WO2006132389A1 - 核酸、当該核酸をコードするアミノ酸、当該核酸及びアミノ酸からなるプローブ、及び当該プローブを用いたスクリーニング法 - Google Patents

核酸、当該核酸をコードするアミノ酸、当該核酸及びアミノ酸からなるプローブ、及び当該プローブを用いたスクリーニング法 Download PDF

Info

Publication number
WO2006132389A1
WO2006132389A1 PCT/JP2006/311677 JP2006311677W WO2006132389A1 WO 2006132389 A1 WO2006132389 A1 WO 2006132389A1 JP 2006311677 W JP2006311677 W JP 2006311677W WO 2006132389 A1 WO2006132389 A1 WO 2006132389A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
peptide fragment
sequence
acid sequence
Prior art date
Application number
PCT/JP2006/311677
Other languages
English (en)
French (fr)
Inventor
Masahiro Ishiura
Kiyoshi Onai
Original Assignee
National University Corporation Nagoya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Nagoya University filed Critical National University Corporation Nagoya University
Priority to US11/921,786 priority Critical patent/US20100297613A1/en
Priority to JP2007520192A priority patent/JP5145560B2/ja
Publication of WO2006132389A1 publication Critical patent/WO2006132389A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • nucleic acid amino acid encoding the nucleic acid
  • probe comprising the nucleic acid and amino acid
  • the present invention relates to a nucleic acid, an amino acid that clearly encodes the nucleic acid, a probe comprising the nucleic acid and an amino acid, and a screening method using the probe, and more particularly, a nucleic acid involved in a biological clock, an amino acid encoding the nucleic acid,
  • the present invention relates to a probe comprising the nucleic acid and amino acid, and a screening method using the probe.
  • genes Wang and Tobin, Cell 93: 1207-1217 (1998)), genes (Schaffer et al., Cell 93: 1219-1229 (1998)), T0C1 / APRR1 gene (Makino et al., Plant Cell Physiol. 43: 58-69 (2000); Strayer et al., Science 289: 768-771 (2000)), L3 ⁇ 4 gene (Doyle et al., Nature 419: 74-77 (2002)), is a clock gene (Young and Kay, Nat. Rev. Genet. 2: 702-715 (2001); Yanovsky and Kay, Nat. Rev. Mol. Cell Biol. 4: 265-275 (2003) )).
  • the present invention provides a biological clock capable of controlling physiological phenomena and physiological activities. It is an object to provide a gene to be formed and a protein encoded by the gene.
  • the present inventors first screened a large and large clock mutant in Arabidopsis thaliana, and acyclic mutant ⁇ -mutant and As the causative gene of these mutants, the nucleic acid of the present invention and the protein encoded by the nucleic acid were found.
  • nucleic acid involved in the control of the biological clock of the present invention is the following (a) or (b):
  • a part of the base sequence of the base sequence number 1-12846 is deleted, substituted or added, and comprises a nucleic acid having 80% homology with the base sequence, To do.
  • the nucleic acid involved in the control of the biological clock of the present invention is the following) or (b), that is,
  • the nucleic acid involved in the control of the biological clock of the present invention is the following) or (b), that is,
  • nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 3 in the sequence listing and the nucleotide sequence represented by nucleotide sequence number 1 to 4700,
  • the nucleic acid involved in the control of the biological clock of the present invention is the following (a) or (b), that is,
  • the nucleic acid involved in the control of the biological clock of the present invention is the following (a) or (b), that is,
  • the nucleic acid involved in the control of the biological clock of the present invention is the following (a) or (b), that is,
  • nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 6 in the sequence listing and the nucleotide sequence represented by nucleotide sequence No. 1 641;
  • the nucleic acid involved in the control of the biological clock of the present invention is the following (a) or (b), that is,
  • the probe of the present invention is characterized by comprising the nucleic acid according to any one of claims 1 to 7.
  • a gene involved in the control of a biological clock in an organism is used for searching.
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a) or (b), that is,
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a), or (b), that is,
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a), or (b), that is,
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a), or (b),
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a) or (b), that is, t
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a), or (b),
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a), or (b), that is,
  • ⁇ ⁇ (b) a peptide fragment represented by SEQ ID NO: 14 in which a part of the amino acid sequence has been deleted, substituted or added, and has 80% homology with the amino acid sequence. It is characterized by that.
  • peptide fragment involved in the control of the biological clock of the present invention is the following)), or
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a), or (b), that is,
  • the probe of the present invention is characterized by comprising the peptide fragment according to any one of claims 10 to 18.
  • the screening method for genes involved in the control of the biological clock of the present invention is characterized by using the probe according to any one of claims 8, 9, or 19.
  • the screening is selected from the group consisting of in situ hybridization method, Southern hybridization method, and whole nucleotide sequencing. It is characterized by using at least one kind.
  • the peptide fragment controls transcription of a specific gene in a cell nucleus, oscillation of circadian rhythm, and stability.
  • the peptide fragment of the present invention has a DNA binding motif belonging to GARP family.
  • the composition for biological clock control of this invention contains the peptide fragment of any one of Claims 10-18.
  • a vector of the present invention is characterized by containing the DNA or RNA according to any one of claims 1 to 7.
  • the transformant of the present invention is characterized in that the DNA or RNA according to any one of claims 1 to 7 is retained in an expressible manner.
  • the method for producing a peptide of the present invention is characterized by including a step of culturing the transformant of the present invention.
  • peptide fragment involved in the control of the biological clock of the present invention is the following), or (b),
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a), or (b), that is,
  • the probe of the present invention comprises the peptide fragment according to claim 28 or 29.
  • the method for screening a peptide fragment involved in the control of the biological clock of the present invention is characterized by using the probe according to claim 30.
  • the homologous gene OsPCLl of 7 genes since the homologous gene OsPCLl of 7 genes has been isolated from the rice genome, there is an advantageous effect that the same operation as in Arabidopsis thaliana is possible in rice. Furthermore, cDNAs of homologous genes of ⁇ 7 genes were found in potato, tomato, tobacco, sorghum and pine. According to these nucleic acids and peptide fragments of the present invention, it is easily presumed that they function as clock genes in each plant, and the PCL1 gene or the PCL1 homologous gene and PCL1-like gene of the present invention are artificially manipulated. By doing so, there is an advantageous effect that basic research materials can be provided to control various physiological phenomena and physiological activities of higher plants including photoperiodic flowering.
  • the amino acid sequence of the clock protein encoded by the clock gene has been clarified.
  • Figure 1 shows the GI '.: ⁇ bioluminescence pattern of the cL mutant under continuous light or continuous light conditions. Wild-type strain G-38 (blue), 7-7 mutant (red), mutant (brown) 6:: ⁇ Bioluminescence was measured under continuous light conditions (a) or continuous dark conditions (b) did. The white and black bars in the figure represent the long and light periods, respectively. The plot in the figure is the average soil standard deviation of each% individual.
  • Figure 2 shows the pell mutant under light / dark or temperature cycling conditions.
  • J Shows bioluminescence pattern.
  • the white and black bars in the figure represent the long and light periods, respectively!
  • the yellow, bar, and light blue bars in the figure represent the 22 ° C and 17 ° C periods, respectively.
  • the plot in the figure is the average soil standard deviation of each 96 individuals.
  • Figure 3 shows the sleep-sleeping movement of 7 mutant leaves.
  • the sleep sleep activity of wild-type strain G-38 (blue) and C J / mutant (red) was measured under continuous light conditions.
  • the white bars in the figure represent the dark period.
  • the position of the cotyledons at the start of measurement in the Y-axis direction was plotted as 0.
  • Figure 4 shows Northern blot analysis of CAB2, TOCl, ELF4, CCA1, and Zda gene expression in c mutants.
  • Figure 5 shows photoperiodic flowering of c mutants. Wild-type Co /-strain and G-38 strain, pell mutant pcll-l and pell-2 in 16 hours light period / 8 hours dark period (16L8D; light green) under long-day conditions or 10 hours light period / The flowering time was determined by culturing under short-day conditions of 14 hours dark period (10L14D; dark green).
  • FIG. 6 shows the map-based cloning of the PCL1 gene and the structure of the PCL1 gene.
  • FIG. 7 shows the structure of the PCL1 protein. The structure of the PCL1 protein and the alignment of the amino acid residues of the GARP motif of the PCL1, ARR1 and ARR10 proteins are shown. Amino acid residues that correspond to the PCL1 protein are surrounded by a red line.
  • Figure 8 shows the intracellular localization of PCL1 protein.
  • (a, c, e) GFP fluorescence observed with a fluorescence microscope.
  • B, d, e are images of cells observed with an optical microscope.
  • A, b When only GFP is expressed.
  • the multiple amino acid sequences of PCL1 homologous protein StPCLl from potato (Solanum tuberoswi) and PCL1 homologous protein PtPCLl from pine (Pinus taeda) were shown. Matching amino acid residues are marked with an asterisk (*), and similar amino acid residues are marked with a dot (.). The gap is indicated by a bar (-).
  • the GARP Chief has a red line on the amino acid residue.
  • the amino acid residues shown in red in the PCL1 amino acid sequence are amino acid residues that have been changed to stop codons by cJ and? ⁇ Mutations.
  • FIG. 10 shows Northern blot analysis of ⁇ 7 gene expression. Wild-type strain G-38 in constant light conditions (the blue) - 7 was Roh Zanburotto analyze the levels of intracellular of / 7 CL / mRNA variants (red).
  • Figure 11 shows the bioluminescence rhythm of ::: ⁇ . Wild-type strain G-38 (blue) pcU-variant (red) / 7 : ⁇ Bioluminescence was measured under continuous light conditions (a) or continuous dark conditions (b). The white bars and black bars in the figure represent the long and light periods, respectively. The plot in the figure is the average soil standard deviation of 48 individuals.
  • Figure 12 shows the GI: bioluminescence pattern and leaf dormancy of 3 ⁇ 4Z7-ox plants.
  • C Sleeping movement of wild-type strain G-38 (blue) and cocoon plant (green) was measured under continuous light conditions. The position of the cotyledons at the start of measurement in the Y-axis direction was plotted as 0.
  • FIG. 13 shows a Northern blot analysis of endogenous PCL1 gene expression in PCLl-o plants. Northern blot analysis of 7 mRNA levels derived from endogenous genes in cells of wild-type strain G-38 (blue), mutant (red), and PCLl-ox plant (green) under continuous light conditions.
  • Figure 14 shows a model diagram of a plant biological clock.
  • the gene control mode discovered in the present invention is indicated by a red line, and the known gene control mode is indicated by a blue line.
  • Arrows indicate gene expression promotion, and horizontal lines indicate gene expression suppression.
  • Negative self-feedback loop of gene expression is essential for clock oscillation, which is the central oscillator of plant clock.
  • Fig. 15-1 shows the sequence of ⁇ gene and PCL1 protein (Uirabidopsis thaliand).
  • FIG. 15-2 shows the sequences of the PCL1 gene and the PCL1 protein lrabidopsis thaliana).
  • FIG. 15_3 shows the sequences of the PCL1 gene and PCL1 protein (Arabidopsis thaliana).
  • FIG. 15-4 shows the sequences of the PCL1 gene and PCL1 protein (Arabidopsis thaliana).
  • Fig. 6-1 shows the sequences of ⁇ gene and PCLL protein (irabidopsis thaliana).
  • Figure 16-2 shows the sequence of the i3 ⁇ 4ZZ gene and the PCLL protein Arabidopsis thaliana).
  • Fig. 16-3 shows the sequence of the gene and PCLL protein (Arabidopsis thaliana).
  • FIG. 3 is a view showing a sequence of psis thaliana).
  • Fig. 1 7 _ 1 shows the sequence of ⁇ 7 gene and OsPCLl protein Oryza sativ)
  • Figure 17-2 shows the sequence of (3 ⁇ 4 ⁇ 7 gene and OsPCLl protein Oryza sativa).
  • Fig. 17-3 shows the sequence of the gene and OsPCLl protein (0ryza sativa).
  • 1 7 - 4 is a view to view a sequence of Shikabane gene and OsPCLl protein Oi za sativa).
  • Figure 18-1 shows the sequence of the gene and NbPCLl protein Nicotiana benthatnina.
  • FIG. 18-2 is a diagram showing the sequences of the 7 ⁇ 3 ⁇ 4 ⁇ _ gene and the NbPCLl protein Nicotiana benthamina).
  • FIG. 18-3 shows the sequence of 7 ⁇ 3 ⁇ 4 7 gene and NbPCLl protein (Nicotiana benthamina).
  • Fig. 19 shows the sequence of 7 genes and NtPCLl protein Nicotiana tabacimi).
  • FIG. 20-1 shows the sequences of Ze 3 ⁇ 4Z7 gene and LePCLl protein ycopersicon esculentum).
  • Fig. 20-2 shows the sequence of ⁇ 7 gene and LePCLl protein ycopersicon esculentum).
  • Fig. 21-1 shows the sequence of 5-7 genes, StPCLl protein (Sol fraction tuberosum).
  • Figure 2 1-2 shows the sequence of ⁇ 7 gene and StPCLl protein (Solamm tuberosuni).
  • FIG. 2 1 _ 3 shows the sequences of the StPCLl gene and the StPCLl protein (Solammi tuberosum).
  • Figure 22 shows the PCLL: ZZT bioluminescence rhythm.
  • Wild-type PCLL :: IMCW reporter
  • the bioluminescence of one strain was measured in continuous light (a) or continuous dark (b).
  • the white bars and black bars in the figure represent the dark period and the light period, respectively.
  • the plot in the figure is the average soil standard deviation of each 96 individuals.
  • Figure 23 shows the /:: / ⁇ bioluminescence pattern of the 3 ⁇ 42 -ox plant. or Plant bioluminescence was measured in continuous light. The white bars in the figure represent the light period. The plots in the figure are the average soil standard deviation of 96 individuals.
  • the nucleic acid involved in the control of the biological clock of the present invention is the following (a), or (b), that is,
  • nucleotide sequence of the nucleotide sequence number 1-2846 is deleted, substituted or added, and 80%, preferably 90%, more preferably 95% with the nucleotide sequence.
  • the nucleic acid is derived from Arabidopsis thaliana.
  • the nucleic acid of the present invention is partially deleted, substituted or attached, and has 80%, preferably 90%, more preferably 95% homology with the base sequence.
  • nucleic acids also includes nucleic acids. This is because even if a part of the gene is deleted, substituted, or added, it can be used as, for example, a probe for searching for a gene involved in the control of a biological clock, as described later.
  • a gene in which a part of the gene has been deleted, substituted or added means that 10 or less, preferably 7 or less, more preferably 3 or less bases have been deleted, substituted or added in the nucleotide sequence. It means a gene having a sequence.
  • the gene forms a hybrid with the gene shown in SEQ ID NO: 1 in the sequence list under stringent conditions. Such a gene is also included in the gene of the present invention as long as it is a factor involved in the control of the biological clock. ⁇
  • the nucleic acid involved in the control of the biological clock of the present invention includes the following (a) or (b), In other words,
  • nucleic acid having homology is derived from Arabidopsis thaliana.
  • the nucleic acid of the present invention is partially deleted, substituted or added, and has 80%, preferably 90%, more preferably 95% homology with the base sequence.
  • nucleic acids includes nucleic acids. This is because even if some of them are deleted, substituted or added, they can be used, for example, as probes for searching for genes involved in the control of biological clocks.
  • the gene forms a hybrid with the gene shown in SEQ ID NO: 2 in the sequence list under stringent conditions.
  • Such a gene is also included in the gene of the present invention as long as it is a factor involved in the control of the biological clock.
  • the nucleic acid involved in the control of the biological clock of the present invention is the following (a) or (b), that is,
  • nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 3 in the sequence listing and the nucleotide sequence represented by nucleotide sequence number 1 to 4700,
  • a part of the base sequence of the base sequence number 1 to 4700 is deleted, substituted or added, and 80%, preferably 90%, more preferably 95% of the base sequence.
  • the gene of the present invention is a gene derived from the rice genome.
  • a gene in which a part of the gene has been deleted, substituted or added is a sequence in which no more than 10, preferably no more than 7, more preferably no more than 3 bases are deleted, substituted or added in the base sequence shown in SEQ ID NO:
  • a gene having a defined sequence is contemplated.
  • the gene forms a hybrid with the gene shown in SEQ ID NO: 3 in the sequence listing under stringent conditions.
  • nucleic acid involved in the control of the biological clock of the present invention is the following) or (b): In other words,
  • (b) consisting of a nucleic acid in which a part of the base sequence of the base sequence number 1-11505 is deleted, substituted or added, and has 80% homology with the base sequence.
  • the nuclear acid is derived from tobacco.
  • the nucleic acid of the present invention is partially deleted, substituted or added, and has 80%, preferably 90%, more preferably 95% homology with the base sequence. Is also included. This is because even if a part of the gene is deleted, substituted, or added, it can be used, for example, as a probe for searching for a gene involved in the control of a biological clock. Further, the gene forms a hybrid with the gene shown in SEQ ID NO: 4 in the sequence list under stringent conditions. Such genes are also included in the gene of the present invention as long as they are factors involved in the control of the biological clock.
  • the nucleic acid involved in the control of the biological clock of the present invention is the following (a) or (b), that is,
  • the nucleic acid is derived from another line of tobacco.
  • the nucleic acid of the present invention is partially deleted, substituted or attached, and has 80%, preferably 90%, more preferably 95% homology with the base sequence. It also includes nucleic acids having sex. This is because even if a part of the gene is deleted, replaced or added, it can be used as a probe for searching for a gene involved in the control of a biological clock, for example.
  • the gene forms a hybrid with the gene shown in SEQ ID NO: 5 in the sequence listing under stringent conditions. As long as these genes are also factors involved in the control of biological clocks It is included in the gene of the present invention.
  • the nucleic acid involved in the control of the biological clock of the present invention is the following (a) or (b), that is,
  • nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 6 in the sequence listing and the nucleotide sequence represented by nucleotide sequence No. 1 641;
  • a part of the base sequence of base sequence number 1-641 is deleted, substituted or added, and has a nucleic acid having 80% homology with the base sequence, .
  • the nucleic acid is derived from tomato.
  • the nucleic acid of the present invention includes a nucleic acid that is partially deleted, substituted or added and has 80%, preferably 90%, more preferably 95% homology with the base sequence. Is also included. This is because even if a part of the gene is deleted, substituted, or added, it can be used as, for example, a probe for searching for a gene involved in the control of a biological clock. Further, the gene forms a hybrid with the gene shown in SEQ ID NO: 6 in the sequence listing under stringent conditions. Such a gene is also included in the gene of the present invention as long as it is a factor involved in the control of the biological clock.
  • the nucleic acid involved in the control of the biological clock of the present invention is the following (a) or (b), that is,
  • a part of the base sequence of the base sequence number 1 to 1400 is deleted, substituted or added, and comprises a nucleic acid having 80% homology with the base sequence, To do. .
  • the nucleic acid is derived from potato.
  • the nucleic acid of the present invention is partially deleted, substituted or added, and has 80%, preferably 90%, more preferably 95% homology with the base sequence.
  • the gene forms a hybrid with the gene shown in SEQ ID NO: 7 in the sequence listing under stringent conditions. Such a gene is also included in the gene of the present invention as long as it is a factor related to the control of the biological clock.
  • the peptide fragments involved in the control of the biological clock of the present invention are the following (a) or (b), that is,
  • (b) consisting of a peptide fragment shown in SEQ ID NO: 8, in which a part of the amino acid sequence is deleted, substituted or added and has 80% homology with the amino acid sequence.
  • the peptide fragment is derived from Arabidopsis thaliana.
  • the peptide fragment of the present invention is partially deleted, substituted or attached, and has 80%, preferably 90%, more preferably 95% homology with the amino acid sequence. It also includes peptide fragments that have it. This is because even if some of them are deleted, substituted or attached, they can be used, for example, as probes for searching peptide fragments involved in the control of biological clocks.
