WO2006131224A1 - Control method for a safety device in a vehicle - Google Patents

Control method for a safety device in a vehicle Download PDF

Info

Publication number
WO2006131224A1
WO2006131224A1 PCT/EP2006/005075 EP2006005075W WO2006131224A1 WO 2006131224 A1 WO2006131224 A1 WO 2006131224A1 EP 2006005075 W EP2006005075 W EP 2006005075W WO 2006131224 A1 WO2006131224 A1 WO 2006131224A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency range
sensor
control method
khz
frequency
Prior art date
Application number
PCT/EP2006/005075
Other languages
German (de)
French (fr)
Inventor
Edgar Bihler
Thomas Lohfink
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Publication of WO2006131224A1 publication Critical patent/WO2006131224A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R21/01332Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value by frequency or waveform analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R2021/01302Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over monitoring vehicle body vibrations or noise

Definitions

  • the invention relates to a control method for an accident prevention device in a vehicle according to the preamble of claim 1.
  • a control device for an accident protection device in a vehicle which comprises at least one acceleration sensor, an evaluation circuit for evaluating the output signals of the acceleration sensor and a control unit which activates elements of the accident protection device in the presence of predetermined conditions.
  • the acceleration sensor is sensitive in a wide frequency range, ranging from frequencies below 5 Hz to over 10 kHz.
  • the evaluation circuit the output signals lying in the structure-borne sound frequency range are also evaluated. This makes it possible to evaluate the resulting in a crash higher-frequency structure-borne sound signals in addition to the low-frequency signals that detect the total vehicle acceleration. This is to detect a crash safely and in good time.
  • frequencies below 300 Hz are provided by means of a low-pass filter and frequencies above 4 kHz are provided to the evaluation circuit by means of a high-pass filter. represents, which correspond to the respective vehicle acceleration and the respective structure-borne sound.
  • DE 102 27 061 A1 describes a restraint system with restraint means, with at least one acceleration-sensitive sensor and at least one ultrasonic sensor.
  • the ultrasonic sensor is sensitive to the ultrasonic waves generated in the event of a crash, a trigger criterion for the retaining means being derived from its output signal.
  • NON-Fire load cases Crash tests in which no accident prevention devices, in particular restraint systems, are to be activated, are referred to as NON-Fire load cases.
  • all attempts in which a release of the restraint systems is necessary referred to as fire load cases.
  • the common method for analyzing the acceleration signals always has the problem of ensuring the timely triggering of certain fire load cases, without at the same time triggering the NON-Fire load cases.
  • the additional evaluation of a higher-frequency structure-borne sound component is proposed to solve this problem.
  • the invention has for its object to provide a control method for an accident prevention device in a vehicle, which guarantees a more reliable and optimized release of the accident protection device than the prior art.
  • the object is achieved by a control method for an accident prevention device in a vehicle, in which signals are sensed in a wide frequency range with at least one vibration-sensitive sensor, the lying in the structure-borne sound frequency range output signals and the low-frequency output signals of the sensor by means of an evaluation circuit and activation of the Accident protection device depending on the evaluation of the output signals by a control unit, with the features of claim 1.
  • the output signals of the sensor are evaluated in a frequency range between 400 Hz and 5 kHz.
  • a frequency analysis clearly shows that most of the signals detected by the accelerometer are below 5 kHz.
  • the signals up to 400 Hz are usually used in conventional acceleration sensors for detecting the total acceleration of the vehicle. In the frequency range from 400 Hz to 5 kHz, this contains the structure-borne sound information that is significant for a reliable load case distinction.
  • the structure-borne noise is evaluated in a narrow frequency band, which depends on the vehicle type.
  • Programmtechnisch a suitable frequency band with respect to location and bandwidth can be determined, for which an optimal separation between Fire and NON-Fire load cases can be realized and thus a temporally optimal activation of the accident protection device is guaranteed.
  • Content of the program is the systematic investigation all possibilities to optimize the separation between Fire and NON-Fire experiments.
  • a suitable evaluation criterion was created, which represents the quotient of the most unfavorable combination of Fire and NON-Fire signals.
  • the smallest integral value of the Fire attempts at each point in the crash course is divided by the maximum integral value of the NON-Fire attempts. This gives you the size factor between the two.
  • the factor represents the percentage signal ratio between the two. If the factor is one or less one, then the separation between Fire and NON-Fire attempts is not possible. It is assumed that a fixed bandpass width, which is gradually pushed through the frequency range up to 20 kHz. This then gives the bandpass width the safety factor at appropriately named times. For this, the signals are filtered, the integrals formed and the values stored at the respective times. These are expressed as a result of a safety factor between NON-Fire and Fire tests. In practice, a bandwidth of approximately 500 Hz to 2 kHz has proven particularly suitable for the narrow frequency band in a situation around 2 kHz.
