WO2006131990A1 - Nitride semiconductor light emitting element and method for manufacturing same - Google Patents

Nitride semiconductor light emitting element and method for manufacturing same Download PDF

Info

Publication number
WO2006131990A1
WO2006131990A1 PCT/JP2005/010993 JP2005010993W WO2006131990A1 WO 2006131990 A1 WO2006131990 A1 WO 2006131990A1 JP 2005010993 W JP2005010993 W JP 2005010993W WO 2006131990 A1 WO2006131990 A1 WO 2006131990A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semi
nitride
transparent conductive
type
Prior art date
Application number
PCT/JP2005/010993
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinobu Ono
Sadanori Yamanaka
Masahiko Hata
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to PCT/JP2005/010993 priority Critical patent/WO2006131990A1/en
Publication of WO2006131990A1 publication Critical patent/WO2006131990A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements

Definitions

  • the present invention relates to a nitride semi-metal layer and its SSi method. Background leakage
  • Semiconductor elements made of 3-53 ⁇ 43 ⁇ 4f such as GaN, InGaN, AlGaN, and InA1GaN are widely used as various display devices or illumination devices.
  • This semi-compensated element includes, for example, an ohmic ⁇ layer, a ⁇ -type semi-monolayer, mm, an n-type half-mm, and an ohmic healing layer in this order.
  • an ohmic ⁇ layer for example, an ohmic ⁇ layer, a ⁇ -type semi-monolayer, mm, an n-type half-mm, and an ohmic healing layer in this order.
  • This half (this front eave has a transparent layer and a conductive layer on the surface side, so it hardly prevents light from being emitted from the surface to the outside of the eave.
  • a single electrode layer is made of an ohmic metal that has both an ohmic property (less contact between the ⁇ layer and the electrode layer) and a light reflection function. By using the electrode layer, the light emitted from the layer to the opposite surface side is reflected by the ohmic display layer and emitted from the surface.
  • the object of the present invention is to provide a nitride semi-solid layer that exhibits a high degree of latitude. And providing the law.
  • Ohmic 3 ⁇ 4S layer (i) is a transparent conductive layer
  • the ohmic electrode layer (ii) includes a transparent conductive layer and a photoreversible layer in this order, and the semi-layer (i) is p-type and the semi-honor layer (ii) is n-type, Or semi-finished nitride layer (0 is ⁇ type and semi-difficult layer (ii) is!) Type Nitride semi (carry the main house.
  • the present invention also eliminates the S3 ⁇ 4t ⁇ method for nitride halves including steps (a) to (e).
  • step (d) step of
  • the invention further provides a ⁇ method of nitride semiconductor ⁇ present ⁇ 1 ⁇ element comprising the step ⁇ ).
  • a half main layer (0, layer and layer) is formed in this order.
  • step (h) a step of ironing a single crystal substrate from that obtained in step (g),
  • step (k) From what is obtained in step (] '): 3 ⁇ 4 ⁇ step of
  • the nitride semiconductor of the present invention has a low luminance, it can be suitably used as a display device and a lighting device. According to the manufacturing method of the nitride half (this ⁇ ? Of the present invention, a high brightness can be obtained.
  • Fig. 1 (a) shows a nitride half with a surface facing the n-type half layer.
  • FIG. 1 (b) shows a nitride semiconductor element whose side surface is on the p-type semiconductor layer side.
  • Fig. 1 (c) shows a p-type half (a nitride half with an n-type half layer between this layer and the transparent conductive layer, and the surface facing the n- type half layer side (this element is shown). .
  • Fig. 1 (d) shows a nitride semi-house with a ⁇ -type semi-layer between the p-type semi-printed layer and the transparent conductive layer, and the side surface is on the ⁇ -type semi-layer side.
  • the nitride semiconductor device according to the present invention has an ohmic layer ⁇ , a semi-layer), a semi-layer
  • a conductive electrode layer (0 is a transparent layer that is transparent with respect to light emitted from the layer and is conductive).
  • the ohmic electrode layer (i) is on the side of the surface that is a surface from which light is emitted from the element to the outside with the layer serving as a door, and is sometimes referred to as a “example surface side talent electrode layer”.
  • the ohmic electrode layer ⁇ includes a layer that is transparent with respect to light emitted from the ⁇ layer and has conductivity (transparent conductive layer), and a layer that reflects light emitted from the layer ( ⁇ reflective function layer). .
  • the transparent conductive layer is on the layer, and the photoreactive layer is on the transparent conductive layer.
  • the age-Mick layer (ii) is on the side of the Ml face with the face as, and is sometimes referred to as the “opposite face-side ohmic layer”.
  • the semi-conductive layer (0 is ⁇ -type and semi-normal layer (i) is n-type, or the semiconductor layer ⁇ is n-type and the semiconductor layer ⁇ is p-type. It is a type.
  • ⁇ -GaN, p— IrixGa — ⁇ ⁇ (0 ⁇ 1), ⁇ — Al x Ga ⁇ ⁇ ⁇ (0 ⁇ 1), or their stacked structure is there.
  • the layers are, for example, In x Ga x _ x N (0 ⁇ x ⁇ l), GaN, (0 ⁇ x ⁇ l) etc.
  • the n-type half layer is, for example, n-GaN, nA ⁇ Ga ⁇ .N (0 ⁇ 1) or a laminated structure thereof.
  • the layer in contact with the n-type half-f layer ohmic electrode (so-called contact layer) is preferably free of carrier wisteria, for example, 1 ⁇ 10 19 cm 1 3 or more.
  • the transparent conductive I4S exhibits excellent ohmic properties.
  • the layer of the n-type semi-layer in contact with the ohmic ⁇ @ is n-In.Ga ⁇ N (0 ⁇ 1) force, It is preferable that the film leaks from different compounds. In such a nitride semiconductor, the transparent conductive layer exhibits better ohmic properties.
  • Each of the semiconductor layer (i), the light emitting layer, and the semiconductor layer (ii) may be composed of a plurality of layers.
  • the layer may be, for example, a multi-well layer (MQW) in which an undoped GaN layer and an InGaN layer are arranged in between.
  • MQW multi-well layer
  • the semi-primary layer (i), the difficult layer, and the semi-layer (ii) are preferably thin without absorbing the light emitted by the difficult layer, and the total thickness of these layers should be 10 m or less.
  • Semi-layer ⁇ , m, half (main layer ( ⁇ ) preferably has few defects.
  • any layer preferably has a dislocation density of ⁇ 11X10 7 cm 2 or less.
  • Nitride half-layers with few semi- # f layers ⁇ , layers and layer D have higher brightness.
  • the transparent conductive layer converted into the ohmic layer (i) and the ohmic ⁇ layer (ii) makes light emitted from the light emitting layer (for example, a wavelength of 350 nm to 800 nm) thigh and has an ohmic property.
  • the transparent conductive layer may be a metal in addition to a selfish oxide.
  • Metals can be any material that is transparent to the light emitted from the layers and has strong electrical conductivity;
  • a Ni / Au thin film with a high thickness of 50 nm or less For example, a Ni / Au thin film with a high thickness of 50 nm or less.
  • the transparent conductive layer has a thickness of usually 10 nm or more, preferably 5 O nm or more, and a light transmittance of usually 80% or more, preferably 90% or more.
  • the light beam rate at this time is the average of the rate spectrum over the entire visible light wavelength range (400 to 800 nm), or the rate of ⁇ 61 spring 3 ⁇ 41 at the wavelength.
  • the transparent conductive layer is made of metal; preferably, the metal is a thin film (for example, 5 O nm or less).
  • the transparent conductive layer is made of a metal with a relatively low spring rate: ⁇ , the metal is thin, and is preferably a mesh, lattice, or comb.
  • a transparent conductive layer made of oxide may be formed on a grid, lattice, or comb-shaped metal electrode.
  • the transparent conductive layer usually exhibits better ohmic properties when leaked with the ⁇ -type semi-layer than when used with the ⁇ -type half-layer. Therefore, the nitride semi- # with the transparent conductive layer on the ⁇ -type semi-layer (in this property, the ⁇ -type semi- (rather than forming the transparent conductive layer directly on this layer, the ⁇ -type It is preferable to form a ⁇ -type semiconductor sub-layer in contact with the semiconductor layer and to form the transparent conductive layer in contact with the ⁇ -type semi-sub layer.
  • Kamiki's nitride semiconductor light emitting device having an n-type semiconductor sub-layer having a high carrier density (for example, IX 1 0 19 cm— 3 or more) in contact with each other between the vertical half-layer and the transparent conductive layer
  • a pn age that is opposite to the pn age occurs across the light emitting layer, so that ⁇ 3 ⁇ 43 ⁇ 4 ⁇ may increase.
  • the ⁇ -type semiconductor sublayer has a sufficiently high carrier bell near the age interface between the ⁇ -type semi-layer and the ⁇ -type semi-layer. It is preferable to lower the carrier thickness.
  • the light reflection functional layer covered with the ohmic layer (ii) should reflect light emitted from the layer (for example, a wavelength of 400 nm to 700 nm).
  • the layer for example, metals such as A1, Ag, Mg, Cr, Rh, and Zn.
  • the photoreactive layer is preferably composed of Ag, A1 or Mg.
  • the light emitted from the light emitting layer is blue (for example, wavelength 440 nm to 490 nm): ⁇
  • the light reflecting functional layer is preferably made of Cr, Rh or Zn.
  • the thickness of the photoreactive layer is usually 100 nm or more, preferably 150 nm or more.
  • the xenon conductive layer can be made of any material that has an electroconductive material that can transfer heat generated in the layer to the outside and is made of a conductive material.
  • a conductive material for example, aluminum (Ai), copper Metals such as (Cu), Chromium (Cr), Tungsten (W), Molybdenum (Mo) or their alloys; Semi-doped like highly doped conductive silicon (Si); Metal-semi-conversion materials such as 1-SiC; gold paintings (single crystal, polycrystal), boride bodies (single crystal,).
  • the conductivity of the axelous layer is higher than that of the substrate (eg, GaAs single crystal, InP single crystal, sapphire).
  • the substrate eg, GaAs single crystal, InP single crystal, sapphire.
  • more than 5 OWZmK, preferably 10 OWZmK or higher is more preferable. Thanks to Xi'an's conductivity, the nitride semiconductor device can increase the amount of current and have higher brightness.
  • the resistance of the auscultation layer is usually lQcm or less, preferably 0.1 lQcm or less, and more preferably 0. ⁇ or less.
  • the nitride semiconductor light emitting device of the present invention may have an uneven surface. Nitride semi-light-emitting elements with a concave and convex light emitting surface have higher brightness than those with a flat light emitting surface. 3 ⁇ 4 The degree of unevenness on the surface reduces light scattering. From 3 ⁇ 43 ⁇ 4, it is preferable to be about 1Z 5 times to about 10 times the wavelength of light in the heel and in-plane directions. Further, the cross-sectional shape of the unevenness on the surface of 3 m is preferably a triangle or a sine function (sine waveform).
  • the nitride semiconductor according to the present invention further reduces the effects of the present invention! May be included (barrier layer, eaves layer, etc.).
  • Other layers are, for example, between the ⁇ -type semi-primary layer and the layer, between the n-type semi- # f layer and the layer, between the n-type semi-printed layer and the ohmic layer, and the ohmic electrode layer. What is necessary is just to provide between heat conductive layers.