  • amino acid from which a part of amino acid has been deleted, substituted, or attached refers to 10 amino acids or less, preferably 7 or less, more preferably 3 amino acids. It means an amino acid sequence having a sequence in which not more than one amino acid has been deleted, substituted or appended. Even such amino acid sequences can be used in immunity tests utilizing antigen-antibody reactions.
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a), or (b), that is,
  • the peptide fragment is derived from Arabidopsis thaliana.
  • a part of the peptide fragment of the present invention is deleted, substituted or attached, and the amino acid sequence is 80.
  • peptide fragments having 90% homology, more preferably 95% homology are also included. This is because even if some of them are deleted, substituted, or attached, they can be used as probes for searching for peptides involved in the control of biological clocks, for example.
  • even such amino acid sequences can be used for immunity tests using antigen-antibody reactions.
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a), or (b), that is,
  • (b) consisting of a peptide fragment shown in SEQ ID NO: 10 in which a part of the amino acid sequence is deleted, substituted or added and has 80% homology with the amino acid sequence.
  • the peptide fragment is derived from rice.
  • the peptide fragment of the present invention is partially deleted, substituted or added, and has 80%, preferably 90%, more preferably 95% homology with the amino acid sequence.
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a), or (b), that is,
  • the peptide fragment of the present invention is derived from tobacco.
  • the peptide fragment of the present invention is partially deleted, substituted or added, and the amino acid sequence
  • amino acids having 80%, preferably 90%, more preferably 95% homology. This is because even if a part of them is deleted, substituted, or attached, it can be used as a probe for searching for peptide fragments involved in the control of a biological clock, for example. Even such an amino acid sequence can be used for an immunity test utilizing an antigen-antibody reaction.
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a), or (b), that is,
  • (b) consisting of a peptide fragment shown in SEQ ID NO: 12 having a part of the amino acid sequence deleted, substituted or added and having 80% homology with the amino acid sequence.
  • This peptide fragment is derived from tobacco of another line.
  • the peptide fragment of the present invention is partially deleted, substituted or added, and has 80%, preferably 90%, more preferably 95% homology with the amino acid sequence. It also includes some amino acids. This is because even if a part is deleted, substituted, or added, it can be used as, for example, a procedure for searching for peptide fragments involved in the control of the biological clock. Even an amino acid sequence that is strong can be used for an immunity test using an antigen-antibody reaction.
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a), or (b), that is,
  • a peptide fragment represented by SEQ ID NO: 13 in which a part of the amino acid sequence is deleted, substituted or added, and has 80% homology with the amino acid sequence Become.
  • This peptide fragment is derived from tomato.
  • the peptide fragment of the present invention is partially deleted, substituted or added, and has 80%, preferably 90%, more preferably 95% homology with the amino acid sequence. It also includes amino acids. This is because even if a part of the fragment is deleted, substituted, or attached, it can be used as a probe for searching for a peptide fragment involved in the control of a biological clock, for example. Even such an amino acid sequence can be used for an immunity test utilizing an antigen-antibody reaction.
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a), or (b), that is,
  • (b) consisting of a peptide fragment shown in SEQ ID NO: 14 in which a part of the amino acid sequence is deleted, substituted or added, and has 80% homology with the amino acid sequence.
  • This peptide fragment is derived from potato.
  • the peptide fragment of the present invention is partially deleted, substituted or added, and has an amino acid sequence having 80%, preferably 90%, more preferably 95% homology with the amino acid sequence.
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a), or (b), that is,
  • This peptide fragment is derived from pine.
  • the peptide fragment of the present invention is partially deleted, substituted or attached, and has 80%, preferably 90%, more preferably 95% homology with the amino acid sequence.
  • the amino acid which has is also included. This is because even if a portion is deleted, substituted, or added, for example, it can be used as a probe for searching for a peptide fragment involved in the control of the biological clock. Even strong amino acid sequences can be used for immunity tests using antigen-antibody reactions.
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a), or (b), that is,
  • (b) consisting of a peptide fragment shown in SEQ ID NO: 16 in which a part of the amino acid sequence is deleted, substituted or added, and has 80% homology with the amino acid sequence. .
  • This peptide fragment is derived from sorghum.
  • the peptide fragment of the present invention is partially deleted, substituted or added, and has 80%, preferably 90%, more preferably 95% homology with the amino acid sequence. Is also included. This can be used as a probe for searching for peptide fragments involved in the control of biological clocks, even if some of them are deleted, substituted, or attached. It is. Even strong amino acid sequences can be used for immunity tests using antigen-antibody reactions.
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a), or (b), that is,
  • a part of the amino acid sequence shown in SEQ ID NO: 8 represented by amino acid SEQ ID NO: 1-210 is deleted, substituted or added, and 80% of the amino acid sequence A peptide fragment having homology.
  • This peptide fragment is derived from Arabidopsis thaliana.
  • the peptide fragment of the present invention is partially deleted, substituted or added, and has 80%, preferably 90%, more preferably 95% homology with the amino acid sequence. It also includes amino acids having sex. This is because even if a portion is deleted, substituted or added, it can be used as a probe for searching for a peptide fragment involved in the control of a biological clock, for example. Even this amino acid sequence can be used for an immunity test utilizing an antigen-antibody reaction.
  • the peptide fragment involved in the control of the biological clock of the present invention is the following (a), or (b), that is,
  • a part of the amino acid sequence shown in SEQ ID NO: 8 shown in SEQ ID NO: 1 143 has been deleted, substituted or added, and has 80% homology with the amino acid sequence A peptide fragment.
  • This peptide fragment is derived from Arabidopsis thaliana.
  • the peptide fragment of the present invention is partially deleted, substituted or appended, and 80%, preferably 90%, more preferably 95% of the amino acid sequence. It also includes amino acids having homology. This is because even a part of which is deleted, substituted or attached can be used as a probe for searching for a peptide fragment involved in the control of a biological clock, for example. Even this amino acid sequence can be used for an immunity test utilizing an antigen-antibody reaction.
  • sequences are very high in homology so that the peptide fragments of the present invention can be compared and understood, and this region is deduced to be an extremely important region for biological clock function. I can do it. Therefore, these important regions can be used, for example, as probes to further elucidate biological clocks.
  • a method for purifying and isolating the nucleic acid and peptide fragment of the present invention will be described.
  • the nucleic acid and the peptide fragment are not particularly limited, but the following procedure is used. Therefore, it can be purified and isolated.
  • bioluminescence measuring devices Two types of bioluminescence measuring devices (Okamoto et al., Anal. Biochem.) Are used to analyze the measurement data by measuring the bioluminescence rhythms of many higher plants in a single measurement.
  • a bioluminescence real-time monitoring / screening system can be used.
  • the Arabidopsis 6J gene (Fowler et al., EMBO J. 18: 4679-4688 (1999), which is a clock-related gene of Arabidopsis and whose gene expression is known to show circadian rhythm; . Park et al, Science 285: 1579- 1582 (1999) the promoter region and the modified firefly luciferase gene); p romeg a company)
  • bioluminescent reporter gene cassette i .: LUC was prepared and transferred to a wild-type Arabidopsis thaliana genome. Strain (G-38 strain) was created. The produced light emission reporter strain G- 38 of the seeds were mutagen treatment with ethyl methanesulfonate (EMS), mutagenic treatment from the second generation of plants (M 2 plants) 50,000 by measuring the bioluminescence rhythms of the individual Rhythm mutants were screened, and as a result, five acyclic mutants that completely lost the bioluminescence rhythm were isolated.
  • EMS ethyl methanesulfonate
  • acyclic mutants have a non-periodic bioluminescence rhythm of the GI '.: ZZT luminescent reporter gene under both continuous light and continuous dark conditions, and the leaf dormancy movement rhythm is also aperiodic. Yes, and all of these acyclic mutations were recessive single gene mutations, and could be classified into three complementation groups PHYT0CL0CK 1 (PCL1), PCL2, ⁇ . It was speculated that both the urinary PCL2 and ⁇ genes encoded plant clock genes. The ⁇ 7 gene, one of the ⁇ genes, was identified by the map-based cloning method according to the following procedure.
  • F 3 homozygotes mutant were mated with wild-type L strain Ekotaipu Col- 0) and gave the seeds of the second generation (F 2).
  • Cultivate the F 2 plant and bioluminescence of the 6J T luminescent reporter gene
  • the homozygous individuals that had the pc-i mutation homozygously were measured under continuous light conditions.
  • Col-0 and Ler polymorphic markers CAS marker and SSLP marker
  • the recombination rate between the mutation and the polymorphic marker was calculated using the SNP polymorphic marker.
  • the wild-type Cb- and G-38 strains and the non-periodic mutants 7-7 were sequenced and compared, and they were sorted as the reference number At3g46640 in the TAIR website database. Since we were able to find base substitutions in both pcll-1 and 7- on the gene that was identified, we concluded that this was the PCL1 gene.
  • the structure of the PCL1 gene can be determined by comparing the nucleotide sequence of the full-length cDNA published on RIKEN (RARGE; http: // rarge. Gsc. Riken. Go. Jp /) and the TAIR website with the genomic DNA sequence. Determined. The amino acid sequence of a protein can be easily deduced from the base sequence of genomic DNA or cDNA.
  • the base sequence of the nucleic acid can be determined by a conventional method, for example, using a dye terminator method.
  • the nucleotide sequence of a gene encoding a similar protein or homologous protein is predicted from the amino acid sequence of the protein of the present invention, and various oligonucleotides are synthesized based on the prediction, and these are used as PCR primers as a PCR method.
  • the base sequence of a gene encoding a similar protein or homologous protein is predicted from the amino acid sequence of the protein of the present invention, various oligo nucleotides are synthesized based on the prediction, and these are used in various hybridization methods. Inherited in A child can be identified.
  • genomic DNA, a genomic DNA library, a cDNA library, RNA, etc. of the species from which the above-mentioned nucleic acid is to be isolated are directly or PCR amplified and plotted on a polymer membrane After fixing, the probe of the present invention may be hyperpredized.
  • the above-described nucleic acid cell from which the nucleic acid is to be isolated is fixed, and the probe of the present invention may be directly hybridized to the chromosome in the cell.
  • the method of hybridization is not particularly limited by conventional methods. For example, Southern blotting method, in situ hybridization method, nucleotide sequencing method, colony hybridization method, plaque hybridization Method, Northern hybridization method and the like.
  • the in situ hybridization method is desirable from the viewpoint that screening can be performed quickly and accurately.
  • examples of in situ hybridization methods include fluorescence in situ hybridization (hereinafter referred to as FISH method) and radioisotope in situ hybridization.
  • FISH method is desirable from the viewpoint that RI facilities are not required.
  • the outline of the FISH method is, for example, that a chromosomal specimen is prepared on a slide glass, and a labeled probe is hy- pleidized on this and directly examined.
  • Examples of the support used for the hybridization of the probe of the present invention include thin films, powders, granules, gels, beads, fibers and the like, dispersions, emulsions and the like. These may be used in a suitable column. Of these, a thin film is preferable, for example, a nitrocellulose film and a Nai-Kun film are preferable.
  • marker used for the probe of this invention is demonstrated.
  • labels include, but are not limited to, for example, 3 2 P, 3 5 morphism of atoms such as S, Biochin group, adipic group or enzymes, fluorescent labels and the like
  • an antigen-antibody system when used, it may contain an antigen.
  • the base length of the probe varies depending on the screening method used and is not particularly limited.
  • the above-mentioned peptide fragment controls the transcription of a specific gene in the nucleus of the cell, the oscillation and stabilization of circadian rhythm.
  • the nucleic acid of the present invention is one of the genes involved in the control of the biological clock.
  • the gene of the present invention forms the core of the biological clock, and at the same time acts as a transcription factor for other genes to oscillate and stabilize the circadian rhythm of the organism.
  • the peptide fragment has a DNA binding motif belonging to GARP family. It is thought that circadian rhythm is formed by binding to other genes through the DNA binding motif and functioning as a transcription factor.
  • the biological clock control composition of the present invention contains the peptide fragment, DNA fragment or thigh fragment of the present invention, and promotes or suppresses biological clock functional activity of cells. There are no restrictions on the appearance of the composition.
  • the target of the biological clock control composition of the present invention is an individual organism, a cultured cell, a cell extract, an in vitro reconstruction system of a cell-free biological clock, or the like.
  • the vector of the present invention contains the nucleic acid (DNA or RNA) of the present invention.
  • the transformant of the present invention holds the above-described nucleic acid (DNA or RNA) of the present invention so that it can be expressed.
  • the production method of the peptide of this invention includes the process of culture
  • the recombinant vector of the present invention can be obtained by linking a gene involved in the biological clock of the present invention on an appropriate vector.
  • Any vector can be used as long as it can produce a protein related to the biological clock expressed from a gene related to the biological clock of the present invention in the host to be transformed.
  • vectors such as plasmids, cosmids, phages, viruses, chromosomal integration types, and artificial chromosomes can be used.
  • the vector may contain a marker gene for enabling selection of transformed cells.
  • marker genes include genes that complement the auxotrophy of the host, such as URA3, n'a?, Ampicillin, kanamycin, oligomycin, tetracycline, chloramphenicol, hygromycin B, pasta (registered trademark) ) And other drug resistance genes.
  • the recombinant vector preferably contains a promoter or other control sequence (eg, enhancer sequence, terminator sequence, polyadenylation sequence, etc.) capable of expressing the gene of the present invention in the host cell.
  • the promoter include GAL1 promoter, amyB promoter, _Zac promoter, tsc promoter, trc promoter, C3 ⁇ 4 promoter, and the like.
  • the transformant of the present invention can be obtained by transforming a host with the recombinant vector of the present invention.
  • the host is not particularly limited as long as it can produce a protein involved in the biological clock of the present invention.
  • tobacco cultured cells BY-2 Arabidopsis cultured cells, tobacco plants, Arabidopsis plants, etc.
  • Plant cells, insect cultured cells, animal cells, yeasts such as fission yeast and budding yeast, Aspergi noles Soyaspergillus oryzae, Asperenogillus niger, Akapan mold and other filamentous fungi, E. coli and Bacillus, Bacteria such as cyanobacteria may be used. Transformation can be performed by a known method depending on the host.
  • the method for producing a protein involved in the biological clock of the present invention comprises culturing the transformant of the present invention and collecting the protein involved in the biological clock from the obtained culture.
  • the medium and culture method should be selected appropriately depending on the type of host and the expression control sequence in the recombinant vector.
  • the protein involved in the biological clock of the present invention can be produced by, for example, culturing the cell in a medium containing sucrose.
  • the protein involved in the biological clock of the present invention can be produced. it can.
  • the host when the host is yeast and the expression control sequence is a promoter, for example, a cell precultured in a liquid minimal medium using raffinose as a carbon source is changed to a liquid minimal medium using galactose and raffinose as a carbon source. By diluting, inoculating and culturing, a protein related to the biological clock of the present invention can be produced.
  • the biological clock of the present invention can be obtained by culturing in a liquid minimal medium containing maltose as a carbon source. Can produce proteins involved in For example, if the host is E.
  • the protein involved in the biological clock of the present invention can be produced by culturing in a liquid medium containing IPTG.
  • the host cell is separated from the culture medium, and the protein of the present invention can be obtained by appropriately treating the cell. it can.
  • the cells are physically or enzymatically disrupted, and then the proteins involved in the biological clock of the present invention are separated and purified using centrifugation and various chromatographic plates. Can do.
  • the protein of the present invention can be obtained by removing the cells by centrifugation, filtration, or the like.
  • the protein involved in the biological clock of the present invention can be further purified with a conventional method using ammonium sulfate fractionation, various chromatography, alcohol precipitation, ultrafiltration and the like.
  • the protein involved in the biological clock of the present invention can also be synthesized in vitro using a cell-free protein synthesis system.
  • cell-free protein synthesis systems include PR0TEI0S (Toyobo) (PR0TEI0S (registered trademark)), which is a cell-free protein synthesis system derived from wheat germ extract.
  • PR0TEI0S Toyobo
  • PR0TEI0S registered trademark
  • a part of the amino acid sequence of the protein involved in the biological clock of the present invention can be artificially synthesized in vitro.
  • Such in vitro protein synthesis and peptide synthesis of proteins involved in the biological clock of the present invention are also included in the present invention.
  • the protein involved in the biological clock of the present invention may be produced by attaching a tag sequence for using affinity mouthmatography during purification. Examples of such tag sequences include GST tags, His tags, and Myc tags.
  • the present invention relates to the application of the clock gene PHYT0CL0CK 1 ⁇ PCLD and its encoded protein PCL1, which constitutes the center of the biological clock of higher plants, and the gene.
  • the clock gene PHYT0CL0CK 1 ⁇ PCLD and its encoded protein PCL1 which constitutes the center of the biological clock of higher plants, and the gene.
  • Arabidopsis thaliana where the ⁇ 7 gene of the present invention was disrupted, The circadian rhythm was lost, and the photoperiodic flowering was insensitive to the long-lived wild-type. Therefore, it is considered that various physiological phenomena and physiological activities of higher plants including photoperiodic flowering can be controlled by artificially manipulating the __ / gene of the present invention.
  • the present inventors connected the Arabidopsis thaliana (model Arabidopsis thaliana) with a promoter of 6 genes of Arabidopsis thaliana and the coding region of the modified firefly luciferase gene (LUC) /: : ⁇
  • a modified firefly luciferase gene LOC
  • bioluminescence rhythm of the T luminescence reporter gene as an index, we screened rhythm mutants that show abnormal circadian rhythms and isolated five acyclic mutants. These acyclic mutants had a non-periodic bioluminescence rhythm of the 67: luminescent reporter gene under both continuous light and continuous drought conditions, and the leaf sleep rhythm was also aperiodic .
  • the homologous gene of PCL1 gene is also present in rice, tobacco, tomato, potato, sorghum, and pine, and it can be easily estimated that it functions as a clock gene in general plants.
  • the present invention controls transcription of specific genes in the nucleus of plant cells, circadian rhythm oscillation and stability!
  • Plant clock gene PCL1 and its homologous and similar genes more specifically, plant clock protein PCL1 and its homologous and similar proteins characterized by having a DNA binding motif belonging to the GARP family, DNA and RA encoding them, as well as compositions of PCLl protein and PCL1 homologous protein and PCL1-like protein, vectors and transformants enabling expression of PCL1 protein and PCL1-homologous protein and PCL1-like protein, It relates to the production method of PCL1 protein, PCL1 homologous protein and PCL1-like protein.
