
- 230000014509 gene expression Effects 0.000 claims description 35
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 claims description 33
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 claims description 28
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- 230000001476 alcoholic effect Effects 0.000 claims description 13
- 239000013598 vector Substances 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 11
- 230000001580 bacterial effect Effects 0.000 claims description 10
- 235000009754 Vitis X bourquina Nutrition 0.000 claims description 9
- 235000012333 Vitis X labruscana Nutrition 0.000 claims description 9
- 240000006365 Vitis vinifera Species 0.000 claims description 9
- 235000014787 Vitis vinifera Nutrition 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 238000002360 preparation method Methods 0.000 claims description 9
- 108091026890 Coding region Proteins 0.000 claims description 8
- 238000011514 vinification Methods 0.000 claims description 8
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 235000013361 beverage Nutrition 0.000 claims description 3
- 230000001172 regenerating effect Effects 0.000 claims description 2
- 230000001131 transforming effect Effects 0.000 abstract description 4
- 235000019441 ethanol Nutrition 0.000 description 64
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 51
- 229910052760 oxygen Inorganic materials 0.000 description 51
- 239000001301 oxygen Substances 0.000 description 51
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 36
- 230000000694 effects Effects 0.000 description 34
- 239000013612 plasmid Substances 0.000 description 34
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 33
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 29
- 239000008103 glucose Substances 0.000 description 29
- 239000002609 medium Substances 0.000 description 24
- 230000012010 growth Effects 0.000 description 23
- ROWKJAVDOGWPAT-UHFFFAOYSA-N Acetoin Chemical compound CC(O)C(C)=O ROWKJAVDOGWPAT-UHFFFAOYSA-N 0.000 description 22
- 230000005526 G1 to G0 transition Effects 0.000 description 20
- 238000006722 reduction reaction Methods 0.000 description 19
- 102000004316 Oxidoreductases Human genes 0.000 description 18
- 108090000854 Oxidoreductases Proteins 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 18
- 230000000670 limiting effect Effects 0.000 description 18
- 230000009467 reduction Effects 0.000 description 18
- 108090000623 proteins and genes Proteins 0.000 description 16
- 239000002028 Biomass Substances 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 14
- 230000007423 decrease Effects 0.000 description 14
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 13
- BAWFJGJZGIEFAR-NNYOXOHSSA-N NAD zwitterion Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-N 0.000 description 13
- 230000003698 anagen phase Effects 0.000 description 13
- 229950006238 nadide Drugs 0.000 description 13
- 108090000790 Enzymes Proteins 0.000 description 12
- 108020004414 DNA Proteins 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 11
- 229940088598 enzyme Drugs 0.000 description 11
- 239000000284 extract Substances 0.000 description 11
- GFAZHVHNLUBROE-UHFFFAOYSA-N hydroxymethyl propionaldehyde Natural products CCC(=O)CO GFAZHVHNLUBROE-UHFFFAOYSA-N 0.000 description 11
- 239000006870 ms-medium Substances 0.000 description 11
- 101150067209 noxE gene Proteins 0.000 description 11
- 235000014101 wine Nutrition 0.000 description 11
- 244000057717 Streptococcus lactis Species 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 9
- 239000002207 metabolite Substances 0.000 description 9
- 230000009466 transformation Effects 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 239000012634 fragment Substances 0.000 description 8
- 230000003834 intracellular effect Effects 0.000 description 8
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 7
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 7
- 108091034117 Oligonucleotide Proteins 0.000 description 7
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 7
- 230000010354 integration Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 101100459741 Lactococcus lactis subsp. cremoris (strain MG1363) noxE gene Proteins 0.000 description 6
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 6
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 6
- 230000036983 biotransformation Effects 0.000 description 6
- 108010036467 butanediol dehydrogenase Proteins 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 239000001963 growth medium Substances 0.000 description 6
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 6
- 230000002503 metabolic effect Effects 0.000 description 6
- 238000006213 oxygenation reaction Methods 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- HWXBTNAVRSUOJR-UHFFFAOYSA-N 2-hydroxyglutaric acid Chemical compound OC(=O)C(O)CCC(O)=O HWXBTNAVRSUOJR-UHFFFAOYSA-N 0.000 description 5
- 102000011755 Phosphoglycerate Kinase Human genes 0.000 description 5
- 235000014897 Streptococcus lactis Nutrition 0.000 description 5
- 101001099217 Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) Triosephosphate isomerase Proteins 0.000 description 5
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 5
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Natural products O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 4
- 101710088194 Dehydrogenase Proteins 0.000 description 4
- 241001523858 Felipes Species 0.000 description 4
- 102100036669 Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic Human genes 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 4
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000006911 enzymatic reaction Methods 0.000 description 4
- 230000004060 metabolic process Effects 0.000 description 4
- FQVLRGLGWNWPSS-BXBUPLCLSA-N (4r,7s,10s,13s,16r)-16-acetamido-13-(1h-imidazol-5-ylmethyl)-10-methyl-6,9,12,15-tetraoxo-7-propan-2-yl-1,2-dithia-5,8,11,14-tetrazacycloheptadecane-4-carboxamide Chemical compound N1C(=O)[C@@H](NC(C)=O)CSSC[C@@H](C(N)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@@H]1CC1=CN=CN1 FQVLRGLGWNWPSS-BXBUPLCLSA-N 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 101710187578 Alcohol dehydrogenase 1 Proteins 0.000 description 3
- 102100034035 Alcohol dehydrogenase 1A Human genes 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 108010041921 Glycerolphosphate Dehydrogenase Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 101000832889 Scheffersomyces stipitis (strain ATCC 58785 / CBS 6054 / NBRC 10063 / NRRL Y-11545) Alcohol dehydrogenase 2 Proteins 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 235000019987 cider Nutrition 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- -1 glucose or fructose Chemical class 0.000 description 3
- 239000004310 lactic acid Substances 0.000 description 3
- 235000014655 lactic acid Nutrition 0.000 description 3
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000036284 oxygen consumption Effects 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000011535 reaction buffer Substances 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 239000013605 shuttle vector Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- YPKXGMNCLUYADN-UHFFFAOYSA-N O=C(C(=O)O)CCC(=O)O.OC(C(=O)O)CCC(=O)O Chemical compound O=C(C(=O)O)CCC(=O)O.OC(C(=O)O)CCC(=O)O YPKXGMNCLUYADN-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 108010011939 Pyruvate Decarboxylase Proteins 0.000 description 2
- 241001123227 Saccharomyces pastorianus Species 0.000 description 2
- 241000582914 Saccharomyces uvarum Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 241000194019 Streptococcus mutans Species 0.000 description 2
- 241000219094 Vitaceae Species 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 235000008429 bread Nutrition 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 239000013611 chromosomal DNA Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001784 detoxification Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- GNGACRATGGDKBX-UHFFFAOYSA-N dihydroxyacetone phosphate Chemical compound OCC(=O)COP(O)(O)=O GNGACRATGGDKBX-UHFFFAOYSA-N 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 239000013613 expression plasmid Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 235000019985 fermented beverage Nutrition 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 239000000174 gluconic acid Substances 0.000 description 2
- 235000012208 gluconic acid Nutrition 0.000 description 2
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- 235000021021 grapes Nutrition 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 230000004066 metabolic change Effects 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 230000019525 primary metabolic process Effects 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229940035893 uracil Drugs 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- OILXMJHPFNGGTO-UHFFFAOYSA-N (22E)-(24xi)-24-methylcholesta-5,22-dien-3beta-ol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(C)C(C)C)C1(C)CC2 OILXMJHPFNGGTO-UHFFFAOYSA-N 0.000 description 1
- RQOCXCFLRBRBCS-UHFFFAOYSA-N (22E)-cholesta-5,7,22-trien-3beta-ol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CCC(C)C)CCC33)C)C3=CC=C21 RQOCXCFLRBRBCS-UHFFFAOYSA-N 0.000 description 1
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- QRBLKGHRWFGINE-UGWAGOLRSA-N 2-[2-[2-[[2-[[4-[[2-[[6-amino-2-[3-amino-1-[(2,3-diamino-3-oxopropyl)amino]-3-oxopropyl]-5-methylpyrimidine-4-carbonyl]amino]-3-[(2r,3s,4s,5s,6s)-3-[(2s,3r,4r,5s)-4-carbamoyl-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)- Chemical compound N=1C(C=2SC=C(N=2)C(N)=O)CSC=1CCNC(=O)C(C(C)=O)NC(=O)C(C)C(O)C(C)NC(=O)C(C(O[C@H]1[C@@]([C@@H](O)[C@H](O)[C@H](CO)O1)(C)O[C@H]1[C@@H]([C@](O)([C@@H](O)C(CO)O1)C(N)=O)O)C=1NC=NC=1)NC(=O)C1=NC(C(CC(N)=O)NCC(N)C(N)=O)=NC(N)=C1C QRBLKGHRWFGINE-UGWAGOLRSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- OQMZNAMGEHIHNN-UHFFFAOYSA-N 7-Dehydrostigmasterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CC(CC)C(C)C)CCC33)C)C3=CC=C21 OQMZNAMGEHIHNN-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 241001149231 Arachnis x Vanda Species 0.000 description 1
- 101000950981 Bacillus subtilis (strain 168) Catabolic NAD-specific glutamate dehydrogenase RocG Proteins 0.000 description 1
- 108010077805 Bacterial Proteins Proteins 0.000 description 1
- 108010023063 Bacto-peptone Proteins 0.000 description 1
- MNQZXJOMYWMBOU-VKHMYHEASA-N D-glyceraldehyde Chemical compound OC[C@@H](O)C=O MNQZXJOMYWMBOU-VKHMYHEASA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical group CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000194032 Enterococcus faecalis Species 0.000 description 1
- DNVPQKQSNYMLRS-NXVQYWJNSA-N Ergosterol Natural products CC(C)[C@@H](C)C=C[C@H](C)[C@H]1CC[C@H]2C3=CC=C4C[C@@H](O)CC[C@]4(C)[C@@H]3CC[C@]12C DNVPQKQSNYMLRS-NXVQYWJNSA-N 0.000 description 1
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 108010052375 Glutamate Dehydrogenase (NADP+) Proteins 0.000 description 1
- 102000016901 Glutamate dehydrogenase Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 101001072574 Homo sapiens Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 235000008694 Humulus lupulus Nutrition 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 241000192130 Leuconostoc mesenteroides Species 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 241000203353 Methanococcus Species 0.000 description 1
- 241000204031 Mycoplasma Species 0.000 description 1
- 241000202934 Mycoplasma pneumoniae Species 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- LTQCLFMNABRKSH-UHFFFAOYSA-N Phleomycin Natural products N=1C(C=2SC=C(N=2)C(N)=O)CSC=1CCNC(=O)C(C(O)C)NC(=O)C(C)C(O)C(C)NC(=O)C(C(OC1C(C(O)C(O)C(CO)O1)OC1C(C(OC(N)=O)C(O)C(CO)O1)O)C=1NC=NC=1)NC(=O)C1=NC(C(CC(N)=O)NCC(N)C(N)=O)=NC(N)=C1C LTQCLFMNABRKSH-UHFFFAOYSA-N 0.000 description 1
- 108010035235 Phleomycins Proteins 0.000 description 1
- 108020005091 Replication Origin Proteins 0.000 description 1
- 241000235072 Saccharomyces bayanus Species 0.000 description 1
- 235000003534 Saccharomyces carlsbergensis Nutrition 0.000 description 1
- 244000253724 Saccharomyces cerevisiae S288c Species 0.000 description 1
- 241001123228 Saccharomyces paradoxus Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- AILYALQQXMXMTF-UHFFFAOYSA-N acetaldehyde 2,3-dihydroxypropyl acetate 2-oxopropanoic acid Chemical compound CC=O.CC(=O)C(O)=O.CC(=O)OCC(O)CO AILYALQQXMXMTF-UHFFFAOYSA-N 0.000 description 1
- 150000003792 acetoin derivatives Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 108010081577 aldehyde dehydrogenase (NAD(P)+) Proteins 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 101150038738 ble gene Proteins 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 235000013532 brandy Nutrition 0.000 description 1
- 238000013124 brewing process Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 235000019993 champagne Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 229940032049 enterococcus faecalis Drugs 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 230000009144 enzymatic modification Effects 0.000 description 1
- DNVPQKQSNYMLRS-SOWFXMKYSA-N ergosterol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H](CC[C@]3([C@H]([C@H](C)/C=C/[C@@H](C)C(C)C)CC[C@H]33)C)C3=CC=C21 DNVPQKQSNYMLRS-SOWFXMKYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 1
- 150000001261 hydroxy acids Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000037041 intracellular level Effects 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 229940116298 l- malic acid Drugs 0.000 description 1
- 239000003041 laboratory chemical Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 229940099690 malic acid Drugs 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 238000004890 malting Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 239000011785 micronutrient Substances 0.000 description 1
- 235000013369 micronutrients Nutrition 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 101150047627 pgk gene Proteins 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000008057 potassium phosphate buffer Substances 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 239000007320 rich medium Substances 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000029305 taxis Effects 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000009369 viticulture Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12G—WINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
- C12G1/00—Preparation of wine or sparkling wine
- C12G1/02—Preparation of must from grapes; Must treatment and fermentation
- C12G1/0203—Preparation of must from grapes; Must treatment and fermentation by microbiological or enzymatic treatment
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12C—BEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
- C12C12/00—Processes specially adapted for making special kinds of beer
- C12C12/002—Processes specially adapted for making special kinds of beer using special microorganisms
- C12C12/004—Genetically modified microorganisms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12C—BEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
- C12C12/00—Processes specially adapted for making special kinds of beer
- C12C12/002—Processes specially adapted for making special kinds of beer using special microorganisms
- C12C12/006—Yeasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12H—PASTEURISATION, STERILISATION, PRESERVATION, PURIFICATION, CLARIFICATION OR AGEING OF ALCOHOLIC BEVERAGES; METHODS FOR ALTERING THE ALCOHOL CONTENT OF FERMENTED SOLUTIONS OR ALCOHOLIC BEVERAGES
- C12H6/00—Methods for increasing the alcohol content of fermented solutions or alcoholic beverages
- C12H6/02—Methods for increasing the alcohol content of fermented solutions or alcoholic beverages by distillation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
- C12N1/18—Baker's yeast; Brewer's yeast
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0012—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
- C12N9/0036—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
Definitions
- the present invention relates to transformed yeast strains belonging to the genus Saccharomyces which comprise a heterologous nucleic acid encoding a water-producing NADH oxidase, and to their use in fermentation processes for transforming sugars with a production yield of reduced ethanol compared to wild-type, unprocessed Saccharomyces strains.
- scientific knowledge and know-how in viticulture and oenology have led to a very significant improvement in the organoleptic qualities of wines.
- Current viticultural practices favor the production of wines with high qualitative potential by delaying the moment of the harvest. A major consequence is the increase in the sugar content of musts, and therefore the alcohol content of wines (frequently above 14 °).
- S. cerevisiae yeasts especially oenological S. cerevisiae yeasts, convert sugars into alcohol with a yield of 0.47 g / g, which varies little according to the strain used. Therefore, obtaining a low-yielding S. cerevisiae yeast requires the implementation of genetic strategies to divert a portion of the sugars to the formation of other by-products.
- yeasts do not have NADH oxidase.
- the inventors have demonstrated that the introduction into a Saccharomyces yeast of a heterologous gene coding for a NADH oxidase producing water induces a modification of the metabolism of ethanol.
- the invention thus relates to a yeast Saccharomyces transformed with a heterologous gene encoding a NADH oxidase producing water, and its uses, including oenology.
- yeast means a yeast of the genus Saccharomyces.
- Said yeast may for example be chosen from one of the following species: Saccharomyces bayanus, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces paradoxus, Saccharomyces pastorianus, or Saccharomyces uvarum.
- Saccharomyces bayanus Saccharomyces carlsbergensis
- Saccharomyces cerevisiae Saccharomyces paradoxus
- Saccharomyces pastorianus Saccharomyces uvarum.
- yeast Saccharomyces according to the invention is Saccharomyces cerevisiae (S. cerevisiae).
- oenological strain is meant a S. cerevisiae strain. A large number of oenological S. cerevisiae strains are commercially available or have been described in the prior art.
- a "coding sequence” or sequence "encoding" an expression product such as an RNA, a polypeptide, a protein, or an enzyme, is a nucleotide sequence that, when expressed, leads to the production of that expression product.
- RNA, polypeptide, protein, or enzyme is a nucleotide sequence that, when expressed, leads to the production of that expression product.
- RNA, polypeptide, protein, or enzyme is a nucleotide sequence that, when expressed, leads to the production of that expression product.
- RNA, polypeptide, protein, or enzyme is a nucleotide sequence that, when expressed, leads to the production of that expression product.
- RNA, polypeptide, protein, or enzyme is a nucleotide sequence that, when expressed, leads to the production of that expression product.
- RNA, polypeptide, protein, or enzyme is a nucleotide sequence that, when expressed, leads to the production of that expression product.
- RNA, polypeptide, protein, or enzyme is a nu
- a heterologous nucleic acid sequence refers to a nucleic acid sequence (gene, cDNA or RNA) that is not naturally contained by the cell, i.e., a sequence foreign or exogenous to the cell.
- water-producing NADH oxidase or “Nox, H 2 O” is meant an enzyme that catalyzes the reaction: 2NADH + 2H + + O 2 ⁇ 2NAD + + 2H 2 O. It may be particular of a bacterial enzyme. Indeed, a certain number of NADH oxidases producing water have been identified in bacteria, and have notably been listed in Table 1 of the article Riebel et al., 2002.
- a heterologous nucleic acid encoding an NADH oxidase producing water may for example consist of, or comprise, a coding sequence selected from the group consisting of the Nox, H 2 O enzyme genes identified in Lactococcus lactis (Hoefnagel et al., 2002; Genbank accession number AY046926 SEQ ID No.1), Enterococcus faecalis (Ross and Clairbone, 1992; Genbank X68847 Access Point; SEQ ID No. 2), Mycoplasma genitalis (Peterson et al., 1993, Genbank accession number U39707, SEQ ID No.
