WO2006123392A1 - 植物の深根性評価方法 - Google Patents

植物の深根性評価方法 Download PDF

Info

Publication number
WO2006123392A1
WO2006123392A1 PCT/JP2005/008876 JP2005008876W WO2006123392A1 WO 2006123392 A1 WO2006123392 A1 WO 2006123392A1 JP 2005008876 W JP2005008876 W JP 2005008876W WO 2006123392 A1 WO2006123392 A1 WO 2006123392A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
cultivation container
medium
deep
individuals
Prior art date
Application number
PCT/JP2005/008876
Other languages
English (en)
French (fr)
Inventor
Ichiro Oka
Masakazu Kashihara
Original Assignee
Japan Tobacco Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc. filed Critical Japan Tobacco Inc.
Priority to US11/920,423 priority Critical patent/US8156687B2/en
Priority to PCT/JP2005/008876 priority patent/WO2006123392A1/ja
Priority to EP05739266.4A priority patent/EP1886552B1/en
Priority to CN2005800497884A priority patent/CN101175397B/zh
Priority to JP2007516151A priority patent/JPWO2006123392A1/ja
Publication of WO2006123392A1 publication Critical patent/WO2006123392A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general

Definitions

  • the present invention relates to a method for evaluating a trait in which a plant root extends deeper, that is, a deep root property of a plant.
  • the present invention also relates to a method for simply selecting a plant having a long root under dry conditions.
  • Plant growth is greatly affected by soil moisture conditions. Plants have adopted strategies to acquire and adapt to drought tolerance through drought avoidance or physiological tolerance in order to adapt and maintain growth even in soil-deficient conditions. Drying avoidance is, for example, the property of avoiding drought stress by extending the roots deeply or dormant against the lack of soil moisture. Physiological tolerance for drought is a property that can grow in a dry environment.
  • V Known methods for investigating the deep root property of plants include V and several methods such as the cocoon method and the cylinder method.
  • the dredging method is a method in which plants are cultivated in a field, the soil is dug up to about 2m in depth of 0.5m, and the thickness and number of roots are investigated according to depth (Nemoto, H., Suga , R., et al., Breeding Science 48: 321-324, 1998).
  • the dredging method is very labor intensive to dig up the soil, It is difficult to evaluate plants.
  • the moisture condition of the soil depends on the natural weather. Since it is fully possible that the root growth rate varies depending on the soil moisture condition, i.e., the moisture content, individuals, lines, or varieties that have been evaluated as having fast root elongation under sufficient soil moisture conditions are not necessarily dry conditions. Even below, growth is not always fast. Therefore, even with such a great deal of effort, there is a risk of selecting cultivar Z that does not grow well under drought conditions.
  • the cylinder method is a method for cultivating a plant using a cylinder made of plastic or the like and investigating root growth.
  • a plant is planted in a transparent plastic cylinder and cultivated with the cylinder tilted so that the roots appear on the sides, and the root elongation rate and maximum depth of reach are measured.
  • This method has the advantage of being able to observe the roots directly. If you plant an individual, you will not be able to investigate which root has its individual strength.
  • Trillana et al. Planted rice seeds in a vinyl chloride pot of length lm and kept the soil 2 or 3 cm under water for 14 days after sowing, and partly from 62 days after sowing. After draining the water, lowering the water level from the bottom to 30cm (soil surface strength is 60cm) and cultivating for 6 days, cultivated under submerged conditions until the top surface of soil is 2 to 3cm.
  • Trillana's method is suitable for basic research involving a small number of specimens, but is not suitable for breeding varieties that require handling large numbers of individuals.
  • Mia et al. and Trillana et al. Different cultivars are cultivated in different vessels, and thus the growth of roots of multiple varieties was compared under the same soil moisture conditions. It is not a thing.
  • the soil moisture content in the cultivation container always changes due to the water absorption of the plant. Since the amount of water absorbed by plants varies with the environmental conditions and the stage of growth, depending on the size of the plant body, the soil moisture content is greatly affected by these factors.
  • a plurality of test plants are planted in the same pot, grown under a suitable cultivation condition for a short period of time, then irrigation is stopped and dried, and then again sufficiently irrigated and cultivated for a predetermined period.
  • This is a method to investigate the growth status of each plant at the time. Although this method does not require much labor and can compare multiple plants under the same soil moisture content, it is "low soil moisture! / Comparison of drought resistance under conditions”. Yes, it has a low relevance to traits that extend deep into the soil and avoid drought (ie, deep roots) (Nemoto, H., Suga, R., et al, (1998) Breeding Science 48: 321- 324) Plants selected by this method are not always deep-rooted.
  • Patent Document 1 JP 2003-230318 A
  • Non-Patent Document 1 Nemoto, H “Suga, R” et al "Breeding Science 48: 321-324, 1998
  • Non-Patent Document 2 Mia, MW, Yamauchi, A., et al., Japanese Journal of Crop Science, 13 : 131-140, 1996
  • Non-Patent Document 3 Trillana, N., Inamura, T., et al., Plant Production Science 4:
  • Non-Patent Document 4 Wada, Suzuki, et al., Japan Crop Science (Jpn. J. Crop Sci.) 70: 580-587, 2001
  • An object of the present invention is to provide a method for simply and efficiently evaluating and selecting deep-rooted plants.
  • Another object of the present invention is to provide a method for evaluating a plurality of individuals or plants of plants in terms of deep rooting without actually measuring the root length under the same medium water content conditions. is there.
  • Another object of the present invention is to provide a method capable of efficiently evaluating the deep root property of a plant, which can easily manage test conditions such as adjustment of the medium water content.
  • the present inventors efficiently evaluate the deep root property of a plant under the same medium moisture condition by planting a plurality of plant individuals in a cultivation container having a sufficient depth. Devised a way to do.
  • the present inventors can also easily adjust the medium water content in the cultivation container by changing the water level of the aquarium by installing the cultivation container with the bottom open in the aquarium where water is stored. I devised a possible method. As a result, the method of the present invention has been completed.
  • a plurality of plant individuals are planted in a container having a sufficient depth for the plant to extend roots, and then the water content is gradually lowered from the surface of the medium downward. It is characterized by the evaluation of dryness avoidance due to the deep root nature.
  • the method of the present invention is a method capable of evaluating deep root properties of a plurality of plant individuals under the same medium moisture condition, and comprises the following steps:
  • the method of the present invention is a method for evaluating deep root properties of a plurality of plant individuals under the same medium water condition, and comprising the following steps:
  • the culture medium is packed in a cultivation container with an open bottom that is deep enough for the plant to extend its roots, and the cultivation container is placed in an aquarium;
  • Deep-rooted plants using the above-described deep-root property evaluation method of the present invention.
  • a method for selecting such deep-rooted plants is also within the scope of the present invention.
  • the method for selecting a deep-rooted plant of the present invention is the last step of the deep-rooted property evaluation method of the present invention. As a method that involves selecting.
  • the bottom of the cultivation container is open, and the water in the aquarium and the cultivation container can be circulated. Therefore, the water level in the cultivation container is lowered by lowering the water level in the aquarium.
  • the medium in the cultivation container gradually dries with the surface force directed downward. Although the progress of the drying of the medium may vary slightly depending on the cultivation container, all plants grown in the same container are under the same medium moisture condition. Plants that can grow their roots faster than the drying of the medium, that is, deep-rooted plants, can absorb water and thus are not subject to drought stress. On the other hand, plants with slow root growth show dry stress because the soil around the roots dries out.
  • Drought stress refers to the effect that plants receive when the water content in the environment in which the plants are growing decreases.
  • the symptoms of plants caused by drought stress are referred to as drought stress symptoms.
  • Symptoms of drought stress include, for example, appearance symptoms such as growth cessation, leaf curl, wilting and withering, as well as stomatal closure and decreased photosynthesis.
  • the plurality of plant individuals whose deep roots are evaluated in the method of the present invention may be the same or different from each other.
  • the plurality of plant individuals are plant individuals of the same type as each other, but the strains may be the same or different.
  • the term “same species” as used herein means that two or more plant individuals belong to the same species taxonomically.
  • the same line means that two or more plant individuals have a substantially identical relationship at the gene level.
  • “different strains” means that two or more plant individuals are in a relationship of strains having different traits because one or more different points exist at the gene level. Therefore, the relationship that the plant individuals are different from each other is not limited. For example, the relationship between plants of different varieties, the relationship between a wild type plant and a plant transformed by genetic recombination with the wild type plant. F generation in the mating experiment
  • n is an integer greater than or equal to 1
  • F generation plants that inherited different genes from each other in mating experiments, and so on.
  • the method of the present invention for evaluating deep root properties of a body and selecting deep root plants is an effective tool for breeding a plant having drought tolerance.
  • the plant whose deep root property can be evaluated by the method of the present invention is not limited as long as the root is relatively long and can be grown in a cultivation container, but preferably a seed.
  • Plants more preferably angiosperms, more preferably herbaceous plants, more preferably herbaceous plants having a root length of 10 cm or more.
  • the selected plant may be more preferably a group of plants consisting of rice, corn and tobacco.
  • the shape of a container for cultivating a plant (hereinafter referred to as “cultivation container” in the present specification) is not particularly limited, but a cylindrical shape or a cubic shape is preferable because it is easy to handle.
  • the depth of the cultivation container is not particularly limited as long as the plant to be evaluated is deep enough to extend the roots.
  • the power varies depending on the plant to be evaluated. Generally, it is preferably 30 cm or more and 300 cm or less, more preferably Or 40 cm or more and 250 cm or less, more preferably 50 cm or more and 200 cm or less.
  • the cross-sectional area of the cultivation container is not particularly limited as long as the plant to be evaluated is cultivated, but in general, 20 cm 2 to 25 m 2 is preferable, and 30 cm 2 to 10 m 2 is preferable 40 c m 2 to 5 m 2 is preferred.
  • the preferred depth and cross-sectional area of the cultivation container will be as follows, more specifically, depending on the size of the plant to be evaluated. For relatively small plants such as Arabidopsis thaliana, cultivation vessels with a depth of 30 cm to 100 cm and a cross-sectional area of 20 cm 2 to lm 2 are preferred. For medium-sized plants such as rice, wheat, rapeseed or soybean, a cultivation container having a depth of 50 cm to 200 cm and a cross-sectional area of 20 cm 2 to lm 2 is preferable. In addition, plants that grow large, such as corn and tobacco, prefer a cultivation container with a depth of 50 cm to 300 cm and a cross-sectional area of 400 cm 2 force 25 m 2 .
  • the lower part of the cultivation container is opened for water supply and drainage.
  • the open state may be an arbitrary state in which the water in the cultivation container and the water tank can be circulated while the culture medium is held in the container.
  • generally at least one hole through which water passes sufficiently is provided in the bottom or the side wall near the bottom (hereinafter referred to as “bottom hole” in this specification).
  • bottom hole In this specification, it is not essential to provide a hole for water absorption or drainage on the side of the cultivation container, it may be provided as necessary, such as also serving as a vent hole for supplying oxygen to the roots.
  • the container material is preferably plastic such as vinyl chloride or polycarbonate, non-corrosive or corrosion-resistant metal such as stainless steel or aluminum, or earthenware. Those that release substances are not preferred.
  • the necessary length may be secured by forming the cultivation container in a coiled state made of plastic or metal tubes. .
  • the cultivation container is filled with a medium suitable for the plant to be cultivated.
  • the type of medium is not particularly limited and can contain moderately water and air, and when the water level in the tank is changed, the water content of the medium gradually changes and is suitable for the cultivation of the plant to be evaluated.
  • it may be artificial, such as perlite, vermiculite or rock wool.
  • a medium for example, sand soil, sand loam soil, paddy loam soil, black botanous soil, a mixture thereof, or commercially available fertilizer for gardening can be preferably used. It is preferable to add fertilizers necessary for plant growth to the medium.
  • the culture medium it is preferable to pack the culture medium uniformly in a cultivation container as much as possible so that a large gap cannot be formed.
  • the cultivation container is installed in a container capable of storing water (hereinafter referred to as "water tank” in this specification).
  • the installation method is not particularly limited as long as the tank bottom can be supplied to the culture medium through the bottom hole of the cultivation container by preventing the inner bottom of the tank from contacting the bottom hole of the cultivation container.
  • it can be easily installed by placing a net made of plastic with a certain thickness on the bottom of the aquarium and placing a cultivation container on it.
  • the water in the aquarium can sufficiently enter the bottom of the cultivation container through the mesh gap.
  • the depth of the aquarium may be shallower or deeper than the cultivation vessel, but when the aquarium is full, the culture medium surface of the cultivation vessel will not dry.
  • the range in which the growth of the plant does not adversely affect is preferable.
  • the difference in height between the aquarium and the cultivation container is preferably within 50 cm, within 30 cm, and more preferably within 10 cm.
  • the frontage of the aquarium is not limited, but the ability to install 10 or more cultivation containers is preferable in terms of work efficiency.
  • the material of the water tank is not limited, but plastic, metal, concrete, etc. are preferable in terms of ensuring strength and easy availability.