  • the bioluminescent reporter strain G-38 of the Arabidopsis thai i ana) carrying the LUCW reporter gene is co-type. Unless otherwise stated, this was used as a wild type.
  • Arabidopsis acyclic mutants 0 / 7-_ and pell-2 are acyclic mutants isolated from the bioluminescent reporter strain G-38 and have been reported by the present inventors (Onai et al., Plant J. , 41: 1-11 (2004)), the mutants were isolated as 23-15D9 and 32-5E2, respectively.
  • Acyclic mutants / 7-7 and pell-2 both used wild-type G-38 and 4th generation (F 4 ) homozygous individuals after backcrossing.
  • Arabidopsis is MS (Murashige and Skoog, Physiol. Plant. 15: 473-497 (1962) containing 20.0 ⁇ 0.3 ° C, 1.5% (w / v) sucrose. ) Aseptically grown on a solid medium according to our method (Onai et al., Plant J., 41: 1-11 (2004)). Irradiation light during plant cultivation was white light of 70 mol / m 2 / S.
  • the GI £ ⁇ bioluminescence pattern of wild-type strains G-38 and / ⁇ L? Mutants is shown in Figure 1. Wild-type strain G-38 showed a clear bioluminescence rhythm under both continuous light and continuous dark conditions, but the mutant was aperiodic under both conditions and showed no rhythm. It was. Therefore, the gene was found to be essential for ":: ⁇ bioluminescence rhythm.
  • GI bioluminescence under light and dark cycle conditions is measured on plants by 12 hours light / 12 hours light-dark cycle (temperature during light cycle is constant at 22 ° C) or 12 hours The test was performed while giving a temperature cycle of 22 ° C / 12 hours and 17 ° C (continuous bright during the temperature cycle).
  • Fig. 2a shows the bioluminescence pattern of wild-type strain G-38 and ⁇ 7 mutant under temperature cycling conditions.
  • the GI: T bioluminescence pattern is shown in Figure 2b, respectively.
  • Wild-type strain G-38 showed a clear bioluminescence rhythm under light-dark cycle conditions, but the luminescence pattern of the mutant remained high at a constant level during the light period, and the light intensity during the dark period. A rectangle indicating a drop was shown. This only reflects the fact that the ⁇ gene is a light-inducible gene and its expression level is higher in bright conditions than in dark conditions, and the mutant bioluminescence does not show rhythm in bright and dark conditions. Means.
  • wild-type strain G-38 showed a clear bioluminescence rhythm under temperature cycling conditions, while cJ / mutant was 17 ° C.
  • Figure 3 shows the sleep pattern of wild-type strains and mutant leaves.
  • the wild-type strain showed a clear sleep rhythm, but the c mutant had no sleep activity observed and was aperiodic and showed no rhythm. Therefore, the ⁇ 7 gene was found to be essential for leaf sleep rhythm.
  • GI ⁇ T0C ELF4, CCA1, Z] ⁇ have been discovered as genes that are thought to be deeply involved in biological clocks of higher plants, and the mRNA levels of these genes are known to exhibit circadian rhythms ( Young and Kay, Nat. Rev. Genet. 2: 702-715 (2001); Salome and McClung, J. Biol. Rhythms 19: 425-435 (2004)). In addition, photosynthetic system It is known that the gene which is a gene also shows circadian rhythm in the mRNA level (Millar and Kay, Science 267: 1161-1163 (1995)). c Northern blot analysis examined whether circadian rhythms of the mRNA levels of these genes were impaired in the mutants.
  • Irradiation light during plant cultivation was SO / i mol / mVs white light.
  • 10 plants are sampled at each time point at intervals of 3 hours from the start of continuous light and immediately with liquid nitrogen. Frozen.
  • RNeasy Midi Kit Rneasy (registered trademark)
  • QIAGEN total RNA was extracted from the frozen plant body. 5 ⁇ g of total RNA was electrophoresed on a 1.2% agarose gel containing formaldehyde and transferred to a native membrane. The transcribed total RNA was hybridized with a 32 P-labeled gene-specific DNA probe, and the mRNA accumulation amount of each gene was detected as radioactivity.
  • genes, Zeta / gene-specific 32 [rho label DNA pro one blanking are each, Makino et al. Method (Makino et al, Plant Cell Physiol 43:.. 58-69 (2002)) to thus prepared.
  • the 6J gene-specific 32 P-labeled DNA probe is the wild type strain Col-0 of the nucleotide sequence 8, 064, 660 to 8, 066, 052 registered in the GenBank / EMBL / DDBJ database with registration number NC-003070. And then prepared by cloning.
  • the gene-specific 32 P-labeled DNA probe was cloned from the wild-type strain Co to 0, 10, 474, 729 to 10, 475, 025 of the nucleotide sequence registered under the registration number NC_003070 in the GenBank / EMBL / DDBJ database. Prepared.
  • the ELF4 gene-specific 32 P-labeled DNA probe is registered with GenBank / EMBL / DDBJ database under the registration number NC-003070.
  • the base sequences 16, 741, 294 to 16, 742, 019 were prepared by cloning from the wild type strain Co /-.
  • Wild-type CoZ- strain and G-38 strain The seeds of the mutant pc _ /-7 and jOc- were allowed to absorb water, left still in the dark at 4 ° C for 2 days, and sown on soil (Vermiculite).
  • the cells were cultured at 22.0 ⁇ 0.5 ° C under long-day conditions (16-hour light period / 8-hour long period) or short-day conditions (10-hour light period / 14-hour long period).
  • the light irradiated to the plant in the light period was 100 imol / m 2 / s white light.
  • the flowering time was quantified by counting the number of all leaves of the plant when the plant was drawn to a height of 1.5 cm.
  • Arabidopsis is a long-day plant, and in the wild type, more leaves are cultivated when cultured under short-day conditions than when cultured under long-day conditions.
  • Flowering time of wild-type strains Col—0 and G-38, 7 mutant pcll—1 The measurement results are shown in FIG.
  • the wild-type strain showed a long-day nature with a small number of leaves under long-day conditions and a large number of leaves under short-day conditions. However, it was almost the same number of leaves and was insensitive to day length. That is, the mutant had impaired photoperiodism. Therefore, it was found that the 3 ⁇ 4 gene is essential for photoperiodic flowering.
  • the PCL1 gene was cloned by the map-based cloning method according to the following procedure. F 3 homozygous individuals PCLL-1 mutants - were mated to wild type Ler strain and (Ekotaipu Col 0), to give the seeds of the second generation (F 2). Culturing the F 2 plants, Gr. '. LUCW Les measured in constant light conditions bioluminescence one Tar gene, was select the host mode individual bodies that have a pcll-1 mutation in homozygous.
  • the physical location of the PCL1 gene was located about 150 kb between the SNP marker F18L15-1 (including SNP numbers CER468139 to CER468143 of the Monsanto Arabidopsis Polymorphism Collection) on the third chromosome and the CAPS marker T0PP5.
  • the base substitution was found in both pcll-1 and cJ /-on the gene organized as the reference number ⁇ ⁇ 3 ⁇ 4 ⁇ 45 in the database of the TAIR website, it was concluded that this was the PCL1 gene. did.
  • the structure of the PCL1 gene is completely published on RIKEN (RARGE; http: ⁇ rarge. Gsc. Riken. Go.
  • the amino acid sequence of the PCL1 protein estimated to be the base sequence of the PCL1 gene is shown in SEQ ID NO: 1 in the sequence listing. Both pcll-1 and ⁇ -mutations were nonsense mutations that produced a stop codon in the coding region.
  • the mutation is a mutation in which the 605th base G in the nucleotide sequence set forth in SEQ ID NO: 1 in the Sequence Listing is replaced with ⁇ , and the 149th amino acid residue in the amino acid sequence set forth in SEQ ID NO: 1 in the Sequence Listing. It can be seen that Trp becomes a stop codon.
  • 7- mutation is a mutation in which the 474th base C in the nucleotide sequence set forth in SEQ ID NO: 1 in the Sequence Listing is substituted with T, and the 106th amino acid in the amino acid sequence set forth in SEQ ID NO: 1 in the Sequence Listing. Residue Gin was found to be a stop codon.
  • the deduced structure of the PCL1 protein is shown in FIG.
  • the PCL1 protein was a novel protein consisting of 323 amino acid residues and having no homology with known proteins.
  • the GARP motif which is a DNA binding motif widely found in plant transcription factors, is located in the central part of the protein (amino acid residues 143 to 201 of the amino acid sequence shown in SEQ ID NO: 1 in the Sequence Listing). discovered.
  • ARR1 protein (Sakai et al., Plant Cell Physiol. 39: 1232–1239 (1998)) and ARR10 protein (Imamura et al., Plant Cell Physiol. 40: 733-742 (1999)) ) GARP motif has been investigated in detail for its function and structure.
  • ARR1 and ARR10 proteins are known to localize in the nucleus and bind to specific DNA via the GARP motif. It is also known that the amino acid residue of the GARP motif of the ARR10 protein binds to DNA by forming a helix-loop-hex Myb-like conformation (Hosoda et al., Plant Cell 14 : 2015-2029 (2002)) o Since the GARP motif in the PCL1 amino acid sequence is very similar to the GARP motif of the ARR1 protein and ARR10 protein, the PCL1 protein is localized in the nucleus via the GARP motif. It is thought to bind to DNA and regulate transcription by binding to specific DNA.
  • pclH ⁇ and-mutations are both recessive mutations and GARP Both pcll-1 and ⁇ 7- mutants are considered to be pell-deficient mutants because they are nonsense mutations that result in incomplete PCL1 protein lacking the motif.
  • the intracellular localization of the PCL1 protein was determined by referring to the method of Niwa et al. (Niwa et al., Plant J. 18: 455-463 (1999)) using GFP-PCL1 fusion protein and PCL ⁇ GFP fusion protein.
  • the GFP fluorescence was observed with a fluorescence microscope.
  • As a control only GFP was transiently expressed in onion epidermal cells, and the fluorescence of GFP was observed with a fluorescence microscope.
  • the GFP-PCL1 fusion protein and the PCL1-GFP B combined protein were localized in the nucleus (FIG. 8). Therefore, PCL1 protein is thought to localize in the nucleus in the cell.
  • PCL1 protein homologous and similar proteins were searched in public databases.
  • a gene encoding a PCLl-like protein in Arabidopsis thaliana and a gene encoding a PCLl homologous protein in rice Oryza sativ) were identified as tobacco Nicotiana benthandna.
  • FIG. 9 shows the results of comparing the amino acid sequences of the PCL1 protein, the PCL1-like protein, and the PCL1-homologous protein.
  • a putative gene base sequence of SEQ ID NO: 2 in the sequence listing
  • At5g59570 is significantly similar to the PCL1 protein (amino acid sequence of SEQ ID NO: 9 in the sequence listing). ) was coded.
  • the present inventors named this gene ⁇ (?-"( ⁇ .
  • the cDNA is presumed to encode a homologous protein of the PCL1 protein (amino acid sequence IJ number 12 in the sequence listing), although it is incomplete.
  • the nucleotide sequence of SEQ ID NO: 5 was discovered, and the inventors named it NtPCLl gene.
  • a cDNA base sequence of SEQ ID NO: 6 in the sequence listing
  • PCL1 protein amino acid sequence of SEQ ID NO: 13 in the sequence listing
  • the present inventors named this LePCLl gene.
  • Potato Sola rosros tuberosum
  • a cDNA that is presumed to encode a homologous protein of the PCL1 protein (amino acid sequence of SEQ ID NO: 14 in the Sequence Listing) that may be an incomplete full length (SEQ ID NO: of the Sequence Listing) 7 base sequences), and the inventors named it 7 genes.
  • pine Pi recommended taeda although it is incomplete, it is a homologous protein of PCL1 protein.
  • a cDNA presumed to encode (the amino acid sequence of SEQ ID NO: 15 in the sequence listing) was discovered, and the present inventors named it / gene.
  • Sorghtmi discovered a cDNA that is incomplete, but presumed to encode a homologous protein of the PCL1 protein (amino acid sequence of SEQ ID NO: 16 in the Sequence Listing).
  • RNA was electrophoresed on a 2% agarose gel containing formaldehyde and transferred to a nylon membrane. All the transcribed RA was hybridized with a 32 P-labeled PCL1 gene-specific DNA probe, and the amount of mRNA accumulated in the PCL1 gene was detected as radioactivity.
  • the PCL1 gene-specific 32 P-labeled DNA probe was prepared by cloning 1,021 to 1,992 of the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing from a wild type strain.
  • Example 1 1 PC: ⁇ Bioluminescence reporter strain production and bioluminescence rhythm>
  • A bioluminescent reporter strain was created by the following procedure. First, a bioluminescent reporter gene that connects the coding region of ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 7 gene promoter region (base sequence 1 to 1,020 of SEQ ID NO: 1 in the sequence listing) and improved firefly luciferase gene (Promega) Cassette H / 3 ⁇ 4L ?:: Z / was created and inserted into the cloning site of binary vector pBIB—Hyg (Becker, Nucleic Acids Res. 18: 203 (1990)) and pBIB / ⁇ 7 :: ⁇ Produced.
  • pBIB—Hyg Binary vector
  • pBIB / ⁇ 7 Z T-DNA region (including hygromycin B resistance gene HPT and PCL) was transferred to Arabidopsis thaliana via agrobacterium. Introduced into the genome of the strain-. Introduced transformants can be transformed into hygromycin B resistant according to the description of Weigel and Glazebrook (Weigel and Glazebrook, ARABIDOPSIS-'A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2002)). In addition, a homoplant (T 3 ) in which T-DNA was inserted into the gene locus was selected and used as a wild type PCL1 :: bioluminescent reporter strain.
  • Wild type silkworm The bioluminescence pattern of the luminescent reporter strain is shown in FIG. Wild-type silkworms under continuous light conditions: The bioluminescence of the luminescent reporter strain showed a clear circadian rhythm consistent with the circadian rhythm of PCL1 mA from the Northern blot analysis. In addition, although bioluminescence decreased to about one-third compared to continuous light, the bioluminescence of the wild-type par .: £ luminescent reporter strain showed a clear circadian rhythm even in continuous dark conditions. It was. These results indicate that the expression of ⁇ gene shows a clear circadian rhythm under both continuous light and continuous dark conditions.
  • pBIB / ⁇ PCLl T-DNA region (including hygromycin B metagenes HPT and 35S: PCL1) ) was introduced into the genome of wild-type Arabidopsis thaliana G-38 ⁇ GI-: wild-type strain with LUC luminescent reporter gene) via agrobacterium. Introduced transfectants are hygromycin B resistant plants according to the description of Weigel and Glazebrook (Weigel and Glazebrook, ARABIDOPbIS'-A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2002)). After selecting a homoplant (T 3 ) in which T-DNA was inserted into the gene locus and confirming that the PCL1 mRNA level in the plant cell was elevated by Northern plot analysis ⁇ Overexpressed body ⁇ 7-ox was used.
  • FIGS 12a and 12b show 6: bioluminescence patterns of wild-type strains G-38 and PCL1-ox plants under continuous light and continuous dark conditions.
  • the bioluminescence was measured according to the method of the present inventors (Onai et al., Plant J., 41: 1-11 (2004)). The bioluminescence was measured in continuous light or continuous darkness after resetting the biological clock with a 12-hour light / 12-hour light / dark cycle or a 12-hour dark / 12-hour light cycle.
  • the wild-type strain G-38 showed a clear bioluminescence rhythm under both continuous light and continuous dark conditions, but the ⁇ -ox plant was 3-4 days under either condition Until The rhythm has disappeared.
  • FIG. 12c shows the dormant movement pattern of wild-type strains and leaves of CZ7 ox plants. The measurement of leaf sleep movement was performed according to the method of the present inventors (Onai et al., Plant J., 41: 1-11 (2004)). Wild-type strains showed clear sleep rhythm, but in ox plants, sleep rhythm disappeared by the 4th day. In other words, the overexpression of ⁇ 7 gene also disrupted leaf sleep rhythm.
  • rhythmic circadian expression of zozogenes is essential for circadian rhythm oscillation.
  • the PCLl-o plant in addition to the endogenous PCLA gene, CaMV35S :: PCL1 gene, which is the PCL1 gene overexpression set
  • the endogenous / 3 ⁇ 47Z gene expression was examined by Northern plot analysis in a plant having an ethatopic site on the chromosome.
  • Northern blot analysis of wild-type strain G-38, pell mutant, and PCLln plant was performed as follows. First, each surface sterilized seed was sown in MS (Murashige and Skoog, Physiol. Plant. 15: 473-497 (1962)) solid medium containing 1.5% (w / v) sucrose.
  • the cells were cultured for 11 days under the conditions of continuous light and 22.0 ⁇ 0.3 ° C, and after 3 light / dark cycles of 12 hours light period / 12 hours dark period, they were returned to continuous light conditions.
  • Irradiation light during plant cultivation was white light of 50; mol / m 2 / s.
  • 10 plants were sampled at each time point at intervals of 4 hours from the start of continuous light and immediately frozen in liquid nitrogen did. Then, using the RNeasy Midi Kit manufactured by QIAGEN, total RNA was extracted from the frozen plant body. All negation of 5 ⁇ ⁇ containing formaldehyde 1. 2 ° /.
  • RNA probe that specifically hybridizes to mRNA derived from an endogenous gene is a 3 'untranslated region of PCL1 mRNA synthesized in vitro while incorporating 32 P (1 of the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing). 992 to 2,237) were used.
  • Example 6 the present inventors cloned a biological clock gene 7 that regulates the circadian rhythm from the Arabidopsis genome. Further examples: In ⁇ 4 and Example 10 all mutants lost all circadian rhythms examined. Therefore, 7 genes were found to satisfy the above condition (1) because all circadian rhythms were lost due to loss of function of one gene.
  • Example 5 the pell mutant was insensitive to photoperiodic flowering. Therefore, the PCL1 gene loses photoperiodism due to loss of function of one gene.
  • Example 10 and Example 11/1 / 3 ⁇ 47Z gene expression showed circadian rhythm under continuous light and continuous conditions. Therefore, it was found that the PCL1 gene satisfies the above condition (3).
  • Example 1 2 and Example 1 3 overexpression of the PCL1 gene disrupted all circadian-rhythms examined. Therefore, it was clarified that ⁇ 7 gene satisfies the above condition (4).
  • Example 13 the loss of __ gene function increased its own expression, and overexpression suppressed its own expression. Therefore, it was clarified that ⁇ 7 gene satisfies the above condition (5) because its expression is controlled by negative self-feedback.
  • ⁇ 7 gene was found to be a plant clock gene because it met all the conditions required for a plant biological clock gene.
  • Example 7 and Example 8 the PCIA gene encoded a nuclear protein having a GARP motif. Therefore, PCL1 protein is thought to function as a transcription factor that is localized in the nucleus in plant cells, binds to specific DNA, and controls gene expression.
  • Example 9 a gene encoding a protein similar to and homologous to the PCL1 protein was found in many plants. These proteins are easily assumed to function as clock proteins.
  • FIG. 14 shows a model of a plant biological clock based on the present invention.
  • the 7 genes form a negative self-feedback loop, which is considered to be the nature of the biological clock.
  • ⁇ 7 gene regulates the expression of known clock-related genes T0C1, GI, and suppresses the expression of Z and Z, and these gene expression networks stabilize circadian oscillations. It is thought that it is letting.
  • Example 1 4 PCLL '.: ⁇ Production of bioluminescent reporter strain and bioluminescent rhythm>
  • a PCLL :: bioluminescence reporter strain was created by the following procedure.
  • a bioluminescent reporter gene cassette PCLL:: LUC that connects the promoter region of the ⁇ Z gene and the coding region of the improved firefly luciferase gene was prepared, and this was used as a vector for the pBIB_Hyg (Becker, Nucleic Acids Res. : 203 (1990)) to create pBIB / H2:: Z ⁇ ( ⁇ .
  • pBIB_Hyg Becker, Nucleic Acids Res. : 203 (1990)
  • ⁇ / 3 ⁇ 42 ⁇ LUC D T-DNA region (including hygromycin metabolite gene ⁇ and PCLL '. :) was introduced into the genome of Arabidopsis wild-type strain Col-0 via agrobacterium.
  • Transfected transgenics are selected as hygromycin B resistant plants according to the description of Weigel and Glazebrook (Weigel and Glazebrook, ARABIDOPSIS: A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2002)).
  • T-DNA gar locus to insert homo plants (T 3) to select the wild-type 3 ⁇ 4 ⁇ : ⁇ ⁇ were used as a bioluminescence reporter strain.
  • Bioluminescence measurement of wild-type PCLL was performed according to our method (Onai et al., Plant J., 41: 1-11 (2004)). I went. The bioluminescence was measured in continuous light or continuous dark after resetting the biological clock with a 12-hour light / 12-hour light-dark cycle or 12-hour dark / 12 hours light cycle.
  • Fig. 22 shows the bioluminescence pattern of the wild-type silkworm: ⁇ luminescence reporter strain.
  • the bioluminescence of the wild-type PCLL :: LUC reporter strain showed a clear circadian rhythm consistent with that of the PCL1 :: ⁇ luminescence reporter strain.
  • the overexpression of the PCL1 gene destroys the circadian rhythm.
  • the PCLL gene has the same or very similar function as the PCL1 gene, that is, functions as a clock gene
  • overexpression of PCLL is expected to have a serious effect on circadian rhythm.
  • CZZ overexpressing body ox was produced by the following procedure. First, the caliper mosaic virus 35S promoter CaMV35S Genomics / EMBL / DDBJ database registration number AF485783 registered nucleotide sequence 4, 951 to 5, 815) and the PCLL gene code region were connected to increase PCLL.
  • Example 14 and Example 15 showed that the PCLL gene not only has a similar nucleotide sequence to the PCL1 gene, but also has very similar expression patterns and functions. Therefore, the / 3 ⁇ 47 gene can be said to be an important gene for clock function.
  • ⁇ 7 similar genes other than ⁇ ⁇ genes described in this specification and ⁇ similar genes that are expected to be discovered in the future also have an important role in clock function, similar to genes. It is strongly suggested.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 以下の(a)、又は(b)からなる生物時計の制御に関与する核酸。(a)配列表の配列番号1に示す、塩基配列番号1−2846で示される塩基配列からなる核酸。(b)前記塩基配列番号1−2846の塩基配列の一部が欠失、置換若しくは付加されていて、かつ、前記塩基配列と80%の相同性を有する核酸