  • Nitride half of the present invention # In the main house, the light of the layer is emitted on both the surface side and the opposite surface side. The light emitted on the side of the flat surface covers the transparent conductive layer of the ohmic electrode layer ⁇ .
  • the light emitted to the opposite surface side is ⁇ on the transparent conductive layer of the ohmic layer (ii), reflected on the active layer, and transparent again.
  • the conductive layer is formed, and further, the light emitting layer and the ohmic healing layer ⁇ are passed through the transparent conductive layer to reach the surface and go out of the m force.
  • Braided nitride half (the book is obtained, for example, by a method including steps (a) to (e).
  • a step of forming a transparent conductive layer on the semiconductor layer (i) exposed as the single crystal substrate is a single crystal substrate such as single crystal Si, single crystal GaAs, single crystal InP, or sapphire, and may be a commercially available product.
  • the semi-solid layer ⁇ ), the layer, and the fine layer ⁇ are formed in this order on the knitted single crystal substrate.
  • the semi-f layer (i) is of type!
  • the semi-layer (ii) is of type ⁇ , or the semiconductor layer (i) is n-type and of half (main layer (i 0 is p-type) It is.
  • the formation of the p-type semi-layer includes, for example, organic metal decoration growth (MO CVD) method, spring epitaxy growth method, halide fine growth method (gas containing halogen as a starting material)
  • the transparent conductive layer in step (b) can be formed by, for example, vacuum deposition, sputtering, or sol-gel method.
  • a transparent conductive layer made of ITO can be formed by, for example, high-frequency sputtering using an ITO-conjugate as a target, metal I ⁇ and metal S ⁇ , or an alloy thereof, and introducing oxygen. However, it may be performed by a vapor deposition method.
  • the formation of the photoreactive layer may be performed by a vacuum deposition method, a sputtering method, or a sol-gel method, similarly to the formation of the transparent conductive layer.
  • the conductive layer used in the step (c) is, for example, a metal such as aluminum (A 1), copper (C u), chromium (C r), tungsten (W), molybdenum (Mo) or the like. Alloys of highly doped semi-conductors such as conductive silicon (S i); A 1—metals such as sic—semi-compounds; metal oxides (single crystals, m), orchids It consists of a substance (single crystal, polycrystal).
  • the formation of the heat conductive layer is low, such as solder! It can be done by thermocompression bonding using metal, method using conductivity 3 ⁇ 4 ⁇ , vacuum deposition method such as sputtering, plating, etc.
  • the crane layer between the light reflection functional layer and the conductive layer is dignified. It must be small and have good electrical conductivity Is preferred.
  • a metal with excellent conductivity and electrical conductivity is used as a layer, and the photoreactive layer and the heat-resistant layer are thermocompression bonded. From the view of making it smaller, the lower the better, for example, 2550 ° C or less is preferable.
  • the apocalyptic layer is aged through the photoreactive layer and the eaves layer.
  • the material of the crane layer may be combined with the material of the light reflecting functional layer, which may reduce the reflectivity of the light reactive layer.
  • a barrier layer for preventing phase S dispersion may be formed between the photoreactive layer and the wisteria layer.
  • the material of the barrier layer is preferably one that prevents diffusion during thermal deposition, for example, Ti, Pt, Ir, Os, Cr, Ta, Tc, Th, Nb, Hf, Mo Metals such as L, Ru, Ru, Re, and Rh, alloys of two or more of these, or a compound of Ti and Pt are preferable.
  • the iron P in step (d) is, for example, mechanical polishing, chemical polishing, or a method in which a single crystal substrate is irradiated with a laser at the interface between the single crystal substrate and the half layer (i), so-called laser peeling. You can do this.
  • the step (e) may be formed by the same method as the formation of the transparent conductive layer in the step (b).
  • the nitride semiconductor element having an uneven surface may be S8i formed by, for example, forming an uneven surface on the surface of what is obtained in the step (e). For example, etching and polishing of the light emitting surface; method of processing a crystal by thermal processing using laser interference; selection using a mask! It may be done by the method of forming during crystal growth depending on the length. Surface treatment may be performed after forming the irregularities.
  • Surface treatment includes, for example, acid treatment using soot, soot, hydrofluoric acid, etc., alkaline treatment using sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, aqueous ammonia, etc., or sulfide treatment using ammonium sulfide aqueous solution, etc. Just do it.
  • the half nitride of the braid is obtained by a method including steps (f) to (l).
  • step (i) Half of what is obtained in step (h) (the step of forming a transparent conductive layer and a light reflection functional layer in this order on this layer (i),
  • Preliminary self-supporting A process of forming a transparent conductive layer on the exposed semiconductor layer (ii) by removing the S-plate.
  • Step (D may be performed in the same manner as in step (a).
  • the plate used in the step (g) may be any material that can easily be industrially obtained as it can withstand the processing of the next step, such as various metals, semi-finished materials, ceramics, glass, high-quality films and These composite materials.
  • the process may be performed using P iron-capable wax, solder, ⁇ .
  • Step (h) may be performed by the same method as in step (d).
  • Step (D may be performed in the same manner as in step (b).
  • Step (j) may be performed in the same manner as in step (c).
  • 5 iron in step (k) may be performed by, for example, heating and melting the wax, solder, and ⁇ used in the step.
  • Step (1) may be performed by the same method as in step (e).
  • Figure 1 shows an example of a half-fitting nitride obtained by the method of disgust.
  • the nitride semiconductor device shown in Fig. 1 (a) consists of a negative electrode layer 9, an n-type semi-layer 2-1, a layer 2-2, a p-type semi-layer 2-3, and a transparent conductive layer. There are four layers, one for the opposite side and one for the optical fiber layer, 5 for the optical fiber layer, 6 for the layer 6 and 7 for the layer of light.
  • a surface-side ohmic ⁇ layer 9 is composed of a surface-side ohmic ⁇ layer 9, a ⁇ -type semiconductor layer 2-3, a layer 2-2, an n- type semiconductor element (main layer 2-1 A transparent conductive layer 4, a photoreactive layer 5, a barrier layer 6, a crane layer 7, and an axon conductive layer 8 are obtained.
  • FIG. 1 (c) side Omikku electrode layer 9, eta type semi present layer 2 1, layer 2 2, [rho type half (the layer 2 3, eta type Semi-layer 3, transparent conductive layer 4, photoreactive layer 5, active layer 5, barrier layer 6, eaves layer 7, and conductive layer 8
  • the nitride semiconductor layer shown in FIG. , Mineral side layer 9, N-type semi-layer # ⁇ Main layer 3, ⁇ -type semi-layer 2—3, Approximate layer 2-2, ⁇ -type semi-layer 2—1, Transparent conductive layer Surface-side electrode layer) 4, photoreactive layer 5, barrier layer 6, eaves layer 7, and agitation layer 8 are obtained.
  • MQW multi-well
  • the growth was increased to 800 ° C, and after growing TMA (trimethylaluminum), TEG, and Cp2Mg as raw materials, Mg-doped AlGaN layer 0 ?: 25 ⁇ m), the growth was further increased to 1040 ° C.
  • the Mg-doped GaN layer 0 ?: 150 nm) was grown.
  • heat treatment was performed for 48 seconds at 800 ° C. in an atmosphere containing 5 # 3 ⁇ 4% ammonia and oxygen.
  • a grid-like ohmic electrode made of Ni / Au is formed on the Mg doped GaN layer by vacuum deposition and photolithography, and then an electrode made of ITO's transparent conductor is formed thereon.
  • a layer is formed on the substrate 3 ⁇ 4 350 ° C by reactive vapor deposition while introducing oxygen, and subsequently, the A 1 layer is formed with a thickness of 10 Onm.
  • the thickness of Ti ZP t is 50/50 nm as the NOR layer
  • the thickness of Au Sn alloy ⁇ (Sn destruction 80%) is 50 On m as the layer. It formed at room temperature by the vacuum evaporation method.
  • Sn thread band 80 A crane layer with a thickness of 500 nm was prepared. Next, the above-mentioned engineered substrate and Mo substrate were bonded to each other so that the AuSn alloy layers of the crane layer were in contact with each other. In a vacuum, the substrate was bonded for 20 minutes at a load of 600 ON at 300 ° C. The substrate warpage caused by the bonding was about 100 m, which was a size that could be processed without any problems in one photolithography process.
  • a lattice-like ohmic electrode composed of A 1 / T i / P t was formed by vacuum deposition and photolithography, and then transparent conductive ITO was formed to form a transparent conductive ohmic electrode layer. Thereafter, etching was performed to form an ITO pattern.
  • This transparent conductive ohmic electrode layer has a light average transmittance of 85% in the visible light wavelength region, which is 2 X 10 cm 2 until the contact on the n-GaN layer. showed that. In this way, half a chambered product was obtained.
  • the resulting nitride half # (the book's double hetero-type P n3 ⁇ 4 ⁇ 3 ⁇ 43 ⁇ 4 diode is placed on a high-metal stage, plus it on the Mo substrate side, and a positive n «g
  • This diode is composed of the two transparent conductive ohmic mgS of the present invention and the optical reaction provided on the opposite side.
  • the high-efficiency is obtained by the high-performance layer, so it shows high brightness, and has a light output of 23 mW at 20 mA horsepower with an element of 370 m square size.
  • the proportionality of the current was maintained in the high current density region of 100 mA without interfering with the flame burning from the element to the stage.
  • the contact tunneling layer is directly formed with an ITO film to form a transparent conductive ohmic electrode, and the subsequent steps are performed in the same manner as in Example 1, with a nitride-based double hetero type on a Mo substrate. ⁇ Was made. Nitride half produced in this way
  • the diode was a 3 70 m square ⁇ and showed a light output of 24 mW with 2 OmAlgSi. Furthermore, it was confirmed that the proportional relationship between avoidance and current was maintained up to a high current density region of 100 mA in the IL characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

A nitride semiconductor light emitting element and a method for manufacturing such element are provided. The method for manufacturing the nitride semiconductor light emitting element includes steps (a)-(e), which are (a) a step of successively forming a semiconductor layer (i), a light emitting layer and a semiconductor layer (ii) on a single crystal substrate, (b) a step of successively forming a transparent conductive layer and a light reflecting functional layer on the semiconductor layer (ii), (c) a step of forming a heat conductive layer on the light reflecting functional layer, (d) a step of removing the single crystal substrate from the work obtained in the step (c), and (e) a step of forming a transparent conductive layer on the semiconductor layer (i) exposed by removing the single crystal substrate.

