WO2006111433A1 - Capteur de gaz optique - Google Patents

Capteur de gaz optique Download PDF

Info

Publication number
WO2006111433A1
WO2006111433A1 PCT/EP2006/060127 EP2006060127W WO2006111433A1 WO 2006111433 A1 WO2006111433 A1 WO 2006111433A1 EP 2006060127 W EP2006060127 W EP 2006060127W WO 2006111433 A1 WO2006111433 A1 WO 2006111433A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
region
substrate
gas sensor
area
Prior art date
Application number
PCT/EP2006/060127
Other languages
German (de)
English (en)
Inventor
Ronny Ludwig
Maximilian Sauer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2006111433A1 publication Critical patent/WO2006111433A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Definitions

  • the invention relates to an optical gas sensor, in particular for the detection of carbon dioxide, for. B. in the automotive sector, can be used.
  • Such optical gas sensors for the spectroscopic measurement of gas concentrations are based on the principle of the radiation absorption of infrared radiation in the measurement gas. They generally have an IR radiation source, one or more wavelength-specific IR radiation detectors, a sensor housing and evaluation electronics.
  • the IR radiation source and the further components are generally mounted on a substrate, in particular a printed circuit board.
  • a reflector serves to increase the radiation intensity and focuses the IR radiation emanating from the IR radiation source onto at least one IR radiation detector.
  • the IR radiation detector is in this case generally designed as a microstructured component whose measuring structure z. B. has a membrane with a thermopile structure and an absorber layer.
  • the evaluation electronics can, for. B. be designed as ASIC.
  • COB chip-on-board
  • the reflector may generally be mounted between the housing and an additional lid; Furthermore, the use of reflector modules or reflector towers is known, which close the sensor upwards; However, such reflector attachments are generally cost-intensive; furthermore, alignment over the detector to achieve good IR radiation confinement is difficult and expensive.
  • optical gas sensor according to the invention has some
  • At least one further area is provided on the reflector attachment in addition to the reflector area, which allows a limitation as additional functionality.
  • the reflector attachment with the reflector area and the additional area can be manufactured in one piece and thus at low cost, so that the additional
  • the further functionality may be an optical limitation of the IR beam path, in that the further region is a diaphragm region, which due to its fixed connection can be securely and firmly positioned over the at least one detector chip.
  • the complex alignment of an additional diaphragm or of the reflector with respect to the diaphragm is superfluous; Furthermore, the correct alignment of the reflector is guaranteed to the aperture.
  • the diaphragm area at the reflector area z. B. be mounted on a formed by material weakening hinge area and after the production of such a unique be folded that he locks in his desired position and / or locked, z. B. in brackets of the reflector area.
  • the diaphragm region can have two or more diaphragm openings which each serve as an optical aperture of the IR radiation over the measurement structures of the detector chip.
  • the reflector attachment can be formed on its inside continuously with a reflective layer, which thus also extends into the diaphragm area; Since the diaphragm area is subsequently folded in, the mirrored surface does not point towards the detector chips and thus does not cause any unwanted radiation reflections.
  • a further region of the reflector attachment may be a frame region which rests on the substrate with a bearing surface.
  • COB chip-on-board
  • the frame area serves according to the invention as a gel stop for limiting the passivating agent associated with the one or more chips, i.
  • the frame serving as a stop for the passivating agent can thus be integrated into the reflector attachment.
  • the z. B. are designed as metal struts or thickened areas.
  • the frame area thus serves as a connection between the substrate and the reflector area and at the same time ensures the correct seating or exact positioning of the reflector area in order to achieve a good concentration of the IR radiation.
  • the two embodiments of the diaphragm region and the frame region can be combined with one another; In this case, the joint of the aperture z. B. also be provided on the frame area.
  • FIG. 1a shows an optical gas sensor in exploded view according to an embodiment with a lid
  • Fig. 1 b an optical gas sensor in pulled apart
  • FIG. 2 shows the reflector attachment and the printed circuit board from FIG. 1b in a perspective view
  • FIG. 3 shows the reflector attachment according to a first embodiment with retractable diaphragm area
  • FIG. 5 shows a reflector attachment according to a further embodiment with a frame region adjoining the reflector region for delimiting a passivation agent.
  • a cover 6 with a diaphragm 7 set in the cover 6 is fastened to the housing 2.
  • the cover 6 with the membrane 7 can also be omitted, so that the reflector attachment 4 itself acts as an upwardly delimiting cover.
  • two gas inlet openings 10 are provided on opposite sides to allow air circulation.
  • the reflector attachment 4 can in both embodiments on its underside z. B. insert pins 12 which are inserted into corresponding holes of the circuit board 3; Alternatively, the reflector attachment 4 may in principle be fixed in the housing 2 in both embodiments.
  • IR radiation source 14 operated in the low-current range incandescent lamp with transparent housing for IR radiation housing body is set from below through a corresponding opening of the circuit board 3 and protrudes from the top of the circuit board 3.
  • a detector chip 16 On the circuit board 3 is a detector chip 16, advantageously also serving as an evaluation ASIC 17 and z. B.
  • the reflector attachment 4 has a substantially convexly curved, internally mirrored reflector region 4.1 arranged above the lamp 14 and the detector chip 16, which bundles the IR radiation emitted by the IR radiation source 14 and focuses it on the detector chip 16.
  • a high measurement signal is output and furthermore a large measurement path or a large measurement cavities, advantageously substantially the interior of the reflector region 4.1, formed.
  • the reflector region 4.1 is designed to be reflective, at least above the IR radiation source 14 and above the detector chips 16, and is preferably designed to be reflective throughout.
  • the reflector attachment 4 has one or more further regions which allow additional functionalities:
  • the reflector attachment 4 has a diaphragm region 4.2 adjoining the reflector region 4.1 with two diaphragm openings 22. Between the reflector region 4.1 and the aperture 4.2 is z. B. formed by material thinning a joint 4.3, in which the aperture area 4.2 is folded inwards. In fully folded condition, d. H. from the basic position of Fig. 4 after folding by 180 ° of the aperture area locks in its target position or locked.
  • the diaphragm apertures 22 of the diaphragm region 4.2 are now located above the sensitive measuring structures or measuring channels of the detector chip 16 according to the plan view of FIG. 4.
  • the detector chip 16 shown in Fig. 4 can be used as measuring channels z. B. comprise two formed in the detector chip 16 membrane areas with thermopile structures of contacted interconnects with different Seebeck- coefficients and formed on these absorber layers for IR radiation.
  • radiation filters for. B. Filter chips, for filtering the incident IR radiation in a measuring wavelength range and a reference wavelength range may be provided; Alternatively, according to the invention, however, corresponding filters can also be glued onto the diaphragm area 4.2 and cover the diaphragm openings 22.
  • the aperture area 4.2 can be positioned with the apertures 22 corresponding to exactly above the detector chip 16, so that a complex orientation is eliminated.
  • FIG. 5 shows a further embodiment of the reflector attachment 4, in which, adjacent to the reflector region 4.1, a frame region 4.4 is provided, which extends around the reflector region 4.1 and has a bearing surface 4.5 for resting on the printed circuit board 3.
  • a frame region 4.4 extending support struts 25 to increase its stability, the
  • Support struts 25 z. B. as metal inserts, or as thickening of the plastic material of the reflector attachment 4 may be formed.
  • FIG. 5 is particularly useful when mounting the chips 16, 17, 18 and 19 on the circuit board 3 in COB technology, in which the chips 16, 17, 18 and 19 are placed and contacted directly or bare, wherein subsequently a passivation agent 28, z. B. passivation gel, is applied to the surface of the circuit board 3, which passes the chips 16, 17, 18 and 19 passivated;
  • the ASIC 17, the microcontroller chip 18 and the CAN chip 19 can in principle be completely covered by the passivation material 28;
  • the passivation material 28 is largely impermeable to IR radiation (or a passivation material 28 which is sufficiently permeable to IR radiation is generally very expensive)
  • the upper side of the detector chip 16 is not covered by the passivation material.
  • the frame area 4.4 serves to limit the entered passivation agent 28 and may, for. B. have a stop edge 30, which serves to limit the filling level of the input passivation material 28.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