Description

核酸、 当該核酸をコードするアミノ酸、 当該核酸及びアミノ酸か らなるプローブ、 及ぴ当該プローブを用いたスクリーニング法
技術分野
本発明は、 核酸、 当該核酸を明コードするアミノ酸、 当該核酸及ぴアミノ酸から なるプローブ、 及ぴ当該プローブを用いたスクリーニング法に関し、 特に、 生物 時計に関与する核酸、 当該核酸をコードするアミノ酸、 当該核酸及びアミノ酸か らなるプローブ、 及び当該プローブを用いたスクリーニング法に関する。
背景技術
外界の昼夜交替に伴う光や温度変化の日周変動に適応するため、 シァノバクテ リアからヒ トに至るまで、 ほとんど全ての生物は生物時計 (概日時計または体内 時計とも呼ばれる)を備えており、生理活性に 24時間周期のリズム(概日リズム) を示す。 この概日リズムの発振は時計遺伝子の正と負のフィードバック発現制御 によって生み出されていることが藍色細菌、 ァカパンカビ、 ショウジヨウバエ、 ネズミ、 ヒ トなどで明らかにされている(Dunlap, Cell, 96 : 271-290 (1999) ; Ishiura et al., Science 281: 1519-1523 (1998) ; Stanewsky, J. Neurosci. 54 : 111-147 (2003) )。生物界の間で時計遺伝子の類似性は見い出されていないが、 リズム発振の制御メカニズムは極めて類似している。 植物においては、 気孔の開 閉、 葉の就眠運動、 胚軸伸長、 光合成、 光周的花成、 形態形成、 様々な代謝活性 など、 ほとんど全ての生理現象が生物時計によって支配されている(Lumsden and Millar, Biological Rhythms and Photoperiodism m Plants, Oxford: Bios Scientific Publisher (1998); McClung, Annu. Rev. Plant Physiol. Plant Mol. Biol. 52 : 139-162 (2001) )。 また、 生物時計は遺伝子発現も制御している。 例え ば、 モデル高等植物であるシロイヌナズナでは連続明条件下で全遺伝子の約 6 % が日周変動を伴った発現をしていることが明らかとなっている(Harmer et al. , Science 290:2110-2113 (2000))o し力 し、 植物の時計遺伝子は未だに確定されて おらず、 生物時計の分子メカニズムもほとんど未解明である。
一般に、 植物の時計遺伝子として必要とされる条件は以下の 5点である: (1) —遺伝子の機能喪失によって全ての概日リズムが失われる、(2)—遺伝子の機能喪 失によつて光周性が喪失する、 (3)遺伝子発現が連続明条件下およぴ連続暗条件下 で概日リズムを示す、 (4)遺伝子の過剰発現は全ての概日リズムを破壌する、 (5) 自身の遺伝子発現をフィードパック制御する。 しかし、 これらの条件を全て満た す植物の遺伝子は発見されていな!/、。
シロイヌナズナにおいては、 遺伝子 (Wang and Tobin, Cell 93:1207 - 1217 (1998))、 遺伝子(Schaffer et al., Cell 93: 1219-1229 (1998))、 T0C1/APRR1 遺伝子 (Makino et al., Plant Cell Physiol. 43:58-69 (2000); Strayer et al. , Science 289:768-771 (2000))、 L¾遺伝子(Doyle et al. , Nature 419 :74 - 77 (2002) )、 が時計遺伝子であるとする説が存在している (Young and Kay, Nat. Rev. Genet. 2:702—715 (2001); Yanovsky and Kay, Nat. Rev. Mol. Cell Biol. 4:265-275 (2003))。 また、 シロイヌナズナにおいては概日リズムのパラメーター (リズムの周期や位相、 および振幅) に影響する遺伝子が発見されているが、 こ れらは光受容体および光シグナル伝達系の遺伝子である(Hayama and Coupland, Curr. Op in. Plant Biol. 6:13-19 (2003); Yanovsky and Kay, Nat. Rev. Mol. Cell Biol. 4:265-275 (2003))。
発明の開示
し力 しながら、 これらの遺伝子は、 先に述べた植物の時計遺伝子として必要と される条件を満たさない。 これらの遺伝子を時計遺伝子と考える場合の最大の問 題点は、 これらの遺伝子はいずれも一遺伝子の機能喪失で概日リズムが喪失しな いので、 これらの遺伝子はリズム発振に必須ではないという点である。 以上の状 況から、 植物の時計遺伝子はまだ同定されていないと考えられる。
そこで、 本発明は、 生理現象、 生理活性を制御することが可能な生物時計を構 成する遺伝子、 及び当該遺伝子がコードするタンパク質を提供することを目的と するものである。
上記目的を達成するために、 本発明者らは、 まず、 シロイヌナズナにおいて網 羅的かつ大規模な時計変異体のスクリ一ユングを行い、無周期変異体 ^ - 変異 体と
Figure imgf000004_0001
これらの変異体の原因遺伝子として本発明の核酸、 及び当該核酸がコードするタンパク質を見出した。
すなわち、本発明の生物時計の制御に関与する核酸は、以下の( a )、又は( b ) 、 すなわち、
( a )配列表の配列番号 1に示す、塩基配列番号 1一 2846で示される塩基配列から なる核酸、
( b )前記塩基配列番号 1一 2846の塩基配列の一部が欠失、置換若しくは付加され ていて、 かつ、 前記塩基配列と 8 0 %の相同性を有する核酸、 からなることを特 徴とする。
また、 本発明の生物時計の制御に関与する核酸は、 以下の )、 又は(b )、 す なわち、
( a )配列表の配列番号 2に示す、塩基配列番号 1一 4554で示される塩基配列から なる核酸、
( b )前記塩基配列番号 1—4554の塩基配列の一部が欠失、置換若しくは付加され ていて、 かつ前記塩基配列と 8 0 %の相同性を有する核酸、 からなることを特徴 とする。
また、 本発明の生物時計の制御に関与する核酸は、 以下の )、 又は(b )、 す なわち、
( a )配列表の配列番号 3に示す、塩基配列番号 1一 4700で示される塩基配列から なる核酸、
( b )前記塩基配列番号 1一 4700の塩基配列の一部が欠失、置換若しくは付加され ていて、 かつ前記塩基配列と 8 0 %の相同性を有する核酸、 力 らなることを特徵 とする。
また、 本発明の生物時計の制御に関与する核酸は、 以下の(a )、 又は(b )、 す なわち、
( a )配列表の配列番号 4に示す、 塩基配列番号 1一 1505 で示される塩基配列か らなる核酸、
( b )前記塩基配列番号 1一 Ιδθδの塩基配列の一部が欠失、置換若しくは付加され ていて、 かつ、 前記塩基配列と 8 0 %の相同性を有する核酸、 からなることを特 徴とする。
また、 本発明の生物時計の制御に関与する核酸は、 以下の(a )、 又は(b )、 す なわち、
( a )配列表の配列番号 5に示す、塩基配列番号 1一 400で示される塩基配列から なる核酸、
( b )前記塩基配列番号 1—400 の塩基配列の一部が欠失、 置換若しくは付加され ていて、 かつ前記塩基配列と 8 0 %の相同性を有する核酸からなる。
また、 本発明の生物時計の制御に関与する核酸は、 以下の(a )、 又は(b )、 す なわち、
( a )配列表の配列番号 6に示す、 塩基配列番号 1一 641 で示される塩基配列から なる核酸、
( b )前記塩基配列番号 1—641 の塩基配列の一部が欠失、 置換若しくは付加され ていて、 かつ前記塩基配列と 8 0 %の相同性を有する核酸、 からなることを特徴 とする。
また、 本発明の生物時計の制御に関与する核酸は、 以下の(a )、 又は(b )、 す なわち、
( a )配列表の配列番号 7に示す、塩基配列番号 1一 1400で示される塩基配列から なる核酸、
( b )前記塩基配列番号 1一 1400の塩基配列の一部が欠失、置換若しくは付加され ていて、 かつ、 前記塩基配列と 8 0 %の相同性を有する核酸、 からなることを特 徴とする。
また、 本発明のプローブは、 請求項 1〜 7項のいずれか 1項に記載の核酸から なることを特 ί敷とする。
また、 本発明のプローブの好ましい実施態様において、 生物における生物時計 の制御に関与する遺伝子を探索用に使用することを特徴とする。
本発明の生物時計の制御に関与するぺプチド断片は、 以下の( a )、 又は( b )、 すなわち、
( a )配列表の配列番号 8に示す、 アミノ酸配列番号 1一 323 で示されるアミノ酸 配列からなるペプチド断片、
( b )当該配列番号 8に示す、 アミノ酸配列の一部が欠失、 置換若しくは付加され ていて、 かつ前記アミノ酸配列と 8 0 %の相同性を有するぺプチド断片、 からな ることを特敷とする。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a )、 又は ( b )、 すなわち、
( a )配列表の配列番号 9に示す、 ァミノ酸配列番号 1一 298 で示されるアミノ酸 配列からなるペプチド断片、
( b )当該配列番号 9に示す、 アミノ酸配列の一部が欠失、 置換若しくは付加され ていて、 かつ前記アミノ酸配列と 8 0 %の相同性を有するペプチド断片、 からな ることを特 ί敷とする。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a )、 又は ( b )、 すなわち、
( a )配列表の配列番号 1 0に示す、 ァミノ酸配列番号 1一 238 で示されるァミノ 酸配列からなるぺプチド断片、
( b )当該配列番号 1 0に示す、 ァミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 かつ前記ァミノ酸配列と 8 0 %の相同性を有するぺプチド断片、 から なることを特徴とする。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a)、 又は (b) 、 すなわち、
(a)配列表の配列番号 1 1に示す、 アミノ酸配列番号 1—312 で示されるァミノ 酸配列からなるぺプチド断片、
( b )当該配列番号 1 1に示す、 ァミノ酸配列の一部が欠失、 置換若しくは付カロさ れていて、 かつ前記ァミノ酸配列と 80 %の相同性を有するぺプチド断片、 から なることを特徴とする。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a)、 又は (b)、 すなわち、 t
( a )配列表の配列番号 1 2に示す、ァミノ酸配列番号 1一 70で示されるアミノ酸 配列からなるペプチド断片、
(b)当該配列番号 1 2に示す、 アミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 かつ前記ァミノ酸配列と 80 %の相同性を有するぺプチド断片、 から なることを特徴とする。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a)、 又は (b) 、 すなわち、
( a )配列表の配列番号 1 3に示す、 ァミノ酸配列番号 1一 185 で示されるァミノ 酸配列からなるぺプチド断片、
(b)当該配列番号 1 3に示す、 アミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 かつ前記アミノ酸配列と 80 %の相同性を有するぺプチド断片、 から なることを特徴とする。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a)、 又は (b)、 すなわち、
( a )配列表の配列番号 14に示す、 ァミノ酸配列番号 1一 314で示されるァミノ 酸配列からなるぺプチド断片、
― Ό― ( b )当該配列番号 1 4に示す、 ァミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 力つ前記アミノ酸配列と 8 0 %の相同性を有するペプチド断片、 力、ら なることを特徴とする。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の )、 又は
( b ) 、 すなわち、
( a )配列表の配列番号 1 5に示す、 アミノ酸配列番号 1—121 で示されるァミノ 酸配列からなるぺプチド断片、
( b )当該配列番号 1 5に示す、 アミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 力つ前記ァミノ酸配列と 8 0 %の相同性を有するぺプチド断片、 から なることを特 ί敷とする。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a )、 又は ( b )、 すなわち、
( a )配列表の配列番号 1 6に示す、 ァミノ酸配列番号 1—200 で示されるァミノ 酸配列からなるぺプチド断片、
( b )当該配列番号 1 6に示す、 ァミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 かつ前記アミノ酸配列と 8 0 %の相同性を有するペプチド断片、 から なることを特 ί敷とする。
また、 本発明のプローブは、 請求項 1 0〜1 8項のいずれか 1項に記載のぺプ チド断片からなることを特徴とする。
また、 本発明の生物時計の制御に関与する遺伝子のスクリーニング方法は、 請 求項 8、 9、 又は 1 9項のいずれか 1項に記載のプローブを用いたことを特徴と する。
また、 本発明の生物時計の制御に関与する遺伝子のスクリーニング方法の好ま しい実施態様において、スクリーニングを、 in situハイブリダイゼーション法、 サザンハイプリダイゼーション法、 全塩基配列決定からなる群から選択される少 なくとも 1種を用いて行なうことを特徴とする。 また、 本発明のペプチド断片の好ましい実施態様において、 前記ペプチド断片 が、 細胞の核における特定の遺伝子の転写、 概日リズムの発振と安定ィ匕を制御す ることを特徴とする。
また、 本発明のペプチド断片の好ましい実施態様において、 前記ペプチド断片 が、 GARPフアミリーに属する DNA結合モチーフを有することを特徴とする。 また、 本発明の生物時計制御用組成物は、 請求項 1 0〜1 8項のいずれか 1項 に記載のぺプチド断片を含有することを特徴とする。
また、 本発明のベクターは、 請求項 1〜7項のいずれか 1項に記載の DNA又は RNAを含有していることを特徴とする。
また、 本発明の形質転換体は、 請求項 1〜7項のいずれか 1項に記載の DNA又 は RNAを発現可能に保持することを特徴とする。
また、 本発明のペプチドの生産方法は、 本発明の形質転換体を培養する工程を 含む、 ことを特徴とする。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の )、 又は ( b ) 、 すなわち、
( a )配列表の配列番号 8に示す、 ァミノ酸配列番号 1—210 で示されるアミノ酸 配列からなるペプチド断片、
( b )当該配列番号 8に示す、 ァミノ酸配列番号 1一 210で示されるァミノ酸配列 の一部が欠失、 置換若しくは付カ卩されていて、 かつ前記アミノ酸配列と 8 0 %の 相同性を有するペプチド断片、 からなる。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a )、 又は ( b ) 、 すなわち、
( a )配列表の配列番号 8に示す、 アミノ酸配列番号 1—143 で示されるアミノ酸 配列からなるペプチド断片、
( b )当該配列番号 8に示す、 ァミノ酸配列番号 1一 143で示されるァミノ酸配列 の一部が欠失、 置換若しくは付加されていて、 かつ前記アミノ酸配列と 8 0 %の 相同性を有するペプチド断片、 力 らなる。
また、 本発明のプローブは、 請求項 2 8又は 2 9項に記載のペプチド断片から なる。
また本発明の生物時計の制御に関与するぺプチド断片のスクリ一二ング方法は、 請求項 3 0記載のプローブを用いることを特徵とする。
本発明によれば、 7遺伝子の相同遺伝子 OsPCLlをイネゲノムからも単離で きたので、 イネにおいてもシロイヌナズナと同様な操作が可能となるという有利 な効果を奏する。 さらに、 尸 7遺伝子の相同遺伝子の cDNAをジャガイモ、 トマ ト、 タバコ、 モロコシ、 マツにおいても見出した。 これらの本発明の核酸、 及び ぺプチド断片によれば、 それぞれの植物において時計遺伝子として機能している と容易に推定され、本発明の PCL1遺伝子または PCL1相同遺伝子および PCL1類似 遺伝子を人為的に操作することで、 光周的花成を含めた高等植物の様々な生理現 象 ·生理活性を制御するために基本的な研究材料を提供し得るという有利な効果 を奏する。
また、 本発明によれば、 時計遺伝子のコードする時計タンパク質のアミノ酸配 列が明らかとなったので、 時計タンパク質の活性を制御する農薬を開発すること で、 任意の時期に効率的に植物の生理活性を制御する道も開かれるという有利な 効果を奏する。 これによつて、 農産物の生産性向上や品種改良などを効率的に進 めることが可能となる。
図面の簡単な説明
図 1は、 連続明条件下または連続喑条件下における cL?変異体の GI'.: ΖίΤ生物 発光パターンを示す。 野生型株 G-38 (青) 、 7- 7変異体 (赤) 、 変異 体 (茶) の 6 : : ΖίΤ生物発光を連続明条件下 (a) または連続暗条件下 (b) で測 定した。 図中の白抜きのバーと黒塗りのバーは、 それぞれ喑期と明期を表してい る。 図中のプロットは各%個体の平均値土標準偏差である。
図 2は、 明暗サイクル条件下または温度サイクル条件下における pell変異体の J: 生物発光パターンを示す。 野生型株 G- 38 (青) と C 7- 7変異体 (赤) の J: : Z T生物発光を 12時間喑期 /12時間喑期の明暗サイクル (a ; 12L12D) ま たは 12時間 22°C/12時間 17°Cの温度サイクル (b ; 22°C17°C) を与えながら測定 した。図中の白抜きのバーと黒塗りのバーは、それぞれ喑期と明期を表して!/、る。 図中の黄色レ、バーと水色のバーは、それぞれ 22°Cの期間と 17°Cの期間を表してい る。 図中のプロットは各 96個体の平均値土標準偏差である。
図 3は、 7変異体の葉の就眠運動を示す。 野生型株 G - 38 (青) と CJ / 変異 体 (赤) の葉の就眠運動を連続明条件下で測定した。 図中の白抜きのバーは暗期 を表している。 測定開始時の子葉の Y軸方向の位置を 0としてプロットした。 図 4は、 c 変異体における CAB2、 TOCl、 ELF4、 CCA1、 Z ダの遺伝子発現の ノザンブロット解析を示す。連続明条件下における野生型株 G - 38 (青) と pcll-l 変異体 (赤) の細胞内の J mRNA (a) 、 CAB2 mRNA (b) 、 TOCl mRNA (c) 、 ELF4 mRNA (d) 、 CCA1 mRNA (e) 、 LHV mRNA (f) レベルのノザンプロット解析を行つ た。
図 5は、 c 変異体の光周的花成を示す。 野生型 Co/- 株及ぴ G- 38株、 pell 異体 pcll-l及ぴ pell- 2を 16時間明期 /8時間暗期 (16L8D;薄緑) の長日条件下 または 10時間明期 /14時間暗期 (10L14D ;濃緑) の短日条件下で培養して、 花成 時期を決定した。
図 6は、 PCL1遺伝子のマップベースクローニングと PCL1遺伝子の構造を示す。 図 7は、 PCL1タンパク質の構造を示す。 PCL1タンパク質の構造と PCL1タンパク 質、 ARR1タンパク質、 ARR10タンパク質の GARPモチーフのアミノ酸残基のァライ メントを示した。 PCL1タンパク質に対して一致するアミノ酸残基を赤線で囲んだ。 図 8は、 PCL1タンパク質の細胞内局在の様子を示す。 (a, c, e) 蛍光顕微鏡で 観察した GFPの蛍光。 (b, d, e) は光学顕微鏡で観察した細胞の像。 (a, b) GFP のみを発現させた場合。 (c, d) PCL1-GFP1融合タンパク質を発現させた場合。 (e, f) GFP-PCL1融合タンパク質を発現させた場合。 図 9は、 PCL1タンパク質と PCL1類似タンパク質および相同タンパク質との比較 を示す。 シロイヌナズナ iArabidopsis thaliana の PCL1タンパク質、 シロイヌ ナズナ iArabidopsis thaliana)の PCL1類似タンパク質 PCLL、ィネ Oryza sativa) の PCL1相同タンパク質 OsPCLl、 タバコ Nicotiana benthami の PCL1相同タ ンパク質 NbPCLl、 トマト ycopersicon esculen turn) の PCL1相同タンパク質 LePCLl、 ジャガイモ Solanum tuberoswi) の PCL1相同タンパク質 StPCLl、 マツ {Pinus taeda)の PCL1相同タンパク質 PtPCLlの各ァミノ酸配列のマルチプルァ ライメントを示した。 一致するアミノ酸残基にはアスタリスク (*) を、類似する アミノ酸残基にはドット (.) を付した。 ギャップはバー (-) で示した。 GARPモ チーフはアミノ酸残基の上に赤線を付した。 PCL1アミノ酸配列中で赤文字で示し たアミノ酸残基は、 cJ 変異と ? ^変異で停止コドンに変わっているアミ ノ酸残基である。
図 1 0は、尸 7遺伝子発現のノザンブロット解析を示す。 連続明条件下における 野生型株 G-38 (青) と -7変異体 (赤) の細胞内の/7 CL/ mRNAのレベルをノ ザンブロット解析した。
図 1 1は、 尸 :: ΖίΤ生物発光リズムを示す。 野生型株 G- 38 (青) pcU- 異体 (赤) の/7 : Ζ£Τ生物発光を連続明条件下 (a) または連続暗条件下 (b) で測定した。 図中の白抜きのバーと黒塗りのパーは、 それぞれ喑期と明期を表し ている。 図中のプロットは各 48個体の平均値土標準偏差である。
図 1 2は、 ¾Z7-ox植物体の GI: 生物発光パターンおよび葉の就眠運動を示 す。 (a, b) 野生型株 G-38 (青) と / ¾Z7 - or植物体 (緑) の :^ T生物発光を 連続明条件下 (a) または連続暗条件下 (b) で測定した。 図中の白抜きのバーと 黒塗りのバーは、 それぞれ暗期と明期を表している。 図中のプロットは、 それぞ れ 96個体 (a) または 48個体 (b) の平均値土標準偏差である。 (c) 野生型株 G-38 (青) と尸 植物体 (緑) の葉の就眠運動を連続明条件下で測定した。 測定開始時の子葉の Y軸方向の位置を 0としてプロットした。 図中の白抜きのバ 一は暗期を表している。図中のプロットは各 12個体の平均値土標準偏差である。 図 1 3は、 PCLl-o 植物体における内在 PCL1遺伝子発現のノザンブロット解析を 示す。 連続明条件下における野生型株 G-38 (青) 、 変異体 (赤) 、 PCLl-ox 植物体 (緑) の細胞内の内在尸 遺伝子由来の 7 mRNAのレベルをノザンブロ ット解析した。
図 1 4は、 植物の生物時計のモデル図を示す。 本発明で発見した遺伝子制御様式 を赤線で、 既知の遺伝子制御様式を青線で示した。 矢印は遺伝子発現の促進を、 横線は遺伝子発現の抑制を表している。 /7 7遺伝子発現の負の自己フィードバッ クループは時計発振に必須であり、 これが植物時計の中心振動体である。
図 1 5— 1は、 尸 遺伝子と PCL1タンパク質 Uirabidopsis thaliand) の配列 を示す図である。
図 1 5— 2は、 PCL1遺伝子と PCL1タンパク質 lrabidopsis thaliana) の配列 を示す図である。
図 1 5 _ 3は、 PCL1遺伝子と PCL1タンパク質 、Arabidopsis thaliana) の配列 を示す図である。
図 1 5— 4は、 PCL1遺伝子と PCL1タンパク質 、Arabidopsis thaliana) の配列 を示す図である。
図 1 6—1は、 尸 遺伝子と PCLLタンパク質 irabidopsis thaliana) の配列を 示す図である。
図 1 6— 2は、 i¾ZZ遺伝子と PCLLタンパク質 Arabidopsis thaliana) の配列 を示す図である。
図 1 6— 3は、 遺伝子と PCLLタンパク質 、Arabidopsis thaliana) の配列 を示す図である。
図 1 6— 4は、 尸 遺伝子と PCLLタンパク質 、Arabid。psis thaliana) の配列 を示す図である。
図 1 7 _ 1は、 尸 7遺伝子と OsPCLlタンパク質 Oryza sativ ) の配列を示す 図である。
図 1 7— 2は、 (¾尸 7遺伝子と OsPCLlタンパク質 Oryza sativa) の配列を示 す図である。
図 1 7— 3は、 遺伝子と OsPCLlタンパク質 0ryza sativa) の配列を示 す図である。
図 1 7— 4は、 尸 遺伝子と OsPCLlタンパク質 Oi za sativa) の配列を示 す図である。
図 1 8— 1は、 遺伝子と NbPCLlタンパク質 Nicotiana benthatnina の配 列を示す図である。
図 1 8— 2は、 7\¾尸 _ 遺伝子と NbPCLlタンパク質 Nicotiana benthamina) の 配列を示す図である。
図 1 8— 3は、 7\¾尸 ゾ遺伝子と NbPCLlタンパク質 Nicotiana benthamina) の 配列を示す図である。
図 1 9は、 7遺伝子と NtPCLlタンパク質 Nicotiana tabacimi) の配列を示 す図である。
図 2 0—1は、 Ze ¾Z7遺伝子と LePCLlタンパク質 ycopersicon esculentum) の配列を示すである。
図 2 0— 2は、 尸 7遺伝子と LePCLlタンパク質 ycopersicon esculentum) の配列を示すである。
図 2 1— 1は、 5ΐ尸 7遺伝子と StPCLlタンパク質 、Sol画 m tuberosum) の配列 を示す図である。
図 2 1— 2は、 尸 7遺伝子と StPCLlタンパク質 ^Solamm tuberosuni) の配列 を示す図である。
図 2 1 _ 3は、 StPCLl遺伝子と StPCLlタンパク質 Solammi tuberosum) の配列 を示す図である。
図 2 2は、 PCLL : ZZT生物発光リズムを示す。 野生型の PCLL:: IMCW レポータ 一株の生物発光を連続明 (a) または連続暗 (b) で測定した。 図中の白抜きのバ 一と黒塗りのバーは、 それぞれ暗期と明期を表している。 図中のプロットは各 96 個体の平均値土標準偏差である。
図 2 3は、 ¾2 -ox植物体の /: : ΖίΤ生物発光パターンを示す。 or植物体 の ::ΖίΤ生物発光を連続明で測定した。 図中の白抜きのパーは明期を表してい る。 図中のプロットは、 それぞれ 96個体の平均値土標準偏差である。
発明を実施するための最良の形態
まず、 本発明の核酸について説明すると、 本発明の生物時計の制御に関与する 核酸は、 以下の(a )、 又は(b ) 、 すなわち、
( a )配列表の配列番号 1に示す、塩基配列番号 1一 2846で示される塩基配列から なる核酸、
