WO2006126868A1 - Convertidor eléctrico tipo prisma para generación, transmisión distribución y suministro de corriente eléctrica y método de fabricación - Google Patents

Convertidor eléctrico tipo prisma para generación, transmisión distribución y suministro de corriente eléctrica y método de fabricación Download PDF

Info

Publication number
WO2006126868A1
WO2006126868A1 PCT/MX2006/000039 MX2006000039W WO2006126868A1 WO 2006126868 A1 WO2006126868 A1 WO 2006126868A1 MX 2006000039 W MX2006000039 W MX 2006000039W WO 2006126868 A1 WO2006126868 A1 WO 2006126868A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
converter
phases
clause
electrical
Prior art date
Application number
PCT/MX2006/000039
Other languages
English (en)
French (fr)
Inventor
Vicente Arturo Mendoza Ceballos
Original Assignee
Mendoza Ceballos Vicente Artur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mendoza Ceballos Vicente Artur filed Critical Mendoza Ceballos Vicente Artur
Priority to JP2008513388A priority Critical patent/JP2008543253A/ja
Priority to BRPI0610754-0A priority patent/BRPI0610754A2/pt
Priority to AU2006250142A priority patent/AU2006250142B2/en
Priority to US11/910,801 priority patent/US7791916B2/en
Priority to EP06757776A priority patent/EP1887588A4/en
Priority to EA200702293A priority patent/EA200702293A1/ru
Priority to CA002605349A priority patent/CA2605349A1/en
Priority to NZ564368A priority patent/NZ564368A/en
Publication of WO2006126868A1 publication Critical patent/WO2006126868A1/es
Priority to EGNA2007001048 priority patent/EG24922A/xx
Priority to IL187527A priority patent/IL187527A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers
    • H01F30/14Two-phase, three-phase or polyphase transformers for changing the number of phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/12Magnetic shunt paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • H02M5/14Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers for conversion between circuits of different phase number
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor

