WO2006117160A1 - Verfahren zum hydrophobieren von lignocellulosematerialien - Google Patents

Verfahren zum hydrophobieren von lignocellulosematerialien Download PDF

Info

Publication number
WO2006117160A1
WO2006117160A1 PCT/EP2006/004016 EP2006004016W WO2006117160A1 WO 2006117160 A1 WO2006117160 A1 WO 2006117160A1 EP 2006004016 W EP2006004016 W EP 2006004016W WO 2006117160 A1 WO2006117160 A1 WO 2006117160A1
Authority
WO
WIPO (PCT)
Prior art keywords
bis
tert
wax
butyl
aqueous
Prior art date
Application number
PCT/EP2006/004016
Other languages
English (en)
French (fr)
Inventor
Arend Jouke Kingma
Andreas FECHTENKÖTTER
Wolfgang Kasel
Holger Militz
Andreas Krause
Carsten Mai
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to JP2008509349A priority Critical patent/JP2008540158A/ja
Priority to US11/912,594 priority patent/US20080187669A1/en
Priority to AU2006243369A priority patent/AU2006243369A1/en
Priority to CA002606789A priority patent/CA2606789A1/en
Priority to BRPI0610106-2A priority patent/BRPI0610106A2/pt
Priority to EP06724644A priority patent/EP1879726A1/de
Priority to MX2007013706A priority patent/MX2007013706A/es
Publication of WO2006117160A1 publication Critical patent/WO2006117160A1/de
Priority to NO20075188A priority patent/NO20075188L/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K5/00Treating of wood not provided for in groups B27K1/00, B27K3/00
    • B27K5/0085Thermal treatments, i.e. involving chemical modification of wood at temperatures well over 100°C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K3/00Impregnating wood, e.g. impregnation pretreatment, for example puncturing; Wood impregnation aids not directly involved in the impregnation process
    • B27K3/02Processes; Apparatus
    • B27K3/15Impregnating involving polymerisation including use of polymer-containing impregnating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K5/00Treating of wood not provided for in groups B27K1/00, B27K3/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N7/00After-treatment, e.g. reducing swelling or shrinkage, surfacing; Protecting the edges of boards against access of humidity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K2240/00Purpose of the treatment
    • B27K2240/70Hydrophobation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/21Urea; Derivatives thereof, e.g. biuret
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a method for hydrophobing lignocellulosic materials by impregnating the lignocellulosic material with a hydrophobing agent, and the lignocellulosic materials obtainable thereby.
  • Lignocellulosic materials in particular wood, but also other lignocellulosic materials such as bamboo, natural fibers and the like are of interest as construction and construction materials for many applications.
  • the disadvantage is that the natural durability of these materials is adversely affected both by the action of moisture, but also by changes in the moisture content in the surrounding atmosphere.
  • the reason for this is the property of lignocellulosic materials to store water on contact with water or in a humid atmosphere and to release it again in a dry atmosphere.
  • the associated swelling or shrinkage and the associated lack of dimensional stability of the materials is not only undesirable for many applications, but can also lead to destruction of the material by cracking in extreme cases.
  • these materials are attacked by wood degrading or wood discolouring microorganisms when moist, which in many cases requires the equipment of these materials with fungicides or biocides. Apart from the cost aspect, such equipment is also disadvantageous for environmental reasons.
  • the hydrophobization of wood and other lignocellulosic materials is a long known technique for reducing the water absorption of these materials.
  • the dimensional stability of these materials is improved and, on the other hand, the risk of infestation with fungi or bacteria is reduced.
  • CA 2,179,001 in turn, describes a wood preservative having a hydrophobic effect which contains, in addition to a water-soluble wood preservative such as chromated copper arsenates, an aqueous emulsion of a low-melting wax such as Gatch and a cationic surface-active substance.
  • WO 00/41861 in turn discloses a process for the hydrophobization of wood substrates, in which the substrate is brought into contact with an aqueous dispersion of a wax at reduced pressure and a temperature above the melting point of the wax.
  • the hydrophobing using waxes is not always satisfactory and often not sufficiently weather-resistant.
  • large-sized wood parts d. H. with minimum dimensions of at least 1 cm, often no uniform distribution of the wax in the wood.
  • the impregnation with the wax dispersion must be carried out using high pressure. Due to the shear forces occurring in this case, the wax dispersions tend to coagulate, which can lead to clogging of the pores of the material and in this way prevents further penetration of the wax into the lignocellulosic material. Therefore, many processes impregnate with wax dispersions at temperatures above the melting point of the wax, which can result in damage to the material.
  • the present invention is therefore based on the object to provide a method for the hydrophobization of lignocellulosic materials, in particular of wood and especially of large-sized wood bodies available, which overcomes the disadvantages of the prior art described here.
  • the method should allow the impregnation even at low temperatures, in particular below 50 ° C, in order to avoid damage to the wood. It has surprisingly been found that the objects described here can be achieved and the problems of the prior art can be solved by carrying out impregnation with a curable aqueous composition containing at least one crosslinkable compound before or during the hydrophobing of the lignocellulosic materials is under
  • V low molecular weight compounds V, which is at least two N-bonded groups of the formula CH 2 OR, wherein R is hydrogen or C 1 -C 4 -alkyl, and / or a two nitrogen atoms bridging 1,2-bishydroxyethane-1,2-diyl - Group have, ß) pre-condensates of the compound V and
  • the invention thus relates to a method for hydrophobizing lignocellulosic materials by impregnating the lignocellulosic material with a hydrophobizing agent, wherein the lignocellulosic material is impregnated before or during the hydrophobing with a curable aqueous composition containing at least one crosslinkable compound which is selected from
  • V low molecular weight compounds V which contain at least two N-bonded groups of the formula CH 2 OR, in which R is hydrogen or C 1 -C 4 -alkyl, and / or a 1,2-bishydroxyethane-1,2-bridging two nitrogen atoms ß) precondensates of the compound V and
  • lignocellulosic materials are characterized by a low uptake of water and also show in comparison to conventionally hydrophobized materials no or to a much lesser extent exudation of the hydrophobizing agent in weathering, especially at elevated temperatures.
  • the distribution of the hydrophobizing agent in the inventively treated lignocellulosic materials, especially in the case of large-sized wood moldings, is more uniform than when using conventional wax emulsions.
  • the lignocellulosic materials obtainable according to the invention, in particular materials made of wood, are therefore likewise the subject matter of the present invention.
  • the lignocellulosic material in particular wood, is a material based on lignocellulosic materials, eg. As a veneer material or a finely divided lignocellulosic materials such as chips, fibers or strands shaped material, or a lignocellulosic material for the production of such materials, eg. As a veneer or finely divided lignocellulosic material impregnated with an aqueous composition of the curable compound.
  • the finely divided lignocellulosic materials include fibers, chips, strands, chips, chips and the like.
  • Veneers are flat thin wood materials with thicknesses ⁇ 5 mm, in particular ⁇ 1 mm.
  • Suitable lignocellulosic materials are in principle all types of wood, in particular those which can absorb at least 30%, in particular at least 50%, of their dry weight of water and in particular those which are assigned to the impregnability classes (or impregnability classes) 1 or 2 according to DIN 350-2 , These include, for example, woods of coniferous trees such as pine, spruce, Douglas fir, larch, pine, fir, coastal fir, cedar, stone pine, as well as woods of deciduous trees, eg.
  • the inventive method is also suitable for impregnating other, different from wood lignocellulosic materials, eg. As of natural fiber materials such as bamboo, bagasse, cotton stalks, jute, sisal, straw, flax, coconut fibers, banana fibers, reeds, z. As miscanthus, ramie, hemp, Manila hemp, Esparto (Alfagras), rice husks and cork.
  • the crosslinkable compounds ie compounds V, their precondensates and reaction products, are low molecular weight compounds or low molecular weight oligomers which are generally completely dissolved in the aqueous composition used.
  • the molecular weight of the crosslinkable compound is usually below 400 daltons. It is assumed that the compounds enter into the cell walls of the wood because of these properties. and improve the mechanical stability of the cell walls during curing and reduce their swelling caused by water.
  • crosslinkable compounds include, but are not limited to:
  • DMDHEU 1, 3-bis (hydroxymethyl) -4,5-dihydroxyimidazolidin-2-one
  • DMDHEU 1, 3-bis (hydroxymethyl) -4,5-dihydroxyimidazolidin-2-one, which is substituted by a C 1 -C 6 - Alkanol, a C 2 -C 6 -POIYl and / or an oligo-C 2 -C 4 -alkylene glycol modified (modified DMDHEU or mDMDHEU), - 1, 3-bis (hydroxymethyl) urea, 1, 3-bis ( methoxymethyl) urea, 1-hydroxymethyl-3-methylurea,
  • MF resins Tetra (hydroxymethyl) acetylene diurea, low molecular weight melamine-formaldehyde resins (MF resins) such as
  • melamine resins Poly (hydroxymethyl) melamine with 2, 3, 4, 5 or 6 hydroxymethyl groups and - low molecular weight melamine-formaldehyde resins (MF resins) such as
  • Poly (hydroxymethyl) melamine which are modified with a C, -C 3 alkanol, a C 2 -C 6 -POIyl and / or an oligo-C 2 -C 4 -alkylene glycol (modified MF resin).
  • the crosslinkable compound is urea compounds which on each nitrogen atom of the urea unit Group CH 2 OR as defined previously, and the reaction products of these urea compounds with CrC ⁇ - alkanols, C 2 -C ⁇ -polyols and / or oligoalkylene glycols selected.
  • the crosslinkable compound is selected from 1, 3-bis (hydroxymethyl) -4,5-dihydroxyimidazolidin-2-one and with a Ci-C 6 - alkanol modified a C 2 -C 6 -polyol and / or a polyalkylene glycol
  • polyalkylene glycols are, in particular, the below-mentioned oligo- and poly-C 2 -C 4 -alkylene glycols.
  • mDMDHEU reaction products of 1,3-bis (hydroxymethyl) -4,5-dihydroxyimidazolidin-2-one with a Ci-C ⁇ -alkanol, a C 2 -Ce-PoIyOl, an OH-go ⁇ ethylene glycol or mixtures of these alcohols
  • Suitable C 1- ⁇ - alkanols are, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol and n-pentanol, preference is given to methanol.
  • Suitable polyols are ethylene glycol, diethylene glycol, 1,2- and 1, 3-propylene glycol, 1, 2, 1, 3, and 1, 4-butylene glycol and glycerol.
  • suitable polyalkylene glycols are, in particular, the oligo- and poly-C 2 -C 4 -alkylene glycols mentioned below.
  • DMDHEU is mixed with the alkanol, the polyol or the polyalkylene glycol.
  • the monohydric alcohol, the polyol, or the oligo- or polyalkylene glycol are usually used in a ratio of 0.1 to 2.0, in particular 0.2 to 2 molar equivalents, based on DMDHEU.
  • the mixture of DMDHEU, the polyol or the polyalkylene glycol is usually reacted in water at temperatures of preferably 20 to 70 ° C and a pH of preferably 1 to 2.5, wherein the pH after the reaction usually to a Range is set from 4 to 8.
  • the crosslinkable compound is at least 2-fold, e.g. B. 2-, 3-, 4-, 5- or 6-fold, especially a 3-methyloliertem melamine (poly (hydroxymethyl) melamine) and one with a Ci-Ce- alkanol a C 2 -C 6 -PoIyOl, and / or a polyalkylene glycol-modified poly (hydroxymethyl) melamine.
  • polyalkylene glycols are, in particular, the oligo- and poly-C 2 -C 4 -alkylene glycols mentioned below.
  • the aqueous compositions used according to the invention may also contain one or more of the abovementioned alcohols, eg. B. dC 6 alkanols, C 2 -C ⁇ polyols, oligo- and polyalkylene glycols or mixtures of these alcohols.
  • Suitable C 1- ⁇ - alkanols are, for example, methanol, ethanol, n-propanol, isopropanol, n-butanol and n-pentanol, preference is given to methanol.
  • Suitable polyols are ethylene glycol, diethylene glycol, 1, 2 and 1,3-propylene glycol, 1,2-, 1, 3, and 1, 4-butylene glycol and glycerol.
  • Suitable oligo- and polyalkylene glycols are, in particular, oligo- and poly-C 2 -C 4 -alkylene glycols, especially homo- and cooligomers of Ethylene oxide and / or propylene oxide, optionally in the presence of low molecular weight starters, z. B.
  • aliphatic or cycloaliphatic polyols having at least 2 OH groups such as 1,3-propanediol, 1, 3- and 1, 4-butanediol, 1, 5-pentanediol, 1, 6-hexanediol, glycerol, trimethylolethane, trimethylolpropane, erythritol, and pentaerythritol, and also pentites and hexites, such as ribitol, arabitol, xyNt, dulcitol, mannitol and sorbitol, and inositol or aliphatic or cycloaliphatic polyamines having at least 2-NH 2 groups, such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, propylenediamine-1, 3 , Dipropylenetriamine, 1,4,8-triazaoctane, 1,5,8,12-tetraazadodecane
  • the concentration of the crosslinkable compounds in the aqueous composition is usually in the range of 1 to 60% by weight, often in the range of 10 to 60% by weight, and more preferably in the range of 15 to 50% by weight, based on the total weight of Composition. If the curable, aqueous composition comprises one of the abovementioned alcohols, its concentration is preferably in the range from 1 to 50% by weight, in particular in the range from 5 to 40% by weight.
  • the total amount of crosslinkable compound and alcohol is usually from 10 to 60% by weight, and more preferably from 20 to 50% by weight, of the total weight of the aqueous composition.
  • the aqueous composition used in step a) contains at least one catalyst K, which brings about the crosslinking of the compound V, or of its reaction product or precondensate.
  • catalysts K metal salts from the group of metal halides, metal sulfates, metal nitrates, metal phosphates, Metalltetrafluoroborate; boron trifluoride; Ammonium salts from the group of ammonium halides, ammonium sulfate, ammonium oxalate and diammonium phosphate; and organic carboxylic acids, organic sulfonic acids, boric acid, sulfuric acid and hydrochloric acid.
  • metal salts suitable as catalysts K are, in particular, magnesium chloride, magnesium sulfate, zinc chloride, lithium chloride, lithium bromide, aluminum chloride, aluminum sulfate, zinc nitrate and sodium tetrafluoroborate.
  • Suitable as catalysts K ammonium salts are in particular ammonium chloride, ammonium sulfate, ammonium oxalate and diammonium phosphate.
  • Particularly suitable as catalysts K are water-soluble organic carboxylic acids such as maleic acid, formic acid, citric acid, tartaric acid and oxalic acid, furthermore benzenesulfonic acids such as p-toluenesulfonic acid, but also inorganic acids such as hydrochloric acid, sulfuric acid, boric acid and mixtures thereof.
  • the catalyst K is selected from magnesium chloride, zinc chloride, magnesium sulfate, aluminum sulfate and mixtures thereof, with magnesium chloride being particularly preferred.
  • the catalyst K is usually added to the aqueous dispersion only shortly before the impregnation in step a). It is usually used in an amount of 1 to 20 wt .-%, in particular 2 to 10 wt .-%, based on the total weight of the curable components contained in the aqueous composition.
  • the concentration of the catalyst, based on the total weight of the aqueous dispersion, is usually in the range from 0.1 to 10% by weight and in particular in the range from 0.5 to 5% by weight.
  • the impregnation with the aqueous composition of the crosslinkable compound can be carried out in a conventional manner, for. By immersion, by use of vacuum optionally in combination with pressure or by conventional application methods such as brushing, spraying and the like.
  • the particular impregnation method used naturally depends on the dimensions of the material to be impregnated. Lignocellulosematerialien small dimensions such as shavings or strands and thin veneers, ie materials with a large surface area to volume ratio, can be with little effort, eg. B. impregnate by dipping or spraying, whereas lignocellulosic materials with larger dimensions, in particular materials whose smallest extension is more than 5 mm, z.
  • solid wood molded parts made of solid wood or wood-based materials, under application of pressure or vacuum, in particular by combined application of pressure and vacuum are impregnated.
  • the conditions of the impregnation will generally be chosen so that the absorbed amount of curable constituents of the aqueous composition at least 1 wt .-%, preferably at least 5 wt .-% and in particular at least 10 wt .-%, based on the dry mass of untreated material.
  • the amount of curable components taken up may be up to 100% by weight, based on the dry weight of the untreated materials, and is often in the range of 1 to 60% by weight, preferably in the range of 5 to 50% by weight, and in particular in the range of 10 to 40 wt .-%, based on the dry mass of the untreated material used, lies.
  • the moisture content of the impregnated, untreated materials is not critical and can be, for example, up to 100%.
  • moisture is synonymous with the term residual moisture content according to DIN 52183.
  • the residual moisture content is below the fiber saturation point of the lignocellulosic material, often in the range from 1 to 80% and in particular from 5 to 50%.
  • the lignocellulosic material For dipping, the lignocellulosic material, optionally after predrying, is immersed in a container containing the aqueous composition.
  • the dipping is preferably carried out over a period of a few seconds to 24 h, in particular 1 min to 6 h.
  • the temperatures are usually in the range of 15 ° C. to 50 ° C.
  • the lignocellulosic material absorbs the aqueous composition, by the concentration of the non-aqueous constituents (ie curable constituents) in the aqueous composition, by the temperature and the duration of treatment can be controlled by the amount of these components taken up by the lignocellulosic material.
  • the amount of constituents actually absorbed can be determined and controlled by a person skilled in the art in a simple manner via the weight increase of the impregnated material and the concentration of the constituents in the aqueous dispersion. Veneers, for example, can be pre-pressed by means of press rolls, so-called calenders, which are in the aqueous impregnating composition. The vacuum occurring in the wood when relaxing then leads to an accelerated absorption of aqueous impregnating composition.
  • the impregnation is advantageously carried out by combined use of reduced and elevated pressure.
  • the lignocellulosic material which generally has a humidity in the range of 1% to 100%, first under reduced pressure, which is often in the range of 10 to 500 mbar and in particular in the range of 40 to 100 mbar, with the aqueous composition brought into contact, z.
  • reduced pressure which is often in the range of 10 to 500 mbar and in particular in the range of 40 to 100 mbar
  • the time period is usually in the range of 1 minute to 1 hour.
  • a phase at elevated pressure, z. B. in the range of 2 to 20 bar, in particular in 4 to 15 bar and especially 5 to 12 bar, to.
  • the duration of this phase is usually in the range of 1 min to 12 h.
  • the temperatures are usually in the range of 15 to 50 ⁇ C.
  • the lignocellulosic material absorbs the aqueous composition, by the concentration of the non-aqueous constituents (ie curable constituents) in the aqueous composition, by the pressure, by the temperature and the duration of treatment can be controlled by the amount of these components taken up by the lignocellulosic material.
  • the amount actually absorbed can also be calculated here via the weight increase of the lignocellulosic material.
  • the impregnation can be carried out by conventional methods for applying liquids to surfaces, for. B. by spraying or rolling or brushing.
  • the application is usually carried out at temperatures in the range of 15 to 50 ° C.
  • the spraying can be carried out in the usual way in all devices suitable for spraying flat or finely divided bodies, for example by means of nozzle arrangements and the like
  • the desired amount of aqueous composition is applied with rollers or brushes on the sheet material.
  • step b) the curing of the crosslinkable constituents of the aqueous composition takes place.
  • the curing can be carried out in analogy to the methods described in the prior art, for. B. according to the methods described in WO 2004/033170 and WO 2004/033171.
  • the curing is typically carried out by treating the impregnated material at temperatures above 80 0 C, in particular above 90 0 C, z. In the range of 90 to 220 ° C., more preferably in the range of 100 to 200 ° C.
  • the time required for curing is typically in the range of 10 minutes to 72 hours. Veneers and finely divided lignocellulosic materials tend to use higher temperatures and shorter times. During curing, not only are the pores of the lignocellulosic material filled with the hardened impregnating agent, but crosslinking between the impregnating agent and the lignocellulosic material itself results.
  • a drying step before curing in the following also a predrying step.
  • the volatile constituents of the aqueous composition in particular the water and excess organic solvents which do not react in the curing / crosslinking of the urea compounds, are partially or completely removed.
  • Predrying means that the lignocellulosic material is dried below the fiber saturation point which, depending on the type of lignocellulosic material, is about 30% by weight. This predrying counteracts the risk of cracking. For small-sized lignocellulosic materials, such as veneers, the pre-drying can be omitted. For wood bodies with larger dimensions, however, the predrying is beneficial.
  • a separate predrying is carried out, this is advantageously carried out at temperatures in the range from 20 to 80 ° C.
  • partial or complete curing / crosslinking of the hard and / or thickening agents contained in the composition can be carried out. Baren components take place.
  • the combined predrying / curing of the impregnated materials is usually carried out by applying a temperature profile, which may range from 50 0 C to 220 0 C 1, in particular from 80 to 200 0 C.
  • the curing / drying can be done in a conventional fresh air exhaust system, eg. B. a drum dryer can be performed.
  • Pre-drying preferably takes place in such a way that the moisture content of the finely divided lignocellulosic materials after predrying is not more than 30%, in particular not more than 20%, based on the dry mass. It may be advantageous to carry out the drying / curing up to a moisture content ⁇ 10% and in particular ⁇ 5%, based on the dry mass.
  • the moisture content can be easily controlled by the temperature, the duration and the pressure selected during pre-drying.
  • liquid adhering prior to drying / curing will be removed by mechanical means.
  • an impregnation with at least one hydrophobizing agent is carried out according to the invention.
  • the impregnation with the hydrophobizing agent is to be carried out simultaneously with the impregnation with the aqueous composition of the crosslinkable compound, it is expedient to use an aqueous composition which comprises both at least one hydrophobizing agent dispersed in the aqueous phase and the crosslinkable compound and optionally further constituents, such as catalysts K, effect substances containing the above-mentioned alcohols and the like.
  • Such compositions are novel and also subject of the present invention.
  • Water repellents are known in principle from the prior art, for. B. from the cited prior art. These are silicone oils, paraffin oils, vegetable oils such as linseed oil, rapeseed oil, peanut oil, soybean oil and tall oil, wax preparations, including solvent-based wax preparations and aqueous wax dispersions.
  • the aforementioned water repellents are often used in combination with biocidal and / or fungicidal wood preservatives in order to achieve an increase in activity.
  • the hydrophobizing agent is a wax or a waxy polymer.
  • the hydrophobizing agent is an aqueous preparation, i. H. an aqueous emulsion or dispersion of one or more of the aforementioned hydrophobizing agents.
  • it is an aqueous dispersion of a wax component, namely a wax or a waxy polymer or a mixture thereof.
  • aqueous preparations are also referred to as wax dispersions.
  • the waxes or waxy polymers contained in the aqueous dispersions are also referred to below as wax component or wax component.
  • Waxy polymers are understood by the person skilled in the art to mean polymers which, in terms of their property profile, are similar to waxes, ie. H. they are insoluble in water, can usually melt undecomposed and have a low viscosity in the molten state.
  • wax component in such dispersions are in principle all conventional waxes and waxy polymers suitable, as the expert from Ulimann's Encyclopedia of Industrial Chemistry, 5th Ed. On CD-ROM, Wiley-VCH, Weinheim 1997, Chapter Waxes, and the literature cited therein knows.
  • suitable waxes or waxy polymers are natural waxes, for.
  • B. animal waxes such as beeswax and wool wax, mineral waxes such as ozokerite or ceresin, petrochemical waxes such as paraffin waxes, petrolatum, microwaxes and gossip, also semi-synthetic waxes such as montan waxes and modified montan waxes, z.
  • montan ester wax, amide wax, further Sasol waxes and synthetic waxes such as Fischer-Tropsch waxes, polyolefin waxes, in particular polyethylene waxes, including waxy copolymers based on olefins, oxidate waxes, d. H.
  • Oxidation products of waxes or waxy polymers eg. Oxidates of Fischer-Tropsch waxes, polyolefin waxes, especially polyethylene waxes, including oxidates of waxy olefin-based copolymers and the like.
  • the wax component contained therein has a melting point or a softening point of at least 75 ° C., preferably at least 80 ° C., often at least 90 ° C., and especially at least 100 ° C. Melting points here and below are the values determined according to DIN ISO 3841 by means of DSC or from the cooling curve.
  • the wax component contained in the wax dispersion has a melting point of below 75 ⁇ C, preferably in the range of 30 to 70 0 C and especially in the range of 35 to 60 0 C.
  • the concentration of the wax or wax constituents in the aqueous dispersion is typically in the range of 5 to 50% by weight, frequently 8 to 40% by weight, in particular 10 to 35% by weight and especially in the range of 15 to 30 wt .-%, based on the total weight of the wax dispersion.
  • the wax components are in the form of a disperse phase, i. H. in the form of very fine particles or droplets.
  • these particles have an average particle diameter below 500 nm, in particular below 300 nm, especially below 200 nm and most preferably below 150 nm, in particular when the wax component has a melting point of at least 80 ° C.
  • wax dispersions / emulsions having larger particle sizes, eg. B. to 10 microns, z. B.
  • the particle sizes given here are weight-average particle sizes, as can be determined by dynamic light scattering. Methods for this purpose are familiar to the person skilled in the art, for example from H. Wiese in D. Distler, Aqueous Polymer Dispersions, Wiley-VCH 1999, Chapter 4.2.1, p 40ff and literature cited therein and H. Auweter, D. Horn, J. Colloid Interf , Be. 105 (1985) 399, D. Lie, D. Horn, Colloid Polym. Be. 269 (1991) 704 or H. Wiese, D. Horn, J. Chem. Phys. 94 (1991) 6429.
  • aqueous wax dispersions The preparation of aqueous wax dispersions is known in principle and is carried out by dispersing the wax or the waxy polymer in the aqueous phase using high shear forces and / or pressure, advantageously at elevated temperature, for.
  • Example at temperatures of at least 50 0 C, preferably at temperatures above 70 "C. waxes having a high melting point, in particular at temperatures above 90 0 C, for.
  • Aqueous dispersions of waxes are also commercially available, for example under the trade names Poligen® WE grades from BASF and Byc-Cera AquaCer grades (high-melting wax types with melting or softening points above 80 ° C).
  • the wax particles of the wax dispersion contain at least one effect substance and / or one active substance.
  • you become the active ingredient or dissolve the effect substance advantageously first in the wax or evenly suspended and then disperse the resulting wax preparation in the aqueous phase at the above temperatures.
  • the pressure applied during dispersion is typically above 1 bar and often ranges from 1.5 to 40 and in particular from 2 to 20 bar.
  • the emulsification is advantageously carried out in the presence of a base.
  • the base is used in an amount such that at least 40% and in particular at least 80% of the carboxylic acid groups present in the wax or waxy polymers are in neutralized form.
  • Suitable bases are, in principle, alkali metal hydroxides, such as sodium hydroxide or potassium hydroxide, alkaline earth metal hydroxides, such as calcium hydroxide, and ammonia and amines.
  • the amines are advantageously mono-, di- or trialkylamines having preferably 1 to 6 and in particular 1 to 4 C atoms in the alkyl radical, mono-, di- or trialkanolamines having preferably 2 to 6 C atoms in the hydroxyalkyl radical, monoalkyldialkanolamines and dialkylmonoalkanolamines having 1 to 12 and in particular 1 to 8 C atoms in the alkyl radical and 2 to 6 C atoms in the hydroxyalkyl radical, furthermore ethoxylated mono- and dialkylamines having preferably 1 to 20 C atoms in the alkyl radical and a degree of ethoxylation of preferably 2 to 60 and especially 3 to 40.
  • Preferred hydroxyalkyl in this context is hydroxyethyl and 2-hydroxypropyl.
  • Preferred are those amines which have at least one hydroxyalkyl group and / or one polyethylene oxide group.
  • Examples of preferred amines are diethanolamine, triethanolamine, 2-amino-2-methylpropan-1-ol, dimethylethanolamine, diethylethanolamine, dimethylaminodiglycol, diethylaminodiglycol and diethylenetriamine.
  • the emulsifiers may be nonionic, cationic or anionic, with anionic emulsifiers and nonionic emulsifiers and mixtures of anionic and nonionic emulsifiers being preferred. Particular preference is given to nonionic emulsifiers and mixtures of nonionic emulsifiers with minor amounts, generally less than 40% by weight and especially less than 20% by weight, based on the amount of emulsifier, of anionic emulsifiers.
  • the anionic emulsifiers include, for example, carboxylates, especially alkali, alkaline earth and ammonium salts of fatty acids, eg. As potassium stearate, the usual may also be referred to as soaps; glutamates; Sarcosinates, e.g.
  • sodium lauroyl sarcosinate; taurates; Methylcelluloses; Alkyl phosphates, especially mono- and diphosphoric acid alkyl esters; Sulfates, in particular alkyl sulfates and alkyl ether sulfates; Sulfonates, other alkyl and alkylarylsulfonates, in particular alkali metal, alkaline earth metal and ammonium salts of arylsulfonic and alkyl substituted arylsulfonic, alkylbenzenesulfonic acids, such as lignin and phenolsulfonic acid, naphthalene and Dibutylnaphthalinsulfonklaren, or dodecylbenzenesulfonates, Alkyl ⁇ aphthalinsul- fonate, alkylmethyl ester sulfonates, condensation products of sulfonated Naphthalene and derivatives thereof with formaldehyde, Ko ⁇ densations are examples of
  • nonionic emulsifiers examples include:
  • alkoxylated animal and / or vegetable fats and / or oils for example corn oil ethoxylates, castor oil ethoxylates, tallow fatty ethoxylates with degrees of alkoxylation of usually 2 to 100 and in particular 3 to 50, - glycerol esters, such as glycerol monostearate,
  • Fatty acid esters of polymeric alkoxylates especially of polyethylene oxides with alkoxylation levels of 3 to 100 such as.
  • PEG 300 oleate, stearate or laurate, as a mono- or diester, copolymers alkoxylates of ethylene oxide and / or propylene oxide, for.
  • Pluronic® grades for example, BASF's Pluronic® grades
  • Alkylphenol alkoxylates such as ethoxylated iso-octyl, octyl or nonyl-phenol, tributylphenol polyoxyethylene ethers having degrees of alkoxylation of usually 2 to 100 and especially 3 to 50, fatty amine alkoxylates, fatty acid amide and fatty acid diethanol amide alkoxylates with degrees of alkoxylation of usually 2 to 100 and in particular 3 to 50, in particular their ethoxylates,
  • sorbitol esters such as, for example, sorbitan fatty acid esters (sorbitan monooleate, sorbitan tristearate), polyoxyethylene sorbitan fatty acid esters, alkyl polyglycosides, N-alkylgluconamides, alkylmethyl sulfoxides, Alkyldimethylphosphine oxides, such as, for example, tetradecyldimethylphosphine oxide.
  • emulsifiers which are to be mentioned by way of example here are perfluoro emulsifiers, silicone emulsifiers, phospholipids, for example lecithin or chemically modified lecithins, amino acid emulsifiers, eg. B. N-lauroylglutamate.
  • alkyl chains of the emulsifiers listed above are linear or branched radicals having usually 6 to 30 and especially 8 to 20 carbon atoms.
  • Preferred nonionic emulsifiers are in particular alkoxylated and especially ethoxylated alkanols having 8 to 20 carbon atoms, for. Ethoxylated nonanol, isononanol, decanol, 2-propylheptanol, tridecanol, lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, CWi ⁇ fatty alcohol mixtures, the degree of ethoxylation typically being in the range from 5 to 50 and in particular in the range from 6 to 30.
  • the amount of emulsifier depends in a manner known per se according to the type of wax to be emulsified and will generally not exceed 15% by weight, in particular 10% by weight, based on the aqueous dispersion. At low acid numbers, in particular acid numbers below 100 mg KOH / g and especially below 50 mg KOH / g, z. B.
  • emulsifiers in an amount of 2 to 15 wt .-% and in particular 3 to 10 wt .-%, based on the total weight of aqueous wax dispersion or from 5 to 50 wt .-%, in particular 10 to 40 wt .-%, based on the emulsified wax component.
  • the waxes are often self-emulsifying and the emulsifier content is advantageously below 3 wt .-%, in particular below 1 wt .-% and especially below 0.5 wt .-%, based on the emulsified wax component.
  • a wax with a melting or softening point of at least 80 0 C a wax with a melting or softening point of at least 80 0 C.
  • a wax polar functional groups for example.
  • carboxyl groups hydroxyl groups, aldehyde groups, keto groups, polyether groups or the like, which support the dispersion of the wax.
  • the wax has neutralizable carboxyl groups.
  • the wax is characterized by an acid value of at least 5 mg KOH / g and in particular in the range of 15 to 250 mg KOH / g.
  • the wax components of the wax dispersions used according to the invention are advantageously montan waxes, including chemically modified montan waxes and montan ester waxes, amide waxes, and polar polyolefin waxes.
  • the polar polyolefins include the oxidation products of nonpolar polyolefin waxes, eg. As oxidation products of polyethylene waxes or polypropylene waxes, which are also referred to as Polyoloxidoxidatwachse, oxidates of Fischer-Tropsch waxes and copolymers of olefins, especially of C 2 -C 6 - olefins such as ethylene or propene with oxygen-carrying monomers, eg. B.
  • monoethylenically unsaturated C 3 -C 6 monocarboxylic acids such as acrylic acid or methacrylic acid and optionally vinyl esters of aliphatic C 2 -C 10 carboxylic acids such as vinyl acetate or vinyl propionate, esters of monoethylenically unsaturated Cs-C ⁇ monocarboxylic acids with d-Ci ⁇ -alkanols or C 5 -C 2 -cycloalkanols, in particular esters of acrylic acid or of methacrylic acid, such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-butyl acrylate, tert-butyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, 3-propylheptyl acrylate , Cyclopentyl acrylate, cyclohexyl
  • the wax component of the aqueous dispersion to be used according to the invention comprises at least 50% by weight, in particular at least 80% by weight and in particular at least 90% by weight, based on the total weight of the wax constituents contained in the dispersion a polar polyolefin wax.
  • the polar polyolefin wax is selected from polar olefin copolymers and their oxidates, the olefin copolymers being essentially composed of:
  • Acrylic acid or methacrylic acid and / or C 4 -C ⁇ -dicarboxylic acid such as maleic acid, fumaric acid, itaconic acid or a mixture thereof, especially acrylic acid, methacrylic acid and / or maleic acid; and c) 0 to 49% by weight, e.g. B. 5 to 49 wt .-%, in particular 0 to 40 wt .-%, z. B.
  • the monomer proportions given here are each based on the total weight of the monomers constituting the polar polyolefin wax. Essentially, here means that the polymers are at least 95 wt .-%, in particular at least 99 wt .-% and especially exclusively from the aforementioned monomers a), b) and optionally c) are constructed. A person skilled in the art knows, however, that such polymers may contain, in addition to the monomer components, components of the polymerization catalyst (initiator) in copolymerized form.
  • the polar polyolefin waxes have a weight average molecular weight in the range of 1000 to 150000 daltons, often in the range of 2000 to 120,000 daltons. In the case of undecomposed melting waxes, or waxy polymers with low to medium molecular weight, these are by a melt viscosity at 140 0 C in the range of 100 to 10,000 mm 2 / sec (DFG unit method
  • the wax component of the aqueous dispersion to be used according to the invention comprises at least 50% by weight, in particular at least 80% by weight and especially at least 90% by weight, based on the total weight of the wax constituents contained in the dispersion, at least one montan wax, including chemically modified montan waxes and montan ester waxes.
