WO2006129520A1 - Compression bonding release sheet and roll - Google Patents

Compression bonding release sheet and roll Download PDF

Info

Publication number
WO2006129520A1
WO2006129520A1 PCT/JP2006/310216 JP2006310216W WO2006129520A1 WO 2006129520 A1 WO2006129520 A1 WO 2006129520A1 JP 2006310216 W JP2006310216 W JP 2006310216W WO 2006129520 A1 WO2006129520 A1 WO 2006129520A1
Authority
WO
WIPO (PCT)
Prior art keywords
release sheet
layer
silicone rubber
pressure
molecular weight
Prior art date
Application number
PCT/JP2006/310216
Other languages
French (fr)
Japanese (ja)
Inventor
Seiichi Takaoka
Tomoyoshi Nagayama
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Publication of WO2006129520A1 publication Critical patent/WO2006129520A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/20Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/50Removing moulded articles
    • B29C2043/5076Removing moulded articles using belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]

Definitions

  • the present invention relates to a pressure-sensitive release sheet used for joining electronic components by thermocompression bonding in a manufacturing process of an electronic device, and a wound body obtained by winding the pressure-sensitive release sheet.
  • ACF anisotropic conductive film
  • FIG. 4 there is a conductive property between a glass substrate 51 having a striped electrode 52 formed on the surface and a printed circuit board (PCB) 53 having a circuit pattern 54 formed on the surface.
  • PCB printed circuit board
  • the ACF55 containing the conductive particles 56 is placed and the glass substrate 51 and the PCB 53 are heat-pressed, the epoxy resin contained in the ACF55 is cured by heat, and the glass substrate 51 and the PCB 53 are bonded.
  • the force that electrically connects the electrode 52 and the circuit pattern 54 by the conductive particles 56 included in the ACF 55 is between the adjacent electrodes 52 or between the adjacent circuit patterns 54. Insulation, that is, insulation in a direction parallel to the main surfaces of the glass substrate 51 and the PCB 53 is maintained.
  • ACF electrical connection of an electronic component in a specific direction can be realized relatively easily.
  • an electronic component having a fine circuit pattern or electrode pattern can be electrically connected.
  • the effect is great when connecting.
  • ACF is film-like and can reduce the volume required for joining electronic components.
  • bonding of electronic components using ACF is widely performed in the manufacturing process of flat display panels (FDP) such as liquid crystal displays (LCD), plasma display panels (PDP), and electroluminescent (EL) displays.
  • FDP flat display panels
  • LCD liquid crystal displays
  • PDP plasma display panels
  • EL electroluminescent
  • a pressure release sheet 57 for preventing adhesion is disposed.
  • a fluorine resin sheet has been used for the pressure-sensitive release sheet 57 because of its excellent release properties.
  • FDP modules electronic components to be joined
  • a pressure release sheet combining a fluorine resin layer and a heat conductive rubber sheet has been developed.
  • Such a sheet is disclosed in, for example, JP-A-5-315401. This is disclosed in Japanese Laid-Open Patent Publication (Reference 1) and Japanese Laid-Open Patent Publication No. 7-214728 (Ref. 2).
  • the release property and the flexibility (tackiness) in the pressure-release release sheet are achieved by combining the fluorine resin layer and the heat conductive rubber sheet.
  • the present invention has a structure different from that of the conventional pressure release sheet as described in Documents 1 and 2, yet has a pressure release that achieves both releasability and flexibility (cushioning).
  • the purpose is to provide a mold sheet.
  • the pressure-sensitive release sheet of the present invention is a pressure-sensitive release sheet used for joining electronic components by thermocompression bonding, and includes an ultra-high molecular weight polyethylene layer and a silicone rubber layer, and the ultra-high molecular weight polyethylene layer and The silicone rubber layer is integrated with each other, and the ultrahigh molecular weight polyethylene layer has a thickness of 30 ⁇ m or more.
  • a pressure-sensitive release sheet that has both release properties and flexibility (cushion properties) by combining an ultrahigh molecular weight polyethylene layer and a silicone rubber layer.
  • the wound body of the present invention has a structure in which the above-mentioned pressure-sensitive release sheet of the present invention is wound.
  • FIG. 1 is a cross-sectional view schematically showing an example of a pressure-release release sheet of the present invention.
  • FIG. 2 is a schematic view for explaining the wound body of the present invention and the joining of electronic components using the wound body.
  • FIG. 3 illustrates a method for evaluating the characteristics of a pressure-release mold sheet in an example. It is a schematic diagram for.
  • FIG. 4 is a schematic diagram for explaining the joining of electronic parts using an anisotropic conductive film (ACF).
  • ACF anisotropic conductive film
  • FIG. 5 is a schematic diagram for explaining the joining of electronic components using ACF.
  • FIG. 6 is a schematic diagram for explaining the joining of electronic components using ACF.
  • a pressure-release release sheet (hereinafter also simply referred to as "release sheet”) 1 shown in FIG. 1 is a release sheet used for joining electronic parts by thermal pressure-bonding.
  • High molecular weight polyethylene layer (UHMWPE layer) 3 and silicone rubber layer 2 and UHMWPE layer 3 are integrated with each other.
  • the release sheet 1 having both a release property and flexibility (cushioning property) can be obtained while having a configuration different from that of the conventional release sheet.
  • the release sheet 1 since the release sheet 1 includes the silicone rubber layer 2 and the UHMWPE layer 3 that are integrated with each other, the release sheet 1 is excellent in handling properties and can be efficiently joined by thermocompression bonding of electronic components.
  • the release sheet 1 is suitable for electrical connection of electronic components using, for example, an anisotropic conductive film (ACF).
  • ACF anisotropic conductive film
  • the release sheet 1 is not limited to electrical connection using ACF, and can be widely used for joining electronic components by thermocompression bonding.
  • thermocompression bonding There are no particular limitations on the types of electronic components to be joined (also commonly referred to as “connection workpiece” in the thermocompression bonding process).
  • various substrates such as metal substrates and glass substrates (electrodes may be formed on the substrates).
  • Various circuits such as printed circuit board (PCB), TCP (Tape Carrier Package), FPC (Flexible Printed Circuit), etc. (Drive IC etc.
  • the release sheet 1 can also be used for joining electronic parts (integrated bodies) in which a plurality of different electronic parts are modularized.
  • electronic parts integrated bodies
  • the FDP described above is representative.
  • the thickness of the UHMWPE layer 3 is 30 ⁇ m or more. If the thickness of the UHMWPE layer 3 is less than 30 ⁇ m, it is difficult to ensure the heat resistance of the release sheet 1 in the thermocompression bonding process.
  • the upper limit of the thickness of the UHMWP E layer 3 is not particularly limited, but is preferably 200 m or less, for example. When the thickness of the UHMWPE layer 3 exceeds 200 m, the thermal conductivity as the release sheet 1 is lowered.
  • the molecular weight of the ultra high molecular weight polyethylene (UHMWPE) constituting the UHMWPE layer 3 should be from 500,000 to 10,000,000 in terms of viscosity average molecular weight (Mv). 1 million to 7 million is more preferable. When the molecular weight is too small, the release property of the release sheet 1 is lowered, and when the molecular weight is too large, the flexibility of the release sheet 1 is lowered.
  • the viscosity average molecular weight ( ⁇ V) of UHMWPE can be evaluated by the viscosity method, which is a common measurement method. For example, from the intrinsic viscosity [ ⁇ ] measured based on JIS K 7367-3: 1999, ⁇ V May be calculated.
  • UHMWPE layer 3 a commercially available ultra-high molecular weight polyethylene film can be used.
  • the UHMWPE layer 3 may contain a material other than UHMWPE, if necessary.
  • the UHMWPE layer 3 may be porous, that is, it may be the porous UHMWPE layer 3.
  • the amount of deformation may be larger than that of the non-porous UHMWPE layer 3. Therefore, the release sheet 1 can be made more flexible.
  • the thickness of the UHMWPE layer 3 during thermocompression bonding can be reduced by deformation of the pores contained in the UHMWPE layer 3, the distance through which heat is transmitted can be reduced, and the release sheet 1 having better thermal conductivity can be obtained. be able to.
  • the specific structure of the porous UHMWPE layer 3 is not particularly limited, and may be the UHMWPE layer 3 having a homogeneous structure as a whole, and the structure changes in the thickness direction of the layer (for example, It may be a UHMWPE layer 3 in which the porosity and Z or the average pore diameter in the porous structure have changed.
  • the porosity of the porous UHMWPE layer 3 is not particularly limited as long as it can be used as the release sheet 1. For example, it may be in the range of 20% by volume to 50% by volume. If the porosity is excessive, it becomes difficult to use as the release sheet 1.
  • the average pore diameter of the porous UHMWPE layer 3 may be, for example, in the range of 10 ⁇ m to 50 ⁇ m. If the average pore size is too large, it may be difficult to use as the release sheet 1 or the flexibility as the release sheet 1 may be reduced.
