WO2006112335A1 - タイヤとリムとの組立体および中空粒子 - Google Patents

タイヤとリムとの組立体および中空粒子 Download PDF

Info

Publication number
WO2006112335A1
WO2006112335A1 PCT/JP2006/307773 JP2006307773W WO2006112335A1 WO 2006112335 A1 WO2006112335 A1 WO 2006112335A1 JP 2006307773 W JP2006307773 W JP 2006307773W WO 2006112335 A1 WO2006112335 A1 WO 2006112335A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
hollow particles
pressure
hollow
rim
Prior art date
Application number
PCT/JP2006/307773
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Teratani
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to US11/911,281 priority Critical patent/US20090078355A1/en
Priority to CN2006800212850A priority patent/CN101198481B/zh
Priority to JP2007521208A priority patent/JP4994231B2/ja
Priority to EP06731709.9A priority patent/EP1870256B1/en
Publication of WO2006112335A1 publication Critical patent/WO2006112335A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C29/00Arrangements of tyre-inflating valves to tyres or rims; Accessories for tyre-inflating valves, not otherwise provided for
    • B60C29/06Accessories for tyre-inflating valves, e.g. housings, guards, covers for valve caps, locks, not otherwise provided for
    • B60C29/062Accessories for tyre-inflating valves, e.g. housings, guards, covers for valve caps, locks, not otherwise provided for for filling a tyre with particular materials, e.g. liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/04Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor utilising additional non-inflatable supports which become load-supporting in emergency
    • B60C17/06Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor utilising additional non-inflatable supports which become load-supporting in emergency resilient
    • B60C17/066Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor utilising additional non-inflatable supports which become load-supporting in emergency resilient made-up of plural spherical elements provided in the tyre chamber