- Streptococcus mutans (Matsumoto et al., 1996, accession number Embl 815515, SEQ ID No. 4), Mycoplasma pneumoniae (Himmelreich et al., 1996, Embl accession number MPAE44, SEQ ID No. 5), Methanococcus japanicus (BuIt et al., 1996; Embl accession number MJU67512, SEQ ID No. 6), and Leuconostoc mesenteroides (Koike et al., 1985).
- the heterologous nucleic acid encoding a water-producing NADH oxidase may comprise regulatory or control sequences, such as an initiation codon, a codon stop, a promoter, signal, secretion sequence or other sequences used by the yeast genetic machinery.
- alcoholic fermentation refers to the sequence of reactions of conversion of pyruvate to ethanol, and by extension all reactions of transformation of sugars into ethanol.
- This reduction is accompanied by other metabolic changes, namely a reduction in the production of glycerol, ⁇ -ketoglutarate and hydroxyglutarate, and an accumulation of acetaldehyde, as well as acetate and acetoin.
- the invention thus relates to a transformed yeast strain belonging to the genus Saccharomyces which comprises a heterologous nucleic acid encoding a NADH oxidase producing water. ⁇
- the invention also relates to a process for the preparation of a transformed yeast strain belonging to the genus Saccharomyces which has, in alcoholic fermentation, a reduced yield of ethanol production compared to the wild-type Saccharomyces strain, which has not been transformed.
- the method comprises the step of transforming a so-called "wild-type" yeast strain of Saccharomyces by introducing at least one heterologous nucleic acid encoding a water-producing NADH oxidase.
- transform or “transformation” means the introduction of a foreign (i.e., exogenous) RNA or DNA gene or sequence into a host Saccharomyces yeast, so that the yeast host expresses the gene or sequence introduced to produce the desired substance, in this case a NADH oxidase producing water.
- the yeast strain that has received and expresses the nucleic acid encoding a water-producing NADH oxidase has been "transformed".
- the sequence coding for NADH oxidase producing water can be
- They may be promoter-type and terminator sequences active in yeast, for example the promoters and terminators of the alcohol-dehydrogenase 1 (ADH1), phosphoglycerate kinase (PGK) or glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes.
- ADH1 alcohol-dehydrogenase 1
- PGK phosphoglycerate kinase
- GPDH glyceraldehyde-3-phosphate dehydrogenase
- the invention therefore also relates to an expression cassette comprising a nucleic acid encoding a NADH oxidase producing water, preferably of bacterial origin, associated with sequences for regulating the expression of said NADH oxidase producing sequence. water in Ia. yeast.
- Nucleic acid encoding NADH oxidase producing water, or a cassette containing it, may be carried by a vector or integrated into the genome (chromosomal DNA) of the transformed yeast.
- a "vector” can be used to convey the nucleic acid sequence encoding NADH oxidase producing water in the yeast host, or the cassette containing it, so as to transform the yeast and facilitate expression of the sequence introduced. It may be for example a plasmid-type DNA vector.
- Yeast transformation generally employs "shuttle" vectors in which the nucleic acid sequence encoding NADH oxidase producing water can be combined with a sequence allowing its expression in yeast, such as a yeast promoter.
- These shuttle vectors include other additional sequences to allow expression in bacteria, such as E. coli, or other microorganisms. These additional sequences that do not come from yeasts are used only for the construction of the vectors.
- the invention therefore also relates to a vector comprising an expression cassette comprising a nucleic acid encoding a NADH oxidase producing water, preferably of bacterial origin, associated with sequences for regulating the expression of said coding sequence NADH oxidase producing water in the yeast.
- the DNA vector can be introduced by any technique known to those skilled in the art, in particular by lithium acetate transformation, by electroporation or by means of protoplasts.
- lithium acetate transformation method described by Schiestl and Gietz, (1989) can be used.
- said yeast strain of the genus Saccharomyces is an industrial strain used in oenology, brewery, bakery or cider house.
- said yeast strain of the genus Saccharomyces is a Saccharomyces cerevisiae strain, preferably the oenological strain S. cerevisiae V5 (also called ScV5M, deposited on June 18, 1992 in the National Collection of Microorganism Cultures, held by the Institut Pasteur, under number 1-1222).
- NADH oxidase producing water is a bacterial NADH oxidase.
- Said nucleic acid encoding a NADH oxidase producing water may comprise a sequence selected from the group consisting of SEQ ID No.1, SEQ ID No.2, SEQ ID No.3, SEQ ID No.4, SEQ ID No .5 and
- nucleic acid encoding a NADH oxidase producing water comprises the gene of the enzyme Nox, H 2 O identified in Lactococcus lactis (SEQ ID No.1).
- the yield of ethanol production, in alcoholic fermentation, of the genus Saccharomyces strain transformed with respect to the wild-type Saccharomyces strain can be reduced by 10 to 20%, preferably by approximately 15%, which represents a reduction of at least 0.5 °, preferably at least 1 °, more preferably at least 2 °, depending on the initial sugar content in the fermentation medium.
- the degree of alcohol represents the number of ml of pure ethyl alcohol contained in 100 ml of a liquid, measured at 20 ° C. 1 ° of alcohol corresponds to 7.80 g / l of ethanol.
- Saccharomyces Yeasts are capable of transforming the sugar of their culture medium by producing a smaller amount of ethanol relative to the corresponding wild-type Saccharomyces yeasts.
- yeast strains are therefore particularly useful in processes for the preparation of fermented beverages in order to obtain beverages having a reduced ethanol content relative to beverages prepared by alcoholic fermentation using unconverted Saccharomyces yeasts. These yeasts can also be used in bakery baking processes.
- the invention therefore relates to the use of a yeast strain Saccharomyces according to the invention for carrying out an alcoholic fermentation.
- Said alcoholic fermentation can be implemented in a baking, winemaking, brewery, cider house or distillery process.
- a yeast strain according to the invention is therefore particularly useful for the preparation of a fermented beverage, such as wine, champagne, beer, cider, or brandy, or in breadmaking, especially for bread preparation.
- the invention also relates to an alcoholic fermentation process that allows the transformation of sugars with a reduced ethanol production yield.
- the method comprises the steps of: a) inoculating a medium containing a high sugar content with at least one Saccharomyces yeast strain according to the invention; O b) cultivating said yeast strain Saccharomyces and allowing the fermentation to proceed to transform the sugars into alcohol.
- the culture can be carried out with a supply of oxygen (microoxygenation), which can be continuous or discontinuous, and where oxygen is provided in limiting or non-limiting conditions.
- a supply of oxygen microoxygenation
- the yeast strain according to the invention is cultured under non-limiting oxygen conditions, that is to say under conditions where there remains oxygen. dissolved in the medium, not consumed by the yeasts.
- medium containing a high sugar content is meant a medium containing at least 30 g / l of sugars, preferably at least 50 g / l of sugars, more preferably at least 80 g / l of sugars.
- sucrose refers to carbohydrates in general, and more specifically to monosaccharides such as glucose or fructose, or polysaccharides such as sucrose or maltose, for example.
- Said alcoholic fermentation process may be a brewing process.
- the medium containing a high sugar content is then a malting must, prepared from a mixture of barley and hops.
- Said alcoholic fermentation process can also be a breadmaking process.
- the medium containing a high sugar content is then the dough raised, for example a bread dough, brioche, etc.
- said alcoholic fermentation process is a winemaking process.
- the medium containing a high sugar content is then a must of grapes.
- the sugar content of the grape must used in winemaking is generally between 140 and 260 g / l.
- the most used yeasts in winemaking are S. cerevisiae yeasts, which generally have an ethanol production yield of the order of 0.47 g per g of sugars.
- the use of these yeasts in winemaking (under traditional conditions, that is to say in anaerobiosis) thus produces wines having an alcohol content between 8 and 15 °.
- the inventors have shown that yeasts S.
- cerevisiae transformed according to the invention have a yield of conversion of sugars into alcohol of 0.39 g per g of sugars, which represents a reduction of about 15% relative to the alcohol yield of wild strains.
- the use of these yeasts can lead to wines having an alcohol content of between 7 and 13 °.
- the inventors have shown that the use of a S. cerevisiae transformed yeast strain according to the invention, for carrying out a fermentation under controlled oxygenation conditions, from a synthetic medium having a content in sugars of 200 g / 1 makes it possible to obtain a reduction of 1 ° of the ethanol content with respect to the content that would have been obtained by fermentation under anaerobic conditions with the wild S.
- yeast growth phase is decoupled from the NADH oxidase activity phase, that is, if the NADH oxidase activity only manifests itself at the end. yeast growth phase (stationary phase).
- the cultured yeasts multiply until exhaustion of the culture medium in one of their substrate.
- the nitrogen is in limiting amount in the medium compared to the sugars (approximately 300 to 500 mg / l of assimilable nitrogen against approximately 200 g / 1 in sugars). Fermentation takes place from the beginning of the yeast multiplication phase and continues once the yeasts have stopped growing. For such fermentation media, the stopping of growth caused by the depletion of the medium in nitrogen and micronutrients occurs when about 30% of the sugars have been consumed.
- the invention more particularly proposes a winemaking process comprising the steps of: a) inoculating a must of grapes with at least one Saccharomyces yeast strain according to the invention; b) cultivating said Saccharomyces yeast strain and allowing the fermentation to proceed to transform the sugars into alcohol; wherein said Saccharomyces yeast strain is initially grown under anaerobic conditions, and then grown under aerobic conditions when the stationary growth phase of the yeasts is reached, especially when substantially all of the assimilable nitrogen of the grape must is consumed.
- anobic conditions is meant culture conditions in the presence of oxygen, preferably under non-limiting oxygen conditions for the cultured Saccharomyces strain.
- non-limiting oxygen conditions for the cultured Saccharomyces strain.
- those skilled in the art are able to determine if they are in the presence of non-limiting culture conditions by simply detecting the presence of dissolved oxygen in the culture medium. For example, for a V5 strain transformed with the L.
- lactis noxE gene grown on a synthetic medium mimicking a grape must as described in the examples (MS medium comprising 180-200 g / l of glucose, 6 g / l of malic acid, 6 / I of citric acid, 460 mg / l of nitrogen, in the form of NH 4 Cl (120 mg / l) and amino acids (340 mg / l)), a transfer of oxygen of 10 mg / l / h corresponds to non-limiting microoxygenation conditions.
- said yeast strain Saccharomyces is a S. cerevisiae strain, more preferably a S. cerevisiae oenological strain such as strain V5.
- the invention also relates to the use of a yeast Saccharomyces according to the invention for regenerating NAD + from NADH, for example during biotransformations.
- Biotransformation is the use of living organisms to perform reactions that are difficult to implement by laboratory chemical methods.
- one or more precursor molecules are provided to the living organism, and after a period of time sufficient for the metabolism to occur, a product or products are isolated from the culture medium or the biomass, which differ from the precursor molecules by one or a small number of enzymatic modifications
- biotransformations used for the production of pure enantiomers (alcohols, hydroxy acids, amino acids, etc.) or other compounds for fine chemistry (green chemistry), involve reduction reactions requiring an electron acceptor, typically a cofactor of NADH or NADPH type.
- a major problem that limits the use of biotransformations is the regeneration of NAD (P) from NAD (P) H.
- the coupling of the biotransformations with another enzymatic reaction for example the reaction catalyzed by alcohol dehydrogenase or by lactate dehydrogenase, allows efficient regeneration of the cofactors.
- problems remain to be solved, in terms of implementation, enzyme stability and overall cost.
- Figure 1 shows a reaction scheme of the metabolic pathway of glucose degradation.
- Figure 2 shows the structure of the expression plasmids used to express NADH oxidase NoxE in S. cerevisiae yeast.
- FIG. 3 shows the integration of the TDH3p-noxE-PGKt expression cassette at the URA3 locus.
- Figure 4 illustrates the monitoring of residual glucose and dissolved oxygen for the control strain V5 grown on MS medium with a supply of 10 mg / l / h of oxygen.
- Figure 5 illustrates the impact of oxidase expression on growth, glucose consumption and metabolic profiles of V5 and V ⁇ noxE strains cultured on MS medium with a constant supply of oxygen at 10 mg / l / hr.
- Figure 6 shows the monitoring of residual glucose and dissolved oxygen for V5 and V ⁇ noxE strains in the stationary phase with a 10 mg / l / h oxygen supply.
- Figure 7 shows the measurement of growth, glucose consumption and metabolic profiles of V5 and MSnoxE strains cultured on MS medium at an oxygen supply of 10 mg / l / h in stationary phase.
- the genomic DNA of L lactis MG1363 is placed under the control of yeast regulatory elements, either in yeast / E. coli shuttle vectors or integrated into the yeast genome.
- the expression plasmid pVT100-U ZEO was used (FIG. 2).
- This plasmid derives from the plasmid pVT100-U described by Vernet et al. (1987) which contains the 2 ⁇ yeast replication origin, the selection marker URA3 and the strong regulatory elements ADH 1 (promoter and terminator of alcohol dehydrogenase I), as well as bacterial elements (origin of replication and ampicillin resistance gene), in which the Phleomycin resistance-conferring Tn5 ble gene was inserted, as described by Remize et al., (1999).
- the vector pVTZEO-ADH1poxE was constructed by inserting the noxE gene (Hoefnagel et al., 2002) into the vector pVT100U-ZEO.
- the noxE gene was amplified by PCR as described in 5, from the total DNA isolated from L. lactis MG 1363, using the primers 5'-CGGCGCTCGAGATGAAAATCGTAGTTATCGGT-3 '(SEQ ID No.7) and 5'-CGGCGTCTAGATTATTTGGCATTCAAAGCTGC-3 '(SEQ ID No.8) in which the Xho ⁇ and XbaI sites (underlined) were introduced.
- pVTZEO-ADHInoxE The map of the recombinant plasmid obtained, called pVTZEO-ADHInoxE, is shown in FIG.
- the pVTZEO-TDH3 / 7 ⁇ xE vector was also constructed from plasmid pVT100U-ZEO, by replacing the ADH1p-ADH1t expression cassette with a cassette consisting of the noxE gene under the control of the yeast gene promoter TDH3 encoding glyceraldehyde. 3-phosphate dehydrogenase and the terminator of the PGK gene encoding phosphoglycerate kinase.
- the TDH3 promoter has been described as a very strong and constitutive promoter (Mumberg et al., 1995).
- Plasmid p VTZEO-TDH 3noxE was obtained using the intermediate plasmid pFL-TDH3nox. The latter was obtained by cloning the TDH3 promoter region into the yeast / coli shuttle vector pFL60 described by Minet et al., (1992).
- the TDH3 promoter region was amplified from I 1 genomic DNA of the yeast strain S. cerevisiae S288C, using the 5'CGGAGCTCCAGTTCGAGTTTATCATTATC-3 'oligonucleotides (SEQ ID No.9) and 5'CGGGATCCTCGAAACTAAGTTCTTGGTG -3 '(SEQ ID No.10) in which the SacI and BamHI sites (underlined) were introduced as described in 5.
- the coding region of the noxE gene was amplified by PCR, as described in 5, from the Chromosomal DNA of L. lactis MG1363 using the oligonucleotides 5'-CGGGATCCATGAAAATCGTAGTTATCGGT-3 '(SEQ ID No.11) and 5'-CGCTCGAGTTATTTGGCATTCAAAGCTGC-3' (SEQ ID No.12) allowing the introduction of BamHI sites and Xhol (underlined).
- the two PCR fragments thus generated were digested and then ligated into the plasmid pFL60 digested with SacI and XhoI as described in 6.
- the plasmid pFL-TDH3 noxE was thus obtained.
- the TDH3p ⁇ noxE-PGKt expression cassette was amplified, as described in 5, from this plasmid using the 5'-oligonucleotides.
- the empty plasmid pVTZEO-TDH3 used as a control was generated from the plasmid pFL-TDH3, which corresponds to the plasmid pFL60 in which the PGK promoter was replaced by a multi-site cloning, using the double-stranded oligonucleotide (MWG) ⁇ '-ATCCCCCGGGCTGCAGGTCGACC-S '(SEQ ID No.15), then in which the TDH3 promoter was cloned at the site SacI and BamHI as previously explained.
- MWG double-stranded oligonucleotide
- the TDH3p-noxE-PGKt expression cassette was amplified, as described in 5, from plasmid pFL-TDH3noxE using oligonucleotides 5'-CGGCGGATATCGCTCCAGTTCGAGTTTATCA-3 '(SEQ ID No.16) and 5'-CGGCGACTAGTTTTCACACAGGAAACAGCTA- 3 '(SEQ ID No.17) in which the EcoRV and Spel sites were introduced.
- the amplification fragment obtained was ligated to the plasmid pUG6 (Guldener et al., 1996) digested with EcoRV and SpeI and dephosphorylated as described in 6.
- the plasmid pUG6 / oxE was obtained.
- a PCR fragment carrying the loxP-kanMX4-loxP and the ⁇ oxE-PGKt TDH3p modules was amplified, as described in 5, from the plasmid pUG ⁇ noxE, using the oligonucleotides 5 TGATTCGGTAATCTCCGAGCAGAAGGAAGAACGAAGGAAGGCAGGTCGACAAC CCTTAAT-3 '(SEQ ID No.18) which has 20 nucleotides complementary to pUG6 and an extension of 40 nucleotides (underlined) corresponding to the region -157 to -117 upstream of the ATG of URA3, and '-
- the yeast strain Saccharomyces cerevisiae ScV5M (called V5) was transformed with the vectors p VTZEO-ADH 1noxE, pVTZEO-TDH 3noxE and with the vectors pVT100UZEO and pVTZEO-TDH3 (controls).
- the strains obtained are listed in Table 1.
- Table 1 List of plasmids and strains used.
- V ⁇ pVTZEO- 2 ⁇ , URA3, Ap R , G418 R This ADHp-NOxE-ZEO R ADHInoxE work
- strain V5 was transformed with 1, 4 ⁇ g of integration fragment prepared as described in 3. Integration at the URA3 locus was verified by PCR from the genomic DNA of G418R transformants obtained, using oligonucleotides located upstream and downstream of the integration site. A strain called ⁇ / 5noxE with the fragment integrated into the URA3 locus was obtained ( Figure 3):
- the strain SCV5M was deposited on June 18, 1992 at the National Collection of Cultures of Microorganisms, held by the Institut Pasteur, under the number 1-1222. It is a S. cerevisiae haploid strain, MATa, ura3, derived from an oenological strain.