Description

明 細 書 窒化物半 本 軒およびその I ^法 謹分野  Descriptions Semi-nitride and its I ^ method
本発明は、 窒化物半 本慨^?およびその SSi^法に関する。 背景漏  The present invention relates to a nitride semi-metal layer and its SSi method. Background leakage
G aN、 I n G aN、 A l G aN、 I nA 1 G aN等の 3— 5¾¾f匕物からなる半導 体 素子は、 各種の表示装置あるいは照明装置として広く利用されている。  Semiconductor elements made of 3-5¾¾f such as GaN, InGaN, AlGaN, and InA1GaN are widely used as various display devices or illumination devices.
この半謝本 素子は、 例えば、 ォ一ミック β層、 ρ型半 ¾本層、 mm, n型半 mm, ォーミック癒層をこの順に含むものである。 (例えば、 特開 2 0 0 0— 3 6 6 1 9号公報) 。  This semi-compensated element includes, for example, an ohmic β layer, a ρ-type semi-monolayer, mm, an n-type half-mm, and an ohmic healing layer in this order. (For example, Unexamined-Japanese-Patent No. 2000-36-619).
この半 (本概軒は、 面側の 層は透明性と導電性を有しているので、 面から^ ¾軒の外部への光の出射を妨げることが少ない。 さらに、 対向面側のォ一ミ ック電極層を、 ォ一ミック性 (β層と接している面と電極層との接腿 が少ないこ と。 ) と光反射機能の両方の機能を備え不透明金属歸ゝらなるォーミック電極層とする ことにより、 層から対向面側に出射した光がォ一ミック霞显層により反射し、 面から出射 ·するように^?を構^ることカ¾ ^されており、 不透明金属膜を構 する 金属として、 A g、 Rh、 Ru、 P tおよび P dが驗されている。 しかしながら、 こ の半 本 軒は輝度が ではなく、 さらに輝度の高い窒化物半 ί本舰軒が求 められていた。 発明の開示 本発明の目的は、 高レ翁度を示す窒化物半 本¾¾^?およびその 法を提供す ることにある。 This half (this front eave has a transparent layer and a conductive layer on the surface side, so it hardly prevents light from being emitted from the surface to the outside of the eave. A single electrode layer is made of an ohmic metal that has both an ohmic property (less contact between the β layer and the electrode layer) and a light reflection function. By using the electrode layer, the light emitted from the layer to the opposite surface side is reflected by the ohmic display layer and emitted from the surface. Ag, Rh, Ru, Pt, and Pd are considered as the metals that make up the film, but this half-house is not bright, and the brighter half-metal nitride is Disclosure of the Invention The object of the present invention is to provide a nitride semi-solid layer that exhibits a high degree of latitude. And providing the law.
本発明者らは上記 について鋭意検討した結果、 本発明を させるに至つた。 すなわち本発明は、  As a result of intensive studies on the above, the present inventors have come to the present invention. That is, the present invention
ォーミック電極層(i)、  Ohmic electrode layer (i),
半 #{本層 (i)、  Semi # {Main layer (i),
層、  Layer,
半 本層 (ii)、  Half layer (ii),
ォーミック電極層 (ii)、 および Ohmic electrode layer (ii), and
i云導性層を、 この順に含み、  i inductive layer in this order,
ォ一ミック ¾S層 (i)は、 透明導電性層であり、  Ohmic ¾S layer (i) is a transparent conductive layer,
ォ一ミック電極層 (ii)は、 透明導電性層および光反編能層をこの順に含み、 および 半 本層 (i)は p型であり半謝本層 (i i)は n型である、 または半 »ί本層 (0は η 型であり半難層 (ii)は!)型である窒化物半 (本舰軒を搬する。 The ohmic electrode layer (ii) includes a transparent conductive layer and a photoreversible layer in this order, and the semi-layer (i) is p-type and the semi-honor layer (ii) is n-type, Or semi-finished nitride layer (0 is η type and semi-difficult layer (ii) is!) Type Nitride semi (carry the main house.
また本発明は、 工程 (a)〜 (e)を含む窒化物半 本 軒の S¾t^法を撤する。  The present invention also eliminates the S¾t ^ method for nitride halves including steps (a) to (e).
(a)単結晶基板の上に、 半 # (本層 (i)、 層およ (本層 (ii)をこの順で形 る工程、  (a) On a single crystal substrate, half # (main layer (i), layer and (main layer (ii) are formed in this order,
(b)編己半 本層 (ii)の上に、 透明導電性層、 贩纖能層をこの順で形 j¾T る工程、  (b) a step of forming a transparent conductive layer and an active layer in this order on the knitting semi-layer (ii),
(c)編己光反謹能層の上に、 謝云導性層を形 β ^る工程、  (c) a process of forming an apocalyptic layer on the knitting self-reactive layer;
(d)工程 (c)で得られるものから単結晶基板を |5鉄する工程、  (d) step of | 5 iron single crystal substrate from what is obtained in step (c),
(e) ΙΐϊΙ己単結晶基板を^ ¾して露出した半 ί本層 (i)の上に、 透明導電性層を形 ^"る工程。  (e) A step of forming a transparent conductive layer on the half layer (i) exposed by removing the single crystal substrate.
さらに本発明は、 工程 ω〜α)を含む窒化物半 ί本^1 ά素子の纖方法を提供する。 (f)単結晶基板の上に、 半 (本層 (0、 層およ ϋ^ ί本層 (i i)をこの順で形 成 ^る工程、 The invention further provides a纖方method of nitride semiconductor ί present ^ 1 ά element comprising the step ω~α). (f) On the single crystal substrate, a half (main layer (0, layer and layer) is formed in this order.
(g)前記半 »ί本層 (i i)の上に、 板を齢する工程、  (g) A process of aging a plate on the semi-finished layer (i i),
(h)工程 (g)で得られるものから単結晶基板を鉄する工程、  (h) a step of ironing a single crystal substrate from that obtained in step (g),
(0工程 (h)で得られるものの半 » (本層 ωの上に、 透明導電性層、 光反繊能 層をこの順で形^ Τる工程、  (Half of what is obtained in step (h) »(the step of forming a transparent conductive layer and a photo-antifiber layer in this order on the main layer ω,
(j)謙 3光反 |¾能層の上に、 云導性層を形^ る工程、  (j) Ken 3 Gwanghwa | The process of forming the conductive layer on the 3 layer,
(k)工程 (]')で得られるものから: ¾ ^板を |5鉄する工程、  (k) From what is obtained in step (] '): ¾ ^ step of | 5 iron plate,
(1)嫌 3¾ ^板を鉄して露出した半 #ί本層 (ii)の上に、 透明導電性層を形 β¾Τる工程。  (1) Disgusting 3¾ ^ Forming a transparent conductive layer β¾ on the semi-printed layer (ii) exposed by ironing the plate.
本発明の窒化物半 ί本魏軒は、 輝度ヵ犒いので、 表示装置および照明装置と して好適に使用される。 本発明の窒化物半 (本 ^?の製 法によれば、 高い輝度 を示 化物半 # (本舰軒が得られる。 図面の簡単な説明  Since the nitride semiconductor of the present invention has a low luminance, it can be suitably used as a display device and a lighting device. According to the manufacturing method of the nitride half (this ^? Of the present invention, a high brightness can be obtained.
図 1 ( a) は、 面が n型半 本層側にある窒化物半 (本魏軒を示す。  Fig. 1 (a) shows a nitride half with a surface facing the n-type half layer.
図 1 (b) は、 舰面が p型半 ¾本層側にある窒化物半 本舰素子を示す。  FIG. 1 (b) shows a nitride semiconductor element whose side surface is on the p-type semiconductor layer side.
図 1 ( c ) は、 p型半 (本層と透明導電性層の間に、 n型半 本層を有し、 面が n型半 本層側にある窒化物半 # (本素子を示す。 Fig. 1 (c) shows a p-type half (a nitride half with an n-type half layer between this layer and the transparent conductive layer, and the surface facing the n- type half layer side (this element is shown). .
図 1 (d) は、 p型半 ί本層と透明導電性層の間に、 η型半 本層を有し、 舰面が ρ型半 本層側にある窒化物半 本軒を示す。  Fig. 1 (d) shows a nitride semi-house with a η-type semi-layer between the p-type semi-printed layer and the transparent conductive layer, and the side surface is on the ρ-type semi-layer side.
発明を実施するための形態 BEST MODE FOR CARRYING OUT THE INVENTION
1. m ^ ? 本発明の窒化物半 ί本魏素子は、 ォーミック窗亟層 ω、 半 本層 )、 半1. m ^? The nitride semiconductor device according to the present invention has an ohmic layer ω, a semi-layer), a semi-layer
#ί本層 (ii)、 才ーミック電極層 (ii)、 およ «f云導性層をこの順に含む。 It includes the # ί main layer (ii), the electrode-mic electrode layer (ii), and the conductive layer in this order.
ォ一ミック電極層 (0は、 層から発せられる光について透明であり、 かつ導電性 を: る層 遜明導電性層) を含む。 ォーミック電極層 (i)は、 層を扉として、 素子から外部に光が射出する面である 面の側にあり、 「¾¾面側才一ミック電極 層」 と呼ばれることがある。  And a conductive electrode layer (0 is a transparent layer that is transparent with respect to light emitted from the layer and is conductive). The ohmic electrode layer (i) is on the side of the surface that is a surface from which light is emitted from the element to the outside with the layer serving as a door, and is sometimes referred to as a “example surface side talent electrode layer”.
ォ一ミック電極層 αοは、 舰層から髓られる光について透明であり、 かつ導電性 を有する層 (透明導電性層) と、 層から発せられる光を反射する層 (^反射機能 層) を含む。透明導電性層は、 層の上にあり、 光反纖能層は、 透明導電性層の上 にある。 才ーミック 層 (ii)は、 面を,として Ml己 面の 側にあり、 「対向面側ォ一ミック 層」 と呼ばれることがある。  The ohmic electrode layer αο includes a layer that is transparent with respect to light emitted from the 舰 layer and has conductivity (transparent conductive layer), and a layer that reflects light emitted from the layer (^ reflective function layer). . The transparent conductive layer is on the layer, and the photoreactive layer is on the transparent conductive layer. The age-Mick layer (ii) is on the side of the Ml face with the face as, and is sometimes referred to as the “opposite face-side ohmic layer”.
^^層 α)、 m. ^^jg(ii) ^^ layer α), m. ^^ jg (ii)