  • Fig. 1 is a block diagram of a controller for an accident prevention device in a vehicle; 2 shows a frequency analysis spectrum of a vibration-sensitive sensor for a frontal impact;
  • Fig. 3a and 3b respectively signal amplitudes of a sensor in
  • FIGS. 4a and 4b each show integrals for bandpass filtering.
  • the controller 1 shows a controller 1 for an accident prevention device 2, in particular a restraint system, for example an airbag system, in a vehicle, not shown.
  • the controller 1 has a vibration-sensitive sensor 3 with an integrated preamplifier, which in this embodiment, a repeater 4 for adjusting the output signal of the sensor 3 is connected downstream.
  • the sensor 3 may in particular be an ultrasonic sensor, an acceleration sensor and / or a structure-borne sound sensor. With the sensor 3, the sound generated in the vehicle and a vehicle deceleration are detected during a crash. It is also possible to provide a plurality of sensors 3 for sensing the low-frequency frequency range and / or the higher-frequency frequency range as part of a device. Sound is generally referred to as vibrations in the frequency range between 16 and 16 kHz. Depending on the medium in which the periodic oscillation is sensed, it can be airborne sound, liquid sound and structure-borne sound.
  • a power amplifier 5 is connected to a low-pass filter whose output is connected to a control unit 6. With the control unit, the accident prevention device 2 is activated.
  • an evaluation unit 7 is arranged, to which the output signal of the repeater 4 is supplied.
  • the evaluation unit 7 may comprise a bandpass filter for filtering out a suitable frequency range and a low-pass filter for envelope formation.
  • the evaluation unit 7 is also connected to the control unit 6.
  • the repeater 4, the power amplifier 5 and the evaluation unit 7 are part of an evaluation circuit 4, 5, 7th
  • signals in a wide frequency range are sensed with the vibration-sensitive sensor 3.
  • the output signals lying in the structure-borne sound frequency range and the low-frequency output signals of the sensor 3 are evaluated by means of the evaluation circuit 4, 5, 7.
  • the high-frequency sound, which arises in a crash of the vehicle, is filtered out by means of the evaluation unit 7 from the output signal of the sensor 3 and provided to the control unit 6.
  • the low-frequency output signals probed via the power amplifier 5 with the integrated low-pass filter from the output signal of the sensor 3 indicate the total vehicle deceleration.
  • structure-borne sound information and acceleration information are made available to the control method.
  • Activation of the accident prevention device 2 takes place as a function of the evaluation of the output signals by the control unit 6.
  • Fig. 2 shows a frequency analysis spectrum of the sensor 3 for a frontal impact after processing with a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • This frequency analysis shows that most signals are not found in the upper frequency range, but rather below 5 kHz.
  • the signals in the frequency range between 0 and 400 Hz correspond to those of a conventional sensor 3 for the total acceleration of the vehicle.
  • the crash range-containing frequency range is therefore between 400 Hz and 5 kHz, in particular between 400 Hz and 4 kHz.
  • the signal amplitude of the sensor 3 as a function of the crash time and of the frequency is shown in the diagrams of FIGS. 3a and 3b, FIG. 3a representing a fire load case and FIG. 3b a non-fire load case.
  • FIGS. 3a and 3b The signal amplitude of the sensor 3 as a function of the crash time and of the frequency is shown in the diagrams of FIGS. 3a and 3b, FIG. 3a representing a fire load case and FIG. 3b a non-fire load case.
  • the significant signal input is given.
  • the signal entry for the fire load case must be clearly differentiated from the signal entry for the NON-Fire load case for this lower frequency range.
  • a separation of Fire load cases and NON-Fire load cases is thereby given for this lower frequency range with a high safety factor, which is a measure of the quality of the separation.
  • a high safety factor which is a measure of the quality of the separation.
  • no reliable separation of Fire load cases and NON-Fire load cases is possible for the specified in DE 100 15 273 Al body sound frequency range above 5 kHz and thus no security against false triggering of accident prevention device 2 is guaranteed.
  • a possible narrow frequency band has a preferred width of about 500 Hz to 1.5 kHz and is in the range of 2 kHz arranged.
  • FIG. 4a shows integrals of sensors 3 for bandpass filtering of 1850 Hz and 2350 Hz with subsequent absolute value formation.
  • the solid lines correspond to the load cases and the dashed lines correspond to NON-Fire load cases.
  • Each line corresponds to a defined frontal crash scenario.
  • Such a narrow frequency band corresponds to the requirements of a high safety factor for the entire chronological crash course relevant for triggering the accident prevention device 2. It can be seen a clear separation of the signals of Fire load cases and NON-Fire load cases in the entire time range from about 10 ms.
  • FIG. 4a shows integrals of sensors 3 for bandpass filtering of 1850 Hz and 2350 Hz with subsequent absolute value formation.
  • the solid lines correspond to the load cases and the dashed lines correspond to NON-Fire load cases.
  • Each line corresponds to a defined frontal crash scenario.
  • the fire load cases and NON-fire load cases overlap for the high-pass filtering of greater than 5 kHz given in DE 100 15 273 A1 in the case of the early ignition times.
  • the structure-borne sound can thus be evaluated preferably in a narrow frequency band, the optimum selection depending on the specific vehicle type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Bags (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