Definitions

  • the present invention generally relates to the generation, transmission, distribution and supply of electrical energy. More particularly, the present invention relates to a converter called a prism which is constituted in the form of two systems, one magnetic and the other electric and also by a cooling or thermal control system because said converter has a three-phase side, where the The magnetic circuit is based on the three-phase magnetic circuit and the two-phase side is constructed on the three magnetic circuits that form it, that is, it is constituted by a silicon steel magnetic core that can be of the type columns with section of any shape, core continuous, rolled up, columns or battleship, etc. It can also be of the Evans type that is like the previous one but cut, or it can also be the Wescord type or rolled but with splices.
  • the prism type of the invention creates a third phase as a product of this conversion, being that in the electronic converter for example the three phases are created through digital switching from a direct current source.
  • prism such as the one shown in Figure 5, which is a practical example of how it is constructed showing the silicon steel magnetic core that can be of columns type with section of any shape, continuous core, rolled, columns or battleship, etc., can also be of the Evans type which is like the previous electric converter but cut, it can also be of the Wescord type or rolled with splices.
  • the difference of the converter of this invention with respect to its operation is that it is based on the vector sum of the two existing phases in such a way that they result in the third non-existent phase, that is, unlike the other electric converters with respect to at the open Scott or Delta type, it is that the prism type creates a third phase as a product of this conversion, since in the electric converter for example the three phases are created through digital switching from an electric current source.
  • an object of the present invention is to provide a new and improved prism type two to three phase high voltage, high voltage to medium voltage, medium voltage to low voltage and reversible prism converter.
  • Another more specific object of the present invention is to provide a prism type electric converter with improved conversion efficiency.
  • Still another object of the present invention is to provide a prism type electrical converter applicable to any electrical system from generation, transmission, distribution, and supply of electrical energy.
  • a further object of the present invention is to provide a prism type electric converter which is constructed of two systems, one magnetic, the other electric and the cooling or thermal control system because the converter has a three-phase side.
  • Still another object of the present invention is that the magnetic circuit of the converter is based on the three-phase magnetic circuit and in addition the converter has a two-phase side that is constructed in the three magnetic circuits that form it.
  • the prism type electric converter that is a universal converter because it is more applicable to any electrical system from generation, transmission distribution and supply , and in addition to allowing very high efficiencies of up to 98%, that is, almost 100%, the perfection in efficiency, depending on the power, fully balanced in tensions between phases and between phases and neutral can feed any type of load such as : single-phase, two-phase or three-phase, any power is superior for performance to open Scott or Delta type electric converters and for application and universality to electric and electronic low voltage converters.
  • Figure 4 shows the proposed solution for distribution systems that can solve the global problem since medium voltage networks can be built in two wires and electric companies can solve the expansion problem and that initially the charges could be single-phase, but in contrast to the traditional distribution system any user who requires three-phase service, can obtain it from the proposed converter equipment, in its application to distribution of medium voltage to low voltage.
  • Figure 1 describes the Scott connection invented at the end of the 19th century.
  • Figure 2 describes the invented open Delta connection at the end of the 19th century.
  • Figure 3 describes the Electric system of distribution in alternating current of general use for generation, transmission and distribution of alternating electrical energy.
  • Figure 4 describes the electrical system in the application of the prism type electric converter of the present invention.
  • Figure 5 describes the types of cores of current practical use, that is to say how the current prism type electric converter is constituted.
  • Figure 6 vectorially describes the electrical system or ETO 120 -2/3 of the prism converter (prism connection), of the present invention.
  • Figure 6 (b) illustrates the ETO -2402/3 raw connection of the present invention.
  • Figures 7 (a) and (b) describe the coil core of the ETO-240 -2/3 prism type electrical connection of the prism converter of the present invention, and showing the application to Wescord column and battleship cores, respectively.
  • Figure 8 describes the possible physical arrangement of the prism system of the prism converter of Ha present invention.
  • Figure 9 describes the external physical presentation of the prism converter of the present invention.
  • Figure 1 which describes the Scott connection that was invented at the end of the 19th century, was one of the first two to three phase electrical converters invented with the developments called Scott and Delta open, from which the Scott system is not applicable to current networks They are currently used only to feed three to two phases in electric smelting furnaces and where the inverse application of two to three phases is not possible.
  • Figure 2 which describes the open Delta connection that is currently in force and that provides three-phase voltage in distribution systems but its efficiency is 57.7% (Chester L. Dawes), showing in Figure 2 an illustrative scheme of this open Delta connection which also presents unbalanced voltages to neutral and also unbalanced currents.
  • Figure 3 which describes the current general employment electrical distribution system for the generation, transmission and distribution of alternating electrical energy, where the alternating current electrical distribution system that is used worldwide which shows that of a line Three-phase normal in three or four wires three-phase service in medium voltage is obtained.
  • Figure 5 which describes the types of cores, that is, how the current prism type electric converter is constituted, where the silicon steel magnetic core is shown, which can be of the column type with section of any shape, that is, round, elliptical, cruciform, etc., but it can also be (although not shown) of the Evans type that is like the previous one but cut, it can also be Wescord type or rolled with splices.