( b )前記塩基配列番号 1—2846の塩基配列の一部が欠失、置換若しくは付加さ れていて、 かつ、 前記塩基配列と 8 0 %、 好ましくは、 9 0 %、 より好ましくは 9 5 %の相同性を有する核酸、 力 らなる。 当該核酸は、 シロイヌナズナ由来のも のである。本発明の核酸には、一部が欠失、置換若しくは付カ卩されていて、かつ、 前記塩基配列と 8 0 %、 好ましくは、 9 0 %、 より好ましくは 9 5 %の相同性を 有する核酸をも包含する。 これは、 一部が欠失、 置換若しくは付加されているも のであっても、 後述するように、 例えば、 生物時計の制御に関与する遺伝子探索 用のプローブとして利用することができるからである。なお、本明細書において、
「遺伝子の一部が欠失、 置換若しくは付加された遺伝子」 とは、 塩基配列におい て 10個以下、好ましくは 7個以下、更に好ましくは 3個以下の塩基が欠失、置換 若しくは付加された配列を有する遺伝子を意味する。 また、 当該遺伝子は、 スト リンジェントな条件下で、 配列表の配列番号 1に示す遺伝子とハイプリッドを形 成する。 こうした遺伝子も生物時計の制御に関与する因子である限り、 本発明の 遺伝子に含まれる。 ·
また、 本発明の生物時計の制御に関与する核酸は、 以下の(a )、 又は(b )、 す なわち、
( a )配列表の配列番号 2に示す、塩基配列番号 1一 4554で示される塩基配列から なる核酸、
( b )前記塩基配列番号 1一 4554の塩基配列の一部が欠失、置換若しくは付加され ていて、かつ前記塩基配列と 8 0 %、好ましくは 9 0 %、より好ましくは、 9 5 % の相同性を有する核酸、 からなる。 当該核酸は、 シロイヌナズナ由来のものであ る。 本発明の核酸には、 一部が欠失、 置換若しくは付加されていて、 かつ、 前記 塩基配列と 8 0 %、 好ましくは、 9 0 %、 より好ましくは 9 5 %の相同性を有す る核酸をも包含する。 これは、 一部が欠失、 置換若しくは付加されているもので あっても、 例えば、 生物時計の制御に関与する遺伝子探索用のプローブとして利 用することができるからである。 また、 当該遺伝子は、 ストリンジェントな条件 下で、 配列表の配列番号 2に示す遺伝子とハイプリッドを形成する。 こうした遺 伝子も生物時計の制御に関与する因子である限り、 本発明の遺伝子に含まれる。 また、 本発明の生物時計の制御に関与する核酸は、 以下の(a )、 又は(b )、 す なわち、
( a )配列表の配列番号 3に示す、塩基配列番号 1一 4700で示される塩基配列から なる核酸、
( b )前記塩基配列番号 1一 4700の塩基配列の一部が欠失、置換若しくは付加さ れていて、かつ前記塩基配列と 8 0 %、好ましくは 9 0 %、より好ましくは 9 5 % の相同性を有する核酸、 からなる。 本発明の遺伝子は、 イネのゲノム由来の遺伝 子である。 遺伝子の一部が欠失、 置換若しくは付加された遺伝子とは、 配列番号 3に示す塩基配列において 10個以下、 好ましくは 7個以下、 更に好ましくは 3 個以下の塩基が欠失、 置換若しくは付加された配列を有する遺伝子を意図する。 当該遺伝子は、 ストリンジェントな条件下で、 配列表の配列番号 3に示す遺伝子 とハイプリッドを形成する。
また、 本発明の生物時計の制御に関与する核酸は、 以下の )、 又は(b )、 す なわち、
( a )配列表の配列番号 4に示す、 塩基配列番号 1—1505 で示される塩基配列か らなる核酸、
( b )前記塩基配列番号 1一 1505の塩基配列の一部が欠失、置換若しくは付加され ていて、 かつ、 前記塩基配列と 8 0 %の相同性を有する核酸、 からなる。 当該核 酸は、 タバコ由来のものである。 本発明の核酸には、 一部が欠失、 置換若しくは 付加されていて、 かつ、 前記塩基配列と 8 0 %、 好ましくは、 9 0 %、 より好ま しくは 9 5 %の相同性を有する核酸をも包含する。 これは、 一部が欠失、 置換若 しくは付加されているものであっても、 例えば、 生物時計の制御に関与する遺伝 子探索用のプローブとして利用することができるからである。 また、 当該遺伝子 は、 ストリンジヱントな条件下で、 配列表の配列番号 4に示す遺伝子とハイブリ ッドを形成する。 こうした遺伝子も生物時計の制御に関与する因子である限り、 本発明の遺伝子に含まれる。
また、 本発明の生物時計の制御に関与する核酸は、 以下の(a )、 又は(b )、 す なわち、
( a )配列表の配列番号 5に示す、塩基配列番号 1一 400で示される塩基配列から なる核酸、
( b )前記塩基配列番号 1—400 の塩基配列の一部が欠失、 置換若しくは付加され ていて、かつ前記塩基配列と 8 0 %の相同性を有する核酸からなる。当該核酸は、 別の系統のタバコ由来のものである。 本発明の核酸には、 一部が欠失、 置換若し くは付カ卩されていて、 かつ、 前記塩基配列と 8 0 %、 好ましくは、 9 0 %、 より 好ましくは 9 5 %の相同性を有する核酸をも包含する。 これは、 一部が欠失、 置 換若しくは付加されているものであっても、 例えば、 生物時計の制御に関与する 遺伝子探索用のプローブとして利用することができるからである。 また、 当該遺 伝子は、 ストリンジェントな条件下で、 配列表の配列番号 5に示す遺伝子とハイ プリッドを形成する。 こうした遺伝子も生物時計の制御に関与する因子である限 り、 本発明の遺伝子に含まれる。
また、 本発明の生物時計の制御に関与する核酸は、 以下の(a )、 又は(b )、 す なわち、
( a )配列表の配列番号 6に示す、 塩基配列番号 1一 641 で示される塩基配列から なる核酸、
( b )前記塩基配列番号 1一 641 の塩基配列の一部が欠失、 置換若しくは付加され ていて、 かつ前記塩基配列と 8 0 %の相同性を有する核酸、 力 らなることを特徴 とする。当該核酸は、 トマト由来のものである。本発明の核酸には、一部が欠失、 置換若しくは付加されていて、かつ、前記塩基配列と 8 0 %、好ましくは、 9 0 %、 より好ましくは 9 5 %の相同性を有する核酸をも包含する。これは、一部が欠失、 置換若しくは付加されているものであっても、 例えば、 生物時計の制御に関与す る遺伝子探索用のプローブとして利用することができるからである。 また、 当該 遺伝子は、 ストリンジェントな条件下で、 配列表の配列番号 6に示す遺伝子とハ イブリツドを形成する。 こうした遺伝子も生物時計の制御に関与する因子である 限り、 本発明の遺伝子に含まれる。
また、 本発明の生物時計の制御に関与する核酸は、 以下の(a )、 又は(b )、 す なわち、
( a )配列表の配列番号 7に示す、塩基配列番号 1一 1400で示される塩基配列から なる核酸、
( b )前記塩基配列番号 1一 1400の塩基配列の一部が欠失、置換若しくは付加され ていて、 かつ、 前記塩基配列と 8 0 %の相同性を有する核酸、 からなることを特 徴とする。 。 当該核酸は、 ジャガイモ由来のものである。 本発明の核酸には、 一 部が欠失、 置換若しくは付加されていて、 かつ、 前記塩基配列と 8 0 %、 好まし くは、 9 0 %、 より好ましくは 9 5 %の相同性を有する核酸をも包含する。 これ は、 一部が欠失、 置換若しくは付カ卩されているものであっても、 例えば、 生物時 計の制御に関与する遺伝子探索用のプローブとして利用することができるからで ある。 また、 当該遺伝子は、 ストリンジヱントな条件下で、 配列表の配列番号 7 に示す遺伝子とハイプリッドを形成する。 こうした遺伝子も生物時計の制御に関 与する因子である限り、 本発明の遺伝子に含まれる。
次に、 本発明の生物時計の制御に関与するペプチド断片について説明する。 本 発明の生物時計の制御に関与するペプチド断片は、 以下の(a )、 又は(b )、 すな わち、
( a )配列表の配列番号 8に示す、 ァミノ酸配列番号 1一 323で示されるアミノ酸 配列からなるペプチド断片、
( b )当該配列番号 8に示す、 ァミノ酸配列の一部が欠失、 置換若しくは付加され ていて、 かつ前記アミノ酸配列と 8 0 %の相同性を有するペプチド断片、 からな る。 当該ペプチド断片は、 シロイヌナズナ由来のものである。 本発明のペプチド 断片には、 一部が欠失、 置換若しくは付カ卩されていて、 かつ、 前記アミノ酸配列 と 8 0 %、 好ましくは、 9 0 %、 より好ましくは 9 5 %の相同性を有するぺプチ ド断片をも包含する。 これは、 一部が欠失、 置換若しくは付カ卩されているもので あっても、 例えば、 生物時計の制御に関与するペプチド断片探索用のプローブと して利用することができるからである。 なお、 本明細書において、 「アミノ酸の 一部が欠失、 置換若しくは付カ卩されたアミノ酸」 とは、 ァミノ酸配列にぉレ、て 10 個以下、 好ましくは 7個以下、 更に好ましくは 3個以下のアミノ酸が欠失、 置換 若しくは付カ卩された配列を有するァミノ酸配列を意味する。 かかるァミノ酸配列 であっても、 抗原抗体反応を利用した免疫試験に用いることができる。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a )、 又は ( b )、 すなわち、
( a )配列表の配列番号 9に示す、 ァミノ酸配列番号 1一 298 で示されるアミノ酸 配列からなるペプチド断片、
( b )当該配列番号 9に示す、 アミノ酸配列の一部が欠失、 置換若しくは付加され ていて、 かつ前記アミノ酸配列と 8 0 %の相同性を有するペプチド断片、 力 らな る。 当該ペプチド断片は、 シロイヌナズナ由来のものである。 本発明のペプチド 断片には、 一部が欠失、 置換若しくは付カ卩されていて、 かつ、 前記アミノ酸配列 と 8 0。 好ましくは、 9 0 %、 より好ましくは 9 5 %の相同性を有するぺプチ ド断片をも包含する。 これは、 一部が欠失、 置換若しくは付カ卩されているもので あっても、 例えば、 生物時計の制御に関与するペプチド探索用のプローブとして 利用することができるからである。 またかかるアミノ酸配列であっても、 抗原抗 体反応を利用した免疫試験に用いることができる。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a )、 又は ( b )、 すなわち、
( a )配列表の配列番号 1 0に示す、 ァミノ酸配列番号 1一 238 で示されるァミノ 酸配列からなるぺプチド断片、
( b )当該配列番号 1 0に示す、 アミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 かつ前記ァミノ酸配列と 8 0 %の相同性を有するぺプチド断片、 から なる。当該ぺプチド断片は、イネ由来のものである。本発明のぺプチド断片には、 一部が欠失、 置換若しくは付加されていて、 かつ、 前記アミノ酸配列と 8 0 %、 好ましくは、 9 0 %、 より好ましくは 9 5 %の相同性を有するぺプチド断片をも 包含する。 これは、 一部が欠失、 置換若しくは付カ卩されているものであっても、 例えば、 生物時計の制御に関与するぺプチド断片探索用のプローブとして利用す ることができるからである。 力かるアミノ酸配列であっても、 抗原抗体反応を利 用した免疫試験に用いることができる。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a )、 又は ( b ) 、 すなわち、
( a )配列表の配列番号 1 1に示す、 ァミノ酸配列番号 1一 312 で示されるァミノ 酸配列からなるぺプチド断片、
( b )当該配列番号 1 1に示す、 アミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 かつ前記アミノ酸配列と 8 0 %の相同性を有するペプチド断片、 から なる。 本発明のペプチド断片は、 タバコ由来のものである。 本発明のペプチド断 片には、 一部が欠失、 置換若しくは付加されていて、 かつ、 前記アミノ酸配列と
8 0 %、 好ましくは、 9 0 %、 より好ましくは 9 5 %の相同性を有するァミノ酸 をも包含する。 これは、 一部が欠失、 置換若しくは付カ卩されているものであって も、 例えば、 生物時計の制御に関与するペプチド断片探索用のプローブとして利 用することができるからである。 かかるアミノ酸配列であっても、 抗原抗体反応 を利用した免疫試験に用いることができる。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a )、 又は ( b )、 すなわち、
( a )配列表の配列番号 1 2に示す、ァミノ酸配列番号 1一 70で示されるアミノ酸 配列からなるペプチド断片、
( b )当該配列番号 1 2に示す、 アミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 かつ前記ァミノ酸配列と 8 0 %の相同性を有するぺプチド断片、 から なる。 本ペプチド断片は、 別の系統にかかるタバコ由来のものである。 本発明の ペプチド断片には、 一部が欠失、 置換若しくは付加されていて、 かつ、 前記アミ ノ酸配列と 8 0 %、 好ましくは、 9 0 %、 より好ましくは 9 5 %の相同性を有す るアミノ酸をも包含する。 これは、 一部が欠失、 置換若しくは付加されているも のであっても、 例えば、 生物時計の制御に関与するペプチド断片探索用のプロ一 プとして利用することができるからである。 力、かるアミノ酸配列であっても、 抗 原抗体反応を利用した免疫試験に用いることができる。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a )、 又は ( b ) 、 すなわち、
( a )配列表の配列番号 1 3に示す、 ァミノ酸配列番号 1一 185 で示されるァミノ 酸配列からなるぺプチド断片、
( b )当該配列番号 1 3に示す、 アミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 かつ前記ァミノ酸配列と 8 0 %の相同性を有するぺプチド断片、 から なる。本ぺプチド断片は、 トマト由来のものである。本発明のぺプチド断片には、 一部が欠失、 置換若しくは付加されていて、 かつ、 前記アミノ酸配列と 8 0 %、 好ましくは、 9 0 %、 より好ましくは 9 5 %の相同性を有するアミノ酸をも包含 する。 これは、 一部が欠失、 置換若しくは付カ卩されているものであっても、 例え ば、 生物時計の制御に関与するペプチド断片探索用のプローブとして利用するこ とができるからである。 かかるアミノ酸配列であっても、 抗原抗体反応を利用し た免疫試験に用いることができる。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a )、 又は ( b )、 すなわち、
( a )配列表の配列番号 1 4に示す、 ァミノ酸配列番号 1一 314で示されるァミノ 酸配列からなるぺプチド断片、
( b )当該配列番号 1 4に示す、 アミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 力つ前記アミノ酸配列と 8 0 %の相同性を有するペプチド断片、 から なる。 本ペプチド断片は、 ジャガイモ由来のものである。 本発明のペプチド断片 には、 一部が欠失、 置換若しくは付加されていて、 かつ、 前記アミノ酸配列と 8 0 %、 好ましくは、 9 0 %、 より好ましくは 9 5 %の相同性を有するァミノ酸を も包含する。これは、一部が欠失、置換若しくは付加されているものであっても、 例えば、 生物時計の制御に関与するぺプチド断片探索用のプローブとして利用す ることができるからである。 力かるアミノ酸配列であっても、 抗原抗体反応を利 用した免疫試験に用いることができる。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a )、 又は ( b ) 、 すなわち、
( a )配列表の配列番号 1 5に示す、 ァミノ酸配列番号 1—121 で示されるアミノ 酸配列からなるぺプチド断片、
( b )当該配列番号 1 5に示す、 ァミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 かつ前記アミノ酸配列と 8 0 %の相同性を有するペプチド断片、 から なる。 本ペプチド断片は、 マツ由来のものである。 本発明のペプチド断片には、 一部が欠失、 置換若しくは付カ卩されていて、 かつ、 前記アミノ酸配列と 8 0 %、 好ましくは、 9 0 %、 より好ましくは 9 5 %の相同性を有するアミノ酸をも包含 する。 これは、 一部が欠失、 置換若しくは付加されているものであっても、 例え ば、 生物時計の制御に関与するぺプチド断片探索用のプローブとして利用するこ とができるからである。 力かるアミノ酸配列であっても、 抗原抗体反応を利用し た免疫試験に用いることができる。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a )、 又は ( b )、 すなわち、
( a )配列表の配列番号 1 6に示す、 ァミノ酸配列番号 1—200 で示されるァミノ 酸配列からなるぺプチド断片、
( b )当該配列番号 1 6に示す、 ァミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 力つ前記ァミノ酸配列と 8 0 %の相同性を有するぺプチド断片、 から なる。 本ペプチド断片は、 モロコシ由来のものである。 本発明のペプチド断片に は、一部が欠失、置換若しくは付加されていて、かつ、前記アミノ酸配列と 8 0 %、 好ましくは、 9 0 %、 より好ましくは 9 5 %の相同性を有するアミノ酸をも包含 する。 これは、 一部が欠失、 置換若しくは付カ卩されているものであっても、 例え ば、 生物時計の制御に関与するぺプチド断片探索用のプローブとして^ ¾用するこ とができるからである。 力かるアミノ酸配列であっても、 抗原抗体反応を利用し た免疫試験に用いることができる。
また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a )、 又は ( b ) 、 すなわち、
( a )配列表の配列番号 8に示す、 アミノ酸配列番号 1—210 で示されるアミノ酸 配列からなるペプチド断片、
( b )当該配列番号 8に示す、 ァミノ酸配列番号 1一 210で示されるァミノ酸配列 の一部が欠失、 置換若しくは付加されていて、 かつ前記アミノ酸配列と 8 0 %の 相同性を有するペプチド断片、 からなる。 本ペプチド断片は、 シロイヌナズナ由 来のものである。 本発明のペプチド断片には、 一部が欠失、 置換若しくは付加さ れていて、 かつ、 前記ァミノ酸配列と 8 0 %、 好ましくは、 9 0 %、 より好まし くは 9 5 %の相同性を有するアミノ酸をも包含する。 これは、 一部が欠失、 置換 若しくは付加されているものであっても、 例えば、 生物時計の制御に関与するぺ プチド断片探索用のプローブとして利用することができるからである。 かかるァ ミノ酸配列であっても、抗原抗体反応を利用した免疫試験に用いることができる。 また、 本発明の生物時計の制御に関与するペプチド断片は、 以下の(a )、 又は ( b ) 、 すなわち、
( a )配列表の配列番号 8に示す、 アミノ酸配列番号 1—143 で示されるアミノ酸 配列からなるペプチド断片、
( b )当該配列番号 8に示す、 ァミノ酸配列番号 1一 143で示されるァミノ酸配列 の一部が欠失、 置換若しくは付加されていて、 かつ前記アミノ酸配列と 8 0 %の 相同性を有するペプチド断片、 からなる。 本ペプチド断片は、 シロイヌナズナ由 来のものである。 本発明のペプチド断片には、 一部が欠失、 置換若しくは付カロさ れていて、 かつ、 前記ァミノ酸配列と 8 0 %、 好ましくは、 9 0 %、 より好まし くは 9 5 %の相同性を有するアミノ酸をも包含する。 これは、 一部が欠失、 置換 若しくは付カ卩されているものであっても、 例えば、 生物時計の制御に関与するぺ プチド断片探索用のプローブとして利用することができるからである。 かかるァ ミノ酸配列であっても、抗原抗体反応を利用した免疫試験に用いることができる。 これらの配列は、本発明のぺプチド断片を比較して理解することができるように、 ホモ口ジ一が非常に高く、 この領域が生物時計としての機能に極めて重要な領域 であることを導き出すことが出来る。 したがって、 これらの重要領域を、 例えば プローブとして使用して、さらなる生物時計の解明にも役立たせることができる。 ここで、本発明の核酸、及びぺプチド断片の精製、単離方法について説明する。 上記核酸、 及びペプチド断片は、 特に限定されるものではないが、 以下の手順に よって、 精製、 単離することができる。
一度の測定で多検体の高等植物の生物発光リズムを全自動で測定して測定デー タの解析を行うために、生物発光測定装置 2種類 (Okamoto et al. , Anal. Biochem.
340 : 187-192 (2005); Okamoto et al. , Plant Cell Environ. 28 : 1305-1315 (2005); 特開 2004-267058 ; 特開 2005-143371)とリズム角军析プログラム(Okamoto et al.,
Anal. Biochem. 340: 193-200 (2005) ; 特許第 3787631号)から構成される生物発 光リアルタイムモニタリング ·スクリーニングシステムを用いることができる。 これらを用いて、 例えば、 シロイヌナズナの時計関連遺伝子であり遺伝子発現 が概日リズムを示すことが知られているシロイヌナズナの 6J遺伝子 (Fowler et al. , EMBO J. 18 : 4679-4688 (1999) ; Park et al., Science 285 : 1579- 1582 (1999) ) のプロモーター領域と改良型ホタルルシフェラーゼ遺伝子 ; promega 社)
{LUC (登録商標) 、 Promega (登録商標) ) のコード領域を接続した生物発光レ ポーター遺伝子カセット i . : LUC)を作製し、 これを野生型シロイヌナズナのゲ ノムへ遺伝子移入し、 生物発光レポーター株 (G-38株)を作出した。 作出した発光 レポーター株 G- 38の種子を ethyl methanesulfonate (EMS)で変異原処理し、 変 異原処理から 2世代目の植物体 (M2植物体) 5万個体の生物発光リズムを測定し てリズム変異体をスクリ一二ングし、 この結果、 生物発光リズムが完全に消失し た無周期変異体を 5個分離した。 これらの無周期変異体は、 連続明条件下と連続 暗条件下のいずれにおいても GI'.: ZZT発光レポーター遺伝子の生物発光リズムが 無周期であり、 さらに、 葉の就眠運動リズムも無周期であり、 そして、 これらの 無周期変異はいずれも劣性一遺伝子変異であり、 3つの相補性群 PHYT0CL0CK 1 {PCL1) , PCL2, 尸 に分類できた。 尸 ム PCL2, 尸 遺伝子は、 いずれも植物の 時計遺伝子をコードしていると推測された。尸 遺伝子の一つである尸 7遺伝子 は、 マップベースクローニング法によって以下の手順で特定した。 変異体 の F3ホモ個体 、ェコタイプ Col- 0) と野生型 L 株とを交配し、 第 2世代 (F2) の種子を得た。 F2植物体を培養し、 6J: : £T発光レポーター遺伝子の生物発光を 連続明条件下で測定し、 pc -i変異をホモで持っているホモ個体を選択した。 そ して、 TAIRウェブサイト(http:〃 www. arabidopsis. org/)で公開されている Col - 0 と Lerの間の多型マーカー (CAPSマーカー及ぴ SSLPマーカー) 及ぴ Monsanto Arabidopsis Polymorphism Collectionからリリースされた SNP多型マーカーを 利用して 変異と多型マーカーとの組換え率を算出した。組換え率がより小 さくなる多型マーカーは物理的に/5 7遺伝子により近いので、様々なマーカーと の組換え率を調查することで PCL1遺伝子の染色体上の位置を決定した。その結果、 PCL1遺伝子の物理的位置を第 3染色体上の SNP マーカー F18L15-1 (Monsanto Arabidopsis Polymorphism Collectionの SNP番号 CER468139力 ら CER468143を 含む)と CAPSマーカー T0PP5の間の約 150kbに位置づけた。 この約 150kbの領域 における野生型 Cb - 株及び G- 38株と無周期変異体 7 - 7及ぴ の塩基配 列を決定して比較したところ、 TAIR ウェブサイトのデーターベースに整理番号 At3g46640として整理されている遺伝子上に pcll-1と 7 - の両者で塩基置換 が発見できたので、これを PCL1遺伝子であると結論した。 PCL1遺伝子の構造は、 RIKEN (RARGE ; http: //rarge. gsc. riken. go. jp/)及び TAIRウェブサイトで公開さ れている完全長 cDNAの塩基配列とゲノム DNA配列とを比較することで決定した。 タンパク質のァミノ酸配列は、ゲノム DNA又は cDNAの塩基配列から容易に推定す ることができる。
なお、 核酸の塩基配列は、 常法により、 例えば、 ダイターミネータ一法などを 用いて決定することができる。 また、 本発明のタンパク質のアミノ酸配列から類 似タンパク質又はホモ口グタンパク質をコードする遺伝子の塩基配列を予測し、 その予測に基づいて様々なオリゴヌクレオチド合成して、 これらを PCRプライマ 一として PCR法でゲノム DNA又は cDNA等から増幅することができる。 さらに、本 発明のタンパク質のァミノ酸配列から類似タンパク質又はホモログタンパク質を コードする遺伝子の塩基配列を予測し、 その予測に基づいて様々なォリゴヌクレ ォチド合成して、 これらを各種ハイブリダイゼーション法に利用することで遺伝 子を同定することができる。
次に、 本発明のプローブについて説明する。
本発明のプローブの使用方法としては、 上述の核酸を単離したい生物種のゲノ ム DNA、 ゲノム DNAライブラリ一、 cDNAライブラリ一、 RNAなどを直接又は PCR 法で増幅し高分子膜にプロットして固定した後、 本発明のプローブをハイプリダ ィズさせればよい。 または、 上述の核酸を単離したい生物種の細胞を固定し、 細 胞内の染色体へ直接本発明のプローブをハイブリダイズさせればよい。 ハイプリ ダイズの方法は、 常法により特に限定されるものではないが、 例えば、 サザンブ ロッテイング法、 in situ ハイブリダィゼーシ.ヨン法、 塩基配列決定法、 コロニ 一ハイブリダイゼーション法、 プラークハイブリダイゼーション法、 ノザンハイ ブリダイゼーション法などを挙げることができる。 in situハイブリダイゼーシ ヨン法は、 迅速かつ、 的確にスクリーニングすることができるという観点から望 ましい。 in situハイプリダイゼーション法には、 蛍光 in situハイブリダイゼ ーシヨン法(以下、 FISH法という)、 ラジオアイソトープ in situハイブリダィゼ ーション法等がある。 RI施設を要求されないという観点から、 FISH法が望ましレ、。
FISH法の概略は、 例えば、 スライ ドグラス上に染色体標本を調製し、 これに標識 プローブをハイプリダイズし、 直接検鏡するのが一般的である。
また、本発明のプローブのハイブリダィズに使用される支持体としては、薄膜、 粉末、 粒状物、 ゲル、 ビーズ、 繊維等の他、 分散液、 ェマルジヨン等を挙げるこ とができる。 これらは適当なカラムに充填して使用してもよい。 こららのうち薄 膜が好ましく、例えば二トロセルロース膜、 ナイ口ン膜が好ましい。
