WO2006109512A1 - Laminate for hdd suspension - Google Patents

Laminate for hdd suspension Download PDF

Info

Publication number
WO2006109512A1
WO2006109512A1 PCT/JP2006/305933 JP2006305933W WO2006109512A1 WO 2006109512 A1 WO2006109512 A1 WO 2006109512A1 JP 2006305933 W JP2006305933 W JP 2006305933W WO 2006109512 A1 WO2006109512 A1 WO 2006109512A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminate
polyimide resin
hdd
suspension
Prior art date
Application number
PCT/JP2006/305933
Other languages
French (fr)
Japanese (ja)
Inventor
Kohji Kinashi
Takaki Suzuki
Hisayoshi Mukai
Teppei Nishiyama
Original Assignee
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Priority to JP2007512484A priority Critical patent/JPWO2006109512A1/en
Publication of WO2006109512A1 publication Critical patent/WO2006109512A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives
    • G11B5/484Integrated arm assemblies, e.g. formed by material deposition or by etching from single piece of metal or by lamination of materials forming a single arm/suspension/head unit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0302Properties and characteristics in general
    • H05K2201/0311Metallic part with specific elastic properties, e.g. bent piece of metal as electrical contact

Definitions

  • the present invention relates to a suitable laminate as a suspension board for a hard disk drive (hereinafter referred to as HDD). Specifically, the present invention relates to a high-functional laminate that can obtain stable electrical characteristics in the miniaturization of wiring required for suspension materials.
  • HDDs have been steadily increasing due to the demand for conventional personal computers and servers as they are installed in new applications such as music, home appliances, and car navigation systems.
  • HDDs are expected to become smaller in size in the future, and the suspension part of the flexure blank equipped with a head that reads and writes magnetic records in the HDD will also be reduced in size and wiring. Thinning is progressing.
  • the TSA suspension can easily form flying leads by laminating high-strength alloy copper foil, and has a high degree of freedom in shape processing. It is widely used because it is relatively inexpensive and has good dimensional accuracy.
  • WO98 / 08216 discloses an HDD suspension laminate in which a polyimide resin layer and a conductor layer are sequentially formed on a stainless steel substrate.
  • Patent Document 1 Pamphlet of WO98 / 08216
  • Patent Document 2 JP-A-9-283930
  • An object of the present invention is to provide a laminate for an HDD suspension that can cope with the narrowing of wiring between fine wiring and can realize an HDD capable of recording and reading signals at high speed and stably. .
  • the present inventors have reduced inductive coupling (mutual inductance) generated between the conductor layer and the panel layer that causes data loss. Therefore, the present invention has been completed by using a material having a higher conductivity than the conventionally used stainless steel as the panel layer.
  • the present invention is in the range of the longitudinal elastic modulus force Sl00 to 100GPa and the conductivity is
  • a HDD suspension laminate comprising a spring layer, an insulating layer, and a conductor layer in a range of 10 to 100% IACS, which are sequentially laminated.
  • the present invention also provides an HDD suspension in which a panel layer, an insulating layer, and a conductor layer are sequentially laminated.
  • the spring layer has a longitudinal elastic modulus in the range of 100 to 1000 GPa and a conductivity in the range of 10 to 100% IACS, and the spring layer has at least Fe as a main component. It consists of one or more metal layers selected from Cu, Al, Zn, Sn, ⁇ , or the above metals and Ni, Cr, Mg, Be, Mo, Zr, Si, C, Mn, P, It is a laminate for an HDD suspension that is made of an alloy layer made of an alloy of one or more selected from S and Co.
  • the laminated body of the present invention has a predetermined longitudinal elastic modulus in order to serve as a spring material in place of the stainless steel foil generally used for the panel layer, and has excellent conductivity.
  • the HDD suspension stack is formed by sequentially stacking the panel layer, insulating layer, and conductor layer, thus realizing an HDD that can record and read signals stably at high speed.
  • crosstalk due to the generation of mutual inductance between the conductor layer and the panel layer can be reduced, and further, data loss can be suppressed. It is.
  • the HDD suspension laminate of the present invention is a laminate in which a panel layer, an insulating layer, and a conductor layer are sequentially laminated, and has a longitudinal elastic modulus force of the spring layer in the range of 100 to 1000 GPa.
  • the longitudinal elastic modulus is an index of the panel property of the suspension material. If the longitudinal elastic coefficient of the panel layer is less than 100 GPa, the shape of the flare sharp rank on which the head is mounted cannot be maintained. Even if it is larger than 1000 GPa, there is no practical meaning.
  • the longitudinal elastic modulus can be measured by the cantilever method according to ASTM E-756.
  • the spring layer needs to have a conductivity in the range of 10 to 100% IACS. If it is smaller than this range, it will not be possible to suppress crosstalk and cause malfunction. On the other hand, a material cost of 100% IACS or higher is not preferable because the material cost increases. Note that the conductivity (% IACS) is expressed as% of the conductivity of each material when the conductivity is 100% when measured using the 4-probe method with International Annnealed Copper Standard. It is a thing. 100% IACS corresponds to 1.7241x10- 8 ⁇ 'm.
  • Materials suitably used for the panel layer include, for example, beryllium copper foil (for example, 25 beryllium copper: longitudinal elastic modulus 127 GPa, conductivity 25% IACS) and titanium copper (longitudinal elastic modulus 127 GPa, conductive Electricity 18-25% IACS).
  • the thickness of the spring layer is preferably about 10-50 / im. In other words, if it is less than ⁇ ⁇ ⁇ , there is a risk that sufficient panel properties cannot be secured to suppress the flying height of the slider. Conversely, if it exceeds 50 ⁇ m, it may be difficult to lower the slider. .
  • the insulating layer is composed of an insulating resin layer.
  • polyimide, polyamideimide, polyetherimide or the like has an imide bond in its structure. It is good to have a polyimide resin.
  • the thickness of the polyimide resin layer is 5 to 20 ⁇ , preferably 7 to 18 ⁇ . When the polyimide resin layer thickness is less than ⁇ m, the reliability of the electrical insulation is lowered and the dielectric property is deteriorated, and the crosstalk problem of the electric signal is promoted. If it exceeds 20 ⁇ , there will be a problem that it is difficult to perform patterning of the polyimide resin layer with high accuracy.
  • linear expansion coefficient of the polyimide ⁇ layer 1 X 10- 5 ⁇ 3 X 10- 5 / ° C preferred properly in 1.5 X 10- 5 ⁇ 2.5 X 10- 5 / ° C
  • Linear expansion coefficient of the polyimide ⁇ layer 1 X 10- 5 / Be less than C, contrary to 3 X 10- 5 /. Even if it is larger than C, there is a problem that warpage tends to occur when the panel layer or conductor layer of the laminate is etched away.
  • the laminate of the present invention has an adhesive strength at the interface between the insulating layer and the panel layer of 0.5 kN / m or more and an adhesive strength at the interface between the insulating layer and the conductor layer of 0.5 kN / m. It is preferable that it is more than m. Therefore, when the insulating layer is made of a polyimide resin layer, it is desirable that this polyimide resin layer has a certain degree of adhesion performance. Note that the upper limit of the adhesive strength at the interface between the insulating layer and the panel layer and at the interface between the insulating layer and the conductor layer is based on practical experience rules when using the circuit as a material for HDD suspension. Since it is sufficient if the circuit has sufficient adhesive strength not to peel off, lOkN / m or less is sufficient.