本発明の窒化物半 ί本 軒では、 半 ί本層 (0が ρ型であり半穎本層 (i)が n型で あるか、 または半導体層 ωが n型であり半導体層 ωが p型である。  In the nitride semiconductor layer of the present invention, the semi-conductive layer (0 is ρ-type and semi-normal layer (i) is n-type, or the semiconductor layer ω is n-type and the semiconductor layer ω is p-type. It is a type.
Ρ型半 本層は、 例えば、 ρ - GaN、 p— IrixGa — ΧΝ (0≤χ≤1) 、 ρ— AlxGa^ ΧΝ (0≤χ≤1) 、 あるいはこれらの積層構體である。 For example, ρ-GaN, p— IrixGa — Χ Ν (0≤χ≤1), ρ— Al x Ga ^ Χ Ν (0≤χ≤1), or their stacked structure is there.
層は、 例えば、 I nxGax_xN (0≤x≤l) 、 GaN、
Figure imgf000006_0001
(0 ≤x≤l) 等である。
The layers are, for example, In x Ga x _ x N (0≤x≤l), GaN,
Figure imgf000006_0001
(0 ≤x≤l) etc.
n型半 ¾ί本層は、 例えば、 n— GaN、 n-A^Ga^.N (0≤χ≤1) あるい はこれらの積層構 である。 また、 n型半 f本層のォーミック電極と接する層 (いわ ゆるコンタクト層) は、 キャリア藤が いことが好ましくは、 例えば 1X1019cm一3 以上であるものが好ましい。 キヤリァ? «力稿い n型半導体層をもつ窒化物半導体発光 舒では、 透明導電' I4Sが、 優れたォ一ミック性を示す。 さらに、 n型半 本層のォ一 ミック β@と接する層は、 n-In.Ga^N (0≤χ≤1) 力、らなる薄朧 あるいは x が異なる化合物からなる薄膜の漏であることカ ましい。 このような窒化物半 ί本発 光軒では、 透明導電性層が、 より優れたォ一ミック性を示す。 The n-type half layer is, for example, n-GaN, nA ^ Ga ^ .N (0≤χ≤1) or a laminated structure thereof. The layer in contact with the n-type half-f layer ohmic electrode (so-called contact layer) is preferably free of carrier wisteria, for example, 1 × 10 19 cm 1 3 or more. In the case of nitride semiconductor light emitting devices with n-type semiconductor layers, the transparent conductive I4S exhibits excellent ohmic properties. Furthermore, the layer of the n-type semi-layer in contact with the ohmic β @ is n-In.Ga ^ N (0≤χ≤1) force, It is preferable that the film leaks from different compounds. In such a nitride semiconductor, the transparent conductive layer exhibits better ohmic properties.
半導体層 (i)、 発光層、 半導体層 (ii)は、 それぞれ、 複数の層からなっていてもよい。 また 層は、 例えば、 アンドープ GaN層と I nGaN層を ¾:に觀した多重 井戸層 (MQW) であってもよい。  Each of the semiconductor layer (i), the light emitting layer, and the semiconductor layer (ii) may be composed of a plurality of layers. The layer may be, for example, a multi-well layer (MQW) in which an undoped GaN layer and an InGaN layer are arranged in between.
半 ¾ί本層 (i)、 難層、 半 本層 (ii)は、 難層が発せられる光を吸収しない に 薄いことが好ましく、 これらの層の厚さの合計カ 10 m以下であることが好ましい。 半 本層 ω、 m,半 (本層 (ϋ)は、 欠陥が少ないことが好ましぐ 例えば、 い ずれの層も、 その転位密度が^ 11X107cm2以下であることが好ましい。 欠陥が少な い半 #f本層 ω、 層およ ϋ ^ 本層 Dをもつ窒化物半 ί本^ は、 より高い 輝度を^ る。 The semi-primary layer (i), the difficult layer, and the semi-layer (ii) are preferably thin without absorbing the light emitted by the difficult layer, and the total thickness of these layers should be 10 m or less. preferable. Semi-layer ω, m, half (main layer (ϋ) preferably has few defects. For example, any layer preferably has a dislocation density of ^ 11X10 7 cm 2 or less. Nitride half-layers with few semi- # f layers ω, layers and layer D have higher brightness.
: ミック : Mick
ォーミック 層 (i)およびォーミック β層 (i i)に翻される透明導電性層は、 発 光層から発せられる光 (例えば、 波長 350 nm〜800 nm) を腿させるものであ り、 かつォーミック性に優れ、 層へ電子 &λまた «2E?し ¾λを行えるものであれば よぐ 例えば、 ΙΤΟ (酸化錫が固溶した酸化インジウム) 、 Sn〇2、 アンチモン The transparent conductive layer converted into the ohmic layer (i) and the ohmic β layer (ii) makes light emitted from the light emitting layer (for example, a wavelength of 350 nm to 800 nm) thigh and has an ohmic property. excellent, for example Yogu long as it can perform with? electron & lambda also «2E to layer ¾Ramuda, (indium oxide tin oxide solid solution) Iotatauomikuron, Sn_〇 2, antimony
(Sb) ドープ Sn〇2、 フッ素 (F) ド一プ Sn〇2、 Z n〇のような酸化物である。 これらは、 率カ犒いだけでなぐ 屈折率が半 ¾ί本結晶の屈折率とチップ外部 (空 気または樹脂) の屈折率の中間になるため、 材料界面での反射が低減し光の取出し効率 を高める効果を ¾ る。 これらの酸化物のうち、 導電性及び ¾率の観 で、 ITOが 好ましい。 (Sb) doped Sn_〇 2, an oxide such as fluorine (F) de one flop Sn_〇 2, Z N_〇. Since the refractive index of the crystal is halfway between the refractive index of the main crystal and the refractive index outside the chip (air or resin), the reflection at the material interface is reduced and the light extraction efficiency is reduced. The effect of enhancing the effect is obtained. Of these oxides, ITO is preferable in terms of conductivity and yield.
透明導電性層は、 嫌己の酸化物のほか、 金属であってもよい。 金属は、 概層から発 せられる光について透明であり、 力つ導電性を; るものであればよく、  The transparent conductive layer may be a metal in addition to a selfish oxide. Metals can be any material that is transparent to the light emitted from the layers and has strong electrical conductivity;
例えば、 厚さ 50 nm以下の 率の高い N i /A u薄膜などである。 透明導電'性層は、 厚さが、通常 1 0 nm以上、 好ましくは 5 O nm以上であり、 光線透 過率が通常 8 0 %以上であり、 好ましくは 9 0 %以上である。 このときの光線 ¾ 率は、 可視光波長域 (4 0 0〜8 0 0 nm) 全体にわたる 率スぺクトルの平均か、 ある いは 波長における^ 61泉 ¾1率である。 For example, a Ni / Au thin film with a high thickness of 50 nm or less. The transparent conductive layer has a thickness of usually 10 nm or more, preferably 5 O nm or more, and a light transmittance of usually 80% or more, preferably 90% or more. The light beam rate at this time is the average of the rate spectrum over the entire visible light wavelength range (400 to 800 nm), or the rate of ^ 61 spring ¾1 at the wavelength.
透明導電性層の厚さ、 形状、 麵数は、 透明性およ 電性を達成できるものであれ ばよい。 例えば、 透明導電性層が金属からなる; t給、 金属は薄膜(例えば、 5 O nm以 下) であることが好ましい。 また、 透明導電性層が、 泉 率が相対的に低レ金属か らなる:^、 金属は、 薄 あり、 かつ網目、 格子、 くし型であること力 ましい。 あ るい〖纖目、 格子、 くし型状の金属電極の上に酸化物の透明導電性層を ¾ϋした構成と しても良い。  The thickness, shape and number of transparent conductive layers need only be able to achieve transparency and electrical conductivity. For example, the transparent conductive layer is made of metal; preferably, the metal is a thin film (for example, 5 O nm or less). In addition, the transparent conductive layer is made of a metal with a relatively low spring rate: ^, the metal is thin, and is preferably a mesh, lattice, or comb. Alternatively, a transparent conductive layer made of oxide may be formed on a grid, lattice, or comb-shaped metal electrode.
透明導電性層は、 通常、 ρ型半薪本層と機させるときより、 η型半 本層と漏さ せるときの方が、 優れたォーミック性を示す。 よって、 ρ型半 本層の上に透明導電性 層をもつ窒化物半 # (本 軒では、 ρ型半 (本層の上に、 直接、 透明導電性層を形成 するのではなく、 ρ型半導体層に接するように η型半導体サブ層を形成し、 その η型半 ^本サブ'層に接するように透明導電性層を形 ること力好ましい。  The transparent conductive layer usually exhibits better ohmic properties when leaked with the η-type semi-layer than when used with the ρ-type half-layer. Therefore, the nitride semi- # with the transparent conductive layer on the ρ-type semi-layer (in this property, the ρ-type semi- (rather than forming the transparent conductive layer directly on this layer, the ρ-type It is preferable to form a η-type semiconductor sub-layer in contact with the semiconductor layer and to form the transparent conductive layer in contact with the η-type semi-sub layer.
Ρ型半 本層と透明導電性層の間に、 各々に接して、 高いキャリア髓 (例えば I X 1 019c m— 3以上) の n型半導体サブ層を有する、 鎌己の窒化物半導体発光素子は、 発 光層を挟んで、 p n齢とは 向の p n齢が生 るので、 ΙΕ¾¾Εが増加するこ とがある。 駆 圧を低減する観点で、 η型半導体サブ層の、 η型半 (本サブ層と ρ型 半 本層の齢界面近傍のキャリア?鐘を十分高くし、 かつ、 齢界面から離れた所の キヤリァ «を低くすることが好ましい。 ォーミック 層 (ii)に麵される光反射機能層は、 層から発せられる光 (例え ば、 波長 4 0 0 nm〜7 0 0 nm) を反射するものであればよく、 例えば、 A 1、 A g、 M g、 C r、 R hおよび Z nのような金属である。 舰層から発せられる光が紫外線 (例えば、 ¾¾300nm~400nm) である 、 光反纖能層は、 Ag、 A1ま たは Mgからなることカ将ましい。 発光層から発せられる光が青色 (例えば、 波長 44 0nm〜490nm) である:^、 光反射機能層は、 Cr、 Rhまたは Znからなるこ とが、好ましい。 Kamiki's nitride semiconductor light emitting device having an n-type semiconductor sub-layer having a high carrier density (for example, IX 1 0 19 cm— 3 or more) in contact with each other between the vertical half-layer and the transparent conductive layer In this case, a pn age that is opposite to the pn age occurs across the light emitting layer, so that ΙΕ¾¾Ε may increase. From the viewpoint of reducing the driving pressure, the η-type semiconductor sublayer has a sufficiently high carrier bell near the age interface between the η-type semi-layer and the ρ-type semi-layer. It is preferable to lower the carrier thickness. The light reflection functional layer covered with the ohmic layer (ii) should reflect light emitted from the layer (for example, a wavelength of 400 nm to 700 nm). For example, metals such as A1, Ag, Mg, Cr, Rh, and Zn. (For example, ¾¾300 nm to 400 nm) The photoreactive layer is preferably composed of Ag, A1 or Mg. The light emitted from the light emitting layer is blue (for example, wavelength 440 nm to 490 nm): ^ The light reflecting functional layer is preferably made of Cr, Rh or Zn.