The invention relates to a control method for a safety device (2) in a vehicle. According to said method, signals are sensed in a large frequency range by means of at least one oscillation-sensitive sensor, the low-frequency output signals and output signals of the sensor (3) lying in the frequency range of structure-borne noise are evaluated with the aid of an evaluation circuit (7), and the safety device (2) is activated by a control device in accordance with the evaluation of the output signals. According to the invention, the output signals of the sensor (3) lying in a frequency range between 400 Hz and 5 kHz are evaluated.

Description

Steuerverfahren für eine Unfallschutzeinrichtung in einem Control method for an accident prevention device in one
Fahrzeugvehicle
Die Erfindung betrifft ein Steuerverfahren für eine Unfallschutzeinrichtung in einem Fahrzeug gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a control method for an accident prevention device in a vehicle according to the preamble of claim 1.
Aus der DE 100 15 273 Al ist eine Steuervorrichtung für eine Unfallschutzeinrichtung in einem Fahrzeug bekannt, welche wenigstens einen Beschleunigungssensor, eine Auswerteschaltung zur Auswertung der Ausgangssignale des Beschleunigungssensors und ein Steuergerät umfasst, welches Elemente der Unfallschutzeinrichtung bei Vorliegen vorbestimmter Bedingungen aktiviert. Der Beschleunigungssensor ist in einem breiten Frequenzbereich empfindlich, welcher von Frequenzen unter 5 Hz bis über 1OkHz reicht. In der Auswerteschaltung werden auch die im Körperschallfrequenzbereich liegenden Ausgangssignale ausgewertet. Dadurch wird ermöglicht, die bei einem Crash entstehenden höherfrequenten Körperschallsignale zusätzlich zu den niederfrequenten Signalen auszuwerten, welche die Fahrzeugbeschleunigung insgesamt erfassen. Hierdurch soll ein Crash sicher und rechtzeitig erkannt werden. In einem Ausführungsbeispiel werden mittels eines Tiefpassfilters Frequenzen unterhalb von 300 Hz und mittels eines Hochpassfilters Frequenzen über 4 kHz der Auswerteschaltung zur Verfügung ge- stellt, welche der jeweiligen Fahrzeugbeschleunigung und dem jeweiligen Körperschall entsprechen.From DE 100 15 273 Al a control device for an accident protection device in a vehicle is known which comprises at least one acceleration sensor, an evaluation circuit for evaluating the output signals of the acceleration sensor and a control unit which activates elements of the accident protection device in the presence of predetermined conditions. The acceleration sensor is sensitive in a wide frequency range, ranging from frequencies below 5 Hz to over 10 kHz. In the evaluation circuit, the output signals lying in the structure-borne sound frequency range are also evaluated. This makes it possible to evaluate the resulting in a crash higher-frequency structure-borne sound signals in addition to the low-frequency signals that detect the total vehicle acceleration. This is to detect a crash safely and in good time. In one embodiment, frequencies below 300 Hz are provided by means of a low-pass filter and frequencies above 4 kHz are provided to the evaluation circuit by means of a high-pass filter. represents, which correspond to the respective vehicle acceleration and the respective structure-borne sound.
Außerdem wird in der DE 102 27 061 Al ein Rückhaltesystem mit Rückhaltemitteln beschrieben, mit mindestens einem beschleunigungsempfindlichen Sensor und mindestens einem Ultraschallsensor. Der Ultraschallsensor ist für die bei einem Crash entstehenden Ultraschallwellen empfindlich, wobei aus dessen Ausgangssignal ein Auslösekriterium für die Rückhaltemittel abgeleitet wird.In addition, DE 102 27 061 A1 describes a restraint system with restraint means, with at least one acceleration-sensitive sensor and at least one ultrasonic sensor. The ultrasonic sensor is sensitive to the ultrasonic waves generated in the event of a crash, a trigger criterion for the retaining means being derived from its output signal.
Crashtests, bei welchen keine Unfallschutzeinrichtungen, insbesondere Rückhaltesysteme, aktiviert werden sollen, werden als NON-Fire Lastfälle bezeichnet. Dem gegenüber werden alle Versuche, bei welchen eine Auslösung der Rückhaltesysteme notwendig ist, als Fire Lastfälle bezeichnet. Bei den marktüblichen Verfahren zur Analyse der Beschleunigungssignale existiert stets das Problem die rechtzeitige Auslösung bestimmter Fire Lastfälle zu gewährleisten, ohne zugleich auch die NON-Fire Lastfälle auszulösen. Bei den aus dem Stand der Technik bekannten Steuervorrichtungen wird zur Lösung dieses Problems die zusätzliche Auswertung eins höherfrequenteren Körperschallanteils vorgeschlagen. Dabei wird aber seitens der Anmelderin als nachteilig angesehen, dass mit dem empfohlenen Frequenzbereich von 4 kHz bis 20 kHz eine zuverlässige Trennung von NON-Fire Lastfällen und Fire Lastfällen erst relativ spät möglich ist, insbesondere frühestens ab 30 ms. Frühere Zündzeitpunkte im Bereich von 10 ms können daher nicht für alle relevanten Fire Lastfälle mit einem hohen Sicherheitsfaktor angegeben werden. Es ist somit keine ausreichende Sicherheit gegen unerwünschte Fehlauslösungen gegeben.Crash tests in which no accident prevention devices, in particular restraint systems, are to be activated, are referred to as NON-Fire load cases. On the other hand, all attempts in which a release of the restraint systems is necessary, referred to as fire load cases. The common method for analyzing the acceleration signals always has the problem of ensuring the timely triggering of certain fire load cases, without at the same time triggering the NON-Fire load cases. In the control devices known from the prior art, the additional evaluation of a higher-frequency structure-borne sound component is proposed to solve this problem. However, the Applicant considers that this is disadvantageous in that, with the recommended frequency range from 4 kHz to 20 kHz, a reliable separation of NON-Fire load cases and Fire load cases is possible only relatively late, in particular at least 30 ms. Earlier firing times in the range of 10 ms can therefore not be specified for all relevant fire load cases with a high safety factor. There is thus no adequate security against unwanted false triggering.