  • polyimide resin layer linear expansion coefficient of the polyimide resin layer is more than 3 X 10- 5 / ° C, although tend to exhibit relatively good adhesive strength between panels layer and the conductive layer , polyimide resin layer of the linear expansion coefficient of 1 X 10- 5 ⁇ 3 X 10- 5 / ° C , there is a tendency not exhibit good adhesion strength as described above.
  • the linear expansion coefficient 2.5 X 10- 5 / ° C or lower thermal expansion polyimide resin layer If, what is a multilayer structure comprising at least two layers of the linear expansion coefficient 3 X 10- 5 / ° C or more high thermal expansion polyimide resin layer is more preferably Yogu, linear expansion coefficient 3 X 10- 5 / ° and more first high thermal expansion polyimide resin layer C, a linear expansion coefficient 2.5 X 10- 5 / ° C or lower thermal expansion polyimide resin layer, a linear expansion coefficient of 3 X 10- 5 / ° C A three-layer structure composed of the second high thermal expansion polyimide resin layer is preferred.
  • the ratio (ta / tb) of the total thickness (ta) of both outermost layers to the thickness (tb) of other intermediate layers It should be in the range of 0.1 to 0.5.
  • the first high thermal expansion polyimide resin layer and the second high thermal expansion polyimide resin layer may be the same resin or different resins. In this way, a resin layer that satisfies both the conditions of low thermal expansion and high adhesiveness is obtained by combining the polyimide resin layer with a low thermal expansion polyimide resin layer and a high thermal expansion polyimide resin layer to form a multilayer structure. Can be formed.
  • the conductor layer in the present invention is preferably formed from an alloy copper foil.
  • the alloy copper foil refers to an alloy foil containing copper as an essential element and containing at least one kind of different elements other than copper, such as chromium, zirconium, nickel, silicon, zinc, and beryllium. The rate is over 90% by weight.
  • the copper foil before lamination has a tensile strength of 500 MPa or more and a conductivity of 65% or more. If the tensile strength of the conductor layer is less than 500 MPa, sufficient copper foil strength cannot be obtained when a flying lead is formed, and problems such as disconnection are likely to occur. If the conductivity is less than 65%, the noise generated from the copper foil resistor is dissipated as heat, making impedance control difficult and the transmission speed not satisfactory.
  • an insulating layer is formed by coating a polyimide resin solution on the panel layer serving as a base.
  • the polyimide resin liquid can be applied by a known method, and is usually applied using an applicator.
  • the polyimide resin solution may be obtained by dissolving the imidized polyimide resin in a solvent, but the polyimide resin precursor resin solution was used, and after application, the solvent was removed to some extent by preheating. After, imide by heat treatment It is preferable that Of course, when using an imidized polyimide resin solution, heat treatment for imidig is omitted.
  • a rolled copper foil or an electrolytic copper foil having a thickness of 1 to 20/1111, a tensile strength of 500 MPa or more, and a conductivity of 65% or more to be a conductor layer is laminated.
  • DA-NPG 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane
  • DAPE 4,4'-diaminodiphenyl ether
  • APB 1,3-bis (3-aminophenoxy) benzene
  • HDD equipped with a magnetic writing device and magnetic reading device for reading and writing information on the HDD board Create a flexure for use.
  • the imidization is completed by a heat treatment in several steps in a range of 130 to 360 ° C. for 3 minutes each, and in order from the copper foil, the first polyimide resin layer (high thermal expansion polyimide resin), Second An insulating layer (resin layer) having a multilayer structure including a polyimide layer (low thermal expansion polyimide resin) and a third polyimide resin layer (high thermal expansion polyimide resin) was formed.
  • the first layer of polyimide resin layer and the third layer of the polyimide resin layer is the same, the linear expansion coefficient is either 4.0 X 10- 5 / ° C, the second layer of the polyimide resin layer the linear expansion coefficient of a 1.5 X 10- 5 / ° C.
  • the insulating layer total thickness is 10 zm
  • linear thermal expansion coefficient of the entire insulating layer was 1.7 X 10- 5 / ° C.
  • the corresponding insulating layer was heated to 250 ° C using a thermomechanical analyzer (manufactured by Seiko Electronics Co., Ltd.), held at that temperature for 20 minutes, and then 10 °
  • the average linear expansion coefficient from 240 ° C to 100 ° C was determined by cooling at a rate of C / min.
  • beryllium copper foil manufactured by Nippon Zushi Co., Ltd., 25 beryllium copper, thickness 20 zm, longitudinal elastic modulus 127 GPa, conductivity 25% IACS
  • this beryllium copper foil was obtained above.
  • Laminated body A for HDD suspension was obtained by superimposing on the polyimide surface (insulating layer) and thermocompression bonding using a vacuum press machine under conditions of surface pressure of 7 MPa, temperature of 315 ° C, and press time of 80 minutes.
  • Example 3 instead of the beryllium copper foil used as the panel layer in Example 1, a titanium copper foil (manufactured by Nikko Metal Co., Ltd., hyper titanium copper XSH, thickness 20 xm, longitudinal elastic modulus 127 GPa, conductivity 18-25% IACS) was used. A laminate B for HDD suspension was obtained in the same manner as in Example 1 except that it was used.
  • Example 3
  • the imidization is completed by a heat treatment in several steps in a range of 130 to 360 ° C. for 3 minutes each, and in order from the copper foil, the first polyimide resin layer (high thermal expansion polyimide resin), An insulating layer (resin layer) having a multilayer structure provided with a second polyimide layer (low thermal expansion polyimide resin) and a third polyimide resin layer (high thermal expansion polyimide resin) was formed.
  • the first layer above Linear expansion coefficient of the resin layer of the polyimide resin layer is 4.2 X 10- 5 / ° C
  • the linear expansion coefficient of the second layer of the polyimide resin layer is 1.5 X 10- 5 / ° C
  • the third layer of the polyimide linear expansion coefficient of the resin layer 4. was 0 X 10- 5 / ° C.
  • the insulating layer total thickness is 10 / im
  • linear thermal expansion coefficient of the entire insulating layer was 1.7 X 10- 5 / ° C.
  • beryllium copper foil manufactured by Nippon Choshi Co., Ltd., 25 beryllium copper, thickness 20 was used as the panel layer.
  • Example 3 instead of the beryllium copper foil used as the panel layer in Example 3, titanium copper foil (manufactured by Nikko Metal Co., Ltd., Hyper Titanium Copper XSH, thickness 20 ⁇ , longitudinal elastic modulus 127 GPa, conductivity 18 25% IACS) was used. A laminate D for HDD suspension was obtained in the same manner as in Example 3 except that it was used.
  • Example 2 In the same manner as in Example 1 except that stainless steel foil (manufactured by Nippon Steel Corp .: SUS-304 longitudinal elastic modulus 200 GPa, conductivity 2.4% IACS) was used instead of the beryllium copper foil as the panel layer in Example 1. As a result, a laminate E for HDD suspension was obtained.
  • stainless steel foil manufactured by Nippon Steel Corp .: SUS-304 longitudinal elastic modulus 200 GPa, conductivity 2.4% IACS