ここで、 本発明のプローブに使用される標識の例を説明する。 標識の例として 当業者に周知のものを使用することができ、特に限定されないが、例えば、 3 2P、 3 5Sなどの 射性原子、 ビォチン基、 アジピン基、 または酵素類、 蛍光標識等な どのほか、 抗原抗体系を利用する場合には、 抗原を含んでいても良い。 これらも 本発明の範囲に包含される。 なお、 核酸プローブの場合、 プローブの塩基長は、 用いるスクリーニング方法 により異なり、 特に限定されるものではない。
上述のペプチド断片は、 また、 好ましい実施態様において、 前記ペプチド断片 が、 細胞の核における特定の遺伝子の転写、 概日リズムの発振と安定化を制御す る。 これは、 本発明者らの鋭意研究により、 本発明の核酸が、 生物時計の制御に 関与している遺伝子の 1つであることが明らかとされたことからである。 本発明 の遺伝子は、 生物時計の中核をなすものであり、 同時に他の遺伝子に対して、 転 写因子としても作用し、 生物の概日リズムの発振と安定ィヒを行っている。
また、 本発明のペプチド断片の好ましい実施態様において、 前記ペプチド断片 が、 GARPフアミリーに属する DNA結合モチーフを有する。 当該 DNA結合モチーフ を介して他の遺伝子へ結合し、 転写因子として機能することによって概日リズム を形成していると考えられる。
また、 本発明の生物時計制御用組成物は、 本発明のペプチド断片または DNA断 片または腿断片を含有し、 細胞の生物時計機能活性を促進または抑制するもの であり、 生物時計制御用糸且成物の様態に制約はない。 本発明の生物時計制御用組 成物の対象は、生物個体や培養細胞、細胞抽出物、無細胞系の生物時計の in vitro 再構築系などである。
また、本発明のベクターは、 上記本発明の核酸(DNA又は RNA) を含有する。 ま た、本発明の形質転換体は、上記本発明の核酸(DNA又は RNA) を発現可能に保持 する。 そして、 本発明のペプチドの生産方法は、 本発明の形質転換体を培養する 工程を含む。
以下、 本発明の組換えベクターの作製について説明する。
本発明の組換えべクターは、 本発明の生物時計に関与する遺伝子を適当なべク ター上に連結することにより得ることができる。 ベクターとしては、 形質転換す る宿主中で本発明の生物時計に関与する遺伝子から発現された生物時計に関与す るタンパク質を生産させうるものであればどのようなものでも用いることが出来 る。 例えば、 プラスミ ド、 コスミ ド、 ファージ、 ウィルス、 染色体組み込み型、 人工染色体などのベクターを用いることができる。 上記ベクターには、 形質転換 された細胞を選択することを可能にするためのマーカー遺伝子が含まれていても よい。 マーカー遺伝子としては、 例えば、 URA3、 n'a ?のような、 宿主の栄養要求 性を相補する遺伝子や、 アンピシリンやカナマイシン、 オリゴマイシン、 テトラ サイクリン、 クロラムフエ二コール、 ハイグロマイシン B、 パスタ (登録商標) などの薬剤に対する耐性遺伝子などが挙げられる。 また、 組換えベクターは、 宿 主細胞中で本発明の遺伝子を発現することの出来るプロモーター又はその他の制 御配列 (例えばェンハンサー配列、 ターミネータ一配列、 ポリアデニル化配列等) を含むことが望ましい。 プロモーターとしては、 具体的には、 例えば、 GAL1プ モーター、 amyBプ モーター、 _Zacプロモーター、 tscプロモーター、 trcプロモ 一ター、 C¾ プロモーター等が挙げられる。
また、 本発明の形質転換体は、 宿主を本発明の組換えべクタで形質転換するこ とにより得られる。 宿主としては、 本発明の生物時計に関与するタンパク質を生 産することが出来るものであれば特に限定されず、 例えば、 タバコ培養細胞 BY-2 ゃシロイヌナズナ培養細胞、 タバコ植物体、 シロイヌナズナ植物体などの植物系 細胞、 昆虫の培養細胞、 動物細胞、 分裂酵母や出芽酵母などの酵母、 ァスペルギ ノレス · ソーャゃァスペルギルス .ォリゼー、 ァスぺノレギルス ·二ガー、 ァカパン カビ等の糸状菌類、 大腸菌やバチルス、 藍色細菌などの細菌であってもよい。 形 質転換は、 宿主に応じて公知の方法で行うことが出来る。 植物系細胞の場合は、 例えば、 ァグロパクテリアを介した形質転換法 (Horsch et al. , Science 227 : 1229-1231 (1985); Hooykaas and Schilperoort, Plant Mol. Biol. 19 : 15-38 (1992); Clough and Bent, Plant J. 16 : 735 - 743 (1998) ) などを用いることが出 来る。酵母の場合は、例えば、酢酸リチウム法(Ausubel et al., Current protocols in molecular biology. Greene Publishing Assoc and Wiley-Interscience, New- York (1987) ; Methods Mol. Cell. Biol. 5 : 255-269 (1995) ) などを用いること ができる。 糸状菌の場合は、 例えば、 プロトプラスト化した後ポリエチレンダリ コール及ぴ塩ィヒカルシゥムを用いる、 Mol. Gen. Genet. 218: 99-104 (1989)の方 法を用いることが出来る。細菌を用いる場合は例えば、 自然形質転換法 (Ausubel et al., Current protocols in molecular biology. Greene Publishing Assoc and Wiley- Interscience, New York (1987); Onai et al., Mo丄. Genet. Genomics 271 : 50—59 (2004) ) や塩ィヒカノレシゥム法 (Ausubel et al., Current protocols in molecular biology. Greene Publishing Assoc and Wiley - Interscience, New York (1987) )、電気穿孑し法 (Ausubel et al., Current protocols in molecular biology. Greene Publishing Assoc and Wiley - Interscience, New York (1987); Methods Enzymol. 194: 182-187 (1990) ) などを用いることができる。
本発明の生物時計に関与するタンパク質の製造方法は、 本発明の形質転換体を 培養し、 得られる培養物から生物時計に関与するタンパク質を採取することから なる。 培地及び培養方法は、 宿主の種類と組換えべクタ一中の発現制御配列によ つて適当なものを選ぶ。 例えば、 宿主が植物系培養細胞であり、 発現制御配列が プロモーターである場合、 例えば、 ショ糖を含む培地で細胞を培養する ことにより、本発明の生物時計に関与するタンパク質を生産させることができる。 また、 例えば、 宿主が植物体であり、 発現制御配列が C^/ プロモーターであ る場合、 例えば、 植物体を土壌で培養することにより、 本発明の生物時計に関与 するタンパク質を生産させることができる。 また、 例えば、 宿主が酵母であり、 発現制御配列が プロモーターである場合、例えば、 ラフイノースを炭素源と する液体最少培地で前培養した菌体を、 ガラクトースとラフイノースを炭素源と する液体最少培地に希釈 ·接種し、 培養することにより、 本発明の生物時計に関 与するタンパク質を生産させることができる。 また、 例えば、 宿主がァスペルギ ルス ·ソーャであり、 発現制御配列が a/zひ Wプロモーターである場合、例えば、 マ ルトースを炭素源とする液体最少培地で培養することにより、 本発明の生物時計 に関与するタンパク質を生産させることができる。 また、 例えば、 宿主が大腸菌 であり、発現制御配列が lacプロモーターである場合、 IPTGを含有する液体培地 で培養することにより本発明の生物時計に関与するタンパク質を生産させること ができる。 本発明の生物時計に関与するタンパク質が宿主細胞内または菌体表面 に生産された場合は、 宿主細胞を培地から分離し、 その細胞を適当に処理するこ とにより本発明のタンパク質を得ることができる。 例えば、 細胞内に生産された 場合、 細胞を物理的又は酵素的に破碎した後、 遠心分離および各種クロマトダラ フィ一等を使用して本発明の生物時計に関与するタンパク質を分離 ·精製するこ とができる。 培養液中に本発明の本発明の生物時計に関与するタンパク質が生産 された場合は、 遠心分離 ·ろ過等により菌体を除去することにより本発明のタン パク質を得ることができる。何れの場合も、硫安分画、各種クロマトグラフィー、 アルコール沈殿、 限外ろ過等を用いた常法により、 本発明の生物時計に関与する タンパク質を更に純度の高いものとして精製することもできる。
本発明の生物時計に関与するタンパク質は、 無細胞系のタンパク質合成系を使 用して in vitroで合成することも出来る。無細胞系のタンパク合成系の例として は、 例えば、 コムギ胚芽抽出液由来の無細胞タンパク質合成システムである PR0TEI0S (東洋紡) (PR0TEI0S (登録商標) ) などを挙げることができる。 また、 本発明の生物時計に関与するタンパク質のァミノ酸配列の一部を in vitroで人工 的にぺプチド合成することもできる。 こうした本発明の生物時計に関与するタン パク質の in vitroタンパク質合成おょぴぺプチド合成も本発明に含まれる。 本発明の生物時計に関与するタンパク質には、 精製の際にァフィ二ティーク口 マトグラフィーを用いるためのタグ配列を付カ卩して生産してもよい。 このような タグ配列の例としては、例えば、 GSTタグゃ Hisタグ、 Mycタグなどを挙げること ができる。
本発明は、 高等植物の生物時計の中枢を構成する時計遺伝子 PHYT0CL0CK 1 {PCLDとそれがコードするタンパク質 PCL1、 及び 遺伝子の応用に関するも のである。本発明の尸 7遺伝子が破壌されたシロイヌナズナでは、調査した全て の概日リズムが失われており、 光周的花成が野生型の長日性に対して日長不感受 性を示した。 したがって、本発明の _ /遺伝子を人為的に操作することで、光周 的花成を含めた高等植物の様々な生理現象 ·生理活性を制御することが可能であ ると考えられる。
実施例
ここで、 本発明の一実施例を説明するが、 本発明は、 下記の実施例に限定して 解釈されることを意図するものではない。 以下の実施例は、 本発明の一実施態様 を説明するための用いたものであり、 特許請求の範囲に記載された本発明の要旨 及び範囲を逸脱しない限り、 いかなる変更等を排除するものではない。
実施例 1
本発明者らは、 モデル高等植物であるシロイヌナズナ rabidopsis thaliana) にお!/、て、シロイヌナズナの 6 遺伝子のプ口モーターと改変型ホタルルシフエラ ーゼ遺伝子 {LUC) のコード領域を接続した /: :^ T発光レポーター遺伝子の生 物発光リズムを指標として、 概日リズムに異常を示すリズム変異体を網羅的にス クリーニングし、 無周期変異体を 5個分離した。 これらの無周期変異体は、 連続 明条件下と連続喑条件下のいずれにおいても 67: 発光レポーター遺伝子の生 物発光リズムが無周期であり、 さらに、 葉の就眠運動リズムも無周期であった。 そして、 これらの無周期変異はいずれも劣性一遺伝子変異であり、 3つの相補性 翁 PHYTOCLOCK 1 {PCLl) , PCL2, に分類できた(Onai et al. , Plant J. , 41:1-11 (2004) ) 0 無周期変異の原因遺伝子の一つである尸 7遺伝子をマップベースクロ 一ユング法でクローニングした。 7遺伝子は、先に述べた高等植物の時計遺伝 子の条件を全て満たしていたので、植物の真の時計遺伝子であり、 また、 尸 7遺 伝子のコードするタンパク質は、 植物の時計タンパク質であると結論した。 PCL1 遺伝子の相同遺伝子はイネ、 タバコ、 トマト、 ジャガイモ、 モロコシ、 マツにも 存在しており、 植物一般に時計遺伝子として機能していることが容易に推定でき る。 本発明は、 植物細胞の核における特定の遺伝子の転写、 概日リズムの発振と安 定ィ匕を制御して!/、る植物の時計遺伝子 PCL1とその相同遺伝子および類似遺伝子、 より詳細には、 GARPファミリーに属する DNA結合モチーフを有することを特徴と する植物の時計タンパク質 PCL1とその相同タンパク質およぴ類似タンパク質、そ れらをコードする DNA及び R A、 さらには PCLlタンパク質と PCL1相同タンパク 質および PCL1類似タンパク質の組成物、 PCL1タンパク質と PCL1相同タンパク質 および PCL1類似タンパク質の発現を可能とするベクタ一及び形質転換体、 PCL1 タンパク質と PCL1相同タンパク質および PCL1類似タンパク質の生産方法に関す る。
実施例における植物体、 培養条件、 概日リズムの測定方法
G : LUCW レポータ一遺伝子をもつシロイヌナズナ iArabidopsis thai i ana) の生物発光レポーター株 G- 38は、ェコタイプが Coト。で り、特に記載がない限 りこれを野生型として使用した。シロイヌナズナの無周期変異体 0/7-_ と pell- 2 は、生物発光レポーター株 G - 38から分離された無周期変異体であり、本発明者ら の報告 (Onai et al. , Plant J., 41 : 1-11 (2004) )において、 それぞれ 23- 15D9 と 32-5E2として分離された変異体である。無周期変異体 /7 - 7と pell- 2は、い ずれも野生型 G- 38と戻し交配後の第 4世代 (F4)のホモ個体を使用した。シロイヌ ナズナは、 特に言及しない限り、 22. 0 ± 0. 3°C、 1. 5% (w/v) ショ糖を含む MS (Murashige and Skoog, Physiol. Plant. 15 : 473-497 (1962) )固体培地上で本 発明者らの方法 (Onai et al. , Plant J. , 41 : 1-11 (2004) )に従って無菌的に生 育させた。 植物体培養時の照射光は、 70 mol/m2/Sの白色光であった。
<連続明条件下または連続暗条件下における joo/ 変異体の GI: ZZT生物発光 > 一般に、 概日リズムは連続明や連続暗などの一定環境下で自律的に継続する。 そこで、 まず、 変異体の : 生物発光が一定環境下で自律振動するのか 否かを調べた。 連続明おょぴ連続暗条件下における 生物発光の測定は、 本発明者らの方法 (Onai et al., Plant J. , 41 : 1-11 (2004) )に従って行った。 12時間明期 /12時間暗期の明暗サイクルまたは 12時間暗期 /12時間明期のサイク ■レを与えて生物時計をリセットした後、 連続明または連続暗で生物発光を測定し た。
野生型株 G - 38と /^L?変異体の GI:: £Τ生物発光パターンを図 1に示した。 野 生型株 G-38 は連続明と連続暗のいずれの条件下においても明瞭な生物発光リズ ムを示したが、 変異体はどちらの条件下でも無周期であり、 リズムを全く示 さなかった。 したがって、 遺伝子は、 ": : Ζ£Τ生物発光リズムに必須である ことが判明した。
実施例 2
<明暗サイクル条件下または温度サイクル条件下における pell変異体の J: : ZiT生物発光 >
一般に、 概日リズムは明暗サイクルや温度サイクルに同調する。 そこで、 野生 型株 G-38と 7 変異体の GI T生物発光が明暗サイクルおよび温度サイクル に同調するか否かを調べた。 明暗サイクルおよび温度サイクル条件下における GI:: ΖίΤ生物発光の測定は、植物体に 12時間明期 /12時間喑期の明暗サイクル(明 喑サイクル中の温度は 22°Cで一定) または 12時間 22°C/12時間 17°Cの温度サイ クル (温度サイクル中は連続明) を与えながら行った。
明暗サイクル条件下における野生型株 G-38と pcJ/変異体の GI'.: Ζ£Τ生物発光 パターンを図 2aに、温度サイクル条件下における野生型株 G-38と Ζ7変異体の
GI: T生物発光パターンを図 2bにそれぞれ示した。明暗サイクル条件下におい て野生型株 G- 38は明瞭な生物発光リズムを示したが、 変異体の発光パター ンは明期に発光量が一定レベルのまま高く保たれ、 暗期に発光量が低下するとい う矩形を示した。 これは、 ^遺伝子が光誘導性の遺伝子であり、 暗条件よりも明 条件で発現量が高いことを反映しているにすぎず、 変異体の生物発光は明暗 条件下でリズムを示さないことを意味している。 同様に、 温度サイクル条件下に おいても野生型株 G- 38は明瞭な生物発光リズムを示したが、 cJ/変異体は 17°C よりも 22°Cで発光量が僅かに高い矩形の発光パターンを示した。 これは、発光タ ンパク質として使用しているホタルルシフェラーゼの酵素活性が 17°Cよりも 22°Cで僅かに高いことを反映しているにすぎず、 pc^変異体の生物発光は温度サ イタル条件下でリズムを示さないことを意味している。 したがって、 遺伝子 は GI T生物発光リズムの明暗サイクルおよび温度サイクルに対する同調に必 須であることが判明した。
実施例 3 < pell変異体の葉の就眠運動 >
高等植物においては、 葉の上下運動 (就眠運動) が概日リズムを示すことが広 S知りれている (Lumsden and Millar, Biological Rhytnms and Photoperiodism in Plants. Oxford: Bios Scientific Publisher (1998) )。 pell変異体の生物発光 の無周期性が生物時計本体の異常によってもたらされているのであれば、 : 生物発光とは別の指標である葉の就眠運動リズムも無周期になっている と予想される。 そこで、 Ζ7変異体の葉の就眠運動を測定した。 葉の就眠運動の 測定は、 本発明者らの方法 (Onai et al. , Plant J. , 41 : 1-11 (2004) ) に従って 行った。
野生型株と 変異体の葉の就眠運動パターンを図 3に示した。野生型株は明 瞭な就眠運動リズムを示したが、 c 変異体では就眠運動は観察されず無周期で あり、 リズムを全く示さなかった。 したがって、 尸 7遺伝子は葉の就眠運動リズ ムに必須であることが判明した。
実施例 4
く 7変異体における GI、 CAB2、 T0C1、 ELF4、 CCA1、 Z の遺伝子発現のノザン ブロット解析 >
高等植物の生物時計に深く関与すると考えられている遺伝子として GIヽ T0C ELF4、 CCA1、 Z ] ^が発見されており、 これらの遺伝子の mRNAレベルは概日リズム を示すことが知られている(Young and Kay, Nat. Rev. Genet. 2 : 702-715 (2001); Salome and McClung, J. Biol. Rhythms 19 :425-435 (2004) )。 また、 光合成系の 遺伝子である 遺伝子も mRNAレベルが概日リズムを示すことが知られている (Millar and Kay, Science 267 : 1161— 1163 (1995) )。 c 変異体において、 これ らの遺伝子の mRNA レベルの概日リズムが損なわれているのか否かをノザンプロ ット解析で調べた。 野生型株 G- 38 と cL?- 7変異体の細胞内の 6J遺伝子、 CAB2 遺伝子、 7ί 遺伝子、 ¾遺伝子、 0¾7遺伝子、 Ζ 遺伝子の mRNAレベルのノ ザンプロット解析は以下の手順で行った。 まず、 表面滅菌した野生型株 G-38 と pcll-1 変異体の種子を 1. 5% (w/v) ショ糖を含む MS (Murashige and Skoog, Physiol. Plant. 15 : 473-497 (1962) )固体培地に播種し、 連続明、 22. 0 ± 0. 3。C の条件下で 11 日間培養し、 12時間明期 /12時間喑期の明暗サイクルを 3サイクル 与えた後、 連続明条件に戻した。 植物体培養時の照射光は、 SO /i mol/mVsの白色 光であった。 3サイクル目の暗期終了時、 すなわち連続明開始時を 0時間目とし て、連続明開始時から 3時間間隔で各タイムボイントごとに 10個体の植物体をサ ンプリングして即座に液体窒素で凍結した。 そして、 QIAGEN社製の RNeasy Midi Kit (Rneasy (登録商標) ) 'を使用して、 凍結した植物体から全 RNAを抽出した。 5 μ gの全 RNAをホルムアルデヒドを含んだ 1. 2%ァガロースゲルで電気泳動し、ナ ィ口ン膜に転写した。 転写した全 RNAを 32Pラベルした遺伝子特異的な DNAプロ ーブとハイブリダイズさせ、 各遺伝子の mRNA蓄積量を放射活性として検出した。
遺伝子、 遺伝子、 Ζ /遺伝子それぞれに特異的な32 Ρラベル DNAプロ一 ブは、 牧野らの方法 (Makino et al. , Plant Cell Physiol. 43 : 58-69 (2002) )に 従って調製した。 6J遺伝子特異的な 32Pラベル DNAプローブは、 GenBank/EMBL/DDBJ データベースに登録番号 NC— 003070で登録されている塩基配列の 8, 064, 660から 8, 066, 052を野生型株 Col-0からクロ一二ングして調製した。 遺伝子特異的 な 32P ラベル DNA プローブは、 GenBank/EMBL/DDBJ データベースに登録番号 NC_003070で登録されている塩基配列の 10, 474, 729から 10, 475, 025を野生型株 Coト 0からクローニングして調製した。 ELF4遺伝子特異的な 32Pラベル DNAプロ ーブは、 GenBank/EMBL/DDBJデータベースに登録番号 NC— 003070で登録されてい る塩基配列の 16, 741, 294から 16, 742, 019を野生型株 Co/- からクローニングし て調製した。
ノザンブロット解析の結果を図 4に示した。野生型株 G-38においては、いずれ の遺伝子の mRNAレベルも明瞭な概日リズムを示した。 これに対して _/7変異体 においては、 いずれの mRNA レベルもリズムを示さなかった。 また、 pc_Z7変異体 においては、 6 mRNA、 CAB2 mRNA, T0C1 mRNAs mRNAのレベルが野生型株の mRNAレベルと比較して上昇しており、 逆に CCA1 raRNA、 Z^ mR Aのレベルは極端 に低下していた。 これらの結果は、 7遺伝子は、 遺伝子、 遺伝子、 T0C1 遺伝子、 /¾遺伝子のリズミックな概日発現に必須であり、また、 遺伝子が "遺伝子、 遺伝子、 <%7遺伝子、 ¾遺伝子の発現を抑制し、 0¾ 遺伝子 と の遺伝子の発現を促進することを示している。
実施例 5 < pell変異体の光周的花成 >
高等植物の光周的花成は生物時計によつて支配されていることが広く知られて いる (Sweeney, Rhythmic Phenomena in Plants 2nd ed. , Academic Press, San Diego (1987); Lumsden and Millar, Biological Rhythms and Photoperiodisni in Plants. Oxford : Bios Scientific Publisher (1998) )。 7変異体が光周性を損なって いるのか否かを調べた。 光周的花成の測定は、 大藤らの方法 (Ohto et al. , Plant Physiol. 127 : 252-261 (2001) )に従って、 以下の手順で行った。 野生型 CoZ- 株 及び G- 38株、 ; ?変異体 pc _/- 7及び jOc - の種子を吸水させた後、 4 °C、 2 日間暗黒下で静置し、土(バーミキユラィト)に播種した。そして、 22. 0±0. 5°C、 長日条件下(16時間明期 /8時間喑期)または短日条件(10時間明期 /14時間喑期) で培養した。 明期における植物体への照射光は、 100 i mol/m2/s の白色光であつ た。 花成時期は、 植物体が 1. 5cmの高さまで抽台したときの植物体の全ての葉の 数をカウントすることで定量ィ匕した。 シロイヌナズナは長日植物であり、 野生型 では、 長日条件で培養した場合よりも短日条件で培養した場合の方が、 より多く の葉をつける。野生型株 Col—0と G - 38、 7変異体 pcll—1と の花成時期 の測定結果を図 5に示した。 野生型株では長日条件下で葉の枚数が少なく、 短日 条件下で葉の枚数が多レ、という長日性を示したが、 pdl変異体では長日と短日の いずれの日長でもほぼ同数の葉の枚数であり、日長不感受性であった。すなわち、 変異体は光周性を損なっていた。 したがって、 ¾ 遺伝子は光周的花成に必 須であることが判明した。
実施例 6く PCL1遺伝子のマップベースクローニングと PCL1遺伝子の構造 >
PCL1遺伝子のクローニングはマップベースクローニング法によって以下の手 順で行つた。 pcll-1変異体の F3ホモ個体 (ェコタイプ Col - 0) と野生型 Ler株と を交配し、 第 2世代 (F2) の種子を得た。 F2植物体を培養し、 Gr. '. LUCW レ 一ター遺伝子の生物発光を連続明条件下で測定し、 pcll-1変異をホモで持ってい る ホ モ 個 体 を 選 択 し た 。 そ し て 、 TAIR ウ ェ ブ サ イ ト (http:〃 www. arabidopsis. org/)で公開されている Coト 0ヒ Lerの間の多型マー カー (CAPSマーカー及び SSLPマーカー)及び Monsanto Arabidopsis Polymorphism Collectionからリリースされた SNP多型マーカーを利用して 変異と多型 マーカーとの組換え率を算出した。 組換え率がより小さくなる多型マーカーは物 理的に PCL1遺伝子により近いので、様々なマーカ一との組換え率を調査すること で PCL1遺伝子の染色体上の位置を決定した。 図 6に PCL1遺伝子のマップベース クローニングの模式図と PCL1遺伝子の構造を示した。 PCL1遺伝子の物理的位置 を第 3染色体上の SNPマーカー F18L15- 1 (Monsanto Arabidopsis Polymorphism Collectionの SNP番号 CER468139から CER468143を含む)と CAPSマーカー T0PP5 の間の約 150kbに位置づけた。 この約 150kbの領域における野生型 C 7 - 株及ぴ
Figure imgf000038_0001
ところ、 TAIRウェブサイトのデーターベースに整理番号^ ί ¾·45 として整理されている 遺伝子上に pcll-1と cJ/- の両者で塩基置換が発見できたので、 これを PCL1 遺伝子である と結論した。 PCL1 遺伝子の構造は、 RIKEN (RARGE; http:〃 rarge. gsc. riken. go. jp/)及ぴ TAIR ウェブサイトで公開されている完全 長 cDNAの塩基配列とゲノム DNA配列とを比較することで決定した。 PCL1遺伝子 の塩基配列と推定される PCL1 タンパク質のァミノ酸配列を配列表の配列番号 1 に記載した。 pcll-1と Ζ - どちらの変異も、 コード領域に停止コドンを生じ るナンセンス変異であった。 変異は配列表の配列番号 1に記載の塩基配列 中の 605番目の塩基 Gが Αに置換した変異であり、 配列表の配列番号 1に記載の ァミノ酸配列中の 149番目のァミノ酸残基 Trpが停止コドンになってしまうこと が分かる。 7- 変異は配列表の配列番号 1に記載の塩基配列中の 474番目の塩 基 Cが Tに置換した変異であり、 配列表の配列番号 1に記載のァミノ酸配列中の 106番目のアミノ酸残基 Ginが停止コドンになってしまうことが判明した。