Definitions

  • the present invention relates to a tire and rim assembly that realizes a minimum movement to a place where a tire can be repaired after being damaged, safely and reliably.
  • it can be realized by combining a general-purpose tire and a general-purpose rim, and is excellent in durability, ride comfort, fuel efficiency and versatility in regular driving before tire damage, and low without sacrificing productivity.
  • It relates to a tire and rim assembly that can provide puncture safety at low cost.
  • a tire is mounted on a rim, and a large number of bubble-containing particles composed of a continuous phase by coagulation and closed cells held at a pressure higher than atmospheric pressure are enclosed in a space defined by the tire and the rim.
  • the safety tire is described in, for example, Patent Document 1 related to the applicant's previous proposal.
  • the self-heating occurs.
  • the pressure inside the air bubble rises further due to the sudden rise in the temperature of the air bubble-containing particles, so that the air bubble-containing particles expand in volume at a stretch.
  • the internal pressure is restored to a pressure close to that before the injury.
  • Patent Document 2 discloses that an anti-adhesive agent is disposed around the hollow particles when the hollow particles composed of a continuous phase and a closed cell are formed in the tire. Proposed. This anti-adhesive agent is used for the purpose of preventing the hollow particles expanded by heat generation from fusing together to form a fused product after the function of restoring the internal pressure by the hollow particles after puncture is exhibited. It is for reforming.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-118312
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-306006
  • the adhesion preventing agent described in Patent Document 2 adheres mainly to the surface of the hollow particles with a physical adsorption force or frictional force, the distribution on the surface of the hollow particles is not good. It tends to be uniform. Further, due to the adhesion due to the physical adsorption force or frictional force, the hollow particle surface force anti-adhesive agent may peel off, and the anti-fusing effect may not be sufficiently obtained. In particular, since a large centrifugal force fluctuation input is generated inside the rolling tire, the addition of the anti-adhesive agent causes a large difference in specific gravity between the hollow particles and the anti-adhesive agent. As a result of the separation between the two, the desired effect may not be obtained.
  • the anti-adhesive agent when the above-mentioned anti-adhesive agent is filled in the tire together with the hollow particles, it is attached due to the specific gravity difference between the anti-adhesive agent and the hollow particles during rolling of the tire and the centrifugal force at the time of rolling.
  • the anti-sticking agent collects on the inner peripheral surface side of the tire.
  • the anti-adhesion agent inside the tire is applied from the tread side by the input from the road surface. The movement is repeated such that the tire moves toward the inner side in the radial direction of the tire and jumps and returns to the inner peripheral surface side of the tire again.
  • the anti-adhesive agent during this operation tends to cause friction with the hollow particles, and as a result, the temperature of the hollow particles rises and the heat generation durability of the particles may be reduced.
  • the present invention provides a hollow particle in a tire and rim assembly in which hollow particles are filled in a tire chamber, for the purpose of surface modification of the hollow particles and prevention of fusion between the hollow particles.
  • a means for realizing a uniform distribution of the coating agent on the surface of the hollow particles and strong adhesion to the surface is proposed.
  • the gist of the present invention is as follows.
  • a tire is mounted on a rim, and a large number of hollow particles composed of a continuous phase and a closed cell by thermal expansion capable of thermal expansion are arranged in a tire chamber defined by the tire and the rim.
  • Fixing rate ⁇ (Amount of coating material used) (Amount of precipitate) ⁇ Z (Amount of coating material used) X 100
  • An assembly of a tire and a rim characterized by having a coating fixing rate of 90 mass% or more required by the above.
  • a separatory funnel add 300 cc of at least one solvent selected also with n- xan, isopropyl alcohol, ethanol and methanol, and hollow particles with a coating agent weighed in the range of 23 g. After stirring for 1 minute, let stand for 10 minutes, drain and collect the precipitate in the funnel, add the solvent again and adjust the solvent in the separatory funnel to 300 cc, then stir, leave and discharge and Sampling is repeated 4 more times for a total of 5 times The amount of the precipitate component is measured as the amount of precipitate after removing the solvent by a conventional method, and the mass percentage with respect to the amount of the original hollow particles is calculated to obtain the amount of precipitate.
  • the pressure in the hollow portion of the hollow particle is a high pressure equal to or higher than atmospheric pressure
  • the expansion start temperature Ts2 when the hollow particle is heated is 90
  • a tire and rim assembly characterized by having a filling rate of 5 vol% or more and 80 vol% or less of the following hollow particles in a range of ° C to 200 ° C.
  • Particle volume value Total volume of all hollow particles placed in the tire chamber under atmospheric pressure and the total void volume around the particles (cm 3 )
  • Tire chamber volume value After filling the tire / rim assembly with only air and adjusting it to the internal pressure (kPa), the internal air pressure is atmospheric pressure.
  • Tire chamber volume value (filled air discharge) / (use internal pressure Z atmospheric pressure)-( ⁇ )
  • the use internal pressure is the gauge pressure value (kPa)
  • the atmospheric pressure value is absolute using a barometer. Use the value (kPa).
  • the hollow particles are obtained by expanding the expandable resin particles to which the coating agent is adhered at a temperature equal to or higher than the melting point Tm of the coating agent. Thread and three-dimensional tires and rims.
  • the gas force inside the hollow particles before being arranged in the tire is a gas different from the gas filled in the tire chamber. And assembly.
  • the gas inside the hollow particles before being placed in the tire is a non-combustible gas, and the inside of the hollow particles in the tire and rim assembly after the internal pressure is applied.
  • a tire and rim assembly, wherein the gas is a mixture of the incombustible gas and the gas filled in the tire chamber.
  • the nonflammable gas is a linear or branched aliphatic hydrocarbon having 2 to 8 carbon atoms and a fluoride thereof, or an alicyclic carbon having 2 to 8 carbon atoms.
  • R 1 and R 2 are each independently a monovalent hydrocarbon group having 1 to 5 carbon atoms, and part of the hydrogen atoms of the hydrocarbon group may be replaced by fluorine atoms
  • the acrylonitrile-based resin is a copolymer comprising at least three monomers of acrylonitrile, methacrylo-tolyl, and methyl methacrylate. Is a copolymer comprising at least three monomers of acrylonitrile, methacrylonitrile and methacrylic acid.
  • the average particle size force of the hollow particle group disposed in the tire chamber is in the range of 0 to 200 m, and the average of the hollow particle group A tire / rim assembly characterized by having a true specific gravity in the range of 0.0 1 to 0.06 gZcm 3 .
  • a tire chamber pressure drop warning function based on wheel speed detection by a wheel speed sensor of an antilock brake system and a tire chamber by a pressure sensor
  • Tire and rim thread and three-dimensional characterized by providing either or both of tire chamber pressure drop warning functions based on a direct pressure measurement method.
  • the foam has a substantially spherical shape with a diameter of 1 to 15 mm or a cubic shape with a side of 1 to 15 mm, and an average bulk specific gravity of 0.06 to 0.3 gZcc.
  • the tire in which a tire is mounted on a rim, the tire can be thermally expanded by being disposed with a high-pressure gas exceeding atmospheric pressure in a tire chamber defined by the tire and the rim.
  • a hollow particle composed of a continuous phase of resin and closed cells, the pressure in the hollow portion being equal to or higher than atmospheric pressure, and a coating agent fixed to the surface via heat on at least a portion of the surface Hollow particles characterized by that.
  • Fixing rate ⁇ (Amount of coating material used) (Amount of precipitate) ⁇ Z (Amount of coating material used) X loo
  • a separatory funnel add 300 cc of at least one solvent selected also with n- xan, isopropyl alcohol, ethanol and methanol, and hollow particles with a coating agent weighed in the range of 23 g. After stirring for 1 minute, let stand for 10 minutes, drain and collect the precipitate in the funnel, add the solvent again and adjust the solvent in the separatory funnel to 300 cc, then stir, leave and discharge and Sampling is repeated four more times, and the total amount of the precipitated components is weighed as the amount of precipitate after removing the solvent by a conventional method, and the mass percentage with respect to the original amount of hollow particles is calculated to obtain the amount of precipitate.
  • the amount of the precipitate is 99 mass of the original amount of hollow particles.
  • Hollow particles characterized by being at least%.
  • a function capable of stably traveling the required distance even when the tire chamber pressure is reduced after the tire is damaged is developed, and the low speed force under normal traveling is increased.
  • the above effects are mainly borne by the hollow particles disposed in the tire chamber.
  • the coating agent When the coating agent is applied to the surface of the hollow particles according to the present invention, the coating agent has a surface on the hollow particle surface. Uniform distribution and strong coating on the same surface are realized.
  • FIG. 1 is a sectional view in the tire width direction showing an assembly of a tire and a rim according to the present invention.
  • FIG. 2 is a diagram showing an example of a “tire valve with a filter” that is used for filling hollow particles and gas, which is mounted on a tire-rim assembly according to the present invention.
  • FIG. 1 is a cross-sectional view in the width direction illustrating a safety tire targeted in the present invention.
  • a tire 1 is mounted on a rim 2, and in a tire chamber 3 partitioned by the tire 1 and the rim 2, a thermal phase composed of a continuous phase made of resin and closed cells can be thermally expanded.
  • a large number of hollow particles 4 are packed and arranged under pressure.
  • the tire 1 is not particularly limited in structure as long as it is a tire for various automobiles according to the standard, for example, a tire for trucks and buses, a tire for passenger cars, and the like.
  • the present invention is a technology that can be applied to all safety tires that are an assembly of a tire and a rim.
  • reference numeral 9 indicates a valve for supplying and discharging gas to and from the tire chamber 3
  • 10 indicates an inner liner layer
  • 11 indicates a side portion
  • 12 indicates a void around the hollow particle 4.
  • the hollow particles 4 have closed cells surrounded by a continuous phase of a substantially spherical resin, for example, a hollow body having a particle size distribution in the range of about 10 ⁇ m to 500 ⁇ m. Or, it is a spongy structure containing a large number of small cells with closed cells. That is, the hollow particles 4 are particles that enclose closed closed cells that do not communicate with the outside, and the number of closed cells may be singular or plural. In this specification, this “inside of closed cells of a hollow particle group” is generically expressed as “hollow part”.
  • the fact that the particles have closed cells means that the particles have a “wax-made shell” for enclosing the closed cells in a sealed state. It refers to the “continuous phase on the component composition that constitutes the coconut shell”.
  • the composition of the coconut shell is as described later.
  • the hollow particle group which is a large number of the hollow particles 4, is filled and arranged inside the tire chamber 3 together with the high-pressure gas, so that the "internal pressure" of the tire is partially applied under normal use conditions. At the same time, when the tire 1 is injured, it becomes a source of the function of restoring the lost pressure in the tire chamber 3. This “internal pressure restoration function” will be described later.
  • in-use pressure refers to “a tire chamber pressure value (gauge pressure value) specified by an automobile manufacturer for each vehicle for each mounting position”.
  • hollow particles are obtained by heating and expanding “swellable resin particles” that are raw materials, that is, particles encapsulated in a resin using a gas component as a foaming agent in a liquid state. There is an expansion start temperature Tsl. Furthermore, it is obtained by this thermal expansion. When the resulting hollow particles are heated again from room temperature, the hollow particles start to expand further, where the expansion start temperature Ts2 of the hollow particles exists.
  • Tsl an index of heat resistance.
  • Ts2 is appropriate as an index of heat resistance. I came to find out.
  • the expansion behavior when the expandable rosin particles were heated and expanded was observed. Since the expandable rosin particles are in the stage before expansion, the thickness of the rosin shell, whose particle size is extremely small compared to the state of the hollow particles, is extremely thick. Therefore, the microcapsule is highly rigid. Therefore, even if the continuous phase of the resin-made shell exceeds the glass transition point during the expansion process, the expansion force of the internal gas will increase the rigidity of the shell until the shell is softened to some extent by further heating. I can't win. Therefore, Tsl is higher than the actual glass transition point of the shell.
  • Ts2 is positioned lower than Tsl because the continuous phase of the shell begins to expand as soon as it exceeds the glass transition point.
  • the conventional Tsl is used to discuss the heat resistance.
  • Ts2 should be used as an indicator.
  • Ts2 of the hollow particles is 90 ° C or higher and 200 ° C or lower. This is because, if the Ts2 of the hollow particles is less than 90 ° C, depending on the tire size selected, the hollow particles may begin to re-inflate before reaching the guaranteed speed of the tire. If the temperature exceeds ° C, even if the temperature rises due to frictional heating of the hollow particles during run flat after puncture damage, the expansion start temperature Ts2 may not be reached. It may not be possible to fully develop the “internal pressure recovery function”.
  • Ts2 it is preferable and more preferable to set the range of Ts2 to 90 ° C or more and 200 ° C or less. Is 130 ° C or higher and 200 ° C or lower, and 150 ° C or higher and 200 ° C or lower, most preferably in the range of 160 ° C or higher and 200 ° C or lower.
  • a coating material that is fine particles at room temperature and can be fixed by colliding with the surface of the expandable rosin particles that are the raw materials of the hollow particles is used.
  • the coating agent is mixed with the expandable resin particles in a high-speed airflow such as a cyclone or a jet mill and collides with both to obtain expandable resin particles with the coating material fixed on the surface. Can do.
  • the expandable rosin particles are heated to a temperature equal to or higher than Tsl and expanded, desired hollow particles in which the coating agent is fixed through heat can be obtained.
  • the solid fixation of the coating material on the surface of the hollow particles as intended in the present invention specifically means "fixing rate” which is the fixing amount on the surface of the hollow particles with respect to the amount of coating material used. It can be expressed.
  • a separatory funnel add 300 cc of at least one solvent selected from n- xan, isopropyl alcohol, ethanol and methanol, and hollow particles with a coating agent weighed in the range of 23 g. After stirring for 1 minute, let stand for 10 minutes, drain and collect the precipitate in the funnel, add the solvent again and adjust the solvent in the separatory funnel to 300 cc, then stir, leave and discharge and Sampling is repeated four more times, and the total amount of the precipitated components is weighed as the amount of precipitate after removing the solvent by a conventional method, and the mass percentage with respect to the original amount of hollow particles is calculated to obtain the “precipitate amount”.
  • the "fixing rate” can be determined from the amount of the precipitate and the amount of coating agent actually used for coating according to the following equation.
  • Fixing rate ⁇ (Amount of coating material used) (Amount of precipitate) ⁇ Z (Amount of coating material used) X loo
  • the fixing rate obtained in accordance with the above is preferably 90 mass% or more. That is, the “precipitate amount” refers to the amount of the coating component in the free state, in other words, the amount of the coating agent that could not be fixed on the surface of the hollow particles.
  • the coating particles in the free state have a higher specific gravity than the hollow particles, so that the hollow particles against the centrifugal force fluctuation input in the tires. This is not preferable because it exacerbates heat generation.
  • a more preferable fixing rate range is 95 mass% or more and 99 mass% or more.
  • the coating agent in fixing the coating agent to the surface of the hollow particle through heat, it is advantageous from the viewpoint of surface modification to cover the entire surface of the hollow particle with the coating agent. It is also effective to partially fix the particles on the surface. In that case, it is preferable that the coating agent is uniformly dispersed on the surface of the hollow particles under the above fixing rate.
  • the thermally expandable particles and the coating agent are mixed in a state of thermally expandable particles, which are the raw material of the hollow particles, under a high-speed air current typified by a jet mill or a cyclone,
  • the coating agent can be uniformly attached to the surface of the thermally expandable resin particles. With this, if the thermally expandable resin particles are heated and expanded in a desired temperature environment, hollow particles in which the coating agent is uniformly dispersed and fixed can be obtained.
  • the amount of coating agent used is more preferably in the range of 320 mass% of the amount of hollow particles.
  • the range is preferably 3 to: L0 mass%. This is because if the amount of the coating agent used is less than 3 mass% of the amount of the hollow particles, the above-described effect using the coating agent is difficult to obtain, whereas if it exceeds 20 ma SS %, the coating amount on the surface of the hollow particles becomes excessive.
  • the excess specific gravity increases due to the fine particles of the coating material adhering to the surface of the hollow particles, and, as described above, the excess coating particles in the free state have a higher specific gravity than the hollow particles. This is preferable because it induces exothermic deterioration of the hollow particles in response to force fluctuation input.
  • an organic acid metal salt particularly a metal acid salt having 14 or more carbon atoms is preferred.
  • lithium stearate and magnesium stearate are preferably used. That is, organic acid metal salts such as lithium stearate and magnesium stearate are typical compounds as solid lubricants, and have a good friction coefficient reducing effect over a temperature range below the melting point of the coating agent. Can be obtained.
  • the melting point Tm of the coating is lower than the expansion start temperature Ts2 of the hollow particles, the following problems may occur.
  • the melting point Tm of the coating is lower than Ts2
  • the hollow particles do not reach the expansion start temperature Ts2 during normal running, but a part of the coating melts due to reaching Tm.
  • the fluidity of the hollow particles is reduced, or the fusion between the hollow particles is caused.
  • the heat generation limit speed originally based on Ts2 that the hollow particles have is greatly reduced, which is not preferable because it becomes an obstacle to the function of restoring the internal pressure. Therefore, it is important that the melting point of the coating material is at least Ts2.
  • the melting point Tm of the coating agent is Tsl or more and the heating temperature in the expansion process of the expandable resin particles is higher than Tm, the shell resin of the expandable resin particles is melted. At the same time, melting of the coating agent occurs, so that closer and stronger fixing between them can be achieved, and the surface of the hollow particles can be partially or completely covered with the coating agent.
  • the upper limit force Tsl + 150 ° C. or less of the melting point Tm of the coating agent is preferable.
  • Tm force Tsl + 150 ° C it is necessary to heat the coating material to a higher temperature in order to expand it while melting. In this case, it is difficult to adjust the degree of expansion.
  • the tire and rim assembly is regarded as a pressure vessel.
  • the purpose of this purpose is to recover the pressure lost by functioning the hollow particles after temporarily sealing the wound of the pressure vessel damaged by the puncture with the hollow particle group arranged in the tire chamber. Is going to be achieved. Therefore, as with the conventional pneumatic tire described above, running after puncture should not lead to failure or destruction of the tire, that is, the pressure vessel.
  • the filling rate of the hollow particles according to the following formula (I) is preferably 5 vol% or more and 80 vol% or less.
  • Filling rate of hollow particles (Particle volume value Z tire chamber volume value) X 100 1- (I) [0065]
  • the particle volume value is the atmospheric pressure of all the hollow particles arranged in the tire chamber. This is the total amount (cm 3 ) of the total volume and the void volume around the particle, and can be calculated by the following method.
  • the average bulk specific gravity of the particles under atmospheric pressure is determined.
  • the method is calculated, for example, by measuring the weight of a known volume under atmospheric pressure.
  • the average bulk specific gravity under the atmospheric pressure is calculated. That is, the average bulk specific gravity of the particles under atmospheric pressure is
  • Average bulk specific gravity of particles under atmospheric pressure (total weight of particles) / (total volume of particles).
  • the “particle volume” arranged inside the tire is calculated. be able to. That is,
  • Particle volume (Total weight of particles filled in tire) Z (Average bulk density of particles under atmospheric pressure)
  • particles having a desired particle volume can be arranged in the tire by a method of measuring the particles in a container having a known volume and arranging the particles in the tire chamber.
  • the tire chamber volume value is determined by filling the tire / rim assembly with only air and using the internal pressure of the tire.
  • Tire chamber volume value (filled air discharge) / (use internal pressure Z atmospheric pressure)-( ⁇ )
  • the use internal pressure is the gauge pressure value (kPa)
  • the atmospheric pressure value is the absolute value from the barometer. (kPa) is used. That is, the atmospheric pressure is a force represented by 0 [kPa] in gauge pressure. Since the atmospheric pressure value itself fluctuates from day to day, the absolute value observed at that time is used. Thus, for example, when the atmospheric pressure at a certain time is 1013 hPa, 101.3 kPa is used as the absolute value of atmospheric pressure in the formula (II).
  • the pressure in the tire chamber is set to a desired use internal pressure such as a mounting vehicle designated internal pressure. It is important to fill with high-pressure gas such as air or nitrogen.
  • high-pressure gas such as air or nitrogen.
  • the pressure in the hollow portion of the hollow particles pressure in closed cells
  • the particles are reduced in volume because they are less than the pressure in the tire chamber.
  • the shape of the hollow particles is not a substantially spherical shape, but is a distorted shape with a flat spherical force.
  • the hollow particles are more likely to break due to particle collisions and collisions with the tire and rim inner surface than in the spherical shape. Become. That is, when the hollow particles are flattened and distorted, the input due to the collision cannot be uniformly dispersed, resulting in a great disadvantage in terms of durability.
  • the hollow particles distorted due to flattening are in a state where the volume is reduced due to the difference between the pressure in the hollow portion and the pressure in the tire chamber, but the tire chamber (particle By maintaining the pressure in the voids), the pressure in the hollow part of the hollow particle, in other words, the pressure in the closed cell in the particle can be increased to the pressure of the tire chamber. That is, since the flattened hollow particles are deformed, a force is exerted on the shell portion to return to the original substantially spherical shape. In addition, since the pressure in the hollow portion of the flattened hollow particles is lower than the pressure in the tire chamber, the gas molecules in the tire chamber are dispersed in a continuous phase due to resin in order to eliminate the pressure difference.
  • the hollow part of the hollow particle is a closed cell and the gas therein is filled with the gas caused by the foaming agent, it may be different from the gas in the tire chamber (the void around the particle).
  • the high-pressure gas in the tire chamber permeates into the particle hollow portion until the partial pressure difference is eliminated.
  • the high-pressure gas in the tire chamber permeates into the hollow portion of the hollow particles with time, so that the pressure in the tire chamber is reduced by the amount permeated into the hollow portion. Therefore, the tire of the present invention adjusted to a desired use internal pressure can be obtained by continuously applying a desired pressure after filling with a high-pressure gas in order to compensate for the permeation into the hollow part of the hollow particles.
  • the high-pressure gas is interposed around the hollow particles, so that the load imposed on the hollow particles during normal running can be reduced to a negligible level. Since the volume of the hollow particles recovers to a nearly spherical shape, the fatigue and fracture applied to the particles due to repeated deformation during rolling of the tire can be greatly reduced. Will not be damaged.
  • the range in which the durability of the hollow particles is not impaired is that the pressure in the hollow portion of the particles increases while the pressure in the tire chamber recovers the volume in the desired high-pressure environment such as the specified internal pressure of the vehicle to be installed.
  • the pressure of the hollow part of the hollow particles is at least 70% with respect to the desired pressure in the tire chamber. Furthermore, it is recommended to set a high value of 80% or more, 90% or more, and 100% or more.
  • a void gas around the hollow particles can be obtained.
  • the pressure should be maintained at a level that is at least 70% higher than the desired pressure in the tire chamber, such as the vehicle-designated internal pressure to be installed, and an appropriate period of time may be allowed to remain applied.
  • the hollow particles are placed in a pressure vessel separate from the tire, and the air pressure around the particles is maintained at least 70% higher than the desired pressure in the tire chamber, and this pressure is applied. It is also possible to place the particles with the increased pressure inside the hollow part of the hollow particles in the tire chamber together with the surrounding atmosphere after storing them in the pressure vessel for an appropriate time. An assembly of tires and rims can be obtained.
  • the appropriate retention time described above takes into account the permeability of the void gas to the shell portion of the hollow particle, that is, the continuous phase of the particle, and the partial pressure difference between the gas in the particle hollow portion and the void gas. Can be set.
  • the type and pressure of the gas filled in the tire chamber are appropriately selected and adjusted, so that the hollow particles
  • the pressure in the hollow portion of the child can be set to a desired range.
  • the hollow space pressure of the hollow particles is defined to be at least 70% of the vehicle-designated tire internal pressure during normal running use, but the sealing ability of the damaged portion depends on the hollow pressure. That is, it has been described above that the substantially spherical shape can be maintained if the hollow portion pressure is 70% or more. However, since the good fluidity and elasticity can be expressed by maintaining the substantially spherical shape, the internal pressure of the hollow portion is low. Compared to the case, the sealing limit of the damaged part is greatly improved.
  • the air chamber pressure decreases, the amount of tire stagnation increases and the tire air chamber volume decreases. Furthermore, when the air chamber pressure decreases, the tire sags greatly, and the hollow particles disposed in the tire air chamber are subjected to compression and shear while being sandwiched between the tire inner surface and the rim inner surface.
  • the pressure in the hollow portion of the hollow particles that existed under the above-mentioned use internal pressure remains high after the damage while maintaining a high pressure according to the use internal pressure.
  • the hollow particles themselves directly bear the load, but the hollow particles cause friction and self-heat, so that the temperature of the hollow particles in the tire chamber rises rapidly.