Abstract

A laminate for HDD suspension dealing with fine pitch wiring required for a suspension material and realizing a hard disc drive (hereinafter referred to HDD) capable of stable recording or reading of signals even at a high rate. The laminate for HDD suspension is characterized in that a spring layer having a longitudinal modulus of elasticity in the range of 100-1000 Gpa and a conductivity in the range of 10-100% IACS, an insulating layer and a conductor layer are laminated sequentially.

Description

明 細 書  Specification
HDDサスペンション用積層体  Laminate for HDD suspension
技術分野  Technical field
[0001] 本発明は、ハードディスクドライブ(以下、 HDD)用サスペンション基板としての好適 な積層体に関するものである。詳しくはサスペンション材料に要求されている配線の 微細化において、安定した電気特性を得ることが出来る高機能性積層体に関するも のである。  The present invention relates to a suitable laminate as a suspension board for a hard disk drive (hereinafter referred to as HDD). Specifically, the present invention relates to a high-functional laminate that can obtain stable electrical characteristics in the miniaturization of wiring required for suspension materials.
背景技術  Background art
[0002] HDDは、従来のパーソナルコンピュータやサーバーへの需要から音楽、家電製品 、カーナビゲーシヨンシステム等の新規アプリケーションへの搭載に伴レ、、その生産 量は増加の一途をたどっている。また HDDは今後大容量ィヒゃ小型化が進むと予想さ れ、 HDDにおいて磁気記録を読み書きするヘッドを搭載したフレクシヤーブランクを 構成するサスペンション部分についてもまた、小型化及び配線の多線化、細線化が 進んでいる。  [0002] The production volume of HDDs has been steadily increasing due to the demand for conventional personal computers and servers as they are installed in new applications such as music, home appliances, and car navigation systems. In addition, HDDs are expected to become smaller in size in the future, and the suspension part of the flexure blank equipped with a head that reads and writes magnetic records in the HDD will also be reduced in size and wiring. Thinning is progressing.
[0003] その一つとして、従来のワイヤ線を用いたワイヤタイプのサスペンションから配線が 一体となったワイヤレスタイプのサスペンションに代替が進み、従来から問題であった ワイヤ線の荷重の不均一化に基づく不安定性が解消されることによってサスペンショ ンの浮揚姿勢は大幅に改善されて、小型化するスライダを搭載する技術を可能にし た。この小型化したスライダを搭載する技術が可能になったことにより、トラック密度及 び線記録 (ビット)密度といった書き込み容量を飛躍的に向上する技術が達成されて 高容量化が進むに従レ、、従来使用されてきたワイヤタイプのサスペンションから、記 憶媒体であるディスクに対し浮力と位置精度が安定した配線一体型のサスペンション へ大半が置き換わっている。この配線一体型サスペンションの中で、 TSA (トレース サスペンションアッセンプリ)法と呼ばれるステンレス箔ーポリイミド樹脂 銅箔の積 層体をエッチング加工により所定の形状に加工するタイプがある。  [0003] As one of them, the replacement of the conventional wire type suspension using the wire wire to the wireless type suspension in which the wiring is integrated has progressed, and the load of the wire wire which has been a problem in the past has become uneven. By eliminating the instability based on the suspension, the suspension's levitation posture has been greatly improved, enabling the technology to be equipped with a smaller slider. The technology to mount this miniaturized slider has become possible, and technology that dramatically improves the write capacity such as track density and linear recording (bit) density has been achieved. However, most of the wire-type suspensions that have been used in the past have been replaced by wiring-integrated suspensions that have stable buoyancy and positional accuracy with respect to the disk that is the storage medium. Among these integrated wiring suspensions, there is a type called the TSA (Trace Suspension Assembly) method in which a laminated body of stainless steel foil-polyimide resin copper foil is processed into a predetermined shape by etching.
[0004] TSA方式サスペンションは、高強度を有する合金銅箔を積層することによって、容 易にフライングリードを形成させることが可能であり、形状加工での自由度が高いこと や比較的安価で寸法精度が良いことから幅広く使用されている。 WO98/08216には 、ステンレス基体上にポリイミド系樹脂層及び導体層が逐次に形成されてなる HDDサ スペンション用積層体が開示されている。 [0004] The TSA suspension can easily form flying leads by laminating high-strength alloy copper foil, and has a high degree of freedom in shape processing. It is widely used because it is relatively inexpensive and has good dimensional accuracy. WO98 / 08216 discloses an HDD suspension laminate in which a polyimide resin layer and a conductor layer are sequentially formed on a stainless steel substrate.
[0005] 一方では、記憶容量の増大に伴い、記録、読み出し時間を短縮させる処理速度の 向上が次に要請される技術課題の一つとなっている。つまり、電気信号のやり取りを 微細化された配線を使用して高速で行う必要が生じている。その為、従来に比べて 信号周波数が高くなることによって、高周波回路の影響による電気信号の減衰が見 られるようになり、このことが高速化の妨げになっている。これは、微細配線化に伴う 配線間の狭幅化によってクロストークと呼ばれる配線間のレスポンスエラーを引き起こ す問題であり、特開平 9-283930にはマイクロストリップ構造での隣接パターンのクロス トークノイズによる誤作動を回避するための多層プリント配線板の構造および製造方 法が開示されている。 [0005] On the other hand, with an increase in storage capacity, an improvement in processing speed that shortens recording and reading time is one of the technical issues that are required next. In other words, it is necessary to exchange electrical signals at high speed using finer wiring. For this reason, the signal frequency becomes higher than the conventional one, and attenuation of the electric signal due to the influence of the high frequency circuit is observed, which hinders the speeding up. This is a problem that causes a response error between wirings called crosstalk due to the narrowing of wiring between wirings due to miniaturization. Japanese Patent Laid-Open No. 9-283930 discloses crosstalk noise of adjacent patterns in a microstrip structure. A structure and a manufacturing method of a multilayer printed wiring board for avoiding malfunction due to the above are disclosed.
特許文献 1: WO98/08216号パンフレット  Patent Document 1: Pamphlet of WO98 / 08216
特許文献 2:特開平 9-283930号公報  Patent Document 2: JP-A-9-283930
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、微細配線に伴う配線間の狭幅化に対応でき、高速で安定した信号の記 録、読み出しが可能な HDDを実現しうる HDDサスペンション用積層体を提供すること にある。 An object of the present invention is to provide a laminate for an HDD suspension that can cope with the narrowing of wiring between fine wiring and can realize an HDD capable of recording and reading signals at high speed and stably. .
課題を解決するための手段  Means for solving the problem
[0007] 本発明者等は、かかる課題を解決すべく鋭意検討した結果、データロスを引き起こ す原因となっている導体層とパネ層の間に発生する誘導結合 (相互インダクタンス) を低下させる為に、パネ層として、従来使用されているステンレスよりも導電率の高い 材料を使用することで、本発明を完成するに至った。 [0007] As a result of intensive studies to solve such problems, the present inventors have reduced inductive coupling (mutual inductance) generated between the conductor layer and the panel layer that causes data loss. Therefore, the present invention has been completed by using a material having a higher conductivity than the conventionally used stainless steel as the panel layer.
[0008] すなわち、本発明は、縦弾性係数力 Sl00〜1000GPaの範囲であると共に、導電率が[0008] That is, the present invention is in the range of the longitudinal elastic modulus force Sl00 to 100GPa and the conductivity is
10〜100%IACSの範囲であるバネ層と、絶縁層と、導体層とが順次積層されてなること を特徴とする HDDサスペンション用積層体である。 A HDD suspension laminate comprising a spring layer, an insulating layer, and a conductor layer in a range of 10 to 100% IACS, which are sequentially laminated.