  • Figure 4 which describes the possible electrical system for its novel application of the prism type electric converter of the present invention, the proposed solution being for distribution systems and this form of representation explains that for a general problem, given that the Medium voltage networks can be built in two wires, therefore the electricity companies would solve the expansion problem since at first if the loads are single phase, so with the traditional distribution system (not shown) any user that requires Three-phase service, it is possible to obtain it from this electrical system of the proposed converter, in its application to distribution of medium voltage to low voltage.
  • Figure 6 (a) which vectorly describes the electrical system of the prism converter (prism connection) or ETO 120 -2/3 shown of the present invention with exact detail of the prism connections, which means that it is the connected prism converter at 120 ° electrical and converting from two (2) to three (3) phases, as can be seen in the figure, the phase is formed of two sections, for example the phase a by sections a1 and a2, phase b by the sections b1 and b2, and phase c by sections d and c2, where the general phases can be any a, b, or c, where in said figure 6, it is observed that phases a and b form phase c.
  • phase d is formed by a1 and b1
  • section of phase c2 is formed by a2 and b2.
  • phase c gives rise to the corresponding phases, Ia a with s1, Ia b with s2 and Ia c with s3.
  • the angular displacement achieved in these phases is 120 ° E (electrical degrees), just like a normal three-phase system and generates symmetrical voltages between phases and between phases and neutral, for example in the case of Mexico the supply voltage may be 13200, 23000, or 34500 volts, the most common output may be 220 volts between s1 and s2, 220 volts between s2 and s3, 220 volts between s1 and s3 and 127 volts between s1 and n, 127 volts between s2 and n, 127 volts between s3 and n.
  • the input voltage values may be of any common or special use value on the two-phase side, and on the three-phase side the voltage values may also be of any common or special use value.
  • Figure 9 describing the external physical presentation of the prism converter of the present invention, where said converter is constructed in the following manner: the magnetic core is manufactured in the conventional manner, that is, the cut-column-type cores are made by means of cutting the roll sheet, making
  • the Evans-type core is the same but with cuts that form two assembled halves after mounting corresponding coils.
  • the electrical part is manufactured in three columns, one for each phase in which it is an enveloping electrical circuit (spiral columns, Evans, etc.) or a magnetic envelope circuit (Wescord battleship, spiral battleship, battleship in cut laminations, etc.).
  • the coils are constructed with windings attending the number of turns that are required for each two-phase or three-phase voltage, where the winding is formed for each phase by two actions per phase for the two-phase part, one section per phase for the three-phase part as in the Figures 7 (a) and 7 (b).
  • the present invention in the field of distribution by saving 33% of installation equipment in the distribution network is of very important benefit for power generating companies by employing more users with two-phase lines, which may extend the benefit anywhere, such as small, medium-sized populations or the countryside where they can potentially provide the three-phase service to whoever wishes This benefit may be extended to the transmission and power generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ac-Ac Conversion (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

La presente invención se refiere a un convertidor eléctrico tipo prisma para generación, transmisión, distribución y suministro de corriente eléctrica que esencialmente esta constituido por dos sistemas: uno magnético, otro eléctrico y a demás el sistema de enfriamiento o control térmico debido a que el convertidor tiene un lado trifásico, el circuito magnético tiene como base el circuito magnético trifásico y el lado bifásico se construye en los tres circuitos magnéticos que Io forman, la forma práctica de cómo está constituido es que comprende el núcleo magnético de acero al silicio que puede ser de tipo columnas continuo en espiral o cortado con sección que puede ser de forma redonda, elíptica, cruciforme, etc., también puede ser de tipo Evans que es como el anterior pero cortado, también puede ser tipo Wescord o enrollado con empalmes, su principio de operación del convertidor de esta invención se fundamenta en la suma vectorial de las dos fases existentes de tal forma que produzcan como resultante la tercera fase no existente, la de aplicación más utilizada pero puede extenderse de dos a seis fases, como referencia se tienen las conexiones prisma ETO-120-2/3 y ETO-240-2/3 las cuales indican que la fase faltante es construida a partir de dos fases de alimentación, o sea, Ia fase a por las secciones a1 y a2, la fase b por las secciones b1 y b2, la fase c por las secciones d y c2, donde la fase generada puede ser cualquiera dependiendo de las fases de alimentación, si están presentes a y b la fase faltante será c; si están presentes b y c la fase faltante será a; si están presentes a y c la fase faltante será b, originándose de está manera la fase no existente , y obteniéndose un sistema trifásico de salida en cualquier nivel de tensión proporciona la tensión trifásica que por medio de otro sistema de salida en cualquier nivel de tensión proporciona la tensión trifásica utilizable para cualquier sistema eléctrico de generación, transmisión, distribución y suministro de energía eléctrica, también el sistema de conversión prisma permite obtener un sistema trifásico balanceado con neutro con la posibilidad de conector cualquier carga trifásica, bifásica, monofásica a partir de una alimentación bifásica con dos hilos, lo que constituye una invención notable con respecto a los convertidores eléctricos existentes que no son de aplicación general además de que éste sistema o conexión tipo prisma tiene aplicabilidad ilimitada por su aplicación, asimismo la fabricación de dicho convertidor eléctrico tipo prisma se construye de forma novedosa a partir de la manufactura del núcleo magnético, luego la apilación para formar un conjunto trifásico, la formación de paquetes, prensar para dar forma a las potencias de distribución o potencia, formar el núcleo magnético definitivo, y finalmente recocer dicho núcleo magnético, lo cual también determina un método de fabricación novedoso del convertidor tipo prisma de la presente invención.