光反纖能層は、 厚さが通常 100 nm以上、 好ましくは 150 nm以上である。  The thickness of the photoreactive layer is usually 100 nm or more, preferably 150 nm or more.
謝云導性層は、 層等に生じる熱を から外部に i¾iできる謝云導性を有し、 か つ導電性を^ る材質からなるものであればよぐ 例えば、 アルミニウム (Ai) 、 銅 (Cu) 、 クロム (Cr) 、 タングステン (W) 、 モリブデン (Mo) のような金属ま たはこれらの合金;高 ¾にドープされた導電性シリコン (S i) のような半 {本; A 1-S i Cのような金属-半翻复合材料;金画匕物賺本 (単結晶、 多結晶) 、 硼 化物雖体 (単結晶、 )である。 The xenon conductive layer can be made of any material that has an electroconductive material that can transfer heat generated in the layer to the outside and is made of a conductive material. For example, aluminum (Ai), copper Metals such as (Cu), Chromium (Cr), Tungsten (W), Molybdenum (Mo) or their alloys; Semi-doped like highly doped conductive silicon (Si); Metal-semi-conversion materials such as 1-SiC; gold paintings (single crystal, polycrystal), boride bodies (single crystal,).
謝云導性層の謝云導度は、 基板 (例えば、 GaAs単結晶、 I nP単結晶、 サフアイ ァ) の謝云導度より高いことが好ましぐ 例えば、 5 OWZmK以上力 ましく、 10 OWZmK以上がより好ましい。 謝云導度力稿い窒化物半 ί本 素子は、 電流量を大 きくでき、 より高い輝度をもつ。  It is preferable that the conductivity of the axelous layer is higher than that of the substrate (eg, GaAs single crystal, InP single crystal, sapphire). For example, more than 5 OWZmK, preferably 10 OWZmK or higher is more preferable. Thanks to Xi'an's conductivity, the nitride semiconductor device can increase the amount of current and have higher brightness.
また謝云導性層の抵辦は、 通常、 lQcm以下、 好ましくは 0. lQcm以下、 さ らに好ましくは 0. Ο ΙΩοπι以下である。 本発明の窒化物半導体発光素子は、 凹凸の発 表面をもつものであってもよい。 凹 凸の発 表面をもつ窒化物半 本発光素子は、 平坦な発 表面をもつものに比較し て、 輝度カ槁い。 ¾ 表面の凹凸の程度は、 光の散乱を低減する |¾¾から、 廳方向 およぴ面内方向について、 光の波長の約 1Z 5倍から約 10倍であることが好ましい。 また、 ¾m表面の凹凸の断面形状は、 三角形、 正弦関数状 (サイン波形) が好ましい。 本発明の窒化物半^ f本舰軒は、 さらに、 本発明の効果を損なわなレ^!の層 (バリ ャ層、 據層等) を含んでもよい。 他の層は、 例えば、 ρ型半謝本層と 層の間、 n 型半 #f本層と 層の間、 n型半 ί本層とォ一ミック 層の間、 ォ一ミック電極層と 熱伝導性層の間に設ければよい。 本発明の窒化物半 # (本 軒では、 層の光は、 面側と対向面側の両方に出 る。 舰面側に出た光は、 ォーミック電極層 ωの透明導電性層を扁して、 舰面に 到達し、 面から外に出る。 一方、 対向面側に出た光は、 ォーミック 層 (i i)の透 明導電性層を βし、 ¾¾纖能層で反射して再び透明導電性層を し、 さらに、 発 光層およびォーミック癒層 ωの透明導電性層を腦して、 舰面に到達し、 m 力、ら外に出る。
Figure imgf000010_0001
Further, the resistance of the auscultation layer is usually lQcm or less, preferably 0.1 lQcm or less, and more preferably 0. ΟΩΩοπι or less. The nitride semiconductor light emitting device of the present invention may have an uneven surface. Nitride semi-light-emitting elements with a concave and convex light emitting surface have higher brightness than those with a flat light emitting surface. ¾ The degree of unevenness on the surface reduces light scattering. From ¾¾, it is preferable to be about 1Z 5 times to about 10 times the wavelength of light in the heel and in-plane directions. Further, the cross-sectional shape of the unevenness on the surface of 3 m is preferably a triangle or a sine function (sine waveform). The nitride semiconductor according to the present invention further reduces the effects of the present invention! May be included (barrier layer, eaves layer, etc.). Other layers are, for example, between the ρ-type semi-primary layer and the layer, between the n-type semi- # f layer and the layer, between the n-type semi-printed layer and the ohmic layer, and the ohmic electrode layer. What is necessary is just to provide between heat conductive layers. Nitride half of the present invention # (In the main house, the light of the layer is emitted on both the surface side and the opposite surface side. The light emitted on the side of the flat surface covers the transparent conductive layer of the ohmic electrode layer ω. On the other hand, the light emitted to the opposite surface side is β on the transparent conductive layer of the ohmic layer (ii), reflected on the active layer, and transparent again. The conductive layer is formed, and further, the light emitting layer and the ohmic healing layer ω are passed through the transparent conductive layer to reach the surface and go out of the m force.
Figure imgf000010_0001
編己の窒化物半 (本 は、 例えば、 工程 (a)〜(e)を含む方法により得られる。  Braided nitride half (the book is obtained, for example, by a method including steps (a) to (e).
(a)単結晶基板の上に、 半 本層 (0、 層およ ϋ^«ί本層 (ii)をこの順で形 る工程、  (a) On the single crystal substrate, half layer (0, layer and ϋ ^ «ί main layer (ii) are formed in this order,
(b)鎌己半 ί本層 (i i)の上に、 透明導電性層、 光反纖能層をこの順で形 る工程、  (b) a process of forming a transparent conductive layer and a photoreactive layer in this order on the Kamiihanki layer (ii),
(c) tilt己光反 ¾能層の上に、 謝云導性層を形 β£Τる工程、  (c) a step of forming an axon conductive layer on the tilt self-reflection layer;
(d)工程 (c)で得られるものから単結晶基板を P鉄する工程、  (d) Step of P-iron single crystal substrate from what is obtained in step (c),
(e)前記単結晶基板を して露出した半導体層 (i)の上に、 透明導電性層を形 る工程。 工程 (a)に用いる基板は、 単結晶 S i、 単結晶 G aA s、 単結晶 I n P、 サファイア のような単結晶基板であり、 市販品であってもよい。 (e) A step of forming a transparent conductive layer on the semiconductor layer (i) exposed as the single crystal substrate. The substrate used in the step (a) is a single crystal substrate such as single crystal Si, single crystal GaAs, single crystal InP, or sapphire, and may be a commercially available product.
工程 (a)では、 編己単結晶基板の上に、 半 ί本層 α)、 層およ^ ί本層 οをこ の順で形 る。 このとき、 半 f本層 (i)は!)型であり半 本層 (ii)は η型であるか、 または半導体層 (i)は n型であり半 (本層 (i 0は p型である。  In the step (a), the semi-solid layer α), the layer, and the fine layer ο are formed in this order on the knitted single crystal substrate. At this time, the semi-f layer (i) is of type!) And the semi-layer (ii) is of type η, or the semiconductor layer (i) is n-type and of half (main layer (i 0 is p-type) It is.
p型半 (本層、 層および n型半 本層の形成は、 例えば、 有機金属飾成長 (M O CVD) 法、 泉ェピタキシャル成長法、 ハライド細成長法 (出発原料としてハ ロゲンを含むガスを用いる。 ) 、 ノ、ィドライド ^ffi成長法、 液相ェピタキシャル成長法 により行えばよい。 工程 (b)の透明導電性層の形成は、 例えば、 真空蒸着法、 スパッ夕法、 ゾルゲル法に より行えばよい。 例えば、 I TOからなる透明導電性層の形成は、 例えば、 ターゲット として I T〇 結体を用いた高周波スパッタ法、 金属 I ηと金属 S η、 これらの合金を 用い、 酸素を導入しながら行う 蒸着法により行えばよい。  The formation of the p-type semi-layer (the main layer, the layer, and the n-type semi-layer includes, for example, organic metal decoration growth (MO CVD) method, spring epitaxy growth method, halide fine growth method (gas containing halogen as a starting material) The transparent conductive layer in step (b) can be formed by, for example, vacuum deposition, sputtering, or sol-gel method. For example, a transparent conductive layer made of ITO can be formed by, for example, high-frequency sputtering using an ITO-conjugate as a target, metal I η and metal S η, or an alloy thereof, and introducing oxygen. However, it may be performed by a vapor deposition method.
また光反纖能層の形成は、 透明導電性層の形成と同様に、 真空蒸着法、 スパッ夕法、 ゾルゲレ法により行えばよい。 工程 (c)に用いる謝云導性層は、 例えば、 例えば、 アルミニウム (A 1 ) 、 銅 (C u) 、 クロム (C r) 、 タングステン (W) 、 モリブデン (Mo) のような金属または これらの合金;高 にドープされた導電性シリコン (S i ) のような半 本; A 1— s i cのような金属—半 (ぉ复合材料;金属酸化物 結体 (単結晶、 m ) 、 蘭匕物 体 (単結晶、 多結晶) からなる。  In addition, the formation of the photoreactive layer may be performed by a vacuum deposition method, a sputtering method, or a sol-gel method, similarly to the formation of the transparent conductive layer. The conductive layer used in the step (c) is, for example, a metal such as aluminum (A 1), copper (C u), chromium (C r), tungsten (W), molybdenum (Mo) or the like. Alloys of highly doped semi-conductors such as conductive silicon (S i); A 1—metals such as sic—semi-compounds; metal oxides (single crystals, m), orchids It consists of a substance (single crystal, polycrystal).
熱伝導性層の形成は、 例えば、 ハンダ等の低!^金属を用いる熱圧着、 導電性 ¾^ を用いる方法、 スパッタ等の真空堆積法、 メツキ、 などにより行えばよく、 光反射機能 層と謝云導性層の間の鶴層は、 謝厳が小さく、 かつ導電性を ¾ るものであること が好ましい。 謝云導性およ ϋ¾電性に優れる金属を據層として、 光反纖能層と謝云 導性層を熱圧着する^、 熱圧着渡は、 圧着後の謝云導性層のそりを小さくする観 で、 低いほど好ましぐ 例えば 2 5 0 °C以下力 ましい。 The formation of the heat conductive layer is low, such as solder! It can be done by thermocompression bonding using metal, method using conductivity ¾ ^, vacuum deposition method such as sputtering, plating, etc. The crane layer between the light reflection functional layer and the conductive layer is dignified. It must be small and have good electrical conductivity Is preferred. A metal with excellent conductivity and electrical conductivity is used as a layer, and the photoreactive layer and the heat-resistant layer are thermocompression bonded. From the view of making it smaller, the lower the better, for example, 2550 ° C or less is preferable.