- the transformation method used is that of lithium acetate described by Schiestl and Gietz, (1989).
- the selective medium used to select the strains transformed by the plasmids is YNB (0.67% Yeast nitrogen base,
- the clones that integrated the integration fragment carrying the kanMX and NADH oxidase modules were selected on rich medium YEPD (1% bacto yeast extract, 2% bactopeptone, 2% glucose) supplemented with 200 ⁇ g / ml geneticin G418 (Gibco, England).
- 50 ng of plasmid or 100 ng of genomic DNA are mixed with 500 nM of oligonucleotides, 5 ⁇ l of 1OX Mg 2+ -free DyNazyme EXT buffer buffer (FINNZYMES, Finland), 1.5 mM MgCl 2 , 200 ⁇ M of dNTPs, 1 unit of DyNAzyme EXT (FINNZYMES 1 Finland) in a total volume of 50 ⁇ l.
- the amplification conditions are as follows: 2 minutes at 94 ° C., 30 cycles of 30 seconds at 94 ° C., 30 seconds at 50 ° C., 2 minutes at 72 ° C., then 7 minutes at 72 ° C. on Perkin amplification. -Elmer Cetus model 9600.
- the digestion of the DNA with restriction enzymes is carried out as described by the supplier (Promega Corporation, USA). After digestion, the plasmids are dephosphorylated with 10 units of Bacterial Alkaline Phosphatase (Qbiogene, USA) according to the protocol described by the supplier. The dephosphorylation reaction is stopped by phenol / chloroform extraction (Sambrook et al., 1989). 50 ng to 100 ng of amplified and digested DNA are ligated to 100 ng of digested and dephosphorylated plasmid in a final reaction mixture of 10 ⁇ l, in the presence of 5 units of T4 DNA ligase (Biolabs, USA) overnight at 16 ° C.
- ligation mixture is used to transform the competent E. coli DH5 ⁇ bacteria (Library Efficiency DH5 ⁇ competent cells, Invitrogen, USA) according to the protocol described by the supplier.
- the colonies obtained are selected on LB plates (1% bactotryptone, 0.5% bacto yeast extract, 1% NaCl) plus ampicillin (100 ⁇ g / ml).
- L 1 plasmid DNA of the clones obtained is then extracted by QIAprep Miniprep (Qiagen, USA) and analyzed by enzymatic digestion.
- MS medium was used for preculture and culture. This is a synthetic medium that simulates a standard grape must (Beyy et al., 1990).
- MS medium contains 18-20% glucose, 6 g / l malic acid, 6 / I citric acid, 460 mg / l nitrogen, as NH 4 Cl (120 mg / l) and amino acids (340 mg / l).
- the medium is supplemented with methionine (115 mg / l) and, if necessary, uracil (50 mg / l).
- the pH of the MS medium is 3.3.
- Anaerobiosis factors ergosterol (7.5 mg / l), oleic acid (2.5 mg / l) and Tween 80 (0.21 g / l) are added.
- the precultures are carried out in 250 ml Erlenmeyer flasks containing 50 ml of medium at 28 ° C. with stirring (150 rpm) for 30 h.
- the reactors are inoculated from these precultures, at a cell density of 1.10 6 cells / ml, and maintained at a constant temperature of 28 ° C. with permanent stirring (500 rpm).
- the microxygenation conditions are obtained by aerating the reactor with air at a rate kept constant. Dissolved oxygen is measured using INGOLD Clark electrodes.
- the transfer coefficient (Kia) is measured according to the dynamic method (Dursun et al, 1999).
- the solubility of oxygen (C *) in the must is determined according to Sablayrolles and Barr (1986).
- the oxygen consumption is obtained by integrating the curve obtained during the calculation of the OUR.
- the exit gas passes through a refrigerated condenser to prevent evaporation of volatile compounds.
- the growth is followed by measuring the optical density at 600 nm and by counting the number of cells on a Coulter Counter (ZBI) type apparatus on a sample of an aliquot of culture medium.
- ZBI Coulter Counter
- the metabolites are assayed in the supernatant, after centrifugation at
- the concentration of glucose, glycerol, ethanol, pyruvate, succinate, acetate, ⁇ -ketogluatarate and 2-hydroxygluatarate is determined by high-pressure liquid chromatography (HPLC) using an HPX-87H type column (Bio-Rad).
- HPLC high-pressure liquid chromatography
- the concentration of acetaldehyde is determined by the enzymatic method described by Lundquist,
- the enzymatic activities are determined extemporaneously.
- the specific NADH oxidase activity in the cell extracts is measured spectrophotometrically at 25 ° C in a total volume of 1 ml containing 50 mM potassium phosphate buffer (pH 7), 0.3 mM NADH and 0.3 mM EDTA.
- the reaction is initiated by adding 5 to 50 ⁇ l of cell extract, followed by the decrease in absorbance at 340 nm.
- the protein concentration is determined using the BC Assay kit (Uptima, Interchim). d - Extraction and measurement of intracellular levels in NADH / NAD
- the metabolites are extracted as described by Gonzalez et al., (1997).
- Cofactor concentrations are determined from enzyme reactions coupled to NAD (H) - as described below.
- the amount of NADH produced during the reaction is determined by fluorescence spectrophotometry (excitation wavelength, 340 nm, emission wavelength, 460 nm) using a Perkin Elmer LS 5OB fluorescence spectrophotometer.
- the enzymatic reactions are carried out at 30 ° C. in a total volume of 2 ml of reaction buffer containing 4.25 mM Tris-NH 4 Cl (pH 7.0), 25 ⁇ M dihydroxyacetone phosphate, and 125 ⁇ M ⁇ -ketoglutarate, as described by Klingenberg (1974). Aliquots of 5 to 100 ⁇ l of samples are added to the reaction buffer. A baseline is obtained.
- glycerol-3-phosphate dehydrogenase (170 U.ml -1 , Roche) and then 1 ⁇ l of NADPH-dependent glutamate dehydrogenase (240 ⁇ l ml -1 Roche) are added successively. Each addition is carried out after obtaining a stable signal.
- the concentration of NAD is determined as previously described
- reaction buffer contains 1.8 ml of a mixture of 0.2 M glycine and 0.4 M hydrazine hydrate (pH 9), 85 mM ethanol and 5 to 200 ⁇ l of extract in a total volume of 2.01 g. ml.
- 1 ⁇ l of alcohol dehydrogenase (882 U. ml -1 , Roche) is added.
- the cofactor concentrations in the samples are calculated by an external calibration method, making it possible to determine the response coefficient of each cofactor.
- the measurements are made in triplicate. 2. Results 20
- Fermentations in batch mode under microoxygenation conditions were carried out in order to analyze the impact of the expression of the oxidase on the growth, the degradation of the sugar, the production of metabolites and the intracellular concentration.
- NAD N-oxidase
- NADH NADH cofactors
- the fermentations were carried out with the strains expressing NADH oxidase V ⁇ noxE, V5pVTZEO-TDH3nox £, V5pVTZEO-ADH1 noxE and control strains V5, V5pVTZEO-TDH3 and V5pVTZEO-ADH1.
- the air flow rate used in this experiment is kept constant throughout the fermentation at 17 ml / min, which corresponds to an oxygen transfer rate of 10 mg / l / h. Under these conditions, all the oxygen is consumed by the control strain V5 (FIG. 4).
- NADH oxidase The specific activity of NADH oxidase was measured in the different strains at 2 stages of fermentation (Table 2) in mid-exponential phase (17 h culture) and stationary phase (40 h).
- the growth phase is short.
- the depletion of assimilable nitrogen from the medium causes a rapid entry into the stationary phase (after about 30 h), whereas approximately 30% of the initial sugars are consumed.
- the stationary phase therefore represents an important phase during which the majority of the sugars (approximately 70%) are degraded.
- NADH oxidase activity was detected in cell extracts of the control strain and strains transformed by empty plasmids, whereas significant activity was measured in the strains expressing the noxE gene, indicating that the enzyme encoded by the bacterial gene noxE expresses well in S. cerevisiae.
- the maximum activity obtained (1.48 U / mg protein) is approximately 7 times greater than that measured in a cell extract of L. Lactis (Lopez de Felipe and Hugenholtz, 2001).
- NADH oxidase is expressed throughout the fermentation period, with a specific activity level approximately 3-fold higher in the growth phase compared to the stationary phase when the noxE gene is under the control of the TDH3 promoter.
- the level of specific activity is 2 times higher in the stationary phase than in the growth phase.
- the level of activity varies considerably depending on the promoter used and the number of copies of the gene.
- the TDH3 promoter makes it possible to obtain an activity 5 times greater than that obtained with the promoter ADH1 in the growth phase, whereas the levels of specific activity are similar for the 2 constructions in stationary phase.
- noxE is under the control of TDH3
- the activity obtained in multicopy is about 3 times greater than that obtained in the strain having integrated this cassette into a copy.
- Table 3 shows the yields of biomass and products obtained after stopping the fermentation.
- Table 3 Production yield of the main fermentative metabolites, biomass, carbon balance and degree of reduction of strains V5, V5 pVT100-UZEO, V5nox £, V5 pVTZEO-TDH3noxE, V5 pVT ZEO-ADH ⁇ noxE on MS medium with constant supply of 10 mg / l / h of oxygen
- V5 (0.009) (0.005) 0.001) (0.001) (0.001) (0.0001) (0.002) (0.0001) (0.010) (0.002) 0.064
- V5pVTZEO- (0.003) (0.002) (0.002) (0.000) (0.000) (0.0001) (0.000) (0.0007) TDH3
- V ⁇ noxE 0.5 0.025 101 (0.002) (0.001) (0.001) (0.003) (0.002) (0.0005) (0.000) (0.0000) (0.005) (0.000)
- ADHInoxE (0.002) (D 1 OOI) (0.006) (0.001) (0.004) (0.0005) (0.001) (0.0001)
- the 3 strains expressing the oxidase consume only half (about 100 g / l) of the sugars present, unlike the control strains that complete the fermentation.
- the effects of oxidase on the central metabolism were therefore analyzed by comparing biomass yields and main fermentation by-products at half-fermentation (reaction progress 0.5). For information, the yields obtained after degradation of all the sugars (200 g / l) are indicated for the control strains (reaction progress 1).
- glycerol is also decreased from the beginning of fermentation.
- Oxidase by reoxidizing part of the intracellular NADH, therefore competes with other yeast enzymes using this cofactor.
- ADH alcohol dehydrogenase
- GPDH glycerol 3-P dehydrogenase
- the first consequence of limiting the flow of carbon to ethanol synthesis is an increase in the production of acetaldehyde and acetate in the transformants.
- Acetate synthesis mainly generates NADPH via Alddep and Alddp acetaldehyde dehydrogenases located in the cytoplasm and in the mitochondria, respectively ( Saint-Prix et al., 2004).
- the V ⁇ noxE strain also shows a strong decrease in ⁇ -ketoglutarate production. This effect could be due to the surplus of NADPH linked to the increase of acetate synthesis.
- the decline in its production in the ⁇ / 5noxE strain may therefore stem from a lower availability of substrate ( ⁇ -ketoglutarate) and / or a lower availability of NADH due to competition with NADH oxidase.
- substrate ⁇ -ketoglutarate
- NADH NADH dependent
- the increase in acetate may be related to the accumulation of its precursor, acetaldehyde, whose production is increased drastically and very early. It is interesting to note an early arrest (around 20 h) of the growth of the V5noxE strain, whereas at this stage the concentration of acetaldehyde in the medium reaches 1.1 g / l instead of 0.2 g / l. for the control strain. The number of cells reached by V5nox® is three times lower than that of the wild-type strain.
- Acetaldehyde is a toxic compound for yeast. It negatively affects the formation of biomass (Aranda and del Olmo, 2004, Liu and Pilone, 2000) and at a high concentration the fermentation rate (Roustan and Sablayrolles, 2002).
- acetaldehyde can be metabolized to acetoin and 2,3-butanediol ( Figure 1), non-toxic compounds for yeast.
- Acetoin is produced by the condensation of 2 molecules of acetaldehyde by pyruvate decarboxylase (PDC), then reduced to 2,3-butanediol by butanediol dehydrogenase (BDH). This reduction is NADH dependent (Gonzalez et al., 2000).
- PDC pyruvate decarboxylase
- BDH butanediol dehydrogenase
- the five oxygenation conditions tested on the 5noxE strain correspond to maximum transfer rates of 2, 4, 6, 7 and 10 mg / l / h of oxygen.
- Table 5 shows the effects obtained on ethanol production yield, acetaldehyde accumulation, glucose degradation, growth and oxygen consumption.
- Table 5 Dissolved O 2 , ethanol yield, acetaldehyde concentration, glucose consumption and final biomass for the V5 strain at 10m g / l / h of 0 2 transferred and for the V ⁇ noxE strain at different transfer rates (OTR).
- Residual strain 8 ethanol B final (mg / l / h) (% glucose
- the probe As a percentage of air saturation in the medium, the probe indicates 100% when the oxygen concentration in the medium (MS 20% glucose) is 6.4 mg / l. b g ethanol produced by glucose consumed
- the reduction in production yield of ethanol is accompanied by an acetaldehyde accumulation, correlated with a biomass reduction of about 60% and an incomplete consumption (about half) of the substrate.
- the lack of growth is also observed in the two cases where I 1 O 2 is not limiting, although less markedly for 2 mg / l / h of O 2 transferred.
- the glycerol production remains lower than that obtained for the wild-type strain cultured at 10 mg / l / h of 02, which indicates that the supply of O 2 is sufficient to allow operation oxidase.
- the activity phase of the NADH oxidase was decoupled from the growth phase.
- fermentations in batch mode were performed under anaerobic conditions up to 28 hours of fermentation (end of the growth phase), then under controlled microoxygenation conditions from the entry into the stationary phase and throughout this phase.
- the fermentations were carried out with the strain expressing NADH oxidase V ⁇ noxE and the control strain V5.
- all of the oxygen is consumed by the control strain V5, while the oxygen remains largely non-limiting for the VbnoxE strain (FIG. 6).
- the effects obtained on growth, glucose degradation, formation of ethanol, acetate, acetaldehyde, acetoin and butanediol are shown in Figure 7.
- the V5nox strain under these conditions, has a growth identical to that of the control strain, an identical final biomass (30 ⁇ 10 7 cells) and is capable of fermenting almost all the glucose present (close to 200 g / l). Dissociating the growth phase from the activity phase of NADH oxidase thus makes it possible to overcome the side effects observed previously, on growth and fermentability.
- the oxygen supply is expected to cause an increase in the formation of acetaldehyde, which however remains limited to 400 mg / l, a concentration which does not drastically affect the fermentability.
- the production of acetate is slightly increased compared to the control strain cultivated under the same conditions.
- the carbon flux is also reoriented towards the formation of acetoin, while the production of 2,3 butanediol remains similar between the two strains and is not affected by the O 2 input.
- the results obtained were compared with those obtained during a standard oenological fermentation, carried out under the same conditions, but in the absence of oxygen supply (conditions of strong anaerobiosis) (Table 6).
- Table 6 Final concentration of the main fermentative metabolites and biomass production of strains V5 and V5 ⁇ oxE on MS under 10 mg / l / h stationary phase oxygen and anaerobiosis conditions.
- Biomass 6 6 4 4 a CO 2 estimated from ethanol production
- the V ⁇ noxE strain behaves like the control strain, the oxidase not being active.
- the production of ethanol by the V ⁇ noxE strain under microoxygenation conditions limited to the stationary phase is decreased by 8 g / 1 compared with that of the wild-type strain under anaerobic conditions.
- the use of a strain expressing NADH oxidase under microoxygenation conditions controlled and decoupled from the growth phase allows a reduction in the degree of ethanol which in this example reaches 1 ° alcohol.
- the oxygen is limiting during the first hours of the supply, and then not limiting during most of the oxygenation phase (FIG. 6).
- Nicotinamide adenine dinucleotides (NAD, NADP, NADH, NADPH): spectrophotometric and fluorimetric methods in H. Bergmeyer, H. (Ed.), Methods ofenzymatic analysis, pp. 2045-2059.
- Acetaldehyd Betician Mit Aldehyd dehydrogenase, Methods of Enzymatic Analysis, Academy Press, Inc., pp. 1509-1513.
- Vernet T., Dignard, D. and Thomas, D. Y. (1987).
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Mycology (AREA)
- Food Science & Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Botany (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
La présente invention est relative à des souches de levure transformées appartenant au genre Saccharomyces qui comprennent un acide nucléique hétérologue codant une NADH oxydase produisant de l'eau, à un procédé pour les préparer, et à leur utilisation dans des procédés de fermentation pour transformer les sucres avec un rendement de production d'éthanol réduit par rapport aux souches Saccharomyces sauvages, non transformées.
Description
Souches de levures Saccharomyces transformées présentant une production d'éthanol réduite par fermentation
La présente invention est relative à des souches de levure transformées appartenant au genre Saccharomyces qui comprennent un acide nucléique hétérologue codant une NADH oxydase produisant de l'eau, et à leur utilisation dans des procédés de fermentation pour transformer les sucres avec un rendement de production d'éthanol réduit par rapport aux souches Saccharomyces sauvages, non transformées. Depuis une quinzaine d'année, les connaissances scientifiques et savoir- faire en viticulture et en oenologie ont conduit à une amélioration très significative des qualités organoleptiques des vins. Les pratiques viticoles actuelles favorisent la production de vins à potentiel qualitatif élevé en retardant le moment de la vendange. Une conséquence majeure est l'augmentation de la teneur en sucre des moûts, et donc de la teneur en alcool des vins (fréquemment supérieure à 14°). Cette dérive, rencontrée dans la plupart des zones de production, pose ouvertement de nombreux problèmes à la filière viticole mondiale. Des teneurs en alcool excessives sont en effet difficilement compatibles avec les préoccupations santé et de bien-être des consommateurs, et font par ailleurs l'objet de taxes dans certains pays. II existe de ce fait une demande croissante pour des méthodes et outils permettant de réduire la teneur en alcoo[ des vins. Les approches physiquesjpar exemple distillation sous vide) sont de plus en plus utilisées mais sont difficilement compatibles avec le maintien d'une qualité organoleptique satisfaisante.
