WO2006122948A1 - Inertmaterial für den einsatz in exothermen reaktionen - Google Patents

Inertmaterial für den einsatz in exothermen reaktionen Download PDF

Info

Publication number
WO2006122948A1
WO2006122948A1 PCT/EP2006/062381 EP2006062381W WO2006122948A1 WO 2006122948 A1 WO2006122948 A1 WO 2006122948A1 EP 2006062381 W EP2006062381 W EP 2006062381W WO 2006122948 A1 WO2006122948 A1 WO 2006122948A1
Authority
WO
WIPO (PCT)
Prior art keywords
inert material
alumina
inert
material according
tablets
Prior art date
Application number
PCT/EP2006/062381
Other languages
English (en)
French (fr)
Inventor
Henrik Junicke
Heiko Urtel
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Publication of WO2006122948A1 publication Critical patent/WO2006122948A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0292Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds with stationary packing material in the bed, e.g. bricks, wire rings, baffles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination
    • C07C17/152Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons
    • C07C17/156Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons of unsaturated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30215Toroid or ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/302Basic shape of the elements
    • B01J2219/30223Cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30416Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/30Details relating to random packing elements
    • B01J2219/304Composition or microstructure of the elements
    • B01J2219/30475Composition or microstructure of the elements comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/322Transition aluminas, e.g. delta or gamma aluminas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the invention relates to the use of alpha-alumina ( ⁇ -Al 2 O 3 ) in the form of hollow cylinders or ring tablets as inert material in exothermic reactions.
  • Inert materials are used in exothermic reactions in order to reduce the formation of so-called hot spots by heat removal.
  • the use of inert materials in exothermic reactions in a fixed bed is necessary because when using an undiluted catalyst at the beginning of the catalyst bed due to the high reaction rate, a large amount of heat is released.
  • the formation of hot spots should be avoided since they can adversely affect the selectivity of the reaction and also lead to a faster deactivation of the catalysts.
  • a catalyst bed with a graded activity profile is used, wherein the activity of the catalyst bed in the flow direction increases. This is usually achieved by providing the catalysts with a graded content of active components and optionally with selectivity promoters.
  • chemically inert materials eg. B. broken graphite, tabletted or extruded graphite powder, diluted (US-A-3184515, US-A-2866830).
  • inert materials are silicon carbide, silicon dioxide, aluminum oxides or glass, which are usually used in tablet, strand or spherical form.
  • inert diluent materials entails, as a significant disadvantage, an increased pressure loss, which has a negative effect, in particular in the case of shaped catalyst bodies which have a low-pressure loss, since it hinders material and heat transport in the axial direction.
  • the increased pressure loss also leads to a higher required compressor power, which reduces the maximum load capacity of the catalyst bed, which ultimately leads to a lower productivity of the reactor and has a limiting effect on the system capacity.
  • Too much dilution of the active component on the carrier material is also not favorable, as this greatly affects the onset of the reaction.
  • the use of unimpregnated catalyst support material is not advantageous. So z.
  • the gamma-alumina ( ⁇ -Al 2 O 3 ) commonly used in oxychlorination has a high active surface area and is not inert. This negatively influences the selectivity of the reaction.
  • the attenuation of the carrier activity by impregnation with alkali metals is z. As described in US-A-5202511, but leads to significantly higher cost of the inert material.
  • the object of the invention was therefore to provide an alternative inert material, which causes a lower pressure drop, so that the capacity of the system can be further increased.
  • the material abrasion should be kept low.
  • Ot-Al 2 O 3 in the form of hollow cylinders or ring tablets is used as the inert material.
  • the invention thus provides an inert material for use in exothermic reactions containing Ct-Al 2 O 3 in the form of hollow cylinders or ring tablets.
  • Subjects of the invention are also a process for the preparation of such inert materials and their use in exothermic gas phase reactions.
  • the inert material according to the invention contains Ct-Al 2 O 3 in the form of hollow cylinders or ring tablets.
  • the outer diameter (D A ) of the molded body is 1 to 20 mm, preferably 2 to 10 mm and particularly preferably 3 to 7 mm, in particular 4 to 6 mm.
  • ) of the shaped bodies advantageously has 0.1 to 0.7 times the outer diameter, preferably 0.3 to 0.7 times, and particularly preferably 0.35 - up to 0.55 times of the outer diameter.
  • the height (H) of the moldings advantageously represents 0.2 to 2 times, preferably 0.3 to 1, 8 times, more preferably 0.6 to 1.4 times the outer diameter.
  • the hollow cylinder or ring tablets have rounded, z. B. kalottêt
  • the radius of curvature of the end faces (R) is 0.01 to 0.5 times, preferably 0.05 to 0.4 times, and more preferably 0.1 to 0.2 times the outside diameter.
  • the hollow cylinder or ring tablets according to the invention advantageously have a shape in which the outer wall surface (outer edge) and the inner wall surface (edge of the inner hole) are arranged substantially flat and parallel to one another in cross-section.
  • the faces can be flat or rounded.