前述のとおり、 謝云導性層は、 光反纖能層と、 據層を介して齢される。 熱圧着 の齢、 鶴層の材料が光反射機能層の材料が相; ¾mして、 光反觀能層の反射率を 低下させることがある。 反射率の低減を抑制するため、 光反纖能層と藤層の間に、 相 S¾散を防ぐためのバリア層を形成してもよい。 バリア層の材料は、 熱 着 にお いて相 散を防ぐものが好ましく、 例えば、 T i、 P t、 I r、 O s、 C r、 T a、 T c、 Th、 Nb、 H f、 Mo、 L u、 Ru、 R e、 Rhのような金属、 これらの 2以 上の合金、 または T iと P tの ¾ 体が好ましい。 工程 (d)の P鉄は、 例えば、 機械爾磨、 化学 ¾¾ff磨、 または、 単結晶基板から、 単 結晶基板と半 ί本層 (i)の界面にレーザ一を照射する方法、 いわゆるレーザー剥離によ り行えばよい。  As mentioned above, the apocalyptic layer is aged through the photoreactive layer and the eaves layer. Depending on the age of thermocompression bonding, the material of the crane layer may be combined with the material of the light reflecting functional layer, which may reduce the reflectivity of the light reactive layer. In order to suppress a reduction in reflectance, a barrier layer for preventing phase S dispersion may be formed between the photoreactive layer and the wisteria layer. The material of the barrier layer is preferably one that prevents diffusion during thermal deposition, for example, Ti, Pt, Ir, Os, Cr, Ta, Tc, Th, Nb, Hf, Mo Metals such as L, Ru, Ru, Re, and Rh, alloys of two or more of these, or a compound of Ti and Pt are preferable. The iron P in step (d) is, for example, mechanical polishing, chemical polishing, or a method in which a single crystal substrate is irradiated with a laser at the interface between the single crystal substrate and the half layer (i), so-called laser peeling. You can do this.
工程 (e)の形成は、 工程 (b)の透明導電性層の形成と同様な方法により行えばよい。 凹凸の 表面をもつ窒化物半 ί本舰素子は、 例えば、 工程 (e)で得られるもの の¾¾^表面に凹凸を形^ Tる方法により S8iすればよい。 凹凸の形成は、 例えば、 発 光面を、 エッチング;研磨;レーザ一干渉を用いる熱加工によって結晶を加工する方 法;マスクを用いる選! ^長によって結晶成長時に形成する方法で行えばよい。 凹凸形 成後、 表面処理を行ってもよい。 表面処理は、 例えば、 鍾、 麵、 フッ酸など を用いる酸処理、 水酸化ナトリウム水溶液、 水酸化カリウム水溶液、 アンモニア水など を用いるアル力リ処理、 または硫化アンモニゥム水溶餘どを用いる硫化物処理などで 行えばよい。
Figure imgf000013_0001
The step (e) may be formed by the same method as the formation of the transparent conductive layer in the step (b). The nitride semiconductor element having an uneven surface may be S8i formed by, for example, forming an uneven surface on the surface of what is obtained in the step (e). For example, etching and polishing of the light emitting surface; method of processing a crystal by thermal processing using laser interference; selection using a mask! It may be done by the method of forming during crystal growth depending on the length. Surface treatment may be performed after forming the irregularities. Surface treatment includes, for example, acid treatment using soot, soot, hydrofluoric acid, etc., alkaline treatment using sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, aqueous ammonia, etc., or sulfide treatment using ammonium sulfide aqueous solution, etc. Just do it.
Figure imgf000013_0001
編己の窒化物半 f本 は、 さらに、 工程 (f)〜(l)を含む方法により得られる。  The half nitride of the braid is obtained by a method including steps (f) to (l).
(0単結晶基板の上に、 半 層 α)、 魏層および半 本層 (i i)をこの順で形 β¾Τる工程、  (0 on a single crystal substrate, a half layer α), a saddle layer and a semi-layer (i i) in this order ββ
(g)賺己半 »f本層 (i i)の上に、 板を鶴する工程、  (g) Tatsumihan »f Main layer (i i) The process of crane the board,
(h)工程 で得られるものから単結晶基板を!^ ¾する工程、  (h) Single crystal substrate from what is obtained in process! ^ ¾ process,
(i)工程 (h)で得られるものの半 (本層 (i)の上に、 透明導電性層、 光反射機能 層をこの順で形^る工程、  (i) Half of what is obtained in step (h) (the step of forming a transparent conductive layer and a light reflection functional layer in this order on this layer (i),
(j) tiff己光反 «g層の上に、 云導性層を形^ Tる工程、  (j) tiff self-reflection «The process of forming a conductive layer on the g layer ^ T
(k)工程 ωで得られるものから ¾ s板を鉄する工程、  (k) Step of ironing a s plate from what is obtained in step ω,
(1)前言己支^ S板を除去して露出した半導体層 (ii)の上に、 透明導電性層を形 る工程。  (1) Preliminary self-supporting A process of forming a transparent conductive layer on the exposed semiconductor layer (ii) by removing the S-plate.
工程 (Dは、 工程 (a)と同じ方法で行えばよい。  Step (D may be performed in the same manner as in step (a).
工程 (g)に用いる 板は、 次工程の加工等に耐え得る^と工業的に入手の容易 な材料であればよく、 例えば、 各種の金属、 半 本、 セラミックス、 ガラス、 高好フ イルムおよびこれらの複合材料である。 工程 の據は、 工程 (k)において P鉄可能な ワックス、 ハンダ、 ^を用いて行えばよい。  The plate used in the step (g) may be any material that can easily be industrially obtained as it can withstand the processing of the next step, such as various metals, semi-finished materials, ceramics, glass, high-quality films and These composite materials. In the step (k), the process may be performed using P iron-capable wax, solder, ^.
工程 (h)は、 工程 (d)と同様な方法で行えばよい。  Step (h) may be performed by the same method as in step (d).
工程 (Dは、 工程 (b)と同様な方法で行えばよい。  Step (D may be performed in the same manner as in step (b).
工程 (j)は、 工程 (c)と同様な方法で行えばよい。  Step (j) may be performed in the same manner as in step (c).
工程 (k)の |5鉄は、 例えば、 工程 で用いたワックス、 ハンダ、 ^^を加熱して融 解する方法で行えばよい。  The | 5 iron in step (k) may be performed by, for example, heating and melting the wax, solder, and ^^ used in the step.
工程 (1)は、 工程 (e)と同様な方法で行えばよい。 嫌己の方法により得られる窒化物半 f本 軒の例を図 1に示す。 図 1 (a) に示 す窒化物半 魏素子は、 舰面側ォ一ミック電極層 9、 n型半 本層 2— 1、 層 2— 2、 p型半 本層 2— 3、 透明導電性層 ( 向面側ォ一ミック爵亟層) 4、 光反 繊能層 5、 ノ Jャ層 6、 據層 7、 謝云導性層 8を る。 図 1 (b) に示す窒化物 半 ί本舰素子は、 魏面側ォ一ミック β層 9、 ρ型半^本層 2— 3、 層 2— 2、 n型半 (本層 2— 1、 透明導電性層 4、 光反纖能層 5、 バリヤ層 6、 鶴層 7、 謝云 導性層 8を ¾ る。 Step (1) may be performed by the same method as in step (e). Figure 1 shows an example of a half-fitting nitride obtained by the method of disgust. The nitride semiconductor device shown in Fig. 1 (a) consists of a negative electrode layer 9, an n-type semi-layer 2-1, a layer 2-2, a p-type semi-layer 2-3, and a transparent conductive layer. There are four layers, one for the opposite side and one for the optical fiber layer, 5 for the optical fiber layer, 6 for the layer 6 and 7 for the layer of light. The nitride semiconductor element shown in Fig. 1 (b) is composed of a surface-side ohmic β layer 9, a ρ-type semiconductor layer 2-3, a layer 2-2, an n- type semiconductor element (main layer 2-1 A transparent conductive layer 4, a photoreactive layer 5, a barrier layer 6, a crane layer 7, and an axon conductive layer 8 are obtained.
また、 図 1 (c) に示 ¾化物半 本魏素子は、 面側ォーミック電極層 9、 η 型半 本層 2— 1、 層 2— 2、 Ρ型半 (本層 2— 3、 η型半 本層 3、 透明導電性 層 4、 光反! «能層 5、 バリヤ層 6、 體層 7、 謝云導性層 8を る。 図 1 (d) に 示す窒化物半 ί本舰素子は、 魏面側ォ—ミック 層 9、 n型半 #ί本層 3、 ρ型半 本層 2— 3、 概層 2 - 2、 η型半 本層 2— 1、 透明導電性層 (^向面側ォーミツ ク電極層) 4、 光反謹能層 5、 バリヤ層 6、 據層 7、 謝云導性層 8を ¾ る。 麵例 Also, it is shown ¾ compound semi present formic element in FIG. 1 (c), side Omikku electrode layer 9, eta type semi present layer 2 1, layer 2 2, [rho type half (the layer 2 3, eta type Semi-layer 3, transparent conductive layer 4, photoreactive layer 5, active layer 5, barrier layer 6, eaves layer 7, and conductive layer 8 The nitride semiconductor layer shown in FIG. , Mineral side layer 9, N-type semi-layer # ί Main layer 3, ρ-type semi-layer 2—3, Approximate layer 2-2, η-type semi-layer 2—1, Transparent conductive layer Surface-side electrode layer) 4, photoreactive layer 5, barrier layer 6, eaves layer 7, and agitation layer 8 are obtained.
以下、 本発明を難例により説明するが、 本発明はこれらに跪されるものではない。 難例 1  Hereinafter, although this invention is demonstrated by a difficult example, this invention is not limited to these. Difficult example 1