Description

MX2006/000039
-1-
CONVERTIDOR ELÉCTRICO TIPO PRISMA PARA GENERACIÓN, TRANSMISIÓN, DISTRIBUCIÓN Y SUMINISTRO DE CORRIENTE ELÉCTRICA Y MÉTODO DE
FABRICACIÓN
CAMPO DE INVENCIÓN
La presente invención se refiere generalmente a Ia generación, transmisión, distribución y suministro de energía eléctrica. Mas particularmente, Ia presente invención se refiere a un convertidor denominado prisma el cual esta constituido en forma de dos sistemas , uno magnético y otro eléctrico y además por un sistema de enfriamiento ó control térmico debido a que dicho convertidor tiene un lado trifásico, donde el circuito magnético tiene como base el circuito magnético trifásico y el lado bifásico se construye en los tres circuitos magnéticos que Io forman, es decir , esta constituido por un núcleo magnético de acero al silicio que puede ser de tipo columnas con sección de cualquier forma, núcleo continuo, enrollado,, columnas o acorazado, etc. También puede ser de tipo Evans que es como el anterior pero cortado, o también puede ser del tipo Wescord o enrollado pero con empalmes. Su principio de operación se fundamenta en Ia suma vectorial de las dos fases existentes de tal forma que produzcan como resultante Ia tercera fase no existente a diferencia de los demás convertidores eléctricos como el tipo Scott. Delta abierta, el tipo prisma de Ia invención crea una tercera fase como producto de esta conversión, siendo que en el convertidor electrónico por ejemplo se crean las tres fases a través de conmutación digital a partir de una fuente de corriente directa.
ANTECEDENTES DE LA INVENCIÓN
Hasta ahora, se han conocido convertidores eléctricos de dos a tres fases, como los primeros que se inventaron en el siglo XIX con los desarrollos denominados Scott y Delta abierta; de los cuales el sistema Scott no es aplicable a las redes eléctricas actuales, ya que se utilizan actualmente sólo para alimentar de tres fases a dos fases en hornos de fundición eléctricos, y Ia aplicación inversa de dos a tres fases no es posible como se muestra en Ia figura 1. El sistema Delta abierta se emplea todavía en Ia actualidad y proporciona tensión trifásica en sistema de distribución pero su eficiencia es del 57.7% (Chester L. Dawes), Io cual se muestra ilustrativamente en Ia figura 2 de este convertidor.
Por último se proporciona tensiones desbalanceadas al neutro y corriente también desbalanceados. En Ia actualidad existen convertidores eléctricos de dos a tres fases sólo para motores que puedan ser eléctricos o electrónicos, sólo en baja tensión. El que da un mejor rendimiento en su funcionamiento es el electrónico, su limitación es que sólo funciona de baja tensión a baja tensión y su empleo en Io económico es excesivamente caro, donde su aplicación dependerá de Ia naturaleza de Ia carga conectada.
Los otros convertidores eléctricos denominados prisma como el que se muestra en Ia figura 5, que es un ejemplo practico de cómo esta construido mostrando el núcleo magnético de acero al silicio que puede ser de tipo columnas con sección de cualquier forma, núcleo continuo, enrollado, columnas o acorazado, etc., también puede ser de tipo Evans que es como el convertidor eléctrico anterior pero cortado, también puede ser del tipo Wescord o enrollado con empalmes.
La diferencia del convertidor de esta invención con respecto a su operación es que se fundamenta en Ia suma vectorial de Ia dos fases existentes de tal forma que produzcan como resultante Ia tercera fase no existente, o sea que a diferencia de los demás convertidores eléctricos con respecto al tipo Scott o Delta abierta, es que el tipo de prisma crea una tercera fase como producto de esta conversión, ya que en el convertidor eléctrico por ejemplo se crean las tres fases a través de conmutación digital a partir de una fuente de corriente eléctrica.
DESCRIPCIÓN DE LA INVENCIÓN
Así, un objeto de Ia presente invención es proveer un nuevo y mejorado convertidor eléctrico tipo prisma de dos a tres fases de alta tensión alta tensión, de alta tensión a media tensión, de media tensión a baja tensión y reversible.
Otro objeto más específico de Ia presente invención es proveer un convertidor eléctrico tipo prisma con eficiencia de conversión mejorada.
Todavía otro objeto de Ia presente invención es proveer un convertidor eléctrico tipo prisma aplicable a todo sistema eléctrico desde generación, transmisión, distribución, y suministro de energía eléctrica.
Un objeto adicional de Ia presente invención es proveer un convertidor eléctrico tipo prisma el cual esta construido de dos sistemas, uno magnético, el otro eléctrico y el sistema de enfriamiento o control térmico debido a que el convertidor tiene un lado trifásico. Todavía aún otro objeto de Ia presente invención es que el circuito magnético del convertidor tiene como base el circuito magnético trifásico y además el convertidor tiene un lado bifásico que se construye en los tres circuitos magnéticos que Io forman.
Los anteriores y otros objetos de Ia presente invención que se harán evidentes a medida que Ia presente invención se describa y sean realizados mediante el convertidor eléctrico tipo prisma que es un convertidor universal porque es más aplicable a todo sistema eléctrico desde generación, transmisión distribución y suministro, y además de que permite eficiencias muy altas de hasta 98%, es decir, casi 100%, Ia perfección en eficiencia, dependiendo de Ia potencia, totalmente balanceado en tensiones entre fases y entre fases y neutro puede alimentar cualquier tipo de carga como son: monofásicas, bifásicas o trifásicas, cualquier potencia es superior por prestaciones a los convertidores eléctricos tipo Scott ó Delta abierta y por aplicación y universalidad a los convertidores de baja tensión eléctricos y electrónicos.
El sistema de distribución en corriente alterna utilizado en todos los países del mundo como se muestra en Ia figura 3, se puede ver que de una línea trifásica normal en tres o cuatro hilos se obtiene servicio trifásico en mediana tensión.