Der Erfindung liegt die Aufgabe zugrunde, ein Steuerverfahren für eine Unfallschutzeinrichtung in einem Fahrzeug anzugeben, welches eine gegenüber dem Stand der Technik zuverlässigere und optimierte Auslösung der Unfallschutzeinrichtung gewährleistet .The invention has for its object to provide a control method for an accident prevention device in a vehicle, which guarantees a more reliable and optimized release of the accident protection device than the prior art.
Die Aufgabe wird gelöst durch ein Steuerverfahren für eine Unfallschutzeinrichtung in einem Fahrzeug, bei dem Signale in einem breiten Frequenzbereich mit wenigstens einem schwingungsempfindlichen Sensor sensiert werden, die in dem Körperschallfrequenzbereich liegenden Ausgangssignale und die niederfrequenten Ausgangssignale des Sensors mittels einer Auswerteschaltung ausgewertet werden und eine Aktivierung der Unfallschutzeinrichtung in Abhängigkeit von der Auswertung der Ausgangssignale durch ein Steuergerät erfolgt, mit den Merkmalen des Patenanspruches 1.The object is achieved by a control method for an accident prevention device in a vehicle, in which signals are sensed in a wide frequency range with at least one vibration-sensitive sensor, the lying in the structure-borne sound frequency range output signals and the low-frequency output signals of the sensor by means of an evaluation circuit and activation of the Accident protection device depending on the evaluation of the output signals by a control unit, with the features of claim 1.
Erfindungsgemäß werden die Ausgangssignale des Sensors in einem Frequenzbereich zwischen 400 Hz und 5 kHz ausgewertet. Eine Frequenzanalyse zeigt deutlich, dass die meisten mit dem Beschleunigungssensor erfassten Signale unterhalb von 5 kHz liegen. Die Signale bis zu 400 Hz werden üblicherweise bei konventionellen Beschleunigungssensoren für eine Erfassung der Gesamtbeschleunigung des Fahrzeugs herangezogen. In dem Frequenzbereich von 400 Hz bis 5 kHz sind damit die für eine zuverlässige Lastfallunterscheidung signifikanten Körperschallinformationen enthalten.According to the invention, the output signals of the sensor are evaluated in a frequency range between 400 Hz and 5 kHz. A frequency analysis clearly shows that most of the signals detected by the accelerometer are below 5 kHz. The signals up to 400 Hz are usually used in conventional acceleration sensors for detecting the total acceleration of the vehicle. In the frequency range from 400 Hz to 5 kHz, this contains the structure-borne sound information that is significant for a reliable load case distinction.
Dabei ist es von Vorteil, dass der Körperschall in einem engen Frequenzband ausgewertet wird, welches von dem Fahrzeugtyp abhängig ist. Programmtechnisch kann ein geeignetes Frequenzband bezüglich Lage und Bandbreite ermittelt werden, für welches eine optimale Trennung zwischen Fire- und NON-Fire Lastfällen realisiert werden kann und somit eine zeitlich optimale Aktivierung der Unfallschutzeinrichtung gewährleistet ist. Inhalt des Programms ist die systematische Untersuchung aller Stellmöglichkeiten zur Optimierung der Trennung zwischen Fire und NON-Fire Versuchen. Dafür wurde ein geeignetes Bewertungskriterium geschaffen, welches den Quotienten der jeweils ungünstigsten Kombination aus Fire und NON-Fire Signalen repräsentiert. Es wird der zu jedem Zeitpunkt des Crashverlaufs jeweils kleinste Integralwert der Fire Versuche durch den maximalen Integralwert der NON-Fire Versuche geteilt. Dadurch erhält man den Größenfaktor zwischen beiden. Für Sicherheitsfaktoren größer gleich eins ist eine Trennungsmöglichkeit gegeben und der Faktor repräsentiert das prozentuale Signalverhältnis zwischen beiden. Wenn der Faktor eins oder kleiner eins ist, dann ist die Trennung zwischen Fire und NON-Fire Versuchen nicht möglich. Dabei wird von einer festen Bandpassbreite ausgegangen, welche schrittweise durch den Frequenzbereich bis 20 kHz geschoben wird. Dadurch erhält man dann für die Bandpassbreite den Sicherheitsfaktor zu entsprechend benannten Zeitpunkten. Dafür werden die Signale gefiltert, die Integrale gebildet und die Werte zu den jeweiligen Zeitpunkten gespeichert. Diese werden als Ergebnis in einem Sicherheitsfaktor zwischen NON-Fire und Fire- Versuchen ausgedrückt. In der Praxis hat sich für das enge Frequenzband eine Bandbreite von ca. 500 Hz bis 2 kHz bei einer Lage um die 2 kHz besonders bewährt.It is advantageous that the structure-borne noise is evaluated in a narrow frequency band, which depends on the vehicle type. Programmtechnisch a suitable frequency band with respect to location and bandwidth can be determined, for which an optimal separation between Fire and NON-Fire load cases can be realized and thus a temporally optimal activation of the accident protection device is guaranteed. Content of the program is the systematic investigation all possibilities to optimize the separation between Fire and NON-Fire experiments. For this purpose, a suitable evaluation criterion was created, which represents the quotient of the most unfavorable combination of Fire and NON-Fire signals. The smallest integral value of the Fire attempts at each point in the crash course is divided by the maximum integral value of the NON-Fire attempts. This gives you the size factor between the two. For safety factors greater than or equal to one, there is a possibility of separation and the factor represents the percentage signal ratio between the two. If the factor is one or less one, then the separation between Fire and NON-Fire attempts is not possible. It is assumed that a fixed bandpass width, which is gradually pushed through the frequency range up to 20 kHz. This then gives the bandpass width the safety factor at appropriately named times. For this, the signals are filtered, the integrals formed and the values stored at the respective times. These are expressed as a result of a safety factor between NON-Fire and Fire tests. In practice, a bandwidth of approximately 500 Hz to 2 kHz has proven particularly suitable for the narrow frequency band in a situation around 2 kHz.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen beschrieben.Further advantageous embodiments of the invention are described in the subclaims.
Die Erfindung wird anhand eines Ausführungsbeispiels in den Figuren näher erläutert. Dabei zeigen:The invention will be explained in more detail with reference to an embodiment in the figures. Showing:
Fig. 1 ein Blockschaltbild einer Steuerung für eine Unfallschutzeinrichtung in einem Fahrzeug; Fig. 2 ein Frequenzanalysespektrum eines schwingungsempfindlichen Sensors für einen Frontalaufprall;Fig. 1 is a block diagram of a controller for an accident prevention device in a vehicle; 2 shows a frequency analysis spectrum of a vibration-sensitive sensor for a frontal impact;