  • the average pore size and porosity of the porous UHMWPE layer 3 can be evaluated using a porosimeter.
  • porous UHMWPE layer 3 a commercially available ultra-high molecular weight polyethylene porous film can be used.
  • the specific structure of the silicone rubber layer 2 is not particularly limited, and may be the silicone rubber layer 2 having a homogeneous structure as a whole, and a combination of silicone rubbers having different viscoelastic properties and the like. Alternatively, the silicone rubber layer 2 may be used.
  • the thermal conductivity of the silicone rubber layer 2 is preferably 1.5 WZ (m'K) or more, and the release sheet 1 having better thermal conductivity can be obtained.
  • the thermal conductivity of the silicone rubber layer 2 can be controlled, for example, by adjusting the content of the thermally conductive material in the silicone rubber layer 2 to the silicone rubber layer 2 containing a thermally conductive material.
  • a heat conductive filter such as alumina, aluminum nitride, magnesium oxide, silicon carbide, silica, titanium, or a conductive filter such as various carbon or graphite may be used. ,.
  • the thickness of the silicone rubber layer 2 is not particularly limited, but is usually in the range of 20 ⁇ m to 300 ⁇ m.
  • the specific arrangement of the UHMWPE layer 3 and the silicone rubber layer 2 in the release sheet 1 of the present invention is not particularly limited as long as both layers are integrated, but the release sheet is not limited. It is preferable that the UHMWPE layer 3 is disposed on one main surface of the rubber 1 and the silicone rubber layer 2 is disposed on the other main surface. In this case, if the silicone rubber layer 2 is placed on the heating and pressurizing head side in the thermocompression bonding process, the pressure and heat can be more uniformly transferred to the connected workpiece, and the surface in contact with the electronic component can be made UHMWPE layer 3 Therefore, adhesion between the release sheet 1 and the electronic component in the thermocompression bonding process can be more reliably prevented.
  • the number of layers of the UHMWPE layer 3 and the silicone rubber layer 2 included in the release sheet 1 of the present invention is not particularly limited.
  • the release sheet 1 includes both layers one by one. Is preferred. That is, the release sheet 1 of the present invention preferably has a structure in which the silicone rubber layer 2 is laminated on one main surface of one UHMWPE layer 3 and both layers are combined. Such a release sheet is excellent in manufacturing cost and handling property in the thermocompression bonding process.
  • the release sheet of the present invention can be formed, for example, by applying a liquid or pasty silicone rubber to the surface of the UHMWPE layer 3 and heat-treating it. At this time, if silicone rubber is applied to one main surface of the UHMWPE layer 3, the release sheet 1 shown in FIG. 1 can be formed.
  • the release sheet of the present invention can also be formed by separately forming the UHMWPE layer 3 and the silicone rubber layer 2 and then thermally bonding them together.
  • liquid or pasty silicone rubber Commercially available products can be used for the liquid or pasty silicone rubber.
  • SE4450 manufactured by Toray 'Dowcoung Co., Ltd., TSE3281-G manufactured by Toshiba Silicone Corp., KE- 1867 manufactured by Shin-Etsu Silicone Co., Ltd. X-32-2020, X-32-2151, etc. may be used.
  • a solution in which solid silicone rubber is dissolved in a solvent or a paste in which solid silicone rubber and a solvent are kneaded may be used.
  • the silicone rubber layer 2 containing a heat conductive material is obtained by mixing a liquid or paste-like silicone rubber and a heat conductive material, and then coating the obtained mixture on the surface of the UHMWPE layer 3. It can be formed by heat treatment.
  • silicone rubber layer 2 When the silicone rubber layer 2 is separately formed, a liquid or pasty silicone rubber may be applied on the substrate, and the solvent contained in the liquid or pasty silicone rubber may be removed and Z or heat treatment may be performed. .
  • the silicone rubber layer 2 containing the heat conductive material can be formed by mixing the heat conductive material in advance before coating on the substrate.
  • UHMWPE layer 3 The silicone rubber layer 2 may be thermocompression bonded using a general method.
  • the release sheet 1 of the present invention may include an optional member as necessary.
  • the release sheet of the present invention may include a (porous) fluorine resin layer that is provided in a conventional pressure release sheet.
  • a fluorine resin layer can be omitted, and when the fluorine resin layer is omitted, halogen free as an industrial waste after use in the thermocompression bonding process, Realization of element free.
  • the wound body of the present invention has a structure in which the above-mentioned pressure-sensitive release sheet of the present invention is wound.
  • a wound body for example, as shown in FIG. 2, the substrate 21 and the connection work 23 are passed through the ACF 22 while feeding the crimp release sheet 1 from the wound body 24 gradually or step by step.
  • the pressure-release release sheet 1 after thermocompression bonding may be wound, for example, as shown in FIG. That is, with the wound body of the present invention, it is possible to more efficiently join electronic components by thermocompression bonding.
  • reference numeral 25 in FIG. 2 denotes a heating and pressing head.
  • sample samples 11 types of sample samples (sample 1 to: L 1), 2 types of comparative example samples (samples A and B), and 1 type of conventional example sample as release sheet samples (Sample C) was prepared, and the release property, flexibility (tackiness) and thermal conductivity of each release sheet sample were evaluated.
  • UHMWPE film (Nitto Denko No. 440, thickness 30 ⁇ m) was prepared as the UHMWPE layer, and liquid silicone rubber (TSE-3281-G, Toshiba Silicone, Thermal conductivity 1. was applied (thickness of application: 50 111) and heat-treated at 120 ° C. for 24 hours to prepare a release sheet (sample 1) in which the UHMWPE layer and the silicone rubber layer were integrated. Use an applicator to apply silicone rubber [0041] Samples 2-5—
  • UHMWPE porous film (Sunmap LC manufactured by Nitto Denko Corporation, thickness 30 / ⁇ ⁇ , porosity 30%, average pore size 17 m) as the UHMWPE layer
  • a release sheet (Sample 6) in which a UHMWPE layer and a silicone rubber layer were combined was prepared.
  • each release sheet of Sample 7 to LO was prepared in the same manner as Sample 6.
  • the composition of each sample is shown in Table 1 below.
  • a release sheet (sample A), which is a comparative example, was prepared in the same manner as sample 1, except that the thickness of the UHMWPE film was 25 ⁇ m.
  • a release sheet (sample B) as a comparative example was prepared in the same manner as in sample 6, except that the thickness of the UHMWPE porous film was 25 ⁇ m.
  • PTFE polytetrafluoroethylene
  • CD 123 manufactured by Asahi Glass Co., Ltd.
  • liquid paraffin as a liquid lubricant
  • liquid silicone rubber Toshiba Silicone (Coating thickness 50 111) and heat-treated at 120 ° C. for 24 hours to prepare a release sheet (sample C) in which a PTFE layer and a silicone rubber layer were combined.
  • An applicator was used to apply the silicone rubber.
  • each sample prepared in this manner was used to join electronic components using ACF, and in each of the thermocompression bonding steps, the mold release property, flexibility (cushioning property), heat resistance and Thermal conductivity was evaluated.
  • the evaluation was performed by sequentially laminating a glass substrate 11, ACF (AC2102 manufactured by Hitachi Chemical Co., Ltd.) 1, 2, FPC 13 and release sheet sample 14, and then heating and pressing head 15 (Nikka)
  • the glass substrate 11 and the FPC 13 were thermocompression-bonded through ACF12 by Equipment Engineering Co., Ltd., a thermo-compressor AC-S50).
  • the thermocompression bonding conditions were as follows: the heating caloric pressure head 15 was set at 300 ° C, the pressure was 3 MPa, and the pressure was 20 seconds.
  • the thermal conductivity is determined by placing a thermocouple 16 between the ACF 12 and the FPC 13 in advance, and the temperature reached 20 seconds after the start of thermocompression bonding. The time required for the temperature in the vicinity of AC F 12 to reach 190 ° C was evaluated.
  • Samples 1 to L 1 were release sheets having both release properties and flexibility (cushion properties). Samples A and B with a UHMWPE layer thickness of less than 30 ⁇ m had the same releasability as samples 1 to: L 1 Results of slightly inferior flexibility and inferior heat resistance It became.
  • sample C which is the conventional example
  • sample 2 which is approximately the same thickness as sample C
  • samples 6-10 with porous UHMWPE layer have higher forces than samples 1-5 with non-porous UHMWPE layer. could be made shorter.
  • a pressure-release mold that achieves both mold release properties and flexibility (cushion properties) by combining an ultrahigh molecular weight polyethylene layer and a silicone rubber layer. Can provide a sheet.

Abstract

A compression bonding release sheet used in thermocompression bonding of electronic parts that while having a construction different from those of conventional compression bonding release sheets, simultaneously satisfies the requirements of release property and flexibility (cushioning property). There is provided a compression bonding release sheet comprising a layer of ultrahigh-molecular-weight polyethylene and a silicone rubber layer, wherein the layer of ultrahigh-molecular-weight polyethylene and the silicone rubber layer are unified together, and wherein the layer of ultrahigh-molecular-weight polyethylene has a thickness of 30 μm or greater.