Une solution biologique reposerait sur l'utilisation de souches de levures à faible rendement en alcool.
Par exemple les levures S. cerevisiae, notamment les levures S. cerevisiae œnologiques, transforment les sucres en alcool avec un rendement de 0,47 g/g, qui varie peu suivant la souche utilisée. De ce fait, l'obtention d'une levure S. cerevisiae à faible rendement en alcool nécessite la mise en œuvre de stratégies génétiques visant à dévier une partie des sucres vers la formation d'autres sous produits.
Plusieurs approches d'ingénierie génétique ont été mises en œuvres, dont certaines par les inventeurs, pour dévier une partie des sucres vers la production d'autres sous-produits que l'éthanol (Dequin, 2001 ; Dequin et al., 2003). Ces
approches ont été basées sur la modification de l'activité d'enzymes impliquées dans la synthèse de glycérol ou dans l'utilisation du pyruvate. Par exemple, la surproduction de glycérol, obtenue par surexpression de GPD1 ou GPD2 codant pour la glycérol 3-phosphate déshydrogénase (Nevoigt and Stahl 1996 ; demande de brevet internationale WO 96/41888 ; Michnick et al., 1997 ; Remize et al., 1999; Remize et al., 2000 ; Remize et al., 2001 ; de Barros Lopez et al., 2000 ; Eglinton et al., 2002), a ainsi permis de diminuer la teneur en éthanol de 1 à 2°. Elle s'accompagne toutefois de modifications majeures du niveau de production d'autres métabolites, dont certains indésirables dans le vin. De même, il est possible de dévier une partie des sucres vers la production d'acide lactique en exprimant une lacticodéshydrogénase bactérienne. Cependant la teneur en alcool ne peut pas être abaissée de manière significative compte tenu des teneurs d'acide lactique acceptables dans le vin (demande de brevet internationale WO 94/00554 ; Dequin and Barre, 1994). Une autre stratégie a été développée, basée sur l'expression d'une glucose oxydase, qui permettrait l'oxydation d'une partie des sucres en acide gluconique en présence d'oxygène (Malherbe et al., 2003). Il est cependant probable que le niveau de production en acide gluconique requis pour un abaissement significatif de la teneur en éthanol soit incompatible avec le maintien des qualités organoleptiques du vin. II existe donc toujours un besoin de souches de levures à faible rendement en alcool qui soient utilisables en pratique dans le domaine de l'œnologie.
Les approches d'ingénierie génétique se heurtent cependant à la difficulté de réussir à identifier la ou les activités enzymatiques à modifier pour parvenir aux changements métaboliques escomptés. La possibilité d'induire une modification des flux métaboliques par modification du niveau d'oxydation du NADH a précédemment été démontrée chez la bactérie Lactococcus lactis. Il a ainsi été observé que la surexpression de la NADH oxydase de Streptococcus mυtans chez Lactococcus lactis réoriente le métabolisme vers la formation d'acétoïne ou de diacétyl aux dépends de l'acide lactique (Lopez de Felipe and Hugenholtz, 1999; Lopez de Felipe et al., 1998).
Toutefois, contrairement aux bactéries, les levures ne possèdent pas de NADH oxydase. Les inventeurs ont mis en évidence que l'introduction chez une levure Saccharomyces d'un gène hétérologue codant une NADH oxydase produisant de l'eau induit une modification du métabolisme de Péthanol.
L'invention concerne donc une levure Saccharomyces transformée avec un gène hétérologue codant une NADH oxydase produisant de l'eau, et ses utilisations, notamment en œnologie.
Définitions
Dans le contexte de la présente invention, par « levure », on désigne une levure du genre Saccharomyces. Ladite levure peut par exemple être choisie parmi l'une des espèces suivantes : Saccharomyces bayanus, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces paradoxus, Saccharomyces pastorianus, ou Saccharomyces uvarum. De préférence la levure Saccharomyces selon l'invention est Saccharomyces cerevisiae (S. cerevisiae). Par « souche oenologique », on entend une souche S. cerevisiae. De très nombreuses souches S. cerevisiae œnologiques sont commercialisées ou ont été décrites dans l'art antérieur. Certaines souches œnologiques commercialisées sont des S. bayanus var. uvarum. Une « séquence codante » ou séquence « codant » un produit d'expression, tel qu'un ARN, un polypeptide, une protéine, ou une enzyme, est une séquence nucléotidique qui, lorsqu'elle est exprimée, conduit à la production de cet ARN, polypeptide, protéine, ou enzyme. Une séquence codant une protéine peut inclure un codon d'initiation et un codon stop. Le mot « hétérologue » se réfère à une combinaison d'éléments ne survenant pas naturellement. Dans le contexte de la présente invention, une séquence d'acide nucléique hétérologue renvoie à une séquence d'acide nucléique (gène, ADNc ou ARN) qui n'est pas naturellement contenue par la cellule, c'est-à- dire une séquence étrangère ou exogène à la cellule. Par « NADH oxydase produisant de l'eau », ou « Nox, H2O », on entend une enzyme qui catalyse la réaction : 2NADH + 2H+ + O2 → 2NAD+ + 2H2O. Il peut s'agir en particulier d'une enzyme bactérienne. En effet, un certain nombre de NADH oxydases produisant de l'eau ont été identifiées chez des bactéries, et ont notamment été répertoriées dans le Tableau 1 de l'article Riebel et al., 2002. Un acide nucléique hétérologue codant une NADH oxydase produisant de l'eau peut par exemple être constituée par, ou comprendre, une séquence codante sélectionnée dans le groupe constitué par les gènes des enzymes Nox, H2O identifiées chez Lactococcus lactis (Hoefnagel et al., 2002; numéro d'accès Genbank AY046926; SEQ ID No.1), Enterococcus faecalis (Ross et Clairbone, 1992 ; numéro
d'accès Genbank X68847 ; SEQ ID No.2), Mycoplasma genitalis (Peterson et al., 1993 ; numéro d'accès Genbank U39707 ; SEQ ID No.3), Streptococcus mutans (Matsumoto et al., 1996 ; numéro d'accès Embl 815515 ; SEQ ID No.4), Mycoplasma pneumoniae (Himmelreich et al., 1996 ; numéro d'accès Embl MPAE44, SEQ ID No.5), Methanococcus japanicus (BuIt et al., 1996 ; numéro d'accès Embl MJU67512, SEQ ID No.6), et Leuconostoc mesenteroides (Koike et al., 1985).
Outre la séquence codant l'enzyme Nox, H2O proprement dite, l'acide nucléique hétérologue codant une NADH oxydase produisant de l'eau peut comprendre des séquences de régulation ou de contrôle, telles qu'un codon d'initiation, un codon stop, une séquence promotrice, signal, de sécrétion ou d'autres séquences utilisées par la machinerie génétique des levures.
L'expression « fermentation alcoolique » désigne la séquence de réactions de transformation du pyruvate en éthanol, et par extension l'ensemble des réactions de transformation de sucres en éthanol.
Levures Saccharomyces transformées et procédé de préparation L'introduction chez une levure Saccharomyces d'un gène hétérologue codant une NADH oxydase produisant de l'eau induit une modification du métabolisme de l'éthanol. En effet, les inventeurs ont exprimé dans une souche S. cerevisiae le gène noxE qui code pour une NADH oxydase formant de l'eau chez Lactococcus lactis (Hoefnagel et al., 2002; Lopez de Felipe and Hugenholtz, 2001). Des fermentations ont été réalisées dans un milieu synthétique mimant la composition d'un moût de raisins, avec un apport d'oxygène afin de permettre le fonctionnement de la NADH oxydase.
L'analyse des souches obtenues montre que l'expression de la NADH oxydase induit une réduction significative du rendement de production d'éthanol.
Cette réduction s'accompagne d'autres changements métaboliques, à savoir une réduction de la production de glycérol, d'α-cétoglutarate et d'hydroxyglutarate, et une accumulation d'acétaldéhyde, ainsi que d'acétate et d'acétoïne.
L'invention concerne donc une souche de levure transformée appartenant au genre Saccharomyces qui comprend un acide nucléique hétérologue codant une NADH oxydase produisant de l'eau.
^
L'invention concerne égalemeni un procédé de préparation d'une souche de levure transformée appartenant au genre Saccharomyces qui présente, en fermentation alcoolique, un rendement de production d'éthanol réduit par rapport à la souche Saccharomyces sauvage, non transformée. Ledit procédé comprend l'étape consistant à transformer une souche de levure du genre Saccharomyces, dite « sauvage », en introduisant au moins un acide nucléique hétérologue codant une NADH oxydase produisant de l'eau.
L'expression « transformer » ou « transformation » signifie l'introduction d'un gène ou d'une séquence ARN ou ADN étrangère (c'est-à-dire exogène) dans une levure Saccharomyces hôte, de manière à ce que la levure hôte exprime le gène ou la séquence introduite pour produire la substance désirée, dans le cas présent une enzyme NADH oxydase produisant de l'eau. La souche de levure qui a reçu et exprime l'acide nucléique codant une NADH oxydase produisant de l'eau a été « transformée ». La séquence codant la NADH oxydase produisant de l'eau peut être
« sous le contrôle de » ou « associée de manière fonctionnelle avec » des séquences de contrôle de la transcription et/ou de la traduction de manière à permettre la régulation de l'expression de ladite séquence codante dans la levure. Il peut s'agir de séquences de type promoteur et terminateur actives dans la levure, par exemple les promoteurs et terminateurs des gènes alcool-déshydrogénase 1 (ADH1), phosphoglycérate kinase (PGK), ou glyceraldéhyde-3-phosphate déshydrogénase (GAPDH).
L'association de la séquence codant la NADH oxydase produisant de l'eau et des séquences permettant la régulation de son expression constitue une « cassette d'expression ».
L'invention concerne donc également une cassette d'expression comprenant un acide nucléique codant une NADH oxydase produisant de l'eau, de préférence d'origine bactérienne, associé à des séquences de régulation de l'expression de ladite séquence codant une NADH oxydase produisant de l'eau dans Ia. levure.
L'acide nucléique codant la NADH oxydase produisant de l'eau, ou une cassette le contenant, peut être porté par un vecteur ou intégré dans le génome (l'ADN chromosomique) de la levure transformée.
Un « vecteur » peut être utilisé pour véhiculer la séquence d'acide nucléique codant la NADH oxydase produisant de l'eau dans la levure hôte, ou la cassette la contenant, de manière à transformer la levure et à faciliter l'expression de la séquence introduite. Il peut s'agir par exemple d'un vecteur d'ADN de type plasmide. La transformation des levures utilise généralement des vecteurs « navettes » dans lesquels la séquence d'acide nucléique codant la NADH oxydase produisant de l'eau peut être combinée à une séquence permettant son expression dans la levure, telle qu'un promoteur de levure. Ces vecteurs navettes comprennent d'autres séquences additionnelles pour permettre l'expression dans des bactéries, comme E. coli, ou dans d'autres microorganismes. Ces séquences additionnelles qui ne proviennent pas de levures servent uniquement à la construction des vecteurs.
L'invention concerne donc en outre un vecteur comprenant une cassette d'expression comprenant un acide nucléique codant une NADH oxydase produisant de l'eau, de préférence d'origine bactérienne, associé à des séquences de régulation de l'expression de ladite séquence codant une NADH oxydase produisant de l'eau dans la levure.
Le vecteur d'ADN peut être introduit par toute technique connue de l'homme du métier, notamment par transformation à l'acétate de lithium, par électroporation ou à l'aide de protoplastes. Par exemple la méthode de transformation à l'acétate de lithium décrite par Schiestl et Gietz, (1989) peut être utilisée.
De préférence, ladite souche de levure du genre Saccharomyces est une souche industrielle utilisée en œnologie, en brasserie, en boulangerie ou en cidrerie. Selon un mode de réalisation préféré, ladite souche de levure du genre Saccharomyces est une souche Saccharomyces cerevisiae, de préférence la souche œnologique S. cerevisiae V5 (aussi appelée ScV5M, déposée le 18 juin 1992 auprès de la Collection Nationale de Cultures de Microorganismes, tenue par l'Institut Pasteur, sous le numéro 1-1222).
De préférence ladite NADH oxydase produisant de l'eau est une NADH oxydase bactérienne. Ledit acide nucléique codant une NADH oxydase produisant de l'eau peut comprendre une séquence sélectionnée dans le groupe constitué des séquences SEQ ID No.1 , SEQ ID No.2, SEQ ID No.3, SEQ ID No.4, SEQ ID No.5 et
SEQ ID No.6.
Selon un mode de réalisation préférée, préférence ledit acide nucléique codant une NADH oxydase produisant de l'eau comprend le gène de l'enzyme Nox, H2O identifiée chez Lactococcus lactis (SEQ ID No.1).
Avantageusement, le rendement de production d'éthanol, en fermentation alcoolique, de la souche genre Saccharomyces transformée par rapport à la souche du genre Saccharomyces sauvage peut être réduit de 10 à 20 %, de préférence d'environ 15 %, ce qui représente une réduction d'au moins 0,5°, de préférence d'au moins 1°, de préférence encore d'au moins 2°, en fonction de la teneur initiale en sucres dans le milieu de fermentation. Le degré d'alcool représente le nombre de ml d'alcool éthylique pur contenu(s) dans 100 ml d'un liquide, mesuré à 20 0C. 1° d'alcool correspond à 7,80 g/l d'éthanol.
Utilisation des levures Saccharomyces transformées Les souches de levures Saccharomyces selon l'invention sont capables de transformer le sucre de leur milieu de culture en produisant une quantité moindre d'éthanol par rapport aux levures Saccharomyces sauvages correspondantes.
Ces souches de levures sont donc notamment utiles dans des procédés de préparation de boissons fermentées pour permettre l'obtention de boissons ayant une teneur réduite en éthanol par rapport à des boissons préparées par fermentation alcoolique à l'aide de levures Saccharomyces non transformées. Ces levures peuvent également être utilisées en boulangerie dans des procédés de panification.
L'invention concerne donc l'utilisation d'une souche de levure Saccharomyces selon l'invention pour mettre en œuvre une fermentation alcoolique. Ladite fermentation alcoolique peut être mise en œuvre dans un procédé de panification, de vinification, de brasserie, de cidrerie ou de distillerie. Une souche de levure selon l'invention est donc plus particulièrement utile pour la préparation d'une boisson fermentée, telle que du vin, du Champagne, de la bière, du cidre, ou une eau de vie, ou en panification, notamment pour la préparation de pain. L'invention a trait également à un procédé de fermentation alcoolique qui permet la transformation des sucres avec un rendement de production d'éthanol réduit. Ledit procédé comprend les étapes consistant à : a) inoculer un milieu contenant une forte teneur en sucres avec au moins une souche de levure Saccharomyces selon l'invention ;
O b) cultiver ladite souche de levure Saccharomyces et laisser la fermentation se dérouler pour transformer les sucres en alcool.
La culture peut être réalisée avec un apport en oxygène (microoxygénation), qui peut être continu ou discontinu, et où l'oxygène est apporté en conditions limitantes ou non limitantes. De préférence, lorsque la culture est effectuée avec un apport en oxygène continu, la souche de levure selon l'invention est cultivée en conditions d'oxygène non limitantes, c'est-à-dire dans des conditions où il reste de l'oxygène dissous dans le milieu, non consommée par les levures.
Par « milieu contenant une forte teneur en sucres », on entend un milieu contenant au moins 30 g/1 de sucres, de préférence au moins 50 g/1 de sucres, de préférence encore au moins 80 g/1 de sucres.
Le terme « sucres » désigne les glucides en général, et plus spécifiquement des monosaccharides tels que glucose ou fructose, ou des polysaccharides tels que saccharose ou maltose, par exemple. Ledit procédé de fermentation alcoolique peut être un procédé de brasserie. Le milieu contenant une forte teneur en sucres est alors un moût de brasserie, préparé à partir d'un mélange d'orge et de houblon.
Ledit procédé de fermentation alcoolique peut également être un procédé de panification. Le milieu contenant une forte teneur en sucres est alors la pâte mise à levée, par exemple une pâte à pain, à brioche, etc ..
Selon un mode de réalisation préféré, ledit procédé de fermentation alcoolique est un procédé de vinification. Le milieu contenant une forte teneur en sucre est alors un moût de raisins. La teneur en sucres des moûts de raisins utilisés en vinification est généralement comprise entre 140 et 260 g/l. Les levures les plus utilisées en vinification sont les levures S. cerevisiae qui présentent généralement un rendement de production d'éthanol de l'ordre de 0,47 g par g de sucres. L'utilisation de ces levures en vinification (dans les conditions traditionnelles, c'est-à-dire en anaérobiose) produit ainsi des vins ayant une teneur en alcool comprise entre 8 et 15°. Les inventeurs ont montré que les levures S . cerevisiae transformées selon l'invention présentent un rendement de conversion des sucres en alcool de 0.39 g par g de sucres, ce qui représente une diminution de l'ordre de 15% par rapport au rendement alcool des souches sauvages. L'utilisation de ces levures peut conduire à des vins ayant une teneur en alcool comprise entre 7 et 13°.
Par exemple, les inventeurs ont montré que l'utilisation d'une souche de levure transformée S. cerevisiae selon l'invention, pour mettre en œuvre une fermentation dans des conditions d'oxygénation contrôlée, à partir d'un milieu synthétique ayant une teneur en sucres de 200 g/1 permet d'obtenir une réduction de 1° de la teneur en éthanol par rapport à la teneur qui aurait été obtenue par fermentation en conditions anaérobies avec la souche S. cerevisiae sauvage (aux alentours de 12°), ou une réduction de 1° de la teneur en éthanol par rapport à la teneur qui aurait été obtenue par fermentation avec la souche S. cerevisiae sauvage dans les mêmes conditions d'oxygénation contrôlées. II est préférable de mettre en œuvre une oxygénation contrôlée au cours du procédé de fermentation. En effet, l'activité de la NADH oxydase à un niveau élevé dès le début de la fermentation peut freiner la croissance des levures, et réduire leur capacité à dégrader de fortes concentrations en sucre (supérieures à 80g/l). Ces effets semblent liés à la diminution d'efficacité du système de détoxication de l'acétaldéhyde via la butanediol déshydrogénase (BDH). Cependant, il est possible de limiter ces effets en pilotant l'apport en oxygène de façon à l'apporter en quantité limitante.