また、本発明は、パネ層と絶縁層と導体層とが順次積層されてなる HDDサスペンシ ヨン用積層体であって、上記バネ層が縦弾性係数 100〜1000GPaの範囲であると共 に、導電率 10〜100%IACSの範囲であり、かつ、このバネ層が、主成分を少なくとも Fe 、 Cu、 Al、 Zn、 Sn、 Ήから選択される 1種又は 2種以上の金属層からなる、或いは上記 金属と Ni、 Cr、 Mg、 Be、 Mo、 Zr、 Si、 C、 Mn、 P、 S、 Coから選択される 1種又は 2種以 上との合金からなる合金層からなる、 HDDサスペンション用積層体である。 The present invention also provides an HDD suspension in which a panel layer, an insulating layer, and a conductor layer are sequentially laminated. The spring layer has a longitudinal elastic modulus in the range of 100 to 1000 GPa and a conductivity in the range of 10 to 100% IACS, and the spring layer has at least Fe as a main component. It consists of one or more metal layers selected from Cu, Al, Zn, Sn, Ή, or the above metals and Ni, Cr, Mg, Be, Mo, Zr, Si, C, Mn, P, It is a laminate for an HDD suspension that is made of an alloy layer made of an alloy of one or more selected from S and Co.
発明の効果  The invention's effect
[0009] 本発明の積層体は、従来、パネ層に一般に用いられてきたステンレス箔に代わり、 バネ材としての役割を果たすために所定の縦弾性係数を有すると共に、優れた導電 性を備えたパネ層を用いて、パネ層と絶縁層と導体層とが順次積層された HDDサス ペンション用積層体を形成していることから、高速で安定した信号の記録、読み出し が可能な HDDを実現することができ、また、導体層とパネ層の間に発生する相互イン ダクタンスの発生によるクロストークが低減され、更には、データロスを抑制することが できる、高速で安定した H DDサスペンション用積層体である。  [0009] The laminated body of the present invention has a predetermined longitudinal elastic modulus in order to serve as a spring material in place of the stainless steel foil generally used for the panel layer, and has excellent conductivity. Using the panel layer, the HDD suspension stack is formed by sequentially stacking the panel layer, insulating layer, and conductor layer, thus realizing an HDD that can record and read signals stably at high speed. In addition, crosstalk due to the generation of mutual inductance between the conductor layer and the panel layer can be reduced, and further, data loss can be suppressed. It is.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明の HDDサスペンション用積層体は、パネ層と絶縁層と導体層とが順次積層 されてなる積層体であって、バネ層の縦弾性係数力 100〜1000 GPaの範囲である。こ こで、縦弾性係数は、サスペンション材料のパネ性の指標であり、パネ層の縦弾性係 数が 100 GPaより小さいとヘッドが搭載されたフレタシャープランクの形状が保てない 。また、 1000 GPaより大きくても実用上意味がない。なお、縦弾性係数は ASTM E-75 6などに従って片持ち梁法にて測定することができる。  [0010] The HDD suspension laminate of the present invention is a laminate in which a panel layer, an insulating layer, and a conductor layer are sequentially laminated, and has a longitudinal elastic modulus force of the spring layer in the range of 100 to 1000 GPa. Here, the longitudinal elastic modulus is an index of the panel property of the suspension material. If the longitudinal elastic coefficient of the panel layer is less than 100 GPa, the shape of the flare sharp rank on which the head is mounted cannot be maintained. Even if it is larger than 1000 GPa, there is no practical meaning. The longitudinal elastic modulus can be measured by the cantilever method according to ASTM E-756.
[0011] また、バネ層については導電率が 10〜100%IACSの範囲であることが必要である。こ の範囲より小さいとクロストークを抑えきることができなくなり、誤動作の原因となる。反 対に、 100%IACS以上であっても材料コストが高くなるので好ましくない。なお、導電率 (%IACS)は、万国標準軟銅(International Annnealed Copper Standard)を 4探針法を 用いて測定したときの導電率を 100%としたときの各素材の導電率を%で表したもので ある。 100%IACSは 1.7241x10— 8 Ω ' mに相当する。 [0011] Also, the spring layer needs to have a conductivity in the range of 10 to 100% IACS. If it is smaller than this range, it will not be possible to suppress crosstalk and cause malfunction. On the other hand, a material cost of 100% IACS or higher is not preferable because the material cost increases. Note that the conductivity (% IACS) is expressed as% of the conductivity of each material when the conductivity is 100% when measured using the 4-probe method with International Annnealed Copper Standard. It is a thing. 100% IACS corresponds to 1.7241x10- 8 Ω 'm.
[0012] パネ層に好適に用いられる材料としては、例えばベリリウム銅箔 (例として 25ベリリウ ム銅:縦弾性係数 127GPa、導電率 25%IACS)や、チタン銅(縦弾性係数 127 GPa,導 電率 18〜25%IACS)などがある。 [0012] Materials suitably used for the panel layer include, for example, beryllium copper foil (for example, 25 beryllium copper: longitudinal elastic modulus 127 GPa, conductivity 25% IACS) and titanium copper (longitudinal elastic modulus 127 GPa, conductive Electricity 18-25% IACS).
バネ層の厚さについては、 10〜50 /i m程度であることが望ましレ、。すなわち ΙΟ μ πι に満たないとスライダの浮上量を抑えるのに十分なパネ性を確保できなレ、おそれが あり、反対に 50 μ mを超えるとスライダの低浮上化が困難になる場合がある。  The thickness of the spring layer is preferably about 10-50 / im. In other words, if it is less than ΙΟ μ πι, there is a risk that sufficient panel properties cannot be secured to suppress the flying height of the slider. Conversely, if it exceeds 50 μm, it may be difficult to lower the slider. .
[0013] 本発明の HDDサスペンション用積層体において、絶縁層は絶縁性樹脂層で構成さ れるのが好ましぐ具体的にはポリイミド、ポリアミドイミド、ポリエーテルイミド等、その 構造中にイミド結合を有するポリイミド系樹脂であるのがよい。このポリイミド系樹脂層 の厚さについては 5〜20 μ πι、好ましくは 7〜18 μ πιであるのがよレ、。ポリイミド系樹脂 層力 μ mより薄いと電気的絶縁の信頼が低下すると同時に誘電特性が悪くなるとい う問題が発生し、電気信号のクロストーク問題を助長する為、好ましくない。 20 μ πιを 超えると高精度のポリイミド系樹脂層のパターンユングが行い難いという問題が発生 する。 In the laminate for HDD suspension of the present invention, it is preferable that the insulating layer is composed of an insulating resin layer. Specifically, polyimide, polyamideimide, polyetherimide or the like has an imide bond in its structure. It is good to have a polyimide resin. The thickness of the polyimide resin layer is 5 to 20 μπι, preferably 7 to 18 μπι. When the polyimide resin layer thickness is less than μm, the reliability of the electrical insulation is lowered and the dielectric property is deteriorated, and the crosstalk problem of the electric signal is promoted. If it exceeds 20 μπι, there will be a problem that it is difficult to perform patterning of the polyimide resin layer with high accuracy.
[0014] また、上記ポリイミド系榭脂層の線膨張係数については 1 X 10— 5〜3 X 10— 5/°C、好ま しくは 1.5 X 10— 5〜2.5 X 10— 5/°Cであるのがよい。ポリイミド系榭脂層の線膨張係数が 1 X 10— 5/。Cより小さくても、逆に 3 X 10— 5/。Cより大きくても、積層体のパネ層または導体 層をエッチング除去した際に反りが発生し易いという問題が発生する。 [0014] Further, the linear expansion coefficient of the polyimide榭脂layer 1 X 10- 5 ~3 X 10- 5 / ° C, preferred properly in 1.5 X 10- 5 ~2.5 X 10- 5 / ° C There should be. Linear expansion coefficient of the polyimide榭脂layer 1 X 10- 5 /. Be less than C, contrary to 3 X 10- 5 /. Even if it is larger than C, there is a problem that warpage tends to occur when the panel layer or conductor layer of the laminate is etched away.