Description

明 細 書  Specification
圧着離型シートおよび巻回体  Crimp release sheet and wound body
技術分野  Technical field
[0001] 本発明は、電子機器の製造工程において、電子部品の加熱圧着による接合に用 いられる圧着離型シートと、当該圧着離型シートを卷回した卷回体とに関する。  TECHNICAL FIELD [0001] The present invention relates to a pressure-sensitive release sheet used for joining electronic components by thermocompression bonding in a manufacturing process of an electronic device, and a wound body obtained by winding the pressure-sensitive release sheet.
背景技術  Background art
[0002] 現在、電子機器の製造工程において、電子機器に用いられる各種の部品や部材( 電子部品)を電気的に接続する方法として、異方性導電フィルム (ACF: Anisotropic Conductive Film)を用いる方法が広く採用されている。 ACFは、熱硬化性エポキシ 榭脂など力 なる接着性フィルムに導電性粒子が分散した構造を有して 、る。導電 性粒子はフィルム内で互いに独立した状態にあるため、 ACFは全体として絶縁性で ある。  [0002] Currently, in the manufacturing process of electronic equipment, a method using an anisotropic conductive film (ACF) as a method of electrically connecting various parts and members (electronic parts) used in the electronic equipment Is widely adopted. ACF has a structure in which conductive particles are dispersed in a strong adhesive film such as a thermosetting epoxy resin. Since the conductive particles are independent of each other in the film, the ACF is insulative as a whole.
[0003] 例えば、図 4に示すように、表面にストライプ状の電極 52が形成されたガラス基板 5 1と、表面に回路パターン 54が形成されたプリント回路基板 (PCB) 53との間に導電 性粒子 56を含む ACF55を配置し、ガラス基板 51と PCB53とを加熱圧着すると、 A CF55に含まれるエポキシ榭脂が熱によって硬化し、ガラス基板 51と PCB53とが接 合される。このとき、図 5に示すように、 ACF55に含まれる導電性粒子 56によって、 電極 52と回路パターン 54とが電気的に接続される力 隣り合う電極 52間、あるいは 、隣り合う回路パターン 54間の絶縁、即ち、ガラス基板 51および PCB53の主面に平 行な方向の絶縁は維持される。  For example, as shown in FIG. 4, there is a conductive property between a glass substrate 51 having a striped electrode 52 formed on the surface and a printed circuit board (PCB) 53 having a circuit pattern 54 formed on the surface. When the ACF55 containing the conductive particles 56 is placed and the glass substrate 51 and the PCB 53 are heat-pressed, the epoxy resin contained in the ACF55 is cured by heat, and the glass substrate 51 and the PCB 53 are bonded. At this time, as shown in FIG. 5, the force that electrically connects the electrode 52 and the circuit pattern 54 by the conductive particles 56 included in the ACF 55 is between the adjacent electrodes 52 or between the adjacent circuit patterns 54. Insulation, that is, insulation in a direction parallel to the main surfaces of the glass substrate 51 and the PCB 53 is maintained.
[0004] このように、 ACFを用いれば、特定の方向への電子部品の電気的な接続を比較的 容易に実現でき、特に、微細な回路パターンや電極パターンを有する電子部品を電 気的に接続する際に、その効果が大きい。また、 ACFはフィルム状であり、電子部品 の接合に必要な容積を小さくできる。このため、液晶ディスプレイ (LCD)、プラズマデ イスプレイパネル(PDP)、電界発光(EL)ディスプレイなど、フラットディスプレイパネ ル (FDP)の製造工程にお 、て、 ACFを用いた電子部品の接合が広く行われて 、る [0005] 実際の製造工程 (加熱圧着工程)では、通常、図 6に示すように、加熱加圧ヘッド 5 8と電子部品(図 6では PCB53)との間に、ヘッド 58と電子部品との接着を防止する ための圧着離型シート 57が配置される。従来、圧着離型シート 57には、離型性に優 れることから、フッ素榭脂シートが用いられている。しかし、 FDPモジュールなど、接 合する電子部品の大型化に伴い、電子部品に対して圧力を均一に印加することが難 しくなつてきている。このような問題を解決するために、例えば、フッ素榭脂層と熱伝 導ゴムシートとを組み合わせた圧着離型シートが開発されており、このようなシートは 、例えば、特開平 5— 315401号公報 (文献 1)および特開平 7— 214728号公報 (文 献 2)に開示されている。文献 1および 2に記載のシートでは、フッ素榭脂層と熱伝導 ゴムシートとを組み合わせることにより、圧着離型シートにおける離型性と柔軟性 (タツ シヨン性)との両立が図られている。 [0004] As described above, when ACF is used, electrical connection of an electronic component in a specific direction can be realized relatively easily. In particular, an electronic component having a fine circuit pattern or electrode pattern can be electrically connected. The effect is great when connecting. ACF is film-like and can reduce the volume required for joining electronic components. For this reason, bonding of electronic components using ACF is widely performed in the manufacturing process of flat display panels (FDP) such as liquid crystal displays (LCD), plasma display panels (PDP), and electroluminescent (EL) displays. I am [0005] In the actual manufacturing process (thermocompression bonding process), as shown in Fig. 6, the head 58 and the electronic component are usually placed between the heating and pressing head 58 and the electronic component (PCB53 in Fig. 6). A pressure release sheet 57 for preventing adhesion is disposed. Conventionally, a fluorine resin sheet has been used for the pressure-sensitive release sheet 57 because of its excellent release properties. However, with the increase in size of electronic components to be joined, such as FDP modules, it has become difficult to apply pressure uniformly to electronic components. In order to solve such a problem, for example, a pressure release sheet combining a fluorine resin layer and a heat conductive rubber sheet has been developed. Such a sheet is disclosed in, for example, JP-A-5-315401. This is disclosed in Japanese Laid-Open Patent Publication (Reference 1) and Japanese Laid-Open Patent Publication No. 7-214728 (Ref. 2). In the sheets described in Documents 1 and 2, the release property and the flexibility (tackiness) in the pressure-release release sheet are achieved by combining the fluorine resin layer and the heat conductive rubber sheet.
発明の開示  Disclosure of the invention
[0006] 本発明は、文献 1および 2に記載されているような従来の圧着離型シートとは異なる 構成を有しながらも、離型性および柔軟性 (クッション性)を両立させた圧着離型シー トを提供することを目的とする。  [0006] The present invention has a structure different from that of the conventional pressure release sheet as described in Documents 1 and 2, yet has a pressure release that achieves both releasability and flexibility (cushioning). The purpose is to provide a mold sheet.
[0007] 本発明の圧着離型シートは、電子部品の加熱圧着による接合に用いられる圧着離 型シートであって、超高分子量ポリエチレン層とシリコーンゴム層とを含み、前記超高 分子量ポリエチレン層と前記シリコーンゴム層とが互いに一体ィヒされており、前記超 高分子量ポリエチレン層の厚さが 30 μ m以上である。 [0007] The pressure-sensitive release sheet of the present invention is a pressure-sensitive release sheet used for joining electronic components by thermocompression bonding, and includes an ultra-high molecular weight polyethylene layer and a silicone rubber layer, and the ultra-high molecular weight polyethylene layer and The silicone rubber layer is integrated with each other, and the ultrahigh molecular weight polyethylene layer has a thickness of 30 μm or more.
[0008] 本発明によれば、超高分子量ポリエチレン層とシリコーンゴム層とを組み合わせるこ とにより、離型性および柔軟性 (クッション性)を両立させた圧着離型シートを提供で きる。 According to the present invention, it is possible to provide a pressure-sensitive release sheet that has both release properties and flexibility (cushion properties) by combining an ultrahigh molecular weight polyethylene layer and a silicone rubber layer.
[0009] 本発明の卷回体は、上記本発明の圧着離型シートを卷回した構造を有する。  [0009] The wound body of the present invention has a structure in which the above-mentioned pressure-sensitive release sheet of the present invention is wound.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]図 1は、本発明の圧着離型シートの一例を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing an example of a pressure-release release sheet of the present invention.
[図 2]図 2は、本発明の卷回体と、当該卷回体を用いた電子部品の接合と、を説明す るための模式図である。  FIG. 2 is a schematic view for explaining the wound body of the present invention and the joining of electronic components using the wound body.
[図 3]図 3は、実施例における、圧着離型シートサンプルの特性評価方法を説明する ための模式図である。 [FIG. 3] FIG. 3 illustrates a method for evaluating the characteristics of a pressure-release mold sheet in an example. It is a schematic diagram for.