  • the end surfaces are continuously rounded so that - viewed along the inner hole - the catalyst body tapers both from the outer edge and from the edge of the inner bore ago. It can form a visible edge between the curvature of the end faces and the outer and the inner edge.
  • the inert material of the invention advantageously has a content of Cc-Al 2 O 3 of at least 50 wt .-%, preferably greater than 80 wt .-%, more preferably greater than 90 wt .-% and particularly preferably greater than 95 wt .-%, on ,
  • Other types of alumina such as, for example, delta-alumina (5-Al 2 O 3 ), theta-alumina (O-Al 2 O 3 ), ⁇ -Al 2 O 3 or pseudo-boehmite, may also be present in total of at most 50% by weight, preferably up to 20% by weight, more preferably up to 10% by weight and in particular not more than 5% by weight.
  • the inert material may also contain traces of other elements, such as Ti, Fe, Na and Si, which should then each lie at most in the 10 to 1000 ppm range.
  • the moldings according to the invention advantageously have a BET surface area of less than 50 m 2 / g, preferably less than 20 m 2 / g and particularly preferably less than 10 m 2 / g.
  • the lateral compressive strength of the inert materials according to the invention is advantageously at least 15 N, preferably 25 to 250 N, more preferably 50 to 200 N, the mechanical abrasion resistance advantageously less than 20 wt .-%, preferably less than 5 wt .-% and particularly preferably less as 2% by weight.
  • the determination of the lateral compressive strength is carried out as follows: The moldings are loaded between two parallel plates on the shell side with increasing force until breakage occurs. The registered when breaking the moldings Power is the lateral compressive strength. From a well-mixed sample 25 moldings are measured in this way and the average value determined.
  • the abrasion test is performed according to ASTM D4058-81.
  • the inventively formed inert materials can be obtained by tableting a high surface area ⁇ -Al 2 O 3 and / or 5-Al 2 O 3 and / or G-Al 2 O 3 with subsequent calcination at high temperatures. In this case, a conversion of the alumina modifications used in ⁇ -Al 2 O 3 .
  • the various forms of the aluminum oxide can be used pure or in any desired mixtures with one another.
  • the high-surface area Y-Al 2 O 3 , 5-Al 2 O 3 and G-Al 2 O 3 can also wholly or partially by further Aluminiumoxidmo-, such as chi-alumina ( ⁇ -Al 2 O 3 ) or compounds of the precursors of these aluminas, such as pseudo-boehmite, are replaced, which also convert after calcination into the desired Ot-Al 2 O 3 .
  • further Aluminiumoxidmo- such as chi-alumina ( ⁇ -Al 2 O 3 ) or compounds of the precursors of these aluminas, such as pseudo-boehmite
  • tabletting aids such as, for example, graphite or magnesium stearate
  • the various Tablettierzsstoff can be used purely or in any mixtures with each other.
  • the tabletting to the hollow cylinders or ring tablets described above is carried out in a known manner using the usual presses.
  • the pressing force is preferably more than 9 kN, more preferably between 9 and 11 kN.
  • the moldings are calcined at temperatures of preferably above 900 ° C., generally between 1000 and 2000 ° C., more preferably between 1000 and 1500 ° C., and especially at 1100 to 1400 ° C.
  • the calcination process is usually carried out for 0.5 to 10 hours, preferably for 1 to 2 hours.
  • the calcination can be carried out in an oxidizing or inert atmosphere, preferably working in an oxidizing atmosphere, generally in the air. Calcination can be done dormant or agitated.
  • the inert materials according to the invention are particularly suitable as a diluent for catalysts in exothermic reactions.
  • they are used in exothermic oxidation reactions, particularly preferably in Oxichlor michsrefrac of olefins and particularly preferably for the oxychlorination of ethylene to 1, 2-dichloroethane.
  • they can also be used advantageously, for example, in the preparation of acrylic acid, phthalic anhydride or maleic anhydride or else in the dehydrogenation of alkanes to alkenes, for example the reaction of propane to propene or butane to butene or butadiene.
  • a dry mix as described in B1 was made into ring tablets of dimensions 5mm x 5mm x 2.5mm (height x outside diameter x diameter of the inner hole) and end faces rounded equally to the outer edge and rim of the inner bore, the radius of the Curvature of the end faces (R) was 0.8 mm, tableted and then calcined at 1300 0 C for one hour.
  • the physical properties of the material are given in Table 1. Comparative Example C1
  • Graphite was formed into 5 mm x 5 mm tablets with sugar as a tabletting aid. Subsequently, the tool was burned out by calcination at 500 0 C.
  • the tablets of V1 were transferred to chippings of 1 to 3 mm in size.
  • Ring pellets were prepared according to B1, wherein the step of calcination at only 700 0 C was performed. Copper and potassium chloride (6% by weight Cu, 2% by weight K) were impregnated onto this support material after water absorption and dried at 120.degree. This represents a typical oxychlorination catalyst on ⁇ -Al 2 O 3 .
  • Ring pellets were made to B2, with the calcination step performed at only 700 ° C.
  • copper and potassium chloride (6 wt .-% Cu, 2 wt .-% K) were soaked in water absorption and dried at 120 0 C. This represents a typical oxychlorination catalyst on ⁇ -Al 2 O 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Structural Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Gegenstand der Erfindung ist ein Inertmaterial für den Einsatz in exothermen Reaktionen, enthaltend α-Al2O3 in Form von Hohlzylindern oder Ringtabletten. Gegenstände der Erfindung sind weiterhin ein Verfahren zur Herstellung solcher Inertmaterialien sowie deren Verwendung in exothermen Gasphasenreaktionen.