Fig. 3a und 3b jeweils Signalamplituden eines Sensor inFig. 3a and 3b respectively signal amplitudes of a sensor in
Abhängigkeit vom Crashzeitpunkt und der Frequenz; undDependence on crash time and frequency; and
Fig. 4a und 4b jeweils Integrale für eine Bandpassfilterung.FIGS. 4a and 4b each show integrals for bandpass filtering.
Fig. 1 zeigt eine Steuerung 1 für eine Unfallschutzeinrichtung 2, insbesondere einem Rückhaltesystem, beispielsweise einem Airbagsystem, in einem nicht weiter dargestellten Fahrzeug. Die Steuerung 1 weist einen schwingungsempfindlichen Sensor 3 mit einem integrierten Vorverstärker, welchem in diesem Ausführungsbeispiel ein Zwischenverstärker 4 zum Abgleich des Ausgangssignals des Sensors 3 nachgeschaltet ist. Der Sensor 3 kann insbesondere ein Ultraschallsensor, ein Beschleunigungssensor und/oder ein Körperschallsensor sein. Mit dem Sensor 3 wird während eines Crashs der im Fahrzeug erzeugte Schall sowie eine Fahrzeugverzögerung erfasst. Es können auch mehrere Sensoren 3 zur Sensierung des niederfrequenten Frequenzbereiches und/oder des höherfrequenten Frequenzbereiches als Bestandteil einer Vorrichtung vorgesehen sein. Als Schall werden allgemein Schwingungen im Frequenzbereich zwischen 16 und 16 kHz bezeichnet. Je nach dem Medium, in welchem die periodische Schwingung sensiert wird, kann es sich um Luftschall, Flüssigkeitsschall und Körperschall handeln .1 shows a controller 1 for an accident prevention device 2, in particular a restraint system, for example an airbag system, in a vehicle, not shown. The controller 1 has a vibration-sensitive sensor 3 with an integrated preamplifier, which in this embodiment, a repeater 4 for adjusting the output signal of the sensor 3 is connected downstream. The sensor 3 may in particular be an ultrasonic sensor, an acceleration sensor and / or a structure-borne sound sensor. With the sensor 3, the sound generated in the vehicle and a vehicle deceleration are detected during a crash. It is also possible to provide a plurality of sensors 3 for sensing the low-frequency frequency range and / or the higher-frequency frequency range as part of a device. Sound is generally referred to as vibrations in the frequency range between 16 and 16 kHz. Depending on the medium in which the periodic oscillation is sensed, it can be airborne sound, liquid sound and structure-borne sound.
An den Zwischenverstärker 4 ist ein Endverstärker 5 mit einem Tiefpassfilter angeschlossen, dessen Ausgang mit einem Steuergerät 6 verbunden ist. Mit dem Steuergerät wird die Unfallschutzeinrichtung 2 angesteuert. Parallel zu dem Endverstärker 5 ist eine Auswerteeinheit 7 angeordnet, welcher das Ausgangssignal des Zwischenverstärkers 4 zugeführt wird. Die Auswerteeinheit 7 kann eine Bandpassfilterung zur Herausfilterung eines geeigneten Frequenzbereiches und einen Tiefpassfilter für eine Hüllkurvenbildung umfassen. Die Auswerteeinheit 7 ist ebenfalls mit dem Steuergerät 6 verbunden. Der Zwischenverstärker 4, der Endverstärker 5 und die Auswerteeinheit 7 sind Bestandteil einer Auswerteschaltung 4, 5, 7.To the repeater 4, a power amplifier 5 is connected to a low-pass filter whose output is connected to a control unit 6. With the control unit, the accident prevention device 2 is activated. Parallel to the power amplifier 5, an evaluation unit 7 is arranged, to which the output signal of the repeater 4 is supplied. The evaluation unit 7 may comprise a bandpass filter for filtering out a suitable frequency range and a low-pass filter for envelope formation. The evaluation unit 7 is also connected to the control unit 6. The repeater 4, the power amplifier 5 and the evaluation unit 7 are part of an evaluation circuit 4, 5, 7th
Bei einem Steuerverfahren für die Unfallschutzeinrichtung 2 werden Signale in einem breiten Frequenzbereich mit dem schwingungsempfindlichen Sensor 3 sensiert. Die in dem Körperschallfrequenzbereich liegenden Ausgangssignale und die niederfrequenten Ausgangssignale des Sensors 3 werden mittels der Auswerteschaltung 4, 5, 7 ausgewertet. Der hochfrequente Schall, welcher bei einem Crash des Fahrzeuges entsteht, wird mittels der Auswerteeinheit 7 aus dem Ausgangssignal des Sensors 3 herausgefiltert und dem Steuergerät 6 zur Verfügung gestellt. Die über den Endverstärker 5 mit dem integrierten Tiefpassfilter aus dem Ausgangssignal des Sensors 3 sondierten niederfrequenten Ausgangssignale geben die Fahrzeugverzögerung insgesamt an. Es wird somit eine Körperschallinformation und eine Beschleunigungsinformation dem Steuerverfahren zur Verfügung gestellt. Eine Aktivierung der Unfallschutzeinrichtung 2 erfolgt in Abhängigkeit von der Auswertung der Ausgangssignale durch das Steuergerät 6.In a control method for the accident prevention device 2, signals in a wide frequency range are sensed with the vibration-sensitive sensor 3. The output signals lying in the structure-borne sound frequency range and the low-frequency output signals of the sensor 3 are evaluated by means of the evaluation circuit 4, 5, 7. The high-frequency sound, which arises in a crash of the vehicle, is filtered out by means of the evaluation unit 7 from the output signal of the sensor 3 and provided to the control unit 6. The low-frequency output signals probed via the power amplifier 5 with the integrated low-pass filter from the output signal of the sensor 3 indicate the total vehicle deceleration. Thus, structure-borne sound information and acceleration information are made available to the control method. Activation of the accident prevention device 2 takes place as a function of the evaluation of the output signals by the control unit 6.
Erfindungsgemäß wird der Körperschall in dem Frequenzbereich von 400 Hz bis 5 kHz ausgewertet. Fig. 2 zeigt ein Frequenzanalysespektrum des Sensors 3 für einen Frontalaufprall nach Bearbeitung mit einer Fast-Fourier-Transformation (FFT) . Bei dieser Frequenzanalyse wird deutlich, dass die meisten Signale nicht im oberen Frequenzbereich vorzufinden sind, sondern unterhalb von 5 kHz liegen. Die Signale im Frequenzbereich zwischen 0 und 400 Hz entsprechen denen eines konventionellen Sensors 3 für die Gesamtbeschleunigung des Fahrzeugs. Der Crashinformationen enthaltende Frequenzbereich liegt daher zwischen 400 Hz und 5 kHz, insbesondere zwischen 400 Hz und 4 kHz.According to the structure-borne noise is evaluated in the frequency range of 400 Hz to 5 kHz. Fig. 2 shows a frequency analysis spectrum of the sensor 3 for a frontal impact after processing with a Fast Fourier Transform (FFT). This frequency analysis shows that most signals are not found in the upper frequency range, but rather below 5 kHz. The signals in the frequency range between 0 and 400 Hz correspond to those of a conventional sensor 3 for the total acceleration of the vehicle. The crash range-containing frequency range is therefore between 400 Hz and 5 kHz, in particular between 400 Hz and 4 kHz.