[図 4]図 4は、異方性導電フィルム (ACF)を用いた電子部品の接合を説明するため の模式図である。  FIG. 4 is a schematic diagram for explaining the joining of electronic parts using an anisotropic conductive film (ACF).
[図 5]図 5は、 ACFを用いた電子部品の接合を説明するための模式図である。  FIG. 5 is a schematic diagram for explaining the joining of electronic components using ACF.
[図 6]図 6は、 ACFを用いた電子部品の接合を説明するための模式図である。  FIG. 6 is a schematic diagram for explaining the joining of electronic components using ACF.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、図面を参照しながら、本発明の実施の形態について説明する。以降の説明 において、同一の部材に同一の符号を付して、重複する説明を省略する場合がある Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same members may be denoted by the same reference numerals, and redundant descriptions may be omitted.
[0012] 図 1に示す圧着離型シート(以下、単に「離型シート」ともいう) 1は、電子部品の加 熱圧着による接合に用いられる離型シートであって、シリコーンゴム層 2と超高分子量 ポリエチレン層(UHMWPE層) 3とを含み、シリコーンゴム層 2と UHMWPE層 3とが 互いに一体化されている。 [0012] A pressure-release release sheet (hereinafter also simply referred to as "release sheet") 1 shown in FIG. 1 is a release sheet used for joining electronic parts by thermal pressure-bonding. High molecular weight polyethylene layer (UHMWPE layer) 3, and silicone rubber layer 2 and UHMWPE layer 3 are integrated with each other.
[0013] このような構成では、まず、 UHMWPE層 3によって優れた離型性を得ることができ る。次に、 UHMWPE層 3とシリコーンゴム層 2とを組み合わせることによって、優れた 柔軟性 (クッション性)を得ることができる。即ち、従来の離型シートとは異なる構成を 有しながらも、離型性および柔軟性 (クッション性)を両立させた離型シート 1とするこ とができる。また離型シート 1は、シリコーンゴム層 2と UHMWPE層 3とが互いに一体 化されているため、ハンドリング性に優れており、電子部品の加熱圧着による接合を 効率よく行うことができる。  In such a configuration, first, excellent release properties can be obtained by the UHMWPE layer 3. Next, by combining the UHMWPE layer 3 and the silicone rubber layer 2, an excellent flexibility (cushioning property) can be obtained. That is, the release sheet 1 having both a release property and flexibility (cushioning property) can be obtained while having a configuration different from that of the conventional release sheet. In addition, since the release sheet 1 includes the silicone rubber layer 2 and the UHMWPE layer 3 that are integrated with each other, the release sheet 1 is excellent in handling properties and can be efficiently joined by thermocompression bonding of electronic components.
[0014] 離型シート 1は、例えば、異方性導電フィルム (ACF)を用いた電子部品の電気的 な接続に適している。ただし、離型シート 1は、 ACFを用いた電気的な接続に限定さ れず、加熱圧着による電子部品の接合に広く用いることができる。接合する電子部品 (加熱圧着工程では、一般に「接続ワーク」とも呼ばれる)の種類は特に限定されず、 例えば、金属基板、ガラス基板などの各種基板類 (基板上に電極が形成されていて もよ ヽ)、プリント回路基板(PCB)、 TCP (Tape Carrier Package)、 FPC (Flexible Pri nted Circuit)などの各種回路類 (TCPや FPC上に駆動用 ICなどが実装、例えば、 C OF (Chip On Film)実装されていてもよい)、 ITO (Indium Tin Oxide)層などの透明 導電層などである。離型シート 1は、複数の異なる電子部品がモジュール化された電 子部品 (集積体)の接合にも用いることができる。接合した電子部品によって構成され る電子機器の種類も特に限定されないが、例えば、上述した FDPが代表的である。 [0014] The release sheet 1 is suitable for electrical connection of electronic components using, for example, an anisotropic conductive film (ACF). However, the release sheet 1 is not limited to electrical connection using ACF, and can be widely used for joining electronic components by thermocompression bonding. There are no particular limitations on the types of electronic components to be joined (also commonly referred to as “connection workpiece” in the thermocompression bonding process). For example, various substrates such as metal substrates and glass substrates (electrodes may be formed on the substrates). Ii) Various circuits such as printed circuit board (PCB), TCP (Tape Carrier Package), FPC (Flexible Printed Circuit), etc. (Drive IC etc. are mounted on TCP and FPC, for example C OF (Chip On Film Transparent) such as ITO (Indium Tin Oxide) layer For example, a conductive layer. The release sheet 1 can also be used for joining electronic parts (integrated bodies) in which a plurality of different electronic parts are modularized. There is no particular limitation on the type of electronic equipment configured by the joined electronic components. For example, the FDP described above is representative.
[0015] UHMWPE層 3の厚さは 30 μ m以上である。 UHMWPE層 3の厚さが 30 μ m未満 では、加熱圧着工程における離型シート 1の耐熱性の確保が困難である。 UHMWP E層 3の厚さの上限は特に限定されないが、例えば、 200 m以下であることが好ま しい。 UHMWPE層 3の厚さが 200 mを超えると、離型シート 1としての熱伝導性が 低下する。 [0015] The thickness of the UHMWPE layer 3 is 30 μm or more. If the thickness of the UHMWPE layer 3 is less than 30 μm, it is difficult to ensure the heat resistance of the release sheet 1 in the thermocompression bonding process. The upper limit of the thickness of the UHMWP E layer 3 is not particularly limited, but is preferably 200 m or less, for example. When the thickness of the UHMWPE layer 3 exceeds 200 m, the thermal conductivity as the release sheet 1 is lowered.
[0016] UHMWPE層 3を構成する超高分子量ポリエチレン(UHMWPE)の分子量は、粘 度平均分子量 (M v )にして、 50万以上 1000万以下であればよぐ 100万以上 100 0万以下が好ましぐ 100万以上 700万以下がより好ましい。上記分子量が過小にな ると、離型シート 1の離型性が低下し、上記分子量が過大になると、離型シート 1の柔 軟性が低下する。 UHMWPEの粘度平均分子量 (Μ V )は、一般的な測定方法であ る粘度法により評価すればよぐ例えば、 JIS K 7367— 3 : 1999に基づいて測定 した極限粘度数 [ η ]から Μ Vを算出すればよい。  [0016] The molecular weight of the ultra high molecular weight polyethylene (UHMWPE) constituting the UHMWPE layer 3 should be from 500,000 to 10,000,000 in terms of viscosity average molecular weight (Mv). 1 million to 7 million is more preferable. When the molecular weight is too small, the release property of the release sheet 1 is lowered, and when the molecular weight is too large, the flexibility of the release sheet 1 is lowered. The viscosity average molecular weight (Μ V) of UHMWPE can be evaluated by the viscosity method, which is a common measurement method. For example, from the intrinsic viscosity [η] measured based on JIS K 7367-3: 1999, Μ V May be calculated.
[0017] UHMWPE層 3には、市販の超高分子量ポリエチレンフィルムを用いることができる 。このような超高分子量ポリエチレンフィルムとしては、例えば、日東電工社製 No. 4 40 (M v = 300万)、旭化成ケミカルズ社製サンファイン UH— 900 (M v = 330万) 、同サンファイン UH— 950 (M v =450万)などが挙げられる。  [0017] For the UHMWPE layer 3, a commercially available ultra-high molecular weight polyethylene film can be used. Examples of such ultra-high molecular weight polyethylene films include Nitto Denko No. 440 (M v = 3 million), Asahi Kasei Chemicals Sun Fine UH-900 (M v = 3.3 million), Sun Fine UH — 950 (M v = 4.5 million).
[0018] UHMWPE層 3は、必要に応じ、 UHMWPE以外の材料を含んでいてもよい。  [0018] The UHMWPE layer 3 may contain a material other than UHMWPE, if necessary.
[0019] UHMWPE層 3は多孔質であってもよぐ即ち、多孔質 UHMWPE層 3であっても よぐこの場合、非多孔質の UHMWPE層 3に比べて、その変形量を大きくとることが できるため、より柔軟性に優れる離型シート 1とすることができる。また、 UHMWPE層 3に含まれる空孔の変形により、加熱圧着時における UHMWPE層 3の厚さを薄くで きるため、熱が伝わる距離を低減でき、より熱伝導性に優れる離型シート 1とすること ができる。  [0019] The UHMWPE layer 3 may be porous, that is, it may be the porous UHMWPE layer 3. In this case, the amount of deformation may be larger than that of the non-porous UHMWPE layer 3. Therefore, the release sheet 1 can be made more flexible. Moreover, since the thickness of the UHMWPE layer 3 during thermocompression bonding can be reduced by deformation of the pores contained in the UHMWPE layer 3, the distance through which heat is transmitted can be reduced, and the release sheet 1 having better thermal conductivity can be obtained. be able to.