Description

Inertmaterial für den Einsatz in exothermen Reaktionen
Beschreibung
Die Erfindung betrifft den Einsatz von alpha-Aluminiumoxid (α-AI2O3) in Form von Hohlzylindern oder Ringtabletten als Inertmaterial in exothermen Reaktionen.
Inertmaterialien werden bei exothermen Reaktionen verwendet, um durch Wärmeabfuhr die Ausbildung von sogenannten hot spots zu reduzieren. Der Einsatz von Inert- materialien in exothermen Reaktionen im Festbett ist notwendig, da bei Verwendung eines unverdünnten Katalysators am Anfang der Katalysatorschüttung aufgrund der hohen Reaktionsgeschwindigkeit eine große Wärmemenge frei wird. Die Bildung von hot spots ist zu vermeiden, da sie zum einen die Selektivität der Reaktion ungünstig beeinflussen können und zum anderen zu einer rascheren Desaktivierung der Kataly- satoren führen. Gegen Ende der Reaktion, d. h. wenn ein Großteil der Reaktanden abreagiert ist (am Ende der Katalysatorschüttung), wird keine große Wärmemenge mehr frei. Daher wird in den Festbett-Verfahren nach Stand der Technik eine Katalysatorschüttung mit abgestuftem Aktivitätsprofil verwendet, wobei die Aktivität der Katalysatorschüttung in Strömungsrichtung zunimmt. Dies wird üblicherweise dadurch er- reicht, dass die Katalysatoren mit einem abgestuften Gehalt an Aktivkomponenten und gegebenenfalls mit Selektivitätspromotoren versehen werden. Zusätzlich hierzu wird in den Reaktorabschnitten, in denen die Triebkraft der Reaktion noch sehr hoch ist, d. h. üblicherweise am Anfang der Schüttung, mit chemisch inerten Materialien, z. B. gebrochenem Graphit, tablettiertem oder extrudiertem Graphitpulver, verdünnt (US-A- 3184515, US-A-2866830). Bekannt sind als Inertmaterialien auch Siliciumcar- bid, Siliciumdioxid, Aluminiumoxide oder Glas, die üblicherweise in Tabletten-, Strangoder Kugelform eingesetzt werden.
Im Bereich der Festbett-Oxichlorierungskatalysatoren werden üblicherweise Graphit- tabletten als „Verdünnungsmaterial" eingesetzt.
Der Einsatz inerter Verdünnungsmaterialien bringt jedoch als wesentlichen Nachteil einen erhöhten Druckverlust mit sich, der sich insbesondere bei druckverlustarmen Katalysatorformkörpern negativ auswirkt, da er Stoff- und Wärmetransport in axialer Richtung behindert. Der erhöhte Druckverlust führt auch zu einer höheren benötigten Kompressorleistung, wodurch die maximale Belastbarkeit der Katalysatorschüttung reduziert wird, was letztlich zu einer geringeren Produktivität des Reaktors führt und sich limitierend auf die Anlagenkapazität auswirkt.
Eine zu starke Verdünnung der Aktivkomponente auf dem Trägermaterial ist ebenfalls nicht günstig, da dadurch das Anspringen der Reaktion stark beeinträchtigt wird. Der Einsatz von nicht-imprägniertem Katalysatorträgermaterial ist nicht vorteilhaft. So weist z. B. das in der Oxichlorierung häufig eingesetzte gamma-Aluminiumoxid (γ-AI2O3) eine hohe aktive Oberfläche auf und ist nicht inert. Damit wird die Selektivität der Reaktion negativ beeinflusst. Die Dämpfung der Trägeraktivität durch Tränkung mit Alkalimetallen ist z. B. in US-A-5202511 beschrieben, führt aber zu deutlich höheren Kosten des Inertmaterials.
Um die Selektivitätsnachteile beim Einsatz von γ-AI2O3 zu vermeiden, kann nach dem Stand der Technik auch Oc-AI2O3 verwendet werden, das nur eine geringe aktive Ober- fläche besitzt. Ct-AI2O3 wird üblicherweise in Form von extrudierten Strängen bzw. Zylindern oder in Kugelform als Verdünnungsmaterial eingesetzt. Diese Materialien zeigen jedoch - neben dem oben beschriebenen Problem des unerwünschten Druckabfalls - einen erhöhten Materialabrieb, was nur geringe Standzeiten im Reaktor bedingt.
Die Aufgabe der Erfindung bestand somit in der Bereitstellung eines alternativen Inertmaterials, das einen niedrigeren Druckverlust verursacht, damit die Kapazität der Anlage weiter gesteigert werden kann. Dabei soll der Materialabrieb gering gehalten werden.
