JP2005285198A - Laminate for hdd suspension and method for manufacturing the same - Google Patents

Laminate for hdd suspension and method for manufacturing the same Download PDF

Info

Publication number
JP2005285198A
JP2005285198A JP2004095904A JP2004095904A JP2005285198A JP 2005285198 A JP2005285198 A JP 2005285198A JP 2004095904 A JP2004095904 A JP 2004095904A JP 2004095904 A JP2004095904 A JP 2004095904A JP 2005285198 A JP2005285198 A JP 2005285198A
Authority
JP
Japan
Prior art keywords
copper foil
laminate
layer
polyimide resin
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004095904A
Other languages
Japanese (ja)
Inventor
Kazuto Okamura
一人 岡村
Takaki Suzuki
隆城 鈴木
Teppei Nishiyama
哲平 西山
Yoshinori Inagaki
義紀 稲垣
Kazunori Omizo
和則 大溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2004095904A priority Critical patent/JP2005285198A/en
Publication of JP2005285198A publication Critical patent/JP2005285198A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)
  • Supporting Of Heads In Record-Carrier Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminate for a suspension superior in flatness using rolled copper foil or electrolytic copper foil having high conductivity and low strength, and a method for manufacturing the same. <P>SOLUTION: The laminate for the HDD suspension is composed of a stainless steel layer, a polyimide resin layer and a conductive layer, wherein the conductive layer is copper foil having a thickness of 1-20 μm, a tensile strength of ≤600 MPa, and a conductivity ratio of ≥90%, and warpage in a 65 mm disk is ≤3 mm. In the method for manufacturing the laminate for the HDD suspension, the laminate composed of the stainless steel layer, the polyimide layer and the conductive layer is made by stacking the rolled copper foil or the electrolytic copper foil on the polyimide resin layer after the polyimide resin layer is formed on the stainless steel layer, and by performing heat crimping at a temperature of ≥280°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、HDDサスペンションに用いられる積層体及びその製造方法に関するものである。詳しくは、平坦性に優れたHDDサスペンション用積層体及びその製造方法に関するものである。   The present invention relates to a laminate used for an HDD suspension and a manufacturing method thereof. Specifically, the present invention relates to a laminate for an HDD suspension having excellent flatness and a method for manufacturing the same.

ハードディスクドライブ(以下、HDD)に搭載されているサスペンションは、高容量化が進むに従い従来使用されてきたワイヤタイプのサスペンションから、記憶媒体であるディスクに対し浮力と位置精度が安定した配線一体型のサスペンションへ大半が置き換わっている。この配線一体型サスペンションは、FSA(フレックス サスペンション アッセンブリ)法と呼ばれるフレキシブルプリント基板を加工し接着剤を用いて張り合わせたタイプ、CIS(サーキット インテグレーティッド サスペンション)法と呼ばれるポリイミド樹脂の前駆体であるアミック酸を形状加工した後、イミド化し更にポリイミド上にメッギ加工を施すことにより配線を形成するタイプ、TSA(トレース サスペンション アッセンブリ)法と呼ばれるステンレス箔−ポリイミド樹脂−銅箔からなる積層体をエッチング加工により所定の形状に加工する三種類のタイプがある。   The suspension mounted on the hard disk drive (hereinafter referred to as HDD) is a wiring-integrated type that has stable buoyancy and positional accuracy with respect to the disk that is the storage medium, from the wire type suspension that has been conventionally used as the capacity increases. Most have been replaced by suspension. This wiring-integrated suspension is a type in which a flexible printed circuit board called FSA (flex suspension assembly) method is processed and bonded using an adhesive, and a polyimide acid precursor called CIS (circuit integrated suspension) method. After processing the shape, it is imidized and further formed into a wire by forming a wire on the polyimide. A laminated body made of stainless steel foil-polyimide resin-copper foil called TSA (trace suspension assembly) method is predetermined by etching. There are three types of processing.