実施例 7 く PCL1タンパク質の構造〉
推定される PCL1タンパク質の構造を図 7に示した。 PCL1タンパク質は 323ァ ミノ酸残基から成り、 既知のタンパク質との相同性をもたない新規のタンパク質 であった。 し力 し、 タンパク質の中央部分 (配列表の配列番号 1に記載のァミノ 酸配列の 143番目から 201番目のアミノ酸残基) に植物の転写因子に広く見られ る DNA結合モチーフである GARPモチーフを発見した。シロイヌナズナのレスポン スレギユレ一ターである ARR1 タンパク質(Sakai et al. , Plant Cell Physiol. 39 : 1232—1239 (1998) )や ARR10タンパク質(Imamura et al., Plant Cell Physiol. 40 : 733 - 742 (1999) )の GARPモチーフはその機能と構造が詳細に調べられている。 ARR1タンパク質と ARR10タンパク質は、 核に局在して GARPモチーフを介して特 定の DNAに結合することが知られている。 また、 ARR10タンパク質の GARPモチー フのァミノ酸残基はへリックス-ループ -へ ックスの Myb様の立体構造を形成し て DNAに結合することも知られている(Hosoda et al. , Plant Cell 14: 2015-2029 (2002) ) o PCL1ァミノ酸配列中の GARPモチーフは ARR1タンパク質や ARR10タン パク質の GARPモチーフに極めて似ていることから、 PCL1タンパク質は核に局在 して GARPモチーフを介して DNAに結合し、特定の DNAに結合して転写制御を行つ ていると考えられる。 pclH條と - 変異は、 ともに劣性変異であり、 GARP モチーフを欠いた不完全な PCL1 タンパク質を生じるナンセンス変異であること から、 pcll-1変異体と ^ 7- 変異体はともに pell欠損変異体であると考えられ る。
実施例 8く PCL1タンパク質の細胞内局在 >
PCL1 タンパク質の細胞内局在は、 丹羽らの方法(Niwa et al. , Plant J. 18 : 455-463 (1999) )を参考にして、 GFP-PCL1融合タンパク質及ぴ PCL卜 GFP融合 タンパク質をタマネギの表皮細胞で一過的に発現させて、 GFP の蛍光を蛍光顕微 鏡で観察した。 対照として GFPのみをタマネギ表皮細胞で一過的に発現させて、 GFP の蛍光を蛍光顕微鏡で観察した。 その結果、 GFP-PCL1 融合タンパク質及び PCL1-GFP B合タンパク質は核に局在していた (図 8 ) 。 したがって、 PCL1タンパ ク質は細胞内で核に局在すると考えられる。
実施例 9 く PCL1類似タンパク質およぴ相同タンパク質の探索〉
PCL1 タンパク質の相同タンパク質および類似タンパク質を公的なデータベー スで検索した。その結果、シロイヌナズナ {Arabidopsis thaliana) において PCLl 類似タンパク質をコードする遺伝子を、 イネ Oryza sativ ) において PCLl相同 タンパク質をコードする遺伝子を、 タバコ Nicotiana benthandna
Nicotiana tabacum) 、 卜マト {Lycopersicon esculentum) 、 ンャガィモ {Soianum tuberosum) 、 マツ Pinus taeda) 、 モロコシ Sorghwi) において PCLl相同タ ンパク質をコードする cDNAを、 それぞれ発見した。 PCL1タンパク質と PCL1類似 タンパク質および PCL1相同タンパク質のァミノ酸配列を比較した結果を図 9に示 した。 シロイヌナズナにおいては、 TAIRウェブサイ トのデータベースで整理番号 At5g59570 として整理されている推定遺伝子 (配列表の配列番号 2の塩基配列) が PCL1タンパク質と有意に類似したタンパク質 (配列表の配列番号 9のアミノ酸 配列) をコードしていた。 本発明者らはこの遺伝子を尸 ( ? - " (尸 と名付け た。 また、イネのゲノム DNA配列上に PCL1タンパク質と相同なアミノ酸配列 (配 列表の配列番号 1 0のアミノ酸配列) をコードする推定遺伝子 (配列表の配列番 号 3の塩基配列) を発見し、 これを本発明者らは 尸 7遺伝子と名付けた。 タパ コ (Mcoti a benthamina) においては、 不完全長である可能性があるが、 PCL1 タンパク質の相同タンパク質 (配列表の配列番号 1 1のァミノ酸配列) をコード すると推定される cDNA (配列表の配列番号 4の塩基配列) を発見し、 これを本発 明者らは 尸 7遺伝子と名付けた。 別の系統のタバコ mcotiana tabacum) に おいても、 不完全長ではあるが、 PCL1タンパク質の相同タンパク質 (配列表の配 歹 IJ番号 1 2のアミノ酸配列) をコードすると推定される cDNA (配列表の配列番号 5の塩基配列) を発見し、 これを本発明者らは NtPCLl遺伝子と名付けた。 トマト
{Lycopersicon esculentum) においては、 不完全長ではあるが、 PCL1 タンパク 質の相同タンパク質 (配列表の配列番号 1 3のアミノ酸配列) をコードすると推 定される cDNA (配列表の配列番号 6の塩基配列) を発見し、 これを本発明者らは LePCLl遺伝子と名付けた。 ジャガイモ Sola議 tuberosum) においては、 不完 全長である可能性がある力 PCL1タンパク質の相同タンパク質 (配列表の配列番 号 1 4のァミノ酸配列) をコードすると推定される cDNA (配列表の配列番号 7の 塩基配列)を発見し、 これを本発明者らは 7遺伝子と名付けた。マツ Pi薦 taeda) においては、 不完全長ではあるが、 、 PCL1 タンパク質の相同タンパク質
(配列表の配列番号 1 5のァミノ酸配列)をコードすると推定される cDNAを発見 し、 これを本発明者らは/ 遺伝子と名付けた。 モロコシ 、Sorghtmi) におい ては、 不完全長ではあるが、 PCL1タンパク質の相同タンパク質 (配列表の配列番 号 1 6のアミノ酸配列) をコードすると推定される cDNAを発見した。
実施例 1 0く尸 遺伝子発現のノザンプロット解析 >
これまでに時計遺伝子が発見されている生物種においては、 ほとんどの時計遺 伝子の発現が概日リズムを示す(Ishiura et al. , Science 281: 1519-1523; Dunlap, Cell 96: 271-290) 0 そこで、 遺伝子発現が概日リズムを示すのか否かをノザ ンプロット解析で調べた。 野生型株 G-38と 変異体の細胞内の尸 mR Aレ ベルのノザンプロット解析は以下の手順で行った。 まず、 表面滅菌した野生型株 G-38と pc_Z_/- 7変異体の種子を 1· 5% (w/v) ショ糖を含む MS (Murashige and Skoog, Physiol. Plant. 15 : 473-497 (1962) )固体培地に播種し、 連続明、 22. 0土 0. 3°C の条件下で 11 日間培養し、 12時間明期 /12時間暗期の明暗サイクルを 3サイクル 与えた後、 連続明条件に戻した。 植物体培養時の照射光は、 SO i mol/niVsの白色 光であった。 3サイクル目の暗期終了時、 すなわち連続明開始時を 0時間目とし て、連続明開始時から 3時間間隔で各タイムボイントごとに 10個体の植物体をサ ンプリングして即座に液体窒素で凍結した。 そして、 QIAGEN社製の RNeasy Midi Kitを使用して、 凍結した植物体から全 RNAを抽出した。 5 μ gの全 RNAをホルム アルデヒドを含んだ 1. 2%ァガロースゲルで電気泳動し、 ナイロン膜に転写した。 転写した全 R Aを 32Pラベルした PCL1遺伝子特異的な DNAプローブとハイブリダ ィズさせ、 PCL1遺伝子の mRNA蓄積量を放射活として検出した。 PCL1遺伝子特異 的な 32Pラベル DNAプローブは、 配列表の配列番号 1に記載の塩基配列の 1,021 から 1,992を野生型株 - からクローニングして調製した。
ノザンブロット解析の結果を図 10に示した。 野生型株 G- 38においては、 PCL1 遺伝子の mRNAレベルは主観的夕方にピークをもつ明瞭な概日リズムを示した。こ れに対して pcJ/変異体においては、 尸 7 mRNAレベルは概日リズムを示さなかつ た。 したがって、 PCL1遺伝子発現は概日リズムを示し、 自身のリズミックな概日 発現に必須であることが判明した。
実施例 1 1く PCじ: ΖίΓ生物発光レポーター株の作出と生物発光リズム >
PCL1遺伝子の発現を生物発光として詳細にリアルタイムモニタリングするた めに、 尸 : 生物発光レポーター株を以下の手順で作出した。 まず、 尸 7遺 伝子のプロモーター領域(配列表の配列番号 1に記載の塩基配列の 1から 1, 020) と改良型ホタルルシフェラーゼ遺伝子 ; Promega社)のコード領域を接続し た生物発光レポーター遺伝子カセッ H/¾L?: :Z / を作製し、 これをバイナリー ベクター pBIB—Hyg (Becker, Nucleic Acids Res. 18 : 203 (1990) )のクローニング サイトへ揷入して pBIB/尸 7:: ΖίΤを作製した。 Cloughと Bentの方法(Clough and Bent, Plant J. 16 : 735 - 743 (1998) )に従って、 pBIB/尸 7: :Z の T-DNA領域 (ハ ィグロマイシン B耐性遺伝子 HPTと PCL を含む) をァグロバタテリァを介 してシロイヌナズナの野生型株 - のゲノムへ遺伝子移入した。 遺伝子移入さ れた开質転換体は、 Weigel と Glazebrook の記載(Weigel and Glazebrook, ARABIDOPSIS-' A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2002) )に従って、 ハイグロマイシン B耐 [■生植物体として選択し、 さらに、 T- DNA がー遺伝子座へ挿入されたホモ植物体 (T3) を選択し野生型 PCL1:: 生物発光レポーター株として使用した。
連続明およぴ連続喑条件下における野生型 par.: Lucwtレポ一タ一株の生物 発光測定は、 本発明者らの方法 (Onai et al. , Plant J. , 41 : 1-11 (2004) )に従 つて行った。 12時間明期 /12時間喑期の明暗サイクルまたは 12時間暗期 /12時間 明期のサイクルを与えて生物時計をリセットした後、 連続明または連続暗で生物 発光を測定した。
野生型尸 : 発光レポーター株の生物発光パターンを図 11 に示した。 連 続明条件下における野生型尸 : ΖίΤ発光レポーター株の生物発光は、 ノザンブ 口ット解析による PCL1 mR Aの概日リズムと一致する明瞭な概日リズムを示した。 また、 生物発光量は連続明の場合と比較して約 3分の 1に低下したが、 野生型 par.: £ 発光レポーター株の生物発光は連続暗条件においても明瞭な概日リズ ムを示した。 これらの結果は、尸 遺伝子の発現が連続明と連続暗いずれの条件 下においても明瞭な概日リズムを示すことを意味している。
実施例 1 2
<尸 過剰発現体尸 7"Όχの作出と尸 7-ΟΧ植物体の GI: 生物発光パターン および葉の就眠運動 >
これまでに時計遺伝子が発見されている生物種にお!/、ては、 ほとんどの時計遺 伝子の発現が概日リズムを示し、 この概日発現を破壊すると全ての概日リズムが 消失して しま う こ とが広く 知られている (Ishiura et al., Science 281 : 1519-1523 ; Dunlap, Cell 96 : 271-290)。 そこで、 遺伝子を過剰発現す る尸 7過剰発現体尸 - oxを作出して/ ¾X7遺伝子の概日発現を破壊した場合に、 概日リズムが消失するの力否かを調べた。尸 7過剰発現体尸 は以下の手順 で作出した。まず、力リフラワーモザィクウィルスの 35Sプ モーター CaMV35S,' GenBank/EMBL/DDBJデータベースに登録番号 AF485783で登録されている塩基配列 の 4, 951から 5, 815)と PCL1遺伝子のコード領域 (配列表の配列番号 1に記載の 塩基配列の 997から 2, 001) を接続した PCL1過剰発現カセット CaMV35S : PCLl) を作製し、 これをバイナリーベクター pBIB-Hyg (Becker, Nucleic Acids Res. 18 : 203 (1990) )のクローニングサイトへ揷入して :尸 を作製した。 Cloughと Bentの方法(Clough and Bent, Plant J. 16 : 735 - 743 (1998) )に従って、 pBIB/ ^:: PCLlの T- DNA領域 (ハイグロマイシン B而ォ性遺伝子 HPTと 35S : PCL1 を含む) をァグロバクテリアを介してシロイヌナズナの野生型株 G - 38 {GI- : LUC 発光レポーター遺伝子をもつ野生型株) のゲノムへ遺伝子移入した。 遺伝子移入 された开$質転換体は、 Weigel と Glazebrook の記載(Weigel and Glazebrook, ARABIDOPbIS'- A Labor a tory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2002) )に従って、 ハイグロマイシン B耐性植物体として選択し、 さらに、 T - DNA がー遺伝子座へ挿入されたホモ植物体 (T3) を選択し、 植物細胞 内の PCLl mR Aレベルが上昇していることをノザンプロット解析で確認した後、 尸 過剰発現体尸 7 - oxとして使用した。
連続明および連続暗条件下における野生型株 G- 38 および PCL1 - ox植物体の 6 : 生物発光パターンを図 12a と図 12bに示した。 生物発光の測定 は、 本発明者らの方法 (Onai et al., Plant J., 41 : 1-11 (2004) )に従って行つ た。 12時間明期 /12時間喑期の明暗サイクルまたは 12時間暗期 /12時間明期のサ イタルを与えて生物時計をリセットした後、 連続明または連続暗で生物発光を測 定した。野生型株 G - 38は連続明と連続暗のいずれの条件下にお!/、ても明瞭な生物 発光リズムを示したが、尸 - ox植物体はどちらの条件下でも 3〜4日目まででに リズムが消失した。 また、尸 7-ox植物体では野生型株 G-38と比較して /: : ΖίΤ 生物発光のレベルが常に低かった。すなわち、 遺伝子の過剰発現は、 GI'. :LUC 生物発光リズムを破壊し、 かつ GI:: ΖίΤレポーター遺伝子発現を抑制していた。 野生型株と尸 CZ7 ox植物体の葉の就眠運動パターンを図 12cに示した。 葉の就 眠運動の測定は、 本発明者らの方法 (Onai et al. , Plant J. , 41 : 1-11 (2004) ) に従って行った。 野生型株は明瞭な就眠運動リズムを示したが、 ox植物体 では就眠運動は 4日目までにリズムが消失した。 すなわち、尸 7遺伝子の過剰発 現は、 葉の就眠運動リズムも破壌した。
これらの結果は、 PCL1遺伝子の概日発現を破壊すると概日リズムが消失するこ とを示している。 すなわち、尸 ゾ遺伝子のリズミックな概日発現が概日リズム発 振に必須である。
実施例 1 3く PCL1遺伝子発現の自己フィードバック制御 >
これまでに時計遺伝子が発見されてレ、る生物種にお!/、ては、 時計遺伝子の発現 が自身の遺伝子発現を制御する、 すなわち自己フィードパック制御し、 これによ つてリズミックな概日発現を可能としている。 そして、 この自己フィードバック ループが時計発振の本質であることが広く知られている(Ishiura et al., Science 281: 1519-1523; Dunlap, Cell 96 : 271-290)。 例えば、 ショウジョゥバエ や哺乳類の ¾rioi遺伝子、 ァカパン力ビの r t/ 遺伝子や藍色細菌の kaiC 遺伝子、 は自身の遺伝子発現を負のフィードパック制御している。 そこで、 PCL1 遺伝子の発現が自己フィードバック制御されているのか否かを明らかにするため、 PCLl-o 植物体 (内在の PCLA遺伝子とに加えて PCL1遺伝子過剰発現力セットで ある CaMV35S:: PCL1遺伝子を染色体上のエタトピックな部位に持つている植物 体) において内在の/ ¾7Z 遺伝子発現をノザンプロット解析によって調べた。野生 型株 G- 38、 pell変異体、そして PCLln植物体のノザンブロット解析は以下の手 順で行った。 まず、 表面滅菌したそれぞれの種子を 1. 5% (w/v) ショ糖を含む MS (Murashige and Skoog, Physiol. Plant. 15: 473-497 (1962) )固体培地に播種 し、 連続明、 22. 0±0. 3°Cの条件下で 11日間培養し、 12時間明期 /12時間暗期の 明暗サイクルを 3サイクル与えた後、 連続明条件に戻した。 植物体培養時の照射 光は、 50 ; mol/m2/sの白色光であった。 3サイクル目の暗期終了時、 すなわち連 続明開始時を 0時間目として、 連続明開始時から 4時間間隔で各タイムボイント ごとに 10個体の植物体をサンプリングして即座に液体窒素で凍結した。 そして、 QIAGEN社製の RNeasy Midi Kitを使用して、 凍結した植物体から全 RNAを抽出し た。 5 μ βの全匪をホルムアルデヒドを含んだ 1. 2°/。ァガロースゲルで電気泳動し、 ナイ口ン膜に転写した。転写した全 RNAを内在の PCL1遺伝子から転写された mRNA のみにハイブリダィズする R Aプローブとハイブリダイズさせ、内在尸 遺伝子 由来の mRNA蓄積量を放射活として検出した。内在の 遺伝子由来の mRNAに特 異的にハイブリダイズする RNAプローブは、 32Pを取り込ませながら試験管内合成 した PCL1 mRNAの 3'非翻訳領域 (配列表の配列番号 1に記載の塩基配列の 1, 992 から 2, 237) を使用した。
ノザンブロット解析の結果を図 13に示した。 野生型株 G- 38においては、 PCL1 mRNAはリズミックに変動して明瞭な概日リズムを示したが、 尸 植物体にお いては、 内在の尸 (X/遺伝子から転写される mRNAのレベルの概日リズムは 3日目 で消失し、 かつそのレベルは野生型と比較して低レベルであった。 また、 pell 異体では、 尸 mRNA レベルは野生型と比較して高く、 概日リズムを示さなかつ た。 これらの結果は、尸 7遺伝子発現は自分自身の遺伝子発現を負に制御してい る、すなわち負の PCLA遺伝子発現制御は自己フィードバックループを形成してお り、このフィードバックループが概日リズム発振に必須であることを示している。 以上の結果、上述したような、 高等植物における生物時計遺伝子として必要と される条件である以下の 5つ、すなわち、 (1)一遺伝子の機能喪失によって全ての 概日リズムが失われる、 (2)—遺伝子の機能喪失によって光周性が喪失する、 (3) 遺伝子発現が連続明条件下および連続喑条件下で概日リズムを示す、(4)遺伝子の 過剰発現は全ての概日リズムを破壊する、(5)自身の遺伝子発現をフィードバック 制御する、 を本発明の遺伝子が満足することが判明した。 これらの条件を満たす 遺伝子は、 上述のように本発明が成されるまで発見されていなかった。
実施例 6において本発明者らは、 シロイヌナズナのゲノムから概日リズムを支 配する生物時計遺伝子尸 7をクローユングした。 さらに、実施例:!〜 4と実施例 1 0において 変異体では調べた全ての概日リズムが失われていた。したがつ て、 7遺伝子は一遺伝子の機能喪失で全ての概日リズムが失われるので、上記 条件 (1 ) を満たしていることが判明した。
実施例 5において pell変異体では、光周的花成が 長不感受性であった。 した がって、 PCL1遺伝子は一遺伝子の機能喪失で光周性が喪失するので、 上記条件
( 2 ) を満たしていることが判明した。
実施例 1 0と実施例 1 1において/ ¾7Z 遺伝子の発現は、連続明および連続喑条 件下で概日リズムを示した。 したがつて、 PCL1遺伝子は上記条件 ( 3 ) を満たし ていることが判明した。
実施例 1 2と実施例 1 3におレ、て PCL1遺伝子の過剰発現は、調べた全ての概日 -リズムを破壊した。 したがって、 尸 7遺伝子は上記条件 (4 ) を満たしているこ とが半 IJ明した。
実施例 1 3において _/遺伝子の機能喪失は自身の発現を上昇させ、過剰発現 は自身の発現を抑制した。 したがって、尸 7遺伝子は負の自己フィードバックに よって自らの発現を制御しているので、 上記条件 ( 5 ) を満たしていることが判 明した。
以上から、尸 7遺伝子は植物の生物時計遺伝子として必要とされる条件を全て 満たしていたので、 植物の時計遺伝子であることが判明した。
また、 実施例 7と実施例 8において PCIA遺伝子は、 GARPモチーフをもつ核局 在のタンパク質をコードしていた。 したがって、 PCL1タンパク質は植物細胞にお いて核に局在して特定の DNAに結合し遺伝子発現を制御する転写因子として機能 していると考えられる。 実施例 9において PCL1 タンパク質の類似タンパク質およぴ相同タンパク質を をコードする遺伝子を多数の植物に見出した。 これらのタンパク質は、 時計タン パク質として機能していると容易に推測される。
本発明に基づく植物の生物時計のモデルを図 14に示した。 7遺伝子は負の 自己フィードバックループを形成し、 このフィードパックループが生物時計の本 質であると考えられる。また、尸 7遺伝子は、既知の時計関連遺伝子である T0C1、 GI、 の発現を促進的に、 と Z の発現を抑制的に制御しており、 これら の遺伝子発現ネットワークが概日振動を安定化させていると考えられる。
実施例 1 4く PCLL'.: Ζ Τ生物発光レポーター株の作出と生物発光リズム〉
シロイヌナズナの PCL1類似遺伝子 PCLLの発現を生物発光として詳細にリアル タイムモニタリングするために、 PCLL:: 生物発光レポーター株を以下の手順 で作出した。 まず、尸 Z遺伝子のプロモーター領域と改良型ホタルルシフェラー ゼ遺伝子のコード領域を接続した生物発光レポーター遺伝子カセッ ト PCLL: : LUC)を作製し、 これをパイナリ一ベクター pBIB_Hyg (Becker, Nucleic Acids Res. 18 : 203 (1990) )のクローニングサイトへ挿入して pBIB/H2 : : Z〃(^を 作製した。 Cloughと Bentの方法 (Clough and Bent, Plant J. 16 : 735-743 (1998) ) に従つて、 ρΒΙΒ/ ¾2Ζ:: LUC D T-DNA領域(ハイグロマイシン Β而ォ性遺伝子 ΗΡΤと PCLL'.: を含む)をァグロバクテリァを介してシロイヌナズナの野生型株 Col-0 のゲノムへ遺伝子移入した。 遺伝子移入された形質転換体は、 Weigel と Glazebrookの記載(Weigel and Glazebrook, ARABIDOPSIS: A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2002) )に従って、 ハイグロマイシン B耐性植物体として選択し、 さらに、 T- DNAがー遺伝子座へ挿 入されたホモ植物体 (T3) を選択し野生型 ¾Χ : Ζ ^生物発光レポーター株とし て使用した。
連続明および連続暗条件下における野生型 PCLL:: LUCm レポーター株の生物 発光測定は、 本発明者らの方法 (Onai et al., Plant J., 41 : 1—11 (2004) ) に従 つて行った。 12時間明期 /12時間暗期の明暗サイクルまたは 12時間暗期 /12時間 明期のサイクルを与えて生物時計をリセットした後、 連続明または連続暗で生物 発光を測定した。
野生型尸 : ίΤ発光レポーター株の生物発光パターンを図 22 に示した。 連 続明と連続暗のいずれの場合にお!、ても、 野生型 PCLL:: LUC レポーター株の 生物発光は、 PCL1:: ΖίΤ発光レポーター株の生物発光リズムと一致する明瞭な概 日リズムを示した。 これらの結果は、 PCLL遺伝子発現が PCL1遺伝子発現と全く 同じパターンであることを意味している。
実施例 1 5く户 Z過剰発現体/ ¾7ZZ Xの作出と ox植物体の GI'.: ίΤ生物発 光パターン >
実施例 1 1で示したように、 PCL1遺伝子を過剰発現すると、概日リズムが破壊 されてしまう。 PCLL遺伝子が PCL1遺伝子と同一または極めて類似した機能を果 たしている、 すなわち時計遺伝子として機能している、 と仮定すると、 PCLLの過 剰発現も概日リズムに深刻な影響を与えると予想される。 そこで、 尸 過剰発現 体 PCLL - oxを作出して PCLL遺伝子の概日発現を破壊した場合に、概日リズムがど のような影響を受けるのかを調べた。 CZZ過剰発現体尸 oxは以下の手順で作 出した。 まず、 カリフラワーモザイクウィルスの 35S プ モーター CaMV35S GenBank/EMBL/DDBJデータベースに登録番号 AF485783で登録されている塩基配列 の 4, 951から 5, 815)と PCLL遺伝子のコ一ド領域を接続して PCLL過剰発現力セッ ト、CaMV35S'. : PCLL)を作製し、 これをバイナリーベクタ一 pBIB_Hyg (Becker, Nucleic Acids Res. 18 : 203 (1990) )のク ローニングサイ トへ揷入して pBIB / 5::尸 Zを作製した。 Cloughと Bentの方法(Clough and Bent, Plant J. 16 : 735 743 (1998) )に従って、 pBIBA¾"5::尸 の T- DNA領域 (ハイグロマイシン B耐性遺伝子 HPTと 35S.': PCLLを含む) をァグロバクテリアを介してシロイヌナ ズナの野生型株 G- 38 ( : £Τ発光レポーター遺伝子をもつ野生型株) のゲノム へ遺伝子移入した。 遺伝子移入された形質転換体は、 Weigel と Glazebrookの記 載(Weigel and Glazebrook, ARABIDOPSIS A Laboratory Manual Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2002) )に従って、 ハイグロマイ シン B耐性植物体として選択し、 PCLL過剰発現体 PCLL-oxとして使用した。 連続明における尸 Z- ox植物体の GI: 生物発光パターンを図 23に示した。 : : ΖΖΤ生物発光の測定は、 本発明者らの方法 (Onai et al. , Plant J. , 41 : 1-11 (2004) ) に従って行った。 12時間明期 /12時間喑期の明暗サイクルを与えて生物 時計をリセットした後、 連続明で生物発光を測定した。 その結果、 尸 ox植物 体の生物発光リズムは、 徐々に減衰しながら 5日目までは野生型株と比較して約 2時間短周期を示し、 その後、 消失した。 この結果は、 尸 遺伝子の概日発現を 破壌すると、 生物時計が正常に機能しなくなってしまうことを意味している。 実施例 1 4と実施例 1 5の結果から、 PCLL遺伝子は PCL1遺伝子に塩基配列が 類似しているだけではなく、 発現パターンや機能も極めて類似していることが示 された。 したがって、 / ¾7 遺伝子は時計機能に重要な遺伝子であると言える。 ま た、これらの結果から、本明細に記載した尸 Ζ遺伝子以外の尸 7類似遺伝子や、 今後発見されると予想される尸 類似遺伝子に関しても 遺伝子と同様に、 時計機能に重要な働きを持つことが強く示唆される。