Die Aufgabe wurde erfindungsgemäß dadurch gelöst, dass als Inertmaterial Ot-AI2O3 in Form von Hohlzylindern oder Ringtabletten eingesetzt wird.
Gegenstand der Erfindung ist somit ein Inertmaterial für den Einsatz in exothermen Reaktionen, enthaltend Ct-AI2O3 in Form von Hohlzylindern oder Ringtabletten. Gegen- stände der Erfindung sind weiterhin ein Verfahren zur Herstellung solcher Inertmaterialien sowie deren Verwendung in exothermen Gasphasenreaktionen.
Es wurde nun gefunden, dass durch Kalzinieren von tablettierten γ-AI2O3-Ringen bei über 9000C Ringe aus Ot-AI2O3 erhalten werden können, bei denen sich die Eigen- schatten des niedrigen Druckverlustes der Ringgeometrie mit einer hohen mechanischen Festigkeit kombinieren lassen. Der Druckverlust kann weiter dadurch reduziert werden, wenn γ-AI2O3-Ringe mit abgerundeten, z. B. kalottierten, Stirnflächen als Katalysator-Trägermaterial eingesetzt werden, die schon positive Effekte auf den Druckverlust gezeigt haben.
Das erfindungsgemäße Inertmaterial enthält Ct-AI2O3 in Form von Hohlzylindern oder Ringtabletten. Vorteilhafterweise beträgt der Außendurchmesser (DA) der Formkörper 1 bis 20 mm, bevorzugt 2 bis 10 mm und besonders bevorzugt 3 bis 7 mm, insbesondere 4 bis 6 mm. Der Innendurchmesser (D|) der Formkörper (Durchmesser des Innen- lochs) weist vorteilhafterweise das 0,1- bis 0,7-fache des Außendurchmessers, vorzugsweise das 0,3- bis 0,7-fache und besonders bevorzugt das 0,35- bis 0,55-fache des Außendurchmessers auf. Die Höhe (H) der Formkörper stellt vorteilhafterweise das 0,2- bis 2-fache, bevorzugt das 0,3- bis 1 ,8-fache, besonders bevorzugt das 0,6- bis 1 ,4-fache des Außendurchmessers dar.
In besonders vorteilhafter Ausführung weisen die Hohlzylinder oder Ringtabletten abgerundete, z. B. kalottierte, Stirnflächen auf. Der Radius der Krümmung der Stirnflächen (R) beträgt dabei das 0,01- bis 0,5-fache, bevorzugt das 0,05- bis 0,4-fache und besonders bevorzugt das 0,1- bis 0,2-fache des Außendurchmessers.
Die erfindungsgemäßen Hohlzylinder oder Ringtabletten weisen dabei vorteilhafterweise eine Form auf, in der im Querschnitt die äußere Wandfläche (Außenrand) und die innere Wandfläche (Rand des Innenlochs) weitgehend eben und parallel zueinander angeordnet sind. Die Stirnflächen können dabei plan oder abgerundet sein. Vorzugsweise sind die Stirnflächen durchgehend so abgerundet, dass - entlang des Innenlochs betrachtet - sich der Katalysatorkörper sowohl von Außenrand als auch vom Rand der Innenbohrung her verjüngt. Dabei kann sich zwischen der Krümmung der Stirnflächen und dem Außen- sowie dem Innenrand eine sichtbare Kante bilden.
Das erfindungsgemäße Inertmaterial weist vorteilhafterweise einen Gehait an Cc-AI2O3 von mindestens 50 Gew.-%, bevorzugt größer als 80 Gew.-%, besonders bevorzugt größer 90 Gew.-% und insbesondere bevorzugt größer 95 Gew.-%, auf. Weiterhin enthalten sein können auch andere Formen des Aluminiumoxids, wie beispielsweise del- ta-Aluminiumoxid (5-AI2O3), theta-Aluminiumoxid (0-AI2O3), γ-AI2O3 oder Pseudoböhmit, insgesamt in Mengen von höchstens 50 Gew.-%, bevorzugt bis zu 20 Gew.-%, beson- ders bevorzugt bis zu 10 Gew.-% und insbesondere nicht mehr als 5 Gew.-%. Neben den Aluminiumoxiden kann das Inertmaterial auch noch Spuren anderer Elemente, wie beispielsweise Ti, Fe, Na und Si, enthalten, die dann jeweils höchstens im 10 bis 1000 ppm Bereich liegen sollten.
Die erfindungsgemäßen Formkörper besitzen vorteilhafterweise eine BET-Oberfläche von kleiner als 50 m2/g, bevozugt kleiner als 20 m2/g und besonders bevorzugt kleiner als 10 m2/g.
Die Seitendruckfestigkeit der erfindungsgemäßen Inertmaterialien beträgt vorteilhaft- erweise mindestens 15 N, bevorzugt 25 bis 250 N, besonders bevorzugt 50 bis 200 N, die mechanische Abriebsfestigkeit vorteilhafterweise weniger als 20 Gew.-%, vorzugsweise weniger als 5 Gew.-% und besonders bevorzugt weniger als 2 Gew.-%.