  • Water is added to the water tank to wet the medium. Since water can be supplied from the aquarium through the bottom hole of the cultivation container, the air in the medium can be drained and the entire medium can be moistened reliably and quickly.
  • the water level of the aquarium is not particularly limited, but it is preferable to fill the surface of the medium with water before the plant is cultivated. Even in the case of plants that prefer medium water, the water tank should be fully filled with water, and the entire medium should be once moistened to reduce the water level, so that the medium water condition is set appropriately before the cultivation is started. preferable.
  • the water level in the aquarium may not be increased to such an extent that the surface of the medium becomes wet, but the medium may be irrigated to wet the medium. It is necessary to irrigate carefully.
  • the aquarium and the cultivation container are separately installed, and the bottom hole of the cultivation container and the bottom or lower portion of the aquarium are made of tubes.
  • a method of adjusting the water level by linking them may be used. Even in this way, the water level of the cultivation container can be adjusted by moving the water level or position of the aquarium up and down.
  • installing the cultivation container in the aquarium means installing the aquarium and the cultivation container so that the water level of the cultivation container can be adjusted by adjusting the water level of the aquarium. This includes installing cultivation containers in the aquarium and connecting the cultivation container to the bottom or lower part of the aquarium.
  • the planting density is not particularly limited as long as the plant can normally grow. Power For example, in rice, 1 to 100 individuals per 100 cm 2 of planting area of the cultivation container in rice, more preferably From 5 to 30 individuals. In the case of large plants such as corn, it is preferable that the planting density is lower.
  • the area of the planting part of the cultivation container is preferably 200 individuals, more preferably 10 to 100 individuals per lm 2 per lm 2 .
  • the plant to be evaluated may be planted in the cultivation container directly by seeding the cultivation container! /, Or a seedling grown in a seedling box or the like may be transplanted. Alternatively, a method may be used in which seedlings are grown in a container having a hole or the like in the bottom so that the roots of the plant pass, and the whole container is placed in a cultivation container.
  • the initial stage of cultivation is cultivated under moisture conditions favorable for the growth of the plant, and the roots are stretched to some extent and the strength is gradually lowered to give the plant a drying stress.
  • the water in the cultivation container and the aquarium communicate with each other through the bottom hole, the water level in the cultivation container can be easily lowered by lowering the water level in the aquarium.
  • the time when the water level starts to be lowered and the method of lowering the water level are preferably after a period in which the power roots that differ depending on the plant to be evaluated extend at least about 10 cm and before reaching half the depth of the cultivation container. Regarding the determination of this period, it is preferable to roughly investigate the elongation characteristics of the roots of the plant to be evaluated by preliminary experiments or the like. In addition, root growth may be observed using a cultivation container made of transparent plastic.
  • the level of water level reduction is not particularly limited, but it should be done while paying attention to the temperature and light intensity and observing the state of the plant. Specifically, 10 to 100 cm per week is preferable.
  • the time to begin lowering the water level is preferably between the 1st and 5th week after planting, more preferably the 1st week is also between the 4th week
  • the lowering range of the water level is preferably 10 cm to 100 cm per week, more preferably 20 cm to 70 cm. Therefore, taking rice as an example, it is preferable to start lowering the water level from the first week to the fourth week after planting and then lowering the total from 80 cm to 150 cm over the next one to five weeks! For example, when the water level is lowered by 50 cm per week, it may be lowered by 50 cm at a time, or may be lowered by several times every few days.
  • a method of lowering the water level of the aquarium there are methods such as pumping out water with a pump, draining a drainage loft provided near the bottom of the aquarium, draining a drainage loca provided on the side wall of the aquarium, for example, every 10 cm. is there.
  • the medium gradually dries downward from the surface by absorbing water from the plant and evaporating from the surface of the medium.
  • Individuals that are able to extend their roots deeper and deeper than the progress of drying of the medium and retain the tip of the root in a layer with sufficient water do not receive drought stress.
  • individuals with slow root elongation have less water available around the roots, so they stop growing and show drought stress symptoms such as wrapping leaves, and when the medium continues to dry, the leaves begin to wither. Will die.
  • the state of the foliage is investigated at an appropriate time, and a deep root individual is selected. Individuals who received drought stress early, that is, root growth is slow, and individuals are more severe and show drought stress symptoms. Therefore, those with mild symptoms are selected as deep root individuals. If one to several plants of control lines are planted in each container, selection can be made easily because the degree of stress symptoms between these control plants and test plants can be compared and evaluated.
  • the method of the present invention can easily and efficiently evaluate and select the deep root property of a plurality of plant individuals, it is used as a tool for breeding plants having drought tolerance due to deep root properties. Can be used. This is done by evaluating and Z-selecting deep-rooted plants using the method of the present invention for multiple lines of plants. For example, in the process of breeding seeds, the process of selecting individuals and strains with deep roots from among the breeding materials as breeding mothers, and the deep roots among the progenies from which the breeding materials and breeding mothers were mated Have The method of the present invention can be used in the process of selecting individuals and strains. Individuals and lines selected in this way can also be used as further breeding mothers.
  • a transformant introduced with a gene considered to be related to deep roots can be tested using the method of the present invention to evaluate the gene. Furthermore, a large number of transformants into which an arbitrary DNA fragment has been introduced can be assayed and evaluated by the method of the present invention to search for genes associated with deep rooting.
  • the present invention is also an apparatus for evaluating the deep root property of a plant by the method of the present invention, the cultivation container having an open bottom having a depth sufficient for the plant to extend its roots, and the plant
  • the cultivation container is provided with a water tank, and the cultivation container is filled with a culture medium and placed in the water tank to culture the plant. At this time, the water level of the water tank is adjusted to adjust the water level in the cultivation container.
  • an apparatus as described above which is capable of adjusting the water content of a medium.
  • the apparatus of the present invention may be subjected to various modifications and changes as described above in the description of the method of the present invention, and these modified or changed embodiments are also within the scope of the present invention. It will be understood by those skilled in the art.
  • a schematic diagram of the apparatus of the present invention is shown in FIG.
  • FIG. 1 is intended to illustrate the concept of the present invention and does not limit the present invention to the embodiment shown in the schematic diagram.
  • Plants having deep roots which are selected and grown by the method of the present invention, are mainly suitable for cultivation in a dry environment, not to mention grains, vegetables, flowers and other commercial crops, and also forests.
  • certain vines planted for desert greenery can also be selected and nurtured by applying the present invention.
  • oaks include beech, camellia, tassel, moxsey, cherry, willow, magnolia, ume, kunugi, akiki, wedge, cedar, hinoki, date palm, tamarisk, mimosa, date palm, eucalyptus, pine, poplar , -Les, snails, etc.
  • the present invention is applied to such an oak tree, the root length is still short, and it is preferable to perform it when the tree is young.
  • the method of the present invention can select individuals with deep roots without actually measuring the elongation of roots, and therefore requires a great amount of labor to dig up soil in the field as in the case of dredging. This process is suitable for large-scale testing because it requires much less labor than the dredging method.
  • different varieties are cultivated in separate containers.
  • a plurality of plants can be cultured in the same cultivation container. Can compare deep roots.
  • the method of the present invention is very easy to manage cultivation conditions such as water level adjustment.
  • the method of the present invention allows a plurality of plants to be cultivated and compared under the same moisture condition, and management of cultivation conditions such as adjustment of the water level is very easy. It is a practical method that enables mass testing of.
  • the method of the present invention the deep root property of a plant can be easily, efficiently and reliably evaluated.
  • FIG. 1 is a schematic view of a longitudinal section of an apparatus of the present invention.
  • FIG. 2-1 is a graph showing the course of the average score of the drought stress symptom of each variety for each cultivation container in each tank (tanks 1 and 2) according to the method of the present invention.
  • tank 1 cultivation container A b. tank 1—cultivation container B, c. tank 1—cultivation container C, d. tank 2—cultivation container A, e. tank 2—cultivation container B, f. tank 2 -The results for Cultivation Container C are shown.
  • Fig. 2-2 is a graph showing the course of the average score of drought stress symptoms of each variety for each cultivation container in each tank (tanks 3 and 4) according to the method of the present invention.
  • Tank 3 Cultivation container A
  • h Tank 3—Cultivation container B
  • i Tank 3—Cultivation container C
  • j Tank 4—Cultivation container A
  • k Tank 4—Cultivation container B
  • the results for 4—Cultivation container C are shown.
  • FIG. 3 is a graph showing the results of a drought tolerance test by the method of Wada et al. (Journal of Crop Science, 70: 580-587, 2001). The results are as follows: a. When drying is started on the 37th day after planting, b. When drying is started on the 44th day after planting.
  • the seeds were sterilized and germinated for 4 days with a 200-fold diluted solution of Hellceed Stanafloable, and a rice seedling box (61 X 31 X height 2.5 cm, cell diameter about 15 mm, cell 32 rows X 14 One seed per hole was sown in a hole) and raised.
  • PVC pipe Three types of containers made of vinyl chloride vinyl pipe (hereinafter referred to as “PVC pipe”, t ⁇ ⁇ ) were used for cultivation.
  • the container body is cut to a length of lm ⁇ JIS standard K6741 VU50 (outer diameter 6 Omm, inner diameter 56 mm), VU75 (outer diameter 89 mm, inner diameter 83 mm) and VU100 (outer diameter 114 mm, inner diameter 107 mm).
  • a PVC tube was used. Since VU50 cannot be planted with a small number of plants with small diameters, a socket with a different diameter (nominal diameter 75 X 50) is attached to the top so that the same number of plants as VU75 and VU100 can be planted.
  • a socket (nominal diameter 50 X 50, 75 X 50 or 100 X 50) is attached to the lower end of each PVC pipe, and a hole with a diameter of 9.5 mm (through a VU50 of appropriate length) ( Hereinafter, in this example, it is referred to as “bottom hole.”
  • a cap (nominal diameter 50) with a single hole) was attached, and the total length of all three types of cultivation containers was approximately 117 cm. VU50, VU75, and VU100 are used for the container body. It was.
  • Each container contains a commercially available fertilizer “Magamp K” per 24 liters of commercially available paddy rice seedling soil.
  • tanks Four cylindrical water tanks (hereinafter referred to as “tanks” in the present example) having a height of 88 cm, an outer diameter of 56 cm, and a capacity of 200 liters were prepared, and a plastic net was laid on the bottom of the tank.
  • tanks In each tank Four cultivation containers A and four cultivation containers B and three cultivation containers C were installed, and water was added to the tank. The water in the tank entered the container through the bottom hole of the cultivation container, and the medium was gradually moistened. Even when the tank was full, the force that was above the surface of the cultivation container about 29cm above the surface of the water. In most cultivation containers, water was sucked up to the surface of the medium within one day. However, some containers that did not absorb water up to the surface of the medium were moistened by irrigating with high force.
  • Table 1 shows how to lower the water level in each tank. That is, tank 1 lowered the water level by 20 cm at the second week after planting, then lowered it by 20 cm and 30 cm every other week, and lowered it to the bottom of the tank at the fifth week. Similarly, tank 2 was also reduced by 40cm, 30cm, and 18cm at the third week after planting, and tank 3 was also lowered by 20cm, 30cm, 30cm, and 8cm at the third week after planting. In tanks 1, 2, and 3, even if the water was sucked out to the bottom of the tank, the cultivation container force gradually increased after that.
  • Tank 4 was lowered 50cm 4 weeks after planting and 30cm lower in the 5th week, leaving 8cm water from the bottom. In tank 4, water remained at the bottom even in the ninth week. The water level could be easily lowered by pumping out tank water.
  • the inside of () is the water level lowered by the natural decrease of water.
  • the distance from the upper surface of the container to the water surface is 1 17 minus the number in the table (cm).
  • FIG. 2-1 a. To f. And Fig. 2-2 g. To 1 show the course of the average value of each grade for each cultivar in each tank.
  • Drought stress symptoms began to appear as the cultivation container with a smaller diameter was quicker.
  • the cultivation containers B and C showed no significant difference.
  • tank 4 where the water level started to fall the latest, cultivation container A was on day 37, and cultivation containers B and C were both on day 47.
  • Fig. 3a shows the results of the pots that started drying at 37 days after planting, and Fig. 3b at 44 days after planting.
  • Suwon 287 had the strongest dry resistance, followed by IR36, Yukihikari, and Yume-no-mochi had the weakest results.
  • This result was completely different from the result of the evaluation according to the method of the present invention, that is, the result that Suwon 287, which has the strongest dryness, is the weakest.
  • the method of the present invention allows a plurality of plants to be cultivated and compared under the same moisture condition, and also facilitates management of cultivation conditions such as adjustment of the water level. It is a simple and efficient way to enable. Because of these features, the use of the method of the present invention makes it possible to efficiently select deep-rooted plants, and thus contributes to the improvement of the breeding efficiency of plants that avoid drying.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Environmental Sciences (AREA)
  • Cultivation Of Plants (AREA)