[0015] また、本発明の積層体は、絶縁層とパネ層との界面での接着強度が 0.5kN/m以上 であると共に、絶縁層と導体層との界面での接着強度が 0.5kN/m以上であるのが好 ましレ、。そのため、絶縁層がポリイミド系樹脂層からなる場合、このポリイミド系樹脂層 はある程度の接着性能を有することが望ましい。なお、絶縁層とパネ層との界面、及 び絶縁層と導体層との界面での接着強度の上限については実用上の経験則から回 路加ェ時及び HDDサスペンション用材料として使用した場合に回路が剥離しない程 度の接着力を有していれば十分であることから lOkN/m以下であればよい。  [0015] Further, the laminate of the present invention has an adhesive strength at the interface between the insulating layer and the panel layer of 0.5 kN / m or more and an adhesive strength at the interface between the insulating layer and the conductor layer of 0.5 kN / m. It is preferable that it is more than m. Therefore, when the insulating layer is made of a polyimide resin layer, it is desirable that this polyimide resin layer has a certain degree of adhesion performance. Note that the upper limit of the adhesive strength at the interface between the insulating layer and the panel layer and at the interface between the insulating layer and the conductor layer is based on practical experience rules when using the circuit as a material for HDD suspension. Since it is sufficient if the circuit has sufficient adhesive strength not to peel off, lOkN / m or less is sufficient.
[0016] ところで、一般に、ポリイミド系樹脂層の線膨張係数が 3 X 10— 5/°Cを超えるポリイミド 系樹脂層は、パネ層や導体層と比較的良好な接着強度を示す傾向にあるものの、線 膨張係数が 1 X 10— 5〜3 X 10— 5/°Cのポリイミド系樹脂層は、上記のような良好な接着 強度を示さないという傾向がある。そのため、本発明におけるポリイミド系樹脂層の好 ましい形態としては、線膨張係数 2.5 X 10— 5/°C以下の低熱膨張性ポリイミド系樹脂層 と、線膨張係数 3 X 10— 5/°C以上の高熱膨張性ポリイミド系樹脂層との少なくとも 2層を 含む多層構造であるのがよぐ更に好ましくは、線膨張係数 3 X 10— 5/°C以上の第 1の 高熱膨張性ポリイミド系樹脂層と、線膨張係数 2.5 X 10— 5/°C以下の低熱膨張性ポリイ ミド系樹脂層と、線膨張係数 3 X 10— 5/°C以上の第 2の高熱膨張性ポリイミド系樹脂層 とからなる 3層構造であるのがよい。また、ポリイミド系樹脂層を 3層以上の複数層で形 成する場合には、両最外層の合計厚み(ta)と他の中間層との厚み(tb)の比 (ta/tb )については 0.1〜0.5の範囲であるのがよレ、。なお、第 1の高熱膨張性ポリイミド系樹 脂層と第 2の高熱膨張性ポリイミド系樹脂層とは同一の樹脂であっても、互いに異な る樹脂であってもよレ、。このようにポリイミド系樹脂層を低熱膨張性ポリイミド系樹脂層 と高熱膨張性ポリイミド系樹脂層とを組み合わせて多層構造とすることで、低熱膨張 性と高接着性の両方の条件を満足する樹脂層を形成することが可能となる。 [0016] Incidentally, in general, polyimide resin layer linear expansion coefficient of the polyimide resin layer is more than 3 X 10- 5 / ° C, although tend to exhibit relatively good adhesive strength between panels layer and the conductive layer , polyimide resin layer of the linear expansion coefficient of 1 X 10- 5 ~3 X 10- 5 / ° C , there is a tendency not exhibit good adhesion strength as described above. Therefore, as a good preferable embodiment of the polyimide resin layer in the present invention, the linear expansion coefficient 2.5 X 10- 5 / ° C or lower thermal expansion polyimide resin layer If, what is a multilayer structure comprising at least two layers of the linear expansion coefficient 3 X 10- 5 / ° C or more high thermal expansion polyimide resin layer is more preferably Yogu, linear expansion coefficient 3 X 10- 5 / ° and more first high thermal expansion polyimide resin layer C, a linear expansion coefficient 2.5 X 10- 5 / ° C or lower thermal expansion polyimide resin layer, a linear expansion coefficient of 3 X 10- 5 / ° C A three-layer structure composed of the second high thermal expansion polyimide resin layer is preferred. In addition, when the polyimide resin layer is formed of three or more layers, the ratio (ta / tb) of the total thickness (ta) of both outermost layers to the thickness (tb) of other intermediate layers It should be in the range of 0.1 to 0.5. The first high thermal expansion polyimide resin layer and the second high thermal expansion polyimide resin layer may be the same resin or different resins. In this way, a resin layer that satisfies both the conditions of low thermal expansion and high adhesiveness is obtained by combining the polyimide resin layer with a low thermal expansion polyimide resin layer and a high thermal expansion polyimide resin layer to form a multilayer structure. Can be formed.
[0017] 本発明における導体層については、合金銅箔から形成されることが好ましい。ここ で、合金銅箔とは、銅を必須として含有し、クロム、ジルコニウム、ニッケル、シリコン、 亜鉛、ベリリウム等の銅以外の少なくとも 1種以上の異種の元素を含有する合金箔を 指し、銅含有率 90重量%以上のものを言う。  [0017] The conductor layer in the present invention is preferably formed from an alloy copper foil. Here, the alloy copper foil refers to an alloy foil containing copper as an essential element and containing at least one kind of different elements other than copper, such as chromium, zirconium, nickel, silicon, zinc, and beryllium. The rate is over 90% by weight.
合金銅箔としては、銅含有率 95重量%以上のものを使用することが好ましい。併せ て、積層前の銅箔の引張強度が 500MPa以上であり、かつ、導電率が 65%以上であ ることが好ましい。導体層の引張強度が 500MPaに満たないと、フライングリードを形 成した場合に十分な銅箔強度が得られず断線などの問題が発生し易い。また、導電 率が 65%に満たないと、銅箔の抵抗体から発生するノイズが熱として発散され、イン ピーダンス制御が困難となり、送信速度も満足するものとならない。  It is preferable to use an alloy copper foil having a copper content of 95% by weight or more. In addition, it is preferable that the copper foil before lamination has a tensile strength of 500 MPa or more and a conductivity of 65% or more. If the tensile strength of the conductor layer is less than 500 MPa, sufficient copper foil strength cannot be obtained when a flying lead is formed, and problems such as disconnection are likely to occur. If the conductivity is less than 65%, the noise generated from the copper foil resistor is dissipated as heat, making impedance control difficult and the transmission speed not satisfactory.
[0018] 次に、本発明の積層体の製造方法の一例について説明する。本発明の積層体を 得る手段は以下の方法に制限されない。  [0018] Next, an example of a method for producing a laminate of the present invention will be described. The means for obtaining the laminate of the present invention is not limited to the following method.
積層体を製造するにあたっては、まず、基体となるパネ層上にポリイミド樹脂液を塗 布して絶縁層を形成する。ポリイミド樹脂液の塗布は公知の方法により可能であり、 通常、アプリケータを用いて塗布される。ポリイミド樹脂溶液は、イミド化されたポリイミ ド樹脂が溶媒に溶解されたものを使用してもよいが、ポリイミド樹脂前駆体の樹脂溶 液を使用し、塗布後、予備加熱により溶媒をある程度除去した後、熱処理によりイミド 化をするのが好ましい。なお、イミド化されたポリイミド樹脂溶液を使用する場合には、 当然、イミドィヒのための熱処理は省略される。 In manufacturing the laminated body, first, an insulating layer is formed by coating a polyimide resin solution on the panel layer serving as a base. The polyimide resin liquid can be applied by a known method, and is usually applied using an applicator. The polyimide resin solution may be obtained by dissolving the imidized polyimide resin in a solvent, but the polyimide resin precursor resin solution was used, and after application, the solvent was removed to some extent by preheating. After, imide by heat treatment It is preferable that Of course, when using an imidized polyimide resin solution, heat treatment for imidig is omitted.
[0019] このようにして、ポリイミド樹脂層を形成した後、導体層となる厚み1〜20 /1 111、引張 強度 500MPa以上、導電率 65%以上の圧延銅箔又は電解銅箔を重ね合わせて、 2 80°C以上の温度で、 3〜: 120分間の範囲で加圧する。加圧時間が 120分を超えると 銅箔の加熱伸びによって反りが発生し易ぐ安定したラミネート材が得られ難いので 好ましくない。また、加圧時間力 ¾分に満たない場合は十分な剥離強度が得られず 好ましくなレ、。さらに好ましい加熱加圧時間としては 10〜: 100分間である。  [0019] After the polyimide resin layer is formed in this way, a rolled copper foil or an electrolytic copper foil having a thickness of 1 to 20/1111, a tensile strength of 500 MPa or more, and a conductivity of 65% or more to be a conductor layer is laminated. , 2 at a temperature of 80 ° C or higher, 3 to: pressurize in the range of 120 minutes. If the pressurization time exceeds 120 minutes, it is not preferable because it is difficult to obtain a stable laminate material in which warpage easily occurs due to heat elongation of the copper foil. Also, when the pressing time force is less than 3 minutes, sufficient peel strength cannot be obtained, which is preferable. A more preferable heating and pressing time is 10 to 100 minutes.