Die Bestimmung der Seitendruckfestigkeit wird folgendermaßen durchgeführt: Die Formkörper werden zwischen zwei parallelen Platten auf der Mantelseite mit zunehmender Kraft belastet bis Bruch eintritt. Die beim Bruch der Formkörper registrierte Kraft ist die Seitendruckfestigkeit. Aus einer gut durchmischten Probe werden 25 Formkörper auf diese Weise vermessen und der Durchschnittswert ermittelt.
Der Abriebstest wird nach der ASTM-Vorschrift D4058-81 durchgeführt.
Die erfindungsgemäß geformten Inertmaterialien lassen sich durch Tablettierung eines hochoberflächigen γ-AI2O3 und/oder 5-AI2O3 und/oder G-AI2O3 mit anschließender Kalzinierung bei hohen Temperaturen erhalten. Dabei erfolgt eine Umwandlung der eingesetzten Aluminiumoxidmodifikationen in α-AI2O3. Die verschiedenen Formen des AIu- miniumoxids können rein oder in beliebigen Gemischen untereinander eingesetzt werden.
Im bei der Tablettierung eingesetzten Ausgangsmaterial können die hochoberflächigen Y-AI2O3, 5-AI2O3 und G-AI2O3 auch ganz oder teilweise durch weitere Aluminiumoxidmo- difikationen, wie chi-Aluminiumoxid (χ-AI2O3 ) oder Verbindungen der Vorstufen dieser Aluminiumoxide, wie beispielsweise Pseudoböhmit, ersetzt werden, die sich nach Kalzinierung ebenfalls in das gewünschte Ot-AI2O3 umwandeln.
Daneben können auch übliche Tablettierhilfsmittel, wie beispielsweise Graphit oder Magnesiumstearat, dem zu tablettierenden Ausgangsmaterial zugesetzt werden. Üblicherweise werden Tablettiermischungen, die Magnesiumstearat in einer Menge von 0,5 bis 7 Gew.-%, bevorzugt von 2 bis 5 Gew.-%, oder Graphit in einer Menge von 0,5 bis 3 Gew.-%, bevorzugt von 1 bis 1 ,5 Gew.-%, jeweils bezogen auf die Gesamtmasse der Mischung, enthalten, eingesetzt. Die verschiedenen Tablettierhilfsmittel können rein oder in beliebigen Gemischen untereinander eingesetzt werden.
Die Tablettierung zu den weiter oben beschriebenen Hohlzylindern oder Ringtabletten erfolgt auf bekannte Art und Weise unter Verwendung der üblichen Pressen. Die Presskraft beträgt vorzugsweise mehr als 9 kN, besonders bevorzugt zwischen 9 und 11 kN.
Nach der Tablettierung werden die Formkörper bei Temperaturen von vorzugsweise über 9000C, im Allgemeinen zwischen 1000 und 20000C, besonders bevorzugt zwischen 1000 und 15000C und besonders bei 1100 bis 14000C, kalziniert. Der Kalzinier- Vorgang wird üblicherweise über 0,5 bis 10 h, vorzugsweise über 1 bis 2 h, durchgeführt. Die Kalzinierung kann in oxidierender oder inerter Atmosphäre vorgenommen werden, bevorzugt wird in oxidierender Atmosphäre, im Allgemeinen an der Luft, gearbeitet. Die Kalzinierung kann ruhend oder bewegt erfolgen.
Es kann auch direkt Oc-AI2O3 als Ausgangsmaterial zur Erzeugung der erfindungsgemäßen Hohlzylinder oder Ringtabletten eingesetzt werden. Der Tablettiermischung können dabei wahlweise ebenfalls - wie weiter oben beschrieben - Tablettierhilfsmittel zugesetzt werden. Dabei kann auch nach der Tablettierung des alpha-Aluminiumoxids eine Nachkalzinierung des Materials erfolgen. Diese Nachkalzinierung wird vorteilhafterweise zwischen 400 und 15000C, bevorzugt zwischen 500 und 13000C über 0,5 bis 10 h, vorzugsweise über 1 bis 2 h, durchgeführt.
Durch die beschriebene Herstellung werden chemisch inerte Verdünnungsmaterialen erhalten, die beim Einsatz in chemischen Reaktionen einen geringen Druckverlust erzeugen und die eine hohe mechanische Stabilität besitzen.
Die erfindungsgemäßen Inertmaterialien eignen sich insbesondere als Verdünnungsmaterial für Katalysatoren in exothermen Reaktionen. Vorteilhafterweise werden sie bei exothermen Oxidationsreaktionen, besonders bevorzugt bei Oxichlorierungsreaktionen von Olefinen und insbesondere bevorzugt zur Oxichlorierung von Ethylen zu 1 ,2- Dichlorethan eingesetzt. Sie können aber beispielsweise auch bei der Herstellung von Acrylsäure, Phthalsäureanhydrid oder Maleinsäureanhydrid vorteilhafte Verwendung finden oder auch bei der Dehydrierung von Alkanen zu Alkenen, beispielsweise der Reaktion von Propan zu Propen oder Butan zu Buten oder Butadien.