  • the wax component of the aqueous dispersion to be used according to the invention comprises at least 50% by weight, in particular at least 80% by weight and especially at least 90% by weight, based on the total weight of the dispersion contained in the dispersion Wax components, at least one amide wax.
  • the wax component of the aqueous dispersion to be used according to the invention comprises at least 50% by weight, in particular at least 80% by weight and especially at least 90% by weight, in particular to the total weight of the wax components contained in the dispersion, at least one polyolefin-oxidate wax.
  • the wax particles of the dispersion may also contain active substances or effect substances which, in addition to their natural properties and the hydrophobization achieved by the wax, impart additional properties such as color, improved weathering stability or stability against attack by harmful organisms.
  • the active substances or effect substances are typically low molecular weight organic compounds having molecular weights below 1000 DaIton and typically below 500 Daltons, or inorganic salts or oxides of transition metals.
  • the effect substances include colorants such as pigments and dyes, as well as antioxidants and UV stabilizers.
  • Suitable pigments include both organic pigments and inorganic pigments.
  • colorants are:
  • organic pigments as mentioned for example in WO 2004/035277, z. B.: Monoazo pigments such as Cl. Pigment Brown 25, Cl. Pigment Orange 5, 13, 36, 38, 64 and 67; Cl. Pigment Red 1, 2, 3, 4, 5, 8, 9, 12, 17, 22, 23, 31, 48: 1, 48: 2,
  • Disazo condensation pigments such as Cl. Pigment Yellow 93, 95 and 128; C.I.
  • Anthraquinone pigments such as Cl. Pigment Yellow 147, 177 and 199; Cl. pigment
  • Anthrapyrimidine pigments such as Cl. Pigment Yellow 108;
  • Quinacridone pigments such as Cl. Pigment Orange 48 and 49; Cl. Pigment Red 122, 202, 206 and 209; Cl. Pigment Violet 19;
  • Quinophthalone pigments such as Cl. Pigment Yellow 138;
  • Dioxazine pigments such as Cl. Pigment Violet 23 and 37; Cl. Pigment Blue 80; Flavanthrone pigments such as Cl. Pigment Yellow 24; Indanthrone pigments like Cl.
  • Isoindoline pigments such as Cl. Pigment Orange 61 and 69, Cl. Pigment Red 260,
  • Isoindolinone pigments such as Cl. Pigment Yellow 109, 110 and 173; Isoviolanthrone pigments such as Cl. Pigment Violet 31;
  • Metal complex pigments such as Cl. Pigment Red 257; Cl. Pigment Yellow 117, 129,
  • Perinone pigments such as Cl. Pigment Orange 43; Cl. Pigment Red 194;
  • Perylene pigments such as Cl. Pigment Black 31 and 32; Cl. Pigment Red 123, 149, 178, 179, 190 and 224; Cl. Pigment Violet 29;
  • Phthalocyanine pigments such as CI. Pigment Blue 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6 and 16; Cl. Pigment Green 7 and 36;
  • Pyranthrone pigments such as Cl. Pigment Orange 51; Cl. Pigment Red 216;
  • Pyrazoloquinazolone pigments such as Cl. Pigment Orange 67; Cl. Pigment Red 251; Thioindigo pigments such as Cl. Pigment Red 88 and 181; Cl. Pigment Violet 38;
  • Triaryl carbonium pigments such as Cl. Pigment Blue 1, 61 and 62; Cl. pigment
  • Carbon black CI Pigment Black 7
  • Carbon black CI Pigment Black 7
  • colored pigments such as chromium oxide, chromium oxide hydrate green; Chrome green (CI Pigment Green 48); Cobalt green (Cl. Pigment Green 50), ultramarine green, cobalt blue (CI Pigment Blue 28 and 36, CI Pigment Blue 72); Ultramarine blue; Manganese Blue, Ultramarine Violet; Cobalt and manganese violet, iron oxide red (CI Pigment Red 101), cadmium sulphoselenide (CI Pigment Red 108), cerium sulphide (CI Pigment Red 265); Molybdate red (CI Pigment Red 104), ultramarine red, iron oxide brown (CI Pigment Brown 6 and 7),
  • Dyes Cadmium sulfide and cadmium zinc sulfide (CI Pigment Yellow 37 and 35); Chrome yellow (CI Pigment Yellow 34); Bismuth vanadate (CI Pigment Yellow 184).
  • Dyes z.
  • Empirically suitable disperse dyes and solvent dyes include various classes of dyes having different chromophores, for example anthraquinone dyes, monoazo and disazo dyes, quinophthalones, methine and azamethine dyes, naphthalimide dyes, naphthoquinone dyes and nitro dyes.
  • disperse dyes which are suitable according to the invention are the disperse dyes of the following Color Index list: Cl. Disperse Yellow 1 - 228, CI Disperse Orange 1 - 148, C I. Disperse Red 1 - 349, C I. Disperse Violet 1 - 97, C I. Disperse Blue 1 - 349, C I.
  • solvent dyes suitable according to the invention are the compounds of the following Color Index list: CI Solvent Yellow 2 - 191, C I. Solvent Orange 1 - 113, C I. Solvent Red 1 - 248, CI Solvent Violet 2 - 61, CI Solvent Blue 2 - 143, C I. Solvent Green 1 - 35, C I. Solvent Brown 1 - 63, CI Solvent Black 3 - 50.
  • Dyes which are suitable according to the invention are furthermore derivatives of naphthalene, anthracene , perylene, terylene, quarterylene, diketopyrrolopyrrole dyes, perinone dyes, coumarin dyes, isoindoline and isoindolinone dyes, porphyrin dyes, phthalocyanine and naphthalocyanine dyes.
  • effect substances it is also possible to use UV absorbers, antioxidants and / or stabilizers.
  • UV absorbers are the compounds of groups a) to g) listed below.
  • stabilizers are the compounds of groups i) to q) listed below.
  • the group a) of the 4,4-diarylbutadienes include, for example, compounds of the formula A.
  • the compounds are known from EP-A-916 335.
  • the substituents R 10 and / or R 11 preferably C 8 alkyl and C 5 -C 8 cycloalkyl.
  • the group b) of the cinnamic acid esters includes, for example, isoamyl 4-methoxycinnamate, 2-ethylhexyl 4-methoxycinnamate, methyl ⁇ -methoxycarbonyl cinnamate, methyl ⁇ -cyano- ⁇ -methyl-p-methoxycinnamate, butyl ⁇ -cyano- ⁇ -methyl-p-methoxy cinnamate and methyl ⁇ -methoxycarbonyl-p-methoxycinnamate.
  • the group c) of the benzotriazoles includes, for example, 2- (2'-hydroxyphenyl) benzotriazoles, such as 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (3 ', 5'-di-tert-butyl- 2 1 - hydroxyphenyl) benzotriazole, 2- (5 I -tert-butyl-2'-hydroxyphenyl) benzotriazole, 2- (2'-hydroxy-5 '- (1, 1, 3,3-tetramethylbutyl) phenyl) benzotriazole , 2- (3 ', 5 l -Di-tert-butyl-2 1 - hydroxyphenyl) -5-chloro-benzotriazole, 2- (3'-tert-butyl-2 1 -hydroxy-5'-methylphenyl) -5-chloro-benzotriazole, 2- (3'-sec-butyl-5 -tert l -butyl-2 I -hydroxyphenyl
  • the group d) of the hydroxybenzophenones include, for example, 2-hydroxybenzophenones such as 2-hydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,4-dihydroxybenzophenone, 2,2 ', 4,4'-tetra-hydroxybenzophenone , 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2-hydroxy-4- (2-ethylhexyloxy) benzophenone, 2-hydroxy-4- (n - octyloxy) benzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2-hydroxy-3-carboxybenzophenone, 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid and its sodium salt, 2,2'-dihydroxy-4, 4'-dimethoxybenzophenone-5,5'-bisulfonic acid and
  • the group e) of the diphenylcyanoacrylates includes, for example, ethyl-2-cyano-3,3-diphenylacrylate, which is obtainable, for example, commercially under the name Uvinul® 3035 from BASF AG, Ludwigshafen, 2-ethylhexyl-2-cyano-3, 3-diphenyl acrylate, which is available commercially for example as Uvinul® 3039 from BASF AG, Ludwigshafen, Germany and 1, 3-bis -.
  • the group f) of the oxamides includes, for example, 4,4'-dioctyloxyoxanilide, 2,2'-diethoxyoxanilide, 2,2'-dioctyloxy-5,5'-di- (tert-butyl) oxanilide, 2,2'-dichloroethane Didodecyloxy-5,5'-di (tert-butyl) oxanilide, 2-ethoxy-2'-ethyloxanilide, N, N'-bis (3-dimethylaminopropyl) oxamide, 2-ethoxy-5-tert-butyl-2 ' ethyl) oxanilide and its mixture with 2-ethoxy-2'-ethyl-5,4'-di- (tert-butyl) oxanilide and mixtures of ortho, para-methoxy-disubstituted oxanilides and mixtures of
  • 2-phenyl-1,3,5-triazines include, for example, 2- (2-hydroxyphenyl) -1,3,5-triazines such as 2,4,6-tris (2-hydroxy-4-octyloxyphenyl) -1, 3,5-triazine, 2- (2-hydroxy-4-octyloxyphenyl) -4,6-bis (2,4-dimethylphenyl) -1, 3,5-triazine, 2- (2,4-dihydroxyphenyl) ) -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2,4-bis (2-hydroxy-4-propyloxyphenyl) -6- (2,4-dimethylphenyl) -1, 3,5-triazine, 2- (2-hydroxy-4-octyloxyphenyl) -4,6-bis (4-methylphenyl) -1,3,5-triazine, 2- (2-hydroxy-4-dodecyloxyphen
  • the group h) of the antioxidants includes, for example:
  • Alkylated monophenols such as, for example, 2,6-di-tert-butyl-4-methylphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di- tert -butyl-4-n-butylphenol, 2,6-di-tert-butyl-4-isobutylphenol, 2,6-dicyclopentyl-4-methylphenol, 2- ( ⁇ -methylcyclohexyl) -4,6-dimethylphenol, 2, 6-dioctadecyl-4-methylphenol, 2,4,6-
  • Alkylthiomethylphenols such as 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4-dioctylthiomethyl-6-methylphenol, 2,4-dioctylthiomethyl-6-ethylphenol, 2,6-didodecylthiomethyl-4-nonylphenol.
  • Hydroquinones and alkylated hydroquinones such as 2,6-di-tert-butyl-4-methoxyphenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-diphenyl-4-octadecyloxyphenol , 2,6-di-tert-butylhydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4 - hydroxyphenyl stearate, bis- (3,5-di-tert-butyl-4-hydroxyphenyl) adipate.
  • Tocopherols such as ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol and mixtures thereof (vitamin E).
  • Hydroxylated thiodiphenyl ethers such as 2,2'-thio-bis (6-tert-butyl-4-methylphenol), 2,2'-thio-bis (4-octylphenol), 4.4 1 -thio-bis (6- tert-butyl-3-methylphenol), 4,4'-thio-bis (6-tert-butyl-2-methylphenol), 4,4'-thio-bis (3,6-di-sec-amylphenol), 4,4'-bis (2,6-dimethyl-4-hydroxyphenyl) disulfide.
  • Alkylidene bisphenols such as 2,2'-methylenebis (6-tert-butyl-4-methylphenol), 2,2'-methylenebis (6-tert-butyl-4-ethylphenol), 2,2 ' -Methylene-bis [4-methyl-6- ( ⁇ -methylcyclohexyl) -phenol], 2,2'-methylenebis (4-methyl-6-cyclohexylphenol), 2,2'-methylenebis (6-nonyl 4-methylphenol), 2,2'-methylenebis (4,6-di-tert-butylphenol), 2,2'-ethylidenebis (4,6-di-tert-butylphenol), 2,2 ' Ethylidene-bis (6-tert-butyl-4-isobutylphenol), 2,2'-methylenebis [6- ( ⁇ -methylbenzyl) -4-nonylphenol], 2,2'-methylene-bis [6- ( ⁇ , ⁇ -dimethylbenzyl) -4-n
  • Benzyl compounds such as, for example, 3,5,3 ', 5'-tetra-tert-butyl-4,4'-dihydroxydibenzyl ether, octadecyl-4-hydroxy-3,5-dimethylbenzylmercaptoacetate, tridecyl-hydroxy-S. ⁇ - di-tert-butylbenzylmercaptoacetate, tris (3,5-di-tert-butyl-4-hydroxybenzyl) amine, 1, 3,5-tri- (3,5-di-tert-butyl-4-hydroxybenzyl) -2, 4,6-trimethylbenzene, di- (3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 3,5-di-tert-butyl-4-hydroxybenzylmercaptoacetic acid isooctyl ester, bis (4-tert-butyl) butyl-3-hydroxy-2,6-dimethylbenzyl) di
  • Hydroxybenzylated malonates such as dioctadecyl-2,2-bis (3,5-di-tert-butyl-2-hydroxybenzyl) malonate, di-octadecyl-2- (3-tert-butyl-4-hydroxy-5-methylbenzyl ) malonate, di-dodecylmercaptoethyl 2,2-bis (3,5-di-tert-butyl-4-hydroxybenzyl) malonate, Bis [4- (1, 1,3,3-tetramethylbutyl) phenyl] -2,2-bis (3,5-di-tert-butyl-4-hydroxybenzyl) malonate.
  • Hydroxybenzyl aromatics such as, for example, 1,3,5-tris- (3,5-di-tert-butyl-4-hydroxybenzyl) -2,4,6-trimethylbenzene, 1,4-bis (3,5-di-tert-butyl) tert -butyl-4-hydroxybenzyl) -2,3,5,6-tetramethylbenzene, 2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) phenol.
  • Triazine compounds such as 2,4-bis (octylmercapto) -6- (3,5-di-tert-butyl-4-hydroxyanilino) -1,3,5-triazine, 2-octylmercapto-4,6-bis (3 , 5-di-tert-butyl-4-hydroxyanilino) -1, 3,5-triazine, 2-octylmercapto-4,6-bis (3,5-di-tert-butyl-4-hydroxyphenoxy) -1,3 , 5-triazine, 2,4,6-tris (3,5-di-tert-butyl-4-hydroxyphenoxy) -1, 3,5-triazine, 1, 3,5-tris (3,5-di tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate, 2,4,6-tris (3,
  • Benzyl phosphonates such as dimethyl 2,5-di-tert-butyl-4-hydroxybenzyl phosphonate, diethyl 3,5-di-tert-butyl-4-hydroxybenzyl phosphonate ((3,5-bis (1,1-dimethylethyl) - 4-hydroxyphenyl) methyl) lphosphonic acid diethyl ester), dioctadecyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl-5-tert-butyl-4-hydroxy-3-methylbenzylphosphonate, calcium salt of 3,5-di tert-butyl-4-hydroxybenzylphosphonic acid monoethyl ester.
  • esters of ß- (3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid with monohydric or polyhydric alcohols such.
  • monohydric or polyhydric alcohols such as methanol, ethanol, n-octanol, i-octanol, octadecanol,
  • Esters of ß- (5-tert-butyl-4-hydroxy-3-methylphenyl) propionic acid with mono- or polyhydric alcohols such as.
  • Esters of ß- (3,5-dicyclohexyl-4-hydroxyphenyl) propionic acid with monohydric or polyhydric alcohols such.
  • Esters of 3,5-di-tert-butyl-4-hydroxyphenylacetic acid with mono- or polyhydric alcohols such as.
  • Amides of .beta .- (3, 5-di-tert-butyl-4-hydroxyphenyl) propionic acid such as. N, N'-bis (3,5-di-tert-butyl-4-hydroxyphenylpropionyl) hexamethylenediamine, N, N'-bis (3,5-di-tert-butyl-4-hydroxyphenylpropionyl) -trimethylenediamine, N, N'-bis (3,5-di-tert-butyl-4-hydroxyphenylpropionyl) -hydrazine, N, N'-bis [2- (3- [3,5-di-tert-butyl-4-hydroxyphenyl ] - propionyloxy) ethyl] -oxamide (eg Naugard® XL-1 from Uniroyal).
  • vitamin C Ascorbic acid (vitamin C)
  • Amine antioxidants such as N, N'-di-isopropyl-p-phenylenediamine, N, N'-di-sec-butyl-p-phenylenediamine, N, N'-bis (1,4-dimethylpentyl) -p- phenylenediamine, N, N'-bis (1-ethyl-3-methylpentyl) -p-phenylenediamine, N, N'-bis (1-methylheptyl) -p-phenylenediamine, N, N'-dicyclohexyl-p-phenylenediamine, N , N'-diphenyl-p-phenylenediamine, N, N'-bis (2-naphthyl) -p-phenylenediamine, N-isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N '-phenyl-
  • the group i) of the sterically hindered amines include, for example, 4-hydroxy-2, 2,6,6-tetramethylpiperidine, 1-allyl-4-hydroxy-2,2,6,6-tetramethylpiperidine, 1-benzyl-4-hydroxy 2,2,2,6,6-tetramethylpiperidine, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) succinate, bis (1 , 2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1-octyloxy-2, 2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1, 2,2,6,6 - pentamethyl-4-piperidyl) -n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonate (n-butyl-3,5-di-tert-butyl-4-hydroxy-benzyl-malonic acid
  • d-dione e.g. Uvinul® 4049 from BASF AG, Ludwigshafen
  • the group j) of the metal deactivators include, for example, N, N'-diphenyloxalic diamide, N-salicylal-N'-salicyloyl-hydrazine, N, N'-bis (salicyloyl) hydrazine, N, N'-bis (3,5 di-tert-butyl-4-hydroxyphenylpropionyl) hydrazine, 3-salicyloylamino-1,2,4-triazole, bis (benzylidene) oxalyl dihydrazide, oxanilide, isophthaloyl dihydrazide, sebacoyl bisphenyl hydrazide, N, N'-diacetyl adipic dihydrazide, N, N Bis (salicyloyl) oxalic acid dihydrazide, N, N'-bis (salicyloyl) thiopropionyl dihydrazi
  • the group k) of the phosphites and phosphonites includes, for example, triphenyl phosphite, diphenyl alkyl phosphites, phenyl dialkyl phosphites, tris (nonylphenyl) phosphite, trilauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphite, tris (2,4-di-tert-butylphenyl) phosphite, diisodecyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, diisodecyl pentaerythrito
  • the group I) of the hydroxylamines include, for example, N, N-dibenzylhydroxylamine, N, N-diethylhydroxylamine, N, N-dioctylhydroxylamine, N, N-dilaurylhydroxylamine, N, N-ditetradecylhydroxylamine, N, N-dihexadecylhydroxylamine, N, N-dioctadecylhydroxylamine , N-hexadecyl-N-octadecylhydroxylamine, N-heptadecyl-N-octadecylhydroxylamine, N-methyl-N-octadecylhydroxylamine and N, N-dialkylhydroxylamine from hydrogenated tallow fatty amines.
  • the group m) of the nitron include, for example, N-benzyl- ⁇ -phenyl nitrone, N-ethyl- ⁇ -methyl nitrone, N-octyl- ⁇ -heptyl nitrone, N-lauryl- ⁇ -undecyl nitrone, N-tetradecyl- ⁇ -tridecyl nitrone, N Hexadecyl- ⁇ -pentadecylnitrone, N-octadecyl- ⁇ -heptadecylnitrone, N-hexadecyl- ⁇ -heptadecylnitrone, N-octadecyl- ⁇ -pentadecylnitrone, N-heptadecyl- ⁇ -heptadecylnitrone, N-octadecyl- ⁇ -hexadecylnitrone, N-methyl - ⁇ -hepta
  • the group n) of the amine oxides includes, for example, amine oxide derivatives as described in US Patent Nos. 5,844,029 and 5,880,191, didecylmethylamine oxide, tridecylamine oxide, tridodecylamine oxide and trihexadecylamine oxide.
  • the group o) of the benzofuranones and indolinones includes, for example, those described in U.S. Patents 4,325,863; 4,338,244; 5,175,312; 5,216,052; 5,252,643; in DE-A-4316611; in DE-A-4316622; in DE-A-4316876; or 3- [4- (2-acetoxyethoxy) phenyl] -5,7-di-tert-butylbenzofuran-2 (3H) -one, 5.7, described in EP-A-0589839 or EP-A-0591102 -Di-tert-butyl-3- [4- (2-stearoyloxyethoxy) -phenyl] -benzofuran-2 (3H) -one, 3.3 1 -bis [5,7-di-tert-butyl-3- (4 - [2-hydroxyethoxy] phenyl) benzofuran-2 (3H) -one], 5,7-
  • the group p) of thiosynergists include, for example, dilauryl thiodipropionate or distearyl thiodipropionate.
  • the group q) of the peroxide-destroying compounds includes, for example, esters of ⁇ -thiodipropionic acid, for example the lauryl, stearyl, myristyl or tridecyl ester, mercaptobenzimidazole or the zinc salt of 2-mercaptobenzimidazole, zinc dibutyl dithiocarbamate, dioctadecyl disulfide, pentaerythritol tetrakis ( ⁇ dodecylmercapto) propionate.
  • esters of ⁇ -thiodipropionic acid for example the lauryl, stearyl, myristyl or tridecyl ester
  • mercaptobenzimidazole or the zinc salt of 2-mercaptobenzimidazole zinc dibutyl dithiocarbamate
  • dioctadecyl disulfide pentaerythritol tetrakis ( ⁇ dodecylmer
  • aqueous dispersions to be used according to the invention may contain, in addition to the wax constituents, one or more active substances which are suitable for protecting wood or comparable lignocellulosic materials from infestation or destruction by harmful organisms.
  • Wood-discoloring mushrooms z. Ascomycetes such as Ophiostoma sp. (e.g., Ophiostoma piceae, Ophiostoma piliferum), Ceratocystis sp. (eg Ceratocystis coerules cens), Aureobasidium pullulans, Sclerophoma sp. (eg Sclerophoma pityophila);
  • Ophiostoma sp. e.g., Ophiostoma piceae, Ophiostoma piliferum
  • Ceratocystis sp. eg Ceratocystis coerules cens
  • Aureobasidium pullulans eg Sclerophoma sp. (eg Sclerophoma pityophila);
  • Deuteromycetes such as Aspergillus sp. (eg Aspergillus niger), Cladosporium sp. (eg, Cladosporium sphaerospermum), Penicillium sp. (eg Penicillium funiculosum), Trichoderma sp. (eg Trichoderma viride), Alternaria sp. (eg Alternaria altemata), Paecilomyces sp. (eg Paecilomyces variotii); Zygomycetes such as Musc sp. (eg Mucor hiemalis); Wood-destroying mushrooms: Ascomycetes like Chaetomium sp.
  • Aspergillus sp. eg Aspergillus niger
  • Cladosporium sp. eg, Cladosporium sphaerospermum
  • Penicillium sp. eg Penicillium funiculosum
  • fungicidal active ingredients insecticidally active ingredients and bactericides, in particular:
  • Fungicides from the following groups:
  • Dicarboximides such as iprodione, myclozoline, procymidone, vinclozolin;
  • Acylalanines such as benalaxyl, metalaxyl, ofurace, oxadixyl;
  • Amine derivatives such as aldimorph, dodine, dodemorph, fenpropimorph, fenpropidin, guazatine, iminoctadine, spiroxamine, tridemorph;
  • Anilinopyrimidines such as pyrimethanil, mepanipyrim or cyprodinil;
  • antibiotics such as cycloheximide, griseofulvin, kasugamycin, natamycin, polyoxin and streptomycin;
  • Azoles such as azaconazole, bitertanol, bromoconazole, cyproconazole, dichlobutrazole, difenoconazole, diniconazole, epoxiconazole, fenbuconazole, fluconconazole, flusilazole, flutriafol, ketoconazole, hexaconazole, imazalil, metconazole, myclobutanil, penconazole, propiconazole, prochloraz, Prothioconazole, tebuconazole, tetraconazole, triadimefon, triadimol, triflumizole, triticonazole;
  • Dithiocarbamates Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Propineb, Polycarbamate, Thiram, Ziram, Zineb; Heterocyclic compounds such as anilazine, benomyl, boscalid, carbendazim,
  • Unclassified fungicides such as acibenzolar-S-methyl, benthiavalicarb, carpropamide, chlorothalonil, cymoxanil, diclomethine, diclocymet, diethofencarb,
  • Edifenphos ethaboxam, fenhexamide, fentin acetate, fenoxanil, ferimzone, fluazinam, fosetyl, fosetyl-aluminum, iprovalicarb, hexachlorobenzene, metrafenone, pencycuron, propamocarb, phthalides, toloclofos-methyl, quintozene, zoxamide; Strobilurins, as described by the general formula I in WO 03/075663, for example: azoxystrobin, dimoxystrobin, fluoxastrobin, kresoximethyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin and trifloxystrobin;
  • Sulfenic acid derivatives such as captafol, captan, dichlofluanid, folpet, tolylfluanid; Cinnamic acid amides and analogues such as dimethomorph, flumetover, flumorph;
  • 6-Aryl- [1,2,4] triazolo [1,5-a] pyrimidines as described e.g. in WO 98/46608, WO 99/41255 or WO 03/004465 are each described by the general formula I;
  • Amide fungicides such as cyflufenamide and (Z) -N- [ ⁇ - (cyclopropylmethoxyimino) -2,3-difluoro-6- (difluoromethoxy) benzyl] -2-phenylacetamide; Iodine compounds such as diiodomethyl-p-tolylsulfone, 3-iodo-2-propynyl alcohol,
  • Phenol derivatives such as tribromophenol, tetrachlorophenol, 3-methyl-4-chlorophenol, dichlorophene, O-phenylphenol, m-phenylphenol, 2-benzyl-4-chlorophenol;
  • Isothiazolinones such as N-methylisothiazolin-3-one, 5-chloro-N-methylisothiazolin-3-one, 4,5-dichloro-N-octylisothiazolin-3-one, N-octylisothiazolin-3-one;
  • Pyridines such as 1-hydroxy-2-pyridinethione (and its Na, Fe, Mn, Zn salts), tetrachloro-4-methylsulfonylpyridi ⁇ ;
  • Metal soaps such as tin, copper, zinc naphthenate, octoate, 2-ethylhexanoate, oleate, phosphate, benzoate;
  • organotin compounds e.g. B. tributyl (TBT) tin compounds such as tributyltin and tributyl (mononapthenoyloxy) tin derivatives;
  • TBT tributyl
  • Benzothiazoles such as 2-mercaptobenzothiazole
  • Insecticides from the following groups:
  • Organophosphates such as azinphos-methyl, azinphos-ethyl, chlorpyrifos, chloropyrifos-methyl, chlorfenvinphos, diazinon, dimethylvinphos, dioxabenzofos, disulfotone, ethion, EPN, fenitrothion, fenthione, heptenophos, isoxathione, malathion, methidathion, methyl parathion , Paraoxon, Parathion, Phenthoate, Phosalone, Phosmet, Phorate, Phoxim, Pirimiphos-methyl, Profenofos, Prothiofos, Primiphos-ethyl, Pyraclofos, Pyridaphenthion, Sulprofos, Triazophos, Trichlorfon;
  • Carbamates such as alanycarb, benfuracarb, bendiocarb, carbaryl, carbofuran, bosulfan, fenoxycarb, furathiocarb, indoxacarb, methiocarb, pirimicarb, propoxyl, thiodicarb, triazamate; Pyrethroids such as bifenthrin, cyfluthrin, cycloprothrin, cypermethrin, deltamethrin, esfenvalerate, ethofenprox, fenpropathrin, fenvalerate, cyhalothrin, lambda-cyhalothrin, permethrin, silafluofen, tau-fluvalinate, tefluthrin, tralomethrin, alpha-cypermethrin;
  • Arthropod growth regulators a) chitin synthesis inhibitors e.g. Benzoylureas such as chlorofluorazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, teflubenzuron, triflumuron; Buprofezin, diophenolane, hexythiazox, etoxazole, clofentazine; b) ecdysone antagonists such as halofenozide, methoxyfenozide, tebufenozide; c) juvenoids such as pyriproxyfen, methoprene; d) lipid biosynthesis inhibitors such as spirodiclofen; Neonicotinoids such as flonicamide, clothianidin, dinotefuran, imidacloprid, thiomethoxam, nithiazin
  • isothiazolones such as 1, 2-benzisothiazol-3 (2H) -one (BIT), mixtures of 5-chloro-2-methyl-4-isothiazolin-3-one with 2-methyl-4-isothiazolin-3-one and 2-n-octyl-4-isothiazolin-3-one (OIT), further carbendazim, chlorotoluron, 2,2-dibromo-3-nitrilopropionamide (DBNPA) 1 fluorometuron, 3-iodo-2-propynyl-butylcarbamate (IPBC), isoproturon, Prometry, Propiconazole;
  • BIT 1, 2-benzisothiazol-3 (2H) -one
  • OIT 2-n-octyl-4-isothiazolin-3-one
  • DBNPA 2,2-dibromo-3-nitrilopropionamide
  • IPBC 3-iodo-2-propynyl-butylcarba
  • the wax dispersions may contain the active ingredient (s) or effect substances, if present, in dissolved or dispersed form, or preferably in the particles of the wax component.
  • the concentration of active substance or effect substance in the wax dispersion depends in a manner known per se on the desired application purpose and is typically in the range from 0.01 to 50% by weight, in particular in the range from 0.1 to 15% by weight. %, based on the wax component or in the range of 0.03 to 5% by weight, based on the total weight of the dispersion.
  • the concentration is typically in the range of 0.1 to 10 wt .-%, based on the weight of the dispersion, with active ingredients typically in the range of 0.01 to 5 wt .-%, in UV stabilizers typically in the range of 0.1 to 5 wt .-% and with antioxidants typically in the range of 0.1 to 5 wt .-%, based on the weight of the dispersion sion.
  • the aqueous wax dispersion contains in addition to the wax component and optionally the active and / or effect substances additionally at least one crosslinkable compound, so that the steps a) and b) of the inventive method can be carried out together.
  • crosslinkable compound With respect to the nature of the crosslinkable compound, the nature and amount of the hydrophobicizer, and the other ingredients contained in the water repellent, ei ⁇ - finally the catalysts used for crosslinking, the above applies analogously, in particular with respect to the preferences, unless otherwise stated.
  • the concentration of the crosslinkable compounds in the aqueous wax dispersion is usually in the range from 5 to 30% by weight, frequently in the range from 5 to 20% by weight and in particular in the range from 10 to 20% by weight. %, based on the total weight of the dispersion. If the dispersion contains one of the abovementioned alcohols, its concentration is preferably in the range from 1 to 10% by weight, in particular in the range from 3 to 8% by weight. If the aqueous dispersion comprises one of the aforementioned crosslinkable compounds, it generally contains a catalyst K which brings about the crosslinking of the compound V, or of its reaction product or precondensate.
  • the catalyst K is usually added to the aqueous dispersion only shortly before the impregnation of the lignocellulosic material.
  • concentration of the catalyst based on the total weight of the aqueous dispersion, is usually in the range of 0.1 to 10 wt .-% and in particular in the range of 0.5 to 5 wt .-%.
  • the impregnation of the lignocellulosic material with the hydrophobizing agent depends in a manner known per se according to the hydrophobizing agent used in each case. Oils and liquid water repellents are preferably introduced into the lignocellulosic material by the Rüping compiler or the Royal process.
  • the impregnation is possible in a manner customary for this purpose, for.
  • Example by dipping, by combined use of vacuum with pressure or, in particular in the case of finely divided lignocellulosic materials also by conventionalschreibu ⁇ gs vide such as brushing, spraying and the like.
  • the particular impregnation method used naturally depends on the dimensions of the material to be impregnated. Lignocellulosematerialien small dimensions such as shavings or strands and thin veneers, ie materials with a large surface area to volume ratio, can be with little effort, eg. B.
  • the lignocellulosic material For dipping, the lignocellulosic material, optionally after predrying, is immersed in a container containing the aqueous wax dispersion.
  • the dipping is preferably carried out over a period of a few seconds to 24 h, in particular 1 min to 6 h.
  • the temperatures are usually in the range from 15 ° C. to 50 ° C.
  • the lignocellulosic material absorbs the aqueous wax dispersion, whereby the concentration of the nonaqueous constituents (ie wax, optionally active substances and / or effect substances and optionally curable constituents) in the aqueous composition, by the temperature and the duration of the treatment, the amount of these components taken up by the lignocellulosic material can be controlled.
  • the actual amount of The expert can easily determine and control the weight increase of the lignocellulosic material and the concentration of the constituents in the aqueous dispersion.
  • Veneers may, for example, be pre-pressed by means of press rolls, so-called calenders, which are in the aqueous impregnating composition. The vacuum occurring during the expansion in the lignocellulosic material then leads to an accelerated absorption of aqueous wax dispersion.
  • the impregnation with the wax dispersion is advantageously carried out by combined use of reduced and elevated pressure.
  • the lignocellulosic material which generally has a humidity in the range of 1% to 100%, first under reduced pressure, which is often in the range of 10 to 500 mbar and in particular in the range of 40 to 100 mbar, with the aqueous composition brought into contact, for.
  • reduced pressure which is often in the range of 10 to 500 mbar and in particular in the range of 40 to 100 mbar
  • the time period is usually in the range of 1 minute to 1 hour.
  • a phase at elevated pressure, z. B. in the range of 2 to 20 bar, in particular in the range of 4 to 15 bar and especially 5 to 12 bar, to.
  • the duration of this phase is usually in the range of 1 min to 12 h.
  • the temperatures are usually in the range from 15 to 50 ° C.
  • the lignocellulosic material absorbs the aqueous wax dispersion, the concentration being based on the nonaqueous constituents (ie wax, optionally active substances and / or effect substances and optionally curable constituents). in the aqueous composition, by the pressure, the temperature and the treatment time, the amount of these components taken up by the lignocellulosic material can be controlled. The amount actually absorbed can also be calculated here by the weight increase of the lignocellulosic material.
  • the impregnation can be carried out by conventional methods for applying liquids to surfaces, for. B. by spraying or rolling or brushing.
  • a veneer having a moisture content of not more than 50%, in particular not more than 30%, for example in the range from 12% to 30%.
  • the application is usually carried out at temperatures in the range of 15 to 50 0 C.
  • the spraying can be made in the usual way in all suitable for spraying of flat or finely divided bodies devices, for. B. by means of nozzle arrangements and the like.
  • the impregnation may be followed by a drying step and optionally a curing step at elevated temperature. in principle however, a further processing of the impregnated material can also be carried out directly on the impregnation.
  • the impregnated lignocellulosic material is a finely divided material that can be used with glue to form parts such as OSB (oriented structural board) boards, chipboard, wafer boards, OSL boards and OSL molded parts (Oriented-Strand Number), PSL and PSL (Parallel Stra ⁇ d Lumber) moldings, insulation boards, medium density (MDF) and high density (HDF) fiberboard, wood plastic composites (WPC) and the like, or is a veneer in that it is further processed into a veneer material.
  • OSB oriented structural board
  • chipboard chipboard
  • wafer boards OSL boards and OSL molded parts (Oriented-Strand Number)
  • PSL and PSL Paraallel Stra ⁇ d Lumber moldings
  • insulation boards such as medium density (MDF) and high density (HDF) fiberboard, wood plastic composites (WPC) and the like
  • WPC wood plastic composites
  • a curing step it is carried out by heating the impregnated material to temperatures of at least 80 0 C, in particular above 90 0 C, z. B. in the range of 90 to 220 0 C and in particular in the range of 100 to 200 ° C.
  • a separate drying step may be performed beforehand.
  • the volatile constituents of the aqueous composition in particular the water and excess organic solvents, which do not react in the curing / crosslinking of the urea compounds, partially or completely removed.
  • Predrying in this context means that the lignocellulosic material is dried below the fiber saturation point which, depending on the nature of the material, is about 30% by weight.
  • This predrying counteracts the risk of cracking in large-sized bodies, especially solid wood.
  • the predrying is usually omitted.
  • the predrying is beneficial. If a separate pre-drying is carried out, this is carried out advantageously at temperatures in the range of 20 to 80 0 C. Depending on the selected drying temperature can be partial or complete curing / crosslinking of the curable constituents present in the composition.
  • the combined predrying / curing of the impregnated materials is usually carried out by applying a temperature profile, which may range from 50 ° C to 220 0 C, in particular from 80 to 200 ° C.
  • the curing / drying can be carried out in a conventional fresh air exhaust system.
  • Pre-drying preferably takes place in such a way that the moisture content of the impregnated lignocellulosic materials after pre-drying is not more than 30%, in particular not more than 20%, based on the dry mass. It may be advantageous to carry out the drying / curing up to a moisture content ⁇ 10% and in particular ⁇ 5%, based on the dry mass.
  • the moisture content can be easily controlled by the temperature, the duration and the pressure selected during pre-drying.
  • the inventively treated lignocellulosic materials can, if it is not already ready-made end products are further processed in a conventional manner, in the case of finely divided materials z.
  • shaped articles such as OSB (oriented structural board) boards, chipboard, wafer boards, OSL boards and OSL (Oriented Strand Lumber), PSL and PSL (Parallel Strand Lumber) moldings, insulation boards , medium density (MDF) and high density (HDF) fiberboard, wood-plastic composites (WPC) and the like
  • veneers to veneer materials such as veneered fibreboard, veneered blockboard, veneered chipboard including veneered OSL and PSL panels (oriented parallel beach lumber), plywood, laminated wood, plywood, laminated veneer lumber (eg Kerto plywood), multiplex panels, laminated veneer lumber (LVL), decorative veneer materials such as cladding, ceiling and prefab parquet panels
  • Non-surface, 3-dimensionally shaped components such as plywood moldings, plywood moldings and any other, with at least one veneer layer coated
  • Further processing may take place immediately after impregnation with the hydrophobizing agent or, if the curing takes place subsequent to the treatment with the hydrophobizing agent, during or after the curing.
  • the further processing before the hardening step or together with the hardening step.
  • the molding step and curing step are carried out simultaneously.
  • the lignocellulosic material obtainable according to the invention is wood or a ready-made wood material, it can be processed in a customary manner before or after the water-repellent treatment, eg. As by sawing, planing, grinding, coating, etc. impregnated according to the invention and hardened solid wood is particularly suitable for the production of objects that are exposed to moisture and especially weathering, z.
  • the water-repellent treatment eg.
  • the lignocellulosic material obtainable according to the invention is wood or a ready-made wood material
  • it can be processed in a customary manner before or after the water-repellent treatment, eg. As by sawing, planing, grinding, coating, etc. impregnated according to the invention and hardened solid wood is particularly suitable for the production of objects that are exposed to moisture and especially weathering, z.
  • timber, beams, wooden components, wooden balconies, roof shingles, fences, wooden poles, railway sleepers in shipbuilding for interior work and deck superstructure
  • Example 1 Pressure-free impregnation with colored wax dispersion with crosslinker
  • the pinewood cubes to be examined were sealed before impregnation at the ends with a 2-component paint, stored for 16 h at 103 0 C in a drying oven and then cooled in a desiccator over desiccant, before the study, the weight and size of the wood cubes were determined ,
  • a wooden cube prepared in this way was weighted with a weight and immersed in the wax emulsion described above. It was then within 10 min. the pressure is lowered to 60 mbar absolute and then the vacuum maintained for 1 h. Then one relaxed to normal pressure and left the wooden cube for a further 4 hours in the wax emulsion. The wet pieces of wood were placed in a roasting tube. This was sealed and provided with a small hole and then stored for 36 h at 120 ° C in a drying oven. The wooden cubes were then allowed to cool in a desiccator over desiccant and again determined the weight and the dimension. The weight change was 15.6%. The size change with respect to the width was 0.8%, with respect to the height at 0.1%. When sawing the cube, a clear penetration of the blue color into the cube interior was evident.
  • Example 1 The wax dispersion described in Example 1 was investigated. The preparation of the wooden blocks was carried out as described in Example 1.
  • a prepared pinewood cube was weighted with a weight and immersed in wax emulsion described above. It was then within 10 min. the pressure is lowered to 60 mbar absolute and then the vacuum maintained for 1 h. Then one relaxed to normal pressure, transferred the wood piece to be tested and the wax emulsion stored in an autoclave for 1 h at an absolute pressure of 6 bar. Then you relaxed and left the cubes for another 4 hours in the wax emulsion. The wet pieces of wood were placed in a roasting tube. This was sealed and provided with a small hole and then stored for 36 h at 120 ° C in a drying oven.
  • the wooden cubes were then allowed to cool in a desiccator over desiccant and again determined the weight and the dimension.
  • the weight change was 17%.
  • the size change with respect to the width was 1.2%, with respect to the height at 0%.
  • At the The cube showed a strong penetration of the blue color into the cube interior.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Hydrophobieren von Lignocellulosematerialien durch Imprägnieren des Lignocellulosematerials mit einem Hydrophobiermittel, wobei man das Lignocellulosematerial vor oder während des Hydrophobierens mit einer härtbaren wässrigen Zusammensetzung imprägniert, die wenigstens eine vernetzbare Verbindung enthält, die ausgewählt ist unter α) niedermolekularen Verbindungen V, welche wenigstens zwei N-gebundene Gruppen der Formel CH2OR, worin R für Wasserstoff oder C1-C4-AlkyI steht, und/oder eine zwei Stickstoffatome verbrückende 1 ,2-Bishydroxyethan-1 ,2-diyl-Gruppe aufweisen, ß) Präkondensaten der Verbindung V und Ϝ) Umsetzungsprodukten oder Mischungen der Verbindung V mit wenigstens einem Alkohol, der unter C1-C6-Alkanolen, C2-C6-Polyolen und Oligo-C2-C4 alkylenglykolen ausgewählt ist.