なお、導体層となる圧延銅箔又は電解銅箔上にポリイミド樹脂層を形成し、後から ステンレス箔を重ね合わせる方法でもなんら差し支えない。  In addition, there is no problem even if a polyimide resin layer is formed on a rolled copper foil or an electrolytic copper foil serving as a conductor layer and a stainless steel foil is overlapped later.
[0020] 以下、実施例などに基づき本発明を更に具体的に説明する。なお、合成例に用い られる略号は以下の通りである。  [0020] Hereinafter, the present invention will be described more specifically based on examples. The abbreviations used in the synthesis examples are as follows.
PMDA:無水ピロメリット酸  PMDA: pyromellitic anhydride
BTDA :ベンゾフヱノン- 3,4,3',4' -テトラカルボン酸二無水物  BTDA: benzophenone-3,4,3 ', 4'-tetracarboxylic dianhydride
DSDA:ジフエニルスルホン- 3, 4,3' ,4'-テトラカルボン酸二無水物  DSDA: Diphenylsulfone-3, 4,3 ', 4'-tetracarboxylic dianhydride
DA-NPG : 1,3-ビス(4-アミノフエノキシ) -2, 2-ジメチルプロパン  DA-NPG: 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane
3,4, -DAPE: 3,4'-ジアミノジフエニルエーテル  3,4, -DAPE: 3,4'-diaminodiphenyl ether
MABA: 4-ァミノ _N-(4-ァミノ- 2-メトキシフエニル) -ベンゾアミド  MABA: 4-Amino_N- (4-Amino-2-methoxyphenyl) -benzoamide
DAPE: 4,4'-ジアミノジフエニルエーテル  DAPE: 4,4'-diaminodiphenyl ether
APB: 1,3-ビス(3-アミノフエノキシ)ベンゼン  APB: 1,3-bis (3-aminophenoxy) benzene
p-PDA: p-フエ二レンジァミン  p-PDA: p-Phenylenediamine
DMAc: N,N_ジメチノレアセトアミド  DMAc: N, N_Dimethyloleacetamide
[0021] [合成例 1] [0021] [Synthesis Example 1]
5.5モルのDA-NPGと3.5モルの3, 4,- DAPEを秤量し、 40Lのプラネタリーミキサーの 中で攪拌しながら溶媒 DMAc25.5kgに溶解させた。次いで、 2.5モルのPMDAと5.0モ ルの BTDAとをカ卩え、室温にて 3時間攪拌を続けて重合反応を行い、粘稠なポリイミド 前駆体 Aの溶液を得た。  5.5 mol of DA-NPG and 3.5 mol of 3,4, -DAPE were weighed and dissolved in 25.5 kg of DMAc solvent with stirring in a 40 L planetary mixer. Next, 2.5 mol of PMDA and 5.0 mol of BTDA were added, and the polymerization reaction was continued for 3 hours at room temperature to obtain a viscous polyimide precursor A solution.
[0022] [合成例 2] 8.5モルの1^八8八と2.0モルの0八?6を秤量し、 40Lのプラネタリーミキサーの中で攪 拌しながら溶媒 DMAc25.5kgに溶解させた。次いで、 8.6モルの PMDAを加え、室温に て 3時間攪拌を続けて重合反応を行い、粘稠なポリイミド前駆体 Bの溶液を得た。 [0022] [Synthesis Example 2] 8.5 mole 1 ^ 88 and 2.0 mole 0-8? 6 was weighed and dissolved in 25.5 kg of solvent DMAc while stirring in a 40 L planetary mixer. Next, 8.6 mol of PMDA was added, and the polymerization reaction was continued by stirring at room temperature for 3 hours to obtain a viscous polyimide precursor B solution.
[0023] [合成例 3] [0023] [Synthesis Example 3]
5.5モルの八?8と3.9モルの -?0八を秤量し、 40Lのプラネタリーミキサーの中で攪拌 しながら溶媒 DMAc25.5kgに溶解させた。次いで、 5.4モルの DSDAと 2.3モルの \40八 とをカロえ、室温にて 3時間攪拌を続けて重合反応を行い、粘稠なポリイミド前駆体じの 溶液を得た。  5.5 mole eight? 8 and 3.9 moles of ?? 0-8 were weighed and dissolved in 25.5 kg of solvent DMAc with stirring in a 40 L planetary mixer. Next, 5.4 moles of DSDA and 2.3 moles of 40 dollars were added, and the polymerization reaction was continued for 3 hours at room temperature to obtain a viscous polyimide precursor solution.
[0024] [クロストーク発生の有無にっレ、ての評価方法]  [0024] [Evaluation method based on the presence or absence of crosstalk]
下記実施例 1〜4及び比較例 1で得られた HDDサスペンション用積層体 A〜Eにつ いて、以下の方法によりクロストーク発生の有無を評価した。  For the HDD suspension laminates A to E obtained in the following Examples 1 to 4 and Comparative Example 1, the presence or absence of occurrence of crosstalk was evaluated by the following method.
先ず、導体層に写真蝕刻技術を用いて線幅、線間ともに 25 z m幅のリード線を作成 し、 HDD用基板の情報を読み書きする為の磁気書き込み用装置、磁気読み取り用 装置を装着した HDD用フレクシヤーを作成する。次に、上記磁気書き込み用回路に 周波数を自由に変更できる発信機 (東陽テク二力製:周波数応答アナライザ 1260型、 ェヌエフ回路設計ブロック:周波数特性分析器 FRA5096)を接続し、一方から 1Hzか ら 15MHzまで周波数を変えながら交流電圧を印加し、他方から出力される電圧を測 定し、出力電圧印加電圧の比率を算出し、印加電圧の減衰が認められなかった場合 をクロストーク無しとし、減衰が認められた場合をクロストーク有りとした。 実施例 1  First, using a photo-etching technology on the conductor layer, create a lead wire with a width of 25 zm for both the line width and the distance between the lines. HDD equipped with a magnetic writing device and magnetic reading device for reading and writing information on the HDD board Create a flexure for use. Next, connect a transmitter that can freely change the frequency to the above-mentioned magnetic writing circuit (Toyo Tecini Power Co., Ltd .: frequency response analyzer type 1260, NF circuit design block: frequency characteristic analyzer FRA5096), and from 1 Hz from one side Apply AC voltage while changing the frequency up to 15 MHz, measure the voltage output from the other, calculate the ratio of the applied output voltage, and if there is no attenuation of the applied voltage, the crosstalk is assumed and the attenuation Is recognized as crosstalk. Example 1
[0025] 導体層として銅箔(日鉱マテリアルズ式会社製、 NK-120、銅箔厚み 12 μ m、強度 55 6MPa、導電率 79%)を用い、合成例 1で得られたポリイミド前駆体 Aの溶液をこの銅箔 上に硬化後の厚みが 1 β mになるように塗布して 110°Cで 3分乾燥させた後、その上に 合成例 2で得られたポリイミド前駆体 Bの溶液を硬化後の厚さが 7.5 μ mになるように塗 布して 1 10°Cで 10分乾燥させ、更にその上に合成例 1で得られたポリイミド前駆体 Aの 溶液を硬化後の厚みが 1.5 μ mになるように塗布して 110°Cで 3分乾燥させた。そして 、更に 130〜360°Cの範囲で数段階、各 3分間段階的な熱処理によりイミド化を完了さ せ、銅箔から近い順に、第 1のポリイミド樹脂層(高熱膨張性ポリイミド系樹脂)、第 2の ポリイミド層(低熱膨張性ポリイミド系樹脂)、及び第 3のポリイミド樹脂層(高熱膨張性 ポリイミド系樹脂)を備えた多層構造の絶縁層 (樹脂層)を形成した。上記第 1層目の ポリイミド樹脂層と第 3層目のポリイミド樹脂層は同じであって、線膨張係数はいずれ も 4.0 X 10— 5/°Cであり、上記第 2層目のポリイミド樹脂層の線膨張係数は 1.5 X 10— 5/°C であった。また、上記絶縁層全体の厚みは 10 z mであり、絶縁層全体の線熱膨張係 数は 1.7 X 10— 5/°Cであった。なお、線膨張係数の測定には、該当する絶縁層につい て、サーモメカニカルアナライザー (セイコー電子株式会社製)を用いて 250°Cまで昇 温し、更にその温度で 20分保持した後、 10°C/分の速度で冷却して 240°Cから 100°C までの平均線膨張率を求めた。 [0025] The polyimide precursor A obtained in Synthesis Example 1 using copper foil (manufactured by Nikko Materials Corporation, NK-120, copper foil thickness 12 μm, strength 55 6 MPa, conductivity 79%) as the conductor layer Is applied to the copper foil so that the thickness after curing is 1 β m, dried at 110 ° C for 3 minutes, and then the solution of the polyimide precursor B obtained in Synthesis Example 2 thereon. The thickness after curing is 7.5 μm, dried at 10 ° C for 10 minutes, and then the polyimide precursor A solution obtained in Synthesis Example 1 is further cured. Was applied to 1.5 μm and dried at 110 ° C. for 3 minutes. Further, the imidization is completed by a heat treatment in several steps in a range of 130 to 360 ° C. for 3 minutes each, and in order from the copper foil, the first polyimide resin layer (high thermal expansion polyimide resin), Second An insulating layer (resin layer) having a multilayer structure including a polyimide layer (low thermal expansion polyimide resin) and a third polyimide resin layer (high thermal expansion polyimide resin) was formed. The first layer of polyimide resin layer and the third layer of the polyimide resin layer is the same, the linear expansion coefficient is either 4.0 X 10- 5 / ° C, the second layer of the polyimide resin layer the linear expansion coefficient of a 1.5 X 10- 5 / ° C. Further, the insulating layer total thickness is 10 zm, linear thermal expansion coefficient of the entire insulating layer was 1.7 X 10- 5 / ° C. For measurement of the linear expansion coefficient, the corresponding insulating layer was heated to 250 ° C using a thermomechanical analyzer (manufactured by Seiko Electronics Co., Ltd.), held at that temperature for 20 minutes, and then 10 ° The average linear expansion coefficient from 240 ° C to 100 ° C was determined by cooling at a rate of C / min.