Abstract

 本発明は、複数の個体あるいは系統の植物を、同じ培地水分含量の条件で、深根性について評価する方法に関する。本発明の方法は、複数の植物個体を、植物が根を伸ばすのに十分な深さがある栽培容器にいっしょに植えて、徐々に培地水分含量を下げることにより、複数の植物個体について同じ培地水分条件下で深根性を評価する方法である。本発明の方法はまた、栽培容器を水槽に設置することにより、培地水分含量の調整が容易であり、したがって栽培条件の管理が容易で効率のよい植物の深根性評価方法である。  本発明の方法によれば、乾燥し、地下水位が低い環境でも生育できる植物を、効率良く評価・選抜できるため、乾燥地での栽培に適する作物や砂漠緑化に使用できる樹木類の品種育成に役立てることができる。                                                                                           

Description

明 細 書
植物の深根性評価方法
技術分野
[0001] 本発明は、植物の根がより深くまで伸びる形質、すなわち、植物の深根性について 評価する方法に関する。本発明はまた、乾燥条件下で根が長く伸長する植物を簡便 に選抜する方法に関する。
背景技術
[0002] 植物の生長は土壌の水分条件に大きく影響される。植物は、土壌の水分が欠乏し た条件にも適応して生育を維持するために、乾燥回避性又は生理学的耐性により耐 乾性を獲得して適応する戦略をとつている。乾燥回避性とは、例えば、土壌の水分の 欠乏に対して、根を深くまで伸ばしたり休眠したりすることにより乾燥ストレスを回避す る性質である。乾燥についての生理学的耐性とは、乾燥している環境でも生育可能 な'性質である。
[0003] 現在、地球上の農地の大半は半乾燥地帯であり、作物の生産は水によって大きく 制限されている。土壌の乾燥は土の表面から下方に向力つて進行するので、土壌表 面近くが乾いていても、下方では水分含量が比較的高い場合が多い。そのため、植 物の乾燥に対する適応戦略の中でも、根がより深くまで伸びる形質、すなわち深根 性による乾燥回避は、干ばつ地帯における植物の生育維持、そして収量増カロ、さら には地球環境の保全にも大きく貢献すると期待されている。深根性を有する植物を 育成するためには、非常に多数の植物を評価する必要があるが、根は土の中にある ので多数の個体の根を直接観察して評価することは難しぐ簡便で効率の良い検定 方法が求められている。
[0004] 植物の深根性を調査する公知の方法には、塹壕法や円筒法など、 V、くつかの方法 がある。
[0005] 塹壕法は圃場で植物を栽培し、土を深さ 0. 5mカゝら 2m程度掘りあげて、深さ別に 根の太さと数を調査する方法である(Nemoto, H., Suga, R., et al., Breeding Science 48: 321-324, 1998)。塹壕法は、土の掘りあげのために非常に労力がかかり、多数の 植物を評価することは困難である。また、圃場で栽培するので、土壌の水分条件は自 然の天候に左右される。土壌の水分条件、すなわち水分含量によって根の伸長速度 が異なることは十分に考えられるので、土壌水分が十分な条件下で根の伸長が早い と評価された個体、系統、又は品種が必ずしも乾燥条件下でも伸長が早いとは限ら ない。したがって、このように多大な労力をかけて調査しても、干ばつ条件下で根の 伸長が良くない品種 Z系統を選抜する危険性がある。
[0006] 円筒法は、プラスチック製などの筒を用いて植物を栽培し、根の生育を調査する方 法である。
[0007] 円筒法のひとつとして、透明のプラスチック製円筒に植物を植えて、根が側面に現 れるように円筒を傾斜させて栽培し、根の伸長速度や最大到達深度を測定する方法 力め (Mia, M. W., Yamaucni, A., et al., Japanese Journal of し rop science, 丄《3 : 131-140, 1996) oこの方法は根を直接観察できる利点はある力 ひとつの円筒に複 数の個体を植えるとどの根がどの個体力 発生したものか分力 なくなるので、ひと つの円筒につき 1個体し力、調査できな 、。
[0008] また、 Trillanaらは、長さ lmの塩化ビニール製ポットにイネの種子を播き、播種後 14 日間は土の上面 2、 3cm湛水状態に保ち、播種後 62日目から一部の水を抜き、水位 を底から 30cm (土の表面力も 60cm)に下げて 6日間栽培した後、再度土の上面 2、 3cmまで湛水状態で栽培し、根の密度や茎葉の乾物重などを比較している( Trillana, N., Inamura, T., et al., Plant Production science 4: 155—159, 2001J。
Trillanaらの方法では、乾燥処理後の水位を一定に保っために、毎日各容器に水を 補給して調整している力 この調整にはかなりの労力を必要とすると考えられるので、 大量検定には不適である。さらに、 Trillanaらの方法では、乾燥処理の排水のために 4時間を必要としている。この試験では水位を 1回だけ下げている力 数回に分けて 徐々に水位を低下させる場合には非常に不便である。また、長い容器に土をつめて それに水を満たす場合、水を上から加えると土壌中の空気が抜けにくぐ水が土にし みこむまでにはかなり時間がかかる。このように、 Trillanaらの方法は、小数の検体を 扱う基礎的な研究には適しているが、大量の個体を扱う必要がある品種育成には不 適である。 [0009] 上記の Miaら、及び Trillanaらが開示する 2つの円筒法では、異なる品種を別々の容 器で栽培しているので、同じ土壌水分条件下で、複数品種の根の生育を比較したも のではない。栽培容器内の土壌水分含量は植物の吸水により常に変化する。植物 の吸水量は環境条件や生育ステージなどとともに植物体の大きさにより変動するので 、土壌水分含量はこれらの影響を大きく受ける。異なる品種を別々の容器に植えた 場合は、温度や光条件が同じでも、植物体が大きい品種は小さい品種よりも強い乾 燥ストレスをより早く受けることになり、同じ土壌水分条件下での比較はできない。事 実、 Trillanaらの報告では乾燥処理終了時の土壌水分含有率が栽培した品種により 異なっていたことが示され、これは地上部の生育の差によると述べられている。また、 先に述べたとおり、彼らは乾燥処理後の水位を一定に保っために、毎日各容器に水 を補給して乾燥処理後の水位を一定に保ったが、この作業の労力は大きぐ仮にこ の水位調整をしな力 た場合は、容器間の土壌水分含有率がさらに広がっていたこ とは確実で、この差は試験結果に大きく影響すると考えられる。このように、複数の品 種あるいは系統を別々の容器で栽培した場合は容器間で土壌水分条件が異なって くるので、同じ土壌水分条件での深根性を比較することはできな 、。
[0010] なお、深根性の評価方法ではな!/、が、プラスチック製の鉢を用いた植物の耐乾性 評価法がある(特開 2003— 230318号)。この方法は、検定植物を複数の鉢に植え て、好適栽培条件下で短期間育成した後に灌水を停止して乾燥処理を行い、次に 1 鉢ずつ期間を変えながら再び十分に灌水して所定期間栽培後、乾燥処理期間に対 応した生存率を調査する方法である。この耐乾性評価法においても 1つの鉢に 1種 類(品種)の植物のみを植えるので、乾燥処理を行うと時間の経過とともに容器間で 土壌水分含量が異なったことが示されている。このために、耐乾性の限界が同じであ ると述べられている二つの品種において、乾燥処理日数が同じであっても生存率は 大きく異なっている。同じ土壌水分含量時の生存率を比較するために、検体植物ごと に複数の鉢を用意して、期間ごとに土壌水分含量を測定する必要が生じ、非常に煩 雑な方法となっている。このように、鉢を用いた耐乾性の試験であっても、異なる植物 を別々の容器で栽培すると土壌水分含量に差が生じ植物間の耐乾性の比較は困難 となる。 [0011] また、比較的浅いポットを用いた植物の耐乾性評価法 (和田'鈴木ら、日本作物学 会紀事 (Jpn. J. Crop Sci.) 70: 580-587, 2001)が報告されている。この方法は、複数 の検定植物を同一のポットに植えて、好適栽培条件下で短期間育成した後に灌水を 停止して乾燥処理を行い、そして、再び十分に灌水して所定期間栽培し、各時点に おける各植物の生育状況を調査する方法である。この方法は多大な労力は必要とせ ず、複数の植物を同一の土壌水分含量下で比較することができるものの、「土壌水分 が少な!/、条件下での耐乾性の比較」をするものであり、根が土中深くまで伸びて乾燥 を回避する形質 (すなわち、深根性)との関連性は低く (Nemoto, H., Suga, R., et al, (1998) Breeding Science 48: 321-324)、この方法により選抜された植物が必ずしも 深根性とは限らない。
[0012] 深根性の植物を開発するためには、多数の個体あるいは系統を検定する必要があ るが、上述のような植物の深根性を評価する従来の方法では、同じ土壌水分含量の 条件で大量の検体の検定を行うことに対しては不適である。多数の植物について同 じ土壌水分含量の条件でその深根性を評価し、選抜することが可能で、かつ、土壌 水分含量の調整が容易であるなど栽培条件の管理が容易な、効率的で簡便な評価 •選抜方法が求められて!/、る。
特許文献 1 :特開 2003— 230318号
非特許文献 1 : Nemoto, H" Suga, R" et al" Breeding Science 48: 321-324, 1998 非特許文献 2 : Mia, M. W., Yamauchi, A., et al., Japanese Journal of Crop Science, 13: 131-140, 1996
非特許文献 3 : Trillana, N., Inamura, T., et al., Plant Production Science 4:
155-159, 2001
非特許文献 4 :和田'鈴木ら、日本作物学会紀事 (Jpn. J. Crop Sci.) 70: 580-587, 2001
発明の開示
発明が解決しょうとする課題
[0013] 本発明の課題は、深根性の植物を簡便に効率よく評価し、選抜する方法を提供す ることを目的とする。 [0014] 本発明の課題はまた、複数の個体あるいは系統の植物を、同じ培地水分含量の条 件で、根の長さを実際に測定することなぐ深根性について評価する方法を提供する ことである。