Description

Verfahren zum Hydrophobieren von Lignocellulosematerialien
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zum Hydrophobieren von Lignocellulosematerialien durch Imprägnieren des Lignocellulosematerials mit einem Hydropho- biermittel, sowie die hierdurch erhältlichen Lignocellulosematerialien.
Lignocellulosematerialien, insbesondere Holz, aber auch andere Lignocellulosemate- rialien wie Bambus, Naturfasern und dergleichen sind als Bau- und Konstruktionsmaterialien für viele Anwendungen von Interesse. Von Nachteil ist, dass die natürliche Dauerhaftigkeit dieser Materialien sowohl durch Einwirken von Feuchtigkeit, aber auch durch Veränderungen des Feuchtigkeitsgehaltes in der umgebenden Atmosphäre nachteilig beeinflusst wird. Grund hierfür ist die Eigenschaft von Lignocellulosemateria- lien, bei Kontakt mit Wasser oder in feuchter Atmosphäre Wasser einzulagern und in trockener Atmosphäre wieder abzugeben. Die damit einhergehende Quellung bzw. Schwindung und die damit verbundene mangelnde Dimensionsstabilität der Materialien ist nicht nur für viele Anwendungen unerwünscht, sondern kann im Extremfall auch zu einer Zerstörung des Materials durch Rissbildung führen. Zudem werden diese Mate- rialien im feuchten Zustand von holzabbauenden oder holzverfärbenden Mikroorganismen befallen, was in vielen Fällen die Ausrüstung dieser Materialien mit Fungiziden oder Bioziden erforderlich macht. Abgesehen von dem Kostenaspekt ist eine derartige Ausrüstung auch aus Umweltaspekten von Nachteil.
Die Hydrophobierung von Holz und anderen Lignocellulosematerialien ist eine seit langem bekannte Technik zur Verringerung der Wasseraufnahme dieser Materialien. Hierdurch wird zum einen die Dimensionsstabilität dieser Materialien verbessert und zum anderen die Gefahr eines Befalls mit Pilzen oder Bakterien verringert.
Neben klassischen Holzschutzmitteln auf Basis von Teerölen, die aufgrund ihres Eigengeruchs, ihrer intensiven Farbe und ihrer potentiellen Karzinogenität nur für wenige Einsatzzwecke geeignet sind, finden heute verstärkt pflanzliche öle wie Leinsamenöl, Rapsöl, Erdnussöl, Sojaöl und Tallöl in Kombination mit bioziden und/oder fungiziden Holzschutzmitteln Verwendung (siehe z. B. DE-A-3008263 sowie A. Treu, H. Militz und S. Breyne „Royal-Verfahren - Wissenschaftlicher Hintergrund und praktische Anwendung" COST E22 Konferenz in Reinbek, 2001 und dort zitierte Literatur). Nachteilig ist, dass bei Bewitterung, d. h. bei Einwirkung von Feuchtigkeit, z. B. durch Regen, und/oder bei erhöhten Temperaturen, wie sie z. B. bei starker Sonneneinstrahlung auftreten können, ein Teil des Öls zusammen mit den fungiziden/bioziden Wirkstoffen aus dem Holz austreten kann. Hierdurch wird die Oberfläche klebrig, das öl bildet "Nasen" und die hydrophobierende Wirkung lässt deshalb mit der Zeit an lokalen Stellen nach.
Verschiedentlich wurde über die Verwendung von Wachsen zur Hydrophobierung von Holz berichtet, wobei die Wachse typischerweise zusammen mit einem Kohlenwasserstofflösungsmittel eingesetzt werden (siehe z. B. US 3,832,463 und US 4,612,255). Der Einsatz organischer Kohlenwasserstofflösungsmittel ist jedoch hinsichtlich der Arbeitsund Prozess-Sicherheit von Nachteil.
Die CA 2,179,001 wiederum beschreibt ein Holzschutzmittel mit hydrophobierender Wirkung, das neben einem wasserlöslichen Holzschutzmittel wie chromierte Kupferar- senate, eine wässrige Emulsion eines niedrig schmelzenden Wachses wie Gatsch und eine kationische oberflächenaktive Substanz enthält.
Aus der WO 00/41861 wiederum ist ein Verfahren zur Hydrophobierung von Holz- Substraten bekannt, bei dem man das Substrat mit einer wässrigen Dispersion eines Wachses bei vermindertem Druck und einer Temperatur oberhalb des Schmelzpunktes des Wachses in Kontakt bringt.
Auch die Hydrophobierung unter Anwendung von Wachsen ist nicht immer zufriedenstellend und häufig nicht ausreichend witterungsstabil. Zudem erreicht man bei großformatigen Holzteilen, d. h. mit Mindestabmessungen von wenigstens 1 cm häufig keine gleichmäßige Verteilung des Wachses in dem Holz. Um eine gleichmäßige Verteilung im Ligπocellulosematerial, insbesondere in großformatigen Holzkörpern zu errei- chen, muss das Imprägnieren mit der Wachsdispersion unter Anwendung von hohem Drucken erfolgen. Aufgrund der hierbei auftretenden Scherkräfte neigen die Wachsdispersionen zum Koagulieren, was zu einer Verstopfung der Poren des Materials führen kann und auf diese Weise ein weiteres Eindringen des Wachses in das Lignocellulo- sematerials verhindert. Daher führen viele Verfahren eine Imprägnierung mit Wachs- dispersionen bei Temperaturen oberhalb des Schmelzpunkts des Wachses durch, wodurch es zu einer Schädigung des Materials kommen kann.
Der vorliegenden Erfindung liegt daher die Aufgabe zu Grunde, ein Verfahren zur Hydrophobierung von Lignocellulosematerialien, insbesondere von Holz und speziell von großformatigen Holzkörpern zur Verfügung zu stellen, welches die hier geschilderten Nachteile des Standes der Technik überwindet. Insbesondere sollte das Verfahren die Imprägnierung auch bei niedrigen Temperaturen, insbesondere unterhalb 50 °C ermöglichen, um eine Schädigung des Holzes zu vermeiden. Es wurde überraschenderweise gefunden, dass die hier geschilderten Aufgaben gelöst und die Probleme des Standes der Technik dadurch gelöst werden können, dass man vor oder während des Hydrophobierens der Lignocellulosematerialien eine Imprägnierung mit einer härtbaren wässrigen Zusammensetzung vornimmt, die wenigstens eine vernetzbare Verbindung enthält, die ausgewählt ist unter
α) niedermolekularen Verbindungen V, welche wenigstens zwei N-gebundene Gruppen der Formel CH2OR, worin R für Wasserstoff oder Ci-C4-Alkyl steht, und/oder eine zwei Stickstoffatome verbrückende 1,2-Bishydroxyethan-1,2-diyl- Gruppe aufweisen, ß) Präkondensaten der Verbindung V und
Y) Umsetzungsprodukten oder Mischungen der Verbindung V mit wenigstens einem Alkohol, der unter Ci-Ce-Alkanolen, C2-C6-Polyolen und ONgO-C2-C4- alkylenglykolen ausgewählt ist.
Die Erfindung betrifft somit ein Verfahren zum Hydrophobieren von Lignocellulosematerialien durch Imprägnieren des Lignocellulosematerials mit einem Hydrophobiermittel, wobei man das Lignocellulosematerial vor oder während des Hydrophobierens mit einer härtbaren wässrigen Zusammensetzung imprägniert, die wenigstens eine vernetz- bare Verbindung enthält, die ausgewählt ist unter
α) niedermolekularen Verbindungen V, welche wenigstens zwei N-gebundene Gruppen der Formel CH2OR, worin R für Wasserstoff oder C1-C4-AIkYl steht, und/oder eine zwei Stickstoffatome verbrückende 1 ,2-Bishydroxyethan-1 ,2-diyl- Gruppe aufweisen, ß) Präkondensaten der Verbindung V und
Y) Umsetzungsprodukten oder Mischungen der Verbindung V mit wenigstens einem Alkohol, der unter Ci-Cβ-Alkanolen, CrCβ-Polyolen und ONgO-C2-C4- alkylenglykolen ausgewählt ist.
Die durch das erfindungsgemäße Verfahren imprägnierten Lignocellulosematerialien zeichnen sich durch eine geringe Aufnahme an Wasser aus und zeigen zudem im Vergleich zu konventionell hydrophobierten Materialien kein oder in sehr viel geringerem Maße ein Ausschwitzen des Hydrophobierungsmittels bei Witterung, insbesondere bei erhöhten Temperaturen. Zudem ist die Verteilung des Hydrophobiermittels in den erfindungsgemäß behandelten Lignocellulosematerialien, insbesondere im Falle von großformatigen Holzformkörpern, gleichmäßiger als bei Anwendung konventioneller Wachs-Emulsionen. Die erfindungsgemäß erhältlichen Lignocellulosematerialien, insbesondere Materialien aus Holz, sind daher ebenfalls Gegenstand der vorliegenden Erfindung. In einem ersten Schritt des erfindungsgemäßen Verfahrens wird das Lignocellulosema- terial, insbesondere Holz, ein Werkstoff auf Basis von Lignocellulosematerialien, z. B. ein Furnierwerkstoff oder ein aus feinteiligen Lignocellulosematerialien wie Spänen, Fasern oder Strands geformter Werkstoff, oder ein Lignocellulosematerial zur Herstellung von derartigen Werkstoffen, z. B. ein Furnier oder feinteiliges Lignocellulosematerial, mit einer wässrigen Zusammensetzung der härtbaren Verbindung imprägniert.
Zu den feinteiligen Lignocellulosematerialien zählen Fasern, Späne, Strands, Chips, Schnitzel und dergleichen. Unter Furnieren versteht man flächige dünne Holzmaterialien mit Dicken ≤ 5 mm, insbesondere ≤ 1 mm. Insbesondere werden in Schritt A großformatige Teile mit Mindestabmessungen oberhalb 1 mm, insbesondere ≥ 5 mm, speziell ≥ 10 mm und speziell großformatige Teile aus Vollholz bzw. Massivholz imprägniert.
Als Lignocellulosematerialien geeignet sind grundsätzlich alle Holzsorten, insbesondere solche, die wenigstens 30 %, insbesondere wenigstens 50 % ihres Trockengewichts an Wasser aufnehmen können und insbesondere solche, die den Imprägnierbarkeits- klassen (bzw. Tränkbarkeitsklassen) 1 oder 2 gemäß DIN 350-2 zugeordnet werden. Hierzu zählen beispielsweise Hölzer von Nadelbäumen wie Kiefer, Fichte, Douglasie, Lärche, Pinie, Tanne, Küstentanne, Zeder, Zirbel, sowie Hölzer von Laubbäumen, z. B. Ahorn, Hardmaple, Akazie, Ayons, Birke, Birne, Buche, Eiche, Erle, Espe, Esche, Eisbeere, Hasel, Hainbuche, Kirsche, Kastanie, Linde, amerikanischer Nussbaum, Pappel, Olive, Robinie, Ulme, Walnuss, Gummibaum, Zebrano, Weide, Zerreiche und der- gleichen. Die erfinduπgsgemäßen Vorteile kommen insbesondere bei den folgenden Hölzern zum Tragen: Buche, Fichte, Kiefer, Pappel, Esche und Ahorn.
Das erfindungsgemäße Verfahren eignet sich auch zum Imprägnieren anderer, von Holz verschiedener Lignocellulosematerialien, z. B. von Naturfaserstoffen wie Bambus, Bagasse, Baumwollstängel, Jute, Sisal, Stroh, Flachs, Kokosfasern, Bananenfasern, Schilf, z. B. Chinaschilf, Ramie, Hanf, Manilahanf, Esparto (Alfagras), Reisschalen und Kork.
Bei den vernetzbaren Verbindungen, d. h. Verbindungen V, deren Präkondensaten und Umsetzungsprodukten, handelt es sich um niedermolekulare Verbindungen oder um Oligomere mit geringem Molekulargewicht, die in der eingesetzten wässrigen Zusammensetzung in der Regel vollständig gelöst vorliegen. Das Molekulargewicht der vernetzbaren Verbindung liegt üblicherweise unterhalb 400 Dalton. Man nimmt an, dass die Verbindungen aufgrund dieser Eigenschaften in die Zellwände des Holzes eindrin- gen können und beim Härten die mechanische Stabilität der Zellwände verbessern und ihre durch Wasser bewirkte Quellung vermindern.
Beispiele für vernetzbare Verbindungen sind, ohne darauf beschränkt zu sein:
1 ,3-Bis(hydroxymethyl)-4,5-dihydroxyimidazolidin-2-on (DMDHEU), 1 ,3-Bis(hydroxymethyl)-4,5-dihydroxyimidazolidin-2-on, das mit einem C1-C6- Alkanol, einem C2-C6-PoIyOl und/oder einem Oligo-C2-C4-alkylenglykol modifiziert ist (modifiziertes DMDHEU bzw. mDMDHEU), - 1 ,3-Bis(hydroxymethyl)harnstoff, 1 ,3-Bis(methoxymethyl)harnstoff, 1 -Hydroxymethyl-3-methylharnstoff,
1 ,3-Bis(hydroxymethyl)imidazolidin-2-on (Dimethylolethylenharnstoff), 1 ,3-Bis(hydroxymethyl)-1 ,3-hexahydropyrimidin-2-on (Dimethylolpropylen- hamstoff),
1 ,3-Bis(methoxymethyl)-4,5-dihydroxyimidazolidiπ-2-oπ (DMeDHEU),
Tetra(hydroxymethyl)acetylendihamstoff, niedermolekulare Melamin-Formaldehyd Harze (MF-Harze) wie
Poly(hydroxymethyl)melamin mit 2, 3, 4, 5 oder 6 Hydroxymethylgruppen und - niedermolekulare Melamin-Formaldehyd Harze (MF-Harze) wie
Poly(hydroxymethyl)melamin, die mit einem C,-C3-Alkanol, einem C2-C6-PoIyOl und/oder einem Oligo-C2-C4-alkylenglykol modifiziert sind (modifiziertes MF- Harz).
Wässrige Zusammensetzungen von Verbindungen V1 deren Präkondensate und deren Umsetzungsprodukten sind an sich bekannt, beispielsweise aus WO 2004/033171 , WO 2004/033170, K. Fisher et al. "Textile Auxiliaries - Finishing Agents" Kap. 7.2.2 in Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed. on CD-ROM, Wiley-VCH, Weinheim 1997 und dort zitierte Literatur, US 2,731 ,364, US 2,930,715, H. Diem et al. "Amiπo-Resins" Kap. 7.2.1 und 7.2.2 in Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed. on CD-ROM, Wiley-VCH, Weinheim 1997 und dort zitierte Literatur, Houben- Weyl E20/3, S. 1811-1890, und werden üblicherweise als Vernetzer für das Textilfinis- hing eingesetzt. Umsetzungsprodukte von N-methylolierten Harnstoffverbindungen V mit Alkoholen, z. B. modifiziertes 1,3-Bis(hydroxymethyl)-4,5-dihydroxyimidazolidinon-2 (mDMDHEU) sind beispielsweise aus der US 4,396,391 und der WO 98/29393 bekannt. Im Übrigen sind Verbindungen V sowie ihre Umsetzungsprodukte und Präkondensate im Handel erhältlich.
In einer bevorzugten Ausführungsform der Erfindung ist die vernetzbare Verbindung unter Harnstoffverbindungen, die an jedem Stickstoffatom der Harnstoffeinheit eine Gruppe CH2OR wie zuvor definiert aufweisen, und den Reaktionsprodukten dieser Hamstoffverbinduπgen mit CrCβ-Alkanolen, C2-Cβ-Polyolen und/oder Oligoalkylengly- kolen ausgewählt. Insbesondere ist die vernetzbare Verbindung ausgewählt unter 1 ,3-Bis(hydroxymethyl)-4,5-dihydroxyimidazolidin-2-on und einem mit einem Ci-C6- Alkanol einem C2-C6-PoIyOl, und/oder einem Polyalkylenglykol modifizierten
1,3-Bis(hydroxymethyl)-4,5-dihydroxyimidazolidin-2-on ausgewählt. Beispiele für PoIy- alkylenglykole sind insbesondere die unten genannten Oligo- und PoIy-C2-C4- alkylenglykole.
Bei mDMDHEU handelt es sich Umsetzungsprodukte von 1,3-Bis(hydroxymethyl)-4,5- dihydroxyimidazolidin-2-on mit einem Ci-Cβ-Alkanol, einem C2-Ce-PoIyOl, einem OH- goethylenglykol oder Gemischen dieser Alkohole. Geeignete C1-β-Alkanole sind beispielsweise Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol und n-Pentanol, bevorzugt ist Methanol. Geeignete Polyole sind Ethylenglykol, Diethylenglykol, 1,2- und 1 ,3-Propylenglykol, 1 ,2-, 1 ,3-, und 1 ,4-Butylenglykol und Glycerin. Beispiele für geeignete Polyalkylenglykole sind insbesondere die im Folgenden genannten Oligo- und Poly-C2-C4-alkylenglykole. Zur Herstellung von mDMDHEU wird DMDHEU mit dem Alkanol, dem Polyol oder dem Polyalkylenglykol gemischt. Hierbei werden der einwertige Alkohol, das Polyol, oder das Oligo- bzw. Polalkylenglykol üblicherweise in einem Verhältnis von je 0,1 bis 2,0, insbesondere 0,2 bis 2 Moläquivalenten, bezogen auf DMDHEU, eingesetzt. Die Mischung aus DMDHEU, dem Polyol oder dem Polyalkylenglykol wird üblicherweise in Wasser bei Temperaturen von vorzugsweise 20 bis 70 °C und einem pH-Wert von vorzugsweise 1 bis 2,5 umgesetzt, wobei der pH-Wert nach der Umsetzung in der Regel auf einen Bereich von 4 bis 8 eingestellt wird.
In einer weiteren bevorzugten Ausführungsform der Erfindung ist die vernetzbare Verbindung unter wenigstens 2-fach, z. B. 2-, 3-, 4-, 5- oder 6-fach, speziell einem 3-fach methyloliertem Melamin (Poly(hydroxymethyl)melamin) und einem mit einem Ci-Ce- Alkanol einem C2-C6-PoIyOl, und/oder einem Polyalkylenglykol modifizierten Poly(hydroxymethyl)melamin ausgewählt. Beispiele für Polyalkylenglykole sind insbesondere die im Folgenden genannten Oligo- und Poly-C2-C4-alkylenglykole.
Die erfindungsgemäß zur Anwendung kommenden wässrigen Zusammensetzungen können auch einen oder mehrere der vorgenannten Alkohole, z. B. d-C6-Alkanole, C2-Cβ-Polyole, Oligo- und Polyalkylenglykole oder Gemische dieser Alkohole enthalten. Geeignete C1-β-Alkanole sind beispielsweise Methanol, Ethanol, n-Propanol, iso- Propanol, n-Butanol und n-Pentanol, bevorzugt ist Methanol. Geeignete Polyole sind Ethylenglykol, Diethylenglykol, 1 ,2- und 1,3-Propylenglykol, 1,2-, 1 ,3-, und 1 ,4-Butylenglykol und Glycerin. Geeignete Oligo- und Polyalkylenglykole sind insbe- sondere Oligo- und Poly-C2-C4-alkylenglykole, speziell Homo- und Cooligomere des Ethylenoxids und/oder des Propylenoxids, die gegebenenfalls in Gegenwart von niedermolekularen Startern, z. B. aliphatischen oder cycloaliphatischen Polyolen mit wenigstens 2 OH-Gruppen wie 1,3-Propandiol, 1 ,3- und 1 ,4-Butandiol, 1 ,5-Pentandiol, 1 ,6-Hexandiol, Glycerin, Trimethylolethan, Trimethylolpropan, Erythrit, und Pentae- rythrit, sowie Pentite und Hexite wie Ribit, Arabit, XyNt, Dulcit, Mannit und Sorbit sowie Inosit oder aliphatischen oder cycloaliphatischen Polyaminen mit wenigstens 2-NH2- Gruppen wie Diethylentriamin, Triethylentetramin, Tetraethylenpentamin, Propylendia- min-1 ,3, Dipropylentriamin, 1,4,8-Triazaoctan, 1,5,8,12-Tetraazadodecan, Hexamethy- lendiamin, Dihexamethylentriamin, 1 ,6-Bis-(3-aminopropylamino)hexan, N-Methyldipropylentriamin oder Polyethylenimin erhältlich sind, worunter Diethylengly- kol, Triethylenglykol , Di-, Tri- und Tetrapropylenglykol, niedermolekulare Pluronic®- Marken der BASF (z. B. Pluronic® PE 3100, PE 4300, PE 4400, RPE 1720, RPE 1740) bevorzugt sind.
Die Konzentration der vernetzbaren Verbindungen in der wässrigen Zusammensetzung liegt üblicherweise im Bereich 1 bis 60 Gew.-%, häufig im Bereich von 10 bis 60 Gew.- % und insbesondere im Bereich von 15 bis 50 Gew.-%, bezogen auf das Gesamtgewicht der Zusammensetzung. Sofern die härtbare, wässrige Zusammensetzung einen der vorgenannten Alkohole enthält, liegt dessen Konzentration vorzugsweise im Be- reich von 1 bis 50 Gew.-%, insbesondere im Bereich von 5 bis 40 Gew.-%. Die Gesamtmenge an vernetzbarer Verbindung und Alkohol macht üblicherweise 10 bis 60 Gew.-% und insbesondere 20 bis 50 Gew.-% des Gesamtgewichts der wässrigen Zusammensetzung aus.
In der Regel enthält die in Schritt a) eingesetzte wässrige Zusammensetzung wenigstens einen Katalysator K, welcher die Vernetzung der Verbindung V, bzw. ihres Umsetzungsprodukts oder Präkondensats bewirkt. In der Regel sind als Katalysatoren K Metallsalze aus der Gruppe der Metallhalogenide, Metallsulfate, Metallnitrate, Metallphosphate, Metalltetrafluoroborate; Bortrifluorid; Ammoniumsalze aus der Gruppe der Am- moniumhalogenide, Ammoniumsulfat, Ammoniumoxalat und Diammoniumphosphat; sowie organischen Carbonsäuren, organischen Sulfonsäuren, Borsäure, Schwefelsäure und Salzsäure geeignet.
Beispiele für als Katalysatoren K geeignete Metallsalze sind insbesondere Magnesi- umchlorid, Magnesiumsulfat, Zinkchlorid, Lithiumchlorid, Lithiumbromid, Aluminiumchlorid, Aluminiumsulfat, Zinknitrat und Natriumtetrafluoroborat.
Beispiele für als Katalysatoren K geeignete Ammoniumsalze sind insbesondere Ammoniumchlorid, Ammoniumsulfat, Ammoniumoxalat und Diammoniumphosphat. Als Katalysatoren K sind insbesondere auch wasserlösliche organische Carbonsäuren wie Maleinsäure, Ameisensäure, Zitronensäure, Weinsäure und Oxalsäure, weiterhin Benzolsulfonsäuren, wie p-Toluolsulfonsäure, aber auch anorganische Säuren, wie Salzsäure, Schwefelsäure, Borsäure und deren Gemische geeignet.
Vorzugsweise ist der Katalysator K unter Magnesiumchlorid, Zinkchlorid, Magnesiumsulfat, Aluminiumsulfat und deren Gemischen ausgewählt, wobei Magnesiumchlorid besonders bevorzugt ist.
Den Katalysator K wird man üblicherweise der wässrigen Dispersion erst kurz vor dem Imprägnieren in Schritt a) zusetzen. Er wird üblicherweise in einer Menge von 1 bis 20 Gew.-%, insbesondere 2 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der in der wässrigen Zusammensetzung enthaltenen härtbaren Bestandteile eingesetzt. Die Konzentration des Katalysators, bezogen auf das Gesamtgewicht der wässrigen Dis- persion, Hegt üblicherweise im Bereich von 0,1 bis 10 Gew.-% und insbesondere im Bereich von 0,5 bis 5 Gew.-%.
Das Imprägnieren mit der wässrigen Zusammensetzung der vernetzbaren Verbindung kann in an sich üblicher Weise erfolgen, z. B. durch Tauchen, durch Anwendung von Vakuum gegebenenfalls in Kombination mit Druck oder durch konventionelle Auftragungsverfahren wie Streichen, Besprühen und dergleichen. Das jeweils angewendete Imprägnierverfahren hängt naturgemäß von den Abmessungen des zu imprägnierenden Materials ab. Lignocellulosematerialien mit geringen Abmessungen wie Späne oder Strands sowie dünne Furniere, d. h. Materialien mit einem großen Verhältnis von Oberfläche zu Volumen, lassen sich mit geringem Aufwand, z. B. durch Tauchen oder Besprühen imprägnieren, wohingegen Lignocellulosematerialien mit größeren Abmessungen, insbesondere Materialien, deren geringste Ausdehnung mehr als 5 mm beträgt, z. B. Vollholz, Formteile aus Vollholz oder Holzwerkstoffe, unter Anwendung von Druck oder Vakuum, insbesondere durch kombinierte Anwendung von Druck und Va- kuum imprägniert werden. Vorteilhafterweise wird das Imprägnieren bei einer Temperatur unterhalb 50 0C1 z. B. im Bereich von 15 bis 50 0C durchgeführt.
Die Bedingungen des Imprägnierens werden in der Regel so gewählt werden, dass die aufgenommene Menge an härtbaren Bestandteilen der wässrigen Zusammensetzung wenigstens 1 Gew.-%, vorzugsweise wenigstens 5 Gew.-% und insbesondere wenigstens 10 Gew.-%, bezogen auf die Trockenmasse des unbehandelten Materials, beträgt. Die aufgenommene Menge an härtbaren Bestandteilen kann bis zu 100 Gew.-%, bezogen auf die Trockenmasse der unbehandelten Materialien betragen und liegt häufig im Bereich von 1 bis 60 Gew.-%, vorzugsweise im Bereich von 5 bis 50 Gew.-%, und insbesondere im Bereich von 10 bis 40 Gew.-%, bezogen auf die Trockenmasse des eingesetzten unbehandelten Materials, liegt. Die Feuchte der zum Tränken eingesetzten, unbehandelten Materialien ist unkritisch und kann beispielsweise bis 100 % betragen. Hier und im Folgenden ist der Begriff „Feuchtigkeit" synonym mit dem Begriff Restfeuchtegehalt nach DIN 52183. Insbesondere liegt die Restfeuchte unterhalb des Fasersättigungspunkts des Lignocellulosematerials. Häufig liegt sie im Bereich von 1 bis 80 % und insbesondere 5 bis 50 %.