Für den signifikanten Frequenzbereich muss sichergestellt sein, dass sich bei einer Integration von Signalen aus diesem Frequenzbereich allein oder in Verbindung mit den Signalen der Gesamtbeschleunigung des Fahrzeugs eine Trennungsmöglichkeit zwischen NON-Fire Lastfällen und Fire Lastfällen ergibt und somit eine Sicherheit gegenüber unerwünschten Fehlauslösungen gewährleistet ist. In den Diagrammen der Fig. 3a und 3b ist jeweils die Signalamplitude des Sensors 3 in Abhängigkeit vom Crashzeitpunkt und von der Frequenz aufgezeigt, wobei Fig. 3a einen Fire Lastfall und Fig. 3b einen NON-Fire Lastfall darstellt. In einem unteren Frequenzbereich bis ungefähr 5 kHz ist der wesentliche Signaleintrag gegeben. Durch eine geeignete Datenaufbereitung ist für diesen unteren Frequenzbereich der Signaleintrag für den Fire Lastfall eindeutig von dem Signaleintrag für den NON-Fire Lastfall zu unterscheiden. Eine Trennung von Fire Lastfällen und NON-Fire Lastfällen ist dadurch für diesen unteren Frequenzbereich mit einem hohen Sicherheitsfaktor, welcher ein Maß für die Güte der Trennung ist, gegeben. Demgegenüber ist deutlich zu erkennen, dass für den in der DE 100 15 273 Al angegebenen Körperschallfrequenzbereich oberhalb von 5 kHz keine zuverlässige Trennung von Fire Lastfällen und NON-Fire Lastfällen möglich ist und damit keine Sicherheit gegenüber Fehlauslösungen der Unfallschutzeinrichtung 2 gewährleistet ist.For the significant frequency range, it must be ensured that when integrating signals from this frequency range alone or in conjunction with the signals of the total acceleration of the vehicle results in a separation between NON-Fire load cases and fire load cases and thus a security against unwanted false triggering is guaranteed. The signal amplitude of the sensor 3 as a function of the crash time and of the frequency is shown in the diagrams of FIGS. 3a and 3b, FIG. 3a representing a fire load case and FIG. 3b a non-fire load case. In a lower frequency range up to about 5 kHz, the significant signal input is given. By means of suitable data processing, the signal entry for the fire load case must be clearly differentiated from the signal entry for the NON-Fire load case for this lower frequency range. A separation of Fire load cases and NON-Fire load cases is thereby given for this lower frequency range with a high safety factor, which is a measure of the quality of the separation. In contrast, it can be clearly seen that no reliable separation of Fire load cases and NON-Fire load cases is possible for the specified in DE 100 15 273 Al body sound frequency range above 5 kHz and thus no security against false triggering of accident prevention device 2 is guaranteed.
Ein mögliches enges Frequenzband weist eine bevorzugte Breite von etwa 500 Hz bis 1,5 kHz auf und ist im Bereich von 2 kHz angeordnet. Fig. 4a zeigt Integrale von Sensoren 3 für eine Bandpassfilterung von 1850 Hz und 2350 Hz mit anschließender Absolutwertbildung. Die durchgezogenen Linien entsprechen Fi- re Lastfällen und die gestrichelten Linien NON-Fire Lastfällen. Jede Linie entspricht einem definierten Frontalcrashszenario. Ein solches enges Frequenzband entspricht den Anforderungen eines hohen Sicherheitsfaktors für den gesamten für eine Auslösung der Unfallschutzeinrichtung 2 relevanten zeitlichen Crashverlauf. Es ist eine deutliche Trennung der Signale von Fire Lastfällen und NON-Fire Lastfällen im gesamten Zeitbereich ab ungefähr 10 ms zu sehen. Hingegen überschneiden sich gemäß Fig. 4b die Fire Lastfälle und NON-Fire Lastfälle für die in der DE 100 15 273 Al angegebene Hochpassfilterung von größer 5 kHz bei den frühen Zündzeiten. Mit dem im Stand der Technik angegebenen Frequenzbereich für den Körperschall kann daher eine zuverlässige Trennung zwischen Fire Lastfällen und NON-Fire Lastfällen nicht erreicht werden. Der Körperschall kann somit vorzugsweise in einem engen Frequenzband ausgewertet werden, wobei die optimale Auswahl von dem speziellen Fahrzeugtyp abhängig ist.A possible narrow frequency band has a preferred width of about 500 Hz to 1.5 kHz and is in the range of 2 kHz arranged. FIG. 4a shows integrals of sensors 3 for bandpass filtering of 1850 Hz and 2350 Hz with subsequent absolute value formation. The solid lines correspond to the load cases and the dashed lines correspond to NON-Fire load cases. Each line corresponds to a defined frontal crash scenario. Such a narrow frequency band corresponds to the requirements of a high safety factor for the entire chronological crash course relevant for triggering the accident prevention device 2. It can be seen a clear separation of the signals of Fire load cases and NON-Fire load cases in the entire time range from about 10 ms. On the other hand, according to FIG. 4b, the fire load cases and NON-fire load cases overlap for the high-pass filtering of greater than 5 kHz given in DE 100 15 273 A1 in the case of the early ignition times. With the frequency range for structure-borne noise specified in the prior art, therefore, a reliable separation between fire load cases and NON-Fire load cases can not be achieved. The structure-borne sound can thus be evaluated preferably in a narrow frequency band, the optimum selection depending on the specific vehicle type.
Mit dem erfindungsgemäßen Steuerverfahren für die Unfallschutzeinrichtung 2 können somit Körperschallsignale und Ge- samtbeschleunigungssignale zuverlässig ausgewertet werden. Schwer detektierbare Crashs, beispielsweise Schrägaufprall- Crashs, Crashs mit deformierbaren Hindernissen oder Pole- Crashs, können mit hoher Sicherheit frühzeitig im Fahrzeug zentral sensiert werden, ohne dass aufwendige, ausgelagerte Sensoren erforderlich sind. With the control method according to the invention for the accident prevention device 2, structure-borne sound signals and total acceleration signals can thus be reliably evaluated. Hard-to-detect crashes, for example, crash crashes, crashes with deformable obstacles or pole crashes, can be detected centrally in the vehicle with great confidence at an early stage, without the need for complex, outsourced sensors.