  • this temperature is the thermal expansion start temperature of the hollow particles.
  • Ts2 corresponding to the glass transition temperature of the resin
  • the pressure in the hollow part of the hollow particle is a high pressure corresponding to the working internal pressure, and the hollow part pressure is further increased due to the sudden rise in the temperature of the hollow particle, Since the surrounding void gas is compressed, the pressure in the tire chamber can be recovered to at least the pressure in the tire chamber where the side portion of the tire does not come into contact with the ground.
  • the pressure in the hollow part of the hollow particles is set to a high pressure that enables thermal expansion by the above mechanism, the function of restoring the internal pressure can be exhibited.
  • hollow particles whose pressure in the hollow portion is at least 70% of the used internal pressure are reduced to 5 vol% or more and 80 vol% or less. It is important to place it in the tire chamber under the filling rate. The reason is shown below.
  • the filling rate of the hollow particles is less than 5 vol%, the wounded part can be sealed without any problem, but the absolute amount of the hollow particles is insufficient, so the side part is not grounded and the pressure level is not reached. It will be difficult to obtain sufficient internal pressure.
  • the filling ratio of the hollow particles exceeds 80 vol%, some tires expand due to the heat generated by particle friction during high-speed running during normal use, resulting in expansion exceeding the above-described expansion start temperature (Ts2) of the hollow particles. As a result, the internal pressure restoration function, which is the main function of the present invention, may be lost. The heat generation of the particles at high speed during normal use will be described later.
  • the hollow particles are particles having a low specific gravity and high elasticity due to the hollow structure, when the tire is damaged and void gas around the hollow particles starts to leak from the damaged portion, the hollow particles get on the flow due to the leakage of the void gas. Immediately close to the wounded area and instantly seal the wounded area.
  • the function of sealing the damaged part by the hollow particles is an essential function that supports the function of restoring the internal pressure of the present invention.
  • the volume of the tire chamber decreases with the decrease in the internal pressure after the puncture and the amount of stagnation of the tire increases. By causing friction between the particles, the temperature rises rapidly and the internal pressure is restored by the expansion of the particles, enabling safe driving after puncture.
  • the friction between the hollow particles in the tire and rim assembly is generated even though the friction is small even under normal traveling.
  • the traveling speed is less than lOOkmZh, the balance is maintained by the heat radiation to the outside air by traveling with the generated frictional heat itself being small.
  • the tire rotates at a high speed to generate a centrifugal force corresponding to the speed.
  • the hollow particles arranged in the tire chamber are also subjected to the same centrifugal force.
  • This centrifugal force is proportional to the weight of the particles, proportional to the square of the speed, and inversely proportional to the tire radius.
  • a certain amount of stagnation is generated by applying a load to the tire, and the grounding area is in a state parallel to the road surface. The force is almost zero. Therefore, the hollow particles in the tire and rim assembly that rotates while bearing a load are subjected to centrifugal force as described above in the non-grounded region, but on the other hand, the centrifugal force immediately enters the grounded region. It is placed under “input of repeated fluctuations of centrifugal force”.
  • the particle weight as much as possible for the hollow particle group arranged in the air chamber of the tire. That is, the average true specific gravity of hollow particles should be as small as possible. It is preferable to select and the filling rate of the hollow particles with respect to the tire chamber volume can be within the range of the above-mentioned “filling rate that exhibits a sufficient internal pressure restoration function up to the pressure level at which the side part does not contact the ground”. It is preferable to select a small filling rate as much as possible.
  • the filling rate of the hollow particles is less than 5 vol%, it may be difficult to obtain a sufficient reviving internal pressure up to the pressure level where the side portion does not touch the ground depending on the tire.
  • the filling rate of hollow particles exceeds S80vol%, some tires generate heat due to particle friction during high-speed running during normal use, resulting in expansion exceeding the expansion start temperature of the hollow particles described above, and the present invention. This is not preferable because the internal pressure restoration function, which is the main function of, may be lost. Therefore, the preferable range of the air particle filling rate is 5 vol% or more and 80 vol% or less, and further 70 vol% or less, 60 vol% or less, and 50 vol% or less.
  • the average true specific gravity of the hollow particles is preferably in the range of 0.01 to 0.06 gZcc. In other words, if it is less than 0. OlgZcc, the durability of the hollow particles under normal running decreases, and the aforementioned “internal pressure restoration function” may be lost during normal use. On the other hand, if it exceeds 0.06 gZcc, it is not preferable because the centrifugal force fluctuation input in the above-mentioned regular high-speed running becomes large and the heat generation amount becomes large.
  • the group of hollow particles arranged in the tire chamber has a distribution in the true specific gravity, and each hollow particle does not have the same true specific gravity value.
  • the reason for this is the non-uniformity of the thermal history during expansion by heating and the retention of the expanded gas resulting from the foaming agent.
  • each expandable rosin particle which is the raw material of hollow particles, expands into a hollow particle by heating, if the heat history at the time of heating is uneven, the heat history is sufficiently received and expanded. The hollow particles and the hollow particles that have stopped expanding in the middle due to the low thermal history received will coexist.
  • expandable rosin particles those with a small particle size have a relatively small continuous phase, which is a particle shell (which refers to a skin covering the foaming agent) and a large particle size. Has a thick shell. Even if the heat history during heating is the same, the retention of the expanded gas generated by heating in the hollow particles depends on the absolute thickness of the shell. Therefore, the particle size before expansion is small! / ⁇ "Expandable rosin particles” have a thin shell! As a result, it has hollow particles with low expansion gas retention and low expansion coefficient, and high true specific gravity. Conversely, “expandable resin particles” with large particle diameters are hollow particles with high expansion gas retention and high expansion coefficient due to their thick shells.
  • the true specific gravity is reduced. That is, in general, hollow particles obtained by expansion of an expandable composition such as microcapsules have a distribution in particle size in the expanded state, and are hollow particles having a small particle size. The more true the specific gravity is, the more the hollow particles having a larger particle size have a smaller true specific gravity.
  • the fully expanded hollow particles have a small true specific gravity
  • hollow particles that have stopped expanding in the middle are components having a large true specific gravity.
  • a particle group having such a true specific gravity distribution When a particle group having such a true specific gravity distribution is arranged in the tire, it receives a centrifugal force corresponding to the speed under normal internal pressure. At this time, particles having a large true specific gravity are subjected to a greater centrifugal force in the tire chamber than particles having a small true specific gravity. Therefore, a particle group with a small true specific gravity exists in the vicinity of the inner surface of the wheel in the tire and rim assembly, and a hollow particle group with a large true specific gravity gradually exists as the rotational center force is separated.
  • the hollow particle group having a large true specific gravity is compared with the hollow particle group having a small true specific gravity.
  • a large inertial force is generated below. Therefore, since the hollow particle group having a large true specific gravity moves about to separate the coexisting “hollow particle group having a smaller true specific gravity”, the relative inertia force between the small true specific gravity particle and the large true specific gravity particle is reduced. The difference in kinetic energy due to the difference generates extra interparticle frictional heat, and as a result, the exothermic property of the whole particle is deteriorated.
  • the heat generation factor of the hollow particles is the relative inertia force difference of the large true specific gravity particles with respect to the small true specific gravity particles and the frictional heat generation due to their motion.
  • the true specific gravity distribution width of the hollow particles For example, for hollow particles with a certain average true specific gravity, the average true specific gravity does not change by removing only the volume ratio of the large true specific gravity side (small particle size side) and the small true specific gravity side (large particle size side) force. In both cases, since the true specific gravity distribution can be narrowed, the above-mentioned difference in relative inertial force can be suppressed. Thus, heat generation of the entire hollow particle group can be suppressed.
  • the average particle size of the hollow particles is preferable! /, And the range is from 40 ⁇ m force to 200 ⁇ m.
  • the average particle size of the hollow particles is less than 40 m, the above-mentioned true specific gravity distribution spreads, and the exothermic property is increased due to the relative inertia force difference of the large true specific gravity particle group with respect to the small true specific gravity particle group and the frictional heat generated by the motion. Since it worsens, it is not preferable.
  • the average particle size force S of the hollow particles exceeds 200 m, the situation is such that the particles collide with each other under normal running, or when the tire chamber pressure becomes atmospheric pressure due to the nk. In a situation where the hollow particle group directly supports the load at the particle size, it is preferable because the particle force on the large particle size side may be selectively broken, resulting in a disadvantage that the desired running performance after puncture may not be obtained. Absent.
  • the gas constituting the hollow part (closed cell) of the hollow particle includes nitrogen, air, linear and branched aliphatic hydrocarbons having 2 to 8 carbon atoms, their fluorides, and carbon numbers. 2 to 8 alicyclic hydrocarbons and their fluorides, and the following general formula (III):
  • R 1 and R 2 are each independently a monovalent hydrocarbon group having 1 to 5 carbon atoms, and part of the hydrogen atoms of the hydrocarbon group may be replaced by fluorine atoms
  • at least one selected from the group consisting of powerful compounds the gas filled in the tire chamber may be air.
  • a gas that does not contain oxygen such as nitrogen or an inert gas, is also used for safety. preferable.
  • the method of obtaining hollow particles having closed cells is not particularly limited, but a method of obtaining "expandable rosin particles" using a foaming agent and heating and expanding the particles is common.
  • the foaming agent include a method utilizing vapor pressure such as a high-pressure compressed gas and a liquefied gas, and a method utilizing a thermally decomposable foaming agent that generates gas by thermal decomposition.
  • many pyrolyzable foaming agents are characterized by generating nitrogen.
  • the particles obtained by appropriately controlling the reaction of the expandable resin particles obtained have mainly nitrogen in the bubbles.
  • the heat-decomposable blowing agent is not particularly limited, but dinitrosopentamethylenetetramine, azodicarbonamide, paratoluenesulfonylhydrazine and its derivatives, and oxybisbenzenesulfurhydrazine may be preferably mentioned. it can.
  • R 1 and R 2 are each independently a monovalent hydrocarbon group having 1 to 5 carbon atoms, and part of the hydrogen atoms of the hydrocarbon group may be replaced by fluorine atoms
  • This is a technique in which at least one selected from the group consisting of etheric compounds represented by the following formula is liquefied under high pressure as a foaming agent and dispersed in a reaction solvent, followed by emulsion polymerization.
  • This makes it possible to obtain “expandable rosin particles” in which the gas components shown above are contained in a liquid foaming agent in the previous operation as a liquid foaming agent. You can get empty particles.
  • the gas sealed in the hollow portion of the particles at a predetermined pressure is discharged to the outside of the particles.
  • the resin constituting the continuous phase is made of a material having low gas permeability, specifically, at least one of acrylonitrile copolymer, acrylic copolymer, and vinylidene chloride copolymer is used. It is important. These materials are particularly effective in the present invention because they have flexibility as hollow particles with respect to input due to tire deformation.
  • an acrylonitrile polymer an acrylic polymer, and a salt vinylidene polymer to the continuous phase of the hollow particles. More details Monomer power constituting the polymer Acrylonitrile, methacrylonitrile, methylmethacrylate, methacrylic acid, salt, vinylidene power Polymer selected, preferably talix-tolyl Z methacrylonitrile Z methylmethacrylate Polymer, acrylonitrile z methacrylo-tolyl Z methacrylic acid terpolymer power At least one of each selected is advantageously matched. Since these materials all have a small gas permeability coefficient and are difficult for gas to permeate, the pressure in the hollow portion where the gas in the hollow portion of the hollow particles hardly leaks to the outside can be appropriately maintained.
  • the continuous phase of the hollow particles, 30 ° gas permeability at C is 300 X 10- 12 (cc'cm / cm 's'cmHg) or less, preferably the gas permeability coefficient at 30 ° C 20X 10 - 12 (cc'c m / cm 2 's'cmHg) or less, more preferably the gas permeability coefficient at 30 ° C is 2 X 10- 12 (cc'cmZcm 2' is recommended that at S'cmHg) less.
  • the greater gas permeability coefficient inner liner in a conventional pneumatic motor I catcher In the 300 X 10- 12 (cc ⁇ cm / cm 2 ⁇ s ⁇ c mHg) below the level of sufficient internal pressure retaining function in view of the results in which, for the continuous phase of the particles, was the gas permeability at 30 ° C 300X10- 12 (cc'cmZcm 2 -sc mHg) below.
  • the maintainability of the point force peach 20X10- 12 (cc-cm / cm 2 's'cmHg ) or less, still more preferably not be a 2X 10- 12 (cc'cm / cm 2 's'cmHg) below.
  • the average bulk specific gravity is the average true specific gravity of the hollow particles in order to enhance the sealing function of the tire damage portion when the tire is damaged.
  • a means for mixing a large number of larger foams in the hollow particle group is effective. Specifically, it has a substantially spherical shape with a diameter of 1 to 15 mm or a cubic shape with a side of 1 to 15 mm, has independent or open cells, has an average bulk specific gravity of 0.06 to 0.3 gZcc, and an average particle size.
  • the hollow particles have a substantially spherical shape, the flowability is high, so that the introduction locuser having a small inner diameter such as a tire valve can be easily disposed in the tire chamber.
  • the force of the damaged portion also collects on the inner surface of the damaged portion so that the hollow particles blow out to the outside of the tire together with the high pressure gas in the tire chamber.
  • the inner surface force of the damaged part also has a complicated intricate shape rather than a straight line to the outer peripheral surface of the tire, the particles that also enter the inner surface of the tire are obstructed by the path along the path.
  • the hollow particles gather on the inner surface of the damaged part in a compressed state, and the damaged part is temporarily sealed.
  • provisionally sealing refers to a state in which the hollow particles themselves do not leak but the void gas around the particles gradually leaks.
  • the foam having a large bulk specific gravity is unevenly distributed to one side of the inner liner of the tire, and the hollow particles having a small true specific gravity are unevenly distributed to the side closer to the rotation center than the foam.
  • the foam is unevenly distributed in the vicinity of the inner liner surface on the inner surface of the tire. It is very effective because it seals the wounded part by promptly adhering to the inner surface of the wounded part of the wounded part to blow out to the outside.
  • the foam is a foam made of thermoplastic urethane having open cells
  • thermoplastic urethane having open cells it is easy to closely adhere to the shape of the wound having high compressibility, and as a result, a large wound is extremely close to the foam.
  • the tire chamber pressure drop alarm function based on the wheel speed detection by the wheel speed sensor of the anti-lock brake system and the tire chamber pressure by the pressure sensor are further described. It is preferable to have either or both of the tire chamber pressure drop warning function based on the direct measurement method.
  • the internal pressure is restored by the above-described mechanism. It may not be attached. However, since the tire itself is damaged by puncture, it is very dangerous to continue running as it may cause the tire to break down. Therefore, it is preferable to use the above-mentioned tire internal pressure drop alarm function together.
  • a tire noble for use in filling with hollow particles and gas.
  • the tire valve includes a filter that blocks the hollow particles in the tire chamber and allows only the gas to pass outside the tire chamber.
  • the tire valve has a structure including a filter 13 that can be made of, for example, a non-woven fabric, with respect to the air supply / exhaust valve 9 attached to the valve mounting port 14 of the rim 2. To do.
  • a rim of the size shown in Table 1 was incorporated into a tire of the size shown in Table 1, and an assembly of a tire for a passenger car and a rim was prepared.
  • the tire 1 follows the general structure of the tire type and size.
  • select the target vehicle for the tire size mount a load equivalent to a four-seater ride, fill it with high-pressure air, adjust the pressure in the tire chamber to 200 kPa, and combine each tire and rim.
  • a solid was mounted on the left side of the front shaft.
  • the tire chamber pressure was gradually released while keeping the load applied, and the tire chamber pressure value at which the tire side contacted the road surface or the inner liner inner surfaces contacted each other was obtained. .
  • This tire chamber pressure value was defined as the “RF running limit internal pressure value”.
  • Procedure 1 Fill the tire and rim assembly with air at normal temperature while maintaining a state where no load is applied, and adjust to the specified internal pressure (operating internal pressure) P. At this time, the target tire under P
  • Step 2 Open the tire valve and release the air in the tire chamber to atmospheric pressure P.
  • the integrated flow meter includes a DC DRY gas meter DC-2C manufactured by Shinagawa Seiki Co., Ltd.
  • Tire chamber volume value (filled air discharge amount) / (use internal pressure Z atmospheric pressure)-( ⁇ )
  • the tire chamber volume V at the use internal pressure P can be obtained.
  • equation (II) the gauge pressure value (kPa) was used for the internal pressure, and the absolute value (kPa) measured by the barometer was used for the atmospheric pressure value.
  • the tire / rim assembly was filled with nitrogen and adjusted to the working internal pressure. After investigating the particle volume recovery behavior based on the following investigation method in advance, the retention time corresponding to the target pressure in the hollow part is determined, and the tire chamber is heated in a heated room maintained at room temperature or 45 ° C. The assembly of the tire and rim to be evaluated was prepared while maintaining the pressure to increase the hollow part pressure of the hollow particles and recover the particle volume.
  • a method for determining an appropriate holding time for increasing the pressure in the hollow portion of the hollow particles!] Is as follows. First, a cylindrical pressure vessel made of acrylic resin having a constant inner cross-sectional diameter of about 1000 cm 3 and a transparent inner diameter is prepared, and the hollow particles of the present invention are applied to the vessel while vibrating in an ultrasonic water bath or the like. Until the container is full. Next, the container was filled with a gas for filling the tire chamber until a desired working pressure such as a vehicle specified internal pressure was reached. As the pressure increases, the volume of the particles in the container decreases, and the height inside the container of the portion filled with the hollow particles (hereinafter referred to as the hollow particle height) decreases.
  • the container When the internal pressure of the container reached the target pressure, the container was vibrated for 5 minutes with an ultrasonic water bath or the like and then allowed to stand for 5 minutes. Then, when the height of the hollow particles in the container was stabilized, the height of the hollow particles was measured and set as “hollow particle height at the start of pressurization: Hl”. Furthermore, the above operating pressure was continued for 4 hours, and “the height of airborne particles after a certain period of time: Hx” was measured.
  • Particle volume recovery rate (%) [(Hx—H1) Z (H2—Hl)] X 100
  • the time to reach the target volume recovery rate is determined, and after filling the assembly of the tire and rim with the hollow particles filled with the gas of the desired pressure, the above is determined.
  • the internal pressure of the hollow part of the hollow particles was increased by applying a recovery treatment of the total particle volume according to the holding time.
  • Desired internal pressure P by placing hollow particles in the tire chamber
  • the pressure inside the tire chamber is adjusted to the atmospheric pressure P by opening the tire valve. Measure the air discharge V by letting it flow into the total flow meter while discharging. And the following formula
  • the volume of hollow particles decreases and the void volume around the particles increases accordingly. Therefore, the above measurement was started from a sufficiently low pressure level, and the pressure level at which the void volume around the particle began to increase tl was taken as the pressure level in the hollow part of the hollow particle.
  • Table 2 The types of compositions constituting the continuous phase of the hollow particles in Table 1 are shown in Table 2.
  • the expandable resin particles shown in Table 2 were heated and expanded to form hollow particles.
  • the coating agent was attached to the expandable rosin particles, and then heated and expanded.
  • Table 3 shows the results of measuring the average particle size and average true specific gravity of the particles obtained by force.
  • the hollow particles shown in Table 3 were placed in each tire chamber under the filling rate shown in Table 1.
  • the average true specific gravity value of the particles is generally measured by a liquid displacement method (Archimedes method), which is a conventional method using isopropanol, and this conventional method is also used in the present invention.
  • the method for measuring the average particle size and particle size distribution of the hollow particles is as follows.
  • Dispersion pressure 2. OObar, feed: 50.00%, rotation: 60.00%
  • the volume-based average particle size is the average particle size value (D50 value) of the present invention.
  • the measurement methods of the thermal expansion start temperature Tsl of each expandable resin particle and the reexpansion start temperature Ts2 of each hollow particle are as follows.
  • the thermal expansion start temperatures Tsl and Ts2 in Table 2 were measured for the expansion displacement under the following conditions, and used as the temperature at the rise of the displacement.
  • Measurement conditions Temperature rise rate 10 ° CZmin, Measurement start temperature 25 ° C, Measurement end temperature 220 ° C, Measurement physical quantity: Measures expansion displacement due to heating.
  • the tire and rim assembly adjusted to the internal pressure shown in Table 1 is attached to a drum tester set at a test environment temperature of 38 ° C, and the speed is set to 300 kmZh while applying the load shown in Table 1. I drove for 1 hour. After the running tire was allowed to cool to room temperature, the tire chamber pressure was adjusted to the working internal pressure, and the void volume around the particle after running was measured by the method described above. Further, after hollow particles were completely extracted from the tire chamber, the tire chamber pressure was adjusted again to the working internal pressure, and the tire chamber volume value after running was measured by the same method as described above. Then, by calculating the difference between the above-described post-traveling tire chamber volume and the post-traveling particle peripheral void volume value, the post-traveling hollow particle volume in the tire chamber under the use internal pressure was obtained.
  • a passenger car of a class corresponding to each size of tire was set to a loading capacity equivalent to that of four passengers, an evaluation tire was attached to the left front wheel, and the axle weight of the vehicle on the left front wheel was measured.
  • four nails with a diameter of 5. Omm and a length of 50 mm were stepped from the tread surface of the assembly toward the inside of the tire, and after confirming that the tire chamber pressure had dropped to atmospheric pressure, 90 km Zh The circumference of the test course was run flat at speed, and the particle temperature in the tire chamber and the chamber pressure were continuously measured to investigate the occurrence of the internal pressure recovery function.
  • a pressure sensor for monitoring the tire chamber pressure is incorporated on the inner surface of the rim of the assembly of the tire and rim to be evaluated, and a signal of the measured pressure data is used with a commonly used telemeter.
  • the vehicle traveled up to 100 km while measuring changes in pressure by transmitting radio waves and receiving it with a receiver installed inside the test vehicle.
  • the internal pressure under run-flat driving is different from the above-mentioned “RF driving limit internal pressure value”, which is the “pressure value of the tire chamber where the side of the tire touches the road surface or the inner surfaces of the inner liners are in contact with each other”. If the pressure inside the tire chamber was superior due to the resurrection function, it was judged acceptable.
  • Comparative Example 1 is an example in which a coating agent is not used, and a decrease in the volume of hollow particles of 10 vol% or more is observed.
  • Comparative Example 2 is an example in which Li stearate is directly added to the hollow particles, and the fixability on the surface of the hollow particles is poor, so that the amount of precipitate is large. Therefore, the coating agent did not function sufficiently on the surface of the hollow particles, resulting in a low volume retention of the hollow particles.
  • Invention Examples 1 and 2 are examples in which hollow particles were obtained by fixing the coating agent to the surface of the expandable resin particles and then expanding it at a temperature equal to or higher than the melting point Tm of the coating agent. Although the basic performance is sufficient, the volume of the hollow particles rises while traveling below the Tm force Ts2, and partly melts and the fluidity of the hollow particles is impaired.
  • Inventive Examples 3 and 4 adhere a coating agent having a Tm higher than Ts2 to the surface of the expandable resin particles.
  • the hollow particles are obtained by expanding at a temperature of Tm or higher, exhibiting good durability, and the volume retention of the hollow particles is high.
  • Inventive Example 5 is an example in which a coating agent having a Tm higher than Ts2 is fixed to the surface of the expandable resin particles and expanded at a temperature lower than Tm to obtain hollow particles, and has sufficient performance. However, some precipitates are generated and the volume of the hollow particles is slightly reduced.
  • Invention Example 6 is an example in which a coating agent having a Tm higher than Ts2 is fixed to the surface of the expandable resin particles, and expanded at a temperature higher than Tm to obtain hollow particles, which have good durability. The volume retention of hollow particles is also high.
  • Inventive Example 7 is an example in which a coating agent having a Tm higher than Ts2 is fixed to the surface of the expandable resin particles and expanded at a temperature lower than Tm to obtain hollow particles.
  • the use of durability improvers is increasing.
  • the fixability of the coating agent is lower than that of Invention Example 5, and precipitates are generated accordingly, and the volume of hollow particles is slightly reduced.
  • Methyl / -Fluoro-Ville I-Tell is a mixture of both normal structure and iso structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Paints Or Removers (AREA)