Zum Tauchen wird das Lignocellulosematerial, gegebenenfalls nach einer Vortrocknung, in einen Behälter, welcher die wässrige Zusammensetzung enthält, getaucht. Das Tauchen erfolgt vorzugsweise über einen Zeitraum von wenigen Sekunden bis 24 h, insbesondere 1 min bis 6 h. Die Temperaturen liegen üblicherweise im Bereich von 15 0C bis 50 0C. Hierbei nimmt das Lignocellulosematerial die wässrige Zusammensetzung auf, wobei durch die Konzentration an den nicht-wässrigen Bestandteilen (d. h. härtbare Bestandteile) in der wässrigen Zusammensetzung, durch die Tempera- tur und die Behandlungsdauer die von dem Lignocellulosematerial aufgenommene Menge an diesen Bestandteilen gesteuert werden kann. Die tatsächlich aufgenommene Menge an Bestandteilen kann der Fachmann in einfacher Weise über die Gewichtszunahme des imprägnierten Materials und die Konzentration der Bestandteile in der wässrigen Dispersion ermitteln und steuern. Furniere können beispielsweise mittels Pressrollen, so genannte Kalander, die sich in der wässrigen Imprägnierzusammensetzung befinden, vorgepresst werden. Das beim Entspannen im Holz auftretende Vakuum führt dann zu einer beschleunigten Aufnahme an wässriger Imprägnierzusammensetzung.
Das Imprägnieren erfolgt vorteilhafterweise durch kombinierte Anwendung von vermindertem und erhöhtem Druck. Hierzu wird das Lignocellulosematerial, das in der Regel eine Feuchtigkeit im Bereich von 1 % bis 100 % aufweist, zunächst unter vermindertem Druck, der häufig im Bereich von 10 bis 500 mbar und insbesondere im Bereich von 40 bis 100 mbar liegt, mit der wässrigen Zusammensetzung in Kontakt gebracht, z. B. durch Tauchen in der wässrigen Zusammensetzung. Die Zeitdauer liegt üblicherweise im Bereich von 1 min bis 1 h. Hieran schließt sich eine Phase bei erhöhtem Druck, z. B. im Bereich von 2 bis 20 bar, insbesondere im 4 bis 15 bar und speziell 5 bis 12 bar, an. Die Dauer dieser Phase liegt üblicherweise im Bereich von 1 min bis 12 h. Die Temperaturen liegen üblicherweise im Bereich von 15 bis 50 βC. Hierbei nimmt das Lignocellulosematerial die wässrige Zusammensetzung auf, wobei durch die Konzentration an den nicht-wässrigen Bestandteilen (d. h. härtbare Bestandteile) in der wässrigen Zusammensetzung, durch den Druck, durch die Temperatur und die Behandlungsdauer die von dem Lignocellulosematerial aufgenommene Menge an diesen Bestandteilen gesteuert werden kann. Die tatsächlich aufgenommene Menge kann auch hier über die Gewichtszunahme des Lignocellulosematerials berechnet werden. Weiterhin kann das Imprägnieren durch konventionelle Verfahren zum Aufbringen von Flüssigkeiten auf Oberflächen erfolgen, z. B. durch Besprühen oder Rollen bzw. Streichen. Hierzu setzt man vorteilhafterweise ein Material mit einer Feuchtigkeit von nicht mehr als 50 %, insbesondere nicht mehr als 30 %, z. B. im Bereich von 12 % bis 30 % ein. Das Aufbringen erfolgt üblicherweise bei Temperaturen im Bereich von 15 bis 50 "C. Das Besprühen kann in üblicher Weise in allen für das Besprühen von flächigen oder feinteiligen Körpern geeigneten Vorrichtungen vorgenommen werden, z. B. mittels Düsenanordnungen und dergleichen. Beim Streichen bzw. Rollen wird die gewünschte Menge an wässriger Zusammensetzung mit Rollen oder Pinseln auf das flächige Material aufgetragen.
Anschließend erfolgt in Schritt b) die Härtung der vernetzbaren Bestandteile der wäss- rigen Zusammensetzung. Die Härtung kann in Analogie zu den im Stand der Technik beschriebenen Verfahren durchgeführt werden, z. B. nach den in WO 2004/033170 und WO 2004/033171 beschriebenen Verfahren.
Die Härtung erfolgt typischerweise durch Behandeln des imprägnierten Materials bei Temperaturen oberhalb 80 0C, insbesondere oberhalb 90 0C, z. B. im Bereich von 90 bis 220 0C und insbesondere im Bereich von 100 bis 200 0C. Die für das Härten erforderliche Zeit liegt typischerweise im Bereich von 10 min bis 72 Stunden. Bei Furnieren und feinteiligen Lignocellulosematerialien können eher höhere Temperaturen und kürzere Zeiten angewendet werden. Bei der Härtung werden nicht nur die Poren des Lignocellulosematerials mit dem gehärteten Imprägniermittel angefüllt, sondern es ent- steht eine Quervernetzung zwischen Imprägniermittel und dem Lignocellulosematerial selbst.
Gegebenfalls kann man vor dem Härten einen Trocknungsschritt, im Folgenden auch Vortrocknungsschritt durchführen. Hierbei werden die flüchtigen Bestandteile der wäss- rigen Zusammensetzung, insbesondere das Wasser und überschüssige organische Lösungsmittel, die in der Härtung/Vernetzung der Harnstoffverbindungen nicht reagieren, teilweise oder vollständig entfernt. Vortrocknung bedeutet, dass das Lignocellulosematerial unter den Fasersättigungspunkt getrocknet wird, der je nach Art des Lignocellulosematerials bei etwa 30 Gew.-% liegt. Diese Vortrocknung wirkt der Gefahr einer Rissbildung entgegen. Bei kleinformatigen Lignocellulosematerialien, beispielsweise Furnieren, kann die Vortrocknung entfallen. Bei Holzkörpern mit größeren Abmessungen ist die Vortrocknung jedoch von Vorteil. Sofern eine separate Vortrocknung durchgeführt wird, erfolgt diese vorteilhafterweise bei Temperaturen im Bereich von 20 bis 80 0C. In Abhängigkeit von der gewählten Trocknungstemperatur kann eine teilweise oder vollständige Härtung/Vernetzung der in der Zusammensetzung enthaltenen hart- baren Bestandteile erfolgen. Die kombinierte Vortrocknung/Härtung der imprägnierten Materialien erfolgt üblicherweise durch Anlegen eines Temperaturprofils, das von 50 0C bis 220 0C1 insbesondere von 80 bis 200 0C reichen kann.
Die Härtung/Trocknung kann in einem konventionellen Frischluft-Abluft System, z. B. einem Trommeltrockner durchgeführt werden. Vorzugsweise erfolgt die Vortrocknung in einer Weise, dass der Feuchtegehalt der feinteiligen Lignocellulosematerialien nach der Vortrocknung nicht mehr als 30 %, insbesondere nicht mehr als 20 %, bezogen auf die Trockenmasse, beträgt. Es kann von Vorteil sein, die Trocknung/Härtung bis zu einem Feuchtegehalt < 10 % und insbesondere < 5 %, bezogen auf die Trockenmasse, zu führen. Der Feuchtegehalt kann durch die Temperatur, die Dauer und den bei der Vortrocknung gewählten Druck in einfacher Weise gesteuert werden.
Gegebenenfalls wird man vor dem Trocknen/Härten anhaftende Flüssigkeit auf me- chanischem Wege entfernen.
Bei großformatigen Materialien hat es sich bewährt, diese beim Trocknen/Härten zu fixieren, z. B. in Heizpressen.
Im Anschluss an das Imprägnieren mit der wässrigen Zusammensetzung der vernetzbaren Verbindung und dem gegebenenfalls durchgeführten Härtungsschritt oder während dessen wird erfindungsgemäß eine Imprägnierung mit wenigstens einem Hydrophobiermittel durchgeführt. Sofern die Imprägnierung mit dem Hydrophobiermittel gleichzeitig mit der Imprägnierung mit der wässrigen Zusammensetzung der vernetzba- ren Verbindung durchgeführt soll, setzt man zweckmäßigerweise eine wässrige Zusammensetzung ein, die sowohl wenigstens ein in der wässrigen Phase dispergiertes Hydrophobiermittel als auch die vernetzbare Verbindung und gegebenenfalls weitere Bestandteile, wie Katalysatoren K, Effektstoffe, die oben erwähnten Alkohole und dergleichen enthält. Derartige Zusammensetzungen sind neu und ebenfalls Gegenstand der vorliegenden Erfindung.
Hydrophobiermittel sind grundsätzlich aus dem Stand der Technik bekannt, z. B. aus dem eingangs zitierten Stand der Technik. Hierbei handelt es sich um Silikonöle, Paraffinöle, pflanzliche öle wie Leinsamenöl, Rapsöl, Erdnussöl, Sojaöl und Tallöl, Wachs- Zubereitungen, einschließlich lösungsmittelbasierter Wachszubereitungen und wässrige Wachsdispersionen. Die vorgenannten Hydrophobiermittel werden häufig in Kombination mit bioziden und/oder fungiziden Holzschutzmitteln eingesetzt, um eine Wirkungssteigerung zu erzielen. Gemäß einer bevorzugten Ausführungsform der Erfindung handelt es sich bei dem Hydrophobiermittel um ein Wachs oder ein wachsartiges Polymer.
Insbesondere handelt es sich bei dem Hydrophobiermittel um eine wässrige Zuberei- tung, d. h. eine wässrige Emulsion oder Dispersion eines oder mehrer der vorgenannten Hydrophobiermittel. Insbesondere handelt es sich um eine wässrige Dispersion eines Wachsbestandteils, nämlich eines Wachses oder eines wachsartigen Polymers oder einer Mischung davon. Im Folgenden werden derartige wässrige Zubereitungen auch als Wachsdispersionen bezeichnet. Die in den wässrigen Dispersionen enthalte- nen Wachse oder wachsartigen Polymere werden im Folgenden auch als Wachsbestandteil oder Wachskomponente bezeichnet. Unter wachsartigen Polymeren versteht der Fachmann Polymere, die in ihrem Eigenschaftsprofil den Wachsen gleichen, d. h. sie sind im Wasser unlöslich, lassen sich in der Regel unzersetzt schmelzen und weisen im geschmolzenen Zustand eine geringe Viskosität auf.
Als Wachsbestandteil in derartigen Dispersionen sind grundsätzlich alle üblichen Wachse und wachsartigen Polymere geeignet, wie sie der Fachmann aus Ulimanns Encyclopedia of Industrial Chemistry, 5. ed. on CD-ROM, Wiley-VCH, Weinheim 1997, Kapitel Waxes, und der dort zitierten Literatur kennt.
Beispiele für geeignete Wachse bzw. wachsartige Polymere sind natürliche Wachse, z. B. tierische Wachse wie Bienenwachs und Wollwachs, Mineralwachse wie Ozokerit oder Ceresin, petrochemische Wachse wie Paraffinwachse, Petrolatum, Mikrowachse und Gatsch, weiterhin teilsynthetische Wachse wie Montanwachse und modifizierte Montanwachse, z. B. Montanesterwachs, Amidwachs, weiterhin Sasolwachse sowie synthetische Wachse wie Fischer-Tropsch-Wachse, Polyolefinwachse, insbesondere Polyethylenwachse, einschließlich wachsartige Copolymere auf Basis von Olefinen, Oxidatwachse, d. h. Oxidationsprodukte von Wachsen oder wachsartigen Polymeren, z. B. Oxidate von Fischer-Tropsch-Wachsen, Polyolefinwachsen, insbesondere von Polyethylenwachsen, einschließlich Oxidate von wachsartigen Copolymeren auf Basis von Olefinen und dergleichen.
Gemäß einer ersten bevorzugten Ausführungsform erfindungsgemäß verwendeter Wachsdispersionen weist der darin enthaltene Wachsbestandteil einen Schmelz- oder einen Erweichungspunkt von wenigstens 75 0C, vorzugsweise wenigstens 80 0C, häufig wenigstens 90 0C und insbesondere wenigstens 100 0C auf. Als Schmelzpunkte gelten hier und im Folgenden die gemäß DIN ISO 3841 mittels DSC bzw. aus der Abkühlungskurve ermittelten Werte. Gemäß einer zweiten Ausführungsform der Erfindung weist der in der Wachsdispersion enthaltene Wachsbestandteil einen Schmelzpunkt von unterhalb 75 βC, vorzugsweise im Bereich von 30 bis 70 0C und speziell im Bereich von 35 bis 60 0C auf.
Die Konzentration der Wachse bzw. der Wachsbestandteile in der wässrigen Dispersi- on liegt typischerweise im Bereich von 5 bis 50 Gew.-%, häufig 8 bis 40 Gew.-%, insbesondere 10 bis 35 Gew.-% und speziell im Bereich von 15 bis 30 Gew.-%, bezogen auf das Gesamtgewicht der Wachsdispersion.
In Wachsdispersionen liegen die Wachsbestandteile als disperse Phase, d. h. in Form feinster Partikel bzw. Tröpfchen vor. Gemäß einer bevorzugten Ausführungsform weisen diese Partikel einen mittleren Teilchendurchmesser unterhalb 500 nm, insbesondere unterhalb 300 nm, speziell unterhalb 200 nm und ganz besonders bevorzugt unterhalb 150 nm auf, insbesondere wenn der Wachsbestandteil einen Schmelzpunkt von wenigstens 80 °C aufweist. Grundsätzlich können jedoch auch Wachsdispersionen/- emulsionen mit größeren Teilchengrößen eingesetzt werden, z. B. bis 10 μm, z. B.
500 nm bis 10 μm, insbesondere wenn es sich um ein niedrigschmelzendes Wachs mit einer Schmelztemperatur unterhalb 75 9C handelt.
Die hier angegebenen Teilchengrößen sind gewichtsmittlere Teilchengrößen, wie sie durch dynamische Lichtstreuung ermittelt werden können. Verfahren hierzu sind dem Fachmann geläufig, beispielsweise aus H. Wiese in D. Distler, Wässrige Polymerdispersionen, Wiley-VCH 1999, Kapitel 4.2.1, S. 40ff und dort zitierte Literatur sowie H. Auweter, D. Hörn, J. Colloid Interf. Sei. 105 (1985) 399, D. Lüge, D. Hörn, Colloid Po- lym. Sei. 269 (1991) 704 oder H. Wiese, D. Hörn, J. Chem. Phys. 94 (1991) 6429.
Die Herstellung wässriger Wachsdispersionen ist im Prinzip bekannt und erfolgt durch Dispergieren des Wachs bzw. des wachsartigen Polymers in der wässrigen Phase unter Anwendung von starken Scherkräften und/oder Druck, vorteilhafterweise bei erhöhter Temperatur, z. B. bei Temperaturen von wenigstens 50 0C, bevorzugt bei Tempera- turen oberhalb 70 "C. Wachse mit einem hohen Schmelzpunkt werden insbesondere bei Temperaturen oberhalb 90 0C, z. B. im Bereich von 90 bis 200 0C und besonders bevorzugt im Bereich von 100 bis 160 °C dispergiert. Insbesondere erfolgt das Dispergieren der Wachskomponente, sofern sie unzersetzt schmilzt, bei Temperaturen oberhalb ihres Schmelzpunkts. Wässrige Dispersionen von Wachsen sind auch kommer- ziell erhältlich, beispielsweise unter den Handelsbezeichnungen Poligen® WE-Typen der BASF und AquaCer-Typen der Byk-Cera (hochschmelzende Wachstypen mit Schmelz- bzw. Erweichungspunkten oberhalb 80 °C).
In einer Ausführungsform enthalten die Wachspartikel der Wachsdispersion wenigs- tens einen Effektstoff und/oder einen Wirkstoff. In diesem Fall wird man den Wirkstoff bzw. den Effektstoff vorteilhafterweise zunächst in dem Wachs lösen oder gleichmäßig suspendieren und dann die so erhaltene Wachszubereitung in der wässrigen Phase bei den oben genannten Temperaturen dispergieren.
Der beim Dispergieren angewendete Druck liegt typischerweise oberhalb 1 bar und bewegt sich häufig im Bereich von 1 ,5 bis 40 und insbesondere im Bereich von 2 bis 20 bar.
Sofern die Wachskomponente Carbonsäuregruppen enthält, was erfindungsgemäß bevorzugt ist, erfolgt die Emulgierung vorteilhafterweise in Gegenwart einer Base. Vorteilhafterweise wird die Base in einer Menge eingesetzt, dass wenigstens 40 % und insbesondere wenigstens 80 % der im Wachs bzw. wachsartigen Polymeren vorhandenen Carbonsäuregruppen in neutralisierter Form vorliegen.
Als Basen kommen grundsätzlich Alkalimetallhydroxyde wie Natriumhydroxid oder Kaliumhydroxid, Erdalkalimetallhydroxide wie Kalziumhydroxid sowie Ammoniak und Amine in Betracht. Bei den Aminen handelt es sich vorteilhafterweise um Mono-, Dioder Trialkylamine mit vorzugsweise 1 bis 6 und insbesondere 1 bis 4 C-Atomen im Alkylrest, Mono-, Di- oder Trialkanolamine mit bevorzugt 2 bis 6 C-Atomen im Hydro- xyalkylrest, Monoalkyldialkanolamine und Dialkylmonoalkanolamine mit 1 bis 12 und insbesondere 1 bis 8 C-Atomen im Alkylrest und 2 bis 6 C-Atomen im Hydroxyalkylrest, weiterhin ethoxylierte Mono- und Dialkylamine mit vorzugsweise 1 bis 20 C-Atomen im Alkylrest und einem Ethoxylierungsgrad von vorzugsweise 2 bis 60 und insbesondere 3 bis 40. Bevorzugtes Hydroxyalkyl ist in diesem Zusammenhang Hydroxyethyl und 2-Hydroxypropyl. Bevorzugt sind solche Amine, die wenigstens eine Hydroxyalkyl- Gruppe und/oder eine Polyethylenoxid-Gruppe aufweisen. Beispiele für bevorzugte Amine sind Diethanolamin, Triethanolamin, 2-Amino-2-methylpropan-1-ol, Dimethyl- ethanolamin, Diethylethanolamin, Dimethylaminodiglykol, Diethylaminodiglykol sowie Diethylentriamin.
Zur Förderung der Emulgierung kann man außerdem Emulgatoren zusetzen. Die Emulgatoren können nichtionisch, kationisch oder anionisch sein, wobei anionische Emulgatoren und nichtionische Emulgatoren sowie Mischungen anionischer und nichtionischer Emulgatoren bevorzugt sind. Insbesondere bevorzugt sind nichtionische Emulgatoren und Mischungen nichtionischer Emulgatoren mit untergeordneten Mengen, in der Regel weniger als 40 Gew.-% und speziell weniger als 20 Gew.-%, bezogen auf die Emulgatormenge, anionischer Emulgatoren.
Zu den anionischen Emulgatoren gehören beispielsweise Carboxylate, insbesondere Alkali-, Erdalkali- und Ammoniumsalze von Fettsäuren, z. B. Kaliumstearat, die übli- cherweise auch als Seifen bezeichnet werden; Acylglutamate; Sarkosinate, z. B. Natri- umlauroylsarkosinat; Taurate; Methylcellulosen; Alkylphosphate, insbesondere Mono- und Diphosphorsäurealkylester; Sulfate, insbesondere Alkylsulfate und Alkylethersulfa- te; Sulfonate, weitere Alkyl- und Alkylarylsulfonate, insbesondere Alkali-, Erdalkali- und Ammoniumsalze von Arylsulfonsäuren sowie alkylsubstituierten Arylsulfonsäuren, Al- kylbenzolsulfonsäuren, wie beispielsweise Lignin- und Phenolsulfonsäure, Naphthalin- und Dibutylnaphthalinsulfonsäuren, oder Dodecylbenzolsulfonate, Alkylπaphthalinsul- fonate, Alkylmethylestersulfonate, Kondensationsprodukte von sulfoniertem Naphthalin und Derivaten davon mit Formaldehyd, Koπdensationsprodukte von Naphthalinsulfon- säuren, Phenol- und/oder Phenolsulfonsäuren mit Formaldehyd oder mit Formaldehyd und Harnstoff, Mono- oder Dialkylbemsteinsäureestersulfonate; sowie Eiweißhydroly- sate und Lignin-Sulfitablaugen. Die zuvor genannten Sulfonsäuren werden vorteilhafterweise in Form ihrer neutralen oder gegebenenfalls basischen Salze verwendet.
Zu den nichtionischen Emulgatoren gehören beispielsweise:
Fettalkoholalkoxylate und Oxoalkoholalkoxylate, insbesondere Ethoxylate und Propoxilate mit Alkoxylierungsgraden von üblicherweise 2 bis 100 und insbesondere 3 bis 50, z. B. Alkoxylate von C8-C30-Alkanolen oder Alk(adi)enolen, z. B. von iso-Tridecylalkohol, Laurylalkohol, Oleylalkohol oder Stearylalkohol sowie deren Ci-C4-Alkylether und d-C4-Alkylester z. B. deren Acetate, alkoxylierte tierische und/oder pflanzliche Fette und/oder Öle, beispielsweise Maisölethoxylate, Rizinusölethoxylate, Talgfettethoxylate mit Alkoxylierungsgraden von üblicherweise 2 bis 100 und insbesondere 3 bis 50, - Glycerinester, wie beispielsweise Glycerinmonostearat,
Fettsäureester polymerer Alkoxylate, insbesondere von Polyethylenoxiden mit Alkoxilierungsgranden von 3 bis 100 wie z. B. PEG 300-Oleat, -Stearat oder Laurat, als Mono- oder Diester, Copolymere Alkoxylate aus Ethylenoxid und/oder Propylenoxid, z. B. die Pluro- nic®-Marken der BASF,
Alkylphenolalkoxylate, wie beispielsweise ethoxyliertes iso-Octyl-, Octyl- oder Nonyl-phenol, Tributylphenol-polyoxyethylenether mit Alkoxylierungsgraden von üblicherweise 2 bis 100 und insbesondere 3 bis 50, Fettaminalkoxylate, Fettsäureamid- und Fettsäurediethanol-amidalkoxylate mit Alkoxylierungsgraden von üblicherweise 2 bis 100 und insbesondere 3 bis 50, insbesondere deren Ethoxylate,
Zuckertenside, Sorbitester, wie beispielsweise Sorbitanfettsäureester (Sorbitan- monooleat, Sorbitantristearat), Polyoxy-ethylensorbitanfettsäureester, Alkylpo- lyglycoside, N-Alkylgluconamide, - Alkylmethylsulfoxide, Alkyldimethylphosphinoxide, wie beispielsweise Tetradecyldimethylphosphinoxid.
Weitere Emulgatoren, die hier beispielhaft genannt werden sollen, sind Perfluoremul- gatoren, Silikonemulgatoren, Phospholipide, wie beispielsweise Lecithin oder chemisch modifizierte Lecithine, Aminosäureemulgatoren, z. B. N-Lauroylglutamat.
Sofern nicht angegeben, handelt es sich bei den Alkylketten der oben aufgeführten Emulgatoren um lineare oder verzweigte Reste mit üblicherweise 6 bis 30 und insbesondere 8 bis 20 Kohlenstoffatomen.
Bevorzugte nichtionische Emulgatoren sind insbesondere alkoxilierte und speziell ethoxilierte Alkanole mit 8 bis 20 C-Atomen, z. B. ethoxiliertes Nonanol, Isononanol, Decanol, 2-Propylheptanol, Tridecanol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Stearylalkohol, CWiβ-Fettalkoholgemische, wobei der Ethoxilierungsgrad typischerwei- se im Bereich von 5 bis 50 und insbesondere im Bereich von 6 bis 30 liegt.
Die Menge an Emulgator richtet sich in an sich bekannter Weise nach der Art des zu emulgierenden Wachses und wird in der Regel 15 Gew.-%, insbesondere 10 Gew.-% bezogen auf die wässrige Dispersion nicht überschreiten. Bei niedrigen Säurezahlen, insbesondere Säurezahlen unterhalb 100 mg KOH/g und speziell unterhalb 50 mg KOH/g, z. B. im Bereich von 5 bis 100 mg KOH/g und speziell 10 bis 50 mg KOH/g wird man typischerweise Emulgatoren in einer Menge 2 bis 15 Gew.-% und insbesondere 3 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der wässrigen Wachsdispersion bzw. von 5 bis 50 Gew.-%, insbesondere 10 bis 40 Gew.-%, bezogen auf die emul- gierte Wachskomponente einsetzen.
Sofern die Wachskomponente eine Säurezahl oberhalb 100 mg KOH/g aufweist, sind die Wachse häufig selbstemulgierend und der Emulgatoranteil liegt vorteilhafterweise unterhalb 3 Gew.-%, insbesondere unterhalb 1 Gew.-% und speziell unterhalb 0,5 Gew.-%, bezogen auf die emulgierte Wachskomponente.
Wie bereits erwähnt, handelt es sich bei der Wachskomponente der erfindungsgemäß verwendeten Dispersion, gemäß einer bevorzugten Ausführungsform um ein Wachs mit einem Schmelz- oder Erweichungspunkt von wenigstens 80 0C. Vorteilhafter weist ein derartiges Wachs polare funktionelle Gruppen, z. B. Carboxylgruppen, Hydroxylgruppen, Aldehydgruppen, Ketogruppen, Polyethergruppen oder dergleichen, auf, welche die Dispergierung des Wachses unterstützen. Insbesondere weist das Wachs neutralisierbare Carboxylgruppen auf. Vorteilhafterweise ist das Wachs durch eine Säurezahl von wenigstens 5 mg KOH/g und insbesondere im Bereich von 15 bis 250 mg KOH/g charakterisiert. Dementsprechend handelt es sich bei den Wachsbestandteilen der erfindungsgemäß zur Anwendung kommenden Wachs-Dispersionen vorteilhafterweise um Montanwachse, einschließlich chemisch modifizierter Montanwachse und Montanesterwachse, Amidwachse, und polare Polyolefinwachse.