La présente invention concerne un capteur de gaz optique comprenant au moins un substrat (3), une source de rayonnement infrarouge (14) qui est fixée sur le substrat (3), une puce de détecteur de rayonnement infrarouge (16) qui est fixée sur le substrat (3), ainsi qu'un chapeau de réflecteur (4) qui est fixé sur le substrat (3) ou sur un boîtier (2) accueillant le substrat (3). Ce chapeau de réflecteur (4) présente une région de réflecteur (4.1) qui focalise le rayonnement infrarouge émis par la source de rayonnement infrarouge (14) sur ladite puce de détecteur de rayonnement infrarouge (16), ainsi qu'une autre région (4.2, 4,4) qui se trouve à l'extérieur de la région de réflecteur et qui est conçue pour définir une trajectoire du faisceau du rayonnement infrarouge ou pour définir un système de passivation (28). Selon cette invention, le chapeau de réflecteur peut présenter notamment une région de diaphragme escamotable (4.1) qui présente des ouvertures de diaphragme (22) ou une région d'encadrement servant de système de blocage de gel lors de l'introduction d'un système de passivation.
PCT/EP2006/060127 2005-04-21 2006-02-21 Capteur de gaz optique WO2006111433A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510018470 DE102005018470A1 (de) 2005-04-21 2005-04-21 Optischer Gassensor
DE102005018470.7 2005-04-21