Claims

請 求 の 範 囲
1. 以下の(a)、 又は(b)からなる生物時計の制御に関与する核酸。
( a )配列表の配列番号 1に示す、塩基配列番号 1一 2846で示される塩基配列から なる核酸。
( b )前記塩基配列番号 1—2846の塩基配列の一部が欠失、置換若しくは付加され ていて、 かつ、 前記塩基配列と 80%の相同性を有する核酸。
2. 以下の(a)、 又は(b)からなる生物時計の制御に関与する核酸。
( a )配列表の配列番号 2に示す、塩基配列番号 1一 4554で示される塩基配列から なる核酸。
(b)前記塩基配列番号 1一 4554の塩基配列の一部が欠失、置換若しくは付加され ていて、 かつ前記塩基配列と 80%の相同性を有する核酸。
3. 以下の(a)、 又は(b)からなる生物時計の制御に関与する核酸。
( a )配列表の配列番号 3に示す、塩基配列番号 1一 4700で示される塩基配列から なる核酸。
( b )前記塩基配列番号 1一 4700の塩基配列の一部が欠失、置換若しくは付加され ていて、 かつ前記塩基配列と 80%の相同性を有する核酸。
4. 以下の )、 又は(b)からなる生物時計の制御に関与する核酸。
(a)配列表の配列番号 4に示す、塩基配列番号 1一 1505で示される塩基配列から なる核酸。
(b)前記塩基配列番号 1一 1505の塩基配列の一部が欠失、置換若しくは付加され ていて、 かつ、 前記塩基配列と 80%の相同性を有する核酸。
5. 以下の(a)、 又は(b)からなる生物時計の制御に関与する核酸。
( a )配列表の配列番号 5に示す、 塩基配列番号 1一 400 で示される塩基配列から なる核酸。
( b )前記塩基配列番号 1一 400 の塩基配列の一部が欠失、 置換若しくは付加され ていて、 かつ前記塩基配列と 80%の相同性を有する核酸。
6. 以下の(a)、 又は(b)からなる生物時計の制御に関与する核酸。
( a )配列表の配列番号 6に示す、 塩基配列番号 1—641 で示される塩基配列から なる核酸。
(b)前記塩基配列番号 1—641 の塩基配列の一部が欠失、 置換若しくは付加され ていて、 かつ前記塩基配列と 80%の相同性を有する核酸。
7. 以下の(a)、 又は(b)からなる生物時計の制御に関与する核酸。
( a )配列表の配列番号 7に示す、塩基配列番号 1一 1400で示される塩基配列から なる核酸。
(b)前記塩基配列番号 1一 1400の塩基配列の一部が欠失、置換若しくは付加され ていて、 かつ、 前記塩基配列と 80%の相同性を有する核酸。
8. 請求項 1〜 7項のいずれか 1項に記載の核酸からなるプロープ。
9. 生物における生物時計の制御に関与する遺伝子を探索用に使用することを特 徴とする請求項 8記載のプローブ。
1 0.以下の(a)、又は(b)からなる生物時計の制御に関与するペプチド断片。
(a)配列表の配列番号 8に示す、 アミノ酸配列番号 1—323 で示されるアミノ酸 配列からなるぺプチド断片。
(b)当該配列番号 8に示す、 アミノ酸配列の一部が欠失、 置換若しくは付加され ていて、 かつ前記ァミノ酸配列と 80 %の相同性を有するぺプチド断片。
1 1. 以下の(a)、 又は(b)からなる生物時計の制御に関与するペプチド断片。
( a )配列表の配列番号 9に示す、 ァミノ酸配列番号 1一 298 で示されるアミノ酸 配列からなるペプチド断片。
(b)当該配列番号 9に示す、 アミノ酸配列の一部が欠失、 置換若しくは付加され ていて、 かつ前記ァミノ酸配列と 80 %の相同性を有するぺプチド断片。
1 2. 以下の(a)、 又は(b)からなる生物時計の制御に関与するペプチド断片。
( a )配列表の配列番号 1 0に示す、 ァミノ酸配列番号 1一 238 で示されるァミノ 酸配列からなるぺプチド断片。
( b )当該配列番号 1 0に示す、 アミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 かつ前記ァミノ酸配列と 8.0 %の相同性を有するぺプチド断片。
1 3 .以下の )、又は(b )からなる生物時計の制御に関与するペプチド断片。
( a )配列表の配列番号 1 1に示す、 ァミノ酸配列番号 1—312 で示されるァミノ 酸配列からなるぺプチド断片。
( b )当該配列番号 1 1に示す、 ァミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 かつ前記ァミノ酸配列と 8 0 %の相同性を有するぺプチド断片。
1 4 . 以下の )、 又は(b )からなる生物時計の制御に関与するペプチド断片。
( a )配列表の配列番号 1 2に示す、ァミノ酸配列番号 1一 70で示されるアミノ酸 配列からなるペプチド断片。
( b )当該配列番号 1 2に示す、 ァミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 かつ前記ァミノ酸配列と 8 0 %の相同性を有するぺプチド断片。
1 5 .以下の(a )、又は(b )からなる生物時計の制御に関与するペプチド断片。
( a )配列表の配列番号 1 3に示す、 ァミノ酸配列番号 1一 185 で示されるァミノ 酸配列からなるぺプチド断片。
( b )当該配列番号 1 3に示す、 アミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 かつ前記ァミノ酸配列と 8 0 %の相同性を有するぺプチド断片。
1 6 . 以下の(a )、 又は(b )からなる生物時計の制御に関与するペプチド断片。
( a )配列表の配列番号 1 4に示す、 ァミノ酸配列番号 1—314 で示されるァミノ 酸配列からなるぺプチド断片。
( b )当該配列番号 1 4に示す、 ァミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 かつ前記ァミノ酸配列と 8 0 %の相同性を有するぺプチド断片。
1 7 . 以下の(a )、又は(b )からなる生物時計の制御に関与するペプチド断片。
( a )配列表の配列番号 1 5に示す、 ァミノ酸配列番号 1—121 で示されるァミノ 酸配列からなるぺプチド断片。 ( b )当該配列番号 1 5に示ず、 ァミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 かつ前記ァミノ酸配列と 8 0 %の相同性を有するぺプチド断片。
1 8 . 以下の(a )、 又は(b )からなる生物時計の制御に関与するペプチド断片。
( a )配列表の配列番号 1 6に示す、 ァミノ酸配列番号 1—200 で示されるァミノ 酸配列からなるぺプチド断片。
( b )当該配列番号 1 6に示す、 ァミノ酸配列の一部が欠失、 置換若しくは付加さ れていて、 かつ前記ァミノ酸配列と 8 0 %の相同性を有するぺプチド断片。
1 9 . 請求項 1 0〜1 8項のいずれか 1項に記載のペプチド断片からなるプロ一 ブ。
2 0 . 請求項 8、 9、 又は 1 9項のいずれか 1項に記載のプローブを用いた生物 時計の制御に関与する遺伝子のスクリ一二ング方法。
2 1 . スクリーニングを、 in situハイブリダィゼーシヨン法、 サザンハイブリ ダイゼーシヨン法、 全塩基配列決定、 コロニーハイブリダィゼーシヨン法、 プラ 一クハイブリダイゼーション法、 ノザンハイブリダイゼーション法、 サウスゥェ スタン法からなる群から選択される少なくとも 1種を用いて行なう請求項 2 0記 載の方法。
2 2 . 前記ペプチド断片が、 細胞の核における特定の遺伝子の転写、 概日リズム の発振と安定化を制御することを特徴とする請求項 1 0〜: 1 8項のいずれか 1項 に記載のぺプチド断片。
2 3 . 前記べプチド断片が、 GARPファミリ一に属する DNA結合モチーフを有する ことを特徴とする請求項 1 0〜 1 8項のいずれか 1項に記載のぺプチド断片。
2 4 . 請求項 1 0〜1 8項のいずれか 1項に記載のペプチド断片を含有している 植物の生物時計制御用組成物。
2 5 . 請求項 1〜7項のいずれか 1項に記載の DNA又は R Aを含有しているべク ター。
2 6 . 請求項 1〜 7項の!/、ずれか 1項に記載の DNA又は RNAを発現可能に保持す る形質転換体。
2 7 . 請求項 2 6記載の形質転換体を培養する工程を含む、 請求項 1 0〜1 8の いずれか 1項に記載のぺプチド断片を生産する生産方法。
2 8 .以下の(a )、又は(b )からなる生物時計の制御に関与するペプチド断片。
( a )配列表の配列番号 8に示す、 アミノ酸配列番号 1—210 で示されるアミノ酸 配列からなるペプチド断片。
( b )当該配列番号 8に示す、 ァミノ酸配列番号 1— 210で示されるァミノ酸配列 の一部が欠失、 置換若しくは付加されていて、 かつ前記アミノ酸配列と 8 0 %の 相同性を有するぺプチド断片。
2 9 .以下の(a )、又は(b )力^なる生物時計の制御に関与するペプチド断片。
( a )配列表の配列番号 8に示す、 ァミノ酸配列番号 1一 143 で示されるアミノ酸 配列からなるペプチド断片。
( b )当該配列番号 8に示す、 ァミノ酸配列番号 1一 143で示されるァミノ酸配列 の一部が欠失、 置換若しくは付加されていて、 かつ前記アミノ酸配列と 8 0 %の 相同性を有するぺプチド断片。
3 0 . 請求項 2 8又は 2 9項に記載のぺプチド断片からなるプロープ。
3 1 . 請求項 3 0記載のプローブを用いた生物時計の制御に関与するペプチド断 片のスクリーニング方法。
PCT/JP2006/311677 2005-06-09 2006-06-05 核酸、当該核酸をコードするアミノ酸、当該核酸及びアミノ酸からなるプローブ、及び当該プローブを用いたスクリーニング法 WO2006132389A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/921,786 US20100297613A1 (en) 2005-06-09 2006-06-05 Nucleic acid, amino acid encoded by said nucleic acid, probe comprising said nucleic acid or said amino acid, and screening method using said probe
JP2007520192A JP5145560B2 (ja) 2005-06-09 2006-06-05 Dnaまたはrnaからなるプローブ、及び当該プローブを用いたスクリーニング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-169795 2005-06-09
JP2005169795 2005-06-09

Publications (1)

Publication Number Publication Date
WO2006132389A1 true WO2006132389A1 (ja) 2006-12-14

Family

ID=37498575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311677 WO2006132389A1 (ja) 2005-06-09 2006-06-05 核酸、当該核酸をコードするアミノ酸、当該核酸及びアミノ酸からなるプローブ、及び当該プローブを用いたスクリーニング法

Country Status (3)

Country Link
US (1) US20100297613A1 (ja)
JP (1) JP5145560B2 (ja)
WO (1) WO2006132389A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350678B (zh) * 2022-01-12 2023-11-21 中国水稻研究所 基因OsLUX在促进水稻抽穗和提高植物抗病性中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008540A2 (en) * 2001-06-22 2003-01-30 Syngenta Participations Ag Abiotic stress responsive polynucleotides and polypeptides
JP2004500044A (ja) * 1999-10-12 2004-01-08 メンデル・バイオテクノロジー・インコーポレーテッド 開花時期修飾
WO2004031349A2 (en) * 2002-09-18 2004-04-15 Mendel Biotechnology, Inc. Polynucleotides and polypeptides in plants
WO2005001050A2 (en) * 2003-06-06 2005-01-06 Arborgen, Llc. Transcription factors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004500044A (ja) * 1999-10-12 2004-01-08 メンデル・バイオテクノロジー・インコーポレーテッド 開花時期修飾
WO2003008540A2 (en) * 2001-06-22 2003-01-30 Syngenta Participations Ag Abiotic stress responsive polynucleotides and polypeptides
WO2004031349A2 (en) * 2002-09-18 2004-04-15 Mendel Biotechnology, Inc. Polynucleotides and polypeptides in plants
WO2005001050A2 (en) * 2003-06-06 2005-01-06 Arborgen, Llc. Transcription factors

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] CHEUK R. ET AL., XP003002742, Database accession no. (AJ538628) *
ONAI K. ET AL.: "PHYTOCLOCK 1 encoding a novel GARP protein essential for the Arabidopsis circadian clock", GENES TO CELLS, vol. 10, 2005, pages 963 - 972, XP003002743 *

Also Published As

Publication number Publication date
JPWO2006132389A1 (ja) 2009-01-08
JP5145560B2 (ja) 2013-02-20
US20100297613A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
Onai et al. PHYTOCLOCK 1 encoding a novel GARP protein essential for the Arabidopsis circadian clock
Seo et al. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity
Park et al. Functional characterization of the SIZ/PIAS‐type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice
Ni et al. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress
Li et al. Expression of a bifunctional green fluorescent protein (GFP) fusion marker under the control of three constitutive promoters and enhanced derivatives in transgenic grape (Vitis vinifera)
Moin et al. Activation tagging in indica rice identifies ribosomal proteins as potential targets for manipulation of water‐use efficiency and abiotic stress tolerance in plants
US20050009187A1 (en) Environmental stress-responsive promoter and genes encoding transcriptional factor
Nishimura et al. The expression of tobacco knotted1‐type class 1 homeobox genes correspond to regions predicted by the cytohistological zonation model
CN111206041B (zh) OsBAK1P基因在控制水稻抗旱性中的应用
US20080216196A1 (en) Environmental stress-responsive promoter and a gene encoding environmental stress-responsive transcriptional factor
AU2016206158B2 (en) Protein associated with disease resistance and encoding gene thereof, and use thereof in regulation of plant disease resistance
Ghosh et al. Abscisic acid‐induced gene expression in the liverwort Marchantia polymorpha is mediated by evolutionarily conserved promoter elements
Sharma et al. Abscisic acid response element binding factor 1 is required for establishment of Arabidopsis seedlings during winter
CN105753954B (zh) 水稻hox12基因的应用
CN107459565A (zh) 大豆抗旱相关蛋白在调控大豆抗旱性中的应用
US8115059B1 (en) Gene expression modulation system for use in plants and method for modulating gene expression in plants
CN112812161B (zh) 蛋白质IbMYC2在调控植物抗旱性中的应用
CN112724213B (zh) 甘薯花青苷合成和抗逆相关蛋白IbMYB4及其编码基因与应用
CN106367433B (zh) 提高植物对赤霉素抑制剂敏感性的方法及其应用
CN100445383C (zh) 一个被二化螟取食特异诱导表达的水稻启动子及应用
WO2006132389A1 (ja) 核酸、当該核酸をコードするアミノ酸、当該核酸及びアミノ酸からなるプローブ、及び当該プローブを用いたスクリーニング法
Rui et al. Functional characterization of MdERF113 in apple
Liu et al. MYB6/bHLH13‐AbSUS2 involved in sugar metabolism regulates root hair initiation of Abies beshanzuensis
Dong et al. The sweet potato B-box transcription factor gene IbBBX28 negatively regulates drought tolerance in transgenic Arabidopsis
AU782201B2 (en) Gene coding for protein involved in cytokinin signal transduction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11921786

Country of ref document: US

Ref document number: 2007520192

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06747266

Country of ref document: EP

Kind code of ref document: A1