[0020] 多孔質 UHMWPE層 3の具体的な構造は特に限定されず、全体に均質な構造を 有する UHMWPE層 3であってもよ 、し、層の厚さ方向に構造が変化した (例えば、 多孔質構造における空孔率および Zまたは平均孔径が変化した) UHMWPE層 3で あってもよい。 [0020] The specific structure of the porous UHMWPE layer 3 is not particularly limited, and may be the UHMWPE layer 3 having a homogeneous structure as a whole, and the structure changes in the thickness direction of the layer (for example, It may be a UHMWPE layer 3 in which the porosity and Z or the average pore diameter in the porous structure have changed.
[0021] 多孔質 UHMWPE層 3の空孔率は、離型シート 1として使用できる限り特に限定さ れないが、例えば、 20体積%〜50体積%の範囲であればよい。空孔率が過大にな ると、離型シート 1としての使用が困難となる。  [0021] The porosity of the porous UHMWPE layer 3 is not particularly limited as long as it can be used as the release sheet 1. For example, it may be in the range of 20% by volume to 50% by volume. If the porosity is excessive, it becomes difficult to use as the release sheet 1.
[0022] 多孔質 UHMWPE層 3の平均孔径は、例えば、 10 μ m〜50 μ mの範囲であれば よい。平均孔径が過大になると、離型シート 1としての使用が困難になったり、離型シ ート 1としての柔軟性が低下することがある。多孔質 UHMWPE層 3の平均孔径およ び空孔率は、ポロシメーターを用いて評価することができる。  [0022] The average pore diameter of the porous UHMWPE layer 3 may be, for example, in the range of 10 μm to 50 μm. If the average pore size is too large, it may be difficult to use as the release sheet 1 or the flexibility as the release sheet 1 may be reduced. The average pore size and porosity of the porous UHMWPE layer 3 can be evaluated using a porosimeter.
[0023] 多孔質 UHMWPE層 3には、市販の超高分子量ポリエチレン多孔質フィルムを用 いることができる。このような多孔質フィルムとしては、例えば、 日東電工社製サンマツ プ LC (M V = 300万)、同サンマップ HP— 5320 (M v = 300万)、旭化成ケミカル ズ社製サンファイン AQ— 100 (Μ ν = 330万)、同サンファイン AQ— 800 (Μ ν =4 50万)などが挙げられる。  [0023] For the porous UHMWPE layer 3, a commercially available ultra-high molecular weight polyethylene porous film can be used. Examples of such porous films include Sun Map LC (MV = 3 million) manufactured by Nitto Denko Corporation, Sun Map HP-5320 (M v = 3 million), Sun Fine AQ-100 (manufactured by Asahi Kasei Chemicals)フ ァ イ ン ν = 3.3 million) and Sunfine AQ-800 (Μ ν = 4 500,000).
[0024] シリコーンゴム層 2の具体的な構造は特に限定されず、全体に均質な構造を有する シリコーンゴム層 2であってもよ 、し、粘弾性などの特性が異なるシリコーンゴムを組 み合わせたシリコーンゴム層 2であってもよい。  [0024] The specific structure of the silicone rubber layer 2 is not particularly limited, and may be the silicone rubber layer 2 having a homogeneous structure as a whole, and a combination of silicone rubbers having different viscoelastic properties and the like. Alternatively, the silicone rubber layer 2 may be used.
[0025] シリコーンゴム層 2の熱伝導率は、 1. 5WZ (m'K)以上であることが好ましぐより 熱伝導性に優れる離型シート 1とすることができる。  [0025] The thermal conductivity of the silicone rubber layer 2 is preferably 1.5 WZ (m'K) or more, and the release sheet 1 having better thermal conductivity can be obtained.
[0026] シリコーンゴム層 2の熱伝導率は、例えば、熱伝導性材料を含むシリコーンゴム層 2 とし、シリコーンゴム層 2における熱伝導性材料の含有率を調整することによって制御 できる。熱伝導性材料には、例えば、アルミナ、窒化アルミニウム、酸化マグネシウム 、炭化ケィ素、シリカ、チタ-ァなどの熱伝導性フイラ一類、各種カーボン、グラフアイ トなどの導電性フイラ一類を用いればょ 、。  [0026] The thermal conductivity of the silicone rubber layer 2 can be controlled, for example, by adjusting the content of the thermally conductive material in the silicone rubber layer 2 to the silicone rubber layer 2 containing a thermally conductive material. As the heat conductive material, for example, a heat conductive filter such as alumina, aluminum nitride, magnesium oxide, silicon carbide, silica, titanium, or a conductive filter such as various carbon or graphite may be used. ,.
[0027] シリコーンゴム層 2の厚さは特に限定されないが、通常、 20 μ m以上 300 μ m以下 の範囲である。  [0027] The thickness of the silicone rubber layer 2 is not particularly limited, but is usually in the range of 20 µm to 300 µm.
[0028] 本発明の離型シート 1における UHMWPE層 3およびシリコーンゴム層 2の具体的 な配置の形態は、双方の層が一体化されている限り特に限定されないが、離型シー ト 1における一方の主面に UHMWPE層 3が配置されており、他方の主面にシリコー ンゴム層 2が配置されていることが好ましい。この場合、加熱圧着工程において、シリ コーンゴム層 2を加熱加圧ヘッド側に配置すれば、接続ワークへの圧力および熱の 伝達をより均一にでき、また、電子部品に接触する面を UHMWPE層 3にできるため 、加熱圧着工程における離型シート 1と電子部品との接着をより確実に防止できる。 [0028] The specific arrangement of the UHMWPE layer 3 and the silicone rubber layer 2 in the release sheet 1 of the present invention is not particularly limited as long as both layers are integrated, but the release sheet is not limited. It is preferable that the UHMWPE layer 3 is disposed on one main surface of the rubber 1 and the silicone rubber layer 2 is disposed on the other main surface. In this case, if the silicone rubber layer 2 is placed on the heating and pressurizing head side in the thermocompression bonding process, the pressure and heat can be more uniformly transferred to the connected workpiece, and the surface in contact with the electronic component can be made UHMWPE layer 3 Therefore, adhesion between the release sheet 1 and the electronic component in the thermocompression bonding process can be more reliably prevented.
[0029] 本発明の離型シート 1が含む UHMWPE層 3およびシリコーンゴム層 2の層数は特 に限定されないが、図 1に示すように、離型シート 1が双方の層を一層ずつ含むこと が好ましい。即ち、本発明の離型シート 1は、一層の UHMWPE層 3の一方の主面に シリコーンゴム層 2が積層されており、双方の層がー体ィ匕された構造であることが好ま しい。このような離型シートは、製造コストおよび加熱圧着工程におけるハンドリング 性に優れている。 [0029] The number of layers of the UHMWPE layer 3 and the silicone rubber layer 2 included in the release sheet 1 of the present invention is not particularly limited. However, as shown in Fig. 1, the release sheet 1 includes both layers one by one. Is preferred. That is, the release sheet 1 of the present invention preferably has a structure in which the silicone rubber layer 2 is laminated on one main surface of one UHMWPE layer 3 and both layers are combined. Such a release sheet is excellent in manufacturing cost and handling property in the thermocompression bonding process.
[0030] 本発明の離型シートは、例えば、 UHMWPE層 3の表面に、液体状またはペースト 状のシリコーンゴムを塗布し、熱処理して形成できる。このとき、 UHMWPE層 3の一 方の主面にシリコーンゴムを塗布すれば、図 1に示す離型シート 1を形成できる。  [0030] The release sheet of the present invention can be formed, for example, by applying a liquid or pasty silicone rubber to the surface of the UHMWPE layer 3 and heat-treating it. At this time, if silicone rubber is applied to one main surface of the UHMWPE layer 3, the release sheet 1 shown in FIG. 1 can be formed.
[0031] 本発明の離型シートは、また、 UHMWPE層 3とシリコーンゴム層 2とを、それぞれ 別途に形成した後に、両者を加熱圧着することによつても形成できる。  [0031] The release sheet of the present invention can also be formed by separately forming the UHMWPE layer 3 and the silicone rubber layer 2 and then thermally bonding them together.
[0032] 液体状またはペースト状のシリコーンゴムには、市販の製品を用いることができ、例 えば、東レ 'ダウコーユング社製 SE4450、 GE'東芝シリコーン社製 TSE3281— G、 信越シリコーン社製 KE— 1867、 X— 32— 2020、 X— 32— 2151などを用いればよ い。また、固形のシリコーンゴムを溶媒に溶解させた溶液や、固形のシリコーンゴムと 溶媒とを混練したペーストなどを用いてもょ 、。  [0032] Commercially available products can be used for the liquid or pasty silicone rubber. For example, SE4450 manufactured by Toray 'Dowcoung Co., Ltd., TSE3281-G manufactured by Toshiba Silicone Corp., KE- 1867 manufactured by Shin-Etsu Silicone Co., Ltd. X-32-2020, X-32-2151, etc. may be used. Alternatively, a solution in which solid silicone rubber is dissolved in a solvent or a paste in which solid silicone rubber and a solvent are kneaded may be used.