Publications (1)

Publication Number Publication Date
WO2006111433A1 true WO2006111433A1 (fr) 2006-10-26

Family

ID=36283665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/060127 WO2006111433A1 (fr) 2005-04-21 2006-02-21 Capteur de gaz optique

Country Status (2)

Country Link
DE (1) DE102005018470A1 (fr)
WO (1) WO2006111433A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2743677A1 (fr) * 2012-12-14 2014-06-18 Nxp B.V. Capteur COX IR et circuit intégré équipé avec celui-ci

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19512126C1 (de) * 1995-04-04 1996-09-05 Hekatron Gmbh Vorrichtung zum Detektieren eines Gases oder Aerosols
EP0834735A2 (fr) * 1996-10-01 1998-04-08 Texas Instruments Inc. Capteur
EP0896216A2 (fr) * 1997-08-04 1999-02-10 Texas Instruments Incorporated Procédé et appareil pour la mesure de gaz dans l'infrarouge
DE10200908A1 (de) * 2002-01-12 2003-07-31 Gerhard Wiegleb Infrarotgassensor
GB2392721A (en) * 2002-09-03 2004-03-10 E2V Tech Uk Ltd Gas sensors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19512126C1 (de) * 1995-04-04 1996-09-05 Hekatron Gmbh Vorrichtung zum Detektieren eines Gases oder Aerosols
EP0834735A2 (fr) * 1996-10-01 1998-04-08 Texas Instruments Inc. Capteur
EP0896216A2 (fr) * 1997-08-04 1999-02-10 Texas Instruments Incorporated Procédé et appareil pour la mesure de gaz dans l'infrarouge
DE10200908A1 (de) * 2002-01-12 2003-07-31 Gerhard Wiegleb Infrarotgassensor
GB2392721A (en) * 2002-09-03 2004-03-10 E2V Tech Uk Ltd Gas sensors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2743677A1 (fr) * 2012-12-14 2014-06-18 Nxp B.V. Capteur COX IR et circuit intégré équipé avec celui-ci

Also Published As

Publication number Publication date
DE102005018470A1 (de) 2006-10-26

Similar Documents

Publication Publication Date Title
DE102006035000B4 (de) Sensorvorrichtung und Verfahren zu deren Fertigung
DE102005001712A1 (de) Fotodetektor
DE102004044145B3 (de) Reflektormodul für einen photometrischen Gassensor
DE102015106373A1 (de) Photoakustisches gassensormodul mit lichtemittereinheit undeiner detektoreinheit
DE102008053083B4 (de) Infrarotlichtdetektor und Herstellung desselben
WO2006000498A1 (fr) Capteur a infrarouge microstructure
DE102004031316B3 (de) Gassensor-Modul zur spektroskopischen Messung einer Gaskonzentration
EP3370044B1 (fr) Cellule de pesage pour une balance
WO2011048146A1 (fr) Dispositif de projection micromécanique, et procédé de production d'un dispositif de projection micromécanique
WO2006111433A1 (fr) Capteur de gaz optique
WO2015135725A2 (fr) Module électronique ainsi que procédé et dispositif de fabrication d'un module électronique
WO2005031808A2 (fr) Module optique et systeme optique
DE102005006472B4 (de) Optoelektronische Sensoreinrichtung zur Erfassung der Bestrahlungsstärke und der Einfallsrichtung der Sonnenstrahlung für Kraftfahrzeuge
WO2006061274A1 (fr) Module de puce et son procede de production
DE102005016008B4 (de) Bauelementemodul zur Anbringung auf einem Substrat
DE10010514A1 (de) Optoelektronisches Mikrospektrometer
DE102006002268A1 (de) Verfahren zur Herstellung eines optischen Moduls
DE102008011304B4 (de) Temperaturmesseinheit
EP1431145B1 (fr) Capteur de pluie, en particulier pour un véhicule automobile
DE102004027512A1 (de) Spektroskopischer Gassensor, insbesondere zum Nachweis mindestens einer Gaskomponente in der Umluft, und Verfahren zur Herstellung eines derartigen spektroskopischen Gassensors
DE10261102A1 (de) Regensensor, insbesondere für ein Kraftfahrzeug und Verfahren zu dessen Herstellung
EP3969302B1 (fr) Unité de vitrage d'un véhicule ou d'un bâtiment, ainsi qu'agencement de vitrage
WO2006119740A1 (fr) Dispositif de detection pour detecter la tendance a la formation de condensation
EP1723406A1 (fr) Capteur microstructure
DE3200386C2 (de) Photometeranordnung für eine Kamera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06708407

Country of ref document: EP

Kind code of ref document: A1