WO2006123938A1 - Procede d’interconnexion de cellules solaires - Google Patents

Procede d’interconnexion de cellules solaires Download PDF

Info

Publication number
WO2006123938A1
WO2006123938A1 PCT/NO2006/000190 NO2006000190W WO2006123938A1 WO 2006123938 A1 WO2006123938 A1 WO 2006123938A1 NO 2006000190 W NO2006000190 W NO 2006000190W WO 2006123938 A1 WO2006123938 A1 WO 2006123938A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
polarity
insulation
solar cells
cell device
Prior art date
Application number
PCT/NO2006/000190
Other languages
English (en)
Inventor
Erik Sauar
Per Andersson
Helge Cato Aamodt
Timothy C. Lommasson
Andreas Bentzen
Original Assignee
Renewable Energy Corporation Asa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renewable Energy Corporation Asa filed Critical Renewable Energy Corporation Asa
Publication of WO2006123938A1 publication Critical patent/WO2006123938A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for interconnection of solar cells. More specifically, the invention relates to interconnecting back-contacted solar cells during module assembly by tabbing and stringing.
  • Photovoltaic (PV) modules are generally manufactured by interconnection of several individual photovoltaic solar cells made from silicon wafers, each solar cell generating a relatively large amount of current delivered at a relatively low voltage typically between 0.5-0.8 Volts.
  • interconnection of the individual cells is generally performed in a way such that the negative terminal of one cell is connected to the positive terminal of another cell, i.e. the individual solar cells are connected in a series connection.
  • Such interconnection is generally achieved by soldering conductive wires, so called tabs, to the terminals of the different solar cells (see International Pat. No. WO 92/22929, J.T. Borenstein et al.).
  • the two polarity terminals are present at different surfaces of the cells, one of the terminals typically being at the back surface and the other terminal typically being at the front, i.e. the light-receiving, surface.
  • the tabs are thus soldered such that the front surface of one solar cell is connected to the back surface of the adjacent solar cell. This results in obscuration of a portion of the light-receiving surface of the solar cells, thus reducing the amount of current generated by the PV module.
  • the tabs are connected alternately between the front and back surfaces of the individual solar cells, a non-negligible spacing between the solar cells are needed to accommodate the tabs, reducing the packing density of the solar cells within the module.
  • the solar cells may incorporate a carrier collecting region on the light- receiving surface, in combination with methods to pass current through or around the substrate to a connection area on the back surface.
  • Current can be passed from a collection grid on the light-receiving surface to the back surface around the edges of the solar cell by incorporation of metallized regions on one or several sides of the cells, often referred to as metallization wrap around (MWA), (see B.T. Cavicchi et al., "Large area wrap around cell development", Proc. 16 th European PVSEC, 1984; W. Joos et al., "Back contact buried contact solar cells with metallization wrap around electrodes", Proc. 28 th IEEE PVSC, 2000).
  • MWA metallization wrap around
  • current can be passed to the back surface through metallized holes (or vias) through the substrate, often referred to as metallization wrap through (MWT) when a current collection grid is present on the light-receiving surface, or emitter wrap through (EWT) when no such collection grid is present,
  • MTT metallization wrap through
  • EWT emitter wrap through
  • connection to the front side grid is in this method achieved by small pins attached to the interconnection media, extending through holes in the individual solar cells. This requires very precise alignment of each solar cell, and may thus complicate the assembly process. To the extent necessary, the teachings of the above-mentioned paper and the above two mentioned patents are incorporated herein by reference thereto.
  • E. Van Kerschaver describes interconnection of individual back-contacted solar cells, where one polarity terminal is connected to a current collecting grid on the light-receiving surface through holes in the substrate, and where the two polarity terminals are accessible at the back surface as two separate and individually insulated regions.