[0015] 本発明の課題はさらに、培地水分含量の調整などの試験条件の管理が容易な、植 物の深根性を効率よく評価できる方法を提供することである。
課題を解決するための手段
[0016] 本発明者らは、上記課題を解決するために、深さが十分にある栽培容器に、複数 の植物個体を植えることにより、同じ培地水分条件下で植物の深根性を効率よく評価 する方法を考案した。本発明者らはまた、底が開放された栽培容器を、水を溜める水 槽内に設置することにより、水槽の水位を変えることにより栽培容器中の培地水分含 量を容易に調整することができる方法を考案した。その結果、本発明の方法を完成さ せるに至った。
[0017] 以下に本発明を詳細に説明する。
[0018] 本発明は、複数の植物個体を、該植物が根を伸ばすための深さが十分にある容器 に植えた後、培地の表面から下方に向けて徐々に水分含量を下げて、植物の深根 性による乾燥回避性を評価することを特徴とする。
[0019] したがって、本発明の方法は、複数の植物個体について同じ培地水分条件下で深 根性を評価できる方法であって、以下の工程:
(1)植物が根を伸ばすために十分な深さのある栽培容器に培地を詰めて、複数の植 物個体を植え;
(2)徐々に培地の水分含量を下げて、該植物に乾燥ストレスを与え;そして、
(3)該植物において現れた乾燥ストレス症状から、該植物の深根性を評価する; を含む方法である。
[0020] 別の態様において本発明の方法は、複数の植物個体について同じ培地水分条件 下で深根性を評価する方法であって、以下の工程:
(1)植物が根を伸ばすために十分な深さのある、底が開放された栽培容器に培地を 詰め、該栽培容器を水槽に設置し;
(2)複数の植物個体を該栽培容器に植え; (3)水槽の水位を下げることにより培地の水分含量を徐々に下げて、該植物に乾燥 ストレスを与え;そして、
(4)該植物において現れた乾燥ストレス症状から、該植物の深根性を評価する; を含む方法である。
[0021] 上記の本発明の深根性評価方法を用いて、深根性の植物を選抜することも可能で ある。そのような深根性の植物を選抜する方法もまた、本発明の範囲内である。本発 明の深根性の植物を選抜する方法は、本発明の深根性評価方法の最後の工程に ぉ 、て、該植物にぉ 、て現れた乾燥ストレス症状が軽 、個体を深根性の植物として 選抜することを含む方法である。
[0022] 本発明の方法においては、栽培容器の底は開放されており、水槽と栽培容器の水 は流通可能になっているので、水槽の水位を下げることにより栽培容器の水位も下が り、栽培容器中の培地は表面力も下方に向力つて徐々に乾燥していく。栽培容器に より培地の乾燥の進み具合は多少異なるであろうが、同じ容器に栽培されている植 物はどれも同じ培地水分条件下にある。培地の乾燥よりも早く下方に根を伸ばすこと ができる植物、すなわち深根性の植物は水を吸うことができるので乾燥ストレスを受け ない。一方、根の伸長が遅い植物は、根の周りの土が乾燥していくので、乾燥ストレ ス症状を示す。
[0023] 乾燥ストレスとは、植物が生育している環境における水分含量が減少した場合に植 物が受ける影響をいう。本明細書において、乾燥ストレスを受けることにより生じる植 物の症状を、乾燥ストレス症状という。乾燥ストレス症状には、例えば、生育の停止、 葉の巻き、萎れ、枯れなどの外観症状のほか、気孔の閉鎖や光合成の低下などが含 まれる。
[0024] このように、複数の植物個体を同じ容器で栽培することにより、同じ培地水分条件を 与えることができ、それらの乾燥ストレス症状を比較することにより、深根性の植物を 容易に選抜できる。
[0025] ここで、本発明の方法において深根性を評価する複数の植物個体は、互いに同種 であってもよぐまた異種であってもよい。好ましくは、当該複数の植物個体は、互い に同種の植物個体であるが、系統が同じであってもよぐ又は異なる系統であっても よい。本明細書において同種であるとは、 2以上の植物個体において、互いに植物 分類学的に同じ種に属することをいう。本明細書において系統が同じであるとは、 2 以上の植物個体にお!、て、互いに遺伝子レベルで実質的に同一にある関係である ことをいう。本明細書において系統が異なるとは、 2以上の植物個体において、互い に遺伝子レベルで 1以上の異なる点が存在するために形質が異なる株の関係にある ことをいう。したがって、植物個体が互いに異なる系統である関係は、限定されるわけ ではないが、例えば、品種が異なる植物同士の関係、野生型植物と当該野生型植物 について遺伝子組換えにより形質転換した植物の関係、交配実験における F世代の
0 植物と F世代 (nは 1以上の整数)の植物の関係、交配実験において互いに異なる遺 伝子を受け継いだ F世代の植物の関係、などを含む。異なる系統の複数の植物個
1
体について、深根性を評価し、深根性の植物を選抜する本発明の方法は、耐乾性を 有する植物の品種育成において有効なツールとなる。
[0026] 本発明の方法により、深根性を評価することができる植物は、根が比較的長く且つ 栽培容器で生育させうる大きさである限り、限定されるものではないが、好ましくは、 種子植物、さらに好ましくは被子植物、さらに好ましくは草本性植物、さらに好ましく は根の長さが 10cm以上になる草本性植物である。具体的にはイネ、トウモロコシ、コ ムギ、ォォムギ、ソルガム、パーノレミレット、イタリアンミレット、サトウキビ、イタリアンライ グラス、タバコ、ナタネ、ヮタ、ナス、トマト、キユウリ、ステビア、ダイズ、シロイヌナズナ 、花卉力 なる群力 選択される植物であってよぐさらに好ましくは、イネ、トウモロコ シ、タバコからなる群の植物である。ただし、根が非常に長く伸びる植物、たとえば榭 木であっても、若木の時に本発明の方法を用いることは勿論可能である。
[0027] 植物を栽培する容器 (以下、本明細書において「栽培容器」という。)の形状は特に 限定はされないが、円筒形や立方形が扱い易いため好ましい。栽培容器の深さは、 評価対象の植物が根を伸ばすのに十分な深さがあれば特に制限はなぐ評価対象 植物によっても異なる力 一般的には、好ましくは 30cm以上 300cm以下、さらに好 ましくは 40cm以上で 250cm以下、さらに好ましくは 50cm以上 200cm以下である。 栽培容器の断面積は、評価対象植物を栽培する大きさがあれば特に制限はないが 、一般的には、 20cm2から 25m2が好ましぐ 30cm2から 10m2が好ましぐさらに 40c m2から 5m2が好ましい。
[0028] 栽培容器の好ましい深さ及び断面積は、評価対象植物の大きさによって異なる力 より具体的には以下のようになるであろう。シロイヌナズナなどの比較的小さい植物で は 30cm以上 100cm以下の深さで、 20cm2から lm2の断面積の栽培容器が好まし い。また、イネ、コムギ、ナタネ又はダイズなどの中程度の植物では 50cm以上 200c m以下の深さで 20cm2から lm2の断面積の栽培容器が好ましい。さらに、トウモロコシ やタバコなどの大きく育つ植物では 50cm以上 300cm以下の深さで、 400cm2力 2 5m2の断面積の栽培容器が好ま 、。
[0029] 栽培容器の下部は給水と排水のために開放された状態とする。開放の状態は、培 地が容器内に保持されつつ、栽培容器内と水槽内の水が流通可能な任意の状態で あってよい。このために、一般的には底又は底近くの側壁に水が十分に通る穴を少 なくとも 1つ設ける(以下、本明細書において「底穴」という)。栽培容器の側面に吸水 又は排水用の穴を設けることは必須ではないが、根への酸素補給のための通気孔を 兼ねるなど必要に応じて設けてもよい。栽培容器の素材は、塩ィ匕ビニールやポリカー ボネートなどのプラスチック、ステンレス合金やアルミニウムなどの非腐食性または耐 腐食性の金属、あるいは陶器などが好ましぐそして、栽培中に腐食したり、有害物 質を放出したりするものは好ましくない。また、根が非常に長く伸びる植物を栽培する 場合には、栽培容器をプラスチック製や金属製のチューブをコイル状に卷 ヽた状態 に形成することにより、必要な長さを確保してもよい。
[0030] 栽培容器には栽培する植物に適する培地を詰める。培地の種類は特に限定される ものではなぐ適度に水と空気とを含むことができ、水槽の水位を変えたときに緩やか に培地の水分含有量が変化し、かつ評価する植物の栽培に適するものであれば、天 然物のほか、パーライト、バーミキユライトやロックウールのような人工物でもよい。この ような培地として、例えば、砂土、砂壌土、埴壌土、黒ボタ土やこれらの混合物あるい は市販の園芸用肥土などを好ましく用いることができる。培地には植物の生育に必要 な肥料を加えることが好ましい。また、培地は大きな隙間ができないようになるべく均 一に栽培容器に詰めることが好ましい。さらに、栽培容器の底穴力も培地が流出しな V、ように底穴の上に網ゃ不織布などを入れることが好まし 、。底穴の上に入れる網な どの形状は任意に選択でき、そして、材質は腐食または腐敗や目詰まりしないものを 使用する。
[0031] 栽培容器は水を溜めることができる容器 (以下、本明細書において「水槽」という。 ) 内に設置する。設置の方法については、水槽の内底と栽培容器の底穴とが密着しな いようにすることにより水槽力も栽培容器の底穴を通して培地に給水できる形態であ れば特に制限はないが、例えば、水槽の底にある程度の厚みのあるプラスチックなど でできた網を敷き、その上に栽培容器を置いてやれば、容易に設置することができる 。この場合、水槽の水は網の隙間を通じて栽培容器の底面に充分入り込むことがで きる。水槽の深さは、栽培容器より浅くても深くても構わないが、水槽を満水にした場 合に栽培容器の培地表面が乾くことがなぐまた栽培容器より深い場合には側壁の 影が植物の生育が悪影響を与えない範囲が好ましい。また、栽培容器を水槽に設置 した際、水槽と栽培容器との高さの差が 50cm以内、又は 30cm以内、さらには 10c m以内であることが好ましい。ただし、培地表面が乾かない深さを確保できない場合 は、乾燥処理開始まで容器の上から灌水して、必要な培地水分を保つことも考えら れる。水槽の間口は限定されるものではないが、栽培容器を 10本以上設置できるも のが作業効率の点力も好ましい。水槽の材質は、限定されるものではないが、プラス チック、金属、コンクリートなどが強度を確保でき、入手しやすい点で好ましい。