[0026] 次に、パネ層としてベリリウム銅箔(日本碍子株式会社製、 25ベリリウム銅、厚み 20 z m,縦弾性係数 127GPa、導電率 25%IACS)を用い、このベリリウム銅箔を上記で得 たポリイミド面(絶縁層)と重ね合わせ、真空プレス機を用いて、面圧 7MPa、温度 315 °C、プレス時間 80分の条件で加熱圧着して HDDサスペンション用積層体 Aを得た。 実施例 2 Next, beryllium copper foil (manufactured by Nippon Zushi Co., Ltd., 25 beryllium copper, thickness 20 zm, longitudinal elastic modulus 127 GPa, conductivity 25% IACS) was used as the panel layer, and this beryllium copper foil was obtained above. Laminated body A for HDD suspension was obtained by superimposing on the polyimide surface (insulating layer) and thermocompression bonding using a vacuum press machine under conditions of surface pressure of 7 MPa, temperature of 315 ° C, and press time of 80 minutes. Example 2
[0027] 実施例 1においてパネ層としたベリリウム銅箔の代わりにチタン銅箔(日鉱金属株式 会社製、ハイパーチタン銅 XSH、厚み 20 x m、縦弾性係数 127GPa、導電率 18〜25% IACS)を用いた以外は実施例 1と同様にして HDDサスペンション用積層体 Bを得た。 実施例 3  [0027] Instead of the beryllium copper foil used as the panel layer in Example 1, a titanium copper foil (manufactured by Nikko Metal Co., Ltd., hyper titanium copper XSH, thickness 20 xm, longitudinal elastic modulus 127 GPa, conductivity 18-25% IACS) was used. A laminate B for HDD suspension was obtained in the same manner as in Example 1 except that it was used. Example 3
[0028] 導体層として銅箔(日鉱マテリアルズ式会社製、 NK-120,銅箔厚み 12 / m、強度 55 6MPa、導電率 79%)を用い、合成例 3で得られたポリイミド前駆体 Cの溶液をこの銅箔 上に硬化後の厚みが 1 β mになるように塗布して 110°Cで 3分乾燥させた後、その上に 合成例 2で得られたポリイミド前駆体 Bの溶液を硬化後の厚さが 7.5 / mになるように塗 布して 110°Cで 10分乾燥させ、更にその上に合成例 1で得られたポリイミド前駆体 Aの 溶液を硬化後の厚みが 1.5 μ mになるように塗布して 110°Cで 3分乾燥させた。そして 、更に 130〜360°Cの範囲で数段階、各 3分間段階的な熱処理によりイミド化を完了さ せ、銅箔から近い順に、第 1のポリイミド樹脂層(高熱膨張性ポリイミド系樹脂)、第 2の ポリイミド層(低熱膨張性ポリイミド系樹脂)、及び第 3のポリイミド樹脂層(高熱膨張性 ポリイミド系樹脂)を備えた多層構造の絶縁層 (樹脂層)を形成した。上記第 1層目の ポリイミド樹脂層の樹脂層の線膨張係数は 4.2 X 10— 5/°Cであり、第 2層目のポリイミド 樹脂層の線膨張係数は 1.5 X 10— 5/°C、第 3層目のポリイミド樹脂層の線膨張係数は 4. 0 X 10— 5/°Cであった。また、上記絶縁層全体の厚みは 10 /i mであり、絶縁層全体の線 熱膨張係数は 1.7 X 10— 5/°Cであった。 [0028] Polyimide precursor C obtained in Synthesis Example 3 using copper foil (manufactured by Nikko Materials Company, NK-120, copper foil thickness 12 / m, strength 55 6MPa, conductivity 79%) as the conductor layer Is applied to the copper foil so that the thickness after curing is 1 β m, dried at 110 ° C for 3 minutes, and then the solution of the polyimide precursor B obtained in Synthesis Example 2 thereon. Was applied to a thickness of 7.5 / m after curing, dried at 110 ° C for 10 minutes, and then the polyimide precursor A solution obtained in Synthesis Example 1 was further cured. It was applied to 1.5 μm and dried at 110 ° C. for 3 minutes. Further, the imidization is completed by a heat treatment in several steps in a range of 130 to 360 ° C. for 3 minutes each, and in order from the copper foil, the first polyimide resin layer (high thermal expansion polyimide resin), An insulating layer (resin layer) having a multilayer structure provided with a second polyimide layer (low thermal expansion polyimide resin) and a third polyimide resin layer (high thermal expansion polyimide resin) was formed. The first layer above Linear expansion coefficient of the resin layer of the polyimide resin layer is 4.2 X 10- 5 / ° C, the linear expansion coefficient of the second layer of the polyimide resin layer is 1.5 X 10- 5 / ° C, the third layer of the polyimide linear expansion coefficient of the resin layer 4. was 0 X 10- 5 / ° C. Further, the insulating layer total thickness is 10 / im, linear thermal expansion coefficient of the entire insulating layer was 1.7 X 10- 5 / ° C.
[0029] 次に、パネ層としてベリリウム銅箔(日本碍子株式会社製、 25ベリリウム銅、厚み 20[0029] Next, beryllium copper foil (manufactured by Nippon Choshi Co., Ltd., 25 beryllium copper, thickness 20) was used as the panel layer.
t m、縦弾性係数 127GPa、導電率 25%IACS)を用い、上記で得たポリイミド面(絶縁層 )と重ね合わせ、真空プレス機を用いて、面圧 7MPa、温度 315°C、プレス時間 80分の 条件で加熱圧着して HDDサスペンション用積層体 Cを得た。  (tm, longitudinal elastic modulus 127GPa, conductivity 25% IACS), superposed on the polyimide surface (insulating layer) obtained above, using a vacuum press machine, surface pressure 7MPa, temperature 315 ° C, press time 80 minutes The laminate C for HDD suspension was obtained by thermocompression bonding under the conditions described above.
実施例 4  Example 4
[0030] 実施例 3においてパネ層としたベリリウム銅箔の代わりにチタン銅箔(日鉱金属株式 会社製、ハイパーチタン銅 XSH、厚み 20 μ πι、縦弾性係数 127GPa、導電率 18 25% IACS)を用いた以外は実施例 3と同様にして HDDサスペンション用積層体 Dを得た。  [0030] Instead of the beryllium copper foil used as the panel layer in Example 3, titanium copper foil (manufactured by Nikko Metal Co., Ltd., Hyper Titanium Copper XSH, thickness 20 μπι, longitudinal elastic modulus 127 GPa, conductivity 18 25% IACS) was used. A laminate D for HDD suspension was obtained in the same manner as in Example 3 except that it was used.
[0031] [比較例 1]  [0031] [Comparative Example 1]
実施例 1においてパネ層としたベリリウム銅箔の代わりにステンレス箔 (新日本製鐡 製: SUS-304縦弾性係数 200GPa、導電率 2.4%I ACS)を用いた以外は実施例 1と同 様にして HDDサスペンション用積層体 Eを得た。  In the same manner as in Example 1 except that stainless steel foil (manufactured by Nippon Steel Corp .: SUS-304 longitudinal elastic modulus 200 GPa, conductivity 2.4% IACS) was used instead of the beryllium copper foil as the panel layer in Example 1. As a result, a laminate E for HDD suspension was obtained.
[0032] 上記実施例 1 4及び比較例 1で得られた HDDサスペンション用積層体 A Eにつ いて、先に説明した方法によりクロストーク発生の有無を評価した。その結果を表 1に 示す。 With respect to the HDD suspension laminate AE obtained in Examples 14 and Comparative Example 1 above, the presence or absence of occurrence of crosstalk was evaluated by the method described above. The results are shown in Table 1.
[0033] [表 1] クロス 1 ク発生 [0033] [Table 1] Cross 1 occurrence
実施例 1 fl½  Example 1 fl½
実施例 2 iffic I  Example 2 iffic I
実施例 3  Example 3
実施例 4 ^ff  Example 4 ^ ff
比較例 1 有り  Comparative example 1 Yes