  • Series connection of individual solar cells is then achieved by applying one wide conductive lead, covering both the one polarity terminal of one cell and the other polarity terminal of the adjacent cell.
  • Such interconnection poses strict requirements on the geometry of the contact regions at the back surface. Specifically, the two polarity regions must be accessible for contacting near opposite edges of the back surface.
  • each of the two polarity contact regions needs to be one continuous area, excluding the possibility of contacting solar cells where one of the polarity terminals is accessible as contact points or islands.
  • teachings of that document are incorporated herein by reference thereto.
  • the claimed invention aims to overcome the limitations of the above techniques, by allowing interconnection of back contacted solar cells where both polarity terminals are accessible at the same surface. Specifically, the claimed invention allows such interconnection where one or both of the two polarity terminals are accessible as isolated regions or contact points, without short circuiting the cells, thus not posing particular limitations to the geometrical arrangement of the contacting terminals.
  • the present invention relates to a method for interconnecting solar cells, where each solar cell having first and second polarity terminals accessible at the same surface, comprising connecting conductors between the first polarity terminal(s) of a first solar cell and the second polarity terminal(s) of a second solar cell, wherein the conductors connected to the first polarity terminal of the first solar cell is electrically insulated from the second polarity terminal(s) of the same solar cell by an insulation layer.
  • the present invention also relates to a solar cell device comprising interconnected solar cells, where each solar cell comprises first and second polarity terminals accessible at the same surface, where conductors are connected between the first polarity terminal(s) of a first solar cell and the second polarity terminal(s) of a second solar cell and where the conductors connected to the first polarity terminal of the first solar cell is electrically insulated from the second polarity terminal(s) of the same solar cell by an insulation layer.
  • the present invention achieves a simplified assembly of photovoltaic modules consisting of back-contacted solar cells.
  • the invention allows such back- contacted solar cells to be interconnected using existing manufacturing techniques, thus reducing the investment costs and easing implementation of the invention.
  • Modules manufactured using the methods according to the present invention exhibit increased current generation compared to prior art, and simplified processing compared to other techniques of interconnecting back-contacted solar cells.
  • FIG. 1-a is an illustration of interconnection of individual cells.
  • FIG. 1-b is an illustration of an alternative embodiment of fig. 1-a, in which alternate cells do not need to be rotated.
  • FIG. 1-c illustrates the interconnection conductors with insulation material.
  • FIG. 2-a illustrates one embodiment where an insulation material covers the conductors to be used for interconnection of the individual solar cells.
  • FIG. 2-b illustrates another embodiment where insulation layers in the form of precut sheet is placed on each of the individual solar cells in a suitable geometry.
  • individual solar cells are assumed to be interconnected in a series fashion, i.e. by electrically connecting a first polarity terminal region(s) of a first solar cell to a second polarity terminal region(s) of a second solar cell, both polarity terminal region(s) being accessible at the back side surface of the individual solar cells.
  • the assumption of such interconnection in a series fashion is only intended as one possible interconnection scheme, and the claimed invention is equally suitable for interconnecting such back contacted solar cells by electrically connecting the first polarity terminal of the first solar cell to the same polarity terminal of the second solar cell, i.e. in a parallel interconnection of individual solar cells.
  • FIG. 1-a is an illustration of how individual elements within the claimed invention can be geometrically interconnected.
  • individual back-contacted solar cells 1 having both the first polarity terminal regions 3 and the second polarity terminal regions 4 accessible at the same surface 2 of each solar cell 1.
  • the surface 2 is most preferably the back surface of the solar cells, i.e. the surface not intended to be the primary light-receiving surface.