[0033] 熱伝導性材料を含むシリコーンゴム層 2は、液体状またはペースト状のシリコーンゴ ムと熱伝導性材料とを混合した後に、得られた混合物を UHMWPE層 3の表面に塗 布し、熱処理して形成できる。  [0033] The silicone rubber layer 2 containing a heat conductive material is obtained by mixing a liquid or paste-like silicone rubber and a heat conductive material, and then coating the obtained mixture on the surface of the UHMWPE layer 3. It can be formed by heat treatment.
[0034] シリコーンゴム層 2を別途形成する場合、液体状またはペースト状のシリコーンゴム を基板上に塗布し、液体状またはペースト状のシリコーンゴムに含まれる溶媒の除去 および Zまたは熱処理を行えばよい。基板上に塗布する前に、熱伝導性材料を予め 混合すれば、熱伝導性材料を含むシリコーンゴム層 2を形成できる。 UHMWPE層 3 とシリコーンゴム層 2との加熱圧着は、一般的な手法を用いて行えばよい。 [0034] When the silicone rubber layer 2 is separately formed, a liquid or pasty silicone rubber may be applied on the substrate, and the solvent contained in the liquid or pasty silicone rubber may be removed and Z or heat treatment may be performed. . The silicone rubber layer 2 containing the heat conductive material can be formed by mixing the heat conductive material in advance before coating on the substrate. UHMWPE layer 3 The silicone rubber layer 2 may be thermocompression bonded using a general method.
[0035] 本発明の離型シート 1は、 UHMWPE層 3およびシリコーンゴム層 2以外にも、必要 に応じて任意の部材を含んでいてもよい。例えば、本発明の離型シートが、従来の圧 着離型シートが備えていた (多孔質)フッ素榭脂層を備えてもよい。ただし、本発明の 離型シート 1は、このようなフッ素榭脂層を省略でき、フッ素榭脂層を省略した場合、 加熱圧着工程に使用した後における産業廃棄物としてのハロゲンフリー化、フッ素元 素フリー化を実現できる。 [0035] In addition to the UHMWPE layer 3 and the silicone rubber layer 2, the release sheet 1 of the present invention may include an optional member as necessary. For example, the release sheet of the present invention may include a (porous) fluorine resin layer that is provided in a conventional pressure release sheet. However, in the release sheet 1 of the present invention, such a fluorine resin layer can be omitted, and when the fluorine resin layer is omitted, halogen free as an industrial waste after use in the thermocompression bonding process, Realization of element free.
[0036] 本発明の卷回体は、上記本発明の圧着離型シートを卷回した構造を有する。この ような卷回体では、例えば、図 2に示すように、基板 21と接続ワーク 23とを、卷回体 2 4から圧着離型シート 1を徐々にあるいは段階的に送り出しながら、 ACF22を介して 加熱圧着できる。加熱圧着後の圧着離型シート 1は、例えば、図 2に示すように、巻き 取ればよい。即ち、本発明の卷回体により、電子部品の加熱圧着による接合をより効 率よく行うことができる。なお、図 2における符号 25は、加熱加圧ヘッドである。 [0036] The wound body of the present invention has a structure in which the above-mentioned pressure-sensitive release sheet of the present invention is wound. In such a wound body, for example, as shown in FIG. 2, the substrate 21 and the connection work 23 are passed through the ACF 22 while feeding the crimp release sheet 1 from the wound body 24 gradually or step by step. Can be thermocompression bonded. The pressure-release release sheet 1 after thermocompression bonding may be wound, for example, as shown in FIG. That is, with the wound body of the present invention, it is possible to more efficiently join electronic components by thermocompression bonding. Note that reference numeral 25 in FIG. 2 denotes a heating and pressing head.
実施例  Example
[0037] 以下、実施例により本発明をより具体的に説明する。本発明は、以下に示す実施 例に限定されない。  [0037] Hereinafter, the present invention will be described more specifically with reference to Examples. The present invention is not limited to the examples shown below.
[0038] 本実施例では、離型シートサンプルとして、実施例サンプルを 11種類 (サンプル 1 〜: L 1)、比較例サンプルを 2種類(サンプル Aおよび B)、ならびに、従来例サンプル を 1種類 (サンプル C)準備し、各離型シートサンプルにおける、離型性、柔軟性 (タツ シヨン性)および熱伝導性を評価した。  [0038] In this example, 11 types of sample samples (sample 1 to: L 1), 2 types of comparative example samples (samples A and B), and 1 type of conventional example sample as release sheet samples (Sample C) was prepared, and the release property, flexibility (tackiness) and thermal conductivity of each release sheet sample were evaluated.
[0039] 最初に、各サンプルの作製方法を示す。  [0039] First, a method for manufacturing each sample is described.
[0040] —サンプノレ 1—  [0040] —Sampnore 1—
UHMWPE層として、 UHMWPEフィルム(日東電工社製 No. 440、厚さ 30 μ m) を準備し、準備した UHMWPE層の片面に、液体状のシリコーンゴム (東芝シリコー ン社製 TSE— 3281— G、熱伝導率 1.
Figure imgf000008_0001
を塗布し(塗布の厚さ50 111) 、 120°Cで 24時間熱処理して、 UHMWPE層とシリコーンゴム層とが一体化された 離型シート (サンプル 1)を作製した。シリコーンゴムの塗布にはアプリケーターを用い [0041] サンプル 2〜5—
UHMWPE film (Nitto Denko No. 440, thickness 30 μm) was prepared as the UHMWPE layer, and liquid silicone rubber (TSE-3281-G, Toshiba Silicone, Thermal conductivity 1.
Figure imgf000008_0001
Was applied (thickness of application: 50 111) and heat-treated at 120 ° C. for 24 hours to prepare a release sheet (sample 1) in which the UHMWPE layer and the silicone rubber layer were integrated. Use an applicator to apply silicone rubber [0041] Samples 2-5—
UHMWPEフィルムの厚さを変更した以外はサンプル 1と同様にして、サンプル 2 〜5の各離型シートを作製した。各サンプルの構成は、以下の表 1に示す。  Except for changing the thickness of the UHMWPE film, the release sheets of Samples 2 to 5 were prepared in the same manner as Sample 1. The composition of each sample is shown in Table 1 below.
[0042] —サンプノレ 6— [0042] —Sampnore 6—
UHMWPE層として、 UHMWPE多孔質フィルム(日東電工社製サンマップ LC、 厚さ 30 /ζ πι、空孔率 30%、平均孔径 17 m)を準備した以外はサンプル 1と同様に して、多孔質 UHMWPE層とシリコーンゴム層とがー体ィ匕された離型シート(サンプ ル 6)を作製した。  Except for preparing UHMWPE porous film (Sunmap LC manufactured by Nitto Denko Corporation, thickness 30 / ζ πι, porosity 30%, average pore size 17 m) as the UHMWPE layer, A release sheet (Sample 6) in which a UHMWPE layer and a silicone rubber layer were combined was prepared.
[0043] サンプル 7〜 10— [0043] Samples 7 to 10—
UHMWPE多孔質フィルムの厚さを変更した以外はサンプル 6と同様にして、サン プル 7〜: LOの各離型シートを作製した。各サンプルの構成は、以下の表 1に示す。  Except that the thickness of the UHMWPE porous film was changed, each release sheet of Sample 7 to LO was prepared in the same manner as Sample 6. The composition of each sample is shown in Table 1 below.
[0044] サンプル 11 [0044] Sample 11
UHMWPEフィルムに塗布する液体状のシリコーンゴムとして、熱伝導率が 1. 1W / (m-K)のシリコーンゴム(信越シリコーン社製 KE 1223)を用いた以外は、サンプ ル 1と同様にして、離型シート(サンプル 11)を作製した。サンプル 11におけるシリコ ーンゴム層は、サンプル 1〜10におけるシリコーンゴム層と熱伝導率が異なるため、 表 1ではシリコーンゴム層 Bと示す。  Mold release in the same way as Sample 1 except that a silicone rubber with a thermal conductivity of 1.1 W / (mK) (KE 1223 manufactured by Shin-Etsu Silicone) was used as the liquid silicone rubber applied to the UHMWPE film. A sheet (Sample 11) was produced. Since the silicone rubber layer in sample 11 has a different thermal conductivity from the silicone rubber layer in samples 1-10, it is shown as silicone rubber layer B in Table 1.
[0045] サンプル A (比較例) [0045] Sample A (Comparative Example)
UHMWPEフィルムの厚さを 25 μ mとした以外はサンプル 1と同様にして、比較例 である離型シート (サンプル A)を作製した。  A release sheet (sample A), which is a comparative example, was prepared in the same manner as sample 1, except that the thickness of the UHMWPE film was 25 μm.
[0046] サンプル B (比較例) [0046] Sample B (comparative example)
UHMWPE多孔質フィルムの厚さを 25 μ mとした以外はサンプル 6と同様にして、 比較例である離型シート (サンプル B)を作製した。  A release sheet (sample B) as a comparative example was prepared in the same manner as in sample 6, except that the thickness of the UHMWPE porous film was 25 μm.
[0047] サンプノレ C (従来例) [0047] Sampu Nore C (conventional example)
ポリテトラフルォロエチレン(PTFE)ファインパウダー(旭硝子社製 CD 123) 80重 量部と、液状潤滑剤として流動パラフィン 20重量部とを混合して、ペーストとし、得ら れたペーストを押出加工して、円柱状の予備成形体を形成した。次に、形成した予備 成形体を、先の押出方向と同一の方向へ圧延した後に焼成(350°C、 5分間)し、 PT FEフィルム(厚さ 50 μ m)を形成した。 80 parts by weight of polytetrafluoroethylene (PTFE) fine powder (CD 123, manufactured by Asahi Glass Co., Ltd.) and 20 parts by weight of liquid paraffin as a liquid lubricant are mixed to form a paste, and the resulting paste is extruded. Thus, a cylindrical preform was formed. Next, the formed preform is rolled in the same direction as the previous extrusion direction and then fired (350 ° C, 5 minutes). An FE film (thickness 50 μm) was formed.