[0032] 水槽に水を張り、培地を湿らせる。水槽から栽培容器の底穴を通して給水すること ができるので、培地中の空気が抜けやすぐ培地全体を確実にかつ短時間に湿らせ ることができる。水槽の水位は特に限定されるものではないが、植物を栽培する前に 培地の表面が湿る高さまで水を張ることが好ま 、。高 、培地水分を好まな 、植物の 場合でも、水槽に水を十分に張り、一旦培地全体を確実に湿らせてカゝら水位を下げ 、栽培開始前に適度な培地水分条件とすることが好ましい。水槽の水位を培地の表 面が湿る程度にまで高くせず、培地の上力 灌水して培地を湿らせてもよいが、この 場合は培地に湿らない部分ができないように数日間にわたり何回も入念に灌水する 必要がある。
[0033] なお、本発明においては、水槽内に栽培容器を設置する方法のほかに、例えば水 槽と栽培容器とを別々に設置し、栽培容器の底穴と水槽の底又は下部をチューブな どで連結して水位を調整する方法を利用してもよい。このようにしても、水槽の水位あ るいは位置を上下させることによって、栽培容器の水位を調整することができる。
[0034] すなわち本明細書にぉ 、て、「栽培容器を水槽に設置する」とは、水槽の水位の調 整により栽培容器の水位の調整が可能となるよう、水槽と栽培容器を設置することを 意味し、水槽の中に栽培容器を設置することのほか、栽培容器と水槽の底又は下部 を連結することなどを含む。
[0035] 栽植密度は、植物が通常生育できる密度であれば、特に限定されるものではな 、 力 例えば、イネでは栽培容器の植え付け部の面積 100cm2当たり 1個体から 100個 体、さらに好ましくは 5個体から 30個体である。また、トウモロコシなど大きな植物の場 合は、より栽植密度が小さいことが好ましぐ栽培容器の植え付け部の面積 lm2当た り 1個体力ら 200個体、さらに好ましくは 10個体から 100個体である。
[0036] 評価対象植物の栽培容器への植え付けは、栽培容器に直接播種してもよ!/、し、育 苗箱などで育成した苗を移植してもよい。また、植物の根が通るよう底に穴などをあけ た容器に苗を育て、容器ごと栽培容器に乗せる方法を利用してもよい。
[0037] なお、栽培容器に直接播種した場合には、発芽した後しばらく栽培し、ある程度生 育して力ゝら本発明の方法を行うことが好ましい。また、苗を栽培容器に定植した場合 には、根が活着した後に本発明の方法を行うことが好ましい。
[0038] 本発明の方法において、栽培初期はその植物の生育に好ましい水分条件で栽培 し、根がある程度伸びて力も水槽の水位を徐々に下げて植物に乾燥ストレスを与える ことが好ましい。
[0039] 栽培容器と水槽の水は底穴を通して連絡しているので、水槽の水位を下げることに より栽培容器の水位を容易に下げることができる。
[0040] 水位を下げ始める時期や下げ方については、評価対象植物によって異なる力 根 が少なくとも約 10cm伸びる程度の期間の後、栽培容器の深さの半分に達する前ま での間が好ましい。この期間の決定については、予備実験などで評価対象植物の根 の伸長特性を大まかに調査しておくことが好ましい。また、透明なプラスチックなどで 作製した栽培容器を使用して根の伸長を観察してもよい。水位の下げ幅は特に限定 されるものではないが、気温や光量に注意し、植物の状態を観察しながら行うことが 好ましぐ具体的には 1週間当たり 10cmから 100cmが好ましい。例えば、 3〜4葉期 のイネの苗を定植した場合は、水位を下げ始める時期は定植後 1週目から 5週目の 間が好ましぐさらに好ましくは 1週目力も 4週目の間であり、水位の下げ幅は 1週間 当たり 10cmから 100cmが好ましぐさらに好ましくは 20cm〜70cmである。従って、 イネを例にすると、定植後 1週目から 4週目に水位を下げ始め、その後 1週間から 5週 間かけて全体で 80cmから 150cm下げるのが好まし!/、。また、例えば 1週間に水位を 50cm下げる場合、一度に 50cm下げてもよいし、数日おきに数回に分けて 50cm下 げてもよい。
[0041] 水槽の水位を下げる方法としては、ポンプで水を汲み出す、水槽の底付近に設け た排水ロカ 排水する、水槽の側壁に例えば 10cmごとに設けた排水ロカ 排水す るなどの方法がある。
[0042] 水槽の水位低下にともない栽培容器の水位も下がるので、植物の吸水と培地表面 からの蒸発により、培地は表面から下方に向力つて徐々に乾燥していく。培地の乾燥 の進行より早ぐ深くまで根を伸長し、水分が十分にある層に根の先端を保持できる 個体は乾燥ストレスを受けない。一方、根の伸長が遅い個体は根の周りに利用できる 水分が少なくなるので生育を停止し、葉を巻くなどの乾燥ストレス症状を示し、さらに 培地の乾燥が進むと葉が枯れ始め、最終的には枯死する。
[0043] 適切な時期に茎葉の状態を調査して、深根性個体を選抜する。乾燥ストレスを早く 受けた個体、すなわち根の伸長が遅 、個体ほど重 、乾燥ストレス症状を示して!/、る ので、症状が軽いものを深根性個体として選抜する。各容器に対照となる系統の植 物を 1〜数個体植えておくと、これら対照植物と検定植物とのストレス症状の程度を 比較して評価できるので選抜が容易である。
[0044] 本発明の方法は、複数の植物個体についてそれらの深根性を簡便かつ効率的に 評価及び選抜することができるので、深根性による耐乾性を有する植物の品種育成 を行うためのツールとして用いることができる。これは、複数系統の植物について本発 明の方法により深根性の植物を評価及び Z又は選抜することにより行う。例えば、品 種育成の過程にぉ ヽて、育種素材の中から深根性を有する個体や系統を育種母本 として選抜する工程、育種素材や育種母本を交配させた後代の中から深根性を有す る個体や系統を選抜する工程に、本発明の方法を用いることができる。このようにして 選抜された個体や系統は、さらなる育種母本として使用することもできる。また、深根 性に関係すると考えられる遺伝子を導入した形質転換体を、本発明の方法を用いて 検定し、該遺伝子の評価を行うことができる。さら〖こ、任意の DNA断片を導入した多 数の形質転換体について、本発明の方法で検定'評価し、深根性に関係する遺伝 子を探索することも可能である。
[0045] 本発明はまた、本発明の方法により植物の深根性を評価するための装置であって 、植物が根を伸ばすために十分な深さのある、底が開放された栽培容器及び該栽培 容器を設置する水槽を含んでなり、該栽培容器には培地を詰めて水槽に設置して植 物を培養し、そしてその際、該水槽の水位を調節することで、該栽培容器中の培地 の水分含量を調節することが可能な、前記装置を提供する。また、本発明の装置は、 本発明の方法の説明において上述したような様々な修飾や変更が加えられてもよぐ それら修飾または変更された態様もまた、本発明の範囲内であることは当業者に理 解されるであろう。本発明の装置の概略図を図 1に示す。図 1は、本発明の概念を示 すためのものであり、本発明を概略図に示された態様に限定するものではない。
[0046] 本発明の方法により選抜育成される、深根性を有する植物は、主に乾燥環境での 栽培に適した植物であり、穀物、野菜、花卉その他商業作物は勿論のこと、さらには 森林資源として、ある ヽは砂漠緑ィ匕のために植林されて ヽる榭木類も本発明を適用 し、選抜、育成することができる。このような榭木類としては、例えばブナ、ツバキ、タス ノキ、モクセィ、サクラ、ャナギ、モクレン、ウメ、クヌギ、ァォキ、ッッジ、スギ、ヒノキ、 ナツメヤシ、タマリスク、ミモザ、ナツメヤシ、ユーカリ、マツ、ポプラ、 -レ、スナナツメ などが挙げられる。本発明をこういった榭木類に適用する場合には、根の長さがまだ 短 、若木の時に行うことが好まし 、。
発明の効果
[0047] 本発明の方法は、根の伸長を実際に測定しなくても深根性の個体を選別できるの で、塹壕法のように、圃場で土を掘りあげるような多大な労力を必要とする工程は含 まず、必要な労力は塹壕法に比べてはるかに少なくて済むため、大量検定に適して いる。また、従来知られていた円筒法では、異なる品種を別々の容器で栽培するの で、同じ培地水分条件下で複数品種の根の生育を比較することはできな力つたが、 本発明の方法では、複数の植物を同じ栽培容器で培養できるので、同じ培地水分条 件下で深根性を比較できる。さらに、本発明の方法は従来の方法と比較して、水位 の調整などの栽培条件の管理が非常に容易である。
[0048] このように、本発明の方法は、複数の植物を同一の水分条件で栽培して比較できる ことに加え、水位の調整などの栽培条件の管理も非常に容易であり、深根性植物の 大量検定を可能にする実用的な方法である。本発明の方法により、植物の深根性を 簡便、効率的、かつ確実に評価することができる。
図面の簡単な説明
[0049] [図 1]図 1は、本発明の装置の縦断面の概略図である。
[図 2-1]図 2—1は、本発明の方法による、各タンク (タンク 1、 2)の栽培容器ごとの各 品種の乾燥ストレス症状の評点の平均値の経過を示すグラフである。 a.タンク 1 栽 培容器 A、 b.タンク 1—栽培容器 B、 c.タンク 1—栽培容器 C、 d.タンク 2—栽培容 器 A、 e.タンク 2—栽培容器 B、 f.タンク 2—栽培容器 C、の結果をそれぞれ示す。
[図 2-2]図 2— 2は、本発明の方法による、各タンク (タンク 3、 4)の栽培容器ごとの各 品種の乾燥ストレス症状の評点の平均値の経過を示すグラフである。 g.タンク 3—栽 培容器 A、 h.タンク 3—栽培容器 B、 i.タンク 3—栽培容器 C、; j.タンク 4—栽培容器 A、 k.タンク 4—栽培容器 B、 1.タンク 4—栽培容器 C、の結果をそれぞれ示す。
[図 3]図 3は、和田ら(日本作物学会紀事、 70: 580-587, 2001)の方法による耐乾性 試験の結果を示す図である。 a.定植後 37日目に乾燥処理を開始した場合、 b.定植 後 44日目に乾燥処理を開始した場合、の結果をそれぞれ示す。
符号の説明
[0050] 1…栽培容器
2· · ·底穴
3 · · ·水槽
4· · '培地
5 · · ·水(水面)
以下、実施例により本発明をさらに具体的に説明するが、本発明の技術的範囲は これらの実施例に限定されるものではない。
実施例
[0051] m