Zu den polaren Polyolefiπwachsen zählen die Oxidationsprodukte von unpolaren Po- lyolefinwachsen, z. B. Oxidationsprodukte von Polyethylenwachsen oder von Polypropylenwachsen, die auch als Polyolefinoxidatwachse bezeichnet werden, Oxidate von Fischer-Tropsch-Wachsen sowie Copolymere von Olefinen, insbesondere von C2-C6- Olefinen wie Ethylen oder Propen mit Sauerstoffgruppen-tragenden Monomeren, z. B. monoethylenisch ungesättigten C3-C6-Monocarbonsäuren wie Acrylsäure oder Methac- rylsäure und gegebenenfalls Vinylestem aliphatischer C2-C10-Carbonsäuren wie Vinyl- acetat oder Vinylpropionat, Ester monoethylenisch ungesättigter Cs-Cβ-Monocarbonsäuren mit d-Ciβ-Alkanolen oder C5-Ci2-Cycloalkanolen, insbesondere Ester der Acrylsäure oder der Methacrylsäure wie Methylacrylat, Ethylacrylat, n-Propylacrylat, Isopropylacrylat, n-Butylacrylat, 2-Butylacrylat, tert.-Butylacrylat, n-Hexylacrylat, 2-Ethylhexylacrylat, 3-Propylheptylacrylat, Cyclopentylacrylat, Cyclohe- xylacrylat sowie die entsprechenden Ester der Methacrylsäure. Zu den polaren PoIy- olefinwachsen zählen weiterhin die Oxidationsprodukte der vorgenannten Olefin- Copolymere.
In einer bevorzugten Ausführungsform umfasst die Wachskomponente der erfindungsgemäß einzusetzenden wässrigen Dispersion zu wenigstens 50 Gew.-%, insbesondere zu wenigstens 80 Gew.-% und insbesondere zu wenigstens 90 Gew.-%, bezogen auf das Gesamtgewicht der in der Dispersion enthaltenen Wachsbestandteile, wenigstens ein polares Polyolefinwachs. Insbesondere ist das polare Polyolefinwachs ausgewählt unter polaren Olefin-Copolymeren und deren Oxidaten, wobei die Olefincopolymere im Wesentlichen aufgebaut sind aus:
a) 50 bis 99 Gew.-%, insbesondere 55 bis 95 Gew.-% und speziell 60 bis 90 Gew.- %, wenigstens eines C2-C6-Olefins, insbesondere Propen, Ethen oder deren Mischungen, speziell Ethen; b) 1 bis 50 Gew.-%, insbesondere 5 bis 40 Gew.-% und speziell 10 bis 30 Gew.-% wenigstens einer monoethylenisch ungesättigten C3-Cβ-Monocarbonsäure wie
Acrylsäure oder Methacrylsäure und/oder C4-Cβ-Dicarbonsäure, wie Maleinsäure, Fumarsäure, Itaconsäure oder einer Mischung davon, speziell Acrylsäure, Methacrylsäure und/oder Maleinsäure; und c) 0 bis 49 Gew.-%, z. B. 5 bis 49 Gew.-%, insbesondere 0 bis 40 Gew.-%, z. B. 5 bis 40 Gew.-% eines oder mehrerer monoethylenisch ungesättigter Monomere, die unter den Estern moπoethylenisch ungesättigter C3-Cβ-Monocarbonsäuren mit CrCi8-Alkanolen oder C5-Ci2-Cycloalkanolen, den Diestern moπoethyleπisch ungesättigten C4-C8-Dicarbonsäuren mit CrC18-Alkanolen oder Cs-C12-CyCIo- alkanolen, insbesondere den Estern der Acrylsäure oder der Methacrylsäure, mit CrCiβ-Alkanolen oder C5-C12-Cycloalkanolen, sowie unter Vinylestern aliphati- scher C2-C18-Carbonsäuren wie Vinylacetat oder Vinylpropionat ausgewählt sind.
Die hier angegebenen Monomeranteile sind jeweils auf das Gesamtgewicht der das polare Polyolefinwachs konstituierenden Monomere bezogen. Im Wesentlichen bedeu- tet hier, dass die Polymere zu wenigstens 95 Gew.-%, insbesondere zu wenigstens 99 Gew.-% und speziell ausschließlich aus den vorgenannten Monomeren a), b) und gegebenenfalls c) aufgebaut sind. Ein Fachmann weiß allerdings, dass derartige Polymere außer den Monomerkomponenten noch Bestandteile des Polymerisationskatalysators (Initiators) einpolymerisiert enthalten können.
Typischerweise weisen die polaren Polyolefinwachse ein massenmittleres Molekulargewicht im Bereich von 1000 bis 150000 Dalton, häufig im Bereich von 2000 bis 120000 Dalton auf. Im Falle unzersetzt schmelzender Wachse, bzw. wachsartiger Polymere mit niedrigem bis mittleren Molekulargewicht sind diese durch eine Schmelzvis- kosität bei 140 0C im Bereich von 100 bis 10000 mm2/sec (DFG Einheitsmethode
C-IV7 (68) bzw. bei nicht schmelzenden wachsartigen Polymeren durch einen minimalen Schmelzflussindex MFI von wenigstens 1 (bei 160 0C und 325 g Belastung nach DIN 53753) charakterisiert.
In einer weiteren bevorzugten Ausführungsform umfasst die Wachskomponente der erfindungsgemäß einzusetzenden wässrigen Dispersion zu wenigstens 50 Gew.-%, insbesondere zu wenigstens 80 Gew.-% und speziell zu wenigstens 90 Gew.-%, bezogen auf das Gesamtgewicht der in der Dispersion enthaltenen Wachsbestandteile, wenigstens ein Montanwachs, einschließlich chemisch modifizierter Montanwachse und Montanesterwachse.
In einer weiteren bevorzugten Ausführungsform umfasst die Wachskomponente der erfindungsgemäß einzusetzenden wässrigen Dispersion zu wenigstens 50 Gew.-%, insbesondere zu wenigstens 80 Gew.-% und speziell zu wenigstens 90 Gew.-%, bezo- gen auf das Gesamtgewicht der in der Dispersion enthaltenen Wachsbestandteile, wenigstens ein Amidwachs.
In einer weiteren bevorzugten Ausführungsform umfasst die Wachskomponente der erfinduπgsgemäß einzusetzenden wässrigen Dispersion zu wenigstens 50 Gew.-%, insbesondere zu wenigstens 80 Gew.-% und speziell zu wenigstens 90 Gew.-%, bezo- gen auf das Gesamtgewicht der in der Dispersion enthaltenen Wachsbestandteile, wenigstens ein Polyolefin-Oxidatwachs.
Die vorgenannten Wachsbestandteile sind aus dem Stand der Technik hinlänglich be- kannt, z. B. aus Ullmann's Encyclopedia of Industrial Chemistry, 5th ed. on CD-ROM, Wiley VCH, Weinheim 1997, Kapital Wachse, insbesondere Unterkapitel 3 „Montanwachse" und Unterkapitel 6 „Polyolefinwachse" sowie aus DE-A 3420168, DE-A 3512564 (Wachsartige Copolymere) sowie aus Kunststoffhaπdbuch Band 4, S. 161 ff., Karl-Hanser-Verlag, 1969 und dort zitierte Literatur, DE-A 2126725, DE 2035706, EP-A 28384, DE-OS 1495938, DE-OS 1520008, DE-OS 1570652, DE-OS 3112163, DE-OS 3720952, DE-OS 3720953, DE-OS 3238652 und WO 97/41158. Derartige Produkte sind auch kommerziell erhältlich, beispielsweise unter den Handelsbezeichnungen Luwax® OA-Typen oder Luwax® EAS-Typen der BASF, Licowax PED der Clariant, AC3... und AC6... Typen der Fa. Honeywell sowie die AC5... Typen der Fa. Honeywell.
Wie bereits erwähnt, können die Wachspartikel der Dispersion auch Wirk- oder Effektstoffe enthalten, welche dem Holz, neben seinen natürlichen Eigenschaften und der durch das Wachs erreichten Hydrophobierung, zusätzliche Eigenschaften wie Farbe, verbesserte Witterungsstabilität oder Stabilität gegen einen Befall mit Schadorganismen verleihen. Bei den Wirk- oder Effektstoffen handelt es sich typischerweise um organische niedermolekulare Verbindungen mit Molekulargewichten unterhalb 1000 DaI- ton und typischerweise unterhalb 500 Dalton oder um anorganische Salze oder Oxide von Übergangsmetallen. Zu den Effektstoffen zählen Farbmittel wie Pigmente und Farbstoffe, sowie Antioxidantien und UV-Stabilisatoren.
Geeignete Pigmente umfassen sowohl organische Pigmente als auch anorganische Pigmente.
Beispiele für Farbmittel sind:
organische Pigmente, wie sie beispielsweise in WO 2004/035277 genannt werden, z. B.: Monoazopigmente wie Cl. Pigment Brown 25, Cl. Pigment Orange 5, 13, 36, 38, 64 und 67; Cl. Pigment Red 1, 2, 3, 4, 5, 8, 9, 12, 17, 22, 23, 31, 48:1, 48:2,
48:3, 48:4, 49, 49:1 , 51:1, 52:1, 52:2, 53, 53:1 , 53:3, 57:1, 58:2, 58:4, 63, 112, 146, 148, 170, 175, 184, 185, 187, 191:1 , 208, 210, 245, 247 und 251; Cl. Pigment Yellow 1, 3, 62, 65, 73, 74, 97, 120, 151 , 154, 168, 181, 183 und 191 ; Cl. Pigment Violet 32; Disazopigmente wie Cl. Pigment Orange 16, 34, 44 und 72; Cl. Pigment Red 144, 166, 214, 220, 221 und 242; Cl. Pigment Yellow 12, 13, 14, 16, 17, 81, 83,
106, 113, 126, 127, 155, 174, 176, 180 und 188;
Disazokondensationspigmente wie Cl. Pigment Yellow 93, 95 und 128;'C.I.
Pigment Red 144, 166, 214, 220, 242 und 262; Cl. Pigment Brown 23 und 41 ; Anthanthronpigmente wie Cl. Pigment Red 168;
Anthrachinonpigmente wie Cl. Pigment Yellow 147, 177 und 199; Cl. Pigment
Violet 31;
Anthrapyrimidinpigmente wie Cl. Pigment Yellow 108;
Chinacridonpigmente wie Cl. Pigment Orange 48 und 49; Cl. Pigment Red 122, 202, 206 und 209; Cl. Pigment Violet 19;
Chinophthalonpigmente wie Cl. Pigment Yellow 138;
Diketopyrrolopyrrolpimgente wie Cl. Pigment Orange 71 , 73 und 81; Cl.
Pigment Red 254, 255, 264, 270 und 272;
Dioxazinpigmente wie Cl. Pigment Violet 23 und 37; Cl. Pigment Blue 80; Flavanthronpigmente wie Cl. Pigment Yellow 24; Indanthronpigmente wie Cl.
Pigment Blue 60 und 64;
Isoindolinpigmente wie Cl. Pigment Orange 61 und 69, Cl. Pigment Red 260,
Cl. Pigment Yellow 139 und 185;
Isoindolinonpigmente wie Cl. Pigment Yellow 109, 110 und 173; Isoviolanthronpigmente wie Cl. Pigment Violet 31 ;
Metallkomplexpigmente wie Cl. Pigment Red 257; Cl. Pigment Yellow 117, 129,
150, 153 und 177; Cl. Pigment Green 8;
Perinonpigmente wie Cl. Pigment Orange 43; Cl. Pigment Red 194;
Perylenpigmente wie Cl. Pigment Black 31 und 32; Cl. Pigment Red 123, 149, 178, 179, 190 und 224; Cl. Pigment Violet 29;
Phthalocyaninpigmente wie CI. Pigment Blue 15, 15:1 , 15:2, 15:3, 15:4, 15:6 und 16; Cl. Pigment Green 7 und 36;
Pyranthronpigmente wie Cl. Pigment Orange 51 ; Cl. Pigment Red 216;
Pyrazolochinazolonpigmente wie Cl. Pigment Orange 67; Cl. Pigment Red 251; Thioindigopigmente wie Cl. Pigment Red 88 und 181; Cl. Pigment Violet 38;
Triarylcarboniumpigmente wie Cl. Pigment Blue 1, 61 und 62; Cl. Pigment
Green 1 ; Cl. Pigment Red 81, 81:1 und 169; und Cl. Pigment Violet 1 , 2, 3 und
27; weiterhin Cl. Pigment Black 1 , (Anilinschwarz), Cl. Pigment Yellow 101
(Aldazingelb), Cl. Pigment Brown 22; und anorganische Farbpiαmente wie sie beispielsweise in WO 2004/035277 genannt werden, z. B.: Weißpigmente wie Titandioxid (Cl. Pigment White 6), Zinkweiß,
Farbenzinkoxid; Zinksulfid, Lithopone; Schwarzpigment wie Eisenoxidschwarz
(Cl. Pigment Black 11), Eisen-Mangan-Schwarz, Spinellschwarz (Cl. Pigment
Black 27); Ruß (Cl. Pigment Black 7) und Buntpigmente wie Chromoxid, Chromoxidhydratgrün; Chromgrün (Cl. Pigment Green 48); Cobaltgrün (Cl. Pigment Green 50), Ultramaringrün, Kobaltblau (Cl. Pigment Blue 28 und 36; Cl. Pigment Blue 72); Ultramarinblau; Manganblau, Ultramarinviolett; Kobalt- und Manganviolett, Eisenoxidrot (Cl. Pigment Red 101), Cadmiumsulfoselenid (Cl. Pigment Red 108), Cersulfid (Cl. Pigment Red 265); Molybdatrot (Cl. Pigment Red 104), Ultramarinrot, Eisenoxidbraun (Cl. Pigment Brown 6 und 7),
Mischbraun, Spinell- und Korundphasen (Cl. Pigment Brown 29, 31 , 33, 34, 35, 37, 39 und 40), Chromtitaπgelb (Cl. Pigment Brown 24), Chromorange, Cersulfid (Cl. Pigment Orange 75), Eisenoxidgelb (Cl. Pigment Yellow 42); Nickeltitangelb (Cl. Pigment Yellow 53; Cl. Pigment Yellow 157, 158, 159, 160, 161, 162, 163, 164 und 189); Chromtitangelb; Spinellphasen (Cl. Pigment Yellow 119);
Cadmiumsulfid und Cadmiumzinksulfid (Cl. Pigment Yellow 37 und 35); Chromgelb (Cl. Pigment Yellow 34); Bismutvanadat (Cl. Pigment Yellow 184). Farbstoffe: z. B. die in DE-A 10245209 beschriebenen Farbstoffe sowie die gemäß Colour-Index als Disperse-Farbstoffe und als Solvent-Farbstoffe bezeichne- ten Verbindungen, die auch als Dispersionsfarbstoffe bezeichnet werden. Eine
Zusammenstellung geeigneter Dispersionsfarbstoffe findet sich beispielsweise in Ullmanns Enzyklopädie der technischen Chemie, 4. Auflage, Bd. 10, S. 155-165 (siehe auch Bd. 7, S. 585ff - Anthrachinonfarbstoffe; Bd. 8, S. 244ff - Azofarbstof- fe; Bd. 9, S. 313ff - Chinophthalonfarbstoffe). Auf diese Literaturstelle und die darin genannten Verbindungen wird hiermit ausdrücklich Bezug genommen. Er- fiπduπgsgemäß geeignete Dispersionsfarbstoffe und Solvent-Farbstoffe umfassen verschiedenste Farbstoffklassen mit unterschiedlichen Chromophoren, beispielsweise Anthrachinonfarbstoffe, Monoazo- und Disazofarbstoffe, Chinophtha- lone, Methin- und Azamethinfarbstoffe, Naphthalimidfarbstoffe, Naphthochinon- farbstoffe und Nitrofarbstoffe. Beispiele für erfindungsgemäß geeignete Dispersionsfarbstoffe sind die Dispersionsfarbstoffe der folgenden Colour-Index Liste: Cl. Disperse Yellow 1 - 228, C. I. Disperse Orange 1 - 148, C I. Disperse Red 1 - 349, C I. Disperse Violet 1 - 97, C I. Disperse Blue 1 - 349, C I. Disperse Green 1 - 9, C. I. Disperse Brown 1 - 21 , C l. Disperse Black 1 - 36. Beispiele für erfindungsgemäß geeignete Solvent-Farbstoffe sind die Verbindungen der folgenden Colour-Index Liste: C. I. Solvent Yellow 2 - 191, C I. Solvent Orange 1 - 113, C I. Solvent Red 1 - 248, C. I. Solvent Violet 2 - 61, C. I. Solvent Blue 2 - 143, C I. Solvent Green 1 - 35, C I. Solvent Brown 1 - 63, C. I. Solvent Black 3 - 50. Erfindungsgemäß geeignete Farbstoffe sind weiterhin Derivate des Naphtha- lins, des Anthracens, des Perylens, des Terylens, des Quarterylens, sowie Dike- topyrrolopyrrolfarbstoffe, Perinonfarbstoffe, Cumarinfarbstoffe, Isoindolin- und Isoindolinonfarbstoffe, Porphyrinfarbstoffe, Phthalocyanin- und Naphthalocyanin- farbstoffe. Als Effektstoffe können auch UV-Absorber, Antioxidantien und/oder Stabilisatoren eingesetzt werden. Beispiele für UV-Absorber sind die Verbindungen der nachfolgend aufgeführten Gruppen a) bis g). Beispiele für Stabilisatoren sind die nachfolgend aufgeführten Verbindungen der Gruppen i) bis q).
a) 4,4-Diarylbutadiene, b) Zimtsäureester, c) Benzotriazole, d) Hydroxybenzophenone, e) Diphenylcyanacrylate, f) Oxamide (Oxalsäurediamide), g) 2-Phenyl-1,3,5-triazine; h) Antioxidantien, i) sterisch gehinderte Amine, j) Metalldesaktivatoren, k) Phosphite und Phosphonite,
I) Hydroxylamine, m) Nitrone, n) Aminoxide, o) Benzofuranone und Indolinone, p) Thiosynergisten, und q) Peroxid-zerstörende Verbindungen.
Zur Gruppe a) der 4,4-Diarylbutadiene zählen beispielsweise Verbindungen der Formel A.
Figure imgf000023_0001
Die Verbindungen sind aus der EP-A-916 335 bekannt. Die Substituenten R10 und/oder R11 bedeuten bevorzugt d-C8-Alkyl und C5-C8-Cycloalkyl.
Zur Gruppe b) der Zimtsäureester zählen beispielsweise 4-Methoxyzimtsäure- isoamylester, 4-Methoxyzimtsäure-2-ethylhexylester, Methyl-α-methoxycarbonyl- cinnamat, Methyl-α-cyano-ß-methyl-p-methoxycinnamat, Butyl-α-cyano-ß-methyl-p- methoxy-cinnamat und Methyl-α-methoxycarbonyl-p-methoxycinnamat.
Zur Gruppe c) der Benzotriazole zählen beispielsweise 2-(2'-Hydroxyphenyl)- benzotriazole wie 2-(2'-Hydroxy-5'-methylphenyl)-benzotriazol, 2-(3',5'-Di-tert-butyl-21- hydroxyphenyl)benzotriazol, 2-(5I-tert-Butyl-2'-hydroxyphenyl)-benzotriazol, 2-(2'- Hydroxy-5'-(1 , 1 ,3,3-tetramethylbutyl)phenyl)benzotriazol, 2-(3',5l-Di-tert-butyl-21- hydroxyphenyl)-5-chlor-benzotriazol, 2-(3'-tert-Butyl-21-hydroxy-5'-methylphenyl)-5- chlor-benzotriazol, 2-(3'-sec-Butyl-5l-tert-butyl-2I-hydroxyphenyl)-benzotriazol, 2-(2'- Hydroxy-4'-octyloxyphenyl)-benzotriazol, 2-(3',5'-Di-tert-amyl-2'-hydroxyphenyl)- benzotriazol, 2-(31,5'-Bis-(α,α-dimethylbenzyl)-21-hydroxyphenyl)-benzotriazol, 2-(3'- tert-Butyl-2'-hydroxy-51-(2-octyloxycarbonylethyl)phenyl)-5-chlor-benzotriazol, 2-(3'-tert- Butyl-5'-[2-(2-ethylhexyloxy)-carbonylethyl]-2'-hydroxyphenyl)-5-chlor-benzotriazol, 2- (3'-tert-Butyl-21-hydroxy-5'-(2-methoxycarbonylethyl)phenyl)-5-chlor-benzotriazol, 2-(3'- tert-Butyl-21-hydroxy-5'-(2-methoxycarbonylethyl)phenyl)-benzotriazol, 2-(3'-tert-Butyl- 2'-hydroxy-5'-(2-octyloxycarbonylethyl)phenyl)-benzotriazol, 2-(3'-tert-Butyl-5'-[2-(2- ethylhexyloxy)carbonylethyl]-2'-hydroxyphenyl)-benzotriazol, 2-(3'-Dodecyl-2'-hydroxy- 51-methylphenyl)-benzotriazol und 2-(3'-tert-Butyl-2'-hydroxy-5l-(2-isooctyloxy- carbonylethyl)-phenylbenzotriazol, 2,2'-Methylen-bis[4-(1 , 1 ,3,3-tetrametrιylbutyl)-6- benzotriazol-2-yl-phenol]; das Produkt der Veresterung von 2-[3'-tert-Butyl-5'-(2- methoxycarbonylethyl)-2'-hydroxyphenyl]-2H-benzotriazol mit Polyethylenglycol 300; [R-CH2CH2-COO(CH2)3]2, mit R = 31-tert-Butyl-4'-hydroxy-5'-2H-benzotriazol-2-yl- phenyl und Gemische davon.
Zur Gruppe d) der Hydroxybenzophenone zählen beispielsweise 2-Hydroxybenzophenone wie 2-Hydroxy-4-methoxybenzophenon, 2,2'-Dihydroxy-4- methoxybenzophenon, 2,4-Dihydroxybenzophenon, 2,2',4,4'-Tetra- hydroxybenzophenon, 2,2'-Dihydroxy-4,4'-dimethoxybenzophenon, 2,2'-Dihydroxy-4,4'- dimethoxybenzophenon, 2-Hydroxy-4-(2-ethylhexyloxy)benzophenon, 2-Hydroxy-4-(n- octyloxy)benzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2-Hydroxy-3- carboxybenzophenon, 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und deren Natriumsalz, 2,2'-Dihydroxy-4,4'-dimethoxybenzophenon-5,5'-bissulfonsäure und deren Natriumsalz.
Zur Gruppe e) der Diphenylcyanacrylate zählen beispielsweise Ethyl-2-cyan-3,3- diphenylacrylat, das beispielsweise im Handel unter dem Namen Uvinul® 3035 der Fa. BASF AG, Ludwigshafen erhältlich ist, 2-Ethylhexyl-2-cyan-3,3-diphenylacrylat, das beispielsweise im Handel als Uvinul® 3039 der Fa. BASF AG, Ludwigshafen, erhältlich ist und 1 ,3-Bis-[(2'-cyano-3I,3l-diphenylacryloyl)oxy]-2,2-bis{[2'-cyano-3',3I-diphenyl- acryloyl)oxy]methyl}propan, das beispielsweise im Handel unter dem Namen Uvinul® 3030 der Fa. BASF AG, Ludwigshafen erhältlich ist.
Zur Gruppe f) der Oxamide zählen beispielsweise 4,4'-Dioctyloxyoxanilid, 2,2'-Di- ethoxyoxanilid, 2,2'-Dioctyloxy-5,5'-di-(tert-butyl)oxanilid, 2,2'-Didodecyloxy-5,5'-di-(tert- butyl)oxanilid, 2-Ethoxy-2'-ethyloxanilid, N,N'-Bis(3-dimethylaminopropyl)oxamid, 2- Ethoxy-5-tert-butyl-2'-ethyl)oxanilid und dessen Mischung mit 2-Ethoxy-2'-ethyl-5,4'-di- (tert-butyl)oxanilid sowie Mischungen von Ortho-, para-Methoxy-disubstituierten Oxani- liden und Mischungen von ortho- und para-Ethoxy disubstituierten Oxaniliden.
Zur Gruppe g) der 2-Phenyl-1,3,5-triazine zählen beispielsweise 2-(2-Hydroxyphenyl)- 1 ,3,5-triazine wie 2,4,6-Tris(2-hydroxy-4-octyloxyphenyl)-1 ,3,5-triazin, 2-(2-Hydroxy-4- octyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1 ,3,5-triazin, 2-(2,4-Dihydroxypheπyl)-4,6- bis(2,4-dimethylphenyl)-1,3,5-triazin, 2,4-Bis(2-hydroxy-4-propyloxyphenyl)-6-(2,4- dimethylphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-octyloxyphenyl)~4,6-bis(4-methylphenyl)- 1 ,3,5-triazin, 2-(2-Hydroxy-4-dodecyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1 ,3,5- triazin, 2-(2-Hydroxy-4-tridecyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2- [2-Hydroxy-4-(2-hydroxy-3-butyloxy-propoxy)-phenyl]-4,6-bis(2,4-dimethylphenyl)- 1 ,3,5-triazin, 2-[2-Hydroxy-4-(2-hydroxy-3-octyloxy-propoxy)phenyl]-4,6-bis(2,4- dimethylphenyl)- 1 ,3,5-triazin, 2-[4-(Dodecyloxy/tridecyloxy-2-hydroxypropoxy)-2- hydroxy-phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2-[2-Hydroxy-4-(2-hydroxy-3- dodecyloxy-propoxy)phenyl]-4,6-bis-(2,4-dimethylphenyl)-1 ,3,5-triazin, 2-(2-Hydroxy-4- hexyloxyphenyl)-4,6-diphenyl-1,3,5-triazin, 2-(2-Hydroxy-4-methoxyphenyl)-4,6- diphenyl-1,3,5-triazin, 2,4,6-Tris[2-hydroxy-4-(3-butoxy-2-hydroxy-propoxy)phenyl]- 1 ,3,5-triazin und 2-(2-Hydroxyphenyl)-4-(4-methoxyphenyl)-6-phenyl-1 ,3,5-triazin.
Die Gruppe h) der Antioxidantien umfasst beispielsweise:
Alkylierte Monophenole wie beispielsweise 2,6-Di-tert-butyl-4-methylphenol, 2-tert- Butyl-4,6-dimethylphenol, 2,6-Di-tert-butyl-4-ethylphenol, 2,6-Di-tert-butyl-4-n- butylphenol, 2,6-Di-tert-butyl-4-isobutylphenol, 2,6-Dicyclopentyl-4-methylphenol, 2-(α- Methylcyclohexyl)-4,6-dimethylphenol, 2,6-Dioctadecyl-4-methylphenol, 2,4,6-
Tricyclohexylphenol, 2,6-Di-tert-butyl-4-methoxymethylphenol, unverzweigte oder in der Seitenkette verzweigte Nonylphenole wie beispielsweise 2,6-Di-nonyl-4- methylphenol, 2,4-Dimethyl-6-(1-methylundec-1-yl)-phenol, 2,4-Dimethyl-6-(1- methylheptadec-1-yl)-phenol, 2,4-Dimethyl-6-(1-methyltridec-1-yl-)phenol und Gemi- sehe davon.
Alkylthiomethylphenole wie zum Beispiel 2,4-Dioctylthiomethyl-6-tert-butylphenol, 2,4-Dioctylthiomethyl-6-methylphenol, 2,4-Dioctylthiomethyl-6-ethylphenol, 2,6-Didodecylthiomethyl-4-nonylphenol.
Hydrochinone und alkylierte Hydrochinone wie zum Beispiel 2,6-Di-tert-butyl-4- methoxyphenol, 2,5-Di-tert-butylhydrochinon, 2,5-Di-tert-amylhydrochinon, 2,6-Diphenyl-4-octadecyloxyphenol, 2,6-Di-tert-butylhydrochinon, 2,5-Di-tert-butyl-4- hydroxyanisol, 3,5-Di-tert-butyl-4-hydroxyanisol, 3,5-Di-tert-butyl-4- hydroxyphenylstearat, Bis-(3,5-di-tert-butyl-4-hydroxyphenyl)adipat. Tocopherole, wie zum Beispiel α-Tocopherol, ß-Tocopherol, γ-Tocopherol, δ-Tocopherol und Gemische davon (Vitamin E).
Hydroxylierte Thiodiphenylether wie zum Beispiel 2,2'-Thio-bis(6-tert-butyl-4- methylphenol), 2,2'-Thio-bis(4-octylphenol), 4,41-Thio-bis(6-tert-butyl-3-methylphenol), 4,4'-Thio-bis(6-tert-butyl-2-methylphenol), 4,4'-Thio-bis-(3,6-di-sec-amylphenol), 4,4'- Bis(2,6-dimethyl-4-hydroxyphenyl)disulfid.
Alkyliden-Bisphenole wie zum Beispiel 2,2'-Methylen-bis(6-tert-butyl-4-methylphenol), 2,2'-Methylen-bis(6-tert-butyl-4-ethylphenol), 2,2'-Methylen-bis[4-methyl-6-(α- methylcyclohexyl)-phenol], 2,2'-Methylen-bis(4-methyl-6-cyclohexylphenol), 2,2'- Methylen-bis(6-nonyl-4-methylphenol), 2,2'-Methylen-bis(4,6-di-tert-butylphenol), 2,2'- Ethyliden-bis(4,6-di-tert-butylphenol), 2,2'-Ethyliden-bis(6-tert-butyl-4-isobutylphenol), 2,2'-Methylen-bis[6-(α-methylbenzyl)-4-nonylphenol], 2,2'-Methylen-bis[6-(α,α- dimethylbenzyl)-4-nonylphenol], 4,4'-Methylen-bis(2,6-di-tert-butylphenol), 4,4'- Methylen-bis(6-tert-butyl-2-methylphenol), 1 , 1 -Bis(5-tert-butyl-4-hydroxy-2- methylphenyl)-butan, 2,6-Bis(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol, 1 , 1 ,3-Tris(5-tert-butyl-4-hydroxy-2-methylphenyl)butan, 1 , 1 -Bis(5-tert-butyl-4-hydroxy- 2-methyl-phenyl)-3-n-dodecylmercaptobutan, Ethylenglycol-bis-[3,3-bis(3-tert-butyl-4- hydroxyphenyl)butyrat], Bis(3-tert-butyl-4-hydroxy-5-methyl-phenyl)dicyclopentadien, Bis[2-(3'-tert-butyl-2-hydroxy-5- methylbenzyl)-6-tert-butyl-4-methylphenyl]terephthalat, 1 ,1-Bis-(3, 5-dimethyl-2-hydroxyphenyl)butan, 2,2-Bis-(3,5-di-tert-butyl-4- hydroxyphenyl)propan, 2,2-Bis-(5-tert-butyl-4-hydroxy-2-methylphenyl)-4-n- dodecylmercaptobutan, 1 ,1 ,5,5-Tetra-(5-tert-butyl-4-hydroxy-2-methylphenyl)-pentan.