D'autre part, ces effets sont totalement abolis si l'on découple la phase de croissance des levures de la phase d'activité de la NADH oxydase, autrement dit si l'activité de la NADH oxydase ne se manifeste qu'à la fin de la phase de croissance des levures (phase stationnaire). Ainsi, lorsque l'oxygène est apporté de manière discontinue, uniquement en phase stationnaire, phase pendant laquelle au moins
70% des sucres sont consommés, la totalité du glucose est consommée.
L'augmentation de l'acétaldéhyde et de l'acétate liée à l'utilisation des levures transformées selon l'invention reste alors très modérée.
Les levures cultivées se multiplient jusqu'à épuisement du milieu de culture en un de leur substrat. Par exemple, lorsque le milieu de culture est un moût de raisins, ou un milieu synthétique mimant Ie moût de raisins, l'azote est en quantité limitante dans le milieu par rapport aux sucres (environ 300 à 500 mg/l d'azote assimilable contre environ 200 g/1 en sucres). La fermentation intervient dès le début de la phase de multiplication des levures et se poursuit une fois les levures en arrêt de croissance. Pour de tels milieux de fermentation, l'arrêt de croissance occasionné par l'épuisement du milieu en azote et en micronutriements se manifeste alors qu'environ 30% des sucres ont été consommés.
L'invention propose plus particulièrement un procédé de vinification comprenant les étapes consistant à : a) inoculer un moût de raisins avec au moins une souche de levure Saccharomyces selon l'invention ; b) cultiver ladite souche de levure Saccharomyces et laisser la fermentation se dérouler pour transformer les sucres en alcool ; dans lequel ladite souche de levure Saccharomyces est initialement cultivée en conditions anaérobies, puis cultivées en conditions aérobies lorsque la phase de croissance stationnaire des levures est atteinte, notamment lorsque essentiellement la totalité de l'azote assimilable du moût de raisins est consommé.
Par « conditions aérobies » on entend des conditions de culture en présence d'oxygène, de préférence dans des conditions non limitantes en oxygène pour la souche Saccharomyces cultivée. Pour un milieu et une souche Saccharomyces donnés, l'homme du métier est en mesure de déterminer s'il est en présence de conditions de culture non limitantes en détectant simplement la présence d'oxygène dissous dans le milieu de culture. Par exemple, pour une souche V5 transformée avec le gène noxE de L. lactis, cultivée sur un milieu synthétique mimant un moût de raisin tel que décrit dans les exemples (milieu MS comprenant 180-200 g/l de glucose, 6 g/l d'acide malique, 6 /I d'acide citrique, 460 mg/l d'azote, sous forme de NH4CI (120 mg/l) et d'acides aminés (340 mg/l)), un transfert d'oxygène de 10 mg/l/h correspond à des conditions de microoxygénation non limitantes.
De préférence ladite souche de levure Saccharomyces est une souche S. cerevisiae, de préférence encore une souche S. cerevisiae œnologique telle que la souche V5.
L'invention concerne également l'utilisation d'une levure Saccharomyces selon l'invention pour régénérer du NAD+ à partir de NADH, par exemple au cours de biotransformations. La biotransformation consiste en l'utilisation d'organismes vivants pour effectuer des réactions difficiles à mettre en œuvre par des méthodes chimiques de laboratoire. En général une ou de multiples molécules précurseurs sont fournies à l'organisme vivant, et après une période suffisante pour que le métabolisme ait pu se produire, un produit ou des produits sont isolés à partir du milieu de culture ou de la
biomasse, qui diffèrent des molécules précurseurs par une ou un petit nombre de modifications enzymatiques
De nombreuses biotransformations, utilisées pour la production d'énantiomères purs (alcools, hydroxy acides, acides aminés...) ou d'autres composés pour la chimie fine (chimie verte), impliquent des réactions de réduction nécessitant un accepteur d'électron, typiquement un cofacteur de type NADH ou NADPH. Un problème majeur qui limite l'utilisation des biotransformations est la régénération du NAD(P) à partir du NAD(P)H. Le couplage des biotransformations avec une autre réaction enzymatique, par exemple la réaction catalysée par l'alcool déshydrogénase ou par la lactate déshydrogénase, permet une régénération efficace des cofacteurs. Cependant des problèmes restent à résoudre, en termes de mise en œuvre, de stabilité de l'enzyme et de coût global. Récemment, l'utilisation de NADH oxydases qui catalysent l'oxydation du NADH en réduisant l'oxygène moléculaire en eau, a été proposée (Riebel et al, 2002). Par rapport à ces approches, l'utilisation de cellules entières avec un système intégré de régénération des cofacteurs permet une mise en œuvre des biotransformations plus simples et à moindre coût.
Les exemples et figures suivantes illustrent l'invention sans en limiter sa portée.
FIGURES
La Figure 1 montre un schéma réactionnel de la voie métabolique de dégradation du glucose. La Figure 2 montre la structure des plasmides d'expression utilisés pour exprimer la NADH oxydase NoxE chez la levure S. cerevisiae.
La Figure 3 montre l'intégration de la cassette d'expression TDH3p-noxE- PGKt au locus URA3.
La Figure 4 illustre le suivi du glucose résiduel et de l'oxygène dissous pour la souche témoin V5 cultivées sur milieu MS avec un apport de 10 mg/l/h d'oxygène.
La Figure 5 illustre l'impact de l'expression de l'oxydase sur la croissance, la consommation de glucose et les profils métaboliques des souches V5 et VδnoxE cultivées sur milieu MS avec un apport constant d'oxygène à 10 mg/l/h.
La Figure 6 montre le suivi du glucose résiduel et de l'oxygène dissous pour les souches V5 et VδnoxE en phase stationnaire avec un apport de 10 mg/l/h d'oxygène.
La Figure 7 montre la mesure de la croissance, de la consommation en glucose et des profils métaboliques des souches V5 et MSnoxE cultivées sur milieu MS lors d'un apport d'oxygène à 10 mg/l/h en phase stationnaire.
EXEMPLES
Exemple 1 : Préparation de souches de levures transformées exprimant noxE
Afin d'obtenir une expression forte et constitutive de la NADH oxydase de
L lactis dans la levure, la région codante du gène noxE a été amplifiée à partir de
FADN génomique de L lactis MG1363 et placée sous le contrôle d'éléments régulateurs de levure, soit dans des vecteurs navette levure / E. coli, soit intégré dans le génome de la levure.
1. Introduction de la NADH oxydase sur le plasmide multicopie pVT100-U ZEO sous contrôle du promoteur ADH 1
Le plasmide d'expression pVT100-U ZEO a été utilisé (Figure 2). Ce plasmide dérive du plasmide pVT100-U décrit par Vernet et al., (1987) qui contient l'origine de réplication de levure 2μ, le marqueur de sélection URA3 et les éléments régulateurs forts ADH 1 (promoteur et terminateur de l'alcool déshydrogénase I), ainsi que les éléments bactériens (origine de réplication et gène de résistance à l'ampicilline), dans lequel le gène Tn5 ble conférant la résistance à la phléomycine a été inséré, comme décrit par Remize et al., (1999).
Pour exprimer l'oxydase, le vecteur pVTZEO-ADHIπoxE a été construit en insérant le gène noxE (Hoefnagel et al., 2002) dans le vecteur pVT100U-ZEO. Pour cela, le gène noxE a été amplifié par PCR comme décrit en 5, à partir de l'ADN total isolé de L. lactis MG 1363, en utilisant les primers 5'- CGGCGCTCGAGATGAAAATCGTAGTTATCGGT-3' (SEQ ID No.7) et 5'- CGGCGTCTAGATTATTTGGCATTCAAAGCTGC-3' (SEQ ID No.8) dans lesquels les sites Xho\ et Xbal (soulignés) ont été introduits.
50 ng de fragment amplifié et digéré par Xho\ et Xba\ ont été ligués à 100 ng de plasmide pVT100UZEO digéré par XΛol et Xba\ et déphosphorylé comme
décrit en 6. Après transformation de bactéries et sélection des clones recombinants comme décrit en 6, plusieurs clones recombinants ont été obtenus. La carte du plasmide recombinant obtenu, appelé pVTZEO-ADHInoxE, est représentée Figure 2.
2. Introduction de la NADH oxydase sur le plasmide multicopie pVT100-U ZEO sous contrôle du promoteur TDH3
Le vecteur pVTZEO-TDH3/7θxE a aussi été construit à partir du plasmide pVT100U-ZEO, par remplacement de la cassette d'expression ADH1p-ADH1t par une cassette constituée du gène noxE sous contrôle du promoteur du gène de levure TDH3 codant pour la glyceraldéhyde 3-phosphate déshydrogénase et du terminateur du gène PGK codant pour la phosphoglycérate kinase. Le promoteur TDH3 a été décrit comme un promoteur très fort et constitutif (Mumberg et al., 1995).
Le plasmide p VTZEO-TD H 3noxE a été obtenu en utilisant le plasmide intermédiaire pFL-TDH3nox£. Ce dernier a été obtenu en clonant la région promotrice de TDH3 dans le vecteur navette levure/coli pFL60 décrit par Minet et al., (1992). La région promotrice de TDH3 a été amplifiée à partir de I1ADN génomique de la souche de levure S. cerevisiae S288C, à l'aide des oligonucléotides 5'- CGGAGCTCCAGTTCGAGTTTATCATTATC-3' (SEQ ID No.9) et 5'- CGGGATCCTCGAAACTAAGTTCTTGGTG-3' (SEQ ID No.10) dans lesquels les sites Sacl et BamHI (soulignés) ont été introduits comme décrit en 5. La région codante du gène noxE a été amplifiée par PCR, comme décrit en 5, à partir de l'ADN chromosomique de L. lactis MG1363 à l'aide des oligonucléotides 5'- CGGGATCCATGAAAATCGTAGTTATCGGT-3' (SEQ ID No.11) et 5'- CGCTCGAGTTATTTGGCATTCAAAGCTGC-3' (SEQ ID No.12) permettant l'introduction des sites BamHI et Xhol (soulignés). Les deux fragments PCR ainsi générés ont été digérés puis ligués dans le plasmide pFL60 digéré par Sacl et Xhol comme décrit en 6. Le plasmide pFL-TDH3 noxE a été ainsi obtenu. La cassette d'expression TDH3p~noxE-PGKt a été amplifiée, comme décrit en 5, à partir de ce plasmide en utilisant les oligonucléotides 5'-
GGCGGCATGCGCTCCAGTTCGAGTTTATCA-3' (SEQ ID No.13) et 5'- CGGCGGCATGCTTTCACACAGGAAACAGCTA-3' (SEQ ID No.14) dans chacun desquels un site Sph\ (souligné) a été introduit. 100 ng de fragment amplifié et digéré par Sph\ ont été ligués à 100 ng de plasmide pVT100-U-ZEO digéré par Sph\ et
déphosphorylé comme décrit en 6. Après transformation de bactéries et sélection des clones recombinants comme décrit en 6, plusieurs clones recombinants ont été obtenus. La carte du plasmide recombinant obtenu, appelé p VTZEO-TD H 3noxE, est représentée Figure 2. Le plasmide vide pVTZEO-TDH3 utilisé comme contrôle a été généré à partir du plasmide pFL-TDH3, qui correspond au plasmide pFL60 dans lequel le promoteur PGK a été remplacé par un multi-site de clonage, à l'aide de l'oligonucléotide double brin (MWG) δ'-ATCCCCCGGGCTGCAGGTCGACC-S' (SEQ ID No.15) , puis dans lequel le promoteur TDH3 a été clone au site Sacl et BamHI comme expliqué précedement. La carte du plasmide recombinant obtenu, appelé pVTZE0-TDH3, est représentée Figure 2.
3. Préparation de la cassette d'expression TDH3p-noxE-PGKt en vue de son intégration dans le génome de la levure Une souche exprimant le gène noxE de façon stable a été construite en intégrant la cassette TDH3p-noxE-PGKt au locus URA3 de la souche V5 en utilisant la méthode « short flanking homology » (SFH) décrite par Guldener et ai, (1996). La cassette d'expression TDH3p-noxE-PGKt a été amplifiée, comme décrit en 5, à partir du plasmide pFL-TDH3noxE en utilisant les oligonucléotides 5'- CGGCGGATATCGCTCCAGTTCGAGTTTATCA-3' (SEQ ID No.16) et 5'- CGGCGACTAGTTTTCACACAGGAAACAGCTA-3' (SEQ ID No.17) dans lesquels les sites EcoRV et Spel ont été introduits. Le fragment d'amplification obtenu a été ligué au plasmide pUG6 (Guldener et al., 1996) digéré par EcoRV et Spel et déphosphorylé comme décrit en 6. Le plasmide pUG6/?oxE a été obtenu. Afin de transformer la souche V5 (voir en 4), un fragment PCR portant les modules loxP-kanMX4-loxP et TDH3p πoxE-PGKt a été amplifié, comme décrit en 5, à partir du plasmide pUGδnoxE, à l'aide des oligonucléotides 5'- TGATTCGGTAATCTCCGAGCAGAAGGAAGAACGAAGGAAGGCAGGTCGACAAC CCTTAAT-3' (SEQ ID No.18) qui possède 20 nucléotides complémentaires à pUG6 et une extension de 40 nucléotides (soulignés) correspondant à la région -157 to - 117 en amont de l'ATG de URA3, et 5'-
TGAGTTTAGTATACATGCATTTACTTATAATACAGTTTTTTTCACACAGGAAACAG CTA-3' (SEQ ID No.19) qui possède 20 nucléotides complémentaires au terminateur
PGK et une extension de 39 nucléotides (soulignés) correspondant à la région + 843 to + 804 en aval du codon stop de URA3.
4. Transformation de la levure
La souche de levure Saccharomyces cerevisiae ScV5M (appelée V5) a été transformée par les vecteurs p VTZEO-AD H 1noxE, p VTZEO-TDH 3noxE et par les vecteurs pVT100UZEO et pVTZEO-TDH3 (contrôles). Les souches obtenues sont listées dans le Tableau 1.
Tableau 1 : Liste des plasmides et des souches utilisés.
Souche Génotype Modification génétique Source
INRA UMR
V5 MATa ura3 SPO
Ce travail
MATa ura3
VδnoxE Intégration URA3 TDH3p-/?oxE-PGKt
Plasmide
VδpVTZEO- MA Ta ura3 2μ, URA3, ApR, G418R Ce travail TDH3noxE TDH3p-πoxE-PGKt ZEOR
Plasmide
MA Ta ura3 2μ, URA3, ApR, G418R Ce travail
V5pVTZEO-TDH3 TDH3p-PGKt ZEOR
Plasmide
MATa ura3
VδpVTZEO- 2μ, URA3, ApR, G418R Ce travail ADHInoxE ADMp-noxE- ZEOR
ADHIt
Plasmide
MATa ura3 Ce travail
V5pV100U-ZEO 2μ, URA3, ApR, G418R ADH 1 p-ADH1t ZEOR
Afin d'obtenir une souche exprimant l'oxydase de façon stable, la souche V5 a été transformée par 1 ,4 μg de fragment d'intégration préparé comme décrit en 3. L'intégration au locus URA3 a été vérifiée par PCR à partir de l'ADN génomique des transformants G418R obtenus, à l'aide d'oligonucléotides situés en amont et en aval du site d'intégration. Une souche appelée \/5noxE possédant le fragment intégré au locus URA3 a été obtenue (Figure 3):
La souche SCV5M a été déposée le 18 juin 1992 auprès de la Collection Nationale de Cultures de Microorganismes, tenue par l'Institut Pasteur, sous le
numéro 1-1222. Il s'agit d'une souche S. cerevisiae haploïde, MATa, ura3, dérivée d'une souche oenologique.
La méthode de transformation utilisée est celle de l'acétate de lithium décrite par Schiestl et Gietz, (1989). Le milieu sélectif utilisé pour sélectionner les souches transformées par les plasmides est du YNB (0,67% Yeast nitrogen base,
2% glucose). L'absence d'uracile permet de conserver une pression de sélection pour les plasmides.
Les clones ayant intégré le fragment d'intégration portant les modules kanMX et NADH oxydase ont été sélectionnés sur milieu riche YEPD (1% bacto yeast extract, 2% bactopeptone, 2% glucose) supplémenté avec 200 μg/ml de généticine G418 (Gibco, Angleterre).
5. Amplification par PCR
50 ng de plasmide ou 100 ng d'ADN génomique sont mélangés à 500 nM d'oligonucléotides, 5 μl de tampon 1OX Mg2+-free DyNazyme EXT buffer (FINNZYMES, Finlande), 1 ,5 mM de MgCI2, 200 μM de dNTPs, 1 unité de DyNAzyme EXT (FINNZYMES1 Finlande) dans un volume total de 50 μl.
Les conditions d'amplification sont les suivantes : 2 minutes à 940C, 30 cycles de 30 secondes à 94°C, 30 secondes à 500C , 2 minutes à 72°C, puis 7 minutes à 72°C sur amplification Perkin -Elmer Cetus modèle 9600.
6. Techniques de clonage et de transformation des bactéries
La digestion de l'ADN par enzymes de restriction est réalisée comme décrit par le fournisseur (Promega Corporation, USA). Après digestion, les plasmides sont déphosphorylés avec 10 unités de la Bacterial Alkaline Phosphatase (Qbiogene, USA) selon le protocole décrit par le fournisseur. La réaction de déphosphorylation est stoppée par une extraction au phénol/chloroforme (Sambrook et al., 1989). 50ng à 100ng d'ADN amplifié et digéré sont ligués à 100 ng de plasmide digéré et déphosphorylé dans un mélange réactionnel final de 10 μl, en présence de 5 unités de T4 DNA Ligase (Biolabs, USA) pendant une nuit à 16°C. Un microlitre de mélange de ligation est utilisé pour transformer les bactéries compétentes E.coli DH5α (Library Efficiency DH5α compétent cells, Invitrogen, USA) selon le protocole décrit par le fournisseur. Les colonies obtenues sont sélectionnées sur boîtes LB (1% bactotryptone, 0,5% bacto yeast extract, 1% NaCI) plus ampicilline (100 μg/ml).