Sin embargo en ciudades pequeñas, pueblos, zonas suburbanas, en el campo no resulta costeable a las compañías productoras de electricidad generalizada el uso de líneas trifásicas por que el número de usuarios no es suficiente para compensar el costo de Ia instalación. De aquí que incluso en países de Europa y Estados Unidos de América, Ia opción es instalar redes bifásicas en dos hilos y proporcionar servicio de tipo residencial monofásica y cuando se requiera servicio trifásico completar Ia red pero cobrándola Io que hace que el costo inicial sea muy elevado para el usuario final debido a que la energía eléctrica trifásica es muy solicitada, este sistema no satisface plenamente las necesidades y se ha tenido que complementar por ejemplo con sistemas que funcionan particularmente bien, o con eficiencia, pero a un costo muy elevado. Uno de estos sistemas es el usado en México por Ia CFE, denominado Delta abierta que proporciona servicio trifásico desbalanceado pero con baja eficiencia si sólo el 57.7% es utilizado con dos transformadores monofásicos, como se observa en Ia figura 2.
Esta misma necesidad no satisfecha, también ha provocado Ia proliferación de convertidores capacitivos de aplicación muy selectiva a los convertidores electrónicos que -A- tienen un costo elevado para potencias superiores a 15 KVA y que sólo se usan en Ia actualidad en baja tensión por Io que a su costo habría que agregar el de una subestación monofásica de alimentación.
En Ia figura 4 se muestra Ia solución propuesta para los sistemas de distribución que pueden solucionar Ia problemática mundial dado que las redes de mediana tensión pueden construirse en dos hilos y las compañías eléctricas pueden resolver el problema de expansión y que en un principio las cargas podrían ser monofásicas, pero en contraste con el sistema tradicional de distribución cualquier usuario que requiera servicio trifásico, Io puede obtener a partir del equipo convertidor propuesto, en su aplicación a distribución de media tensión a baja tensión.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
La figura 1 , describe Ia conexión Scott inventada a finales del siglo XIX.
La figura 2, describe Ia conexión Delta abierta inventada afínales del siglo XIX.
La figura 3, describe el sistema Eléctrico de distribución en corriente alterna de empleo general para generación, transmisión y distribución de energía eléctrica alterna.
La figura 4, describe el sistema eléctrico en Ia aplicación del convertidor eléctrico tipo prisma de Ia presente invención.
La figura 5, describe los tipos de núcleos de uso práctico actual, es decir como esta constituido el convertidor eléctrico tipo prisma actual.
La figura 6(a) describe vectorialmente el sistema eléctrico ó ETO 120 -2/3 del convertidor tipo prisma (conexión prisma), de Ia presente invención.
La figura 6(b) ilustra Ia conexión primas ETO -2402/3, de Ia presente invención.
Las figuras 7(a) y (b) describen el núcleo Bobina de Ia conexión eléctrica tipo prisma ETO - 240 -2/3, del convertidor tipo prisma de Ia presente invención, y mostrando Ia aplicación a los núcleos tipo columnas y acorazado Wescord, respectivamente. La figura 8, describe el arreglo físico posible del sistema prisma del convertidor tipo prisma de Ha presente invención.
La figura 9, describe Ia presentación física exterior del convertidor tipo prisma de Ia presente invención.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La figura 1 , que describe Ia conexión Scott que fue inventada a finales del siglo XIX, fue de los primeros convertidores eléctricos de dos a tres fases inventados con los desarrollos denominados Scott y Delta abierta, de donde el sistema Scott no es aplicable las redes actuales se utilizan actualmente sólo para alimentar de tres a dos fases en hornos de fundición eléctricos y donde Ia aplicación inversa de dos a tres fases no es posible.
La figura 2, que describe Ia conexión Delta abierta que esta vigente actualmente y que proporciona tensión trifásica en sistemas de distribución pero su eficiencia es de 57.7% (Chester L. Dawes), mostrándose en dicha figura 2 un esquema ilustrativo de esta conexión Delta abierta que también presenta tensiones desbalanceadas al neutro y corrientes también desbalanceadas.
La figura 3, que describe sistema eléctrico de distribución en corriente de empleo general actual para Ia generación, transmisión y distribución de energía eléctrica alterna, donde el sistema eléctrico de distribución en corriente alterna que es utilizado a nivel mundial el cual muestra que de una línea trifásica normal en tres o cuatro hilos se obtiene servicio trifásico en mediana tensión.
La figura 5, que describe los tipos de núcleos, es decir, como esta constituido el convertidor eléctrico tipo prisma actual, en donde se muestra el núcleo magnético de acero al silicio que puede ser de tipo columnas con sección de cualquier forma, o sea, redonda, elíptica, cruciforme, etc., pero también puede ser (aunque no se muestran) de tipo Evans que es como el anterior pero cortadp, también puede ser tipo Wescord o enrollado con empalmes. Su principio de operación se fundamenta en Ia suma vectorial de las dos fases existentes de tal forma que produzcan como resultante Ia tercera fase no existente, a diferencia de los demás convertidores eléctricos con el tipo Scott o Delta abierta, es que el tipo de convertidor prisma crea una tercera fase como producto de esta conversión, por ejemplo en el convertidor electrónico (no mostrado) se crean las tres fases a través de conmutación digital a partir de una fuente de corriente directa, hasta ahora solo se han descrito el ante previo de convertidores eléctricos relacionados con el convertidor eléctrico tipo prisma de esta invención.
La figura 4, que describe el sistema eléctrico posible para su aplicación novedosa del convertidor eléctrico tipo prisma de Ia presente invención, siendo Ia solución propuesta para los sistemas de distribución y de esta forma de representación se explica que para una problemática general, dado que las redes de mediana tensión se pueden construir en dos hilos, por Io tanto las compañías eléctricas resolverían el problema de expansión ya que en un principio si las cargas son monofásicas, por Io que con el sistema tradicional de distribución (no mostrado) cualquier usuario que requiera servicio trifásico, es posible obtenerlo a partir de este sistema eléctrico del convertidor propuesto, en su aplicación a distribución de media tensión a baja tensión.