Claims

請求の範囲 The scope of the claims
[1] 縦弾性係数が 100〜1000GPaの範囲であると共に、導電率が 10〜100%IACSの範囲 であるパネ層と、絶縁層と、導体層とが順次積層されてなることを特徴とする HDDサス ペンション用積層体。  [1] A panel layer, an insulating layer, and a conductor layer having a longitudinal elastic modulus in the range of 100 to 1000 GPa and an electrical conductivity in the range of 10 to 100% IACS are sequentially laminated. Laminate for HDD suspension.
[2] パネ層が、少なくとも Fe、 Cu、 Al、 Zn、 Sn、 Tiから選択される 1種又は 2種以上からな る金属層であることを特徴とする請求項 1記載の HDDサスペンション用積層体。  [2] The laminate for an HDD suspension according to claim 1, wherein the panel layer is a metal layer composed of at least one selected from Fe, Cu, Al, Zn, Sn, and Ti. body.
[3] パネ層が、少なくとも Fe、 Cu、 Al、 Zn、 Sn、 Tiから選択される 1種又は 2種以上からな る金属と Ni、 Cr、 Mg、 Be、 Mo、 Zr、 Si、 C、 Mn、 P、 S、 Coから選択される 1種又は 2種以 上との合金からなる合金層であることを特徴とする請求項 1記載の HDDサスペンショ ン用積層体。  [3] The panel layer is made of at least one metal selected from Fe, Cu, Al, Zn, Sn, and Ti and Ni, Cr, Mg, Be, Mo, Zr, Si, C, 2. The HDD suspension laminate according to claim 1, which is an alloy layer made of an alloy of one or more selected from Mn, P, S, and Co.
[4] パネ層、絶縁層及び導体層の総厚みが 3〜200 μ mであることを特徴とする請求項 1 記載の HDDサスペンション用積層体。  [4] The laminate for an HDD suspension according to claim 1, wherein the total thickness of the panel layer, the insulating layer, and the conductor layer is 3 to 200 μm.
[5] 絶縁層が、線熱膨張係数が 1 X 10— 5〜3 X 10— 5/°Cの範囲であり、かつ、誘電率が 4.0 以下の絶縁性樹脂層であることを特徴とする請求項 1記載の HDDサスペンション用 積層体。 [5] insulating layer is in the range of linear thermal expansion coefficient of 1 X 10- 5 ~3 X 10- 5 / ° C, and wherein the dielectric constant of 4.0 or less of the insulating resin layer The laminate for an HDD suspension according to claim 1.
[6] 絶縁層が、ポリイミド系樹脂からなる絶縁性樹脂層であることを特徴とする請求項 1 記載の HDDサスペンション用積層体。  6. The laminate for HDD suspension according to claim 1, wherein the insulating layer is an insulating resin layer made of polyimide resin.
[7] 絶縁層とパネ層との界面での接着強度、及び絶縁層と導体層との界面での接着強 度力 いずれも 0.5kN/rr!〜 lOkN/mの範囲であることを特徴とする請求項 1記載の HD[7] Adhesive strength at the interface between the insulating layer and the panel layer and adhesive strength at the interface between the insulating layer and the conductor layer are both 0.5 kN / rr! HD according to claim 1, characterized in that it is in the range of ~ lOkN / m
Dサスペンション用積層体。 D Suspension laminate.
PCT/JP2006/305933 2005-03-31 2006-03-24 Laminate for hdd suspension WO2006109512A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007512484A JPWO2006109512A1 (en) 2005-03-31 2006-03-24 Laminate for HDD suspension

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005104155 2005-03-31
JP2005-104155 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006109512A1 true WO2006109512A1 (en) 2006-10-19

Family

ID=37086798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305933 WO2006109512A1 (en) 2005-03-31 2006-03-24 Laminate for hdd suspension

Country Status (3)

Country Link
JP (1) JPWO2006109512A1 (en)
TW (1) TW200702160A (en)
WO (1) WO2006109512A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014975A (en) * 2002-06-11 2004-01-15 Nitto Denko Corp Flexible circuit board with metal foil
WO2004049336A1 (en) * 2002-11-26 2004-06-10 Nippon Steel Chemical Co., Ltd. Laminate for hdd suspension using thin copper foil and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014975A (en) * 2002-06-11 2004-01-15 Nitto Denko Corp Flexible circuit board with metal foil
WO2004049336A1 (en) * 2002-11-26 2004-06-10 Nippon Steel Chemical Co., Ltd. Laminate for hdd suspension using thin copper foil and its manufacturing method

Also Published As

Publication number Publication date
TW200702160A (en) 2007-01-16
JPWO2006109512A1 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP4272243B2 (en) HDD suspension and manufacturing method thereof
CN101903169B (en) Metal-clad laminate
JP2006286912A (en) Flexible copper-clad laminated plate showing higher bending property
JP2008087254A (en) Flexible copper-clad laminate and flexible copper clad laminate with carrier
JP4860185B2 (en) Flexible circuit board
JP2014207297A (en) Flexible printed circuit, and method for manufacturing the same
WO2005096299A1 (en) Laminate for hdd suspension and process for producing the same
JP4921420B2 (en) Metal-clad laminate and manufacturing method thereof
WO2006109512A1 (en) Laminate for hdd suspension
JP2005285178A (en) Laminate for hdd suspension and method for using the same
JP2004237596A (en) Flexible copper-clad laminated plate and its production method
JPWO2006109507A1 (en) Laminated body for HDD suspension and manufacturing method thereof
JPWO2004049336A1 (en) Laminate for HDD suspension using thin copper foil and manufacturing method thereof
JP2008238517A (en) Multilayer laminate and manufacturing method of metal clad laminate using the same
JPH03104185A (en) Manufacture of double surface conductor polyimide laminate
JP2006261444A (en) Double-sided flexible wiring substrate and foldable cellular phone employing it
JP2008062469A (en) Manufacturing method of laminate for hdd suspension
JP2007265543A (en) Method for manufacturing layered body for hdd suspension
JP2008135164A (en) Manufacturing method of layered product for hard disc drive (hdd)suspension
JP2007272935A (en) Method of manufacturing laminated plate for hdd suspension
JP2005259790A (en) Flexible printed wiring board and its production method
JP2007223111A (en) Flexible copper clad laminate
JP2008210511A (en) Laminate for hdd suspension and method for manufacturing same
JP2005285198A (en) Laminate for hdd suspension and method for manufacturing the same
JP2008246695A (en) Manufacturing method of metal clad laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512484

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729881

Country of ref document: EP

Kind code of ref document: A1