L1ADN plasmidique des clones obtenus est ensuite extrait par le kit QIAprep Miniprep (Quiagen, USA) et analysé par digestion enzymatique.
Exemple 2 : Conséquences de l'expression de la NADH oxydase chez Saccharomyces cerevisiae lors de la fermentation sur milieu MS, en conditions d'apport constant en oxygène
1. Procédures expérimentales a - Conditions de culture et de microoxygénation
Les fermentations ont été réalisées dans des réacteurs de 2 litres (SGI, France) avec un volume réactionnel de 1 litre. Le milieu MS a été utilisé pour la préculture et la culture. Il s'agit d'un milieu synthétique qui simule un moût standard de raisin (BeIy et al., 1990). Le milieu MS contient 18-20% glucose, 6 g/l d'acide malique, 6 /I d'acide citrique, 460 mg/l d'azote, sous forme de NH4CI (120 mg/l) et d'acides aminés (340 mg/l). Le milieu est supplémenté avec de la méthionine (115 mg/l) et si nécessaire de l'uracile (50 mg/l). Le pH du milieu MS est de 3,3. Des facteurs d'anaérobiose, ergostérol (7,5 mg/l), acide oléique (2,5 mg/l) et Tween 80 (0,21 g/l) sont ajoutés. Les précultures sont réalisées dans des erlenmeyers de 250 ml contenant 50 ml de milieu à 280C sous agitation (150 rpm) pendant 3Oh. Les réacteurs sont inoculés à partir de ces précultures, à une densité cellulaire de 1.106 cellules/ml, et maintenus à température constante de 28°C avec agitation permanente (500 rpm). Les conditions de microxygénation sont obtenues en aérant le réacteur avec de l'air à un débit maintenu constant. La mesure de l'oxygène dissous est réalisée à l'aide d'électrodes INGOLD Clark. Le coefficient de transfert (Kia) est mesuré selon la méthode dynamique (Dursun et al, 1999). La solubilité de l'oxygène (C*) dans le moût est déterminée selon Sablayrolles et Barr (1986). La vitesse maximale de transfert d'oxygène (OTR max) est égale à kia x C* et la vitesse de consommation de l'oxygène (OUR) est calculé comme suit, OUR = kia x (C* - C) avec C, concentration en oxygène dissous dans le milieu. La consommation d'oxygène est obtenue en intégrant la courbe obtenue lors du calcul de l'OUR. Le gaz de sortie passe à travers un condenseur réfrigéré pour éviter l'évaporation des composés volatiles.
Les échantillons de culture ont été collectés à l'aide d'une seringue. Les données de fermentation sont exprimées en fonction du temps ou de l'avancement
de réaction, 1-S/SO ou S = concentration en glucose et SO = concentration initiale en glucose.
b - Méthodes analytiques La croissance est suivie par la mesure de la densité optique à 600 nm et par le comptage du nombre de cellules sur un appareil de type Coulter Counter (ZBI) sur un prélèvement d'une fraction aliquote de milieu de culture.
Les métabolites sont dosés dans le surnageant, après centrifugation à
13000 rpm pendant 5 minutes des prélèvements réalisés. La concentration en glucose, glycérol, éthanol, pyruvate, succinate, acétate, α-cétogluatarate et 2- hydroxygluatarate est déterminées par high-pressure liquid chromatographie (HPLC) en utilisant une colonne de type HPX-87H (Bio-Rad). La concentration en acétaldéhyde est déterminée par la méthode enzymatique décrite par Lundquist,
(1974). La concentration en acétoïne et en 2,3-butanediol a été déterminée par chromatographie en phase gazeuse comme précédemment décrit (Michnick et al.,
1997).
c - Extraits cellulaires et activité NADH oxydase
Les extraits cellulaires de levure ont été préparés à partir 1 x 109 cellules collectées dans le réacteur. Après centrifugation 5 minutes à 3000 rpm, les cellules sont lavées avec un tampon KH2PO4 100 mM, pH 7 puis avec un tampon KH2PO4 10 mM, pH 7. 100 mg de levures (poids humide) sont alors broyées par addition de 1 g de billes de verre (0 = 0,5 mm) et 0,5 ml de tampon KH2PO4 50 mM pH 7 contenant 1 mM DTT et 2 mM MgCI2. Le tube est agité 1 minute au vortex et placé 1 minute dans la glace. L'opération est répétée 5 fois. Après centrifugation 1 minute à 13000 rpm, le surnageant est récupéré et constitue l'extrait cellulaire.
Les activités enzymatiques sont déterminées extemporanément. L'activité spécifique NADH oxydase dans les extraits cellulaires est mesurée au spectrophotomètre à 25°C dans un volume total de 1 ml contenant 50 mM de tampon phosphate de potassium (pH 7), 0,3 mM NADH et 0,3 mM EDTA. La réaction est initiée par addition de 5 à 50 μl d'extrait cellulaire, et suivie par la diminution d'absorbance à 340 nm. La concentration en protéines est déterminée en utilisant le kit BC Assay (Uptima, Interchim).
d - Extraction et mesure des teneurs intracellulaires en NADH/NAD
Les métabolites sont extraits comme décrit par Gonzalez et al., (1997).
Cinq millilitres de culture cellulaire sont ajoutés à 26 ml d'une solution glacée contenant 60% (vol/vol) méthanol et 175 mM HEPES (pH 7,5). Le mélange est centrifugé à 5000 g pendant 30 s à -1O0C. Les métabolites intracellulaires sont extraits avec 5 ml d'une solution bouillante d'éthanol absolu/1 M HEPES (pH 7,5)/H20
(750/70/180 vol/vol/vol) et incubés pendant 5 min à 800C. Les extraits sont placés dans la glace pendant 5 minutes. Après addition de 2 ml d'éthanol absolu, les extraits sont séchés sous vide pendant 4 min à 7O0C dans un rotavapeur (modèle Laborota 4000; Heidolph Instruments LLC, Cinnaminson, NJ. ). Le résidu est resuspendu dans un volume final de 1 à 2 ml d'eau distillée et stocké à -800C pour utilisation ultérieure. Le volume d'extrait est mesuré par pesée.
Les concentrations en cofacteurs sont déterminées à partir de réactions enzymatiques couplées au NAD(H)- comme décrit ci dessous. La quantité de NADH produit pendant la réaction est déterminée par spectrophotométrie de fluorescence (longueur d'onde d'excitation, 340 nm; longueur d'onde d'émission, 460 nm) en utilisant un spectrophotomètre de fluorescence Perkin Elmer LS 5OB. Les réactions enzymatiques sont réalisées à 300C dans un volume total de 2 ml de tampon de réaction contenant 4,25 mM Tris-NH4CI (pH 7,0), 25 μM dihydroxyacetone phosphate, et 125 μM α-ketoglutarate, comme décrit par Klingenberg (1974). Des fractions aliquotes de 5 à 100 μl d'échantillons sont ajoutées au tampon de réaction. Une ligne de base est obtenue. Un microlitre de glycérol-3- phosphate déshydrogénase (170 U. ml"1; Roche), puis 1 μl de glutamate déshydrogénase NADPH-dépendante (240 U. ml"1; Roche) sont successivement ajoutés. Chaque addition est réalisée après obtention d'un signal stable.
La concentration en NAD est déterminée comme décrit précédemment
(Bergmeyer, 1955). Le tampon de réaction contient 1 ,8 ml d'un mélange de 0,2 M glycine et 0,4 M hydrazine hydrate (pH 9), 85 mM éthanol et 5 à 200 μl d'extrait dans un volume total de 2,01 ml. Après obtention de la ligne de base, 1 μl d'alcool déshydrogénase (882 U. ml"1; Roche) est ajouté.
Les concentrations en cofacteurs dans les échantillons sont calculées par une méthode de calibration externe, permettant de déterminer le coefficient de réponse de chaque cofacteur. Les mesures sont réalisées en triplicat.
2. Résultats 20
Des fermentations en mode batch, en conditions de microoxygénation (cf. 5a) ont été réalisées afin d'analyser l'impact de l'expression de l'oxydase sur la croissance, la dégradation du sucre, la production de métabolites et la concentration intracellulaire en cofacteurs NAD, NADH.
Les fermentations ont été réalisées avec les souches exprimant la NADH oxydase VδnoxE, V5pVTZEO-TDH3nox£, V5pVTZEO-ADH1 noxE et les souches témoins V5, V5pVTZEO-TDH3 et V5pVTZEO-ADH1. Le débit d'air utilisé dans cette expérience est maintenu constant tout au long de la fermentation à 17 ml/min ce qui correspond à une vitesse de transfert d'oxygène de 10 mg/l/h. Dans ces conditions, la totalité de l'oxygène est consommé par la souche témoin V5 (Figure 4).
L'activité spécifique de la NADH oxydase a été mesurée dans les différentes souches à 2 stades de la fermentation (Tableau 2) en milieu de phase exponentielle (17h de culture) et en phase stationnaire (4Oh).
Tableau 2 : Activité spécifique de la NADH oxydase des souches V5,
V5 pVT100-UZEO, VδnoxE, V5 pVTZEO-TDH3A7θxE, V5 pVT ZEO-ADH înoxE sur milieu MS avec apport constant de 10 mg/l/h d'oxygène.
Activité spécifique de la NADH oxydase en U/mg de protéine
Phase exponentielle de
Souche Phase stationnaire croissance
V5 nd nd
VδnoxE 0,36 ± 0,04 0,14 + 0,01
V5 pVTZEO-TDH3nox£ 1 ,48 ± 0,13 0,51 + 0,02
V5 pVTZEO-TDH3 nd nd
V5 pVTZEO-ADH1 noxE 0,28 + 0,03 0,59 ± 0,07
V5 pVT100-UZEO nd nd nd: non détectée
En conditions oenologiques, la phase de croissance est courte. L'épuisement en azote assimilable du milieu provoque une entrée rapide en phase stationnaire (après environ 3Oh), alors que environ 30% des sucres initiaux sont
consommés. La phase stationnaire représente donc une phase importante pendant laquelle la majorité des sucres (environ 70%) est dégradée.
Comme attendu, aucune activité NADH oxydase n'est détectée dans les extraits cellulaires de la souche témoin et des souches transformées par les plasmides vides, alors qu'une activité significative est mesurée dans les souches exprimant le gène noxE, ce qui indique que l'enzyme codée par le gène bactérien noxE s'exprime bien chez S. cerevisiae. L'activité maximale obtenue (1 ,48 U/mg protéine) est environ 7 fois supérieure à celle mesurée dans un extrait cellulaire de L. Lactis (Lopez de Felipe et Hugenholtz, 2001). La NADH oxydase est exprimée pendant toute la durée de fermentation, avec un niveau d'activité spécifique environ 3 fois plus élevé en phase de croissance comparativement à la phase stationnaire lorsque le gène noxE est placé sous contrôle du promoteur TDH3. L'inverse est observé avec le promoteur ADH 1, le niveau d'activité spécifique est 2 fois plus élevé en phase stationnaire qu'en phase de croissance. Le niveau d'activité varie considérablement selon le promoteur utilisé et le nombre de copies du gène. Le promoteur TDH3 permet d'obtenir d'une activité 5 fois supérieure à celle obtenue avec le promoteur ADH1 en phase de croissance alors que les niveaux d'activité spécifique sont similaires pour les 2 constructions en phase stationnaire. Lorsque noxE est placé sous contrôle de TDH3, l'activité obtenue en multicopie est environ 3 fois supérieure à celle obtenue dans la souche ayant intégré cette cassette en une copie.
L'impact de l'expression de l'oxydase a été analysé par suivi de la croissance, de la dégradation du glucose, et de la formation d'éthanol, glycérol, acétate, acétaldéhyde, pyruvate, α-cétoglutarate 2-hydroxyglutarate, acétoïne, butanediol et biomasse tout au long de la fermentation. Le tableau 3 montre les rendements en biomasse et produits obtenus après arrêt de la fermentation.
Tableau 3 : Rendement de production des principaux métabolites fermentaires, biomasse, balance carbone et degré de réduction des souches V5, V5 pVT100-UZEO, V5nox£, V5 pVTZEO-TDH3noxE, V5 pVT ZEO-ADH λnoxE sur milieu MS avec apport constant de 10 mg/l/h d'oxygène
Rendement (g métabolite produit / g de glucose consommé)
Avancement réaction Balance
Souches 2-
Ethanαl CO2 a Glycerol Acétate Acétaldehyde Pyruvate ., !* . f u , ". f t Acétoïne Butanediol Biomasse carbone J ' ' cetoglutarate Hydroxyglutarate
(%)
0,464 0,232 0,042 0,010 0,004 0,0027 0,025 0,0025 0,025 0,010
0,5
V5 (0,009) (0,005) 0,001) (0,001) (0,001) (0,0001) (0,002) (0,0001) (0,010) (0,002) 0,064
1 0,460 0,230 0,028 0,013 0,003 0,0007 0,014 0,0015 0,026 0,012 0,031 (0,0001) 104,5 (0,000) (0,000) (0,000) (0,001) (0,000) (0,0002) (0,001) (0,009) (0,001)
0,463 0,232 0,038 0,009 0,005 0,0024 0,002 0,0017
V5 pVT100- 0,5 ND ND 0,059 (0,004) (0,002) (0,012) (0,000) (0,001) (0,0005) (0,001) (0,0002) UZEO κ>
0,457
1 0,229 0,025 0,012 0,002 0,0006 0,001 0,0016 κ> ,031 96,8 (0,003) (0,002) (0,006) (0,000) (0,000) (0,0001) (0,000) (0,0001) ND ND 0
0,459 0,230 0,035 0,010 0,004 0,0016 0,003 0,0038
0,5 ND ND 0,059
V5pVTZEO- (0,003) (0,002) (0,002) (0,000) (0,000) (0,0001) (0,000) (0,0007) TDH3
0,472 0,236 0,021 0,012 0,002 0,0008 0,002 0,0024 1 ND ND 0,025 97,6 (0,004) (0,002) (0,000) (0,000) (0,000) (0,0000) (0,000) (0,0003)
0,398 0,199 0,032 0,034 0,013 0,0041 0,003 0,0008 0,063 0,011
VδnoxE 0,5 0,025 101 (0,002) (0,001) (0,001) (0,003) (0,002) (0,0005) (0,000) (0,0000) (0,005) (0,000)
VδpVTZEO- 0,397 0,199 0,027 0,027 0,011 0,0037 0,002 0,0022
0,5 ND ND 0,023 89,5 ADHInoxE (0,002) (D1OOI) (0,006) (0,001 ) (0,004) (0,0005) (0,001) (0,0001)
V5pVTZEO- 0,393 0,197 0,030 0,032 0,011 0,0044 0,005
0,5 0,0013 TDH3/7OXE (0,001) (0,000) (0,000) (0,002) (0,002) (0,0002) (0,000) (0,0001 ) ND ND 0,028 89,7 a CO2 estimé à partir production éthanol
5 b Les valeurs entre parenthèses sont les écart types calculés sur 2 expériences c ND : non déterminé
Dans les conditions dθ microoxygénation utilisées, les 3 souches exprimant l'oxydase ne consomment que la moitié (soit environ 100 g/l) des sucres présents, contrairement aux souches témoins qui achèvent la fermentation. Les effets de l'oxydase sur le métabolisme central ont donc été analysés en comparant les rendements en biomasse et principaux sous produits fermentaires à mi fermentation (avancement de réaction 0,5). A titre informatif, les rendements obtenus après dégradation de la totalité des sucres (200 g/l) sont indiqués pour les souches témoin (avancement de réaction 1).
Une baisse très significative (15%) du rendement éthanol est observée pour les 3 souches exprimant l'oxydase à NADH par rapport aux souches témoins cultivées dans les même conditions (souche non transformée et souche portant un plasmide vide).
Par ailleurs le métabolisme central des souches exprimant l'oxydase est particulièrement affecté. Le rendement de production de l'acétaldéhyde, acétate, pyruvate et acétoine est augmenté en réponse au ralentissement du flux de carbone vers la production d'éthanol, alors que celui du glycérol est réduit. La présence de plasmide vide (pVTZEO-ADH1 et pVTZEO-TDH3) interférant avec les productions d'α-cétoglutarate et de 2-hydroxyglutarate, seules les différences observées entre les souches V5 et VδnoxE sont prises en compte, montrant une forte diminution de la production de ces composés dans la souche VδnoxE.
L'analyse des résultats (Tableau 3, et données cinétiques non montrées) ne fait apparaître aucune différence significative entre les trois souches exprimant l'oxydase, que ce soit au niveau de la croissance ou des profils métaboliques, malgré des niveaux d'activités très différents (Tableau 2). L'analyse détaillée de l'impact de l'expression de l'oxydase sur la croissance, la vitesse de fermentation et les profils métaboliques est présentée uniquement pour la souche VδnoxE, en comparaison à la souche V5 (Figure 5). La diminution du rendement de production en éthanol chez la souche VδnoxE est visible dés le début de la fermentation. Cette diminution conduirait à une réduction de 17 g/l d'éthanol soit 2° d'alcool dans le produit fini si tout le glucose était consommé. En fin de fermentation, 100g de glucose sur 200g sont consommés par la souche VδnoxE.
La production de glycérol est également diminuée dès le début de fermentation. L'oxydase, en réoxydant une partie du NADH intracellulaire, entre donc en compétition d'autres enzymes levuriennes utilisant ce cofacteur. En particulier, les
deux réactions NADH dépendantes catalysées par l'alcool déshydrogénase (ADH) et la glycérol 3-P déshydrogénase (GPDH) sont limitées du fait de la moindre disponibilité en NADH. Ces résultats montrent une utilisation très efficace de ce cofacteur par la NADH oxydase, en accord un Km NADH de 4,1 μM déterminé sur l'enzyme purifiée de L. lactis, (Lopez de Felipe et Hugenholtz, 2001). L'affinité de la NADH oxydase pour Ie NADH est plus élevée que celle de I1ADH (110 μM) et de la GPDH (23 μM) (Teusink et al., 2000) levuriennes.