供試材料 してイネ(Orvza sativa L.)の 4品糠を用いた ^すなわち、 日本の水稲品 種「ゆきひかり」、 日本の陸稲品種「ゆめのはたもち」、改良インディ力品種「IR36」及 び日印交雑品種「水原 287」の 4品種である。ゆめのはたもちは深根性で圃場におい て高度の耐乾性を発揮すること(平澤 '根本ら、育種学雑誌 48: 415-419, 1998)、ま た IR36と水原 287はポット試験において耐乾性が高いこと(和田 ·鈴木ら、 日本作物 学会記事 70: 580-587, 2001)が報告されている。
[0052] 種子をヘルシードスターナフロアブル 200倍希釈液で 4日間消毒、催芽処理をし、 水稲用ポット苗箱(61 X 31 X高さ 2. 5cm、セルの直径約 15mm、セル 32列 X 14穴 )に 1穴当たり 1粒ずつ播種し、育苗した。
[0053] 栽培には塩ィ匕ビニール製のパイプ (以下、「塩ビ管」、 t ヽぅ。)で作成した 3種類の 容器を使用した。容器本体には長さ lmに切断し^ JIS規格 K6741の VU50 (外径 6 Omm、内径 56mm)、 VU75 (外径 89mm、内径 83mm)及び VU100 (外径 114m m、内径 107mm)の 3種類の塩ビ管を用いた。 VU50は径が小さぐ少数の植物体 し力植え付けられな 、ので、上端に径違 ヽソケット(呼び径 75 X 50)を取り付けて V U75や VU100と同数の植物体を植えつけられるようした。また、各塩ビ管の下端に は径に応じたソケット(呼び径 50 X 50、 75 X 50又は 100 X 50)を取り付け、さらに適 度な長さの VU50を介して直径 9. 5mmの穴(以下、本実施例の中で「底穴」という。 )を 1つあけたキャップ(呼び径 50)を取り付け、 3種類の栽培容器とも全体の長さを約 117cmに揃えた。容器本体に VU50、 VU75、 VU100を使用したものをそれぞれ 栽培容器 Aゝ栽培容器 Bゝ栽培容器。とした。
[0054] 各容器には市販の水稲用育苗土 24リットル当たりに市販の配合肥料「マグアンプ K
(NPK=6, 40, 6%)」を 32g混ぜた土 (以下、本実施例の中で「培地」という。)を詰 めた。詰めた培地の量は容器 A、 B、 Cそれぞれ約 3、 6. 5、 10リットルであった。
[0055] 高さ 88cm、外径 56cm、容量 200リットルの円筒型水槽(以下、本実施例の中では 「タンク」という。)を 4個準備し、タンクの底にプラスチック製の網を敷き、各タンク内に 栽培容器 Aと栽培容器 Bを 4本ずつ、栽培容器 Cを 3本設置し、タンクに水を入れた。 タンクの水は栽培容器の底穴を通して容器内に入り、培地を徐々に湿らせた。タンク が満水の場合でも栽培容器の上部約 29cmは水面より上に出ていた力 ほとんどの 栽培容器では 1日以内に培地表面まで水が吸い上げられた。ただし、培地の表面ま で水が吸い上がらなかった一部の容器については上力 灌水して培地を湿らせた。
[0056] 各栽培容器に播種後 13日目の、 3葉期から 4葉期のイネの苗を各品種 2個体ずつ 、同じ品種を対角の位置として、計 8個体植えた。定植後に培地の表面が乾いた場 合は適宜灌水し、乾燥ストレスが力からな 、ようにした。
[0057] 定植後 2週目又は 3週目から、タンクの水位を 2回力 4回に分けて下げ、乾燥処理 を行った。表 1に各タンクの水位の下げ方を示した。すなわち、タンク 1は定植後 2週 目に水位を 20cm下げ、その後 1週間置きに 20cm、 30cmずつ下げ、 5週目にはタ ンクの底まで下げた。同様に、タンク 2は定植後 3週目力も 40cm、 30cm, 18cmず つ、タンク 3は定植後 3週間目力も 20cm、 30cm, 30cm, 8cmずつ下げた。タンク 1 、 2、 3ではタンクの底まで水を吸い出してもその後に栽培容器力 徐々に水が出てき た力 この水はタンクにそのまま残した。これらの水は蒸発や栽培容器への移動によ り 1週間以内に無くなった。タンク 4は定植後 4週間目に 50cm、 5週目に 30cm下げ、 底から 8cmまでの水を残した。タンク 4では 9週目でも底に水が残っていた。なお、水 位はタンクの水をポンプで汲み出すことにより容易に下げることができた。
[0058] [表 1] 表 1 水位の推移
タンク底からの水位 単位 cm
Figure imgf000017_0001
( ) 内は水の自然減少によって低下した水位である。
容器の上面から水面までの距離は 1 17から表中の数字を引いた値 (cm) である。 [0059] タンクの水位を下げた数日後から培地の表面は乾き始め、定植後 5週目(乾燥処理 開始から 3週目)ごろから植物に巻き葉などの乾燥ストレス症状が現れ始めた。
[0060] 乾燥ストレスを受けた個体は生育を停止し、葉が内側に巻く乾燥ストレス症状を示し 始めた。培地の乾燥が進むにつれ、葉は円筒状、さらには針状とより固く巻いた。針 状をしばらく保った後葉先力も枯れ始め、最後は葉鞘の水分が抜けて枯死した。た だし、ゆめのはたもちでは、一部の葉が少し巻いた状態で水分が抜けることもあった
[0061] 定植後 5週目から 9週目の間、週に 3回(又は 2回)、個体毎に乾燥ストレス症状に 応じた評点を付けた (表 2)。
[0062] [表 2] 表 2 評点とストレス症状の程度
Figure imgf000018_0001
[0063] 図 2— 1の a.ないし f.及び図 2— 2の g.ないし 1.に、各タンクの栽培容器ごとの各 品種にっ 、ての評点の平均値の経過を示した。
[0064] 乾燥ストレス症状が現れ始めるのは径が小さい栽培容器ほど早力つた力 栽培容 器 Bと Cには大きな差はな力つた。一方、タンク間では乾燥ストレス症状の発生始まり に大きな差はなカゝつた。例えば、タンク 1では、栽培容器 Aは定植後 35日目、栽培容 器 Bは 47日目、栽培容器 Cは 49日目であった。また、水位を最も遅く下げ始めたタン ク 4では、栽培容器 Aは 37日目、栽培容器 Bと Cはともに 47日目であった。
[0065] 乾燥ストレス症状の発生始まりと進行は栽培容器の径と水位の下げ方によりやや異 なったが、何れの栽培容器でも、ゆきひ力りと水原 287の症状の進行が早ぐ次に IR 36で、ゆめのはたもちが最も遅カゝつた。この品種間の関係はストレス症状が出始めて から観察中はほとんど変わらな力つたのでいつでも判定できることが分力つた。症状 が出始めてから 1〜2週間後の品種間の評点差は大きいが、それ以前でも実際に見 ると外観差は大き 、ので判定は可能である。
[0066] 定植後 8週目に、タンク 1、 2、 3から栽培容器 Aを取り出し、定植部を下に向けて側 壁を軽くたたき、根を切らないように注意して培地を引き出し、培地の乾燥状態と根を 観察した。各栽培容器の最も長い根はタンク 1では 73〜80cm、タンク 2では 62〜64 cm、タンク 3では 70〜83cmであり、培地は最も長い根の先端から上方 10〜15cm 程度までは湿っていたが、それより上は乾いた状態であった。また、最も長い根を迪 り、それらがゆめのはたもちの根であることを確認した。
[0067] このように、ストレス症状が最も軽力つたゆめのはたもちの根が最も深く伸びていた。
従って、本発明の方法により深根性の植物を効率よぐ容易に選抜できることが示さ れた。
[0068] 比較例
本発明との比較のために、和田らの方法 (和田 ·鈴木ら、 日本作物学会紀事 70 : 5 80 - 587, 2001、参照により本明細書にその全体を援用する)に準じた浅い容器を 使用した試験を行い、実施例に供試した苗についての耐乾性を評価した。本実施例 と同組成の培地を詰めたプラスチック鉢 (直径 12cm、高さ 10cm)に苗を定植し、深 さ 3〜4cm程度水を張ったベッドで、底面力も給水させて栽培した。苗は実施例に供 試したものと同じで、鉢への定植方法も実施例と同様に行った。定植後 37日目と 44 日目に 2鉢ずつ給水を停止し乾燥処理を行った。一日に 3、 4回植物の状態を観察し 、ゆきひ力りの葉鞘が株元まで乾いた時に、再び鉢に給水した。乾燥処理中と再給 水後 3日目に茎葉の状態を観察し、乾燥処理中は表 2、再給水後は下記の表 3によ り評点をつけた。
[0069] [表 3] 再給水後の評点と荃葉の ¾
Figure imgf000020_0001
[0070] 図 3aに定植後 37日目、図 3bに定植後 44日目に乾燥処理を始めた鉢の結果を示 した。この方法では、水原 287が最も耐乾性が強ぐ次に IR36、ゆきひかりで、ゆめ のはたもちが最も弱い結果となった。この結果は、本発明の方法で評価した場合の 結果、すなわち、ゆめのはたもちが最も乾燥に強ぐ水原 287が最も弱いという結果と は全く異なるものであった。
[0071] ゆめのはたもちは深根性により高度耐乾性を示す陸稲品種である(平澤 '根本ら、 ( 1998)育種学雑誌 48 : 415-419)。また、 Nemotoら(Nemoto,H., Suga.R. et al., (1998) Breeding Science 48 : 321-324)は多数のイネ品種を、圃場で栽培することにより塹 壕法で土壌深度別に根の量と深さを観察し、そして深さ 10cmの容器で栽培すること により耐乾性を評価した。その結果、深根性は断水による萎凋度と有意な関係は認 められず、回復力とは有意な正の関係が認められたと報告している。
[0072] し力しながら、本実施例及び本比較例の結果との比較は、浅 、容器を用いた試験 において回復力が高力つたものが必ずしも深根性ではな力つたことを示すものである 。このように、上記 Nemotoらの報告及び本実施例と比較試験の結果は、浅い栽培容 器を用いた試験では深根性の植物が選ばれな 、危険性があることを示して 、る。
[0073] 以上の結果から、本発明の方法は深根性植物を簡便に、かつより確実に選抜する のに非常に非常に優れていることが示された。
産業上の利用可能性
[0074] 本発明の方法は、複数の植物を同一の水分条件で栽培して比較できることに加え 、水位の調整などの栽培条件の管理も非常に容易であり、深根性植物の大量検定を 可能にする簡便かつ効率的な方法である。これらの特色により、本発明の方法の利 用は深根性を有する植物を効率的に選抜することを可能にするため、乾燥回避性の 植物の品種育成の効率向上に貢献する。