Benzylverbindungen wie zum Beispiel 3,5,3',5'-Tetra-tert-butyl-4,4'- dihydroxydibenzylether, Octadecyl-4-hydroxy-3,5-dirnethylbenzylmercaptoacetat, Tri- decyl^-hydroxy-S.δ-di-tert-butylbenzylmercaptoacetat, Tris(3,5-di-tert-butyl-4- hydroxybenzyl)amin, 1 ,3,5-Tri-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzol, Di-(3,5-Di-tert-butyl-4-hydroxybenzyl)sulfid, 3,5-Di-tert-butyl-4-hydroxybenzyl- mercapto-essigsäureisooctylester, Bis-(4-tert-butyl-3-hydroxy-2,6- dimethylbenzyl)dithiolterephthalat, 1,3,5-Tris-(3,5-di-tert-butyl-4-hydroxy- benzyl)isocyanurat, 1 ,3,5-Tris-(4-tert-butyl-3-hydroxy-2, 6-dimethylbenzyl)isocyanurat, 3,5-Di-tert-butyl-4-hydroxybenzyl-phosphorsäuredioctadecylester und 3,5-Di-tert-butyl- 4-hydroxybenzyl-phosphorsäuremoπoethylester, Calciumsalz.
Hydroxybenzylierte Malonate wie zum Beispiel Dioctadecyl-2,2-bis-(3,5-di-tert butyl-2- hydroxybenzyl)-malonat, Di-octadecyl-2-(3-tert-butyl-4-hydroxy-5-methylbenzyl)- malonat, Di-dodecylmercaptoethyl-2,2-bis-(3,5-di-tert-butyl-4-hydroxybenzyl)malonat, Bis[4-(1 ,1,3,3-tetramethylbutyl)phenyl]-2,2-bis(3,5-di-tert-butyl-4- hydroxybenzyl)malonat.
Hydroxybenzyl-Aromaten wie zum Beispiel 1,3,5-Tris-(3, 5-di-tert-butyl-4- hydroxybenzyl)-2,4,6-trimethylbenzol, 1 ,4-Bis(3,5-di-tert-butyl-4-hydroxybenzyl)- 2,3,5,6-tetramethylbenzol, 2,4,6-Tris(3,5-di-tert-butyl-4-hydroxybenzyl)phenol.
Triazinverbindungen wie zum Beispiel 2,4-Bis(octylmercapto)-6-(3,5-di-tert-butyl-4- hydroxyanilino)-1,3,5-triazin, 2-Octylmercapto-4,6-bis(3,5-di-tert-butyl-4- hydroxyanilino)-1 ,3,5-triazin, 2-Octylmercapto-4,6-bis(3,5-di-tert-butyl-4- hydroxyphenoxy)-1 ,3,5-triazin, 2,4,6-Tris(3,5-di-tert-butyl-4-hydroxyphenoxy)-1 ,3,5- triazin, 1 ,3,5-Tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-isocyanurat, 1 ,3,5-Tris(4-tert-butyl- 3-hydroxy-2,6-dimethylbenzyl)-isocyanurat, 2,4,6-Tris(3,5-di-tert-butyl-4- hydroxyphenylethyl)-1 ,3,5-triazin, 1 ,3,5-Tris(3,5-di-tert-butyl-4- hydroxyphenylpropionyl)-hexahydro-1 ,3,5-triazin, 1 ,3,5-Tris(3,5-dicyclohexyl-4- hydroxybenzyl)-isocyanurat.
Benzylphosphonate wie zum Beispiel Dimethyl-2,5-di-tert-butyl-4- hydroxybenzylphosphonat, Diethyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonat ((3,5- Bis(1 , 1-dimethylethyl)-4-hydroxyphenyl)methyl)lphosphonsäurediethylester), Dioctade- cyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonat, Dioctadecyl-5-tert-butyl-4-hydroxy-3- methylbenzylphosphonat, Calciumsalz des 3,5-Di-tert-butyl-4- hydroxybenzylphosphonsäure-monoethylesters.
Acylaminophenole wie zum Beispiel 4-Hydroxy-laurinsäureanilid,
4-Hydroxystearinsäureanilid, 2,4-Bis-octylmercapto-6-(3,5-tert-di-butyl-4- hydroxyanilino)-s-triazin und Octyl-N-(3,5-di-tert-butyl-4-hydroxyphenyl)-carbamat.
Ester der ß-(3,5-Di-tert-butyl-4-hydroxyphenyl)propionsäure mit ein- oder mehrwertigen Alkoholen wie z. B. mit Methanol, Ethanol, n-Octanol, i-Octanol, Octadecanol,
1 ,6-Hexandiol, 1,9-Noπandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thio- diethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris(hydroxyethyl)- isocyanurat, N,N'-Bis-(Hydroxyethyl)oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-1- phospha-2,6,7-trioxabicyclo[2.2.2]octan.
Ester der ß-(5-tert-Butyl-4-hydroxy-3-methylphenyl)propionsäure mit ein- oder mehrwertigen Alkoholen, wie z. B. mit Methanol, Ethanol, n-Octanol, i-Octanol, Octadecanol, 1 ,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thio- diethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris(hydroxyethyl)- isocyanurat, N,N'-Bis(hydroxyethyl)oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-1- phospha-2,6,7-trioxabicyclo[2.2.2] octan.
Ester der ß-(3,5-Dicyclohexyl-4-hydroxyphenyl)propionsäure mit ein- oder mehrwertigen Alkoholen wie z. B. mit Methanol, Ethanol, Octanol, Octadecanol, 1 ,6-Hexandiol, 1 ,9-Nonandiol, Ethylenglycol, 1,2-Propaπdiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris-(hydroxyethyl)-isocyanurat, N,N'-Bis(hydroxyethyl)-oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Tri- methylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-1-phospha-2,6,7-trioxabi- cyclo[2.2.2]octan.
Ester der 3,5-Di-tert-butyl-4-hydroxyphenylessigsäure mit ein- oder mehrwertigen Alkoholen, wie z. B. mit Methanol, Ethanol, Octanol, Octadecanol, 1 ,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris(hydroxyethyl)-isocyanurat, N,N'-Bis(hydroxyethyl)-oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Tri- methylhexanediol, Trimethylolpropan, 4-Hydroxymethyl-1 -phospha-2,6,7-trioxabi- cyclo[2.2.2]octan.
Amide der ß-(3, 5-Di-tert-butyl-4-hydroxyphenyl)propionsäure, wie z. B. N,N'-Bis(3,5-di- tert-butyl-4-hydroxyphenylpropionyl)-hexamethylendiamin, N,N'-Bis(3,5-di-tert-butyl-4- hydroxyphenylpropionyl)-trimethylendiamin, N,N'-Bis(3,5-di-tert-butyl-4- hydroxyphenylpropionyl)-hydrazin, N,N'-Bis[2-(3-[3,5-di-tert-butyl-4-hydroxyphenyl]- propionyloxy)ethyl]-oxamid (z. B. Naugard®XL-1 der Firma Uniroyal).
Ascorbinsäure(Vitamin C)
Aminische Antioxidantien, wie zum Beispiel N,N'-Di-isopropyl-p-phenylendiamin, N.N'-Di-sec-butyl-p-phenylendiamin, N,N'-Bis(1,4-dimethylpentyl)-p-phenylendiamin, N,N'-Bis(1-ethyl-3-methylpentyl)-p-phenylendiamin, N,N'-Bis(1-methylheptyl)-p- phenylendiamin, N, N'-Dicyclohexyl-p-phenylendiamin, N, N'-Diphenyl-p- phenylendiamin, N,N'-Bis(2-naphthyl)-p-phenylendiamin, N-lsopropyl-N'-phenyl-p- phenylendiamin, N-( 1 , 3-Dimethylbutyl)-N'-phenyl-p-phenylendiamin, N-(1 -Methylheptyl)-N'-phenyl-p-phenylendiamin, N-Cyclohexyl-N'-phenyl-p- phenylendiamin, 4-(p-Toluolsulfamoyl)diphenylamin, N,N'-Dimethyl-N,N'-di-sec-butyl-p- phenylendiamin, Diphenylamin, N-Allyldiphenylamin, 4-lsopropoxydiphenylamin, N-Phenyl-1-naphthylamin, N-(4-tert-Octylphenyl)-1-naphthylamin, N-Phenyl-2- naphthylamin, octyliertes Diphenylamin, zum Beispiel p.p'-Di-tert-octyldiphenylamin, 4-n-Butylaminophenol, 4-Butyrylaminophenol, 4-Nonaπoylaminophenol, 4-Dodecanoylaminophenol1 4-Octadecanoylaminophenol, Bis-(4-methoxyphenyl)amin, 2,6-Di-tert-butyl-4-dimethylaminomethylphenol, 2,4'-Diamiπodiphenylmethan, 4,4-Diaminodiphenylmethan, N.N.N'.N'-Tetramethyl^^'-diaminodiphenylmethan, 1 ,2-Bis-[(2-methylphenyl)amino]ethan,1 ,2-Bis(phenylamino)-propan, (o-Tolyl)-biguanid, Bis[4-(1',3'-dimethylbutyl)phenyl]amin, tert-octyliertes N-Phenyl-1-naphthylamin, Gemisch aus mono- und dialkylierten tert-Butyl/tert-Octyldiphenylaminen, Gemisch aus mono- und dialkylierten Nonyldiphenylaminen, Gemisch aus mono- und dialkylierten Dodecyldiphenylaminen, Gemisch aus mono- und dialkylierten Isopropyl/Isohexyl- diphenylaminen, Gemisch aus mono- und dialkylierten tert-Butyldiphenylaminen, 2,3-Dihydro-3,3-dimethyl-4H-1,4-benzothiazin, Phenothiazin, Gemisch aus mono- und dialkylierten tert-Butyl/tert-Octyl-phenothiazinen, Gemisch aus mono- und dialkylierten tert-Octyl-phenothiazinen, N-Allylphenothiazin, N,N,N',N'-Tetraphenyl-1 ,4-diaminobut- 2-en, N,N-Bis-(2,2,6,6-tetramethyl-piperidin-4-yl-hexamethylendiamin, Bis-(2,2,6,6- tetramethylpiperidin-4-yl)-sebacat, 2,2,6,6-Tetramethylpiperidin-4-on, 2,2,6,6 Tetrame- thylpiperidin-4-ol, das Dimethylsuccinat-Polymer mit 4-Hydroxy-2,2,6,6-tetramethyl-1- piperidinethanol [CAS Nummer 65447-77-0], (beispielsweise Tinuvin® 622 der Fa. Ci- ba Specialty Chemicals, Inc.), Polymer auf Basis von 2,2,4,4-Tetramethyl-7-oxa-3,20- diaza-dispiro[5.1.11.2]-heeicosan-21-on und Epichlorhydrin [CAS-No.: 202483-55-4], beispielsweise (Hostavin®30 der Fa. Ciba Specialty Chemicals, Inc.).
Zur Gruppe i) der sterisch gehinderten Amine gehören zum Beispiel 4-Hydroxy-2, 2,6,6- tetramethylpiperidin, 1 -Allyl-4-hydroxy-2,2,6,6-tetramethylpiperidin, 1 -Benzyl-4- hydroxy-2,2,6,6-tetramethylpiperidin, Bis(2,2,6,6-tetramethyl-4-piperidyl)sebacat, Bis(2,2,6,6-tetramethyl-4-piperidyl)succinat, Bis(1 ,2,2,6,6-pentamethyl-4- piperidyl)sebacat, Bis(1-octyloxy-2, 2,6,6-tetramethyl-4-piperidyl)sebacat, Bis(1 ,2,2,6,6- pentamethyl-4-piperidyl)-n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonat (n-Butyl-3,5- di-tert-butyl-4-hydroxy-benzyl-malonsäure-bis(1,2,2,6,6-pentamethylpiperidyl)-ester), Kondensationsprodukt aus 1 -(2-Hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidin und Bernsteinsäure, lineare oder cyclische Kondensationsprodukte aus N,N1-Bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylendiamin und 4-tert-Octylamino- 2,6-dichlor-1 ,3,5-triazin, Tris(2,2,6,6-tetramethyl-4-piperidyl)-nitrilotriacetat, Tetra- kis(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butan-tetracarboxylat, 1,1 '-(1, 2-Ethandiyl)- bis(3,3,5,5-tetramethylpiperazinon), 4-Benzoyl-2,2,6,6-tetramethylpiperidin, 4-Stearyloxy-2,2,6,6-tetramethylpiperidin, Bis-(1,2,2,6,6-pentamethylpiperidyl)-2-n- butyl-2-(2-hydroxy-3,5-di-tert butylbenzyl)malonat, 3-n-Octyl-7,7,9,9-tetramethyl-1 ,3,8- triazaspiro [4.5]decan-2,4-dion, Bis-(1-octyloxy-2,2,6,6-tetramethylpiperidyl)-sebacat, Bis-(1-octyloxy-2,2,6,6-tetramethyl-piperidyl)-succinat, lineare oder cyclische Kondensationsprodukte von N,N'-Bis-(2,2,6,6-tetramethyl-4-piperidyl)hexamethylendiamin und 4-Morpholino-2,6-dichlor-1,3,5-triazin, Kondensationsprodukt von N,N'-Bis-(2,2,6,6- tetramethyl-4-piperidyl)hexarnethylendiamin und Ameisensäureester (CAS-Nr. 124172- 53-8, z. B. Uvinul® 4050H der Fa. BASF AG, Ludwigshafen), Kondensationsprodukt von 2-Chlor-4,6-bis(4-n-butylamino-2, 2,6,6-tetramethylpiperidyl)-1,3,5-triazin und 1 ,2- Bis(3-aminopropylamino)ethan, Kondensationsprodukt von 2-Chlor-4,6-di-(4-π- butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazin und 1, 2-Bis-(3- aminopropylamino)ethan, 8-Acetyl-3-dodecyl-7,7,9,9-tetramethyl-1 ,3,8- triazaspiro[4.5]decan-2,4-dion, 3-Dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolidin- 2,5-dion, 3-Dodecyl-1 -(1 ,2,2,6,6-peπtamethyl-4-piperidyl)pyrrolidin-2,5-dion, Gemisch von 4-Hexadecyloxy-und 4-Stearyloxy-2,2,6,6-tetramethylpiperidin, Kondensationsprodukt aus N,N'-Bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylendiamin und 4- Cyclohexylamino-2,6-dichlor-1 ,3,5-triazin, Kondensationsprodukt aus 1 ,2-Bis(3- aminopropylamino)ethan und 2,4,6-Trichlor-1,3,5-triazin sowie 4-Butylamino-2, 2,6,6- tetramethylpiperidin (CAS Reg. No. [136504-96-6]); N-(2,2,6,6-Tetramethyl-4- piperidyl)-n-dodecylsuccinimid, N-(1 ,2,2,6,6-Pentamethyl-4-piperidyl)-n- dodecylsuccinimid, 2-Undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxospiro[4, 5]decan, Reaktionsprodukt von 7,7,9,9-Tetramethyl-2-cycloundecyl-1 -oxa-3,8-diaza-4- oxospiro[4, 5]decan und Epichlorhydrin, 1 ,1-Bis(1 ,2,2,6,6-pentamethyl-4- piperidyloxycarbonyl)-2-(4-methoxyphenyl)ethen, N, N'-Bis-formyl-N,N'-bis(2, 2,6,6- tetramethyl-4-piperidyl)hexamethylendiamin, Diester der 4-Methoxy-methylen- malonsäure mit 1 , 2,2,6, 6-Pentamethyl-4-hydroxypiperidin, Poly[methylpropyl-3-oxo-4- (2,2,6,6-tetramethyl-4-piperidyl)]siloxan, Reaktionsprodukt aus Maleinsäureanhydrid-α- Olefin-copolymer und 2,2,6,6-Tetramethyl-4-aminopiperidin oder 1 ,2,2,6,6- Pentamethyl-4-aminopiperidin, Copolymere aus (partiell) N-piperidin-4-yl substituiertem Maleinsäureimid und einem Gemisch von α-Olefinen wie z. B. Uvinul® 5050H (BASF AG), 1-(2-Hydroxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidin, 1-(2-Hydroxy-2-methylpropoxy)-4-hexadecanoyloxy-2, 2,6,6-tetramethylpiperidin, das Reaktionsprodukt aus 1-Oxyl-4-hydroxy-2, 2,6,6-tetramethylpiperidin und einem Kohlenstoffrest von t-Amylalkohol, 1-(2-Hydroxy-2-methylpropoxy)-4-hydroxy-2,2,6,6- tetramethylpiperidin, 1-(2-Hydroxy-2-methylpropoxy)-4oxo-2, 2,6,6-tetramethylpiperidin, Bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl)sebacat, Bis(1-(2- hydroxy-2-methylpropoxy)-2, 2,6,6-tetramethylpiperidin-4-yl)adipat, Bis(1-(2-hydroxy-2- methylpropoxy)-2, 2,6,6-tetramethylpiperidin-4-yl)succinat, Bis(1 -(2-hydroxy-2- methylpropoxy)-2, 2,6,6-tetramethylpiperidin-4-yl)glutarat, 2,4-bis{N[1 -(2-hydroxy-2- methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl]-N-butylamino}-6-(2- hydroxyethylamino)-s-triazin, N,N'-Bis-formyl-N,N'-bis(1 ,2,2,6,6-pentamethyl-4- piperidyl)-hexamethylendiamin, Hexahydro-2,6-bis(2,2,6,6-tetramethyl-4-piperidyl)- IH^H.δH.δH^.Sa^a.δya.δa-hexaazacyclopentaldeflfluoren^.δ-dion (z. B. Uvinul® 4049 der Fa. BASF AG, Ludwigshafen), Poly[[6-[(1,1,3,3-tetramethylbutyl)amino]-1,3,5- triazin-2,4-diyl][(2,2,6,6-tetramethyl-4-piperidinyl)imino]1,6-hexandiyl[(2,2,6,6- tetramethyl-4-piperidinyl)imino]]) [CAS Nr. 71878-19-8], 1,3,5-Triazin-2,4,6-triamin, N,N,N',N-Tetrakis(4,6-di(butyl-(N-methyl-2,2,6,6-tetramethylpiperidin-4-yl)amino)triazin- 2-yl)-4,7-diazadecan-1 ,10-diamin (CAS Nr. 106990-43-6) (z. B. Chimassorb 119 der Fa. Ciba Specialty Chemicals, Inc.).
Zur Gruppe j) der Metalldesaktivatoren gehören zum Beispiel N,N'-Diphenyloxalsäure- diamid, N-Salicylal-N'-salicyloyl-hydrazin, N,N'-Bis(salicyloyl)hydrazin, N, N'-Bis(3,5-di- tert-butyl-4-hydroxyphenylpropionyl)hydrazin, 3-Salicyloylamino-1,2,4-triazol, Bis(benzyliden)-oxalyldihydrazid, Oxanilid, Isophthaloyldihydrazid, Sebacoylbisphenyl- hydrazid, N, N'-Diacetyladipinsäuredihydrazid, N,N'-Bis(salicyloyl)oxalsäuredihydrazid, N,N'-Bis(salicyloyl)thiopropionyldihydrazid.
Zur Gruppe k) der Phosphite und Phosphonite gehören zum Beispiel Triphenylpho- sphit, Diphenylalkylphosphite, Phenyldialkylphosphite, Tris(nonylphenyl)phosphit, Tri- laurylphosphit, Trioctadecylphosphit, Distearylpentaerythhtdiphosphit, Tris(2,4-di-tert- butylphenyl)phosphit, Diisodecylpentaerythritdiphosphit, Bis(2,4-di-tert- butylphenyl)pentaerythritdiphosphit, Bis(2,6-di-tert-butyl-4-methylphenyl)- pentaerythritdiphosphit, Diisodecylpentaerythritdiphosphit, Bis(2,4-di-tert-butyl-6- methylphenyO-pentaerythritdiphosphit, Bis(214,6-tris(tert-butylphenyl)pentaerythrit- diphosphit, Tristearylsorbittriphosphit, Tetrakis-(2,4-di-tert-butylphenyl)-4,4'- biphenyleπdiphosphonit, 6-lsooctyloxy-2,4,8,10-tetra-tert-butyl-dibenz[d,f][1 ,3,2]di- oxaphosphepin, 6-Fluor-2,4,8,10-tetra-tert-butyl-12-methyl-dibenz[d,g][1 ,3,2]di- oxaphosphocin, Bis(2,4-di-tert-butyl-6-methylphenyl)methylphosphit, Bis(2,4-di-tert- butyl-6-methylphenyl)ethylphosphit, 2,21,2"-Nitrilo[triethyl-tris(3,31, 5,5'-tetra-tert-butyl- 1 ,1'-biphenyl-2,2"-diyl)phosphit], 2-(Ethylhexyl)-(3,3',5,5'-tetra-tert-butyl-1,1'-biphenyl- 2,2'-diyl)phosphit .
Zur Gruppe I) der Hydroxylamine gehören zum Beispiel N, N-Dibenzylhydroxylamin, N, N-Diethylhydroxylamin, N,N-Dioctylhydroxylamin, N,N-Dilaurylhydroxylamin, N,N-Ditetradecylhydroxylamin, N.N-Dihexadecylhydroxylamin, N,N-Dioctadecyl- hydroxylamin, N-Hexadecyl-N-octadecylhydroxylamin, N-Heptadecyl-N-octa- decylhydroxylamin, N-Methyl-N-octadecylhydroxylamin und N, N-Dialkylhydroxylamin aus hydrierten Talgfettaminen.
Zur Gruppe m) der Nitrone gehören zum Beispiel N-Benzyl-α-phenylnitron, N-Ethyl-α- methylnitron, N-Octyl-α-heptylnitron, N-Lauryl-α-undecylnitron, N-Tetradecyl-α- tridecylnitron, N-Hexadecyl-α-pentadecylnitron, N-Octadecyl-α-heptadecylnitron, N-Hexadecyl-α-heptadecylnitron, N-Octadecyl-α-pentadecylnitron, N-Heptadecyl-α- heptadecylnitron, N-Octadecyl-α-hexadecylnitron, N-Methyl-α-heptadecylnitron und Nitrone, abgeleitet von N,N-Dialkylhydroxylaminen hergestellt aus hydrierten Talgfettaminen. Zur Gruppe n) der Aminoxide gehören zum Beispiel Aminoxidderivate wie sie in den U.S. Patenten Nr. 5,844,029 und 5,880,191 beschrieben sind, Didecylmethylaminoxid, Tridecylaminoxid, Tridodecylaminoxid und Trihexadecylaminoxid.
Zur Gruppe o) der Benzofuranone und Indolinone gehören zum Beispiel die in den US-Patenten 4,325,863; 4,338,244; 5,175,312; 5,216,052; 5,252,643; in der DE-A-4316611; in der DE-A-4316622; in der DE-A-4316876; in der EP-A-0589839 oder EP-A-0591102 beschriebenen oder 3-[4-(2-Acetoxyethoxy)phenyl]-5,7-di-tert- butyl-benzofuran-2(3H)-on, 5,7-Di-tert-butyl-3-[4-(2-stearoyloxyethoxy)phenyl]- benzofuran-2(3H)-on, 3,31-Bis[5,7-di-tert-butyl-3-(4-[2-hydroxyethoxy]phenyl)- benzofuran-2(3H)-on], 5,7-Di-tert-butyl-3-(4-ethoxyphenyl)-benzofuran-2(3H)-on, 3-(4- Acetoxy-3,5-dimethylphenyl)-5,7-di-tert-butyl-benzofuran-2(3H)-on, 3-(3,5-Dimethyl-4- pivaloyloxyphenyl)-5,7-di-tert-butyl-benzofuran-2(3H)-on, 3-(3,4-Dimethylphenyl)-5,7- di-tert-butyl-benzofuran-2(3H)-on, Irganoxs HP-136 der Firma Ciba Specialty Chemi- cals, und 3-(2,3-Dimethylphenyl)-5,7-di-tert-butyl-benzofuran-2(3H)-on.
Zur Gruppe p) der Thiosynergisten gehören zum Beispiel Dilaurylthiodipropionat oder Distearylthiodipropionat.
Zur Gruppe q) der peroxidzerstörende Verbindungen gehören zum Beispiel Ester der ß-Thiodipropionsäure, zum Beispiel der Lauryl-, Stearyl-, Myristyl- oder Tridecylester, Mercaptobenzimidazol oder das Zinksalz des 2-Mercaptobenzimidazols, Zinkdibutyl- dithiocarbamat, Dioctadecyldisulfid, Pentaerythrit-tetrakis(ß-dodecylmercapto)- propionat.
Die erfindungsgemäß einzusetzenden wässrigen Dispersionen können neben den Wachsbestandteilen auch einen oder mehrere Wirkstoffe enthalten, die geeignet sind Holz oder vergleichbare Lignocellulosematerialien vor einem Befall mit oder eine Zerstörung durch Schadorganismen zu schützen.
Beispiele für solche Schadorganismen sind
Holzverfärbende Pilze, z. B. Ascomyceten wie Ophiostoma sp. (z. B. Ophiostoma piceae, Ophiostoma piliferum), Ceratocystis sp. (z. B. Ceratocystis coerules- cens), Aureobasidium pullulans, Sclerophoma sp. (z. B. Sclerophoma pityophila);
Deuteromyceten wie Aspergillus sp. (z. B. Aspergillus niger), Cladosporium sp. (z. B. Cladosporium sphaerospermum), Penicillium sp. (z. B. Penicillium funiculo- sum), Trichoderma sp. (z. B. Trichoderma viride), Alternaria sp. (z. B. Alternaria altemata), Paecilomyces sp. (z. B. Paecilomyces variotii); Zygomyceten wie Mu- cor sp. (z. B. Mucor hiemalis); Holzzerstörende Pilze: Ascomyceten wie Chaetomium sp. (z. B. Chaetomium globosum), Humicola sp. (z. B. Humicola grisea), Petriella sp. (z. B. Petriella seti- fera), Trichurus sp. (z. B. Trichurus spiralis); Basidiomyceten wie Coniophora sp. (z. B. Coniophora puteana), Coriolus sp. (z. B. Coriolus versicolor), Gloeophyllum sp. (z. B. Gloeophyllum trabeum), Lentinus sp. (z. B. Lentinus lepideus), Pleuro- tus sp. (z. B. Pleurotus ostreatus), Poria sp. (z. B. Poria placenta, Poria vaillantii), Serpula sp. (z. B. Serpula lacrymans) und Tyromyces sp. (z. B. Tyromyces palus- tris), und
Holzzerstörende Insekten z. B. Cerambycidae wie Hylotrupes bajulus, Callidium violaceum; Lyctidae wie Lyctus linearis, Lyctus brunneus; Bostrichidae wie Dino- derus minutus; Anobiidae wie Anobium punctatum, Xestobium rufovillosum; Ly- mexylidae wie Lymexylon navale; Platypodidae wie Piatypus cylindrus; Oedeme- ridae wie Nacerda melanura; Formicidae wie Camponotus abdominalis, Lasius flavus, Lasius brunneus, Lasius fuliginosus;
Geeignet sind dementsprechend fungizide Wirkstoffe, Insektizidwirkstoffe und Bakterizide, insbesondere:
Fungizide aus den folgenden Gruppen:
• Dicarboximide wie Iprodion, Myclozolin, Procymidon, Vinclozolin;
• Acylalanine wie Benalaxyl, Metalaxyl, Ofurace, Oxadixyl;
• Aminderivate wie Aldimorph, Dodine, Dodemorph, Fenpropimorph, Fenpropidin, Guazatine, Iminoctadine, Spiroxamin, Tridemorph; • Anilinopyrimidine wie Pyrimethanil, Mepanipyrim oder Cyprodinil;
• Antibiotika wie Cycloheximid, Griseofulvin, Kasugamycin, Natamycin, Polyoxin und Streptomycin;
• Azole (Conazole) wie Azaconazol, Bitertanol, Bromoconazol, Cyproconazol, Dichlobutrazol, Difenoconazole, Diniconazol, Epoxiconazol, Fenbuconazol, FIu- quinconazol, Flusilazol, Flutriafol, Ketoconazol, Hexaconazol, Imazalil, Metcona- zol, Myclobutanil, Penconazol, Propiconazol, Prochloraz, Prothioconazol, Tebu- conazol, Tetraconazol, Triadimefon, Triadimenol, Triflumizol, Triticonazol;
• Dithiocarbamate: Ferbam, Nabam, Maneb, Mancozeb, Metam, Metiram, Propi- neb, Polycarbamat, Thiram, Ziram, Zineb; • Heterocylische Verbindungen wie Anilazin, Benomyl, Boscalid, Carbendazim,
Carboxin, Oxycarboxin, Cyazofamid, Dazomet, Dithianon, Famoxadon, Fenami- don, Fenarimol, Fuberidazol, Flutolanil, Furametpyr, Isoprothiolan, Mepronil, Nua- rimol, Probenazol, Proquinazid, Pyrifenox, Pyroquilon, Quinoxyfen, Silthiofam, Thiabendazol, Thifluzamid, Thiophanat-methyl, Tiadinil, Tricyclazol, Triforine; • Nitrophenylderivative wie Binapacryl, Dinocap, Dinobuton, Nitrophthal-isopropyl; • Phenylpyrrole wie Fenpiclonil sowie Fludioxonil;
• 2-Methoxybenzophenone, wie sie in EP-A 897904 durch die allgemeine Formel I beschrieben werden, z. B. Metrafenon;
• nicht klassifizierte Fungizide wie Acibenzolar-S-methyl, Benthiavalicarb, Carpropamid, Chlorothalonil, Cymoxanil, Diclomezin, Diclocymet, Diethofencarb,
Edifenphos, Ethaboxam, Fenhexamid, Fentin-Acetat, Fenoxanil, Ferimzone, Fluazinam, Fosetyl, Fosetyl-Aluminum, Iprovalicarb, Hexachlorobenzol, Metrafenon, Pencycuron, Propamocarb, Phthalide, Toloclofos-Methyl, Quintozene, Zoxamid; • Strobilurine, wie sie in der WO 03/075663 durch die allgemeine Formel I beschrieben werden, z.B.: Azoxystrobin, Dimoxystrobin, Fluoxastrobin, Kresoxim- methyl, Metominostrobin, Orysastrobin, Picoxystrobin, Pyraclostrobin und Triflo- xystrobin;