Die Erfindung wird anhand der nachfolgenden Beispiele näher erläutert, ohne jedoch hierdurch eine entsprechende Eingrenzung vorzunehmen.
Beispiel B1
Eine Trockenmischung von 6 kg γ-AI2O3 (Puralox SCF a230, Fa. Sasol), 4 kg Pseudo- böhmit (Pural SCF, Fa. Sasol), 324 g Magnesiumstearat und 100 g Graphit wurden zu Ringtabletten mit den Abmessungen 7 mm x 7 mm x 3 mm (Höhe x Außendurchmesser x Durchmesser des Innenlochs) tablettiert und anschließend für eine Stunde bei 13000C kalziniert. Die physikalischen Eigenschaften des Materials sind in Tabelle 1 angegeben.
Beispiel B2
Eine Trockenmischung wie in B1 beschrieben wurde zu Ringtabletten mit den Abmessungen 5 mm x 5 mm x 2,5 mm (Höhe x Außendurchmesser x Durchmesser des In- nenlochs) und gleichermaßen zum Außenrand und zum Rand der Innenbohrung hin abgerundenten Stirnflächen, wobei der Radius der Krümmung der Stirnflächen (R) 0,8 mm betrug, tablettiert und anschließend für eine Stunde bei 13000C kalziniert. Die physikalischen Eigenschaften des Materials sind in Tabelle 1 angegeben. Vergleichsbeispiel V1
Graphit wurde mit Zucker als Tablettierhilfsmittel zu 5 mm x 5 mm Tabletten geformt. Anschließend wurde durch Kalzinieren bei 5000C das Hilfsmittel ausgebrannt.
Vergleichsbeispiel V2:
Die Tabletten von V1 wurden in Splitt mit den Maßen 1 bis 3 mm überführt.
Vergleichsbeispiel V3:
Es wurden Ringtabletten nach B1 hergestellt, wobei der Schritt der Kalzinierung bei nur 7000C durchgeführt wurde. Auf dieses Trägermaterial wurden Kupfer- und Kaliumchlorid (6 Gew.-% Cu, 2 Gew.-% K) nach Wasseraufnahme aufgetränkt und bei 120°C ge- trocknet. Dies stellt einen typischen Oxichlorierungskatalysator auf γ-AI2O3 dar.
Vergleichsbeispiel V4:
Es wurden Ringtabletten nach B2 hergestellt, wobei der Schritt der Kalzinierung bei nur 700°C durchgeführt wurde. Auf dieses Trägermaterial wurden Kupfer- und Kaliumchlorid (6 Gew.-% Cu, 2 Gew.-% K) nach Wasseraufnahme aufgetränkt und bei 1200C getrocknet. Dies stellt einen typischen Oxichlorierungskatalysator auf γ-AI2O3 dar.
In der folgenden Tabelle sind einige physikalische Daten der hergestellten Formkörper zusammengefasst.
Tabelle 1 : Physikalische Daten
Figure imgf000007_0001
Die Druckverlustmessungen wurden in einem Glasrohr mit 2,5 cm Durchmesser auf einem Meter Schüttlänge bestimmt. Es wurde ein N2-Strom bei 2 bar verwendet. Ein Durchmesser von 2,5 cm ist typisch für die Reaktorrohre in technischen Rohrbündelreaktoren für stark exotherme, heterogen katalysierte Gasphasenreaktionen, wie beispielsweise die Oxichlorierung von Ethylen zu Dichlorethan. Die Ergebnisse sind in Tabelle 2 zusammengefasst. Um im Test möglichst homogene Schüttungen zu erhalten, wurden die Formkörper jeweils über einen Trichter so langsam zugegeben, dass die Formkörper nacheinander und praktisch einzeln aufeinander fielen. Bei den Mischungen von Intertmaterial mit Katalysatorformkörpern im Verhältnis 1 : 3 wurden die Mischungen in einer langsam rotierenden Trommel homogenisiert. Derart wurden die in Tabelle 2 aufgeführten Mischungen V1 + V3, B1 + V3, V1 + V4, V2 + V4, B1 + V4 sowie B2 + V4 hergestellt und vermessen.
Tabelle 2: Relativer Druckverlust Δp auf 1 m Schüttlänge bei 2,5 cm Rohrdurchmesser im N2-Strom bei 2 bar. Die Felder, in denen „nicht messbar" steht, bedeuten, dass sich bei diesen Strömungsgeschwindigkeiten die Schüttung schon anhebt, so dass der Druckverlust nicht bestimmt werden kann.
Figure imgf000008_0001
Aus der Tabelle ist ersichtlich, dass der Druckverlust der erfindungsgemäß hergestellten Inertmaterialien deutlich geringer ist als bei herkömmlichen Systemen, beispielsweise den Graphit-Tabletten. Auch in Mischung mit den eigentlichen Katalysatoren ergeben sich deutlich niedrigere Druckverluste als mit anderen Formkörpern.