Claims

Patentansprüche claims
1. Steuerverfahren für eine Unfallschutzeinrichtung (2) in einem Fahrzeug, wobei Signale in einem breiten Frequenzbereich mit wenigstens einem schwingungsempfindlichen Sensor (3) sensiert werden, die in dem Körperschallfrequenzbereich liegenden Ausgangssignale und die niederfrequenten Ausgangssignale des Sensors (3) mittels einer Auswerteschaltung (4, 5, 7) ausgewertet werden und eine Aktivierung der Unfallschutzeinrichtung (2) in Abhängigkeit von der Auswertung der Ausgangssignale durch ein Steuergerät (6) erfolgt, dadurch gekennzeichnet, dass die Ausgangssignale des Sensors (3) in einem Frequenzbereich zwischen 400 Hz und 5 kHz ausgewertet werden .1. Control method for an accident prevention device (2) in a vehicle, wherein signals in a wide frequency range with at least one vibration sensitive sensor (3) are sensed, lying in the structure-borne sound frequency range output signals and the low-frequency output signals of the sensor (3) by means of an evaluation circuit (4 , 5, 7) are evaluated and an activation of the accident protection device (2) as a function of the evaluation of the output signals by a control unit (6), characterized in that the output signals of the sensor (3) in a frequency range between 400 Hz and 5 kHz be evaluated .
2. Steuerverfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Ausgangssignale des Sensors (3) unterhalb von 4 kHz ausgewertet werden.2. Control method according to claim 1, characterized in that the output signals of the sensor (3) are evaluated below 4 kHz.
3. Steuerverfahren nach Anspruch 1, dadurch gekennzeichnet, dass programmtechnisch ein geeignetes Frequenzband bezüglich Lage und Bandbreite ermittelt wird, für welches zwischen Fire- und NON-Fire Lastfällen in einem für die Aktivierung der Unfallschutzeinrichtung (2) relevanten Zeitintervall unterschieden werden kann.3. Control method according to claim 1, characterized in that programmatically a suitable frequency band with respect Location and bandwidth is determined for which a distinction can be made between Fire and NON-Fire load cases in a time interval relevant for the activation of the accident prevention device (2).
4. Steuerverfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Körperschall in einem engen Frequenzband ausgewertet wird, welcher von dem Fahrzeugtyp abhängig ist.4. Control method according to claim 3, characterized in that the structure-borne noise is evaluated in a narrow frequency band, which depends on the vehicle type.
5. Steuerverfahren nach Anspruch 4, dadurch gekennzeichnet, dass das enge Frequenzband eine Bandbreite von ca. 500 Hz bis 2 kHz bei einer Lage um die 2 kHz aufweist.5. Control method according to claim 4, characterized in that the narrow frequency band has a bandwidth of about 500 Hz to 2 kHz in a position about 2 kHz.
6. Vorrichtung zur Durchführung eines Steuerverfahrens nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Vorrichtung wenigstens einen schwingungsempfindlichen6. A device for carrying out a control method according to one of claims 1 to 5, characterized in that the device is at least one vibration sensitive
Sensor (3) zur Sensierung eines niederfrequentenSensor (3) for sensing a low-frequency
Frequenzbereiches und wenigstens einen schwingungsempfindlichen Sensor (3) zur Sensierung eines höherfrequenten Frequenzbereiches umfasst. Frequency range and at least one vibration-sensitive sensor (3) for sensing a higher-frequency frequency range comprises.
PCT/EP2006/005075 2005-06-06 2006-05-26 Control method for a safety device in a vehicle WO2006131224A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005026188.4 2005-06-06
DE102005026188A DE102005026188A1 (en) 2005-06-06 2005-06-06 Control method for an accident prevention device in a vehicle

Publications (1)