Abstract

 タイヤ気室内に中空粒子を充填したタイヤとリムとの組立体において、中空粒子の表面改質並びに中空粒子同士の融着防止を目的として、中空粒子の表面に被覆剤を適用するに際し、該被覆剤の中空粒子表面での均一分布および同表面に対する強固な付着を実現するための手段について提案する。  タイヤをリムに装着し、該タイヤとリムとで区画されたタイヤ気室に、熱膨張が可能な樹脂による連続相と独立気泡とからなる中空粒子の多数を配置し、さらに該タイヤ気室に大気圧を超える高圧気体を充填したタイヤとリムとの組立体において、前記中空粒子の表面の少なくとも部分に、該表面に熱を介して被覆剤を定着する。

Description

明 細 書
タイヤとリムとの組立体および中空粒子
技術分野
[0001] 本発明は、外傷を受けた後のパンク状態力 タイヤの修理を行うことが出来る場所 までの最低限の移動を、安全かつ確実に実現するタイヤとリムとの組立体に関する。 特に、汎用のタイヤと汎用のリムとの組み合わせにて実現でき、タイヤ受傷前の常用 走行における耐久性、乗り心地性、省燃費性および汎用性に優れ、かつ生産性を犠 牲にせずに低コストでパンク時の走行安全性を提供できる、タイヤとリムとの組立体に 関するものである。
背景技術
[0002] タイヤをリムに装着し、該タイヤとリムとで区画された空間内へ、榭脂による連続相と 、大気圧より高圧に保持された独立気泡とからなる気泡含有粒子を多数個封入して なる安全タイヤは、たとえば、出願人の先の提案に係る特許文献 1に記載されている
[0003] この安全タイヤでは、タイヤが受傷して内圧が低下し始めると、気泡含有粒子が受 傷部を封止し、急激な内圧低下が抑制される一方で、タイヤ内圧の低下に伴いタイ ャの橈み量が増加し、タイヤ内容積が減少することによって、気泡含有粒子そのもの が直接的に荷重を負担することとなり、その後の走行に必要な最低限のタイヤ内圧を 保持することになる。また、受傷前のタイヤ内圧下で存在していた気泡含有粒子の独 立気泡中の気泡内圧力は、受傷後も上記のタイヤ内圧に準じた圧力を保ったまま、 言い換えれば、受傷前の気泡含有粒子総体積を保持したままタイヤ内に存在するこ とになるため、タイヤがさらに転動することによって、気泡含有粒子そのものが直接的 に荷重を負担しつつ気泡含有粒子同士が摩擦を引き起して自己発熱し、これにより 、タイヤ内の気泡含有粒子温度が急上昇して、該温度が気泡含有粒子の連続相を 形成する榭脂の軟化温度を超えると、気泡含有粒子の独立気泡中の気泡内圧力が 受傷前のタイヤ内圧に準じた圧力であるのに加え、前記気泡含有粒子温度の急上 昇によりさらに気泡内圧力が上昇するため、気泡含有粒子が一気に体積膨張し、タ ィャ内圧は受傷前の状態に近い圧力まで復活するものである。
[0004] 力 うな安全タイヤに関し、特許文献 2では、榭脂による連続相と独立気泡とからな る中空粒子をタイヤ内に配置するに当り、該中空粒子周囲に付着防止剤を配置する ことが提案されている。この付着防止剤は、パンク後の中空粒子による内圧復活機能 の発現後において、発熱により膨張した中空粒子同士が融着し融着体を形成するこ とを防ぐことを目的として、中空粒子表面を改質するためのものである。
特許文献 1 :特開 2003— 118312号公報
特許文献 2:特開 2003 - 306006号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、特許文献 2に記載された付着防止剤は、中空粒子表面上に主に物 理的吸着力または摩擦力をもって付着しているため、中空粒子表面上の分布が不均 一になり易い。また上記物理的吸着力または摩擦力による付着のために、中空粒子 表面力 付着防止剤が剥離することもあり、融着防止効果が十分に得られない場合 がある。特に、転動中のタイヤの内部では、大きな遠心力変動入力が発生しているた め、付着防止剤を添加することでは、中空粒子と付着防止剤との大きな比重差によつ て、タイヤ内にて両者が分離する結果、所期した効果が得られない場合があった。
[0006] また、車輛指定内圧での常用高速走行においては、上述の遠心力変動入力に伴 つて中空粒子同士が衝突を繰り返すことから、この入力に対する耐久性を向上するこ と力 中空粒子による安全タイヤの重要な課題である。そのためには、中空粒子表面 を改質することが望まれているが、上述の理由力 上記付着防止剤による粒子同士 の摩擦低減効果は充分ではなぐこの付着防止剤による中空粒子表面の改質を期 待するのは難しぐ常用走行下でにおける中空粒子の耐久性面力 の改善も望まれ ていた。
[0007] さらに、上記付着防止剤を中空粒子と共にタイヤ内に充填した場合、該タイヤの転 動時は付着防止剤と中空粒子との比重差並びに、転動時の遠心力の影響により、付 着防止剤がタイヤの内周面側に集まる。そして、タイヤの転動に伴って路面と接する トレッド踏面部分では、路面からの入力によりタイヤ内部の付着防止剤が踏面側から タイヤ半径方向内側に向力つて飛び跳ねるように移動し再びタイヤの内周面側に戻 る、動きが繰り返される。すると、この動作中の付着防止剤が中空粒子との摩擦を引 き起こし易くなる結果、中空粒子の温度が上昇し該粒子の発熱耐久性を低下させる 、おそれがある。
[0008] 従って、本発明は、タイヤ気室内に中空粒子を充填したタイヤとリムとの組立体にお いて、中空粒子の表面改質並びに中空粒子同士の融着防止を目的として、中空粒 子の表面に被覆剤を適用するに際し、該被覆剤の中空粒子表面での均一分布およ び同表面に対する強固な付着を実現するための手段について提案するものである。 課題を解決するための手段
[0009] すなわち、本発明の要旨は、次の通りである。
(1)タイヤをリムに装着し、該タイヤとリムとで区画されたタイヤ気室に、熱膨張が可能 な榭脂による連続相と独立気泡とからなる中空粒子の多数を配置し、さらに該タイヤ 気室に大気圧を超える高圧気体を充填したタイヤとリムとの組立体であって、前記中 空粒子の表面の少なくとも部分に、該表面に熱を介して定着された被覆剤を有する ことを特徴とするタイヤとリムとの組立体。
[0010] (2)上記(1)において、前記中空粒子の全表面に被覆剤を有することを特徴とするタ ィャとリムとの組立体。
[0011] (3)上記(1)または(2)において、中空粒子の被覆に使用した被覆剤量および下記 処理に従って得られる沈殿物量に基づいて、次式
定着率 ={ (使用被覆剤量) (沈殿物量) }Z (使用被覆剤量) X 100
にて求められる被覆剤の定着率が 90mass%以上であることを特徴とするタイヤとリム との組立体。
分液ロート内に、 n キサン、イソプロピルアルコール、エタノールおよびメタノー ルカも選ばれた少なくとも 1種の溶媒 300ccと、 2 3gの範囲で秤量した被覆剤を有 する中空粒子とを添加し、常温下で 1分間攪拌した後 10分間静置し、沈殿物をロート 力も排出そして採取した後、再度上記溶媒を追加し分液ロート内溶媒を 300ccに調 整した上で、上記攪拌、静置および排出そして採取を、さらに 4回繰り返し、合計 5回 分の沈殿成分を、定法により溶媒を除去後に沈殿物量として秤量し、元の中空粒子 量に対する質量百分率を算出して沈殿物量とする。
[0012] (4)上記(3)において、前記定着率が 95mass%以上であることを特徴とするタイヤと リムとの,袓立体。
[0013] (5)上記(3)または(4)において、前記定着率が 99mass%以上であるであることを特 徴とするタイヤとリムとの組立体。
[0014] (6)上記(1)ないし(5)のいずれかにおいて、前記中空粒子の中空部内の圧力が大 気圧以上の高圧であり、該中空粒子を加熱したときの膨張開始温度 Ts2が 90°C以 上 200°C以下の範囲であり、下記中空粒子の充填率が 5vol%以上 80vol%以下で あることを特徴とするタイヤとリムとの組立体。
中空粒子の充填率 = (粒子体積値 Zタイヤ気室容積値) X 100 一- (I) ここで、
粒子体積値:タイヤ気室に配置した全中空粒子の大気圧下での合計体積 と粒子周囲の空隙体積との合計量 (cm3)
タイヤ気室容積値:タイヤとリムとの組立体に空気のみを充填して使用 内圧 (kPa)に調整した後、充填空気を内圧が大気圧
になるまで排出した際の充填空気排出量 (cm3)を用いて、次式 (II) 力 求めた値 (cm3)
タイヤ気室容積値 = (充填空気排出量) / (使用内圧 Z大気圧)― (Π) なお、式 (II)において使用内圧はゲージ圧値 (kPa)を、大気圧値 は気圧計による絶対値 (kPa)を用いる。
[0015] (7)上記(6)において、被覆剤の融点 Tmが中空粒子の膨張開始温度 Ts2より高い ことを特徴とするタイヤとリムとの組立体。
[0016] (8)上記(1)ないし(7)のいずれかにおいて、被覆剤の融点 Tm力 ガス成分を液体 状態の発泡剤として樹脂に封じ込めた膨張性榭脂粒子の膨張開始温度 Tslに関し て、下記の関係を満たすことを特徴とするタイヤとリムとの組立体。
記 Tsl < Tm < Tsl + 150°C
[0017] (9)上記 (8)にお 、て、中空粒子は、被覆剤が付着された膨張性榭脂粒子を、被覆 剤の融点 Tm以上の温度で膨張させて得たものであることを特徴とするタイヤとリムと の糸且立体。
[0018] (10)上記(1)ないし(9)のいずれかにおいて、被覆剤が有機酸金属塩であることを 特徴とするタイヤとリムとの組立体。
[0019] (11)上記(1)ないし(10)において、タイヤ内に配置する前の中空粒子内部の気体 力 タイヤ気室内に充填する気体とは異なる気体であることを特徴とするタイヤとリム との組立体。
[0020] (12)上記(11)において、タイヤ内に配置する前の中空粒子内部の気体が不燃性ガ スであり、内圧を与えた後のタイヤとリムとの組立体内における中空粒子内部の気体 が該不燃性ガスとタイヤ気室に充填した気体との混合物であることを特徴とするタイ ャとリムとの組立体。
[0021] (13)上記(12)において、前記不燃性ガスが、炭素数 2から 8の直鎖状及び分岐状 の脂肪族炭化水素およびそのフルォロ化物、炭素数 2から 8の脂環式炭化水素およ びそのフルォロ化物、そして次の一般式(III):
R' -O-R2 —— (III)
(式中の R1および R2は、それぞれ独立に炭素数が 1から 5の一価の炭化水素基であ り、該炭化水素基の水素原子の一部をフッ素原子に置き換えても良い)にて表される エーテルィ匕合物、からなる群の中力も選ばれた少なくとも 1種の気体であることを特徴 とするタイヤとリムとの組立体。
[0022] (14)上記(1)ないし(13)のいずれかにおいて、中空粒子の中空部圧力が常用走行 使用時の車両指定タイヤ内圧の 70%以上であることを特徴とするタイヤとリムとの組 立体。
[0023] (15)上記(1)ないし(14)のいずれかにおいて、中空粒子の殻部を構成する榭脂に よる連続相力、アクリロニトリル系榭脂であることを特徴とするタイヤとリムとの組立体。
[0024] (16)上記(15)において、アクリロニトリル系榭脂が、少なくともアクリロニトリル、メタァ クリロ-トリルおよびメチルメタタリレートの 3種のモノマーを含んで成る共重合体、また は少なくともアクリロニトリル、メタアクリロニトリルおよびメタクリル酸の 3種のモノマーを 含んで成る共重合体であることを特徴とするタイヤとリムとの組立体。
[0025] (17)上記(1)ないし(16)のいずれかにおいて、中空粒子の中空部圧力が常用走行 使用時の車両指定タイヤ内圧以上であることを特徴とするタイヤとリムとの組立体。
[0026] (18)上記(1)ないし(17)のいずれかにおいて、タイヤ気室に配置した中空粒子群 の平均粒径力 0〜200 mの範囲〖こあり、かつ該中空粒子群の平均真比重が 0. 0 1〜0. 06gZcm3の範囲にあることを特徴とするタイヤとリムとの組立体。
[0027] (19)上記(1)ないし(18)のいずれかにおいて、さらにアンチロックブレーキシステム の車輪速度センサーによる車輪速度検知に基づくタイヤ気室圧力低下警報機能お よび、圧力センサーによるタイヤ気室圧力の直接測定方式に基づくタイヤ気室圧力 低下警報機能のいずれか一方または両方をそなえることを特徴とするタイヤとリムと の糸且立体。
[0028] (20)上記(1)ないし(19)のいずれかにおいて、タイヤ気室内に、さらに大気圧下で の平均嵩比重が該中空粒子の平均真比重よりも大きい発泡体の多数を該中空粒子 群に混在して配置したことを特徴とするタイヤとリムとの組立体。
[0029] (21)上記(20)において、前記発泡体は、直径が 1〜 15mmの略球体形状または一 辺が l〜15mmの立方体形状であり、平均嵩比重が 0. 06〜0. 3gZccであり、独立 気泡または連通気泡を有するものであることを特徴とするタイヤとリムとの組立体。
[0030] (22)タイヤをリムに装着したタイヤとリムとの組立体における該タイヤとリムとで区画さ れたタイヤ気室内に、大気圧を超える高圧気体とともに配置する、熱膨張が可能な榭 脂による連続相と独立気泡とからなる中空粒子であって、その中空部内の圧力が大 気圧以上であり、かつ表面の少なくとも部分に、該表面に熱を介して定着された被覆 剤を有することを特徴とする中空粒子。
[0031] (23)上記(22)において、中空部内の圧力が、常用走行使用時の車両指定タイヤ内 圧の 70%以上であることを特徴とする中空粒子。
[0032] (24)上記(22)または(23)において、全表面に被覆剤を有することを特徴とする中 空粒子。
[0033] (25)上記(22)ないし(24)のいずれかにおいて、中空粒子の被覆に使用した被覆 剤量および下記処理に従って得られる沈殿物量に基づ!/、て、次式
定着率 ={ (使用被覆剤量) (沈殿物量) }Z (使用被覆剤量) X loo
にて求められる被覆剤の定着率が 90mass%以上であることを特徴とする中空粒子。
分液ロート内に、 n キサン、イソプロピルアルコール、エタノールおよびメタノー ルカも選ばれた少なくとも 1種の溶媒 300ccと、 2 3gの範囲で秤量した被覆剤を有 する中空粒子とを添加し、常温下で 1分間攪拌した後 10分間静置し、沈殿物をロート 力も排出そして採取した後、再度上記溶媒を追加し分液ロート内溶媒を 300ccに調 整した上で、上記攪拌、静置および排出そして採取を、さらに 4回繰り返し、合計 5回 分の沈殿成分を、定法により溶媒を除去後に沈殿物量として秤量し、元の中空粒子 量に対する質量百分率を算出して沈殿物量とする。
[0034] (26)上記(25)において、前記定着率が 95mass%以上であることを特徴とする中空 粒子。
[0035] (27)上記(25)または(26)において、前記沈殿物量が元の中空粒子量の 99mass
%以上であることを特徴とする中空粒子。
[0036] なお、本文中で記載するタイヤ気室の圧力とは、特に記載しな 、場合はゲージ圧 ( ゲージに示される圧力)を指す。 発明の効果
[0037] 本発明によれば、タイヤ受傷後のタイヤ気室圧力低下時にあっても必要とされる距 離を安定して走行し得る機能を発現し、通常走行下の低速力 高速のより広 、走行 速度条件下においても、上記機能を確実に保持するタイヤとリムとの組立体を提供 することができる。
[0038] 以上の効果は、主にタイヤ気室内に配置された中空粒子に負うところであり、この 中空粒子の表面に本発明に従って被覆剤を適用すれば、該被覆剤の中空粒子表 面での均一分布および同表面に対する強固な被覆が実現されるため、
中空粒子同士の融着が確実に防止され、また中空粒子の耐久性を向上することがで きる。従って、タイヤが受傷するまでの期間にわたり、中空粒子本来の機能が維持さ れる結果、上記したタイヤとリムとの組立体の高機能を長期にわたり保証できる。 図面の簡単な説明
[0039] [図 1]本発明に従うタイヤとリムとの組立体を示すタイヤ幅方向断面図である。
[図 2]本発明に従うタイヤとリムとの組立体に搭載する、中空粒子および気体の充填 に併用する『フィルターを備えたタイヤ用バルブ』の一例を示す図である。
符号の説明
[0040] 1 タイヤ
2 リム
3 タイヤ気室
4 中空粒子
5 ビードコア
6 カーカス
7 ベル卜
8 トレッド
9 バルブ
10 インナーライナ一層
11 サイド部
12 粒子周囲の空隙
13 フイノレター
発明を実施するための最良の形態
[0041] 図 1は、本発明で対象とする安全タイヤを例示する幅方向断面図である。
図示の安全タイヤは、タイヤ 1をリム 2に装着し、該タイヤ 1とリム 2とで区画されたタイ ャ気室 3内に、榭脂よりなる連続相と独立気泡とからなる熱膨張可能な中空粒子 4の 多数を、加圧下で充填配置してなる。
なお、タイヤ 1は、規格に従う各種自動車用タイヤ、たとえば、トラックやバス用タイ ャ、乗用車用タイヤ等であれば、特に構造を限定する必要はない。すなわち、この発 明はタイヤとリムとの組立体になるすべての安全タイヤに適用できる技術であり、図示 のタイヤは、 1対のビードコア 5間でトロイド状に延びるカーカス 6のクラウン部に、その 半径方向外側へ順にベルト 7およびトレッド 8を配設してなる一般的な自動車用タイ ャである。
図において、符号 9は、タイヤ気室 3に対して気体を給排するバルブを、 10はイン ナーライナ一層をそれぞれ示し、 11はサイド部を、そして 12は、中空粒子 4の周囲の 空隙をそれぞれ示す。
[0042] 上記中空粒子 4は、略球形状の榭脂による連続相で囲まれた独立気泡を有する、 たとえば粒径が 10 μ m〜500 μ m程度の範囲で粒径分布を持った中空体、あるい は、独立気泡による小部屋の多数を含む海綿状構造体である。すなわち、該中空粒 子 4は、外部と連通せずに密閉された独立気泡を内包する粒子であり、該独立気泡 の数は単数であってもよいし、複数であってもよい。この明細書では、この『中空粒子 群の独立気泡内部』を総称して『中空部』と表現する。
また、この粒子が独立気泡を有することは、該粒子が独立気泡を密閉状態で内包 するための『榭脂製の殻』を有することを指し、さらに、榭脂による連続相とは、この『 榭脂製の殻を構成する成分組成上の連続相』を指す。なお、この榭脂製の殻の組成 は後述のとおりである。
[0043] この中空粒子 4の多数個である中空粒子群は、高圧気体とともにタイヤ気室 3の内 側に充填配置することによって、通常の使用条件下ではタイヤの『使用内圧』を部分 的に担うと共に、タイヤ 1の受傷時には、タイヤ気室 3内の失った圧力を復活させる機 能を発現する源となる。この『内圧復活機能』については後述する。