La figura 6(a), que describe vectorialmente el sistema eléctrico del convertidor tipo prisma (conexión prisma) ó ETO 120 -2/3 mostrado de Ia presente invención con detalle exacto de las conexiones prisma, Io que significa que es el convertidor prisma conectado a 120° eléctricos y que convierte de dos (2) a tres(3) fases, como puede verse en Ia figura, Ia fase esta formada de dos secciones por ejemplo Ia fase a por las secciones a1 y a2, Ia fase b por las secciones b1 y b2, y Ia fase c por las secciones d y c2, donde las fases generales puede ser cualquiera a, b, ó c, en donde en dicha figura 6, se observan que las fases a y b forman Ia fase c. La sección de Ia fase d es formada por a1 y b1 , Ia sección de Ia fase c2 es formada por a2 y b2. Al formarse Ia fase c da origen a las fases correspondientes, Ia a con s1 , Ia b con s2 y Ia c con s3. El desplazamiento angular conseguido en estas fases es de 120 ° E (grados eléctricos), igual que un sistema trifásico normal y genera tensiones simétricas entre fases y entre fases y neutro, por ejemplo para el caso de México Ia tensión de alimentación podrá ser 13200, 23000, ó 34500 volts, Ia de salida más común podrá ser de 220 volts entre s1 y s2, 220 volts entre s2 y s3, 220 volts entre s1 y s3 y 127 volts entre s1 y n, 127 volts entre s2 y n, 127 volts entre s3 y n. Los valores de tensión de entrada podrán ser de cualquier valor de uso común ó especial en el lado bifásico, y en el lado trifásico también los valores de tensión pueden ser de cualquier valor de uso común o especial.
La figura 6(b) que ilustra Ia conexión prisma ETO -2402/3, su funcionamiento es igual al de Ia figura 6 (a), Ia diferencia es el desplazamiento angular de los dos vectores de entrada que en este caso están desplazados 240° E (grados eléctricos). La figura 7(a) y 7 (b) que describen el arreglo núcleo-bobina de Ia conexión eléctrica tipo prisma ETO -240 -2/3, del convertidor tipo prisma de Ia presente invención, y mostrando Ia aplicación a los núcleos tipo columnas y acorazado wescord, respectivamente, donde los devanados están formados por tres secciones, dos de media tensión y una de baja tensión 5 conectadas igual que las formas descritas en las figuras 6(a) y 6(b), de acuerdo con Ia ecuación de potencia de entrada para sistemas balanceados es:
P ' ENT =2 vrβse- i'fase Donde. PENT —- Potenαadeentradaenwatts
" fase~ voltaje de fase en volts
'fase comenteeledricadefaseenamp^rs
Y Ia Ecuación de Ia potencia de salida es :
P ~SAL =3 Vfass- I'fase Donde PSAf -=-PO f1StIcIa de salida en watts
-j e \/
"* vfase = voltajedefaseenvolts
I 'fase = comente eléctπcadefase en amper s**
La figura 8 que describe el arreglo físico posible del sistema prisma del convertidor tipo prisma de Ia presente invención. 20
Y finalmente Ia figura 9 que describe Ia presentación física exterior del convertidor tipo prisma de Ia presente invención, donde dicho convertidor se construye de Ia siguiente manera: se manufactura el núcleo magnético de Ia manera convencional, es decir, los núcleos tipo columnas cortadas se hacen por medio de corte de Ia lamina en rollo, realizando
25 cortes a 90° o 45° dependiendo del diseño del núcleo, una vez realizados los cortes necesarios se apilan para que formen un conjunto trifásico que podrá ser en forma de estrella, en Delta o Planos como aparece en Ia figura 5, también este tipo de núcleos se podrán fabricar en forma continua con pocos cortes en el grupo, siendo este tipo de núcleos es en espiral, una vez decidida Ia forma de la sección que puede ser redonda o en escalones,
30 elíptica, cruciforme, etc., se forman tres paquetes redondos por medio de embobinados perfectamente compactos, después de terminada esta etapa se prensan para darles Ia forma deseada y diseñada de acuerdo a las potencias de distribución o potencias mayores, y finalmente se forma el núcleo definitivo como se mostró en Ia figura 5, en dicho proceso se podrán encontrar en el maquinado, esfuerzos mecánicos que alteran el enrejado molecular
35 que provocan pérdidas magnéticas que pueden reducirle sometiendo dicho núcleo a un recocido. Ahora bien el núcleo tipo Evans, es el mismo pero con cortes que forman dos mitades ensambladas después de montarlas bobinas correspondientes.
También otro método muy extendido actualmente es el dominado enrollado o Wescord que consiste en formar cuatro paquetes de lámina cortada denominada arcada mayor y arcada menor, o sea, que se forman las secciones redondas después del corte por medio de embobinadotas, compactándolas, posteriormente se prensan para darles forma definitiva, sometiéndose también a un proceso de reconocido para minimizar las pérdidas magnéticas, siendo estos algunos tipos de núcleos magnéticos que forman el circuito magnético trifásico que sirve para Ia construcción del convertidor tipo prisma de Ia presente invención.
En cualquier caso Ia parte eléctrica se fabrica en tres columnas, una por cada fase a que se trate de un circuito eléctrico envolvente (tipo columnas en espiral, Evans, etc.) o de un circuito magnético envolvente (acorazado Wescord, acorazado en espiral, acorazado en laminaciones cortadas, etc.). Las bobinas se construyen con embobinadotas atendiendo el número de vueltas que se requieran para cada tensión bifásica o trifásica, donde el embobinado esta formado para cada fase por dos acciones por fase para Ia parte bifásica, una sección por fase para Ia parte trifásica como en las figuras 7(a) y 7(b).
Ahora bien puede utilizarse cualquier tensión bifásica o trifásica en alta tensión, media tensión o baja tensión, cualquier densidad de corriente de las usuales en conductores eléctricos que no rebasen sus limites térmicos de acuerdo a su tipo de aislamiento, en este caso los alambres magneto soleras, laminas y aislamientos usados en general a nivel mundial y que este de acuerdo a Ia normatividad Internacional de esta materia.
Por tanto Ia presente invención en el campo de distribución al ahorrar el 33% de equipo de instalación en Ia red de distribución es de beneficio muy importante para las compañías generadoras de energía por el empleo de más usuarios con líneas bifásicas, que podrán extender el beneficio a cualquier parte, como poblaciones pequeñas medianas o el campo donde podrán potencialmente proporcionar el servicio trifásico a quién Io desee. Este beneficio podrá extenderse a Ia transmisión y generación eléctrica.