[0048] 次に、形成した PTFEフィルムの片面に、液体状のシリコーンゴム (東芝シリコーン
Figure imgf000010_0001
を塗布し(塗布の厚さ50 111)、 120°Cで 24時間熱処理して、 PTFE層とシリコーンゴム層とがー体ィ匕された離型シ ート(サンプル C)を作製した。シリコーンゴムの塗布にはアプリケーターを用いた。
[0048] Next, on one side of the formed PTFE film, liquid silicone rubber (Toshiba Silicone
Figure imgf000010_0001
(Coating thickness 50 111) and heat-treated at 120 ° C. for 24 hours to prepare a release sheet (sample C) in which a PTFE layer and a silicone rubber layer were combined. An applicator was used to apply the silicone rubber.
[0049] [表 1]  [0049] [Table 1]
Figure imgf000010_0002
Figure imgf000010_0002
[0050] 次に、このようにして準備した各サンプルを用いて、 ACFを用いた電子部品の接合 を行い、加熱圧着工程における各サンプルの離型性、柔軟性 (クッション性)、耐熱 性および熱伝導性を評価した。 [0050] Next, each sample prepared in this manner was used to join electronic components using ACF, and in each of the thermocompression bonding steps, the mold release property, flexibility (cushioning property), heat resistance and Thermal conductivity was evaluated.
[0051] 評価は、図 3に示すように、ガラス基板 11、 ACF (日立化成工業社製 AC2102) 1 2、 FPC13および離型シートサンプル 14を順に積層した後に、加熱加圧ヘッド 15 ( 日化設備エンジニアリング社、ァ-ソルム熱圧着機 AC— S50)により、ガラス基板 11 と FPC13とを ACF12を介して加熱圧着して、行った。加熱圧着の条件は、加熱カロ 圧ヘッド 15の設定温度 300°C、圧着圧力 3MPa、圧着時間 20秒とした。 [0052] 離型性の評価では、加熱圧着後におけるサンプル 14と FPC13との剥離が問題な く行われれば合格(〇)、サンプル 14と FPC13との接着が確認されれば不合格( X ) とした。 [0051] As shown in FIG. 3, the evaluation was performed by sequentially laminating a glass substrate 11, ACF (AC2102 manufactured by Hitachi Chemical Co., Ltd.) 1, 2, FPC 13 and release sheet sample 14, and then heating and pressing head 15 (Nikka) The glass substrate 11 and the FPC 13 were thermocompression-bonded through ACF12 by Equipment Engineering Co., Ltd., a thermo-compressor AC-S50). The thermocompression bonding conditions were as follows: the heating caloric pressure head 15 was set at 300 ° C, the pressure was 3 MPa, and the pressure was 20 seconds. [0052] In the evaluation of releasability, the sample 14 and the FPC 13 after the thermocompression bonding were passed without any problem (◯), and if the adhesion between the sample 14 and the FPC 13 was confirmed, the sample was rejected (X). It was.
[0053] クッション性の評価では、加熱圧着後に、 ACF12に含まれる導電性粒子の変形を ガラス基板 11側カゝら確認し、変形が ACF全体にわたって均一であれば合格(〇)、 変形がやや不均一であれば保留(△)、変形が不均一であれば不合格 ( X )とした。 なお、導電性粒子の変形は、光学顕微鏡を用いて観察した。  [0053] In the cushioning evaluation, after thermocompression bonding, the deformation of the conductive particles contained in the ACF12 was confirmed by the glass substrate 11 side, and if the deformation was uniform throughout the ACF, it passed (○), and the deformation was slightly. If it is non-uniform, it is regarded as holding (△), and if the deformation is non-uniform, it is regarded as reject (X). In addition, the deformation | transformation of electroconductive particle was observed using the optical microscope.
[0054] 耐熱性の評価では、加熱圧着後に、離型シートサンプル 14におけるシヮの有無を 確認し、シヮが発生していなければ合格(〇)、シヮが発生していれば不合格(X )とし た。  [0054] In the heat resistance evaluation, after thermocompression bonding, the presence or absence of the sheet in the release sheet sample 14 was confirmed. If the sheet did not generate a pass (O), and if the sheet had generated, it failed. (X).
[0055] 熱伝導性は、ガラス基板 11などを順に積層する際に、 ACF12と FPC13との間に 熱電対 16を予め配置しておき、加熱圧着を開始してから 20秒後の到達温度と、 AC F 12近傍の温度が 190°Cに到達するまでの到達時間とを評価した。  [0055] When the glass substrate 11 or the like is laminated in order, the thermal conductivity is determined by placing a thermocouple 16 between the ACF 12 and the FPC 13 in advance, and the temperature reached 20 seconds after the start of thermocompression bonding. The time required for the temperature in the vicinity of AC F 12 to reach 190 ° C was evaluated.
[0056] 評価結果を、以下の表 2に示す。  [0056] The evaluation results are shown in Table 2 below.
[0057] [表 2] サンプル 到達温度 到達時間 離型性 クッション性 耐熱性  [0057] [Table 2] Sample arrival temperature Arrival time Release property Cushioning property Heat resistance
N 0 . CC) (秒) N 0. CC) (seconds)
1 〇 〇 〇 205 1. 81 ○ ○ ○ 205 1. 8
2 〇 〇 〇 201 1. 82 ○ ○ ○ 201 1. 8
3 〇 〇 〇 195 2. 03 ○ ○ ○ 195 2. 0
4 〇 〇 〇 191 2. 24 ○ ○ ○ 191 2. 2
5 〇 〇 〇 186 -5 ○ ○ ○ 186-
6 〇 〇 〇 207 1. 86 ○ ○ ○ 207 1. 8
7 〇 〇 〇 204 1. 87 ○ ○ ○ 204 1. 8
8 〇 〇 〇 199 1. 98 ○ ○ ○ 199 1. 9
9 〇 〇 〇 196 2. 19 ○ ○ ○ 196 2. 1
1 0 〇 〇 〇 188 -1 0 ○ ○ ○ 188-
1 1 〇 〇 〇 189 -1 1 ○ ○ ○ 189-
A A
〇 Δ X 207 1. 8  ○ Δ X 207 1. 8
(比較例)  (Comparative example)
B  B
〇 Δ X 209 1. 8  ○ Δ X 209 1. 8
(比絞例)  (Ratio example)
C  C
〇 〇 〇 198 2. 2  ○ ○ ○ 198 2. 2
(従来例) [0058] 表 2に示すように、サンプル 1〜: L 1では、離型性および柔軟性 (クッション性)を両立 させた離型シートとすることができた。 UHMWPE層の厚さが 30 μ m未満であるサン プル Aおよび Bでは、サンプル 1〜: L 1に比べて離型性は同等であった力 柔軟性に やや劣り、また、耐熱性に劣る結果となった。 (Conventional example) [0058] As shown in Table 2, Samples 1 to L 1 were release sheets having both release properties and flexibility (cushion properties). Samples A and B with a UHMWPE layer thickness of less than 30 μm had the same releasability as samples 1 to: L 1 Results of slightly inferior flexibility and inferior heat resistance It became.
[0059] 従来例であるサンプル Cと、サンプル Cと厚さがほぼ同等であるサンプル 2とを比較 すると、サンプル 2の方力 到達温度をより高ぐまた、到達時間をより短くすることが できた。即ち、サンプル Cに代わってサンプル 2を用いれば、加熱圧着工程における タクトタイムの短縮が可能である。  [0059] Comparing sample C, which is the conventional example, with sample 2, which is approximately the same thickness as sample C, it is possible to increase the ultimate temperature of sample 2 and to shorten the arrival time. It was. In other words, if sample 2 is used instead of sample C, the tact time in the thermocompression bonding process can be shortened.
[0060] 同じサンプルの厚さで比べると、非多孔質の UHMWPE層を有するサンプル 1〜5 よりも、多孔質 UHMWPE層を有するサンプル 6〜10の方力 到達温度をより高ぐ また、到達時間をより短くすることができた。  [0060] Compared with the same sample thickness, samples 6-10 with porous UHMWPE layer have higher forces than samples 1-5 with non-porous UHMWPE layer. Could be made shorter.
[0061] 本発明は、その意図および本質的な特徴力 逸脱しない限り、他の実施形態に適 用しうる。この明細書に開示されている実施形態は、あらゆる点で説明的なものであ つてこれに限定されない。本発明の範囲は、上記説明ではなく添付したクレームによ つて示されており、クレームと均等な意味および範囲にあるすベての変更はそれに含 まれる。  [0061] The present invention can be applied to other embodiments without departing from its intent and essential characteristics. The embodiments disclosed in this specification are illustrative in all respects and are not limited thereto. The scope of the present invention is shown not by the above description but by the appended claims, and all modifications that are equivalent in meaning and scope to the claims are included therein.
産業上の利用可能性  Industrial applicability
[0062] 以上、説明したように、本発明によれば、超高分子量ポリエチレン層とシリコーンゴ ム層とを組み合わせることにより、離型性および柔軟性 (クッション性)を両立させた圧 着離型シートを提供できる。 [0062] As described above, according to the present invention, a pressure-release mold that achieves both mold release properties and flexibility (cushion properties) by combining an ultrahigh molecular weight polyethylene layer and a silicone rubber layer. Can provide a sheet.