ここで、『使用内圧』とは、『自動車メーカーが各車両毎に指定した、装着位置ごとの タイヤ気室圧力値 (ゲージ圧力値)』を指す。
[0044] さて、近年の車両の高性能化や高速ィ匕の実態を鑑みたとき、タイヤ気室内に配置 した中空粒子が所期した機能を発揮することが肝要であり、そのためには、中空粒子 の耐久性をさらに向上することが求められている。
そこで、発明者らは中空粒子の耐久性、具体的には耐熱性に関して、中空粒子の 発熱の実態にっ 、て鋭意検討し、中空粒子の更なる耐久性 (耐熱性)の向上を達成 した。まず、中空粒子はその原料である『膨張性榭脂粒子』、すなわちガス成分を液 体状態の発泡剤として樹脂に封じ込めた粒子を加熱膨張することにより得られ、この 膨張性榭脂粒子には膨張開始温度 Tslが存在する。更に、この加熱膨張によって得 られた中空粒子を室温から再度加熱すると、中空粒子は更なる膨張を開始し、ここに 中空粒子の膨張開始温度 Ts2が存在する。
[0045] 発明者らは、これまで多くの膨張性榭脂粒子カゝら中空粒子を製造し検討を重ねて きた結果、 Tslを耐熱性の指標としてきた力 耐熱性の指標としては Ts2が適切であ ることを見出すに到った。
まず、膨張性榭脂粒子を加熱膨張させる場合における膨張挙動を観察した。膨張 性榭脂粒子は膨張する前の段階にあるため、中空粒子の状態に比して粒径が極端 に小さぐ榭脂製の殻部の厚さが極端に厚い。よって、マイクロカプセルとしての剛性 が高い状態にある。したがって、加熱膨張の過程で榭脂製の殻部の連続相がガラス 転移点を超えても、更なる加熱により殻部がある程度柔ら力べなるまでは、内部ガスの 拡張力が殻部の剛性にうち勝つことが出来ない。よって、 Tslは実際の殻部のガラス 転移点よりも高い値を示す。
[0046] 一方で、中空粒子を再度加熱膨張させる場合では、中空粒子の殻部の厚さが極端 に薄ぐ中空体としての剛性が低い状態にある。したがって、加熱膨張の過程で殻部 の連続相がガラス転移点を超えると同時に膨張を開始するため、 Ts2は Tslより低い 位置づけとなる。
本発明では、膨張性榭脂粒子の膨張特性を活用するのではなぐ一旦膨張させた 中空粒子の更なる膨張特性を活用するものであるため、耐熱性を議論するには、従 来の Tslではなく Ts2を指標とすべきである。
[0047] そして、中空粒子の Ts2は、 90°C以上 200°C以下であることが肝要である。なぜな ら、中空粒子の Ts2が 90°C未満では、選択したタイヤサイズによっては、そのタイヤ の保証速度に到達する以前に、中空粒子が再膨張を開始する場合があるからである 一方、 200°Cを超えると、パンク受傷後のランフラット走行において、中空粒子の摩 擦発熱に起因する急激な温度上昇が起こっても、膨張開始温度 Ts2に達することが 出来ない場合があり、よって目的とする『内圧復活機能』を十分に発現させることが出 来なくなる場合がある。
[0048] よって、 Ts2の範囲は 90°C以上 200°C以下に設定することが好ましぐ更に好ましく は 130°C以上 200°C以下、そして 150°C以上 200°C以下であり、もっとも好ましいの は 160°C以上 200°C以下の範囲である。
[0049] 以上のように、上記した上限値および下限値に従う膨張開始温度 Ts2を有する中 空粒子をタイヤ気室内に配置することにより、内圧復活機能を確実に発現させること はもとより、高速度走行での耐熱性を向上させる事によって、常用走行時の『内圧復 活機能保持』が達成される。
[0050] 更に、中空粒子の殻部自体の耐熱性に加えて、中空粒子間衝突に起因する中空 粒子の破壊に対する耐久性を向上する手段に関しても、鋭意検討した。その結果、 中空粒子の表面を被覆剤で覆って中空粒子の表面を改質するのが肝要であることを 見出した。
すなわち、中空粒子の表面に熱を介して被覆剤を定着させることによって、常用走 行時の遠心力変動入力に起因した中空粒子同士の衝突における衝撃および摩擦 発熱を緩和できることを知見した。
[0051] ここで、被覆剤には、常温にて微粒子であり、中空粒子の原料である膨張性榭脂粒 子の表面に衝突させることによって固着させることができるものを用いる。被覆剤は、 例えばサイクロンやジェットミルなどの高速気流の中に、膨張性榭脂粒子とともに混 入して両者を衝突させることによって、被覆剤を表面に固着させた膨張性榭脂粒子 を得ることができる。次いで、この膨張性榭脂粒子を Tsl以上の温度に加熱して膨張 させれば、熱を介して被覆剤を定着させた所望の中空粒子を得ることができる。
[0052] かように、被覆剤を表面に固着させた膨張性榭脂粒子を加熱膨張させれば、その 過程において膨張性榭脂粒子の殻部榭脂が溶融するため、被覆剤は中空粒子の表 面に結合される結果、強固な定着が可能となる。
[0053] 本発明で所期する中空粒子の表面に対する被覆剤の強固な定着とは、具体的に 言うと、使用した被覆剤量に対する中空粒子表面での定着量である『定着率』にて表 現する事ができる。
以下に、上記定着率の測定方法を示す。まず、選択された溶媒内に被覆剤による 表面被覆を施した中空粒子を、下記に従って処理したときに得られる『沈殿物量』を 求める事が肝要である。 記
分液ロート内に、 n キサン、イソプロピルアルコール、エタノールおよびメタノー ルカも選ばれた少なくとも 1種の溶媒 300ccと、 2 3gの範囲で秤量した被覆剤を有 する中空粒子とを添加し、常温下で 1分間攪拌した後 10分間静置し、沈殿物をロート 力も排出そして採取した後、再度上記溶媒を追加し分液ロート内溶媒を 300ccに調 整した上で、上記攪拌、静置および排出そして採取を、さらに 4回繰り返し、合計 5回 分の沈殿成分を、定法により溶媒を除去後に沈殿物量として秤量し、元の中空粒子 量に対する質量百分率を算出して『沈殿物量』とする。
[0054] 次いで、上記沈殿物量、さらに実際に被覆のために使用した被覆剤量から、次式 に従って『定着率』を求めることができる。
定着率 ={ (使用被覆剤量) (沈殿物量) }Z (使用被覆剤量) X loo
ここに、上記に従って求められる定着率が 90mass%以上であることが好ましい。す なわち、上記『沈殿物量』は、遊離状態の被覆剤成分量を指し、言い換えれば中空 粒子表面に定着できなかった被覆剤の量を意味する。
そして、この沈殿物量が使用被覆剤量の 90maSS%未満では、遊離状態の被覆剤 粒子が中空粒子に比して高比重であるがゆえに、タイヤ内の遠心力変動入力に対 する中空粒子の発熱を悪ィ匕させるため好ましくない。より好ましい定着率の範囲は、 9 5mass%以上、そして 99mass%以上である。
[0055] ここで、中空粒子の表面に熱を介して被覆剤を定着させるに当り、中空粒子の全表 面を被覆剤で覆うことが特に表面改質の観点からは有利であるが、中空粒子の表面 に部分的に定着させても有効である。その場合は、上記の定着率の下で被覆剤が中 空粒子の表面に均一に分散していることが好ましい。そのためには、例えば、中空粒 子の原料である熱膨張性粒子の状態で、ジェットミルやサイクロンに代表される高速 気流下にて熱膨張性粒子と被覆剤とを混合すると、両者が高速度で衝突すること〖こ より、熱膨張性榭脂粒子表面に被覆剤を均一に付着させる事ができる。これをもって 所望の温度環境下にて熱膨張性榭脂粒子を加熱膨張させれば、該被覆剤が均一に 分散定着した中空粒子を得る事ができる。
[0056] また、被覆剤の使用量は、中空粒子量の 3 20mass%の範囲が好ましぐ更に好 ましくは 3〜: L0mass%の範囲である。なぜなら、被覆剤の使用量が中空粒子量の 3m ass%未満では、被覆剤を用いた上述の効果が得られ難ぐ一方 20maSS%を超える と、中空粒子表面の被覆に対して余剰となった被覆剤の微粒子が、中空粒子表面に 付着することによる過剰な比重増や、前述同様に遊離状態の余剰な被覆剤粒子が、 中空粒子に比して高比重であるがゆえのタイヤ内遠心力変動入力に対する中空粒 子の発熱悪化を誘発するため好ましくな ヽ。
[0057] ここに、被覆剤としては、有機酸金属塩、とりわけ炭素数が 14以上の金属酸塩が好 ましぐ具体的にはステアリン酸リチウムおよびステアリン酸マグネシウムが好適に用 いられる。すなわち、ステアリン酸リチウムゃステアリン酸マグネシウムなどの有機酸 金属塩は、固体潤滑剤として代表的な化合物であり、該被覆剤の融点以下の温度範 囲にお 1ヽて、良好な摩擦係数低減効果を得る事ができる。
[0058] また、力べして得られた中空粒子をタイヤ気室内に配置するに際し、被覆剤の融点 Tmが中空粒子の膨張開始温度 Ts2より低いと、以下の不具合が発生する恐れがあ る。すなわち、被覆剤の融点 Tmが Ts2より低いと、常用走行中に、中空粒子が膨張 開始温度 Ts2に達していないにもかかわらず、被覆剤の一部が Tmに達することによ つて溶融してしまい、中空粒子の流動性が低下したり、中空粒子同士の融着を引き 起こすことになる。すると、本来中空粒子の持つ Ts2に基づいていた発熱限界速度 が大幅に引き下げられてしまうことになり、上記した内圧復活機能を発揮する上での 障害となるため好ましくない。従って、被覆剤の融点は少なくとも Ts2以上であること が肝要である。
[0059] 更に、被覆剤の融点 Tmが Tsl以上であり且つ前記膨張性榭脂粒子の膨張過程で の加熱温度が Tmより高 ヽ場合には、膨張性榭脂粒子の殻部榭脂の溶融と共に被 覆剤の溶融が起こるため、両者間のより密接かつ強固な定着が可能となり、被覆剤 による中空粒子表面の部分的または全面的な被覆が可能となる。これを満たすには 、被覆剤の融点 Tmの上限力Tsl + 150°C以下の範囲が好ましい。被覆剤の融点 T m力Tsl + 150°Cを超えると、被覆剤を溶融させつつ膨張させるためには更に高い 温度まで加熱する必要があり、この場合には膨張の程度を調整することが難しくなり、 所望の粒径や比重の中空粒子が得られなくなる、おそれがあるため好ましくない。 [0060] 次に、上述のように耐久性を向上した中空粒子をタイヤ気室内に配置したタイヤとリ ムの組立体が安全タイヤとして機能するための基本的要件を述べる。
[0061] さて、従来の空気入りタイヤは、タイヤ気室圧力が大気圧まで低下した状態で走行 すると、荷重によりタイヤが大きく橈み、そのサイド部が路面に接地してしまうため、路 面との摩擦と繰り返し屈曲変形とによる発熱によって骨格のカーカス材が疲労し、サ イド部の磨耗傷が最終的にタイヤ気室内まで貫通することで破壊に到る。
[0062] そこで、本発明では、外傷によってタイヤ気室内の気体が漏れ出た際に、その後の 走行に必要な最低限のタイヤ気室圧力を適正に与え、失った圧力を回復させること を主目的としている。よって本発明では、タイヤとリムの組立体を圧力容器と捉えてい る。すなわち、パンクにより傷ついてしまった圧力容器の傷口を、タイヤ気室内に配置 した中空粒子群により暫定的に封止した上で、中空粒子を機能させて失った圧力を 回復することによって、この目的を達成しょうとするものである。従って、前述した従来 の空気入りタイヤのように、パンク後の走行自体がタイヤ、すなわち圧力容器を故障 破壊に導くような事があってはならな ヽ。
[0063] すなわち、タイヤ気室圧力が大気圧にまで低下したとしても、早期に上述の機能を 発揮させること〖こよって、前述のタイヤ破壊に至ることを回避し、圧力容器として機能 させることが重要であり、そのために、タイヤ気室内の圧力を『少なくともタイヤのサイ ド部が接地しなくなる圧力』まで復活させることが肝要である。
[0064] より具体的には、タイヤ気室に配置する中空粒子について、下記式 (I)に従う中空 粒子の充填率を 5vol%以上 80vol%以下とすることが好ましい。
中空粒子の充填率 = (粒子体積値 Zタイヤ気室容積値) X 100 一- (I) [0065] ここで、粒子体積値は、タイヤ気室に配置した全中空粒子の大気圧下での合計体 積と粒子周囲の空隙体積との合計量 (cm3)であり、以下の方法で算出できる。
まず、該粒子の大気圧下での平均嵩比重を求める。その方法は、例えば大気圧下 にて既知体積であるものの重量を測定することにより算出する。最初に、大気圧下で メスシリンダーに粒子を量りとり、超音波水浴中にて振動を与え、粒子間のパッキング が安定した状態にて、粒子の総体積 (粒子周囲の空隙体積を含む)と粒子の総重量 とを測定することによって、上記大気圧下での平均嵩比重を算出する。すなわち、粒 子の大気圧下での平均嵩比重は、
粒子の大気圧下での平均嵩比重 = (粒子の総重量) / (粒子の総体積) である。
次に、タイヤ気室内に配置した粒子の総重量を測定し、前記にて算出した該粒子 の大気圧下での平均嵩比重で割ることによって、タイヤ内部に配置した『粒子体積』 を算出することができる。すなわち、
粒子体積 = (タイヤに充填した粒子の総重量) Z (粒子の大気圧下での平均嵩比 重)
である。
なお、容積が既知の容器に粒子を量り取りながらタイヤ気室内に配置する方法でも 所望の粒子体積の粒子をタイヤ内に配置することが出来る。
[0066] また、タイヤ気室容積値は、タイヤとリムとの組立体に空気のみを充填して使用内圧
(kPa)に調整した後、充填空気を内圧が大気圧になるまで排出した際の充填空気排 出量 (cm3)を用いて、次式 (II)力も求めた値 (cm3)である。
タイヤ気室容積値 = (充填空気排出量) / (使用内圧 Z大気圧)― (Π) なお式 (II)において使用内圧はゲージ圧値 (kPa)を、大気圧値は気圧計による絶対 値 (kPa)を用いる。すなわち大気圧は、ゲージ圧では 0[kPa]で表される力 大気圧値 自体は日々刻々と変動するものであるため、その時点での気圧計力 観測される絶 対値を用いる。よって例えばある時の大気圧が 1013hPaであった場合は、大気圧絶 対値として 101. 3kPaを式 (II)に用いる。
[0067] 以下に、上記した中空粒子の充填率を 5vol%以上 80vol%以下とする理由につい て、常用使用からパンク状態となった場合の態様へと順に説明する。
まず、タイヤ気室に中空粒子の多数を配置し、さらに該タイヤ気室に高圧気体を充 填して、タイヤ気室圧力を使用内圧とする場合から説明する。
本発明では、中空粒子 4をタイヤ気室 3に配置した後、該粒子 4周囲の空隙部 10、 言い換えればタイヤ気室の圧力が、装着車両指定内圧等の所望の使用内圧となる ように、空気や窒素等の高圧気体を充填することが肝要である。 タイヤ気室 3に中空粒子 4を配置し、さらに気体を充填してタイヤ気室 3の圧力を所 望の圧力に設定すると、当初、中空粒子の中空部内の圧力(独立気泡内の圧力)が タイヤ気室の圧力より小さいために、粒子は体積減少する。この時点での中空粒子 の形状は略球形状ではなぐ球形状力 扁平ィ匕して歪んだ形状となっている。この粒 子形状が扁平ィヒして歪んだ状態のままタイヤ走行を開始すると、中空粒子は、球形 状の場合と比べて粒子同士の衝突やタイヤおよびリム内面との衝突により、破壊しや すくなる。すなわち、中空粒子が扁平ィ匕して歪んだ形状では、衝突による入力を均一 に分散させることができず、耐久性面で大きな不利をもたらすことになる。
[0068] 一方、扁平ィ匕して歪んだ中空粒子は、その中空部内の圧力とタイヤ気室の圧力と の差により体積減少した状態であるわけだが、一定期間にわたりタイヤ気室 (粒子周 囲の空隙部)の圧力を保ち続けることによって、中空粒子の中空部内の圧力、言い 換えれば該粒子内の独立気泡内の圧力を、タイヤ気室の圧力程度に高めることがで きる。すなわち、扁平ィ匕した中空粒子は変形させられているため、その殻の部分には 元の略球形状に戻ろうとする力が働いている。また、扁平化した中空粒子の中空部 内の圧力は、タイヤ気室の圧力よりも低いことから、その圧力差を解消するために、タ ィャ気室の気体の分子が榭脂による連続相の殻を通過して粒子の中空部内に浸透 する。さらに、中空粒子の中空部は独立気泡であり、その中の気体は発泡剤に起因 するガスで満たされているため、タイヤ気室 (粒子周囲の空隙部)の気体とは異なる 場合がある。この場合は、上述の単なる圧力差だけではなく気体の分圧差に従いな がら、その分圧差を解消するまでタイヤ気室内の高圧気体が粒子中空部内へ浸透し ていく。このように、タイヤ気室内の高圧気体は、時間と共に中空粒子の中空部内へ 浸透していくため、この中空部内に浸透した分だけ、タイヤ気室の圧力が低下するこ ととなる。よって、中空粒子の中空部内に浸透した分を補うために、高圧気体を充填 した上で所望の圧力をかけ続けることにより、所望の使用内圧に調整した、本発明の タイヤを得ることができる。
[0069] かように、中空粒子の中空部内の圧力は、タイヤ気室 (粒子周囲の空隙部)の圧力 に近づきながら、一旦減少した粒子体積を回復していき、粒子形状は扁平化されて 歪んだ形状から元の略球形状へと回復して!/、く。この形状を回復して 、く過程の中で 、中空粒子中空部内の圧力がタイヤ気室の圧力に対して少なくとも 70%にまで増加 することにより、粒子形状は扁平化した状態から略球形へ回復することが出来、これ によって上述した粒子の耐久性を保証することが出来る。
[0070] 上記の手法によれば、中空粒子のまわりに高圧気体が介在することになり、通常走 行時に中空粒子が負担する荷重を無視できるほど軽減できるのはもちろんのこと、上 述の粒子体積を回復した中空粒子にぉ 、ては、粒子形状が略球形に回復するため 、タイヤ転動時の繰り返し変形に伴って粒子に加わる疲労や破壊も大幅に低減でき る結果、粒子の耐久性が損なわれることはない。中空粒子の耐久性が損われない範 囲は、タイヤ気室内の圧力が、装着する車両指定内圧等の所望する高圧下環境の なかで粒子が体積を回復しながら粒子中空部の圧力が増加する過程において、中 空粒子の中空部の圧力が所望のタイヤ気室内の圧力に対して少なくとも 70%である ことが好ましい。さらには、 80%以上、 90%以上、そして 100%以上と高く設定するこ とが推奨される。
[0071] ここで、中空粒子の中空部内の圧力を所望のタイヤ気室内の圧力に対して少なくと も 70%とするタイヤとリムとの組立体を得るには、中空粒子周囲の空隙気体の圧力を 、少なくとも装着する車両指定内圧等の所望するタイヤ気室内の圧力に対して 70% 以上まで高めた状態に保持し、この圧力をかけ続けたまま適切な時間を経過させれ ばよい。あるいは、中空粒子をタイヤとは別の圧力容器内に配置し、粒子周囲の空 隙圧力を少なくとも所望のタイヤ気室内の圧力に対して 70%以上まで高めた状態に 保持し、この圧力をかけ続けたまま該圧力容器内にて適切な時間保管したうえで、中 空粒子の中空部内の圧力が増加した状態の粒子をその周囲の雰囲気と共にタイヤ 気室内に配置することによつても、所望のタイヤとリムとの組立体を得ることができる。