La première conséquence de la limitation du flux de carbone vers la synthèse d'éthanol est une augmentation de la production d'acétaldéhyde et d'acétate chez les transformants. La synthèse d'acétate génère principalement du NADPH, via les acétaldéhyde déshydrogénases Aldθp et Aldδp localisées dans le cytoplasme et dans la mitochondrie respectivement (Saint-Prix ef al., 2004). La souche VδnoxE présente également une forte diminution de la production d'α- cétoglutarate. Cet effet pourrait être dû au surplus de NADPH lié à l'augmentation de synthèse d'acétate. En effet la synthèse du glutamate à partir de l'α-cétoglutarate via la glutamate déshydrogénase est une voie très consommatrice de NADPH (Nissen et al. 1997) (Figure 1). Le fait qu'un mutant Vδaldβ présente une augmentation de la production d'α-cétoglutarate en réponse à un déficit en NADPH (Saint-Prix et al., 2004) va dans le sens de cette hypothèse. L'hydroxyglutarate est une forme réduite de l'α-cétoglutarate (Figure 1) et pourrait avoir un rôle de soupape rédox à NADH (Albers et al., 1998). La baisse de sa production dans la souche \/5noxE pourrait donc provenir d'une moindre disponibilité de substrat (α-cétoglutarate) et/ou d'une moindre disponibilité en NADH due à la compétition avec l'oxydase à NADH. Notons que la déshydrogénase impliquée, NADH dépendante, n'est pas identifiée chez S. cerevisiae.
L'augmentation d'acétate peut être liée à l'accumulation de son précurseur, Pacétaldéhyde, dont la production est augmentée de façon drastique et très précoce. Il est intéressant de noter un arrêt précoce (autour de 2Oh) de la croissance de la souche V5noxE, alors qu'à ce stade la concentration en acétaldéhyde dans le milieu atteint 1 ,1 g/l au lieu de 0,2 g/l pour la souche témoin. Le nombre de cellules atteint par V5nox£ est trois fois plus faible que celui de la souche sauvage. L'acétaldéhyde est un composé toxique pour la levure. Il affecte négativement la formation de biomasse (Aranda et del Olmo, 2004 ; Liu et Pilone, 2000) et à forte concentration la vitesse de fermentation (Roustan et Sablayrolles,
2002). Sa forte polarité induit un stress hydrique chez la levure (Hallsworth, 1998 ;. Liu et Pilone, 2000). La forte accumulation d'acétaldéhyde pourrait donc être responsable des effets négatifs de l'oxydase sur la croissance et la fermentescibilité des sucres. Cette toxicité pourrait être pénalisante en présence d'une forte expression de l'oxydase et pourrait expliquer qu'un même effet soit obtenu lorsque le gène noxE est exprimé en multicopies ou intégré.
Chez la levure, l'acétaldéhyde peut être métabolisé en acétoïne et en 2,3- butanediol (Figure 1), composés non toxiques pour la levure. L'acétoïne est produit par la condensation de 2 molécules d'acétaldéhyde par la pyruvate décarboxylase (PDC), puis réduit en 2,3-butanediol par la butanediol déshydrogénase (BDH). Cette réduction est NADH dépendante (Gonzalez et al., 2000). Le dosage de ces composés chez les souches V5 et VδnoxE montre que le niveau d'acétoïne est pratiquement doublé chez la souche VbnoxE alors que la production de butanediol reste semblable pour les 2 souches. Ces résultats montrent que l'oxydase à NADH entre également en compétition avec la BDH dont le Km est de 55 μM pour le NADH.
Du fait du ralentissement de cette réaction, l'acétaldéhyde accumulé ne peut être résorbé, et affecte à la fois la croissance et l'activité fermentaire. En appui de cette hypothèse, il a été observé qu'une addition de 900 mg/l d'acétaldéhyde affecte la croissance de la souche V5 de manière transitoire, la conversion de ce composé en acétoïne puis en 2,3-butanediol permettant une reprise rapide de la croissance.
Afin d'évaluer l'impact de l'oxydase sur l'équilibre d'oxydoréduction intracellulaire, nous avons mesuré la concentration intracellulaire en cofacteurs réduits et oxydés NADH et NAD à deux stades différents de la fermentation alcoolique en conditions de microoxygénation contrôlées à vitesse de transfert constante 10mg/l/h. Les résultats, indiqués Tableau 4, montrent une diminution très marquée de la concentration intracellulaire en NADH, qui diminue de 80% par rapport à la souche témoin. Ces données montrent que la NADH oxydase affecte de manière drastique le pool NADH/NAD, et que la levure, dans ces conditions, n'est pas capable de rééquilibrer sa balance d'oxydoréduction. Le ratio NADH/NAD est en effet très diminué aussi bien en phase de croissance qu'en phase stationnaire, par rapport à la souche témoin.
Tableau 4 : Concentrations intracellulaires en NAD et NADH des souches V5 et VδnoxE sur milieu MS avec apport constant de 10 mg/l/h d'oxygène.
Concentration en cofacteurs en μmoles / g de biomasse
Phase exponentielle de
Phase stationnaire croissance
OUUOi Ic
NADH NAD NADH/NAD NADH NAD NADH/NAD
V5 0,36 270 0,15 2,83 n Γ\P.
U1UO
± 0,05 ± 0,08 °'13 ± 0,04 ± 0,02
VδnoxE 0,07 0,04 3,75 0,01 ± 0,00 ± 0,02 ± 0,10
En conclusion, ces données montrent que l'expression d'une NADH oxydase chez S. cerevisiae diminue fortement le pool de NADH intracellulaire, entraînant une déviation importante des flux carbonés, qui se traduit notamment par une diminution très significative du rendement de production de l'éthanol, une augmentation de l'acétaldéhyde et dérivés acétate et acétoïne, et une diminution de la formation de glycérol, de Pα-cétoglutarate et de l'hydroxyglutarate. L'accumulation d'acétaldéhyde rapide et importante d'acétaldéhyde entraîne des effets défavorables au niveau de la fermentation et de la croissance. En effet, ce composé ne peut pas être éliminé par la cellule, du fait d'une diminution de l'efficacité du système de détoxication constitué par la BDH, due au déficit en NADH. Afin de limiter ces effets indésirables, les inventeurs ont étudié l'impact d'une diminution de l'apport en oxygène (exemple 3), puis d'un apport d'oxygène limité à la phase stationnaire (exemple 4).
Exemple 3 : Expression de la NADH oxydase lors de la fermentation avec différents apports en oxygène
1. Conditions de culture et de microoxygénation
Les conditions utilisées sont telles que décrites dans l'exemple 2, paragraphe a.
2. Méthodes analytiques
Les méthodes analytiques sont telles que décrites dans l'exemple 2, paragraphe b.
3. Résultats
Des fermentations en mode batch ont été réalisées avec différentes conditions de microoxygénation afin de déterminer l'apport minimal en oxygène nécessaire à une déviation du flux carboné. En effet, alors que la souche sauvage consomme Ia totalité de l'oxygène apporté à une vitesse de 10 mg/l/h (Figure 4), la souche V5noxE ne consomme pas tout l'oxygène apporté, du fait probablement de la réduction de biomasse.
Les cinq conditions d'oxygénation testées sur la souche \/5noxE correspondent à des vitesses maximales de transfert de 2, 4, 6, 7 et 10 mg/l/h d'oxygène. Pour chaque condition, la production des différents métabolites ainsi que de la consommation de l'oxygène ont été suivis tout au long de la fermentation. Le Tableau 5 montre les effets obtenus sur le rendement de production en éthanol, l'accumulation d'acétaldéhyde, la dégradation du glucose, la croissance et la consommation de l'oxygène.
Tableau 5 : O2 dissous, rendement éthanol, concentration en acétaldéhyde, consommation du glucose et biomasse finale pour la souche V5 à 10m g/l/h d'02 transféré et pour la souche VδnoxE à différentes vitesses de transfert (OTR).
Glucose
O2 Rendement Biomasse
OTR max consommé
Souche résiduel8 éthanolb finale (mg/l/h) (% glucose
(%) (g/g) (x iO7©1) initial)
V5 10 0 0,460 100 27
10 38 0,397 48 9
7 27 0,396 46,5 9
VδnoxE 6 24 0,379 45 9
4 0 0,469 97 10
2 0 0,481 100 17 a pourcentage de saturation en air du milieu, la sonde indique 100% lorsque la concentration en oxygène dans le milieu (MS 20%glucose) est de 6,4mg/l. b g éthanol produit par g glucose consommé
La diminution du rendement en éthanol observée pour la souche VδnoxE à 10 mg/l/h d'O2 transféré par rapport à la souche V5 est observée avec la même intensité si l'on réduit la vitesse de transfert à 7 et 6 mg/l/h. A ces trois vitesses d'apport, FO2 n'est pas limitant pour la souche VδnoxE puisque les quantités minimales d'O2 dissous mesurées dans le milieu sont de 38, 27 et 24% respectivement. Par contre, en conditions d'apport à 4 et 2 mg/l/h d'O2 transféré, l'oxygène devient limitant pour la souche VδnoxE. Dans ces conditions, le rendement de production de l'éthanol est similaire à celui obtenu pour la souche V5 avec apport d'O2 à 10 mg/l/h.
La réduction du rendement de production en éthanol s'accompagne d'une accumulation d'acétaldéhyde, corrélée à une réduction de la biomasse d'environ 60% et une consommation incomplète (environ la moitié) du substrat. Le défaut de croissance est également observé dans les deux cas où I1O2 n'est pas limitant, quoique de façon moins marquée pour 2 mg/l/h d'O2 transféré.
Dans toutes les conditions d'oxygénation testées, la production de glycerol reste inférieure à celle obtenue pour la souche sauvage cultivée à 10 mg/l/h d'02, ce qui indique que l'apport en O2 est suffisant pour permettre un fonctionnement de l'oxydase. Ces données permettent de conclure que la NADH oxydase est fonctionnelle avec de très faibles vitesses de transfert d'02, mais que l'oxygène doit préférentiellement être apporté en conditions non limitantes pour observer une diminution significative du rendement de production de Péthanol.
Exemple 4 : Expression de la NADH oxydase lors de la fermentation avec apport d'oxygène limité à la phase stationnaire (découplage phase de croissance de la phase d'expression)
1. Conditions de culture et de microoxygénation Les conditions utilisées sont telles que décrites dans l'exemple 2, paragraphe a.
2. Méthodes analytiques
Les méthodes analytiques sont telles que décrites dans l'exemple 2, paragraphe b.
3. Résultats
Afin de limiter les effets secondaires sur la croissance et la fermentescibilité des sucres liés à l'expression de l'oxydase, la phase d'activité de l'oxydase à NADH a été découplée de la phase de croissance. Pour cela, des fermentations en mode batch ont été réalisées en conditions anaérobies jusqu'à 28h de fermentation (fin de la phase de croissance), puis en conditions de microoxygénation contrôlée à partir de l'entrée en phase stationnaire puis pendant toute cette phase.
Les fermentations ont été réalisées avec la souche exprimant la NADH oxydase VδnoxE et la souche témoin V5. Un débit d'air de 17 ml/min, correspondant à une vitesse maximale de transfert d'oxygène de 10 mg/l/h, est imposé à partir de 28h et maintenu constant jusqu'à la fin de la fermentation. Dans ces conditions, la totalité de l'oxygène est consommée par la souche témoin V5, alors que l'oxygène reste majoritairement non limitant pour la souche VbnoxE (Figure 6).
Les effets obtenus sur la croissance, la dégradation du glucose, la formation d'éthanol, acétate, acétaldéhyde, acétoïne et butanediol sont présentés Figure 7.
Un apport d'oxygène limité à la phase stationnaire, phase pendant laquelle 70% du glucose est consommé, permet une réduction de 7 g/1 de la teneur en éthanol soit 1°, par rapport à la souche témoin cultivée dans les même conditions.
La souche V5nox£, dans ces conditions, a une croissance identique à celle de la souche témoin, une biomasse finale identique (30.107 cellules) et est capable de fermenter la quasi totalité du glucose présent (près de 200 g/l). Dissocier la phase de croissance de la phase d'activité de la NADH oxydase permet donc de s'affranchir des effets secondaires observés précédemment, sur la croissance et la fermentescibilité.
L'alimentation en oxygène provoque, de manière attendue, une augmentation de la formation d'acétaldéhyde, qui reste cependant limitée à 400 mg/l, concentration qui n'affecte pas de manière drastique la fermentescibilité. La production d'acétate est légèrement augmentée par rapport à la souche témoin cultivée dans les mêmes conditions. Le flux carboné est également réorienté vers la formation d'acétoïne, alors que la production de 2,3 butanediol reste similaire entre les 2 souches et n'est pas affecté par l'apport d'O2. Les résultats obtenus ont été comparés à ceux obtenus lors d'une fermentation œnologique standard, réalisée dans les mêmes conditions, mais en absence d'apport d'oxygène (conditions de forte anaérobiose) (Tableau 6).
Tableau 6 : Concentration finale des principaux métabolites fermentaires et production de la biomasse des souches V5 et V5πoxE sur MS en conditions d'apport de 10 mg/l/h d'oxygène en phase stationnaire et d'anaérobiose.
Concentrations finales (en g/l) sur MS 20% glucose
Apport de 10 mg/l/h d'O2 à
Composé Anaérobiose 28h de culture
V5 VδnoxE V5 VδnoxE
Glucose
200 200 200 200 consommé
Ethanol 94,8 88 95,4 96,2
C02 a 47,47 44 47,8 48,1
Glycérol 5,6 5,2 6,2 6
Acétate 1 ,2 2 0,6 0,6
Acétaldéhyde 0,2 0,4 0,02 0,02
Pyruvate 2,6 2 0,18 0,26 α-cétoglutatrate 1 ,2 1 ,4 0,8 0,8
Hydroxyglutarate 0,2 0,2 0,2 0,2
Succinate 0,6 0,6 0,4 0,4
Acétoïne 0,6 6 0 0
Butanediol 1 ,2 1,8 0,80 0,80
Biomasse 6 6 4 4 a . : CO2 estimé à partir production éthanol
En anaérobiose, la souche VδnoxE se comporte comme la souche témoin, l'oxydase n'étant pas active. La production d'éthanol par la souche VδnoxE en conditions de microoxygénation limitée à la phase stationnaire est diminuée de 8 g/1 comparativement à celle de la souche sauvage en anaérobiose. Comparé au procédé traditionnel, l'utilisation d'une souche exprimant la NADH oxydase en conditions de microoxygénation contrôlée et découplée de la phase de croissance permet une réduction du degré éthanol qui atteint dans cet exemple 1 ° alcool.
Dans les conditions utilisées dans cet exemple, l'oxygène est limitant pendant les premières heures de l'apport, puis non limitant pendant la majeure partie de la phase d'oxygénation (Figure 6).
De manière générale, ces données montrent que limiter l'apport d'oxygène à une phase du procédé fermentaire (ici la phase stationnaire) permet une
diminution significative de la production d'éthanol tout en restant compatible avec la physiologie levurienne et ses performances technologiques. L'expression de l'oxydase permet de modifier significativement les profils métaboliques. Une modulation fine de la quantité et de la durée des apports en O2 au cours du procédé fermentaire de la souche exprimant l'oxydase à NADH permet d'optimiser non seulement le niveau de réduction de la formation d'éthanol, mais également la formation d'autres sous produits fermentaires.
REFERENCES
Albers, E., Gustafsson, L., Niklasson, C. and Liden, G. (1998). Distribution of 14C-labelled carbon from glucose and glutamate during anaerobic growth of Saccharomyces cerevisiae. Microbiology 144, 1683-90.
Aranda, A. and del Olmo, M. L. (2004). Exposure of Saccharomyces cerevisiae to acetaldehyde induces sulfur amino acid metabolism and polyamine transporter gènes, which dépend on Met4p and Haai p transcription factors, respectively. Appl Environ Microbiol 70, 1913-22. BuIt C. J., White O., Olsen G., J., Zhou L., Fleischmann R. D., Sutton G.
G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D., Kerlavage A. R., Dougherty B. A., Tomb J. F., Adams M. D., Reich C. I., Overbeek R., Kirkness E. F., Weinstock K. G., Merrick J. M., Glodek A., Scott J. L1 Geoghagen N. S., Venter J. C. (1996) Complète génome séquence of the methanogenic archaeon, Methanococcus jannaschii. Science, 273, 1058 - 1073.
De Barros Lopes, M., Rehman A., Gockowiak H., Heinrich AJ. , Langridge P. and Henschke P.A. (2000) Fermentation properties of a wine yeast overexpressing the Saccharomyces glycerol 3-phosphate dehydrogenase (GPD2). Aust. J. Grape Wine Res. 6: 208-215. BeIy, M., Sablayrolles, J. M. and Barre, P. (1990). Automatic détection of assimilable nitrogen defiencies during alcoholic fermentation in oenological conditions. J. Ferm. Bioeng. 70, 246-252.
Bergmeyer, H. U. (1955). Zur messung von katalase aktivitâten. Biochem. Z. 327, 255-258. Dequin, S. and Barre, P. (1994). Mixed lactic acid-alcoholic fermentation by Saccharomyces cerevisiae expressing the Lactobacillus casei L(+)-LDH. Biotechnology (N Y) 12, 173-7.
Dequin, S. (2001) The potential of genetic engineering for improving brewing, wine-making and baking yeasts. Appl. Microbiol. Biotechnol. 56: 577-588. Dequin, S., Salmon, J. M., Nguyen, H.V. and B. Blondin. (2003) Wine yeast's. In « Yeasts in Food, bénéficiai and detrimental aspects », p 389-412. Eds T. Boekhout and V. Robert, B. Berhr's Verlag GmbH and Co Hamburg, Germany.
Dursun, G., Ôzer, A., Elibol, M. and Ôzer, D. (1999). Mass transfer characteristics of a fermentation broth in a reactor: co-current downflow contacting reactor. Process Biochemistry 34, 133-137.
Eglinton JM, Heinrich AJ, Pollnitz AP, Langridge P, Henschke PA, de Barras Lopes M. (2002) Decreasing acetic acid accumulation by a glycerol overproducing strain of Saccharomyces cerevisiae by deleting the ALD6 aldéhyde dehydrogenase gene.Yeast 19: 295-301.
Gonzalez, B., François, J. and Renaud, M. (1997). A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13, 1347-55.