• Sulfensäurederivate wie Captafol, Captan, Dichlofluanid, Folpet, Tolylfluanid; • Zimtsäureamide und Analoga wie Dimethomorph, Flumetover, Flumorph;
• 6-Aryl-[1 ,2,4]triazolo[1 ,5-a]pyrimidine wie sie z.B. in WO 98/46608, WO 99/41255 oder WO 03/004465 jeweils durch die allgemeine Formel I beschrieben werden,;
• Amidfungizide wie Cyflufenamid sowie (Z)-N-[α-(Cyclopropylmethoxyimino)-2,3- difluor-6-(difluoromethoxy)benzyl]-2-phenylacetamid; • lodverbindungen wie Diiodmethyl-p-tolylsulfon, 3-lod-2-propinylalkohol,
4-Chlorphenyl-3-iodpropargylformal, 3-Brom-2,3-diiod-3-propenylethylcarbonat, 2,3,3-Triiodallylalkohol, 3-Brom-2,3-diiod-2-propenylalkohol, 3-lod-2-propinyl-n-butylcarbamat, 3-lod-2-propinyl-n-hexylcarbamat, 3-lod-2-propinylphenylcarbamat, 0-1-(6-lod-3-oxohex-5-inyl)butylcarbamat, O-1-(6-lod-3-oxohex-5-inyl)phenylcarbamat, Nopcocide;
• Phenolderivate wie Tribromphenol, Tetrachlorphenol, 3-Methyl-4-chlorphenol, Dichlorophen, O-Phenylphenol, m-Phenylphenol, 2-Benzyl-4-chlorphenol;
• Isothiazolinone wie N-Methylisothiazolin-3-on, 5-Chlor-N-methylisothiazolin-3-on, 4,5-Dichlor-N-octylisothiazolin-3-on, N-Octyl-isothiazolin-3-on;
• (Benz)isothiazolinone wie 1 ,2-Benzisothiazol-3(2H)on, 4,5-Dimethylisothiazol-3-on, 2-Octyl-2H-isothiazol-3-on;
• Pyridine wie 1-Hydroxy-2-pyridinthion (und ihre Na-, Fe-, Mn-, Zn-Salze), Tetrachlor-4-methylsulfonylpyridiπ; • Metallseifen wie Zinn-, Kupfer-, Zinknaphthenat, -octat, -2-ethylhexanoat, -oleat, -phosphat, -benzoat;
• Organozinnverbindungen, z. B. Tributyl(TBT)zinnverbindungen wie Tributylzinn und Tributyl(mononapthenoyloxy)zinnderivate;
• Dialkyldithiocarbamat und die Na- und Zn-Salze von Dialkyldithiocarbamaten, Tetramethylthioramdisulfid; • Nitrile wie 2,4,5,6-Tetrachlorisophthalodinitril;
• Benzthiazole wie 2-Mercaptobenzothiazol;
• Chinoline wie 8-Hydroxychiπolin und deren Cu-Salze;
• Tris-N-(cyclohexyldiazeniumdioxy)-aluminium, N-(Cyclohexyldiazeniumdioxy)- tributylzinn, Bis-N-(cyclohexyldiazeniumdioxy)-kupfer;
• 3-Benzo(b)thien-2-yl-5,6-dihydro-1 ,4,2-oxathiazin-4-oxid (Bethoxazin).
Insektizide aus den folgenden Gruppen:
• Organophosphate wie Azinphos-methyl, Azinphos-ethyl, Chlorpyrifos, Chlorpyri- fos-methyl, Chlorfenvinphos, Diazinon, Dimethylvinphos, Dioxabenzofos, Disulfo- ton, Ethion, EPN, Fenitrothion, Fenthion, Heptenophos, Isoxathion, Malathion, Methidathion, Methyl-Parathion, Paraoxon, Parathion, Phenthoate, Phosalone, Phosmet, Phorate, Phoxim, Pirimiphos-methyl, Profenofos, Prothiofos, Pri- miphos-ethyl, Pyraclofos, Pyridaphenthion, Sulprofos, Triazophos, Trichlorfon;
Tetrachlorvinphos, Vamidothion;
• Carbamate wie Alanycarb, Benfuracarb, Bendiocarb, Carbaryl, Carbofuran, Car- bosulfan, Fenoxycarb, Furathiocarb, Indoxacarb, Methiocarb, Pirimicarb, Propo- xur, Thiodicarb, Triazamate; • Pyrethroide wie Bifenthrin, Cyfluthrin, Cycloprothrin, Cypermethrin, Deltamethrin, Esfenvalerate, Ethofenprox, Fenpropathrin, Fenvalerate, Cyhalothrin, Lambda- Cyhalothrin, Permethrin, Silafluofen, Tau-Fluvalinate, Tefluthrin, Tralomethrin, al- pha-Cypermethrin;
• Arthropode Wachstumsregulatoren: a) Chitinsyntheseinhibitoren z.B. Benzoyl- harnstoffe wie Chlorfluazuron, Diflubenzuron, Flucycloxuron, Flufenoxuron, He- xaflumuron, Lufenuron, Novaluron, Teflubenzuron, Triflumuron; Buprofezin, Dio- fenolan, Hexythiazox, Etoxazole, Clofentazine; b) Ecdysone Antagonisten wie Halofenozid, Methoxyfenozid, Tebufenozid; c) Juvenoide wie Pyriproxyfen, Methoprene; d) Lipid-Biosyntheseinhibitoren wie Spirodiclofen; • Neonicotinoide wie Flonicamid, Clothianidin, Dinotefuran, Imidacloprid, Thia- methoxam, Nithiazin, Acetamiprid, Thiacloprid;
• Weitere unklassifizierte Insektizide wie Abamectin, Acequinocyl, Amitraz, Azadi- rachtin, Bifenazate, Cartap, Chlorfenapyr, Chlordimeform, Cyromazine, Dia- fenthiuron, Diofenolan, Emamectin, Endosulfan, Fenazaquin, Formetanate, For- metanate-Hydrochlorid, Hydramethylnon, Indoxacarb, Piperonylbutoxid, Pyrida- ben, Pymetrozine, Spinosad, Thiamethoxam, Thiocyclam, Pyridalyl, Fluacryprim, Milbemectin, Spirosmesifen, Flupyrazofos, NCS 12, Flubendiamid, Bistrifluron, Benclothiaz, Pyrafluprole, Pyriprole, Amidoflumet, Flufenerin, Cyflumetofen, Le- pimectin, Profluthrin, Dimefluthrin und Metaflumizone; und Bakterizide: z. B. Isothiazolone wie 1 ,2-Benzisothiazol-3(2H)-on (BIT), Mischungen von 5-Chlor-2-methyl-4-isothiazolin-3-on mit 2-Methyl-4-isothiazolin-3-on sowie 2-n-Octyl-4- isothiazolin-3-on (OIT), weiterhin Carbendazim, Chlorotoluron, 2,2-Dibrom-3- nitrilopropionamid (DBNPA)1 Fluometuron, 3-lod-2-propynylbutylcarbamat (IPBC), Isoproturon, Prometryn, Propiconazole;
Die Wachsdispersionen können den/die Wirkstoff(e) bzw. Effektstoffe, sofern vorhanden, in gelöster oder dispergierter Form enthalten oder vorzugsweise in den Partikeln der Wachskomponente.
Die Konzentration an Wirk- bzw. Effektstoff in der Wachsdispersion richtet sich in an sich bekannter Weise nach dem gewünschten Anwendungszweck und liegt typischerweise im Bereich von 0,01 bis 50 Gew.-%, insbesondere im Bereich von 0,1 bis 15 Gew.-%, bezogen auf die Wachskomponente bzw. im Bereich von 0,03 bis 5 Gew.- %, bezogen auf das Gesamtgewicht der Dispersion. Bei Farbmitteln liegt die Konzentration typischerweise im Bereich von 0,1 bis 10 Gew.-%, bezogen auf das Gewicht der Dispersion, bei Wirkstoffen typischerweise im Bereich von 0,01 bis 5 Gew.-%, bei UV- Stabilisatoren typischerweise im Bereich von 0,1 bis 5 Gew.-% und bei Antioxidantien typischerweise im Bereich von 0,1 bis 5 Gew.-%, bezogen auf das Gewicht der Disper- sion.
Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung enthält die wässri- ge Wachsdispersion neben dem Wachsbestandteil und gegebenenfalls den Wirk- und/oder Effektstoffen zusätzlich wenigstens eine vernetzbare Verbindung, so dass die Schritte a) und b) des erfindungsgemäßen Verfahrens gemeinsam durchgeführt werden können.
Bezüglich der Art der vernetzbaren Verbindung, der Art und Menge des Hydropho- biermittels, sowie der im Hydrophobiermittel enthaltenen sonstigen Bestandteile, eiπ- schließlich der zur Vernetzung eingesetzten Katalysatoren, gilt das zuvor Gesagte analog, insbesondere bezüglich der Bevorzugungen, sofern nichts anderes angegeben ist.
Sofern vorhanden, liegt die Konzentration der vemetzbaren Verbindungen in der wäss- rigen Wachsdispersion üblicherweise im Bereich von 5 bis 30 Gew.-%, häufig im Be- reich von 5 bis 20 Gew.-% und insbesondere im Bereich von 10 bis 20 Gew.-%, bezogen auf das Gesamtgewicht der Dispersion. Sofern die Dispersion einen der vorgenannten Alkohole enthält, liegt dessen Konzentration vorzugsweise im Bereich von 1 bis 10 Gew.-%, insbesondere im Bereich von 3 bis 8 Gew.-%. Sofern die wässrige Dispersion eine der vorgenannten vernetzbaren Verbindungen aufweist, enthält sie in der Regel einen Katalysator K, welcher die Vernetzung der Verbindung V, bzw. ihres Umsetzungsprodukts oder Präkondensats bewirkt. Den Katalysator K wird man üblicherweise der wässrigen Dispersion erst kurz vor dem Imprägnie- ren des Lignocellulosematerials zusetzen. Die Konzentration des Katalysators, bezogen auf das Gesamtgewicht der wässrigen Dispersion, liegt üblicherweise im Bereich von 0,1 bis 10 Gew.-% und insbesondere im Bereich von 0,5 bis 5 Gew.-%.
Das Imprägnieren des Lignocellulosematerials mit dem Hydrophobiermittel richtet sich in an sich bekannter Weise nach dem jeweils verwendeten Hydrophobiermittel. öle und flüssige Hydrophobiermittel werden vorzugsweise nach dem Rüpingverfahren oder dem Royalverfahren in das Lignocellulosematerial eingebracht.
Im Falle von wässrigen Zubereitungen des Hydrophobiermittels, insbesondere wässri- gen Wachsdispersionen gelingt das Imprägnieren in an sich hierfür üblicher Weise, z. B. durch Tauchen, durch kombinierte Anwendung von Vakuum mit Druck oder, insbesondere im Falle feinteiliger Lignocellulosematerialien auch durch konventionelle Auftraguπgsverfahren wie Streichen, Besprühen und dergleichen. Das jeweils angewendete Imprägnierverfahren hängt naturgemäß von den Abmessungen des zu im- prägnierenden Materials ab. Lignocellulosematerialien mit geringen Abmessungen wie Späne oder Strands sowie dünne Furniere, d. h. Materialien mit einem großen Verhältnis von Oberfläche zu Volumen, lassen sich mit geringem Aufwand, z. B. durch Tauchen oder Besprühen imprägnieren, wohingegen Lignocellulosematerialien mit größeren Abmessungen, insbesondere Materialien, deren geringste Ausdehnung mehr als 5 mm beträgt, z. B. Vollholz oder Formteile aus Vollholz, unter Anwendung von Druck, insbesondere durch kombinierte Anwendung von Druck und Vakuum imprägniert werden. Im Unterschied zum Stand der Technik ist die Anwendung erhöhter Temperatur grundsätzlich nicht erforderlich. Vorteilhafterweise wird das Imprägnieren bei einer Temperatur unterhalb 50 °C, z. B. im Bereich von 15 bis 50 0C durchgeführt.
Zum Tauchen wird das Lignocellulosematerial, gegebenenfalls nach einer Vortrocknung, in einen Behälter, welcher die wässrige Wachsdispersion enthält, getaucht. Das Tauchen erfolgt vorzugsweise über einen Zeitraum von wenigen Sekunden bis 24 h, insbesondere 1 min bis 6 h. Die Temperaturen liegen üblicherweise im Bereich von 15 0C bis 50 0C. Hierbei nimmt das Lignocellulosematerial die wässrige Wachsdispersion auf, wobei durch die Konzentration an den nicht-wässrigen Bestandteilen (d. h. Wachs, gegebenenfalls Wirk- und/oder Effektstoffe und gegebenenfalls härtbare Bestandteile) in der wässrigen Zusammensetzung, durch die Temperatur und die Behandlungsdauer die von dem Lignocellulosematerial aufgenommene Menge an diesen Bestandteilen gesteuert werden kann. Die tatsächlich aufgenommene Menge an Be- standteilen kann der Fachmann in einfacher Weise über die Gewichtszunahme des Lignocellulosematerials und die Konzentration der Bestandteile in der wässrigen Dispersion ermitteln und steuern. Furniere können beispielsweise mittels Pressrollen, sogenannte Kalander, die sich in der wässrigen Imprägnierzusammensetzung befinden, vorgepresst werden. Das beim Entspannen im Lignocellulosematerial auftretende Vakuum führt dann zu einer beschleunigten Aufnahme an wässriger Wachsdispersion.
Das Imprägnieren mit der Wachsdispersion erfolgt vorteilhafterweise durch kombinierte Anwendung von vermindertem und erhöhtem Druck. Hierzu wird das Lignocellulose- material, das in der Regel eine Feuchtigkeit im Bereich von 1 % bis 100 % aufweist, zunächst unter vermindertem Druck, der häufig im Bereich von 10 bis 500 mbar und insbesondere im Bereich von 40 bis 100 mbar liegt, mit der wässrigen Zusammensetzung in Kontakt gebracht, z. B. durch Tauchen in der wässrigen Zusammensetzung. Die Zeitdauer liegt üblicherweise im Bereich von 1 min bis 1 h. Hieran schließt sich eine Phase bei erhöhtem Druck, z. B. im Bereich von 2 bis 20 bar, insbesondere im Bereich von 4 bis 15 bar und speziell 5 bis 12 bar, an. Die Dauer dieser Phase liegt üblicherweise im Bereich von 1 min bis 12 h. Die Temperaturen liegen üblicherweise im Bereich von 15 bis 50 0C. Hierbei nimmt das Lignocellulosematerial die wässrige Wachsdispersion auf, wobei durch die Konzentration an den nicht-wässrigen Bestand- teilen (d. h. Wachs, gegebenenfalls Wirk- und/oder Effektstoffe und gegebenenfalls härtbare Bestandteile) in der wässrigen Zusammensetzung, durch den Druck, durch die Temperatur und die Behandlungsdauer die von dem Lignocellulosematerial aufgenommene Menge an diesen Bestandteilen gesteuert werden kann. Die tatsächlich aufgenommene Menge kann auch hier über die Gewichtszunahme des Lignocellulosema- terials berechnet werden.
Weiterhin kann das Imprägnieren durch konventionelle Verfahren zum Aufbringen von Flüssigkeiten auf Oberflächen erfolgen, z. B. durch Besprühen oder Rollen bzw. Streichen. Hierzu setzt man vorteilhafterweise ein Furnier mit einer Feuchtigkeit von nicht mehr als 50 %, insbesondere nicht mehr als 30 %, z.B. im Bereich von 12 % bis 30 % ein. Das Aufbringen erfolgt üblicherweise bei Temperaturen im Bereich von 15 bis 50 0C. Das Besprühen kann in üblicher weise in allen für das Besprühen von flächigen oder feinteiligen Körpern geeigneten Vorrichtungen vorgenommen werden, z. B. mittels Düsenanordnungen und dergleichen. Beim Streichen bzw. Rollen wird die gewünschte Menge an wässriger Zusammensetzung mit Rollen oder Pinseln auf das flächige Material aufgetragen.
Sofern die erfindungsgemäß verwendete wässrige Wachsdispersion eine vernetzbare Verbindung, wie oben beschrieben, enthält, kann dem Imprägnieren ein Trocknungs- und gegebenenfalls ein Härtungsschritt bei erhöhter Temperatur folgen. Grundsätzlich kann jedoch auch unmittelbar an das Imprägnieren eine Weiterverarbeitung des imprägnierten Materials erfolgen. Dies bietet sich insbesondere dann an, wenn es sich bei dem imprägnierten Lignocellulosematerial um ein feinteiliges Material, das mit Leim zu Formteilen wie OSB (oriented structural board) Platten, Spanplatten, Wafer-Boards, OSL-Platten und OSL-Formteile (Oriented-Strand-Lumber), PSL-Platten und PSL- Formteile (Parallel-Straπd-Lumber), Dämmplatten, mitteldichten (MDF) und hochdichten (HDF) Faserplatten, Wood-Plastic-Composites (WPC) und dergleichen weiterverarbeitet wird, oder um ein Furnier handelt, dass zu einem Furnierwerkstoff weiterverarbeitet wird.
Sofern ein Härtungsschritt durchgeführt wird, erfolgt er durch Erhitzen des imprägnierten Materials auf Temperaturen von wenigstens 80 0C, insbesondere oberhalb 90 0C, z. B. im Bereich von 90 bis 220 0C und insbesondere im Bereich von 100 bis 200 °C. Gegebenenfalls kann zuvor ein separater Trocknungsschritt durchgeführt werden. Hierbei werden die flüchtigen Bestandteile der wässrigen Zusammensetzung, insbesondere das Wasser und überschüssige organische Lösungsmittel, die in der Härtung/Vernetzung der Harnstoffverbindungen nicht reagieren, teilweise oder vollständig entfernt. Vortrocknung bedeutet in diesem Zusammenhang, dass das Lignocellulosematerial unter den Fasersättigungspunkt getrocknet wird, der je nach Art des Materials bei etwa 30 Gew.-% liegt. Diese Vortrocknung wirkt bei großformatigen Körpern, insbesondere bei Vollholz, der Gefahr einer Rissbildung entgegen. Bei kleinformatigen Materialien oder Furnieren, wird die Vortrocknung in der Regel entfallen. Bei Materialien mit größeren Abmessungen ist die Vortrocknung jedoch von Vorteil. Sofern eine separate Vortrocknung durchgeführt wird, erfolgt diese vorteilhafterweise bei Tempera- turen im Bereich von 20 bis 80 0C. In Abhängigkeit von der gewählten Trocknungstemperatur kann eine teilweise oder vollständige Härtung/Vernetzung der in der Zusammensetzung enthaltenen härtbaren Bestandteile erfolgen. Die kombinierte Vortrocknung/Härtung der imprägnierten Materialien erfolgt üblicherweise durch Anlegen eines Temperaturprofils, das von 50 °C bis 220 0C, insbesondere von 80 bis 200 °C reichen kann.
Häufig wird man jedoch Trocknen und Härten in einem Schritt durchführen. Die Härtung/Trocknung kann in einem konventionellen Frischluft-Abluft System durchgeführt werden. Vorzugsweise erfolgt die Vortrocknung in einer Weise, dass der Feuchtegehalt der imprägnierten Lignocellulosematerialien nach der Vortrocknung nicht mehr als 30 %, insbesondere nicht mehr als 20 %, bezogen auf die Trockenmasse, beträgt. Es kann von Vorteil sein, die Trocknung/Härtung bis zu einem Feuchtegehalt < 10 % und insbesondere < 5 %, bezogen auf die Trockenmasse, zu führen. Der Feuchtegehalt kann durch die Temperatur, die Dauer und den bei der Vortrocknung gewählten Druck in einfacher Weise gesteuert werden. Die erfindungsgemäß behandelten Lignocellulosematerialien können, wenn es sich nicht bereits um konfektionierte Endprodukte handelt, in an sich bekannter Weise weiterverarbeitet werden, im Falle feinteiliger Materialen z. B. zu Formkörpern wie OSB (oriented structural board) Platten, Spanplatten, Wafer-Boards, OSL-Platten und OSL- Formteile (Oriented-Strand-Lumber), PSL-Platten und PSL-Formteile (Parallel-Strand- Lumber), Dämmplatten, mitteldichten (MDF) und hochdichten (HDF) Faserplatten, Wood-Plastic-Composites (WPC) und dergleichen, im Falle von Furnieren zu Furnierwerkstoffen wie furnierte Faserplatten, furnierte Tischlerplatten, furnierte Spanplatten einschließlich furnierte OSL- und PSL-Platten (oriented bzw. parallel Strand lumber), Sperrholz, Leimholz, Lagenholz, Furnierschichtholz (z. B. Kerto-Schichtholz), Multiplex- Platten, laminierte Furnierwerkstoffe (Laminated Veneer Lumber LVL), dekorative Furnierwerkstoffe wie Verkleidungs-, Decken- und Fertig parkett-Paneele aber auch nichtflächige, 3-dimensional geformte Bauteile wie Lagenholzformteile, Sperrholzformteile und andere beliebige, mit wenigstens einer Furnierlage beschichtete Formteile. Die Weiterverarbeitung kann unmittelbar im Anschluss an das Imprägnieren mit dem Hydrophobiermittel, oder, wenn die Härtung im Anschluss an die Behandlung mit dem Hydrophobiermittel erfolgt, während oder im Anschluss an das Härten erfolgen. Im Falle von imprägnierten Furnieren wird man vorteilhafterweise die Weiterverarbeitung vor dem Härtungsschritt oder zusammen mit dem Härtungsschritt durchführen. Bei Formkörpern aus feinteiligen Materialien wird umfasst der Formgebungsschritt und Härtungsschritt gleichzeitig durchgeführt.
Sofern es sich bei dem erfindungsgemäß erhältlichen Lignocellulosematerial um VoII- holz oder einen konfektionierten Holzwerkstoff handelt, kann dieser vor oder nach dem Hydrophobieren in üblicher Weise bearbeitet werden, z. B. durch Sägen, Hobeln, Schleifen, Beschichten etc. Erfindungsgemäß imprägniertes und gehärtetes Vollholz eignet sich insbesondere zur Herstellung von Gegenständen, die Feuchtigkeit und insbesondere Witterungseinflüssen ausgesetzt sind, z. B. für Bauholz, Balken, Bauele- mente aus Holz, für Holzbalkone, Dachschindeln, Zäune, Holzmasten, Bahnschwellen, im Schiffsbau für den Innenausbau und Decksaufbauten.
Die folgenden Beispiele dienen der Erläuterung der Erfindung und sind nicht einschränkend zu verstehen.
Beispiel 1 : Druckloses Imprägnieren mit gefärbter Wachsdispersion mit Vernetzer
Man stellte eine Wachsdispersion durch Emulgieren von 21 ,7 Gew.-Teilen eines mit Sudan-Blau 670 gefärbten Montanwachs/Emulgator-Gemischs (Schmelzpunkt des Wachses ca. 78-83 0C, 1 Gew.-% Farbstoff, bezogen auf Wachs, Alkylethoxilat als Emulgator) in 78,3 Gew.-Teilen Wasser bei 95 °C her. 50 Gew.-Teile der so erhaltenen Wachsdispersion wurden mit 30 Gew.-Teilen einer konzentrierten wässrigen Zusammensetzung von N,N-Bis(hydroxymethyl)-4,5-bishydroxyimidazolin-2-on (Fixapret CP der BASF), 1,5 Gew.-Teilen MgCI2 x 6H2O und 17,5 Gew.-Teilen Wasser versetzt.
Die zu untersuchenden Kiefernholzwürfel wurden vor dem Imprägnieren an den Stirnseiten mit einem 2-K-Lack versiegelt, 16 h bei 1030C im Trockenschrank gelagert und anschließend in einem Exsikkator über Trockenmittel abgekühlt, vor der Untersuchung wurden das Gewicht und die Abmessung der Holzwürfel bestimmt.
In einem druckfesten Gefäß wurde jeweils ein so vorbereiteter Holzwürfel mit einem Gewicht beschwert und in oben beschriebene Wachsemulsion getaucht. Anschließend wurde innerhalb 10 min. der Druck auf 60 mbar absolut abgesenkt und anschließend das Vakuum 1 h beibehalten. Dann entspannte man auf Normaldruck und beließ die Holzwürfel weitere 4 h in der Wachsemulsion. Die nassen Holzstücke wurden in einen Bratenschlauch gegeben. Dieser wurde verschlossen und mit einem kleinen Loch versehen und anschließend 36 h bei 120 °C in einem Trockenschrank gelagert. Anschließend ließ man die Holzwürfel in einem Exsikkator über Trockenmittel abkühlen und bestimmte erneut das Gewicht und die Abmessung. Die Gewichtsveränderung betrug 15,6 %. Die Größenänderung bzgl. der Breite lag bei 0,8 %, bzgl. der Höhe bei 0,1 %. Beim Aufsägen des Würfels zeigte sich ein deutliches Eindringen der blauen Farbe in das Würfelinnere.
Beispiel 2: Imprägnieren unter Druck
Es wurde die in Beispiel 1 beschriebene Wachsdispersion untersucht. Die Vorbereitung der Holzklötzchen erfolgte wie in Beispiel 1 beschrieben.
In einem druckfesten Gefäß wurde ein vorbereiteter Kiefernholzwürfel mit einem Ge- wicht beschwert und in oben beschriebene Wachsemulsion getaucht. Anschließend wurde innerhalb 10 min. der Druck auf 60 mbar absolut abgesenkt und anschließend das Vakuum 1 h beibehalten. Dann entspannte man auf Normaldruck, überführte das zu prüfende Holzstück und die Wachsemulsion in einen Autoklaven lagerte 1 h bei einem Absolutdruck von 6 bar. Anschließend entspannte man und beließ die Holzwürfel weitere 4 h in der Wachsemulsion. Die nassen Holzstücke wurden in einen Bratenschlauch gegeben. Dieser wurde verschlossen und mit einem kleinen Loch versehen und anschließend 36 h bei 120 °C in einem Trockenschrank gelagert. Anschließend ließ man die Holzwürfel in einem Exsikkator über Trockenmittel abkühlen und bestimmte erneut das Gewicht und die Abmessung. Die Gewichtsveränderung betrug 17 %. Die Größenänderung bzgl. der Breite lag bei 1,2 %, bzgl. der Höhe bei 0 %. Beim Aufsä- gen des Würfels zeigte sich ein starkes Eindringen der blauen Farbe in das Würfelinnere.