Claims

Patentansprüche
1. Inertmaterial für den Einsatz in exothermen Reaktionen, enthaltend alpha- Aluminiumoxid in Form von Hohlzylindem oder Ringtabletten.
2. Inertmaterial gemäß Anspruch 1, dadurch gekennzeichnet, dass der Gehalt an alpha-Aluminiumoxid mindestens 50 Gew.-% beträgt.
3. Inertmaterial gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die BET- Oberfläche kleiner als 50 m2/g ist.
4. Verfahren zur Herstellung von Inertmaterial gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass gamma-Aluminiumoxid- und/oder delta- Aluminiumoxid- und/oder theta-Aluminiumoxid-Hohlzylinder oder -Ringtabletten durch Kalzinieren in inerte alpha-Aluminiumoxid-Hohlzylinder oder -Ringtabletten überführt werden.
5. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, dass das Kalzinieren bei über 9000C durchgeführt wird.
6. Verwendung des Inertmaterials gemäß einem der Ansprüche 1 bis 3 für exotherme Gasphasenreaktionen.
7. Verwendung des Inertmaterials gemäß einem der Ansprüche 1 bis 3 für Oxidati- onsreaktionen.
8. Verwendung des Inertmaterials gemäß einem der Ansprüche 1 bis 3 für Oxichlo- rierungsreaktionen.
9. Verwendung des Inertmaterials gemäß einem der Ansprüche 1 bis 3 für die O- xichlorierung von Ethen zu 1 ,2-Dichlorethan.
PCT/EP2006/062381 2005-05-20 2006-05-17 Inertmaterial für den einsatz in exothermen reaktionen WO2006122948A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005023955.2 2005-05-20
DE102005023955A DE102005023955A1 (de) 2005-05-20 2005-05-20 Inertmaterial für den Einsatz in exothermen Reaktionen

Publications (1)

Publication Number Publication Date
WO2006122948A1 true WO2006122948A1 (de) 2006-11-23

Family

ID=36632228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/062381 WO2006122948A1 (de) 2005-05-20 2006-05-17 Inertmaterial für den einsatz in exothermen reaktionen

Country Status (3)

Country Link
DE (1) DE102005023955A1 (de)
TW (1) TW200700155A (de)
WO (1) WO2006122948A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012052199A1 (en) 2010-10-21 2012-04-26 Ineos Europe Ag Catalyst system, comprising catalyst pellets and diluent beads with predefined dimensions and physicochemical properties
WO2021260185A1 (en) 2020-06-26 2021-12-30 Basf Se Tableted alpha-alumina catalyst support
WO2022268348A1 (en) 2021-06-25 2022-12-29 Basf Se High purity tableted alpha-alumina catalyst support
CN115996792A (zh) * 2020-06-26 2023-04-21 巴斯夫欧洲公司 压片α-氧化铝催化剂载体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI642481B (zh) * 2013-07-17 2018-12-01 東楚股份有限公司 Catalyst system for the production of heterogeneous catalysts and 1,2-dichloroethane

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511671A (en) * 1982-09-06 1985-04-16 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for manufacturing methacrolein
US4656157A (en) * 1984-12-12 1987-04-07 Basf Aktiengesellschaft Molded catalyst for reactions carried out under heterogeneous catalysis
EP0393785A1 (de) * 1989-04-18 1990-10-24 UNION CARBIDE CHEMICALS AND PLASTICS COMPANY INC. (a New York corporation) Alkylenoxid-Katalysator mit verbesserter Aktivität und/oder Stabilität
EP0461431A1 (de) * 1990-06-09 1991-12-18 Degussa Aktiengesellschaft Zylindrisch geformter Katalysator und dessen Verwendung bei der Oxichlorierung von Ethylen
US5145824A (en) * 1991-01-22 1992-09-08 Shell Oil Company Ethylene oxide catalyst
US5986152A (en) * 1997-11-24 1999-11-16 Degussa-Huls Ag Supported catalyst, process for its production as well as its use in the oxychlorination of ethylene
EP1053789A1 (de) * 1999-05-21 2000-11-22 Evc Technology Ag Katalysator und Oxychlorinierungsverfahren unter Verwendung derselben
DE10313213A1 (de) * 2003-03-25 2004-10-07 Basf Ag Verfahren der heterogen katalysierten partiellen Gasphasenoxidation von Propen zu Acrylsäure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511671A (en) * 1982-09-06 1985-04-16 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for manufacturing methacrolein
US4656157A (en) * 1984-12-12 1987-04-07 Basf Aktiengesellschaft Molded catalyst for reactions carried out under heterogeneous catalysis
EP0393785A1 (de) * 1989-04-18 1990-10-24 UNION CARBIDE CHEMICALS AND PLASTICS COMPANY INC. (a New York corporation) Alkylenoxid-Katalysator mit verbesserter Aktivität und/oder Stabilität
EP0461431A1 (de) * 1990-06-09 1991-12-18 Degussa Aktiengesellschaft Zylindrisch geformter Katalysator und dessen Verwendung bei der Oxichlorierung von Ethylen
US5145824A (en) * 1991-01-22 1992-09-08 Shell Oil Company Ethylene oxide catalyst
US5986152A (en) * 1997-11-24 1999-11-16 Degussa-Huls Ag Supported catalyst, process for its production as well as its use in the oxychlorination of ethylene
EP1053789A1 (de) * 1999-05-21 2000-11-22 Evc Technology Ag Katalysator und Oxychlorinierungsverfahren unter Verwendung derselben
DE10313213A1 (de) * 2003-03-25 2004-10-07 Basf Ag Verfahren der heterogen katalysierten partiellen Gasphasenoxidation von Propen zu Acrylsäure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012052199A1 (en) 2010-10-21 2012-04-26 Ineos Europe Ag Catalyst system, comprising catalyst pellets and diluent beads with predefined dimensions and physicochemical properties
WO2021260185A1 (en) 2020-06-26 2021-12-30 Basf Se Tableted alpha-alumina catalyst support
CN115996792A (zh) * 2020-06-26 2023-04-21 巴斯夫欧洲公司 压片α-氧化铝催化剂载体
WO2022268348A1 (en) 2021-06-25 2022-12-29 Basf Se High purity tableted alpha-alumina catalyst support