Claims

請求の範囲 [1] 複数の植物個体にっ 、て同じ培地水分条件下で深根性を評価する方法であって、以下の工程: (1)植物が根を伸ばすのに十分な深さがある栽培容器に培地を詰めて、複数の植物 個体を植え; (2)徐々に培地の水分含量を下げて、該植物に乾燥ストレスを与え;そして、(3)該植物において現れた乾燥ストレス症状から、該植物の深根性を評価する; を含む、前記方法。 [2] 複数の植物個体につ!、て同じ培地水分条件下で深根性を評価する方法であって 、以下の工程:
(1)植物が根を伸ばすのに十分な深さがあり、底が開放された栽培容器に培地を詰 め、該栽培容器を水槽に設置し;
(2)複数の植物個体を該栽培容器に植え;
(3)水槽の水位を下げることにより培地の水分含量を徐々に下げて、該植物に乾燥 ストレスを与え;そして、
(4)該植物において現れた乾燥ストレス症状から、該植物の深根性を評価する; を含む、前記方法。
[3] 栽培容器の深さが、 30cm以上 300cm以下である、請求項 1又は 2に記載の方法。
[4] 水槽と栽培容器の深さの差が 50cm以内である、請求項 2又は 3に記載の方法。
[5] 培地が、砂土、砂壌土、埴壌土、黒ボタ土、及びそれらの混合物、並びに園芸用肥 土力 なる群力 選択される、請求項 1ないし 4のいずれか 1項に記載の方法。
[6] 栽培容器における植物の栽植密度が、 100cm2あたり 1個体から 100個体である、 請求項 1な!、し 5の 、ずれか 1項に記載の方法。
[7] 栽培容器における植物の栽植密度が、 lm2あたり 1個体から 200個体である、請求 項 1な!、し 5の!、ずれか 1項に記載の方法。
[8] 植物が種子植物である、請求項 1ないし 7のいずれか 1項に記載の方法。
[9] 複数の植物個体が、互いに異なる系統の植物個体である、請求項 1ないし 8のいず れか 1項に記載の方法。
[10] 複数の植物個体から、深根性の植物を同じ培地水分条件下で選抜する方法であ つて、以下の工程:
( 1)植物が根を伸ばすのに十分な深さがあり、底が開放された栽培容器に培地を詰 め、該栽培容器を水槽に設置し;
(2)複数の植物個体を該栽培容器に植え;
(3)水槽の水位を下げることにより培地の水分含量を徐々に下げて、該植物に乾燥 ストレスを与え;そして、
(4)該植物にぉ 、て現れた乾燥ストレス症状が軽 、植物個体を、深根性の植物とし て選抜する;
を含む、前記方法。
[11] 植物の深根性を評価するための装置であって、植物が根を伸ばすのに十分な深さ を持ち、底が開放された栽培容器及び該栽培容器を設置する水槽を含んでなり、該 栽培容器には培地を詰めて水槽に設置して植物を培養し、そしてその際、該水槽の 水位を調節することで、該栽培容器中の培地の水分含量を調節することが可能な、 前記装置。
PCT/JP2005/008876 2005-05-16 2005-05-16 植物の深根性評価方法 WO2006123392A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/920,423 US8156687B2 (en) 2005-05-16 2005-05-16 Method for evaluating deep rooting property of plant
PCT/JP2005/008876 WO2006123392A1 (ja) 2005-05-16 2005-05-16 植物の深根性評価方法
EP05739266.4A EP1886552B1 (en) 2005-05-16 2005-05-16 Method of estimating deep rooting property of plant
CN2005800497884A CN101175397B (zh) 2005-05-16 2005-05-16 植物根深性的评价方法
JP2007516151A JPWO2006123392A1 (ja) 2005-05-16 2005-05-16 植物の深根性評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/008876 WO2006123392A1 (ja) 2005-05-16 2005-05-16 植物の深根性評価方法