直径 2インチのサファイア基板の (0 0 0 1 )面上に、 常圧 MOCVD法により、 水 素をキャリアガスとして、 TMG (トリメチルガリウム) 、 アンモニア、 シランを原料 ガスとして 5 5 0°Cで G aNからなる ッファ層 0¥さ: 5 0 nm) を成長させた。 次に、 1 0 0 0 にて、 厚さ 1 /mの n— G aN層 (n= 1 X 1 019cm—う 、 厚さ 3 mの n— G a N層 (n = 2 X 1 018c m—3) を形成した。 次に、 ダブルへテロ p n齢型 ダイオード構造を作製するために、 アンド一プ G a N層 0¥さ: 3 0 0 nm) を成 長した後、 キャリアガスを水素から窒素に切り替え、 成厳力を 1 Z2赃にし、 成長 を 760°Cに下げて、 TEG (トリエチリレガリウム) 、 TMI (トリメチルインジ ゥム) 、 アンモニアを原料として用い、 アンド一プ GaNバリア層 0¥さ: 15nm) と InGaN 0¥さ: 3 nm) 井戸層との,しからなる多重 井戸 (MQW) 構造 を 5回繰り返して成長させ^ 6層を形成した。 次に、 アンド一プ GaN層 0¥さ: 18 nm) を成長させた。 次に、 成長 を 800°Cに上げ、 TMA (トリメチルアルミ二 ゥム) 、 TEG、 Cp2Mgを原料として、 Mgドープ AlGaN層 0?さ: 25η m) を成長させた後、 さらに成長 を1040°Cに上げて、 Mgドープ GaN層 0? さ: 150nm) を成長させた。 成長後の Mgドープ GaN層を 職化するために、 アンモニアを と酸素を 5#¾%含む g¾雰囲気下で、 800での で 48秒 間 ί娥して熱麵を行った。 次に、 Mgド一プ GaN層に、 Ni/Auからなる格子状 のォ一ミック電極を真空蒸着法とフォトリソグラフィにより形成した後で、 その上に I TOの透明導^)ゝらなる電極層 0¥さ: 20 Onm) を、 酸素を導入しながら反応性 蒸着法により基板 ¾ 350°Cにて形成し、 引き続いて反纖能を^ Tる膜として、 A 1層を厚さ 10 Onmとなるように、 ノ リア層として T i ZP tを厚さ 50/50 nm となるように、 さらに 層として Au Sn合^^ (Sn糸滅 80%) を厚さ 50 On mとなるように真空蒸着法により室温で形成した。 On the (0 0 0 1) surface of a 2 inch diameter sapphire substrate, using atmospheric pressure MOCVD, hydrogen as a carrier gas, TMG (trimethylgallium), ammonia, and silane as raw material gases at 55 ° C. The aN buffer layer (¥ 0: 50 nm) was grown. Then, at 1 0 0 0, thickness 1 / n-G aN layer of m (n = 1 X 1 0 19 cm- Cormorants, thickness 3 m n- G a N layer (n = 2 X 1 0 18 cm- 3) was formed Next, in order to prepare hetero pn-old type diode structure to double, and one-flop G a N layer 0 ¥ is:. 3 0 0 nm) after was the formation poured, carrier Gas is switched from hydrogen to nitrogen, growth power is reduced to 1 Z2 Z, and growth The temperature is lowered to 760 ° C, TEG (triethylregallium), TMI (trimethylindium), and ammonia are used as raw materials. And GaN barrier layer 0 ¥: 15nm and InGaN 0 ¥: 3 nm ) A well-layered multi-well (MQW) structure was grown 5 times to form a ^ 6 layer. Next, an and GaN layer (¥ 0: 18 nm) was grown. Next, the growth was increased to 800 ° C, and after growing TMA (trimethylaluminum), TEG, and Cp2Mg as raw materials, Mg-doped AlGaN layer 0 ?: 25ηm), the growth was further increased to 1040 ° C. The Mg-doped GaN layer 0 ?: 150 nm) was grown. In order to apply the grown Mg-doped GaN layer, heat treatment was performed for 48 seconds at 800 ° C. in an atmosphere containing 5 # ¾% ammonia and oxygen. Next, a grid-like ohmic electrode made of Ni / Au is formed on the Mg doped GaN layer by vacuum deposition and photolithography, and then an electrode made of ITO's transparent conductor is formed thereon. A layer is formed on the substrate ¾ 350 ° C by reactive vapor deposition while introducing oxygen, and subsequently, the A 1 layer is formed with a thickness of 10 Onm. As shown in the figure, the thickness of Ti ZP t is 50/50 nm as the NOR layer, and the thickness of Au Sn alloy ^^ (Sn destruction 80%) is 50 On m as the layer. It formed at room temperature by the vacuum evaporation method.
こうして得られたェピタキシャル基板と貼り^ る謝云導層として厚さ 100 の Mo基板の研厳面に、 T i/P t 0¥さ 50 nm/50 nm) からなるバリア層と A uSn合金 (Sn糸賊 80 力らなる鶴層を 500 nm形成したものを作製した。 次に上記工ピタキシャル基板と Mo基板とを、 鶴層の AuSn合金層どうしが歸 するように貼り合わ 置を用いて、 真空中にて 300°Cで 600 ONの荷重を 20分 間かけ貼り合わせた。 貼り により生じる基板のそりは、 約 100 mであり、 フォ トリソグラフィ一工程で問題なくプロセスできる大きさであった。 次に、 貼り合わせた ェピタキシャル基板のサファイア側から、 Y AGの 3倍波 (波長 355nm) によるレ —ザ一を照射して、 基栖全面を趙してレーザー剥離を行った。 この工程により、 サ ファイア基板が剥離し、 熱伝導性の優れた Mo基板上にダブルへテロ型 pn接合発光ダ ィオード構造力 成された窒化物半 本層が得られた。 次に、 前の工程ででき fef?たな 表面である n— G a Nの表面を:^で洗浄、 水洗、 誦した後、 A 1 /T i /P tから なる格子状ォ一ミック電極を真空蒸着とフォトリソグラフィにより形成した後、 透明導 電性 I TOを形成して、 透明導電性ォ一ミック電極層を形成した。 この後、 エッチング して I TOのパターンを形成した。 この透明導電性ォ一ミック電極層の光平均透過率は 可視光波長域で 85%となり、 n— GaN層に文すする接鲥¾¾ま 2 X 10 c m2とな り良好な才ーミック f生を示した。 こうして室化物半 本 が得られた。 A barrier layer made of Ti / P t 0 ¥ 50 nm / 50 nm) and an AuSn alloy on the strict surface of a Mo substrate with a thickness of 100 as an axonation layer to be bonded to the thus obtained epitaxial substrate. (Sn thread band 80) A crane layer with a thickness of 500 nm was prepared. Next, the above-mentioned engineered substrate and Mo substrate were bonded to each other so that the AuSn alloy layers of the crane layer were in contact with each other. In a vacuum, the substrate was bonded for 20 minutes at a load of 600 ON at 300 ° C. The substrate warpage caused by the bonding was about 100 m, which was a size that could be processed without any problems in one photolithography process. Next, from the sapphire side of the bonded epitaxial substrate, laser irradiation with a third YAG laser (wavelength 355 nm) was applied to the entire surface of the substrate, and laser peeling was performed. Depending on the process, The fire substrate was peeled off, and a nitride half layer with a double hetero pn junction light emitting diode structure was obtained on a Mo substrate with excellent thermal conductivity. Next, after cleaning the surface of n—G a N, which is fef? Made in the previous process, with ^, rinsed with water, and then rinsed, a lattice-like ohmic electrode composed of A 1 / T i / P t Was formed by vacuum deposition and photolithography, and then transparent conductive ITO was formed to form a transparent conductive ohmic electrode layer. Thereafter, etching was performed to form an ITO pattern. This transparent conductive ohmic electrode layer has a light average transmittance of 85% in the visible light wavelength region, which is 2 X 10 cm 2 until the contact on the n-GaN layer. showed that. In this way, half a chambered product was obtained.
得られた窒化物半 # (本のダブルへテロ型 P n¾^¾¾ダイォ一ド を方:^ f生の高い 金属製ステージ上に載置し、 Mo基板側にプラス、 ォ一ミック n«gにマイナスとなる バイァス電圧を加えることにより、 ォーミック n電極パターンの直下で明瞭な を示 した。 この舰ダイオードは、 本発明の 2つの透明導電性ォ一ミック mgSと対向面側 に設けた光反纖能層により高い取出し効率が得られるため高輝度を示し、 370 m 角の大きさの素子で、 20mA馬隨で 23 mWの光出力を得た。 さらに謝云導性の優れ た Mo基板を利用しているため、 素子からステージへの方燃が妨げられることなく、 I L特 f生も 100mAの高レ電流密度領域ま と電流の比例関係が保たれることを確 認した。
Figure imgf000016_0001
The resulting nitride half # (the book's double hetero-type P n¾ ^ ¾¾ diode is placed on a high-metal stage, plus it on the Mo substrate side, and a positive n «g By applying a negative bias voltage to the electrode, it was clearly shown directly under the ohmic n-electrode pattern.This diode is composed of the two transparent conductive ohmic mgS of the present invention and the optical reaction provided on the opposite side. The high-efficiency is obtained by the high-performance layer, so it shows high brightness, and has a light output of 23 mW at 20 mA horsepower with an element of 370 m square size. As a result, it was confirmed that the proportionality of the current was maintained in the high current density region of 100 mA without interfering with the flame burning from the element to the stage.
Figure imgf000016_0001
雄例 1と同様にして、 サファイア基板の (0001) 面上に、 ダブルへテロ pn接 合型魏ダイォード; を成長した。 ただし猫例 1のェピ夕キシ 晶の成長にお いて最後に成長する Mgド一プ GaN層の成長後、 一 Ji¾長温度を 800 に低下させ、 さらに S iド一プ InGaN層 0?さ: 2 nm、 η=1Χ1 O^cm"3) を成長し ¾面 を高 ¾の n型層とするコンタクトトンネリング層を形成した。 コンタクトトンネリング層には I TO膜を直 »成して透明導電性ォ一ミック電極と し、 以降の工程は »例 1と同様に行い、 Mo基板上の窒化物系半 本のダブルへテロ 型 ρ
Figure imgf000017_0001
ドを作製した。 こうして作製した窒化物半 本
In the same manner as Male Example 1, a double hetero pn junction type diode was grown on the (0001) plane of the sapphire substrate. However, after the growth of the Mg-doped GaN layer that grows last in the growth of the Epoxy crystals in Cat Example 1, the Ji¾long temperature is lowered to 800, and the Si-doped InGaN layer is further reduced to 0? : 2 nm, η = 1Χ1 O ^ cm " 3 ) to form a contact tunneling layer with the back surface being a high n-type layer. The contact tunneling layer is directly formed with an ITO film to form a transparent conductive ohmic electrode, and the subsequent steps are performed in the same manner as in Example 1, with a nitride-based double hetero type on a Mo substrate. ρ
Figure imgf000017_0001
Was made. Nitride half produced in this way
ダイオード) は、 3 7 0 m角の大きさの^で、 2 OmAlgSiで 2 4mWの光出力を 示した。 さらに、 I L特性も 1 0 0mAの高い電流密度領域まで避と電流の比例関係 が保たれることを確認、した。 The diode was a 3 70 m square ^ and showed a light output of 24 mW with 2 OmAlgSi. Furthermore, it was confirmed that the proportional relationship between avoidance and current was maintained up to a high current density region of 100 mA in the IL characteristics.