  • the individual solar cells 1 are preferably aligned in such a fashion that one or more of the first polarity terminal regions 3 of the first solar cell and one or more of the second polarity terminal regions 4 of an adjacent solar cell lies along the same axis in the plane of the surface 2 at which the terminals 3 and 4 are accessible.
  • One or more of the first polarity terminal regions 3 of the first solar cell is then electrically connected to one or more of the second polarity terminal regions 4 of an adjacent solar cell by conductors 5.
  • an insulation material (not shown in the FIG. 1-a) is provided underlying the conductors' 5.
  • Methods to achieve electrical contact between the conductors 5 and the different polarity terminal regions 3 and 4 of the adjacent solar cells 1 include, but are not limited to, hot air soldering, infrared light soldering, local heat probe soldering, and ultrasonic bonding.
  • FIG. 1-b contains an illustration of an alternative interconnection geometry of individual solar cells 1 having both the first polarity terminal regions 3 and the second polarity terminal regions 4 accessible at the same surface 2.
  • the two polarity terminal regions 3 and 4 are oriented in such a fashion that adjacent solar cells do not need to be rotated.
  • One or more of the first polarity terminal regions 3 of the first solar cell is then electrically connected to one or more of the second polarity terminal regions 4 of an adjacent solar cell by conductors 5.
  • an insulating material (not shown in FIG. 1-b) is provided underlying the conductors 5.
  • the polarity terminal regions 3 and 4 are preferably arranged along a straight line parallel to each other, as shown in fig. 1-b.
  • the terminal regions are oriented with an angle ⁇ in relation to the edge of the solar cell.
  • the angle ⁇ is preferably between 5° - 45°, even more preferably between 10° - 25° and most preferably 14° for square solar cells.
  • the preferred angle ⁇ will depend on the shape of the rectangle.
  • FIG. 1-c schematically depicts a cross section of a back contacted solar cell 1 along one axis of terminal regions 3 of the same polarity.
  • the figure shows an interconnecting conductor 5 connecting one or more of the same polarity terminal regions 3 of the first solar cell I 5 where electrical insulation between the conductor 5 and areas of the back side 2 of the solar cell 1 other than the first polarity terminal regions 3 is achieved by an insulation material 6.
  • FIG. 2-a illustrates one embodiment of the claimed invention, in which such electrical insulation is achieved by an insulating material 6 covering the electrical conductor 5 prior to interconnection. Electrical contact between the conductor 5 and the terminal region of interest at the solar cell is then achieved by local removal of the insulation material 5 during interconnection of individual solar cells. Such removal of the insulation material can be achieved by, but is not limited to, melting of the insulation layer between the conductor 5 and the terminal region to which electrical connection is to be made during soldering or bonding. In another embodiment of the invention, the insulation material 6 surrounding the conductor 5 contains pre-made disruptions or openings according to the spacing of the terminal regions to which electrical connection is to be made.
  • FIG. 2-b illustrates yet another embodiment of the invention, in which precut sheets of insulation material 6, containing suitable openings 7 through which electrical connection between the conductors and the terminal regions can be made, are placed over the surface of the solar cells containing the terminal regions prior to interconnection. Note that the geometry of the precut sheets of insulation material 6 according to FIG. 2-b is an illustration only, and any other geometry of the precut sheets is also possible.
  • electrically insulating layers are "placed on the solar cells in the form of precut sheets. Any other method for achieving such locally electrically insulating layers covering parts of the surface of the solar cells at which the two polarity terminals are accessible is to be understood as not limiting the scope of the appended claims.
  • Such methods for placing such an insulation layer on such back- contacted cells include, but are not limited to, screen printing an insulation layer on the one surface of the solar cells.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