[0072] なお、上述の適切な保持時間は、中空粒子の殻の部分、すなわち粒子の連続相に 対する空隙気体の透過性と、粒子中空部内の気体と空隙気体との分圧差とを考慮し て設定すればよい。
[0073] 以上の機構と粒子の形状、体積の変化過程に則り、タイヤ気室 (粒子周囲の空隙部) に充填する気体の種類と圧力とを適宜に選択、そして調節することによって、中空粒 子の中空部内の圧力を所望の範囲に設定できる。 [0074] 以上述べてきたように、中空粒子の中空部内の圧力を所望のタイヤ気室内の圧力 に対して少なくとも 70%とした粒子を、タイヤ気室内に配置することにより、該タイヤ 気室の圧力が大気圧となった状態力 走行した時に、少なくとも該タイヤのサイド部 が接地しなくなるタイヤ気室圧力まで、該タイヤ気室の圧力を回復させることを実現 する必要がある。
以下に、そのタイヤ内圧の復活機構を説明する。
[0075] さて、上述した中空粒子群をタイヤ気室内に配置したタイヤとリムとの組立体にあつ ては、該タイヤが受傷すると、中空粒子 4相互間の空隙 10に存在するタイヤ気室内 の高圧気体がタイヤの外側に漏れ出る結果、タイヤ気室の圧力は大気圧と同程度の 圧力にまで低下する。そして、このタイヤ気室圧力低下の過程において、以下の事が タイヤ気室内で起こって 、る。
[0076] まず、タイヤが受傷しタイヤ気室の圧力が低下し始めると、中空粒子の多数が受傷 部を封止し、急激な気室圧力の低下を抑制する。ここで、本発明では中空粒子の中 空部圧力が、すくなくとも常用走行使用時の車両指定タイヤ内圧の 70%以上と規定 しているが、受傷部の封止能力は中空部圧力に依存する。すなわち、中空部圧力が 70%以上であれば略球形状を保つことが出来ることを前述したが、略球形状を保つ ことによって良好な流動性と弾力性を発現できるため、中空部内圧が低い場合に比 ベて受傷部の封止限界が大幅に向上する。
その一方、気室圧力の低下に伴いタイヤの橈み量は増加し、タイヤ気室容積が減 少する。さらに、気室圧力が低下するとタイヤが大きく橈み、タイヤ気室内に配置した 中空粒子は、タイヤ内面とリム内面との間に挟まれながら、圧縮とせん断の入力を受 けることとなる。
[0077] 一方、上述の使用内圧下で存在していた中空粒子の中空部内の圧力(独立気泡 中の気泡内圧力)は、受傷後も上記使用内圧に準じた高い圧力を保ったまま、言い 換えれば、受傷前の粒子体積と中空部圧力を保持したままタイヤ気室内に存在する 事となる。よって、さらにタイヤが転動する事により、中空粒子そのものが直接的に荷 重を負担しつつ中空粒子同士が摩擦を引き起こし自己発熱するために、タイヤ気室 内の中空粒子の温度が急上昇する。そして、該温度が、中空粒子の熱膨張開始温 度 (Ts2 :該榭脂のガラス転移温度に相当する)を超えると、該粒子の殻は軟ィ匕し始 める。このとき、中空粒子の中空部内の圧力が使用内圧に準じた高い圧力であるの に加え、中空粒子温度の急上昇によりさらに中空部内圧力が上昇しているために、 中空粒子が一気に体積膨張し粒子周囲の空隙気体を圧縮する事になるため、タイヤ 気室の圧力を少なくともタイヤのサイド部が接地しなくなるタイヤ気室圧力まで回復さ せる事ができるのである。
[0078] 上記の機構によって中空粒子の中空部内の圧力を、熱膨張を可能とする高い圧力 に設定すれば、内圧復活機能を発現させることができる。
すなわち、前述のサイド部が接地しないタイヤ内圧までタイヤ気室の圧力を復活さ せるには、前述の中空部内の圧力が使用内圧の少なくとも 70%である中空粒子を、 5vol%以上 80vol%以下の充填率の下にタイヤ気室内に配置しておくことが肝要で ある。その理由を、以下に示す。
中空粒子の充填率が 5vol%未満であると、受傷部の封止は問題なく行えるが、該 中空粒子の絶対量が不足して 、るために、サイド部が接地しな 、圧力レベルまでの 充分な復活内圧を得る事が難しくなる。一方、中空粒子の充填率が 80vol%を超え ると、タイヤによっては常用時の高速走行での粒子摩擦による発熱のために、前述し た中空粒子の膨張開始温度 (Ts2)を超えて膨張してしまい、本発明の主たる機能で ある内圧復活機能が失われる可能性が有る。この常用時の高速走行での粒子の発 熱に関しては後述する。
[0079] また、前述した内圧復活機能を確実に発現させるためには、該内圧復活機能が発 現する前に、受傷部を確実に封止する事が肝要である。すなわち、受傷部の封止が 不完全であると、復活したはずの圧力が受傷部から漏洩してしまう結果、内圧復活機 能により得られた圧力がその後の走行能力に一時的にしか貢献できないために、受 傷後の走行性能を保証できなくなる恐れがある力 である。該中空粒子は、中空構 造による低比重かつ弾力性に富んだ粒子であるために、タイヤが受傷し受傷部から 中空粒子周囲の空隙気体が漏洩し始めると、空隙気体の漏洩による流れに乗って即 座に受傷部に密集し、受傷部の傷口を瞬時に封止する。以上述べたように、中空粒 子による受傷部の封止機能は、本発明の内圧復活機能を支える必須機能である。 [0080] 以上述べたように、本発明に従う粒子を充填したタイヤとリムとの組立体では、パン ク後の内圧低下に伴うタイヤ気室容積の減少とタイヤの橈み量の増大により、中空粒 子間の摩擦を引き起こすことで粒子の急激な温度上昇とともに粒子の膨張による内 圧復活を果たし、パンク後の安全走行を実現できる。
[0081] ところで、タイヤとリムとの組立体における中空粒子間の摩擦は、通常走行下にお いても、微小ではあるが発生している。しかし、走行速度が lOOkmZh以下の領域で は、発生した摩擦熱自体が小さぐ走行による外気への放熱によって、その収支が保 たれている。
[0082] しかしながら、 150kmZhを超える高速度領域において、さらには外気の温度環境 が著しく高い酷暑環境下においては、発生する摩擦熱が増加するわりに外気への放 熱が不足する状態となり、中空粒子の温度環境が著しく悪ィ匕することがある。こういつ た状況が長時間続くと、中空粒子の温度がその熱膨張開始温度 (Ts2)を上回ること によって該粒子が膨張してしまい、その結果、前述したパンク時の『内圧復活機能を 損失すること』がある。
[0083] 発明者らは、この問題を解決すべく鋭意検討し、高速度走行での中空粒子群の発 熱による『内圧復活機能の損失』を防ぎ、より高い速度での常用走行を可能とする新 規中空粒子を見出すに到った。
すなわち、タイヤは高速で回転することにより、速度に応じた遠心力を発生している 。タイヤの気室内に配置した中空粒子群も同様の遠心力を受けている。この遠心力 は、粒子の重量に比例かつ速度の 2乗に比例し、タイヤの半径に反比例する。さらに 、タイヤに荷重を負担させることにより一定の橈みを生じており、接地している領域は 、路面と平行な面の状態となっているため、この接地領域は曲率を持たずに、遠心力 がほぼゼロとなる。よって、荷重を負担しつつ回転するタイヤとリムとの組立体内にお ける中空粒子は、非接地領域では上述のように遠心力を受けつつ、その一方で接地 領域に入った瞬間に遠心力が抜けるといった『遠心力の繰り返し変動入力下』に置 かれるのである。
[0084] 従って、タイヤの気室内に配置する中空粒子群としては、粒子重量を極力抑えるこ とが好ましい。すなわち、中空粒子の平均真比重としては、出来るだけ小さいものを 選択することが好ましぐまたタイヤ気室容積に対する中空粒子の充填率は、前述の 『サイド部が接地しない圧力レベルまでの充分な内圧復活機能を発現する充填率』 の範囲の中で、出来るだけ少な ヽ充填率を選定する事が好まし ヽ。
中空粒子の充填率が 5vol%未満であると、タイヤによってはサイド部が接地しな ヽ 圧力レベルまでの充分な復活内圧を得る事が難しくなる。一方、中空粒子の充填率 力 S80vol%を超えると、タイヤによっては常用時の高速走行での粒子摩擦による発熱 のために、前述した中空粒子の膨張開始温度を超えて膨張してしまい、本発明の主 たる機能である内圧復活機能が失われる可能性が有るため好ましくない。よって、中 空粒子充填率の好ましい範囲は、 5vol%以上 80vol%以下であり、さらには、 70vol %以下、 60vol%以下、そして 50vol%以下である。
[0085] また、中空粒子の平均真比重は、 0. 01〜0. 06gZccの範囲が好ましい。すなわ ち、 0. OlgZcc未満であると、常用走行下での中空粒子の耐久性が低下し、常用使 用中に前述の『内圧復活機能』が失われる事がある。一方、 0. 06gZccを超えると、 前述の常用高速走行における遠心力変動入力が大きくなつて、発熱量が大きくなる ため好ましくない。
[0086] ここで、タイヤ気室内に配置する中空粒子群は真比重に分布を持っており、中空粒 子一粒一粒が同一の真比重値を持つわけではない。その理由として、加熱膨張時の 熱履歴の不均一性と、発泡剤に起因する膨張気体の保持性とが挙げられる。中空粒 子の原料である『膨張性榭脂粒子』一粒一粒が加熱により膨張して中空粒子となる 過程において、加熱時の熱履歴が不均一であると、十分に熱履歴を受け膨張した中 空粒子と、受けた熱履歴が少な 、ために膨張を途中で停止してしまった中空粒子が 共存することになる。また、『膨張性榭脂粒子』において、粒径の小さいものは相対的 に粒子の殻 (発泡剤を包んで 、る表皮を指す)である連続相の厚さも薄く、粒径の大 きいものは殻の厚さも厚い。加熱時の熱履歴が同等であったとしても、加熱により発 生した膨張気体の中空粒子内での保持性は、殻の絶対厚さに依存する。よって、膨 張前の粒径が小さ!/ヽ『膨張性榭脂粒子』は、殻が薄!ヽために膨張気体の保持性が低 く膨張率の低い中空粒子となり、真比重が大きい。その逆に粒径が大きい『膨張性榭 脂粒子』は、殻が厚いために膨張気体の保持性が高く膨張率の高い中空粒子となり 、より大きい粒径まで成長できるために、真比重が小さくなる。すなわち、一般的に、 マイクロカプセル等の膨張性組成物の膨張によって得られる中空粒子は、膨張後の 状態にお 、て粒径に分布を持っており、その中で粒径の小さい中空粒子であるほど 真比重が大きぐ粒径が大きい中空粒子であるほど真比重が小さいという、関係にあ る。
[0087] よって、十分に膨張した中空粒子は真比重が小さぐその逆に膨張を途中で停止し た中空粒子は真比重が大きい成分となる。このような真比重分布を持った粒子群をタ ィャ気内に配置した場合、通常内圧の走行下では速度に応じた遠心力を受けること となる。このとき、真比重の大きい粒子は、真比重の小さい粒子に比して、タイヤ気室 内でより大きい遠心力を受ける。よって、タイヤとリムとの組立体内のホイール内面側 近傍には、真比重の小さい粒子群が存在し、回転中心力 離れるに従って、徐々に 真比重の大きい中空粒子群が存在することとなる。そして、トレッド下のインナーラィ ナ一面側には、もっとも真比重の大きい粒子群が存在することとなり、粒子群はホイ ール内面側からトレッド下のインナーライナ一面側に向かって(タイヤ回転半径方向 外側に向力つて)真比重的に傾斜を持つに到る。
[0088] ここで、タイヤが前述の『繰り返し変動入力下』に置かれているなかで、真比重の小 さい中空粒子群に対して真比重の大きい中空粒子群は、接地領域での変動入力下 で大きな慣性力を発生する。よって大きな真比重を有する中空粒子群は、共存する" より小さい真比重を有する中空粒子群"を搔き分けるように動き回るため、小真比重 粒子と大真比重粒子との相対的な慣性力の差に起因する運動エネルギーの差が、 余分な粒子間摩擦熱を発生させる結果、粒子全体の発熱性を悪化させることとなる。 すなわち、中空粒子の発熱要因は、大真比重粒子群の小真比重粒子に対する相対 的な慣性力差とその運動による摩擦発熱とにあるのである。
[0089] 従って、その摩擦発熱抑制のために、第 1に、上述の相対的な慣性力差を小さくす る手段として、中空粒子の持つ真比重分布幅を狭くすることがあげられる。例えば、 ある平均真比重を持つ中空粒子に対し、大真比重側 (小粒径側)と小真比重側 (大 粒径側)力も同体積率だけ除去することで、平均真比重は変わらずとも真比重分布 幅を狭くすることができるため、上述の相対的な慣性力の差を抑制することが可能と なり、中空粒子群全体の発熱を抑制することができる。
[0090] 第 2に、発熱源である大比重粒子群 (小粒径側)だけを直接除去することで真比重 分布を狭くしながら、平均真比重をも小さくすることで、相対的な慣性力の差だけで はなぐ慣性力のレベル自体を抑制することにより、さらに中空粒子群全体の発熱を 抑帘 Uすることができる。
[0091] ここに、中空粒子の平均粒径につ!、て、好まし!/、範囲は 40 μ m力ら 200 μ mの範 囲である。該中空粒子の平均粒径が 40 mを下回ると、前述の真比重分布が広がり 大真比重粒子群の小真比重粒子群に対する相対的な慣性力差とその運動による摩 擦発熱により発熱性が悪化するため、好ましくない。一方、該中空粒子の平均粒径 力 S 200 mを上回ると、常用走行下での粒子同士が衝突している状況や、ノンクによ りタイヤ気室の圧力が大気圧となったときの走行にて中空粒子群が直接的に荷重を 支える状況において、大粒径側の粒子力 選択的に破壊してしまい、所望するパン ク後の走行性能を得られなくなる不利が生ずるおそれがあるため好ましくない。
[0092] 次に、中空粒子の中空部 (独立気泡)を構成する気体としては、窒素、空気、炭素 数 2から 8の直鎖状及び分岐状の脂肪族炭化水素およびそのフルォロ化物、炭素数 2から 8の脂環式炭化水素およびそのフルォロ化物、そして次の一般式 (III):
R' - O -R2—— (III)
(式中の R1および R2は、それぞれ独立に炭素数が 1から 5の一価の炭化水素基であ り、該炭化水素基の水素原子の一部をフッ素原子に置き換えても良い)にて表される エーテル化合物、力もなる群の中から選ばれた少なくとも 1種が挙げられる。また、タ ィャ気室内に充填する気体は空気でも良いが、上記粒子中の気体力 Sフルォロ化物 でない場合には、安全性の面力も酸素を含まない気体、たとえば窒素や不活性ガス 等が好ましい。
[0093] 尚、独立気泡を有する中空粒子を得る方法は特に限定されないが、発泡剤を用い て『膨張性榭脂粒子』を得、これを加熱膨張させる方法が一般的である。この発泡剤 としては、高圧圧縮ガス及び液化ガスなどの蒸気圧を活用する手法、熱分解によつ て気体を発生する熱分解性発泡剤を活用する手法などを挙げることができる。特に、 熱分解性発泡剤には窒素を発生させる特徴のあるものが多ぐこれらによる発泡によ つて得られる膨張性榭脂粒子の反応を適宜制御することによって得た粒子は気泡内 に主に窒素を有するものとなる。この熱分解性発泡剤としては特に限定されないがジ ニトロソペンタメチレンテトラミン、ァゾジカルボンアミド、パラトルエンスルフォ二ルヒド ラジンおよびその誘導体、そしてォキシビスベンゼンスルフォ-ルヒドラジンを好適に 挙げることができる。
[0094] 以下に高圧圧縮ガス及び液ィ匕ガスなどの蒸気圧を活用して中空粒子となる『膨張 性榭脂粒子』を得る手法を説明する。
粒子を形成する前記榭脂による連続相を重合する際、炭素数 2から 8の直鎖状及 び分岐状の脂肪族炭化水素およびそのフルォロ化物、炭素数 2から 8の脂環式炭化 水素およびそのフルォロ化物、そして次の一般式(III):
R'-O-R2—— (III)
(式中の R1および R2は、それぞれ独立に炭素数が 1から 5の一価の炭化水素基で あり、該炭化水素基の水素原子の一部をフッ素原子に置き換えても良い)にて表され るエーテルィ匕合物、力 なる群の中から選ばれた少なくとも 1種を発泡剤として高圧 下で液化させ、反応溶媒中に分散させつつ、乳化重合させる手法である。これにより 上記に示されるガス成分を液体状態の発泡剤として前術の榭脂連続相にて封じ込め た『膨張性榭脂粒子』を得ることができ、これを加熱膨張させる事によって、所望の中 空粒子を得る事が出来る。
[0095] また、受傷によりタイヤ気室圧力が低下した状態において、該中空粒子によって必 要最低限の内圧を付与するには、粒子の中空部内に所定圧力で封入された気体が 、粒子外部へ漏れ出ないこと、換言すると、中空粒子の殻の部分に相当する榭脂に よる連続相が気体を透過し難い性質を有することが肝要である。すなわち、連続相を 構成する榭脂はガス透過性の低い材質によること、具体的には、アクリロニトリル系共 重合体、アクリル系共重合体、塩化ビニリデン系共重合体のいずれか少なくとも 1種 力も成ることが肝要である。これらの材料は、タイヤ変形による入力に対して中空粒子 としての柔軟性を有するため、本発明に特に有効である。
[0096] とりわけ、中空粒子の連続相には、アクリロニトリル系重合体、アクリル系重合体およ び塩ィ匕ビユリデン系重合体のいずれかを適用することが好ましい。さらに詳しくは、重 合体を構成するモノマー力 アクリロニトリル、メタアクリロニトリル、メチルメタタリレート 、メタクリル酸、塩ィ匕ビユリデン力 選択される重合体であり、好ましくはアタリ口-トリ ル Zメタアクリロニトリル Zメチルメタタリレート 3元共重合体、アクリロニトリル zメタァク リロ-トリル Zメタクリル酸 3元共重合体力 選ばれた少なくとも 1種がそれぞれ有利に 適合する。これらの材料は、いずれもガス透過係数が小さくて気体が透過し難いため に、中空粒子の中空部内の気体が外部に漏れ難ぐ中空部内の圧力を適切に保持 することができる。
[0097] さらに、中空粒子の連続相は、 30°Cにおけるガス透過係数が 300 X 10— 12 (cc'cm /cm 's'cmHg)以下、好ましくは 30°Cにおけるガス透過係数が 20X 10— 12(cc'c m/cm2's'cmHg)以下、さらに好ましくは 30°Cにおけるガス透過係数が 2 X 10— 12 ( cc'cmZcm2's'cmHg)以下であることが推奨される。なぜなら、通常の空気入りタ ィャにおけるインナーライナ一層のガス透過係数は 300 X 10— 12 (cc · cm/cm2 · s · c mHg)以下のレベルにあって十分な内圧保持機能を有している実績を鑑み、粒子の 連続相についても、 30°Cにおけるガス透過係数を 300X10— 12(cc'cmZcm2 -s-c mHg)以下とした。ただし、このガス透過係数のレベルでは、 3〜6力月に 1度程度の 内圧補充が必要であるから、そのメンテナンス性の点力もも、 20X10— 12 (cc-cm/c m2 's'cmHg)以下、さらに好ましくは 2X 10— 12(cc'cm/cm2's'cmHg)以下とする ことが推奨される。