Claims

請 求 の 範 囲 The scope of the claims
1. ォーミック電極層 (i;)、 1. Ohmic electrode layer (i;),
半 本層 (i)、 Half layer (i),
m,  m,
半 本層 (ϋ)、  Semi-layer (ϋ),
ォーミック S層 (ii)、 および  Ohmic S layer (ii), and
謝云導性層を、 この順に含み、  Xie Yun conductive layer in this order,
ォ一ミック は、 透明導電性層であり、  Is a transparent conductive layer,
ォ一ミック 層 (ii)は、 透明導電性層および光 能層をこの順に含み、 および 半 f本層 (i)は p型であり半 本層 (ii)は n型である、 または、 半 本層 (i)は n型であり半謝本層 (ii)は p型である窒化物半 »ί本舰 ¾?。 The ohmic layer (ii) includes a transparent conductive layer and an optical layer in this order, and the semi-f layer (i) is p-type and the semi-layer (ii) is n- type, or This layer (i) is n-type and semi-semi-primary layer (ii) is p-type nitride semi »ί 本 舰 ¾ ?.
2. 半 {本層 (i)は η型であり、 半 本層 (ii)は ρ型である請求項 1記載の窒化物半 稱本概素子。  2. The nitride semi-primary element according to claim 1, wherein the semi-layer (i) is η-type and the semi-layer (ii) is ρ-type.
3. 半 本層 (ii)は、 キャリア ill が、 1 X 1 019cm_3以上である請求項 2記載の窒化 物半 本魏素子。 3. semi present layer (ii) a carrier ill is, 1 X 1 0 19 cm_ 3 or more in the nitride semi present Wei element according to claim 2, wherein.
4. 半 #{本層 (Π) のォーミック電極層 (ϋ) と »する層は、 少なくとも 1つの n— I nxG a i_xN (0≤χ≤1 ) 力、らなる請求項 2または 3記載の窒化物 ^(本 軒4. A semi-{{layered (Π) ohmic electrode layer (ϋ) and »layer consists of at least one n—I n x G ai _ x N (0≤χ≤1) force. Or nitride described in 3 ^ (
5. 光反纖能層は、 A l、 Ag、 Mg、 C r、 R hおよび Z nからなる群から選ば れる少なくとも 1つである請求項 1〜 4のいずれかに記載の窒化物半 本 軒。5. The nitride half according to claim 1, wherein the photoreactive layer is at least one selected from the group consisting of Al, Ag, Mg, Cr, Rh, and Zn. Eaves.
6. 窒化物半 #{本概軒は、 さらに、 ォ一ミック廳層 (ii)と謝云導性層の間に接 着層を含む請求項;!〜 4のいずれかに窒化物半 本舰軒。 6. Nitride half # {This claim further includes an adhesion layer between the ohmic layer (ii) and the auscultation layer; Nitride semi-house in any of ~ 4.
7. 窒化物半 # (本観軒は、 さらに、 鶴層と光反射機能層の間にバリヤ層を含む 請求項 6記載の窒化物半 #f本舰軒。 7. Nitride half # (The nitride half #f Honjoken according to claim 6, further comprising a barrier layer between the crane layer and the light reflection functional layer.
8. バリヤ層は、 Ti、 P t、 I r、 〇s、 Cr、 Ta、 Tc、 Th、 Nb、 Hf、 M o、 Lu、 Ru、 Reおよび Rhから選ばれる少なくとも 1つである請求項 7記載の窒 化物半 ί本 素子。 8. The barrier layer is at least one selected from Ti, Pt, Ir, Os, Cr, Ta, Tc, Th, Nb, Hf, Mo, Lu, Ru, Re, and Rh. The listed nitride semi-element.
9. 工程 (aト (e)を含む窒化物半 f本舰素子の SStm  9. SStm of nitride semi-f element including process (a) (e)
(a)単結晶基板の上に、 半 本層(0、 ¾½Sおよ 本層 (ii)をこの順で形 β¾Τる工程、  (a) On a single crystal substrate, a semi-layer (0, ¾½S and this layer (ii) is formed in this order in the form β¾,
(b)婦己半 ^(本層 (ii)の上に、 透明導電性層、 光反纖能層をこの順で形财 る工程、  (b) Ladies half ^ (The process of forming a transparent conductive layer and a photoreactive layer in this order on this layer (ii),
(c)嫌己光反! «能層の上に、 謝云導性層を形 る工程、  (c) Disgust! «The process of forming an apocalyptic layer on the active layer,
(d)工程 (c)で得られるものから単結晶基板を^ ¾する工程、  (d) Step of obtaining a single crystal substrate from that obtained in step (c),
(e)嫌己単結晶基板を鉄して露出した半 ί本層 (i)の上に、 透明導電 を形 る工程。  (e) A step of forming a transparent conductive layer on the half-printed layer (i) exposed by ironing the selfish single crystal substrate.
10. 工程 (fト a)を含む窒化物半 ί本概軒の^ m  10. Nitride semi-lithium containing process (f)
(0単結晶基板の上に、 半 ί本層 (0、 層および半 »ί本層 (ii)をこの順で形 る工程、  (On the single crystal substrate, half layer (0, layer and half layer) is formed in this order.
(g) tiff己半 ί本層 (ii)の上に、 ¾ ^板を^ rする工程、  (g) tiff self-printing layer (ii) on the ¾ ^ plate ^ r process,
(h)工程^)で得られるものから単結晶基板を^ ¾する工程、  (h) a step of obtaining a single crystal substrate from what is obtained in step ^),
(0工程 0で得られるものの半 ¾f本層 ωの上に、 透明導電性層、 yt m 層をこの順で形^る工程、  (Step of forming transparent conductive layer, yt m layer in this order on half ¾f main layer ω of what is obtained in 0 step 0,
(j)前記光反射機能層の上に、 熱伝導'性層を形成する工程、  (j) forming a thermally conductive layer on the light reflecting functional layer;
(k)工程 (]')で得られるものから; ¾φ»板を!^ ¾する工程、  (k) From what is obtained in step (] '); ¾φ »step to plate! ^ ¾,
(1)嫌己 板を鉄して露出した半 ¾f本層 (ii)の上に、 透明導電性層を形 β¾Τる工程。  (1) Disgusting Step of forming a transparent conductive layer β¾ on the half-layer f layer (ii) exposed by ironing the plate.
PCT/JP2005/010993 2005-06-09 2005-06-09 Nitride semiconductor light emitting element and method for manufacturing same WO2006131990A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/010993 WO2006131990A1 (en) 2005-06-09 2005-06-09 Nitride semiconductor light emitting element and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/010993 WO2006131990A1 (en) 2005-06-09 2005-06-09 Nitride semiconductor light emitting element and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2006131990A1 true WO2006131990A1 (en) 2006-12-14

Family

ID=37498202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010993 WO2006131990A1 (en) 2005-06-09 2005-06-09 Nitride semiconductor light emitting element and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2006131990A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146803A (en) * 2009-06-22 2014-08-14 Universitat Leipzig Transparent rectifying metal-metal oxide-semiconductor contact structure, and production method and use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007447A (en) * 1999-06-18 2001-01-12 Nichia Chem Ind Ltd Nitride semiconductor laser element
JP2001015394A (en) * 1999-07-01 2001-01-19 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device
JP2002319703A (en) * 2001-04-20 2002-10-31 Ricoh Co Ltd Semiconductor device and its manufacturing method
JP2003046127A (en) * 2001-05-23 2003-02-14 Sanyo Electric Co Ltd Nitride semiconductor light-emitting element
JP2004193338A (en) * 2002-12-11 2004-07-08 Sharp Corp Nitride based compound semiconductor light emitting element and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001007447A (en) * 1999-06-18 2001-01-12 Nichia Chem Ind Ltd Nitride semiconductor laser element
JP2001015394A (en) * 1999-07-01 2001-01-19 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device
JP2002319703A (en) * 2001-04-20 2002-10-31 Ricoh Co Ltd Semiconductor device and its manufacturing method
JP2003046127A (en) * 2001-05-23 2003-02-14 Sanyo Electric Co Ltd Nitride semiconductor light-emitting element
JP2004193338A (en) * 2002-12-11 2004-07-08 Sharp Corp Nitride based compound semiconductor light emitting element and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146803A (en) * 2009-06-22 2014-08-14 Universitat Leipzig Transparent rectifying metal-metal oxide-semiconductor contact structure, and production method and use thereof

Similar Documents

Publication Publication Date Title
JP5857786B2 (en) Manufacturing method of semiconductor light emitting device
US7759690B2 (en) Gallium nitride-based compound semiconductor light-emitting device
JP5030398B2 (en) Gallium nitride compound semiconductor light emitting device
JP5533675B2 (en) Semiconductor light emitting device
JP3795007B2 (en) Semiconductor light emitting device and manufacturing method thereof
TWI230473B (en) Semiconductor light emitting device and manufacturing method thereof
JP5276959B2 (en) LIGHT EMITTING DIODE, ITS MANUFACTURING METHOD, AND LAMP
TW200941774A (en) Light emitting diodes with smooth surface for reflective electrode
US8035123B2 (en) High light-extraction efficiency light-emitting diode structure
JP2006066903A (en) Positive electrode for semiconductor light-emitting element
KR101969171B1 (en) Semiconductor light-emitting device and method for manufacturing semiconductor light-emitting device
JP2005259820A (en) Group iii-v compound semiconductor light emitting element and its manufacturing method
JPWO2006006556A1 (en) Semiconductor light emitting device
US20060054919A1 (en) Light-emitting element, method for manufacturing the same and lighting equipment using the same
WO2010125792A1 (en) Light emitting diode and method for producing the same, and light emitting diode lamp
JP2010192835A (en) Light emitting diode, method for manufacturing the same, and light emitting diode lamp
KR100813764B1 (en) Compound semiconductor light-emitting device and production method thereof
JP2007243074A (en) Group iii nitride light emitting diode
CN102610728B (en) Light-emitting diode (LED) with back silver-plated reflecting layer and manufacturing method of LED
CN104425670B (en) Light emitting diode and its manufacturing method
JP2012178453A (en) GaN-BASED LED ELEMENT
JP2005217112A (en) Nitride semiconductor light emitting element
KR100691264B1 (en) Vertical structured nitride based semiconductor light emitting device
WO2006131990A1 (en) Nitride semiconductor light emitting element and method for manufacturing same
JP2008277430A (en) Nitride semiconductor light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05751215

Country of ref document: EP

Kind code of ref document: A1