La présente invention concerne un dispositif de cellules solaires et un procédé pour interconnecter des cellules solaires. Le dispositif de cellules solaires comprend des cellules solaires interconnectées, où chaque cellule solaire comprend des première et seconde bornes de polarité accessibles au niveau de la même surface. En outre, des conducteurs sont connectés entre la ou les premières bornes de polarité d’une première cellule solaire et la ou les secondes bornes de polarité d’une seconde cellule solaire. Les conducteurs connectés à la première borne de polarité de la première cellule solaire sont isolés électriquement de la ou des secondes bornes de polarité de la même cellule solaire par une couche d’isolation.
PCT/NO2006/000190 2005-05-19 2006-05-19 Procede d’interconnexion de cellules solaires WO2006123938A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US68239005P 2005-05-19 2005-05-19
US60/682,390 2005-05-19

Publications (1)

Publication Number Publication Date
WO2006123938A1 true WO2006123938A1 (fr) 2006-11-23

Family

ID=36765402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NO2006/000190 WO2006123938A1 (fr) 2005-05-19 2006-05-19 Procede d’interconnexion de cellules solaires

Country Status (1)

Country Link
WO (1) WO2006123938A1 (fr)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080276981A1 (en) * 2007-05-09 2008-11-13 Sanyo Electric Co., Ltd. Solar cell module
DE102007022877A1 (de) * 2007-05-14 2008-11-20 Q-Cells Ag Drahtsystem zum elektrischen Kontaktieren einer Solarzelle
DE102007035883A1 (de) * 2007-07-31 2009-02-12 Institut Für Solarenergieforschung Gmbh Rückkontaktsolarzelle und Solarmodul mit reduzierten Serienwiderständen
EP2100336A1 (fr) * 2006-12-22 2009-09-16 Advent Solar, Inc. Technologies d'interconnexion pour cellules et modules solaires a contact arriere
EP2109150A1 (fr) * 2007-01-31 2009-10-14 Sharp Kabushiki Kaisha Module de cellule solaire, element de cablage pour une cellule solaire, et procede de fabrication d'un module de cellule solaire
EP2109148A2 (fr) * 2008-04-10 2009-10-14 General Electric Company Interconnexion de niveaux de tranche et procédé
DE102008033632A1 (de) * 2008-07-17 2010-01-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solarzelle und Verfahren zur Herstellung einer Solarzelle
WO2010128021A2 (fr) 2009-05-05 2010-11-11 Komax Holding Ag Cellule solaire, module solaire comprenant cette cellule solaire, ainsi que procédés pour sa production et pour la production d'un film de contact
WO2011011855A1 (fr) * 2009-07-31 2011-02-03 Day4 Energy Inc. Procédé permettant d’interconnecter des piles solaires à contact arrière et module photovoltaïque employant ce dernier
EP2324508A2 (fr) * 2008-08-30 2011-05-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Cellule photovoltaïque et module de cellules photovoltaïques présentant un système de connexion sur un seul côté
US8013239B2 (en) 2002-08-29 2011-09-06 Day4 Energy Inc. Electrode for photovoltaic cells, photovoltaic cell and photovoltaic module
US8115096B2 (en) 2007-06-18 2012-02-14 E-Cube Technologies, Ltd. Methods and apparatuses for improving power extraction from solar cells
EP2112696A3 (fr) * 2008-04-21 2012-04-04 SANYO Electric Co., Ltd. Module de cellules solaires
CN102487091A (zh) * 2010-12-01 2012-06-06 天威新能源控股有限公司 一种新型背接触太阳能电池及其制造方法
CN102694037A (zh) * 2011-03-03 2012-09-26 太阳世界创新有限公司 连接器电极,太阳电池模块和电连接多个太阳电池的方法
DE102011001673A1 (de) * 2011-03-30 2012-10-04 Solarwatt Ag Solarzelle mit metallischen Kontaktbändern
US8293568B2 (en) 2008-07-28 2012-10-23 Day4 Energy Inc. Crystalline silicon PV cell with selective emitter produced with low temperature precision etch back and passivation process
NL2006966C2 (en) * 2011-06-17 2012-12-18 Stichting Energie Photovoltaic system and connector for a photovoltaic cell with interdigitated contacts.
US8604330B1 (en) 2010-12-06 2013-12-10 4Power, Llc High-efficiency solar-cell arrays with integrated devices and methods for forming them
WO2014041413A1 (fr) * 2012-09-11 2014-03-20 Rec Solar Pte. Ltd. Procédé de fabrication d'un module solaire de cellules solaires à contact arrière à l'aide de bandes de connecteur de type ruban linéaire et module solaire respectif
WO2014047291A1 (fr) 2012-09-20 2014-03-27 E. I. Du Pont De Nemours And Company Prises de cellule photovoltaïque, module photovoltaïque et son processus de fabrication
NL2010558C2 (en) * 2013-04-03 2014-10-06 Stichting Energie Assembly of photo-voltaic cells and method of manufacturing such an assembly.
US9076910B2 (en) 2006-12-26 2015-07-07 Kyocera Corporation Solar cell module
JP2017529704A (ja) * 2014-09-28 2017-10-05 蘇州中来光伏新材股▲ふん▼有限公司Jolywood (Suzhou) Sunwatt Co.,Ltd. メインゲートフリーで高効率なバックコンタクト太陽電池モジュール、アセンブリ及び製造プロセス
EP3235012A1 (fr) * 2014-12-15 2017-10-25 IMEC vzw Procédé d'interconnexion de cellules photovoltaïques à contact arrière
US20180090635A1 (en) * 2015-03-30 2018-03-29 Imec Vzw Electrically contacting and interconnecting photovoltaic cells
DE102012220221B4 (de) 2012-11-07 2024-03-07 Meyer Burger (Germany) Gmbh Solarzellenanordnung und Verfahren zu deren Herstellung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167966A (ja) * 1984-09-11 1986-04-08 Sharp Corp 太陽電池アレイ
US6407327B1 (en) * 1998-06-04 2002-06-18 Tecstar Power Systems, Inc. Modular, glass covered solar cell array