[0098] ここで、本発明に従ってタイヤ気室に中空粒子を配置するにあたり、タイヤが損傷し た際のタイヤ受傷部の封止機能を高めるために、平均嵩比重が該中空粒子の平均 真比重よりも大きい発泡体の多数を該中空粒子群に混在させる手段が有効である。 具体的には、直径が 1〜 15mmの略球体形状または一辺が 1〜 15mmの立方体形 状であり独立または連通気泡を有し、平均嵩比重が 0.06〜0. 3gZccでありかつ粒 子の平均真比重よりも大きいかさ比重値である発泡体の多数を加えることにより、該 内圧復活機能の発現期間を延ばし、タイヤ受傷後の走行能力を増大させることが可 能である。
[0099] すなわち、中空粒子は略球形状であるために流動性が高ぐよってタイヤバルブ等 の内径の小さい導入ロカもタイヤ気室内部に、容易に配置することができる。その一 方、タイヤが受傷したとき、該受傷部力もタイヤの外側へ中空粒子がタイヤ気室の高 圧気体と共に吹き出ようとして受傷部内面に集まることになる。しかしながら、受傷部 内面力もタイヤ外周面までの受傷経路は直線ではなく複雑に入り組んだ形状を呈す るため、タイヤ内面傷口力も入り込んだ該粒子は、該経路の途上行く手を阻まれる結 果、多数の中空粒子が受傷部内面に圧縮状態で集合することになり、受傷部が暫定 的に封止される。ここで、暫定的に封止とは、中空粒子そのものの漏洩はないが、該 粒子周囲の空隙気体が徐々に漏洩する状態を指す。
[0100] その際、受傷部の傷の形や大きさによっては、粒子のみによる暫定的封止が不完 全な場合がある。このような場合において、上述した発泡体の多数をカ卩えておくこと により、次のように封止のレベルを向上させることができる。
[0101] すなわち、転動中のタイヤ気室内においては、速度に応じた遠心力が発生しており
、その遠心力下において嵩比重の大きい該発泡体はタイヤのインナーライナ一側へ 、そして真比重の小さい該中空粒子は該発泡体よりは回転中心に近い側へ夫々偏 在する。この状態においては、もし該粒子のみでは封止できない程の大きさの傷を受 けたとしても、タイヤ内面のインナーライナ一面近傍に、該発泡体が多数偏在してい るため、該発泡体がタイヤ外部へ吹き出ようとして、受傷部の傷口内面にいち早く密 着することによって受傷部を封止する事となり、極めて有効である。
[0102] 特に、該発泡体が連通気泡を持つ熱可塑性ウレタンによる発泡体の場合、圧縮性 が高ぐ傷口の形状に密着しやすい事と、結果的に大きな傷口を該発泡体により極 めて複雑かつ微細化できる事によって、その複雑'微細化された気体の散逸流路を 該中空粒子にて封止するに最も適した様態へ変化させることが出来るため、大変有 効な手段となる。
[0103] ちなみに、本発明のタイヤとリムとの組立体では、さらにアンチロックブレーキシステ ムの車輪速度センサーによる車輪速度検知に基づくタイヤ気室圧力低下警報機能 および、圧力センサーによるタイヤ気室圧力の直接測定方式に基づくタイヤ気室圧 力低下警報機能の 、ずれか一方または両方をそなえることが好まし 、。
すなわち、本発明ではパンクによりタイヤ気室内の圧力が低下したまま走行すると、 前述の機構により内圧が復活するため、状況によっては運転者カ^イヤ受傷に気が 付かない場合がある。し力しタイヤ自身はパンクにより受傷しているため、そのまま走 行を続けるとタイヤが故障してしまう恐れがあり大変危険である。よって、上述のタイ ャ内圧低下警報機能を併用する事が好ましい。
[0104] さらに、中空粒子および気体の充填に併用するタイヤ用ノ レブを有することが好ま しい。このタイヤ用バルブは、中空粒子をタイヤ気室内に堰止め、かつ気体のみをタ ィャ気室外に通過可能としたフィルターを備えることを特徴とするものである。かような タイヤ用バルブを取り付けることによって、本発明によるパンクしたタイヤを修理する 際、 1つのバルブのみにて中空粒子をタイヤ気室内に配置する事が可能となるため、 1つのバルブ穴し力持たない汎用リムをそのまま使用することが出来る。加えて、修理 後の走行におけるタイヤ気室圧力の自然低下に対し、『気体補充作業における中空 粒子の漏洩』を防ぐ事が出来、簡便にタイヤ気室圧力をメンテナンスする事を実現で きる。
力ようなタイヤ用バルブとしては、図 2に例示するように、リム 2のバルブ取付口 14に 装着した給排気ノ レブ 9について、たとえば不織布とすることができるフィルタ 13を 具える構造のものとする。
実施例
[0105] 表 1に示すサイズのタイヤに、表 1に示すサイズのリムを組み込み、乗用車用タイヤ とリムとの組立体を準備した。ここで、タイヤ 1は、当該タイヤ種およびサイズの一般的 構造に従うものである。次に、タイヤサイズに対象となる車両を選定し 4名乗車相当の 荷重を搭載した上で、高圧の空気を充填しタイヤ気室の圧力を 200kPaに調整し、 それぞれのタイヤとリムとの組立体を前軸左側に装着した。ここで、荷重が負荷され た状態を保ちながらタイヤ気室圧力を徐々に抜いていき、タイヤのサイド部が路面に 接地するか、インナーライナ一内面同士が接触するタイヤ気室圧力値を求めた。この タイヤ気室圧力値を『RF走行限界内圧値』と定義した。
[0106] 次 、で、荷重が負荷されて 、な 、状態下で各タイヤの気室圧力を使用内圧に調整 し、気室内の高圧空気を排出させることで気体の排出量を求め、各タイヤの気室容 積を算出した。その算出結果を、表 1に示した。
ここで、タイヤとリムによる組立体の気室容積の測定は、以下に示す手順によって行 つた o
〔タイヤ気室容積の測定方法〕
手順 1:タイヤとリムの組立体に荷重が力からない状態を保持したまま、常温の空気 を充填し、所定内圧 (使用内圧) Pに調整する。このとき、 P下における目的のタイヤ
2 2
気室容積を Vとする。
2
手順 2 :タイヤバルブを開放し、タイヤ気室内の空気を大気圧 Pに放出させつつ積
1
算流量計に流し、充填空気排出量 Vを測定する。なお積算流量計には、 品川精機株式会社製 DC DRYガスメーター DC— 2C、
インテリジェントカウンター SSF を用いた。
以上の各測定値を用いて、
タイヤ気室容積値 = (充填空気排出量) / (使用内圧 Z大気圧)― (Π) に従って、使用内圧 P時のタイヤ気室容積 Vを求めることができる。
2 2
なお、式 (II)において使用内圧はゲージ圧値 (kPa)を、大気圧値は気圧計による絶 対値 (kPa)を用いた。
[0107] さらに、上記のタイヤとリムとの組立体のタイヤ気室に、種々の仕様の中空粒子を表 1に示すように適用し、表 1に示すタイヤおよびリムとの組立体を得た。
ここで、比較例 1以外の比較例および発明例については、表 2および表 3に示す手 順にて、中空粒子または熱膨張性榭脂粒子の表面に、表 2および表 3に示す種々の 被覆剤を表 2および表 3に示す手法並びに条件で付着または定着させた上で中空 粒子を得て、タイヤ気室に適用した。なお、表 1における被覆剤付き中空粒子におけ る沈殿物量の測定は上述の通りである。
[0108] 次に、上記タイヤとリムとの組立体に窒素を充填し、使用内圧に調整した。そして、 あらかじめ以下に示す調査法に基づき粒子体積回復挙動を調査の上、目的の中空 部内圧力となるに相当する保持時間を割り出し、室温または 45°Cに保たれた加温室 にてタイヤ気室圧力を保つことで、中空粒子の中空部圧力を増加させ粒子体積を回 復させながら、評価するタイヤとリムとの組立体の調製を行った。
[0109] ここで、中空粒子の中空部内圧力を増力!]させるための適切な保持時間を割り出す 方法は、次のとおりである。 まず、内容積が 1000cm3程度の内断面直径が一定で透明なアクリル榭脂製の円 筒型耐圧容器を準備し、該容器に超音波水浴等で振動を与えながら、本発明の中 空粒子を容器内が一杯になるまで充填した。次にこの容器にタイヤ気室に充填する 気体を、車両指定内圧等の所望する使用圧力になるまで充填した。圧力が高まるに つれて容器内の粒子は体積減少するため、中空粒子で満たされた部分の容器内側 の高さ(以下、中空粒子高さとする)は低下する。容器内圧が目標圧力に達したら、 超音波水浴等で容器に 5分間の振動を与えた後、 5分間静置した。そして、容器内 の中空粒子高さが安定したところで中空粒子高さを測定し、『加圧開始時の中空粒 子高さ: Hl』とした。更に上記使用圧力を力 4ナ続け、『一定期間経過した状態での中 空粒子高さ: Hx』を計測した。
[0110] 次に、上記の圧力を付与したまま一定時間ごとに上記の中空粒子高さを測りながら 経時変化を記録していき、中空粒子高さが変化しなくなるまで測定を継続し、最終的 な『安定した中空粒子高さ: H2』を計測した。以上力 次式により、粒子体積回復率 を算出した。
すなわち、
粒子体積回復率 (%) =〔(Hx— H1)Z(H2— Hl)〕 X 100
以上の測定結果を基に、目標とする体積回復率となるまでの時間を割り出し、中空 粒子を配置したタイヤとリムとの組立体に所望する圧力の気体を充填した上で、上記 にて割り出した保持時間に従って粒子総体積の回復処置を施すことにより、中空粒 子の中空部内圧力を増カロさせた。
[0111] さらに、表 1に示したタイヤ気室に配置した中空粒子の中空部内の圧力比率は、次 のように測定し確認した。
〔中空部内の圧力レベル確認方法〕
タイヤ気室内に中空粒子を配置し所望の使用内圧 P
2に一定期間保った、目的のタ ィャを準備する。バルブにはフィルターを配置することで、ノ レブを開放した時、中空 粒子がタイヤ気室内に留まり、高圧の気体だけが排出される状態を得られる。その後 、ー且タイヤ気室の圧力を大気圧とし、再度気体を充填したうえで Pの 50%に相当
2
する圧力 P に調整し、タイヤバルブを開放してタイヤ気室内の空気を大気圧 Pに 放出させつつ積算流量計に流し、空気排出量 V を測定する。そして、次式
50%
P 下における粒子周囲空隙容積値 V(cm3) =
50%
〔空気排出量値 V (cm3)〕 /〔内圧値 P (kPa) /大気圧 P (kPa ) ]
50% 50% 1
により、圧力 P における粒子周囲空隙容積値 Vを求める。同様に、 P P P
50% 30%、 70%、 80
P 等の各圧力水準における粒子周囲空隙容積を算出する。もし、中空部内圧
%、 90%
力がタイヤ気室内の圧力に満たない場合は、中空粒子体積が減少するためその分 粒子周囲空隙容積が増カロした状態となる。よって、充分に低い圧力水準から上記測 定を開始し、粒子周囲空隙容積が増力 tlし始めた水準の圧力をもって、中空粒子の中 空部内の圧力レベルとした。
[0112] 更に上述の中空部内の圧力レベル確認方法を実施した後、同様の手法によりタイ ャ気室の圧力を使用内圧 (P )とし、下式より粒子周囲空隙容積値 Vを求めた。
100%
P 下における粒子周囲空隙容積値 V(cm3) =
100%
〔空気排出量値 V (cm3)〕/〔内圧値 P (kPa) /大気圧 P (kPa ) ]
100% 100% 1
そして、前述のタイヤ気室容積と粒子周囲空隙容積値 Vとの差分を求めることによ つて、使用内圧下におけるタイヤ気室内の中空粒子体積とした。
[0113] なお、表 1における、中空粒子の連続相を構成する組成物の種類は表 2に示すとお りである。この表 2に示す膨張性榭脂粒子を加熱して膨張させることによって中空粒 子とした。その際、発明例では膨張性榭脂粒子に被覆剤を付着させてから、加熱、 膨張させた。力べして得られた粒子群の平均粒径、平均真比重を測定した結果は表 3に示した。表 3に示した中空粒子を表 1に示す充填率の下で、各タイヤ気室に配置 した。
[0114] なお、中空粒子の平均真比重の計測法は、次に示す通りである。
[平均真比重の計測法]
粒子の平均真比重値は、イソプロパノールを用いた、常法である液置換法 (アルキ メデス法)により測定するのが一般的であり、本発明においても、この常法に従うことと した。
[0115] また、中空粒子の平均粒径および粒径分布の計測法は、次に示す通りである。
機器: Sympatec Gmbh 社製 レーザ回折式粒度分布測定装置 HELOS &RODOSシステム
測定条件: 2S— lOOms/DRY
分散圧: 2. OObar、送り: 50. 00%、回転: 60. 00%
形状係数: 1. 00
上記の条件にて測定し、以下の測定値を採用する。
すなわち、体積基準平均粒径を、本発明の平均粒径値 (D50値)とする。
[0116] さらに、各膨張性榭脂粒子の熱膨張開始温度 Tsl及び各中空粒子の再膨張開始 温度 Ts2の測定法は、以下に示す通りである。
〔粒子の熱膨張開始温度測定法〕
表 2における熱膨張開始温度 Tslおよび Ts2は、以下に示す条件にて膨張変位量 を測定し、その変位量の立ち上がり時の温度とした。
機器: PERKIN— ELMER 7Series
1 hernial Analysis system
測定条件:昇温速度 10°CZmin、測定開始温度 25°C、測定終了温度 220°C、 測定物理量:加熱による膨張変位量を測定。
[0117] まず、得られたタイヤとリムとの組立体を用いて、高速発熱ドラム試験を実施した。
すなわち、試験環境温度 38°Cに設定したドラム試験機に、表 1に示した内圧値に 調整した上記タイヤとリムとの組立体を取り付け、表 1に示した負荷荷重を与えながら 速度 300kmZhにて 1時間走行させた。走行後のタイヤを室温まで放置冷却した後 、タイヤ気室圧力を使用内圧に調整し、前述の方法によって走行後の粒子周囲空隙 容積値を計測した。更に、タイヤ気室内から中空粒子を完全に抜き取った上で、再 度タイヤ気室圧力を使用内圧に調整し、前述同様の方法によって走行後のタイヤ気 室容積値を計測した。そして、上述の走行後タイヤ気室容積と走行後粒子周囲空隙 容積値との差分を求めることによって、使用内圧下におけるタイヤ気室内の走行後中 空粒子体積とした。
最後に、下式力も中空粒子の耐久性指標となる『中空粒子体積保持率』を算出した 。『中空粒子体積保持率』は 100%に近いほど優れており、 95%以上を合格とした。 『中空粒子体積保持率』 = (走行後の中空粒子体積 Z走行前の中空粒子体積) X loo
[0118] また、別の各評価用タイヤとリムとの組立体の気室圧力を使用内圧値に調整し、表 1に示した負荷荷重を与えながら速度 90kmZhで距離 50000kmにわたるドラム走 行を実施し、走行による履歴を加えた。
その後、各サイズのタイヤに相当するクラスの乗用車を 4名乗車相当の積載量に設 定後、評価タイヤを左前輪に装着し、この車両の左前輪での軸重量を測定した。次 に、直径 5. Omm、長さ 50mmの釘 4本を該組立体のトレッド表面からタイヤ内部に 向けて踏み抜き、タイヤ気室圧力が大気圧にまで低下するのを確認した後、 90km Zhの速度でテストコースの周回路をランフラット走行させ、タイヤ気室内の粒子温度 と気室圧力とを連続的に計測し、内圧復活機能の発現状況を調査した。
[0119] なお、評価を行うタイヤとリムとの組立体のリム内面には、タイヤ気室圧力をモニタ 一する圧力センサーを組み込み、測定した圧力データの信号を一般に使用されてい るテレメータを用いて電波伝送し、試験車両内部に設置した受信機にて受信すること で圧力の変化を計測しながら、最大 100kmの走行を実施した。前述の『タイヤのサイ ド部が路面に接地するか、またはインナーライナ一内面同士が接触するタイヤ気室 圧力値』である『RF走行限界内圧値』に対して、ランフラット走行下での内圧復活機 能発現によるタイヤ気室内の圧力値が優った場合を合格と判断した。
これらの調査結果を表 1に併記する。
[0120] 表 1において、比較例 1は、被覆剤を使用していない例であり、 10vol%以上の中空 粒子体積減少が見られる。
また、比較例 2は、中空粒子に直接ステアリン酸 Liを添加した例であり、中空粒子 表面への定着性が悪ぐそのため沈殿物量も多い。よって、中空粒子表面にて充分 に被覆剤が機能しておらず中空粒子の体積保持率が低い結果になった。
[0121] 一方、発明例 1および 2は、被覆剤を膨張性榭脂粒子表面に固着させてから、被覆 剤の融点 Tm以上の温度にて膨張させ中空粒子を得た例である。基本性能は十分 であるが、 Tm力Ts2より低ぐ走行中の中空粒子温度上昇と共に一部が溶融し中空 粒子の流動性が損なわれたせ 、か、若干の体積減少が見られる。
[0122] 発明例 3および 4は、 Ts2より高い Tmをもつ被覆剤を膨張性榭脂粒子表面に固着 させ、 Tm以上の温度にて膨張させて中空粒子を得た例であり、良好な耐久性を示し 、中空粒子の体積保持率も高い。
[0123] 発明例 5は、 Ts2より高い Tmをもつ被覆剤を膨張性榭脂粒子表面に固着させ、 T mより低い温度にて膨張させ中空粒子を得た例であり、十分な性能を有するが、沈殿 物が若干発生しており、僅かだが中空粒子の体積減少が見られる。
[0124] 発明例 6は、 Ts2より高い Tmをもつ被覆剤を膨張性榭脂粒子表面に固着させ、 T mより高い温度にて膨張させ中空粒子を得た例であり、良好な耐久性を示し、中空粒 子の体積保持率も高い。
[0125] 発明例 7は、 Ts2より高い Tmをもつ被覆剤を膨張性榭脂粒子表面に固着させ、 T mより低い温度にて膨張させ中空粒子を得た例であり、発明例 5に比して耐久向上 剤の使用量を増やしている。しかし、被覆剤の定着性が発明例 5よりは低くなり、その 分沈殿物が発生しており、僅かだが中空粒子の体積減少が見られる。
[0126] [表 1]
評価タイヤの内容と評価結果
Figure imgf000036_0001
評価タイヤの内容と評価結果
〔〕^0127
Figure imgf000037_0001
Figure imgf000038_0001
膨張性樹脂粒子の内容
Figure imgf000038_0002
※ AN:アクリロニトリル、 MAN:メタァクリロ二トリリレ、 MA:メタクリル酸 ※ メチル / -フルォ 口ビル I—テルは、ノルマル構造、イソ構造の両者混合物である 被覆剤を含んだ中空粒子重量に対する被覆剤重量割合を示す
中空粒子の内容
Figure imgf000039_0001
※ 被覆剤を含んだ中空粒子重量に対する被覆剤重量割合を示す ※ 被覆剤を含んだ中空粒子重量に対する沈殿物重量割合を示す