Publication Number Publication Date
WO2006131224A1 true WO2006131224A1 (en) 2006-12-14

Family

ID=36829723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/005075 WO2006131224A1 (en) 2005-06-06 2006-05-26 Control method for a safety device in a vehicle

Country Status (2)

Country Link
DE (1) DE102005026188A1 (en)
WO (1) WO2006131224A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1979201B1 (en) * 2006-01-16 2018-10-24 Continental Teves AG & Co. OHG Signal preprocessing device comprising band-pass filters for structure-borne noise sensors

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007024195B4 (en) * 2007-05-24 2016-12-29 Robert Bosch Gmbh Method and control device for controlling personal protective equipment
DE102007033639A1 (en) * 2007-07-19 2009-01-22 Conti Temic Microelectronic Gmbh A control system and method for controlling at least one component of an occupant protection system of a motor vehicle
DE102007046982B3 (en) * 2007-10-01 2009-03-05 Fendt, Günter Accident situation i.e. motor vehicle collision, detecting device for protecting passenger, has evaluation unit verifying whether functionality of rotational speed sensor is impaired based on sound detected by impact sound receiver unit
DE102009037619A1 (en) * 2009-08-14 2011-02-17 Continental Automotive Gmbh Method for signal processing of structure-borne sound signals, in particular in motor vehicles, and occupant protection system with corresponding signal processing unit
DE102009046179A1 (en) 2009-10-29 2011-05-05 Scambia Industrial Developments Aktiengesellschaft Towing
DE102010028845A1 (en) * 2010-05-11 2011-11-17 Robert Bosch Gmbh Method of detecting vehicle crash, involves directing processed oscillation signal to time domain by performing quefrency analysis to form time domain oscillation signal from which signal components with high/low quefrencies are separated

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157880A (en) * 1996-03-14 2000-12-05 Autoliv Developement Ab Crash detector responsive to a side impact
DE10015273A1 (en) 2000-03-28 2001-10-11 Siemens Ag Accident protection device control system e.g. for motor vehicle
DE10227061A1 (en) 2002-06-18 2004-01-08 Robert Bosch Gmbh Restraint system
DE102004015474A1 (en) * 2004-03-26 2004-12-23 Conti Temic Microelectronic Gmbh Vehicle passenger safety system sensor, has piezo sensor fixed to housing through visco elastic fixing layer filtering body noise and acceleration spectra

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157880A (en) * 1996-03-14 2000-12-05 Autoliv Developement Ab Crash detector responsive to a side impact
DE10015273A1 (en) 2000-03-28 2001-10-11 Siemens Ag Accident protection device control system e.g. for motor vehicle
DE10227061A1 (en) 2002-06-18 2004-01-08 Robert Bosch Gmbh Restraint system
DE102004015474A1 (en) * 2004-03-26 2004-12-23 Conti Temic Microelectronic Gmbh Vehicle passenger safety system sensor, has piezo sensor fixed to housing through visco elastic fixing layer filtering body noise and acceleration spectra

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1979201B1 (en) * 2006-01-16 2018-10-24 Continental Teves AG & Co. OHG Signal preprocessing device comprising band-pass filters for structure-borne noise sensors

Also Published As

Publication number Publication date
DE102005026188A1 (en) 2006-12-07

Similar Documents

Publication Publication Date Title
DE102005024319B3 (en) Apparatus and method for controlling a personal protection system of a vehicle
WO2006131224A1 (en) Control method for a safety device in a vehicle
DE102006048604A1 (en) Method and device for checking a sensor signal
DE102008040590A1 (en) Method and control device for controlling personal protective equipment for a vehicle
DE112012006407T5 (en) Hybrid method and device for detecting a vehicle / pedestrian impact
WO2005036108A1 (en) Vehicle sensor for detecting acceleration and impact sound
WO2007036565A1 (en) Device and method for localizing a collision of an object with a motor vehicle
DE102008039957A1 (en) Method for determining an accident severity criterion by means of an acceleration signal and a structure-borne sound signal
EP1796941A1 (en) Method and device for controlling personal protection means
EP2464546A1 (en) Method and unit for signal processing of structure-borne sound signals in order to detect accidents
DE102006040653A1 (en) Pedestrian impact detecting device for vehicle, has acceleration sensors arranged between bumper and covering of vehicle, where signal is generated based on impact sound signal and/or acceleration signal for absorbing vibrations
DE102007008379B4 (en) Control unit and method for controlling personal protective equipment
DE112008000593T5 (en) Vehicle condition detection device and occupant protection apparatus with the same device
EP1517816B1 (en) Retaining system
EP1710133A2 (en) Impact detection device
DE102006031241B4 (en) Method and device for controlling a personal protection device
DE102007046982B3 (en) Accident situation i.e. motor vehicle collision, detecting device for protecting passenger, has evaluation unit verifying whether functionality of rotational speed sensor is impaired based on sound detected by impact sound receiver unit
DE102004049380B4 (en) vehicle sensor
DE4403156B4 (en) Method and device for carrying out the method for controlling a consumer
DE102007024195B4 (en) Method and control device for controlling personal protective equipment
DE102020112307A1 (en) Method for determining a collision object external to the vehicle, as well as detection device and motor vehicle
DE102005018084A1 (en) Safety system, for vehicle passengers, has filter device for filtering output signal of sensor, and control device for processing output signal of sensor, where output signal represents resonance vibrations of vehicle structure
DE102006030563A1 (en) Sensor unit for use in protective system, has two independent sensor components that output signal with different signs based on physical parameter detected in opposite directions, where signals are separated from each other and evaluated
WO2006037685A1 (en) Security system for the occupants of a vehicle
DE102016223483A1 (en) Sensor device for a safety system of a motor vehicle, method for operating a sensor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06753927

Country of ref document: EP

Kind code of ref document: A1