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167966A (ja) * 1984-09-11 1986-04-08 Sharp Corp 太陽電池アレイ
US6407327B1 (en) * 1998-06-04 2002-06-18 Tecstar Power Systems, Inc. Modular, glass covered solar cell array

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 236 (E - 428) 15 August 1986 (1986-08-15) *

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013239B2 (en) 2002-08-29 2011-09-06 Day4 Energy Inc. Electrode for photovoltaic cells, photovoltaic cell and photovoltaic module
EP2100336A4 (fr) * 2006-12-22 2013-04-10 Applied Materials Inc Technologies d'interconnexion pour cellules et modules solaires a contact arriere
EP2100336A1 (fr) * 2006-12-22 2009-09-16 Advent Solar, Inc. Technologies d'interconnexion pour cellules et modules solaires a contact arriere
EP2105970A4 (fr) * 2006-12-26 2015-08-05 Kyocera Corp Module à cellules solaires
US9076910B2 (en) 2006-12-26 2015-07-07 Kyocera Corporation Solar cell module
EP2109150A4 (fr) * 2007-01-31 2011-04-06 Sharp Kk Module de cellule solaire, element de cablage pour une cellule solaire, et procede de fabrication d'un module de cellule solaire
EP2109150A1 (fr) * 2007-01-31 2009-10-14 Sharp Kabushiki Kaisha Module de cellule solaire, element de cablage pour une cellule solaire, et procede de fabrication d'un module de cellule solaire
US20080276981A1 (en) * 2007-05-09 2008-11-13 Sanyo Electric Co., Ltd. Solar cell module
DE102007022877A1 (de) * 2007-05-14 2008-11-20 Q-Cells Ag Drahtsystem zum elektrischen Kontaktieren einer Solarzelle
US8115096B2 (en) 2007-06-18 2012-02-14 E-Cube Technologies, Ltd. Methods and apparatuses for improving power extraction from solar cells
DE102007035883A1 (de) * 2007-07-31 2009-02-12 Institut Für Solarenergieforschung Gmbh Rückkontaktsolarzelle und Solarmodul mit reduzierten Serienwiderständen
EP2109148A2 (fr) * 2008-04-10 2009-10-14 General Electric Company Interconnexion de niveaux de tranche et procédé
EP2109148A3 (fr) * 2008-04-10 2014-01-22 General Electric Company Interconnexion de niveaux de tranche et procédé
US9196776B2 (en) 2008-04-21 2015-11-24 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
EP2112696A3 (fr) * 2008-04-21 2012-04-04 SANYO Electric Co., Ltd. Module de cellules solaires
DE102008033632A1 (de) * 2008-07-17 2010-01-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solarzelle und Verfahren zur Herstellung einer Solarzelle
DE102008033632B4 (de) * 2008-07-17 2012-06-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Solarzelle und Solarzellenmodul
US8293568B2 (en) 2008-07-28 2012-10-23 Day4 Energy Inc. Crystalline silicon PV cell with selective emitter produced with low temperature precision etch back and passivation process
EP2324508A2 (fr) * 2008-08-30 2011-05-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Cellule photovoltaïque et module de cellules photovoltaïques présentant un système de connexion sur un seul côté
CN102439729A (zh) * 2009-05-05 2012-05-02 库迈思控股有限公司 太阳能电池、包含该太阳能电池的太阳能电池组件及其制造方法和接触膜制造方法
WO2010128021A3 (fr) * 2009-05-05 2011-09-22 Komax Holding Ag Cellule solaire, module solaire comprenant cette cellule solaire, ainsi que procédés pour sa production et pour la production d'un film de contact
WO2010128021A2 (fr) 2009-05-05 2010-11-11 Komax Holding Ag Cellule solaire, module solaire comprenant cette cellule solaire, ainsi que procédés pour sa production et pour la production d'un film de contact
WO2011011855A1 (fr) * 2009-07-31 2011-02-03 Day4 Energy Inc. Procédé permettant d’interconnecter des piles solaires à contact arrière et module photovoltaïque employant ce dernier