Claims

請求の範囲
[1] タイヤをリムに装着し、該タイヤとリムとで区画されたタイヤ気室に、熱膨張が可能な 榭脂による連続相と独立気泡とからなる中空粒子の多数を配置し、さらに該タイヤ気 室に大気圧を超える高圧気体を充填したタイヤとリムとの組立体であって、前記中空 粒子の表面の少なくとも部分に、該表面に熱を介して定着された被覆剤を有すること を特徴とするタイヤとリムとの組立体。
[2] 請求項 1において、前記中空粒子の全表面に被覆剤を有することを特徴とするタイ ャとリムとの組立体。
[3] 請求項 1または 2において、中空粒子の被覆に使用した被覆剤量および下記処理 に従って得られる沈殿物量に基づいて、次式
定着率 ={ (使用被覆剤量) (沈殿物量) }Z (使用被覆剤量) X 100
にて求められる被覆剤の定着率が 90mass%以上であることを特徴とするタイヤとリム との組立体。
分液ロート内に、 n キサン、イソプロピルアルコール、エタノールおよびメタノー ルカも選ばれた少なくとも 1種の溶媒 300ccと、 2 3gの範囲で秤量した被覆剤を有 する中空粒子とを添加し、常温下で 1分間攪拌した後 10分間静置し、沈殿物をロート 力も排出そして採取した後、再度上記溶媒を追加し分液ロート内溶媒を 300ccに調 整した上で、上記攪拌、静置および排出そして採取を、さらに 4回繰り返し、合計 5回 分の沈殿成分を、定法により溶媒を除去後に沈殿物量として秤量し、元の中空粒子 量に対する質量百分率を算出して沈殿物量とする。
[4] 請求項 3において、前記定着率が 95mass%以上であることを特徴とするタイヤとリ ムとの,袓立体。
[5] 請求項 3または 4において、前記定着率が 99mass%以上であることを特徴とするタ ィャとリムとの組立体。
[6] 請求項 1ないし 5のいずれかにおいて、前記中空粒子の中空部内の圧力が大気圧 以上の高圧であり、該中空粒子を加熱したときの膨張開始温度 Ts2が 90°C以上 200 °C以下の範囲であり、下記中空粒子の充填率が 5vol%以上 80vol%以下であること を特徴とするタイヤとリムとの組立体。
中空粒子の充填率 = (粒子体積値 zタイヤ気室容積値) X 100 一- (I) ここで、
粒子体積値:タイヤ気室に配置した全中空粒子の大気圧下での合計体積 と粒子周囲の空隙体積との合計量 (cm3)
タイヤ気室容積値:タイヤとリムとの組立体に空気のみを充填して使用 内圧 (kPa)に調整した後、充填空気を内圧が大気圧
になるまで排出した際の充填空気排出量 (cm3)を用いて、次式 (II) 力 求めた値 (cm3)
タイヤ気室容積値 = (充填空気排出量) / (使用内圧 Z大気圧)― (Π) なお、式 (II)において使用内圧はゲージ圧値 (kPa)を、大気圧値 は気圧計による絶対値 (kPa)を用いる。
[7] 請求項 6にお 、て、被覆剤の融点 Tmが中空粒子の膨張開始温度 Ts2より高 、こと を特徴とするタイヤとリムとの組立体。
[8] 請求項 1な ヽし 7の ヽずれかにお 、て、被覆剤の融点 Tm力 ガス成分を液体状態 の発泡剤として樹脂に封じ込めた膨張性榭脂粒子の膨張開始温度 Tslに関して、 下記の関係を満たすことを特徴とするタイヤとリムとの組立体。
Tsl < Tm < Tsl + 150°C
[9] 請求項 8において、中空粒子は、被覆剤が付着された膨張性榭脂粒子を、被覆剤 の融点 Tm以上の温度で膨張させて得たものであることを特徴とするタイヤとリムとの 組立体。
[10] 請求項 1な!ヽし 9の ヽずれかにお ヽて、被覆剤が有機酸金属塩であることを特徴と するタイヤとリムとの組立体。
[11] 請求項 1ないし 10において、タイヤ内に配置する前の中空粒子内部の気体が、タイ ャ気室内に充填する気体とは異なる気体であることを特徴とするタイヤとリムとの組立 体。
[12] 請求項 11において、タイヤ内に配置する前の中空粒子内部の気体が不燃性ガス であり、内圧を与えた後のタイヤとリムとの組立体内における中空粒子内部の気体が 該不燃性ガスとタイヤ気室に充填した気体との混合物であることを特徴とするタイヤと リムとの,袓立体。
[13] 請求項 12において、前記不燃性ガスが、炭素数 2から 8の直鎖状及び分岐状の脂 肪族炭化水素およびそのフルォロ化物、炭素数 2から 8の脂環式炭化水素およびそ のフルォロ化物、そして次の一般式(III):
R'-O-R2 —— (III)
(式中の R1および R2は、それぞれ独立に炭素数が 1から 5の一価の炭化水素基であ り、該炭化水素基の水素原子の一部をフッ素原子に置き換えても良い)にて表される エーテルィ匕合物、からなる群の中力も選ばれた少なくとも 1種の気体であることを特徴 とするタイヤとリムとの組立体。
[14] 請求項 1ないし 13のいずれかにおいて、中空粒子の中空部圧力が常用走行使用 時の車両指定タイヤ内圧の 70%以上であることを特徴とするタイヤとリムとの組立体
[15] 請求項 1ないし 14のいずれかにおいて、中空粒子の殻部を構成する榭脂による連 続相力、アクリロニトリル系榭脂であることを特徴とするタイヤとリムとの組立体。
[16] 請求項 15において、アクリロニトリル系榭脂が、少なくともアクリロニトリル、メタアタリ 口-トリルおよびメチルメタタリレートの 3種のモノマーを含んで成る共重合体、または 少なくともアクリロニトリル、メタアクリロニトリルおよびメタクリル酸の 3種のモノマーを含 んで成る共重合体であることを特徴とするタイヤとリムとの組立体。
[17] 請求項 1ないし 16のいずれかにおいて、中空粒子の中空部圧力が常用走行使用 時の車両指定タイヤ内圧以上であることを特徴とするタイヤとリムとの組立体。
[18] 請求項 1ないし 17のいずれかにおいて、タイヤ気室に配置した中空粒子群の平均 粒径力 0〜200 /ζ πιの範囲〖こあり、かつ該中空粒子群の平均真比重が 0. 01〜0. 06gZcm3の範囲にあることを特徴とするタイヤとリムとの組立体。
[19] 請求項 1ないし 18のいずれかにおいて、さらにアンチロックブレーキシステムの車 輪速度センサーによる車輪速度検知に基づくタイヤ気室圧力低下警報機能および、 圧力センサーによるタイヤ気室圧力の直接測定方式に基づくタイヤ気室圧力低下警 報機能のいずれか一方または両方をそなえることを特徴とするタイヤとリムとの組立 体。
[20] 請求項 1ないし 19のいずれかにおいて、タイヤ気室内に、さらに大気圧下での平均 嵩比重が該中空粒子の平均真比重よりも大きい発泡体の多数を該中空粒子群に混 在して配置したことを特徴とするタイヤとリムとの組立体。
[21] 請求項 20において、前記発泡体は、直径が 1〜 15mmの略球体形状または一辺 力^〜 15mmの立方体形状であり、平均嵩比重が 0. 06〜0. 3gZccであり、独立気 泡または連通気泡を有するものであることを特徴とするタイヤとリムとの組立体。
[22] タイヤをリムに装着したタイヤとリムとの組立体における該タイヤとリムとで区画され たタイヤ気室内に、大気圧を超える高圧気体とともに配置する、熱膨張が可能な榭 脂による連続相と独立気泡とからなる中空粒子であって、その中空部内の圧力が大 気圧以上であり、かつ表面の少なくとも部分に、該表面に熱を介して定着された被覆 剤を有することを特徴とする中空粒子。
[23] 請求項 22において、中空部内の圧力が、常用走行使用時の車両指定タイヤ内圧 の 70%以上であることを特徴とする中空粒子。
[24] 請求項 22または 23にお 、て、全表面に被覆剤を有することを特徴とする中空粒子
[25] 請求項 22ないし 24のいずれかにおいて、中空粒子の被覆に使用した被覆剤量お よび下記処理に従って得られる沈殿物量に基づ 、て、次式
定着率 ={ (使用被覆剤量) (沈殿物量) }Z (使用被覆剤量) X 100
にて求められる被覆剤の定着率が 90mass%以上であることを特徴とする中空粒子。
分液ロート内に、 n—へキサン、イソプロピルアルコール、エタノールおよびメタノー ルカも選ばれた少なくとも 1種の溶媒 300ccと、 2〜3gの範囲で秤量した被覆剤を有 する中空粒子とを添加し、常温下で 1分間攪拌した後 10分間静置し、沈殿物をロート 力も排出そして採取した後、再度上記溶媒を追加し分液ロート内溶媒を 300ccに調 整した上で、上記攪拌、静置および排出そして採取を、さらに 4回繰り返し、合計 5回 分の沈殿成分を、定法により溶媒を除去後に沈殿物量として秤量し、元の中空粒子 量に対する質量百分率を算出して沈殿物量とする。
[26] 請求項 25において、前記定着率が 95mass%以上であることを特徴とする中空粒 子。
[27] 請求項 25または 26において、前記定着率が 99mass%以上であることを特徴とする 中空粒子。
PCT/JP2006/307773 2005-04-14 2006-04-12 タイヤとリムとの組立体および中空粒子 WO2006112335A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/911,281 US20090078355A1 (en) 2005-04-14 2006-04-12 Tire/rim assembly and hollow particles
CN2006800212850A CN101198481B (zh) 2005-04-14 2006-04-12 轮胎和轮圈的装配体及空心粒子
JP2007521208A JP4994231B2 (ja) 2005-04-14 2006-04-12 タイヤとリムとの組立体および中空粒子
EP06731709.9A EP1870256B1 (en) 2005-04-14 2006-04-12 Assembly of tire and rim, and hollow particle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-117093 2005-04-14
JP2005117093 2005-04-14

Publications (1)

Publication Number Publication Date
WO2006112335A1 true WO2006112335A1 (ja) 2006-10-26

Family

ID=37115059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307773 WO2006112335A1 (ja) 2005-04-14 2006-04-12 タイヤとリムとの組立体および中空粒子

Country Status (5)

Country Link
US (1) US20090078355A1 (ja)
EP (1) EP1870256B1 (ja)
JP (1) JP4994231B2 (ja)
CN (1) CN101198481B (ja)
WO (1) WO2006112335A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004243985A (ja) * 2003-02-17 2004-09-02 Bridgestone Corp タイヤとリムとの組立体およびこの組立体に充填する粒子群
JP2004255981A (ja) * 2003-02-25 2004-09-16 Bridgestone Corp タイヤとリムとの組立体およびこの組立体に充填する粒子群
JP2005035545A (ja) * 2001-03-21 2005-02-10 Bridgestone Corp 安全タイヤ及びリム組立体と発泡性組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610454A (en) * 1979-07-06 1981-02-02 Bridgestone Tire Co Ltd Complex consisting of steel cord and rubber and its manufacture
CN1061610C (zh) * 1995-06-07 2001-02-07 黄坤炳 免充气安全轮胎及其制造方法
EP1375197B1 (en) * 2001-03-21 2008-05-07 Bridgestone Corporation Assembly of tire and rim
CN1323856C (zh) * 2001-03-21 2007-07-04 株式会社普利司通 轮胎-轮辋组合体
JP4382331B2 (ja) * 2001-08-07 2009-12-09 株式会社ブリヂストン セルフシール性及びセルフバランシング性に富んだタイヤ−リム組立体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005035545A (ja) * 2001-03-21 2005-02-10 Bridgestone Corp 安全タイヤ及びリム組立体と発泡性組成物
JP2004243985A (ja) * 2003-02-17 2004-09-02 Bridgestone Corp タイヤとリムとの組立体およびこの組立体に充填する粒子群
JP2004255981A (ja) * 2003-02-25 2004-09-16 Bridgestone Corp タイヤとリムとの組立体およびこの組立体に充填する粒子群

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1870256A4 *

Also Published As

Publication number Publication date
CN101198481A (zh) 2008-06-11
JPWO2006112335A1 (ja) 2008-12-11
EP1870256B1 (en) 2013-10-30
EP1870256A4 (en) 2012-01-25
CN101198481B (zh) 2010-10-20
EP1870256A1 (en) 2007-12-26
US20090078355A1 (en) 2009-03-26
JP4994231B2 (ja) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4651662B2 (ja) 安全タイヤおよび中空リング体
WO2006112335A1 (ja) タイヤとリムとの組立体および中空粒子
JP2006116912A (ja) パンクタイヤの修理方法
WO2005102740A1 (ja) タイヤとリムとの組立体およびこの組立体の内側に配置する中空粒子
JP4990485B2 (ja) タイヤとリムとの組立体およびこの組立体の内側に配置する中空粒子群
JP2003306006A (ja) タイヤとリムとの組立体および発泡性組成物
JP2009190319A (ja) タイヤ及びリム組立体の内部に配置する中空粒子組成物の製造方法と中空粒子組成物
JP2009090913A (ja) タイヤとリムとの組立体
JP2009090744A (ja) タイヤとリムとの組立体
JP2006290114A (ja) タイヤ粒子集合体
JP2006298305A (ja) タイヤ粒子集合体
JP2006231987A (ja) タイヤ粒子集合体
JP2006224934A (ja) タイヤ粒子集合体
JP2006168478A (ja) タイヤ粒子集合体
JP2006264638A (ja) 中空粒子量算出方法
JP2006193117A (ja) タイヤ粒子集合体
JP2008024272A (ja) 中空リング体およびタイヤとリムの組立体
JP2006192952A (ja) タイヤ粒子集合体
JP2006231986A (ja) タイヤ粒子集合体
JP2006306217A (ja) タイヤ粒子集合体
JP2006188100A (ja) タイヤ粒子集合体
JP2006188099A (ja) タイヤ粒子集合体
JP2006188101A (ja) タイヤ粒子集合体
JP2006256354A (ja) 安全タイヤの重量バランス測定方法
JP2006192951A (ja) タイヤ粒子集合体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680021285.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007521208

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11911281

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006731709

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006731709

Country of ref document: EP