Gonzalez, E., Fernandez, M. R., Larroy, C, SoIa, L., Pericas, M. A., Pares, X. and Biosca, J. A. (2000). Characterization of a (2R,3R)-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gène product. Disruption and induction of the gène. J Biol Chem 275, 35876-85. Hallsworth, J. E. (1998). Ethanol-lnduced Water Stress in Yeast. Journal of Fermentation and Bioengineering 85, 125-137.
Himmelreich R, Hubert H, Plagens H, Pirkl E, Li BC, Herrmann R (1996) Complète séquence analysis of the génome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24:4420 Hoefnagel, M. H., Starrenburg, M. J., Martens, D. E., Hugenholtz, J.,
Kleerebezem, M., Van, S., I.I., , Bongers, R., Westerhoff, H. V. and Snoep, J. L. (2002). Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and expérimental analysis. Microbiology 148, 1003-13.
Holzer, H., Busch, D. and Kroger, H. (1958). [Enzymicoptic détermination of reduced and oxidized triphosphopyridine nucleotides in présence of reduced and oxidized diphosphopyridine nucleotides.]. Hoppe Seylers Z Physiol Chem 313, 184- 93.
Klingenberg, M. (1974). Nicotinamide-adenine dinucleotides (NAD, NADP, NADH, NADPH): spectrophotometric and fluorimetric methods in In H. U. Bergmeyer (éd.) (Ed), Methods ofenzymatic analysis, pp. 2045-2059.
Koike K, Kobayashi T, Ito S, Saitoh M. (1985) Purification and characterization of NADH oxidase from a strain of Leuconostoc mesenteroides. J Biochem (Tokyo) 97,1279-88.
Liu, S. Q. and Pilone, G. J. (2000). An overview of formation and rôles of acetaldehyde in winemaking with emphasis on microbiological implications. International Journal ofFood Science & Technology 35, 49-61.
Lopez de Felipe, F. and Hugenholtz, J. (1999). Pyruvate flux distribution in NADH-oxidase-overproducing Lactococcus lactis strain as a function of culture conditions. FEMS Microbiol Lett 179, 461-6.
Lopez de Felipe, F. and Hugenholtz, J. (2001). Purification and characterisation of the water forming NADH-oxidase from Lactococcus lactis. International Dairy Journal 11 , 37-44. Lopez de Felipe, F., Kleerebezem, M., de Vos, W., M., and Hugenholtz, J.
(1998). Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J Bacteriol 180, 3804- 8.
Lundquist, F. (1974). Acetaldehyd : Bestimmung Mit Aldehyd- dehydrogenase., Methods of Enzymatic Analysis., Académie Press, Inc., pp. 1509- 1513.
Michnick, S., Roustan, J. L., Remize, F., Barre, P. and Dequin, S. (1997). Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPDI encoding glycerol 3-phosphate dehydrogenase. Yeast 13, 783-93.
Malherbe, D. F., Du Toit, M., Cordera Otero, R. R., Van Rensburg, P. and Pretorius, I. S. (2003). Expression of the Aspergillus niger glucose oxidase gène in Saccharomyces cerevisiae and its potential applications in wine production. Appl Microbiol Biotechnol 61 , 502-11. Matsumoto J., Higushi M., Shimada M., Yamamoto Y., Kamio Y. (1996)
Molecular cloning and séquence analysis of the gène encoding the H2O-forming NADH oxidase from Streptococcus mutans. Biosci. Biotech. Biochem., 60, 39 - 43.
Michnick, S., Roustan, J. L., Remize, F., Barre, P. and Dequin, S. (1997). Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD 1 encoding glycerol 3-phosphate dehydrogenase. Yeast 13, 783-93.
Minet, M., Dufour, M. E. and Lacroute, F. (1992). Complémentation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J 2, 417-22.
Mumberg, D., Muller, R. and Funk, M. (1995). Yeast vectors for the controlled expression of heterologous proteins in différent genetic backgrounds. Gène 156, 119-22.
Nevoigt, E. and U. Stahl. 1996. Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase [NAD+] levels enhance glycerol production in Saccharomyces cerevisiae. Yeast 12:1331-1337.
Nevoigt E, Pilger R, Mast-Gerlach E, Schmidt U, Freihammer S, Eschenbrenner M, Garbe L, Stahl U. (2002). Genetic engineering of brewing yeast to reduce the content of ethanol in béer. FEMS Yeast Res. 2:225-32. Nissen, T. L., Schulze, U., Nielsen, J. and Villadsen, J. (1997). Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143, 203-218.
Peterson S. N., Hu P. C1 Bott K. F., C. Hutchinson A. 3rd (1993) A survey of the Mycoplasma genitalium génome by using random sequencing. J. Bacteriol., 175, 7918 - 7930.
Remize, F., Roustan, J. L., Sablayrolles, J. M., Barre, P. and Dequin, S. (1999) Glycerol overproduction by engineered Saccharomyces cerevisiae wine yeast strains leads to substantial changes in by-product formation and to a stimulation of fermentation rate in stationary phase. Appl. Environ. Microbiol. 65: 143-149. Remize, F., Andrieu, E. and Dequin, S. (2000) Engineering of the pyruvate dehydrogenase by-pass in S. cerevisiae- RoIe of the cytosolic Mg2+ and mitochondrial K+ acetaldehyde dehydrogenases Aldθp and Ald4p in acétate formation during alcoholic fermentation.. Appl. Environ. Microbiol. 66: 3151-3159.
Remize, F., Barnavon, L. and Dequin, S. (2001) Glycerol export and glycerol 3-phosphate dehydrogenase, but not glycerol phosphatase, are rate limiting steps for glycerol production in Saccharomyces cerevisiae. Metab. Eng. 3: 301-312.
Riebel B.R., Gibbs P. R., Wellborn W.B., Bommarius A.S. (2002) Cofactor Régénération of NAD+ from NADH: Novel water-forming NADH oxidases. Adv. Synth. Catal. 3444, 1156-1168. Ross R. P., Claiborne A.. (1991 ) Cloning, séquence and overexpression of
NADH peroxidase from Streptococcus faecalis 10C1. Structural relationship with the flavoprotein disulfide reductases. J. Mol. Biol., 221 , 857-871.
Ross R. P., Claiborne A. (1992) Molecular cloning and analysis of the gène encoding the NADH oxidase from Streptococcus faecalis 10C1. Comparison
with NADH peroxidase and the flavoprotein disulfide reductases. J. Mol. Biol., 227, 65 8-671.
Roustan, J. L. and Sablayrolles, J. M. (2002). Impact of the addition of électron acceptors on the by-products of alcoholic fermentation. Enzyme and microbial technology 31 , 142-152.
Sablayrolles, J. and Barre, P. (1986). Evolution de la solubilité de l'oxygène au cours de la fermentation alcoolique d'un moût de raisin. Etude sur milieu modèle. Sciences des aliments 6, 177-184.
Sambrook, J., Fritsh, E. F. and Maniatis, T. (1989). Molecular Cloning : A Laboratory Manual, 2nd edn. CoId Spring Harbor Laboratory press, CoId spring Harborg.
Saint-Prix, F., Bonquist, L. and Dequin, S. (2004). Functional analysis of the ALD gène family of Saccharomyces cerevisiae during anaerobic growth on glucose: the NADP+-dependent Ald6p and Aldδp isoforms play a major rôle in acétate formation. Microbiology 150, 2209-20.
Schiestl, R. H. and Gietz, R. D. (1989). High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genêt 16, 339-46.
Teusink, B., Passarge, J., Reijenga, C. A., Esgalhado, E., van der Weijden, C. C, Schepper, M., Walsh, M. C, Bakker, B. M., van Dam, K., Westerhoff,
H. V. and Snoep, J. L. (2000). Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. EurJ Biochem 267, 5313-
29.
Vernet, T., Dignard, D. and Thomas, D. Y. (1987). A family of yeast expression vectors containing the phage fi intergenic région. Gène 52, 225-33.
Claims
1. Souche de levure transformée appartenant au genre Saccharomyces qui comprend un acide nucléique hétérologue codant une NADH oxydase produisant de l'eau.
2. Souche de levure transformée selon la revendication 1 , l'acide nucléique hétérologue codant une NADH oxydase produisant de l'eau étant intégré dans le génome de ladite levure.
3. Souche de levure transformée selon la revendication 1 ou 2, ladite souche du genre Saccharomyces étant une souche Saccharomyces cerevisiae.
4. Souche de levure transformée selon l'une quelconque des revendications 1 à 3, dans laquelle ladite NADH oxydase produisant de l'eau est d'origine bactérienne.
5. Souche de levure transformée selon l'une quelconque des revendications 1 à 4, dans laquelle ledit acide nucléique hétérologue codant une
NADH oxydase produisant de l'eau comprend une séquence sélectionnée dans le groupe constitué des séquences SEQ ID No.1 , SEQ ID No.2, SEQ ID No.3, SEQ ID
No.4, SEQ ID No.5 et SEQ ID No.6.
6. Procédé de préparation d'une souche de levure transformée appartenant au genre Saccharomyces qui présente, en fermentation alcoolique, un rendement de production d'éthanol réduit par rapport à la souche Saccharomyces sauvage, ledit procédé comprenant l'étape consistant à introduire au moins un acide nucléique hétérologue codant une NADH oxydase produisant de l'eau dans une souche de levure du genre Saccharomyces.
7. Procédé selon la revendication 6, dans lequel ledit acide nucléique hétérologue codant une NADH oxydase produisant de l'eau est introduit dans le génome de ladite souche de levure du genre Saccharomyces.
8. Procédé selon la revendication 6 ou 7, dans lequel ladite souche du genre Saccharomyces est une souche Saccharomyces cerevisiae.
9. Procédé selon l'une quelconque des revendications 6 à 8, dans lequel ladite NADH oxydase produisant de l'eau est d'origine bactérienne.
10. Procédé selon l'une quelconque des revendications 6 à 9, dans lequel ledit acide nucléique hétérologue codant une NADH oxydase produisant de l'eau comprend une séquence sélectionnée dans le groupe constitué des séquences SEQ ID No.1 , SEQ ID No.2, SEQ ID No.3, SEQ ID No.4, SEQ ID No.5 et SEQ ID No.6.
11. Procédé selon l'une quelconque des revendications 6 à 10, dans lequel le rendement de production d'éthanol de la souche genre Saccharomyces transformée par rapport à la souche sauvage du genre Saccharomyces est réduit de
1°.
12. Cassette d'expression comprenant une séquence codant une NADH oxydase produisant de l'eau d'origine bactérienne associée à des séquences de régulation de l'expression de ladite séquence codant une NADH oxydase produisant de l'eau dans la levure.
13. Vecteur comprenant la cassette d'expression selon la revendication 12.
14. Utilisation d'une souche de levure transformée appartenant au genre Saccharomyces selon l'une quelconque des revendications 1 à 5, pour mettre en oeuvre une fermentation alcoolique.
15. Utilisation selon la revendication 14, pour la préparation d'une boisson fermentée ou en panification.
16. Procédé de fermentation comprenant les étapes consistant à : a) inoculer un milieu contenant une forte teneur en sucres avec au moins une souche de levure transformée appartenant au genre Saccharomyces selon l'une quelconques des revendications 1 à 5 ; b) cultiver ladite souche de levure transformée Saccharomyces ; et c) laisser la fermentation se dérouler pour transformer les sucres en alcool.
17. Procédé de fermentation selon la revendication 16, ledit procédé étant un procédé de vinification et le milieu contenant une forte teneur en sucres étant un moût de raisins.
18. Procédé de vinification selon la revendication 17, dans lequel ladite au moins une souche de levure transformée Saccharomyces est initialement cultivée en conditions anaérobies, puis cultivée en conditions aérobies lorsque essentiellement la totalité de l'azote du moût de raisins est consommé.
19. Utilisation d'une souche de levure transformée appartenant au genre Saccharomyces selon l'une quelconques des revendications 1 à 5, pour régénérer du NAD+ à partir de NADH.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06764797A EP1891203A1 (fr) | 2005-06-17 | 2006-06-15 | Souches de levures saccharomyces transformees presentant une production d'ethanol reduite par fermentation |
US11/917,681 US20100047387A1 (en) | 2005-06-17 | 2006-06-15 | Transformed saccharomyces yeast strains having reduced ethanol production by fermentation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0506164 | 2005-06-17 | ||
FR0506164A FR2887258B1 (fr) | 2005-06-17 | 2005-06-17 | Souches de levures saccharomyces transformees presentant une production d'ethanol reduite par fermentation |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006134277A1 true WO2006134277A1 (fr) | 2006-12-21 |
Family
ID=35134165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2006/001364 WO2006134277A1 (fr) | 2005-06-17 | 2006-06-15 | Souches de levures saccharomyces transformees presentant une production d'ethanol reduite par fermentation |
Country Status (4)
Country | Link |
---|---|
US (1) | US20100047387A1 (fr) |
EP (1) | EP1891203A1 (fr) |
FR (1) | FR2887258B1 (fr) |
WO (1) | WO2006134277A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019011942A1 (fr) | 2017-07-11 | 2019-01-17 | Adisseo France S.A.S. | Levure produisant de la méthionine |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2015293864B2 (en) * | 2014-07-25 | 2019-07-11 | Alderys | Method for producing acetoin |
JP6994821B2 (ja) * | 2016-08-02 | 2022-01-14 | 三菱商事ライフサイエンス株式会社 | サッカロミセス・セレビシエの連続培養におけるエタノール生産の低減 |
FR3126989B1 (fr) | 2021-09-10 | 2024-07-12 | M H C S | Procede de desalcoolisation d’un vin |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4221830A1 (de) * | 1991-07-25 | 1993-01-28 | Biotechnolog Forschung Gmbh | Vektor fuer 26,8-kd nadh-gen, wirt und verwendung |
FR2735145A1 (fr) * | 1995-06-09 | 1996-12-13 | Agronomique Inst Nat Rech | Souches de levures presentant un bilan de fermentation alcoolique des sucres modifie et leurs applications, vecteurs utilisables pour l'obtention desdites souches. |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2692591B1 (fr) * | 1992-06-23 | 1995-06-09 | Agronomique Inst Nat Rech | Souches de levure exprimant le gene de la ldh lactique, et vecteurs utilisables pour l'obtention desdites souches. |
EP1495127A4 (fr) * | 2002-02-20 | 2007-03-21 | Univ Georgia Res Found | Preparation microbienne de pyruvate et d'autres metabolites |
-
2005
- 2005-06-17 FR FR0506164A patent/FR2887258B1/fr not_active Expired - Fee Related
-
2006
- 2006-06-15 WO PCT/FR2006/001364 patent/WO2006134277A1/fr active Application Filing
- 2006-06-15 EP EP06764797A patent/EP1891203A1/fr not_active Withdrawn
- 2006-06-15 US US11/917,681 patent/US20100047387A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4221830A1 (de) * | 1991-07-25 | 1993-01-28 | Biotechnolog Forschung Gmbh | Vektor fuer 26,8-kd nadh-gen, wirt und verwendung |
FR2735145A1 (fr) * | 1995-06-09 | 1996-12-13 | Agronomique Inst Nat Rech | Souches de levures presentant un bilan de fermentation alcoolique des sucres modifie et leurs applications, vecteurs utilisables pour l'obtention desdites souches. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019011942A1 (fr) | 2017-07-11 | 2019-01-17 | Adisseo France S.A.S. | Levure produisant de la méthionine |
US11162122B2 (en) | 2017-07-11 | 2021-11-02 | Adisseo France S.A.S. | Methionine-producing yeast |
Also Published As
Publication number | Publication date |
---|---|
US20100047387A1 (en) | 2010-02-25 |
FR2887258A1 (fr) | 2006-12-22 |
FR2887258B1 (fr) | 2007-09-21 |
EP1891203A1 (fr) | 2008-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sumby et al. | Measures to improve wine malolactic fermentation | |
Heux et al. | Cofactor engineering in Saccharomyces cerevisiae: expression of a H2O-forming NADH oxidase and impact on redox metabolism | |
Tilloy et al. | Reducing alcohol levels in wines through rational and evolutionary engineering of Saccharomyces cerevisiae | |
Kutyna et al. | Microbiological approaches to lowering ethanol concentration in wine | |
Redzepovic et al. | Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation | |
KR102281701B1 (ko) | 아세토인을 제조하는 방법 | |
Dequin et al. | How to adapt winemaking practices to modified grape composition under climate change conditions | |
Saayman et al. | The biochemistry of malic acid metabolism by wine yeasts–a review | |
BR112020018177A2 (pt) | expressão de enzimas heterólogas em levedura para produção de bebidas alcoólicas aromatizadas | |
EP2145004B1 (fr) | Moyens pour réduire l'accumulation d'acétoïne dans des milieux de fermentation alcoolique | |
Kanter et al. | The impact of hybrid yeasts on the aroma profile of cool climate Riesling wines | |
Willaert | Biochemistry of beer fermentation | |
Djordjević et al. | Immobilized yeast cells and secondary metabolites | |
WO2006134277A1 (fr) | Souches de levures saccharomyces transformees presentant une production d'ethanol reduite par fermentation | |
Swiegers et al. | Novel yeast strains as tools for adjusting the flavor of fermented beverages to market specifications | |
FR2735145A1 (fr) | Souches de levures presentant un bilan de fermentation alcoolique des sucres modifie et leurs applications, vecteurs utilisables pour l'obtention desdites souches. | |
Swiegers et al. | The development of yeast strains as tools for adjusting the flavor of fermented beverages to market specifications | |
Liu et al. | Mutagenizing brewing yeast strain for improving fermentation property of beer | |
Benito et al. | New trends in Schizosaccharomyces use for winemaking | |
EP1308501A1 (fr) | Boissons fermentées comprenant des levures transformees par le gene ATF2 | |
WO2002002748A1 (fr) | Procede de culture de micro-organismes en conditions reductrices obtenues par un flux gazeux | |
CH682155A5 (fr) | ||
EP4045670A1 (fr) | Cellules de levure génétiquement modifiées et leurs procédés d'utilisation | |
Vontrobová et al. | Factors Influencing the Production of Sensory Active Substances in Brewer’s and Wine Yeast | |
Kassier | Investigation and characterisation of lactic acid production by Lachancea thermotolerans |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006764797 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2006764797 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11917681 Country of ref document: US |