CN102487091A (zh) * 2010-12-01 2012-06-06 天威新能源控股有限公司 一种新型背接触太阳能电池及其制造方法
US8604330B1 (en) 2010-12-06 2013-12-10 4Power, Llc High-efficiency solar-cell arrays with integrated devices and methods for forming them
US9178095B2 (en) 2010-12-06 2015-11-03 4Power, Llc High-efficiency solar-cell arrays with integrated devices and methods for forming them
CN102694037A (zh) * 2011-03-03 2012-09-26 太阳世界创新有限公司 连接器电极,太阳电池模块和电连接多个太阳电池的方法
DE102011001673A1 (de) * 2011-03-30 2012-10-04 Solarwatt Ag Solarzelle mit metallischen Kontaktbändern
NL2006966C2 (en) * 2011-06-17 2012-12-18 Stichting Energie Photovoltaic system and connector for a photovoltaic cell with interdigitated contacts.
CN103843154A (zh) * 2011-06-17 2014-06-04 荷兰能源研究中心基金会 具有交指型接触部的光伏电池的光伏系统和连接件
WO2012173487A1 (fr) 2011-06-17 2012-12-20 Stichting Onderzoek Centrum Nederland Système photovoltaïque et connecteur pour cellule photovoltaïque avec contacts interdigités
JP2015527752A (ja) * 2012-09-11 2015-09-17 アールイーシー ソーラー プライベート リミテッド 線状リボン型コネクタストリップを使用した背面接触太陽電池モジュールの製造方法及び各太陽電池モジュール
CN104641473A (zh) * 2012-09-11 2015-05-20 瑞科斯太阳能源私人有限公司 使用直线带状连接条制造背接触太阳能电池的太阳能模块的方法及相应的太阳能模块
US10396227B2 (en) 2012-09-11 2019-08-27 Rec Solar Pte. Ltd. Method for fabricating a solar module of rear contact solar cells using linear ribbon-type connector strips and respective solar module
GB2508792A (en) * 2012-09-11 2014-06-18 Rec Modules Pte Ltd Back contact solar cell cell interconnection arrangements
WO2014041413A1 (fr) * 2012-09-11 2014-03-20 Rec Solar Pte. Ltd. Procédé de fabrication d'un module solaire de cellules solaires à contact arrière à l'aide de bandes de connecteur de type ruban linéaire et module solaire respectif
US9660121B2 (en) 2012-09-11 2017-05-23 Rec Solar Pte. Ltd. Method for fabricating a solar module of rear contact solar cells using linear ribbon-type connector strips and respective solar module
US11715806B2 (en) 2012-09-11 2023-08-01 Rec Solar Pte. Ltd. Method for fabricating a solar module of rear contact solar cells using linear ribbon-type connector strips and respective solar module
US11183606B2 (en) 2012-09-11 2021-11-23 Rec Solar Pte. Ltd. Method for fabricating a solar module of rear contact solar cells using linear ribbon-type connector strips and respective solar module
TWI609502B (zh) * 2012-09-11 2017-12-21 Rec太陽能公司 使用線性帶式連接器條帶的後接觸太陽能電池的太陽能模組的製造方法及相應的太陽能模組
WO2014047291A1 (fr) 2012-09-20 2014-03-27 E. I. Du Pont De Nemours And Company Prises de cellule photovoltaïque, module photovoltaïque et son processus de fabrication
DE102012220221B4 (de) 2012-11-07 2024-03-07 Meyer Burger (Germany) Gmbh Solarzellenanordnung und Verfahren zu deren Herstellung
NL2010558C2 (en) * 2013-04-03 2014-10-06 Stichting Energie Assembly of photo-voltaic cells and method of manufacturing such an assembly.
WO2014163491A1 (fr) * 2013-04-03 2014-10-09 Stichting Energieonderzoek Centrum Nederland Ensemble de cellules photovoltaïques et procédé de fabrication d'un tel ensemble
JP2017529704A (ja) * 2014-09-28 2017-10-05 蘇州中来光伏新材股▲ふん▼有限公司Jolywood (Suzhou) Sunwatt Co.,Ltd. メインゲートフリーで高効率なバックコンタクト太陽電池モジュール、アセンブリ及び製造プロセス
EP3235012A1 (fr) * 2014-12-15 2017-10-25 IMEC vzw Procédé d'interconnexion de cellules photovoltaïques à contact arrière
EP3235012B1 (fr) * 2014-12-15 2022-01-26 IMEC vzw Procédé d'interconnexion de cellules photovoltaïques à contact arrière
US20180090635A1 (en) * 2015-03-30 2018-03-29 Imec Vzw Electrically contacting and interconnecting photovoltaic cells