Claims

REINVINDiCACIONESHabiendo descrito suficientemente el invento, considero como una novedad, y por Io tanto, reclamo como de mi propiedad, Io contenido en las siguientes cláusulas.
1.-Convertidor eléctrico tipo prisma para generación, transmisión, distribución y suministro de corriente eléctrica que esta conformado por un sistema magnético, un sistema eléctrico y un sistema de enfriamiento debido a que el convertidor tiene un circuito trifásico, el circuito magnético tiene como base el circuito magnético trifásico y el circuito bifásico esta construido por los tres circuitos magnéticos que Io forman, caracterizado porque el convertidor esta conectado vectorial mente a 120° y 240° grados eléctricos que convierte de dos a tres fases eléctricas, (entre ETO 120 -2/3 y ETO 240 -2/3), donde Ia fase esta conformada de dos secciones, o sea, Ia fase a por las secciones a1 y a2 Ia fase b por las secciones b1 y b2, Ia fase c por Ia secciones d y c2, y podrá ser Ia fase generada cualquier fase a, b, ó c, como Ia sección de Ia fase d es formada por a1 y b1 , la sección de la fase c2 es formada por a2 y b2, y al formarse Ia sección de Ia fase c da origen a las fases correspondientes, Ia fase a con s1, Ia fase b con s2 y Ia fase c con s3, siendo el desplazamiento angular en estas fases de entre 120° E (grados eléctricos) y 240° E (grados eléctricos), generando tensiones simétricas entre fases y entre, fases y neutro, habiendo también tensiones de alimentación y tensiones de salida entre s1 y s2, entre s2 y s3, entre s1 y s3, entre s1 y n , s2 y n, y entre s3 y n, además los valores de tensiones de entrada podrá ser cualquier valor de uso común o especial en el lado bifásico o en el lado trifásico.
2.- Convertidor eléctrico como el de Ia cláusula 1, caracterizado porque puede estar conformado a partir de un núcleo magnético de acero al silicio que puede ser del tipo columnas con sección de cualquier forma ya sea redonda elíptica o cruciforme, espiral o cortado a 90° o 45°.
3.- Convertidor eléctrico como el de Ia cláusula 1, caracterizado porque puede estar conformado a partir de un convertidor tipo Evans que es como el convertidor tipo espiral pero cortado.
4.- Convertidor eléctrico como el de Ia cláusula 1, caracterizado porque puede estar conformado a partir del convertidor tipo Wescord o enrollado pero con empalmes.
5.- Convertidor eléctrico como el de Ia cláusula 1, caracterizado porque su principio de operación se fundamenta en Ia suma vectorial de las dos fases existentes para producir como resultante Ia tercera fase no existente.
6.- Convertidor eléctrico como el de Ia cláusula 1, caracterizado porque Ia conversión eléctrica puede extenderse hasta de dos a seis fases.
7.- Convertidor eléctrico como el de Ia cláusula 6, caracterizado porque Ia fase generada puede ser cualquiera dependiendo de las fases de alimentación.
8.- Convertidor eléctrico como el de Ia cláusula 1, caracterizado porque permite obtener un sistema trifásico balanceado con neutro para conectar cualquier carga trifásica, bifásica, monofásica a partir de una fase de alimentación bifásica con dos hilos.
9.- Convertidor eléctrico como el de Ia cláusula 1, caracterizado porque son de aplicación general como en generadores, motores, hornos de fundición eléctricos, instalaciones eléctricas y demás equipos eléctricos especiales.
10.- Convertidor eléctrico como el de Ia cláusula 1 , caracterizado porque convierte potencias desde IVAo menores hasta cientos de MVA, en cualquier tensión en cualquier configuración magnética de núcleos trifásicos, planos, delta, estrella, independiente.
11.- Convertidor eléctrico como el de Ia cláusula 1 , caracterizado porque el sistema eléctrico se construye de tres columnas, una por cada fase.
12.- Método para fabricación de un convertidor eléctrico tipo prisma para generación, transmisión, distribución y suministro de corriente eléctrica, caracterizado por los pasos de:
A) Manufacturar el núcleo magnético, B) Apilar para formar un conjunto trifásico como una estrella, delta, planos, o continua . (espiral, redonda, escalones, elíptica, cruciforme)
C) Formar paquetes por medio de embobinados compactos,
D) Prensar para dar forma de acuerdo a las potencias de distribución o potencia,
E) Formar el núcleo magnético definitivo, F) Recocer el núcleo si se altera el enrejado molecular debido a los esfuerzos mecánicos por el maquinado.
13.- Método para Ia fabricación de un convertidor, como el de Ia cláusula 12, caracterizado porque los núcleos tipo columnas cortadas se hacen por medio de corte de lamina en rollo realizados a 45° ó 90° ó continua en espiral.
5 14.- Método para Ia fabricación de un convertidor, como el de Ia cláusula 12, caracterizado porque el núcleo magnético puede estar conformado a partir del núcleo tipo Evans que es el mismo pero con cortes.
15.- Método para Ia fabricación de un convertidor, como el de Ia cláusula 12, caracterizado 10 porque el núcleo magnético puede estar conformado a partir del núcleo Wescord que consiste en formar cuatro paquetes de lamina cortada llamados arcada mayor y arcada menor, formándose las secciones redondas después del corte de embobinadotas compactándolas, luego se prensan para dar Ia forma definitiva, sometiéndose a un proceso de recocido para minimizar perdidas. 15
16.- Método para Ia fabricación de un convertidor, como el de Ia cláusula 12, caracterizado porque Ia parte eléctrica se construye en tres columnas, una por cada fase de un circuito eléctrico envolvente o un circuito magnético envolvente.
20 17.- Método para Ia fabricación de un convertidor como el de Ia cláusula 12, caracterizado porque Ia bobina se construye con embobinadoras de acuerdo al número de vueltas para cada tensión bifásica o trifásica.
18.- Método para Ia fabricación de un convertidor como el de Ia cláusula 17, caracterizado 25 porque esta formado para cada fase: dos secciones por fase para Ia parte bifásica, una sección por fase para Ia parte trifásica.
PCT/MX2006/000039 2005-05-23 2006-05-22 Convertidor eléctrico tipo prisma para generación, transmisión distribución y suministro de corriente eléctrica y método de fabricación WO2006126868A1 (es)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2008513388A JP2008543253A (ja) 2005-05-23 2006-05-22 電力の発電、送電、配電及び供給用のプリズム型電気コンバータ及びその製造方法
BRPI0610754-0A BRPI0610754A2 (pt) 2005-05-23 2006-05-22 conversor elétrico tipo prisma para geração, transmissão, distribuição e fornecimento de corrente elétrica e método de fabricação
AU2006250142A AU2006250142B2 (en) 2005-05-23 2006-05-22 Prism-type electrical converter for the generation, transmission, distribution and supply of electric current, and production method thereof
US11/910,801 US7791916B2 (en) 2005-05-23 2006-05-22 Prism-type electrical converter for the generation, transmission, distribution and suppy of electric current, and production method thereof
EP06757776A EP1887588A4 (en) 2005-05-23 2006-05-22 ELECTRIC TRANSFORMER OF PRISMATYPS FOR THE PRODUCTION, TRANSFER, DISTRIBUTION AND DELIVERY OF ELECTRIC CURRENT AND METHOD OF MANUFACTURING THEREOF
EA200702293A EA200702293A1 (ru) 2005-05-23 2006-05-22 Электрический преобразователь призматического типа, предназначенный для вырабатывания, передачи, распределения и подвода электрического тока, а также способ его изготовления
CA002605349A CA2605349A1 (en) 2005-05-23 2006-05-22 Prism-type electrical converter for the generation, transmission, distribution and supply of electric current, and production method thereof
NZ564368A NZ564368A (en) 2005-05-23 2006-05-22 Prism-type electrical converter using a vectorial sum of two phases to create a non-existent third phase
EGNA2007001048 EG24922A (en) 2005-05-23 2007-10-03 Prism-type electrical converter for the generation, transmission, distribution and supply of electric current, and production method thereof
IL187527A IL187527A (en) 2005-05-23 2007-11-20 Prism-type electric converter, for the production, transmission, distribution and supply of electric current and a method for its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXPA/A/2005/005770 2005-05-23
MXPA05005770A MXPA05005770A (es) 2005-05-23 2005-05-23 Convertidor electrico tipo prisma para generacion, transmision, distribucion y suministro de corriente electrica y metodo de fabricacion.

Publications (1)

Publication Number Publication Date
WO2006126868A1 true WO2006126868A1 (es) 2006-11-30

Family

ID=38336659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2006/000039 WO2006126868A1 (es) 2005-05-23 2006-05-22 Convertidor eléctrico tipo prisma para generación, transmisión distribución y suministro de corriente eléctrica y método de fabricación

Country Status (16)

Country Link
US (1) US7791916B2 (es)
EP (1) EP1887588A4 (es)
JP (1) JP2008543253A (es)
KR (1) KR20080018906A (es)
CN (1) CN101189691A (es)
AP (1) AP2007004230A0 (es)
AU (1) AU2006250142B2 (es)
BR (1) BRPI0610754A2 (es)
CA (1) CA2605349A1 (es)
EA (1) EA200702293A1 (es)
EG (1) EG24922A (es)
IL (1) IL187527A (es)
MX (1) MXPA05005770A (es)
NZ (1) NZ564368A (es)
WO (1) WO2006126868A1 (es)
ZA (1) ZA200710022B (es)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CO6050067A1 (es) * 2009-01-29 2009-06-30 Codensa S A Esp Conexion de devanados para suministrar potencia trifasica a partir de una aliemntacion bifasica y transformador de distribucion 2x3
US20140226387A1 (en) * 2013-02-08 2014-08-14 John E. Stauffer Transmission of electric power
EP3415137A1 (en) * 2017-06-16 2018-12-19 Koninklijke Philips N.V. Harvesting energy during compression of a pill pack
WO2024010440A1 (es) * 2022-07-07 2024-01-11 Escobar Carballo Gustavo Transformador de 2 a 3 fases estrella abierta