Claims

Patentansprüche
1. Verfahren zum Hydrophobieren von Lignocellulosematerialien durch Imprägnieren des Lignocellulosematerials mit einem Hydrophobiermittel, dadurch gekennzeichnet, dass man das Lignocellulosematerial vor oder während des Hydrophobierens mit einer härtbaren wässrigen Zusammensetzung imprägniert, die wenigstens eine vernetzbare Verbindung enthält, die ausgewählt ist unter
α) niedermolekularen Verbindungen V, welche wenigstens zwei N-gebundene Gruppen der Formel CH2OR, worin R für Wasserstoff oder d-C4-Alkyl steht, und/oder eine zwei Stickstoffatome verbrückende 1 ,2-Bishydroxyethan-1 ,2-diyl-Gruppe aufweisen, ß) Präkondensaten der Verbindung V und
Y) Umsetzungsprodukten oder Mischungen der Verbindung V mit wenigstens einem Alkohol, der unter Ci-Cβ-Alkanolen, C2-C6-Polyolen und OHgO-C2-C4- alkylenglykolen ausgewählt ist.
2. Verfahren nach Anspruch 1 , wobei das Hydrophobiermittel wenigstens ein Wachs oder ein wachsartiges Polymer umfasst.
3. Verfahren nach Anspruch 2, wobei das Hydrophobiermittel eine wässrige Dispersion eines Wachs oder wachsartigen Polymers ist.
4. Dispersion nach Anspruch 1 , 2 oder 3, worin die Partikel der Wachskomponente einen Schmelzpunkt von wenigstens 75 0C aufweisen.
5. Dispersion nach Anspruch 3 oder 4, worin die Partikel der dispergierten Wachskomponente eine mittleren Teilchengröße unterhalb 500 nm aufweisen.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die vernetzbare Verbindung ausgewählt ist unter
1 ,3-Bis(hydroxyrnethyl)-4,5-dihydroxyimidazolidin-2-on, 1,3-Bis(hydroxymethyl)-4,5-dihydroxyimidazolidin-2-on, das mit einem Ci-C8-Alkanol, einem C2-C6-PoIyOl und/oder einem Oligoalkylenglykol modifiziert ist,
1 ,3-Bis(hydroxymethyl)harnstoff, 1,3-Bis(methoxymethyl)harnstoff; 1 -Hydroxymethyl-3-methylharnstoff, 1 ,3-Bis(hydroxymethyl)imidazolidin-2-on (Dimethylolethylenharnstoff); 1 ,3-Bis(hydroxymethyl)-1 ,3-hexahydropyrimidin-2-on (Dimethylolpropylen- harnstoff);
1 ,3-Bis(methoxymethyl)-4,5-dihydroxyimidazolidin-2-on (DMeDHEU);
Tetra(hydroxymethyl)acetylendiharnstoff; niedermolekularen Melamin-Formaldehyd Harze und niedermolekulare Melamin-Formaldehyd Harzen, die mit einem C1-C6-
Alkanol, einem C2-C6-PoIyOl und/oder einem Oligoalkylenglykol modifiziert sind (modifiziertes MF-Harz).
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Konzentration an vernetzbarer Verbindung in der wässrigen härtbaren Zusammensetzung im Bereich von 1 bis 60 Gew.-%, bezogen auf das Gesamtgewicht der Zusammensetzung liegt.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei die wässrige Zusammensetzung zusätzlich einen Katalysator enthält, welcher eine Härtung der vernetzbaren Verbindung bewirkt.
9. Verfahren nach Anspruch 8, umfassend zusätzlich eine Härtung der vernetzbaren Verbindung bei erhöhter Temperatur.
10. Verfahren nach Anspruch 9, wobei man die Hydrophobierung im Anschluss an die Härtung durchführt.
11. Verfahren nach einem der Ansprüche 1 bis 9, wobei man die Hydrophobierung und die Imprägnierung mit der wässrigen Zusammensetzung der härtbaren Verbindung gleichzeitig vornimmt.
12. Verfahren nach Anspruch 11 , wobei die wässrige Zusammensetzung das Hydrophobiermittel in dispergierter Form enthält.
13. Verfahren nach Anspruch 12, wobei das Imprägnieren durch sukzessive Anwendung von vermindertem und erhöhtem Druck erfolgt.
14. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Imprägnieren bei einer Temperatur unterhalb 50 0C erfolgt.
15. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Lignocellulo- sematerial Holz oder ein Holzwerkstoff ist.
16. Lignocellulosematerial, erhältlich durch ein Verfahren nach einem der vorhergehenden Ansprüche.
17. Wässrige Zusammensetzung, umfassend
a) wenigstens ein in der wässrigen Phase dispergiertes Hydrophobiermittel und b) wenigstens eine vernetzbare Verbindung enthält, die ausgewählt ist unter α) niedermolekularen Verbindungen V, welche wenigstens zwei
N-gebundene Gruppen der Formel CH2OR, worin R für Wasserstoff oder Ci-C4-Alkyl steht, und/oder eine zwei Stickstoffatome verbrückende 1 ,2-Bishydroxyethan-1 ,2-diyl-Gruppe aufweisen, ß) Präkondensaten der Verbindung V und
Y) Umsetzungsprodukten oder Mischungen der Verbindung V mit wenigstens einem Alkohol, der unter (VCe-Alkanolen, C2-Cβ-Polyolen und Oligo-C2-C4-alkylenglykolen ausgewählt ist.
18. Dispersion nach Anspruch 17, worin das in der wässrigen Phase dispergierte Hydrophobiermittel ein Wachs oder ein wachsartiges Polymer ist.
19. Dispersion nach Anspruch 18, worin die Partikel des Hydrophobiermittels einen Schmelzpunkt von wenigstens 75 CC aufweisen.
20. Dispersion nach einem der Ansprüche 17 bis 19, worin die Partikel des disper- gierten Hydrophobiermittels eine mittleren Teilchengröße unterhalb 500 nm aufweisen.
21. Dispersion nach einem der Ansprüche 17 bis 20, wobei die wässrige Zusammensetzung das Hydrophobiermittel in einer Menge von 5 bis 40 Gew.-%, bezogen auf die Gesamtmenge der wässrigen Zusammensetzung enthält.
PCT/EP2006/004016 2005-05-02 2006-04-28 Verfahren zum hydrophobieren von lignocellulosematerialien WO2006117160A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2008509349A JP2008540158A (ja) 2005-05-02 2006-04-28 リグノセルロース材料を疎水化する方法
US11/912,594 US20080187669A1 (en) 2005-05-02 2006-04-28 Method For Waterproofing Lignocellulosic Materials
AU2006243369A AU2006243369A1 (en) 2005-05-02 2006-04-28 Method for waterproofing lignocellulosic materials
CA002606789A CA2606789A1 (en) 2005-05-02 2006-04-28 Method for waterproofing lignocellulosic materials
BRPI0610106-2A BRPI0610106A2 (pt) 2005-05-02 2006-04-28 processo para a hidrofobização de materiais de lignocelulose, material de lignocelulose, e, composição aquosa
EP06724644A EP1879726A1 (de) 2005-05-02 2006-04-28 Verfahren zum hydrophobieren von lignocellulosematerialien
MX2007013706A MX2007013706A (es) 2005-05-02 2006-04-28 Metodo para impermeabilizar materiales lignocelulosicos.
NO20075188A NO20075188L (no) 2005-05-02 2007-10-11 Fremgangsmate for impregnering av lignocelluloseholdige materialer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005020390.6 2005-05-02
DE102005020390 2005-05-02

Publications (1)

Publication Number Publication Date
WO2006117160A1 true WO2006117160A1 (de) 2006-11-09

Family

ID=36763840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/004016 WO2006117160A1 (de) 2005-05-02 2006-04-28 Verfahren zum hydrophobieren von lignocellulosematerialien

Country Status (12)

Country Link
US (1) US20080187669A1 (de)
EP (1) EP1879726A1 (de)
JP (1) JP2008540158A (de)
KR (1) KR20080005250A (de)
CN (1) CN101171108A (de)
AU (1) AU2006243369A1 (de)
BR (1) BRPI0610106A2 (de)
CA (1) CA2606789A1 (de)
MX (1) MX2007013706A (de)
NO (1) NO20075188L (de)
RU (1) RU2007144308A (de)
WO (1) WO2006117160A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1813401A1 (de) * 2006-01-30 2007-08-01 Rohm and Haas Company Wachs-Biozidprodukt zur Holzbehandlung
WO2007088245A1 (en) * 2006-02-03 2007-08-09 Upm-Kymmene Wood Oy A method for coating a wooden plate and a wooden plate
US7939177B2 (en) 2005-10-04 2011-05-10 Basf Aktiengesellschaft Lignocelluosic material which is low in formaldehyde and method for the production thereof
US8652633B2 (en) 2006-03-31 2014-02-18 Sasol Wax Gmbh Nanoparticulate wax dispersions, process for preparing them and method of hydrophobicizing materials using them

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2580079A1 (en) * 2004-09-10 2006-03-23 Chemical Specialties, Inc. Emulsion composition for wood protection
US8691340B2 (en) * 2008-12-31 2014-04-08 Apinee, Inc. Preservation of wood, compositions and methods thereof
GB201010439D0 (en) 2010-06-21 2010-08-04 Arch Timber Protection Ltd A method
IT1403783B1 (it) * 2010-12-22 2013-10-31 Fond Istituto Italiano Di Tecnologia Procedimento di trattamento di materiali fibrosi per ottenere proprieta' idrorepellenti, materiali fibrosi idrofobici ed articoli che li comprendono cosi' ottenuti
GB201119139D0 (en) 2011-11-04 2011-12-21 Arch Timber Protection Ltd Additives for use in wood preservation
CN104203515A (zh) * 2012-06-19 2014-12-10 松下电器产业株式会社 甘蔗渣成型体
US20140275351A1 (en) * 2013-03-14 2014-09-18 Georgia-Pacific Chemicals Llc Hydrophobizing agents for use in making composite lignocellulose products
CA2916343A1 (en) * 2013-07-09 2015-01-15 Georgia-Pacific Wood Products Llc Methods for making hydrophobizing compositions by hydrodynamic cavitation and uses thereof
US11312038B2 (en) 2014-05-02 2022-04-26 Arch Wood Protection, Inc. Wood preservative composition
CN104179054B (zh) * 2014-08-11 2016-04-06 六盘水宽林桐业有限公司 将蓖麻枝干、芒草茎秆用于生产中密度纤维板的方法
CA2963574C (en) 2014-11-18 2021-07-27 Cascades Sonoco Inc. Wet coating compositions for paper substrates, paper substrates coated with the same and process for coating a paper substrate with the same
DE102015113775A1 (de) * 2015-08-19 2017-02-23 Fritz Egger Gmbh & Co. Og Gebrochene Dispersion zur Hydrophobierung von lignocellulosehaltigem Material
US9717246B1 (en) * 2016-05-24 2017-08-01 Kop-Coat, Inc. Method and related solution for protecting wood through enhanced penetration of wood preservatives employing buffered amine oxides and alkoxylated oils
WO2018204906A1 (en) * 2017-05-05 2018-11-08 Masonite Corporation Cellulosic articles made from cellulosic materials and methods therefor
US20200247997A1 (en) * 2019-01-31 2020-08-06 Weyerhaeuser Nr Company Wood-based composites and associated compositions
US20210122923A1 (en) * 2019-10-28 2021-04-29 Polymer Synergies, LLC Bio-Based Hydrophobic Formulations For Use in Engineered Wood Composites
KR102215573B1 (ko) * 2020-04-24 2021-02-15 황인준 내충격성이 우수한 합성목재
KR102160383B1 (ko) * 2020-05-28 2020-09-29 황인준 충격흡수 가능한 합성목재 데크구조
CN112339041B (zh) * 2020-11-03 2022-04-19 南京国豪装饰安装工程股份有限公司 一种重组功能型科技木制备方法、科技木及隔板
TW202246419A (zh) * 2021-03-31 2022-12-01 日商大日精化工業股份有限公司 樹脂組成物及樹脂組成物之製造方法
JP7153152B1 (ja) 2021-03-31 2022-10-13 大日精化工業株式会社 樹脂組成物及び樹脂組成物の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160679A (en) * 1989-08-29 1992-11-03 Greene Jack T Process for making particle board including the use of acetoacetamide as a formaldehyde scavenger
US6274199B1 (en) * 1999-01-19 2001-08-14 Chemical Specialties, Inc. Wood treatment process
WO2004033170A1 (de) * 2002-10-04 2004-04-22 Basf Aktiengesellschaft Verfahren zur verbesserung der dauerhaftigkeit, dimensionsstabilität und oberflächenhärte eines holzkörpers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160679A (en) * 1989-08-29 1992-11-03 Greene Jack T Process for making particle board including the use of acetoacetamide as a formaldehyde scavenger
US6274199B1 (en) * 1999-01-19 2001-08-14 Chemical Specialties, Inc. Wood treatment process
WO2004033170A1 (de) * 2002-10-04 2004-04-22 Basf Aktiengesellschaft Verfahren zur verbesserung der dauerhaftigkeit, dimensionsstabilität und oberflächenhärte eines holzkörpers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939177B2 (en) 2005-10-04 2011-05-10 Basf Aktiengesellschaft Lignocelluosic material which is low in formaldehyde and method for the production thereof
EP1813401A1 (de) * 2006-01-30 2007-08-01 Rohm and Haas Company Wachs-Biozidprodukt zur Holzbehandlung
US7297193B1 (en) 2006-01-30 2007-11-20 Rohm And Haas Company Wax-biocide wood treatment
AU2007200175B2 (en) * 2006-01-30 2011-08-25 Rohm And Haas Company Wax-biocide wood treatment
WO2007088245A1 (en) * 2006-02-03 2007-08-09 Upm-Kymmene Wood Oy A method for coating a wooden plate and a wooden plate
US8652633B2 (en) 2006-03-31 2014-02-18 Sasol Wax Gmbh Nanoparticulate wax dispersions, process for preparing them and method of hydrophobicizing materials using them

Also Published As

Publication number Publication date
EP1879726A1 (de) 2008-01-23
JP2008540158A (ja) 2008-11-20
RU2007144308A (ru) 2009-06-10
AU2006243369A1 (en) 2006-11-09
CA2606789A1 (en) 2006-11-09
US20080187669A1 (en) 2008-08-07
MX2007013706A (es) 2008-01-28
KR20080005250A (ko) 2008-01-10
BRPI0610106A2 (pt) 2011-10-11
NO20075188L (no) 2007-12-28
CN101171108A (zh) 2008-04-30

Similar Documents

Publication Publication Date Title
WO2006117160A1 (de) Verfahren zum hydrophobieren von lignocellulosematerialien
EP1885533A2 (de) Verfahren zum imprägnieren von lignocellulosematerialien mit effektstoffen
AU2005235374B2 (en) Aqueous fungicidal composition and use thereof for combating harmful micro organisms
EP1877232B1 (de) Verfahren zur behandlung von holzoberflächen
WO2006117158A1 (de) Verwendung wässriger wachsdispersionen zur imprägnierung von lignocellulose-materialien
DE102006019818A1 (de) Verwendung wässriger Wachsdispersionen zur Imprägnierung von Lignocellulose-Materialien
EP1860938B1 (de) Wässrige insektizid-zusammensetzung und deren verwendung zum schutz lignocellulosehaltiger materialien
DE102006019820A1 (de) Verfahren zum Hydrophobieren von Lignocellulosematerialien
WO2006092330A1 (de) Herstellung von formkörpern aus feinteiligen materialien auf basis von lignocellulose
Terziev et al. Plant oils as “green” substances for wood protection
EP3450517A1 (de) Holzverbundobjekte
EP3050919A1 (de) Lignocellulosehaltige materialen enthaltend mischungen mit salzen von n-substituierten carbamidsäuren
DE102006019816A1 (de) Verfahren zum Imprägnieren von Lignocellulosematerialien mit Effektstoffen
US9878464B1 (en) Preservation of cellulosic materials, compositions and methods thereof
WO2006117159A1 (de) Wässrige, härtbare zusammensetzungen zum imprägnieren von lignocellulosematerialien
AU2013203215A1 (en) Wood coating compositions and/or methods of treating wood
WO2011136734A1 (en) Wood protection method and wood product produced using the same
DE102006019819A1 (de) Wässrige, härtbare Zusammensetzungen zum Imprägnieren von Lignocellulosematerialien
UA105773C2 (uk) Просочування деревини
Ashaduzzaman Physico-mechanical and decay resistance properties of bio-resin modified wood
DE102005054692A1 (de) Verfahren zum Beladen von Dispersionen mit Wirk- oder Effektstoff
Choi Using fungicides or combinations of fungicides to provide mold and decay fungal protection to OSB

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11912594

Country of ref document: US

Ref document number: 562797

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2606789

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008509349

Country of ref document: JP

Ref document number: MX/a/2007/013706

Country of ref document: MX

Ref document number: 4924/CHENP/2007

Country of ref document: IN

Ref document number: 1020077025406

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680015105.8

Country of ref document: CN

Ref document number: 2006724644

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2006243369

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007144308

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2006243369

Country of ref document: AU

Date of ref document: 20060428

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006243369

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006724644

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0610106

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071031