Similar Documents

Publication Publication Date Title
WO2006123938A1 (fr) Procede d’interconnexion de cellules solaires
US7498508B2 (en) High voltage solar cell and solar cell module
US6441297B1 (en) Solar cell arrangement
EP2609628B1 (fr) Dispositif photovoltaïque et module ayant une passivation améliorée et procédé de fabrication
EP1939944B1 (fr) Cellule solaire et module de cellule solaire
US8697980B2 (en) Photovoltaic module utilizing an integrated flex circuit and incorporating a bypass diode
US9960302B1 (en) Cascaded photovoltaic structures with interdigitated back contacts
JP2002532888A (ja) 薄膜太陽電池アレイ・システムおよびその製造方法
JP2008243830A (ja) シリコン薄膜,集積化された太陽電池,モジュール,及びその製造方法
JP2017510083A (ja) バイパスダイオードを備える光起電力モジュール
CN101204004A (zh) 具有改进连线的可升级的光伏电池和太阳能电池板
JP7023974B2 (ja) P型perc両面太陽電池及びそのモジュール、システムと製造方法
JP7023975B2 (ja) P型perc両面太陽電池及びそのモジュール、システムと製造方法
US10205040B2 (en) Solar cell, method for manufacturing same, solar cell module and wiring sheet
EP3591715B1 (fr) Préparation de cellule solaire perc de type p à double face
US20070089780A1 (en) Serial circuit of solar cells with integrated semiconductor bodies, corresponding method for production and module with serial connection
US11515436B2 (en) Photovoltaic device and photovoltaic unit
US11646387B2 (en) Laser assisted metallization process for solar cell circuit formation
CN103390672B (zh) 一种集成式薄膜太阳能电池组件及其制备方法
JP2019519939A (ja) 光電池セル、光電池セルアレイ、太陽電池セル、および光電池セル作製方法
JP2004095674A (ja) 太陽電池セル及びそれを用いた太陽電池モジュール
WO2017093527A1 (fr) Interconnexion de cellule solaire à contact arrière, panneau solaire doté d'une telle interconnexion
US20210313479A1 (en) High Power Density Solar Module and Methods of Fabrication
JPS58175875A (ja) 光起電力装置
WO2017150104A1 (fr) Élément de conversion photoélectrique et module de conversion photoélectrique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06747649

Country of ref document: EP

Kind code of ref document: A1