Publications (1)

Publication Number Publication Date
WO2006123392A1 true WO2006123392A1 (ja) 2006-11-23

Family

ID=37430976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008876 WO2006123392A1 (ja) 2005-05-16 2005-05-16 植物の深根性評価方法

Country Status (5)

Country Link
US (1) US8156687B2 (ja)
EP (1) EP1886552B1 (ja)
JP (1) JPWO2006123392A1 (ja)
CN (1) CN101175397B (ja)
WO (1) WO2006123392A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078308A1 (ja) 2009-12-24 2011-06-30 独立行政法人農業生物資源研究所 植物の深根性を制御する遺伝子Dro1とその利用
JP2018038307A (ja) * 2016-09-06 2018-03-15 住友林業株式会社 山林樹木の挿し木育成方法
CN108739369A (zh) * 2018-03-16 2018-11-06 福建农林大学 一种实时观察甘蔗组培苗根系生长模型
CN110432100A (zh) * 2019-09-11 2019-11-12 上海市农业生物基因中心 基于深浅层根胁迫处理的水稻双筒抗旱鉴定装置和方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104303882B (zh) * 2014-10-24 2016-06-01 三峡大学 一种根系破岩机理可视化监控装置
CN108605760A (zh) * 2018-05-22 2018-10-02 四川农业大学 一种紫山药栽培方法
CN111819950A (zh) * 2020-07-27 2020-10-27 黔南民族师范学院 一种探究无机盐对植物生长影响的教学实验方法
CN113092283B (zh) * 2021-04-17 2022-09-27 西安科技大学 植物根系作用下土的力学特性分析装置及方法
CN113973612B (zh) * 2021-10-27 2023-08-29 华南农业大学 植物分根观察装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191770A (ja) * 1996-01-22 1997-07-29 Horon Corp:Kk 二重植木鉢
JP3084897U (ja) * 2001-09-26 2002-03-29 政広 加藤 プットポット
JP2003230318A (ja) 2002-02-07 2003-08-19 Hitachi Ltd 植物の耐干性の簡易評価法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2052603U (zh) * 1989-07-28 1990-02-14 乔金星 自流浇水双层花盆
JPH0384897A (ja) 1989-08-28 1991-04-10 Matsushita Electric Works Ltd 放電灯点灯装置
JP2685048B2 (ja) 1997-01-06 1997-12-03 富士通株式会社 プラズマディスプレイパネル用基板構体の製造方法
CN2394429Y (zh) * 1999-11-18 2000-09-06 蔡晓辉 双层陶瓷花盆

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191770A (ja) * 1996-01-22 1997-07-29 Horon Corp:Kk 二重植木鉢
JP3084897U (ja) * 2001-09-26 2002-03-29 政広 加藤 プットポット
JP2003230318A (ja) 2002-02-07 2003-08-19 Hitachi Ltd 植物の耐干性の簡易評価法

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
HIRASAWA; NEMOTO ET AL., JAPANESE JOURNAL OF BREEDING, vol. 48, 1998, pages 415 - 419
MIA M. ET AL.: "Root System Structure of Six Food Legume Species: Inter- and Intraspecific Variations.", JAPANESE JOURNAL OF CROP SCIENCE., vol. 65, 1996, pages 131 - 140, XP002990929 *
MIA, M. W.; YAMAUCHI, A. ET AL., JAPANESE JOURNAL OF CROP SCIENCE, vol. 13, 1996, pages 131 - 140
MIMOTO H. ET AL.: "Comparison of Root Systems among Rice Cultivars by Simplified Investigation Methods.", JAPANESE JOURNAL OF CROP SCIENCE., vol. 66, no. 4, 1997, pages 559 - 570, XP002990927 *
NEMOTO H. ET AL.: "Deep Rooted Rice Varieties Detected through the Oberservation of Root Characteristics Using the Trench Method.", BREEDING SCIENCE., vol. 48, 1998, pages 321 - 324, XP002990928 *
NEMOTO, H.; SUGA, R. ET AL., BREEDING SCIENCE, vol. 48, 1998, pages 321 - 324
See also references of EP1886552A4
TRILLANA N. ET AL.: "Comparison of Root System Development in Two Rice Cultivars During Stress Recovery from Drought and the Plant Traits for Drought Resistance.", PLANT PRODUCTION SCIENCE., vol. 4, 2001, pages 155 - 159, XP002990930 *
TRILLANA, N.; INAMURA, T. ET AL., PLANT PRODUCTION SCIENCE, vol. 4, 2001, pages 155 - 159
WADA ET AL., JAPANESE JOURNAL OF CROP SCIENCE, vol. 70, 2001, pages 580 - 587
WADA Y. ET AL.: "Varietal Differences in the Growth and Dry-Matter Production during Vegetative Growth in Rice under Upland Cultivation Conditions with Water Stress-A comparison of Japonica, Indica and Japonica-Indica hybird cultivars-", JAPANESE JOURNAL OF CROP SCIENCE., vol. 70, no. 4, 2001, pages 580 - 587, XP002990931 *
WADA; SUZUKI ET AL., JAPANESE JOURNAL OF CROP SCIENCE, vol. 70, 2001, pages 580 - 587

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078308A1 (ja) 2009-12-24 2011-06-30 独立行政法人農業生物資源研究所 植物の深根性を制御する遺伝子Dro1とその利用
JP2018038307A (ja) * 2016-09-06 2018-03-15 住友林業株式会社 山林樹木の挿し木育成方法
CN108739369A (zh) * 2018-03-16 2018-11-06 福建农林大学 一种实时观察甘蔗组培苗根系生长模型
CN110432100A (zh) * 2019-09-11 2019-11-12 上海市农业生物基因中心 基于深浅层根胁迫处理的水稻双筒抗旱鉴定装置和方法

Also Published As

Publication number Publication date
US20090064575A1 (en) 2009-03-12
EP1886552A1 (en) 2008-02-13
EP1886552B1 (en) 2017-03-01
CN101175397A (zh) 2008-05-07
US8156687B2 (en) 2012-04-17
JPWO2006123392A1 (ja) 2008-12-25
EP1886552A4 (en) 2011-05-18
CN101175397B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
Barnett Producing southern pine seedlings in containers
WO2006123392A1 (ja) 植物の深根性評価方法
CN104904447B (zh) 益智种子保存及种子苗培育技术
CN109588263A (zh) 一种甜柿容器育苗基质及其育苗方法
CN109618911A (zh) 一种简便高效低成本的冬小麦异地加代育种方法
CN109076894B (zh) 一种寒冷区湿地芡实种子萌发及幼苗高效种植方法
CN104285771A (zh) 核桃容器苗水培培育方法
CN104756715B (zh) 乌腺金丝桃的栽培方法
CN104904537B (zh) 一种李树林间育苗方法
CN108770669A (zh) 一种薄壳山核桃优良容器苗的培育方法
CA2835468C (en) Container and method for raising a plant
JP2007236328A (ja) 高容積重ユーカリ属植物の生産方法、ユーカリ属植物、木材チップ、及びパルプ
JP2005204662A (ja) 果樹類の盛土式根圏制御栽培方法
CN102511288A (zh) 一种华盖木的扦插育苗方法
CN108849177A (zh) 一种滴灌条件下小粒咖啡苗木采用蓖麻遮荫的方法
JP3481439B2 (ja) 覆土材
CN114258825A (zh) 一种提升肉苁蓉种子质量和产量的培育方法
CN106416647A (zh) 一种滇中地区利用黄毛草莓地被绿化的方法
JP4564577B1 (ja) 宿根野菜類の栽培方法
Landis et al. Subirrigation trials with native plants
CN109121533A (zh) 一种金盏花的催芽播种方法
Sen et al. Effect of water and substrate culture on fruit quality of tomatoes grown in greenhouses
CN102893789A (zh) 一种红桦种子低海拔育护根苗方法
CN109744100B (zh) 一种旱种水稻种子的培育方法
Panchev Seed propagation of Tilia sp.-agrobiological and technological aspects.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580049788.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007516151

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

REEP Request for entry into the european phase

Ref document number: 2005739266

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005739266

Country of ref document: EP

Ref document number: 5777/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2005739266

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11920423

Country of ref document: US