Also Published As

Publication number Publication date
DE102005023955A1 (de) 2006-11-23
TW200700155A (en) 2007-01-01

Similar Documents

Publication Publication Date Title
EP1127618B1 (de) Geformte Katalysatoren
DE69924453T2 (de) Katalysatorträger zur Verwendung in der Herstellung von Ethylenoxid
DE69812789T2 (de) Kaliumferrat enthaltender Katalysator zur Herstellung von Styrol durch Dehydrierung von Ethylbenzol
DE3930534C2 (de)
DE102005040286A1 (de) Mechanisch stabiler Katalysator auf Basis von alpha-Aluminiumoxid
WO2002062737A2 (de) Heterogene katalysierte gasphasenpartialoxidation von vorläuferverbindungen der (meth)acrylsäure
EP0985447A2 (de) Katalysator und Verfahren zur Selektivhydrierung ungesättigter Verbindungen in Kohlenwasserstoffströmen
EP0669163A1 (de) Geformter Kupfer-Katalysator für die selektive Hydrierung von Furfural zu Furfurylalkohol
WO2006122948A1 (de) Inertmaterial für den einsatz in exothermen reaktionen
EP2509712A2 (de) Verfahren zur regenerierung eines ruthenium-haltigen geträgerten hydrierkatalysators
DE69923474T2 (de) Sternförmige aluminiumoxid extrudaten und darauf basierender katalysator
EP2606967A1 (de) Katalysator zur Synthese von Alkylmercaptanen und Verfahren zu seiner Herstellung
DE3705183A1 (de) Katalysator fuer die dampfreformierung von kohlenwasserstoffen
EP1068009B1 (de) Pseudoböhmit und gamma al2o3 enthaltender trägerkatalysator, dessen herstellung und dessen verwendung zur herstellung von 1,2-dichlorethan
EP1675677A1 (de) Katalysatorschüttungen mit an den äusseren reibungsflächen abgerundeten katalytisch inaktiven formkörpern
DE10361157A1 (de) Ruthenium-Heterogenkatalysator und Verfahren zur Herstellung eines Bisglycidylethers der Formel I
EP0240714B1 (de) Geformter Trägerkatalysator und dessen Verwendung bei der Oxichlorierung von Ethylen
EP1722888A2 (de) Trägerkatalysator mit aluminiumoxidträgern in delta- oder theta-modifikation
EP2401072B1 (de) Katalysator für die chlorwasserstoffoxidation enthaltend ruthenium und silber und/oder calcium
EP0206265A1 (de) Geformter Katalysator, Verfahren zu seiner Herstellung und dessen Verwendung bei der Oxichlorierung von Ethylen zu 1,2-Dichlorethan
EP0009068B1 (de) Fliessbettkatalysatoren zur Herstellung von synthetischem Erdgas durch CO-Methanisierung
EP0503229A1 (de) Verfahren zur Herstellung eines Katalysators für die Hydratation von Olefinen zu Alkoholen
DE2837018A1 (de) Verwendung von kobalt- und/oder nickelmolybdaenoxid-katalysatoren zur hydrierenden raffination von erdoel- kohlenwasserstoffen
DE2903193B2 (de) Verwendung eines Katalysators aus Kobaltoxid und/oder Nickeloxid sowie Molybdäntrioxid und Tonerde für die hydrierende Raffination von Erdölkohlenwasserstoffen
DE3522471A1 (de) Verfahren zur herstellung eines geformten traegerkatalysators, nach diesem verfahren erhaeltlicher traegerkatalysator sowie dessen verwendung als oxichlorierungskatalysator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06763164

Country of ref document: EP

Kind code of ref document: A1