Claims

請求の範囲 The scope of the claims
[1] 電子部品の加熱圧着による接合に用いられる圧着離型シートであって、  [1] A pressure release sheet used for joining electronic parts by thermocompression bonding,
超高分子量ポリエチレン層と、シリコーンゴム層とを含み、  Including an ultra-high molecular weight polyethylene layer and a silicone rubber layer;
前記超高分子量ポリエチレン層と前記シリコーンゴム層とが互いに一体ィヒされてお り、  The ultra high molecular weight polyethylene layer and the silicone rubber layer are integrated with each other,
前記超高分子量ポリエチレン層の厚さが 30 μ m以上である圧着離型シート。  A pressure-sensitive release sheet, wherein the ultrahigh molecular weight polyethylene layer has a thickness of 30 μm or more.
[2] 前記超高分子量ポリエチレン層を構成する超高分子量ポリエチレンの粘度平均分 子量が、 100万以上 700万以下である請求項 1に記載の圧着離型シート。 [2] The pressure-sensitive release sheet according to claim 1, wherein the ultrahigh molecular weight polyethylene constituting the ultrahigh molecular weight polyethylene layer has a viscosity average molecular weight of 1 million or more and 7 million or less.
[3] 前記超高分子量ポリエチレン層の厚さが、 200 m以下である請求項 1に記載の 圧着離型シート。 [3] The pressure-sensitive release sheet according to claim 1, wherein the ultrahigh molecular weight polyethylene layer has a thickness of 200 m or less.
[4] 前記超高分子量ポリエチレン層が、多孔質である請求項 1に記載の圧着離型シー  [4] The pressure-release mold sheet according to claim 1, wherein the ultrahigh molecular weight polyethylene layer is porous.
[5] 前記シリコーンゴム層の熱伝導率力 1. 5WZ (m'K)以上である請求項 1に記載 の圧着離型シート。 [5] The pressure-sensitive release sheet according to claim 1, wherein the silicone rubber layer has a thermal conductivity of 1.5 WZ (m′K) or more.
[6] 前記圧着離型シートにおける一方の主面に前記超高分子量ポリエチレン層が、他 方の主面に前記シリコーンゴム層が配置されている請求項 1に記載の圧着離型シー  6. The pressure-sensitive release sheet according to claim 1, wherein the ultra-high molecular weight polyethylene layer is arranged on one main surface of the pressure-sensitive release sheet, and the silicone rubber layer is arranged on the other main surface.
[7] 前記超高分子量ポリエチレン層および前記シリコーンゴム層を、一層ずつ含む請 求項 1に記載の圧着離型シート。 [7] The pressure-sensitive release sheet according to claim 1, comprising the ultrahigh molecular weight polyethylene layer and the silicone rubber layer one by one.
[8] 請求項 1に記載の圧着離型シートを卷回した卷回体。 [8] A wound body obtained by winding the pressure-release release sheet according to claim 1.
PCT/JP2006/310216 2005-05-30 2006-05-23 Compression bonding release sheet and roll WO2006129520A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-157749 2005-05-30
JP2005157749 2005-05-30

Publications (1)

Publication Number Publication Date
WO2006129520A1 true WO2006129520A1 (en) 2006-12-07

Family

ID=37481449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310216 WO2006129520A1 (en) 2005-05-30 2006-05-23 Compression bonding release sheet and roll

Country Status (1)

Country Link
WO (1) WO2006129520A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045994A (en) * 2015-08-28 2017-03-02 日立化成株式会社 Method for manufacturing electronic component device and electronic component device
US20210233887A1 (en) * 2017-06-16 2021-07-29 Micron Technology, Inc. Thermocompression bond tips and related apparatus and methods
EP3804986A4 (en) * 2018-05-31 2022-04-20 Nitto Denko Corporation Workpiece protection sheet
US11410964B2 (en) * 2019-11-22 2022-08-09 Micron Technology, Inc. Contaminant control in thermocompression bonding of semiconductors and associated systems and methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55135630A (en) * 1979-04-10 1980-10-22 Nitto Electric Ind Co Ltd Improvement of characteristics of superhigh molecular polyethylene sheet
JPH03175029A (en) * 1989-10-31 1991-07-30 Stamicarbon Bv Manufacture of product made of at least polyethylene layer and elastomer layer and product obtained using said method
JPH05301297A (en) * 1992-04-24 1993-11-16 Shin Kobe Electric Mach Co Ltd Cushioning material for molding of laminate sheet
JPH10296767A (en) * 1997-02-28 1998-11-10 Chuko Kasei Kogyo Kk Press cushioning material
JPH11156943A (en) * 1997-11-27 1999-06-15 Sakushin Kogyo Kk Manufacture of composite sheet of ultra-high-molecular-weight polyethylene and rubber
JP2000006176A (en) * 1998-06-26 2000-01-11 Achilles Corp Manufacture of laminated sheet
WO2003028972A1 (en) * 2001-09-28 2003-04-10 Yamauchi Corporation Cushioning material for hot pressing and process for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55135630A (en) * 1979-04-10 1980-10-22 Nitto Electric Ind Co Ltd Improvement of characteristics of superhigh molecular polyethylene sheet
JPH03175029A (en) * 1989-10-31 1991-07-30 Stamicarbon Bv Manufacture of product made of at least polyethylene layer and elastomer layer and product obtained using said method
JPH05301297A (en) * 1992-04-24 1993-11-16 Shin Kobe Electric Mach Co Ltd Cushioning material for molding of laminate sheet
JPH10296767A (en) * 1997-02-28 1998-11-10 Chuko Kasei Kogyo Kk Press cushioning material
JPH11156943A (en) * 1997-11-27 1999-06-15 Sakushin Kogyo Kk Manufacture of composite sheet of ultra-high-molecular-weight polyethylene and rubber
JP2000006176A (en) * 1998-06-26 2000-01-11 Achilles Corp Manufacture of laminated sheet
WO2003028972A1 (en) * 2001-09-28 2003-04-10 Yamauchi Corporation Cushioning material for hot pressing and process for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045994A (en) * 2015-08-28 2017-03-02 日立化成株式会社 Method for manufacturing electronic component device and electronic component device
JP2022009940A (en) * 2015-08-28 2022-01-14 昭和電工マテリアルズ株式会社 Method for manufacturing electronic component device and electronic component device
JP7203482B2 (en) 2015-08-28 2023-01-13 株式会社レゾナック Electronic component device manufacturing method
US20210233887A1 (en) * 2017-06-16 2021-07-29 Micron Technology, Inc. Thermocompression bond tips and related apparatus and methods
US11705425B2 (en) * 2017-06-16 2023-07-18 Micron Technology, Inc. Thermocompression bond tips and related apparatus and methods
EP3804986A4 (en) * 2018-05-31 2022-04-20 Nitto Denko Corporation Workpiece protection sheet
US11410964B2 (en) * 2019-11-22 2022-08-09 Micron Technology, Inc. Contaminant control in thermocompression bonding of semiconductors and associated systems and methods
US20220320037A1 (en) * 2019-11-22 2022-10-06 Micron Technology, Inc. Contaminant control in thermocompression bonding of semiconductors and associated systems and methods
US11908828B2 (en) 2019-11-22 2024-02-20 Micron Technology, Inc. Contaminant control in thermocompression bonding of semiconductors and associated systems and methods

Similar Documents

Publication Publication Date Title
US20060249301A1 (en) Anisotropic conductive coatings and electronic devices
KR100713333B1 (en) Multi-layered anisotropic conductive film
JPWO2019111978A1 (en) Nitride-based ceramic resin composite
KR20060133112A (en) Adhesive composition
JPWO2009051043A1 (en) Adhesive film for circuit connection and circuit connection structure
JP2007008153A (en) Releasing sheet for use in compression bonding and roll
JP2013145790A (en) Bent wiring board, populated bent wiring board, and metal layer-attached insulating layer for use in the same
JP2009074020A (en) Anisotropic conductive film
WO2006129520A1 (en) Compression bonding release sheet and roll
JPWO2019117258A1 (en) Mounting structure manufacturing method and sheet used therefor
WO2019131904A1 (en) Connection structure and method for producing same
TWI484504B (en) Anisotropic conductive film, method for producing the same and method for pressing circuit terminals
JP2019214714A (en) Filler-containing film
JP2006231916A (en) Release sheet for compression bonding
EP3690932A1 (en) Method for producing mounting structure, and sheet used in same
JP2007190802A (en) Composite sheet
WO2012153849A1 (en) Anisotropic conductive connection material, film laminate, connection method, and connection structure
JP2006352166A (en) Multi-chip mounting method
JP2005244188A (en) Paste-like adhesive for bonding semiconductor chip and semiconductor device
JP2001232712A (en) Heat conductive member
WO2006080445A1 (en) Release sheet for compression bonding
TW201842113A (en) Connected structure, method of the same, and anisotropic adhesive material
JPH11126516A (en) Anisotropic conductive adhesive and conductive connection structure
JPS6386783A (en) Antisotropically electrically conductive adhesive film
JP4223581B2 (en) Multi-chip mounting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06756472

Country of ref document: EP

Kind code of ref document: A1