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1746259A (en) * 1926-08-26 1930-02-11 Bbc Brown Boveri & Cie Transformer apparatus
US2014733A (en) * 1932-07-28 1935-09-17 Rca Corp Vacuum tube system
GB545425A (en) * 1940-11-22 1942-05-26 British Thomson Houston Co Ltd Improvements in electric transformers
GB611026A (en) * 1944-09-23 1948-10-25 Smith & Sons Ltd S Alternating current motor control systems
US2975357A (en) * 1958-09-26 1961-03-14 Gen Electric Transformer
US3278825A (en) * 1962-11-01 1966-10-11 United Aircraft Corp Static inverter utilizing a modified scott-t transformer
JPS61104605A (ja) * 1984-10-27 1986-05-22 Hitachi Ltd スコツト結線モ−ルド変圧器及びそのコイルの製造方法
JPS61248508A (ja) * 1985-04-26 1986-11-05 Toshiba Corp スコツト結線変圧器用鉄心
EP0962949A1 (de) * 1998-06-05 1999-12-08 Lagor S.R.L. Transformatorkern und Verfahren zum Aufbauen eines Transformatorkerns

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2790131A (en) * 1955-04-25 1957-04-23 Nyyssonen Einard Polyphase transformer system
US3129377A (en) * 1960-11-14 1964-04-14 Westinghouse Electric Corp Transformer for connecting a threephase system to a two-phase system
US3375429A (en) * 1966-11-01 1968-03-26 Pagano Fernando Phase converting power transformers
US4639610A (en) * 1985-12-10 1987-01-27 Westinghouse Electric Corp. Rotating flux transformer
US6737951B1 (en) * 2002-11-01 2004-05-18 Metglas, Inc. Bulk amorphous metal inductive device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1746259A (en) * 1926-08-26 1930-02-11 Bbc Brown Boveri & Cie Transformer apparatus
US2014733A (en) * 1932-07-28 1935-09-17 Rca Corp Vacuum tube system
GB545425A (en) * 1940-11-22 1942-05-26 British Thomson Houston Co Ltd Improvements in electric transformers
GB611026A (en) * 1944-09-23 1948-10-25 Smith & Sons Ltd S Alternating current motor control systems
US2975357A (en) * 1958-09-26 1961-03-14 Gen Electric Transformer
US3278825A (en) * 1962-11-01 1966-10-11 United Aircraft Corp Static inverter utilizing a modified scott-t transformer
JPS61104605A (ja) * 1984-10-27 1986-05-22 Hitachi Ltd スコツト結線モ−ルド変圧器及びそのコイルの製造方法
JPS61248508A (ja) * 1985-04-26 1986-11-05 Toshiba Corp スコツト結線変圧器用鉄心
EP0962949A1 (de) * 1998-06-05 1999-12-08 Lagor S.R.L. Transformatorkern und Verfahren zum Aufbauen eines Transformatorkerns

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1887588A4 *

Also Published As

Publication number Publication date
AP2007004230A0 (en) 2007-12-31
EG24922A (en) 2010-12-22
BRPI0610754A2 (pt) 2010-07-20
IL187527A0 (en) 2008-03-20
AU2006250142B2 (en) 2011-07-28
JP2008543253A (ja) 2008-11-27
IL187527A (en) 2012-08-30
US20080192522A1 (en) 2008-08-14
CA2605349A1 (en) 2006-11-30
EA200702293A1 (ru) 2008-10-30
ZA200710022B (en) 2009-07-29
MXPA05005770A (es) 2007-01-25
NZ564368A (en) 2011-01-28
KR20080018906A (ko) 2008-02-28
AU2006250142A1 (en) 2006-11-30
US7791916B2 (en) 2010-09-07
CN101189691A (zh) 2008-05-28
EP1887588A4 (en) 2013-01-23
EP1887588A1 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
US8258665B2 (en) Motor winding
US7521835B2 (en) Permanent magnet machine with windings having strand transposition
US20060273686A1 (en) Hub motors
CN203151263U (zh) 马达定子及其结线装置
EP1107426A3 (en) Stator of an AC generator
WO2006126868A1 (es) Convertidor eléctrico tipo prisma para generación, transmisión distribución y suministro de corriente eléctrica y método de fabricación
EP2513924A1 (en) Transformer
US20130293010A1 (en) Current supply arrangement with a first and a second current supply device, wherein the second current supply device is connected to the first current supply device
CN111463944B (zh) 定子组件及电机
CN103199671A (zh) 磁电耦合器
Blalock The first polyphase system: a look back at two-phase power for AC distribution
CN103026434B (zh) 多相变压器整流器单元
EP2954544B1 (en) Transmission of electric power
Lucas Historical development of the transformer
CN102360794A (zh) 一种移相整流变压器及串联拓扑变频器
CN202905397U (zh) 一种三相微型变压器
CN217822319U (zh) 一种单绕组电感、耦合电感及电力电子设备
AU2020227108A1 (en) Multi-secondary transformer
EP2800248B1 (en) Stator winding of an electric generator
CN202695082U (zh) 一种组合变化互感器
US378321A (en) Rankin kennedy
CN103000349A (zh) 一种三相微型变压器
CN201549329U (zh) 一种三相感应调压器
Ramamoorty et al. Electrical Machines
CN113571315A (zh) 一种三相变单相变压器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680017897.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2605349

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11910801

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 4077/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 187527

Country of ref document: IL

Ref document number: 200702293

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2008513388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 07125434

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 2006757776

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006250142

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 564368

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1020077030175

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006250142

Country of ref document: AU

Date of ref document: 20060522

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006250142

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006757776

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0610754

Country of ref document: BR

Kind code of ref document: A2