FSA法は加工が容易で安価である反面、接着剤を用いて張付けるため端子との接合における位置精度が悪く、今後更に微細配線化が進んだ場合は技術的に対応できないと言われている。また、CIS法はポリイミド上に直接メッキ加工によって配線を形成するため寸法精度に優れ、また純銅を使用するため電気特性の制御が容易などの多くの利点がある反面、配線を単独で形成させるフライングリードと呼ばれる形状加工において、イミド化したポリイミド樹脂をレーザーなどで除去しなければならないなど工程が増加するため、コストが高くなるなどの不利な点も多い。TSA法サスペンションは高強度を有する銅箔を積層することによって、容易にフライングリードを形成させ、且つリードライトケーブールの接続などに用いる超音波ボンディングによる接続がし易いなど幅広い接合法に対応が可能である。また、形状加工での自由度が高いことや比較的安価で寸法精度が良いことから幅広く使用されている。   Although the FSA method is easy and inexpensive to process, it is said that it cannot be technically supported when the fine wiring is further advanced in the future because the position accuracy in joining with the terminal is poor because it is attached using an adhesive. . In addition, the CIS method has many advantages such as excellent dimensional accuracy because the wiring is formed directly on the polyimide, and the use of pure copper has many advantages such as easy control of electrical characteristics. In the shape processing called lead, imidized polyimide resin has to be removed with a laser or the like, which increases the number of processes, and there are many disadvantages such as high cost. The TSA suspension can be used for a wide range of joining methods, such as easily forming a flying lead by laminating high-strength copper foil and making it easy to connect by ultrasonic bonding used to connect a read / write cable. It is. In addition, it is widely used because of its high degree of freedom in shape processing and relatively low cost and good dimensional accuracy.

ステンレス基体上にポリイミド系樹脂層及び導体層が逐次に形成されてなるHDDサスペンション用積層体は既に開示されている(例えば特許文献1参照)。そこには、HDDサスペンション用積層体に適した積層体とするためにポリイミド樹脂層の線膨張係数やポリイミド樹脂層−導体層間の接着力を規定したものが記載されている。しかしながら、ここに開示された技術だけでは今後のHDDの高容量化、データ伝送速度の高速化に対応するためのインピーダンス制御、微細配線化への対応が困難になってきている。   An HDD suspension laminate in which a polyimide resin layer and a conductor layer are sequentially formed on a stainless steel substrate has already been disclosed (see, for example, Patent Document 1). In this document, what defines the linear expansion coefficient of the polyimide resin layer and the adhesive force between the polyimide resin layer and the conductor layer is described in order to obtain a laminate suitable for the HDD suspension laminate. However, with the technology disclosed here alone, it is difficult to cope with impedance control and miniaturization in order to cope with future increases in HDD capacity and data transmission speed.

そこで、当社はすでに高強度、高導電率の銅箔を用いたHDDサスペンション用積層体に関する特許を出願している(例えば特許文献2参照)。しかし、高強度銅箔は超音波ボンディング接合方式に必要とされるが、半田接合方式などでは高強度を必要としない。また、HDDのディスクとスライダの浮上距離やスライダの浮揚姿勢を保つためにスティッフネスを制御することが求められ、これを制御するためにはスティッフネスの制御を阻害する銅箔や絶縁性樹脂の強度および剛性が低いことが好ましい。更に、合金系の圧延銅箔は導電率が純銅の圧延銅箔や電解銅箔に劣るため、データ伝送速度の高速化に対応するためのインピーダンスを制御することが難しい。   Therefore, the Company has already applied for a patent on a laminate for an HDD suspension using a copper foil having high strength and high conductivity (see, for example, Patent Document 2). However, high strength copper foil is required for the ultrasonic bonding method, but high strength is not required for the solder bonding method. In addition, it is required to control the stiffness in order to maintain the flying distance of the HDD disk and the slider and the flying posture of the slider, and in order to control this, the copper foil or insulating resin that inhibits the stiffness control is required. It is preferable that strength and rigidity are low. Furthermore, since the alloy-based rolled copper foil has inferior conductivity to the rolled copper foil or electrolytic copper foil of pure copper, it is difficult to control the impedance for dealing with the increase in data transmission speed.

これを解決するために、導電率の高い圧延銅箔又は電解銅箔を用いたステンレス箔/絶縁層/導体層系のラミネート材が望まれてきたが、導電率の高い圧延銅箔又は電解銅箔は高温でラミネートをした際に、銅箔が伸びる性質をもつため反りが発生しやすいという問題があった。
WO98/08216 特願2002−342457号
In order to solve this problem, a laminate material of stainless steel foil / insulating layer / conductor layer system using rolled copper foil or electrolytic copper foil with high conductivity has been desired, but rolled copper foil or electrolytic copper with high conductivity has been desired. When the foil was laminated at a high temperature, there was a problem that warping was likely to occur because the copper foil stretched.
WO98 / 08216 Japanese Patent Application No. 2002-342457

本発明は、導電率が高く、且つ強度の低い圧延銅箔又は電解銅箔を用いて、平坦性に優れたサスペンション用積層体及びその製造方法を提供することを目的とする。   An object of this invention is to provide the laminated body for suspension excellent in flatness using the rolled copper foil or electrolytic copper foil with high electrical conductivity and low intensity | strength, and its manufacturing method.

本発明者等はかかる課題を解決すべく鋭意検討した結果、導電率が高く、強度の低い圧延銅箔又は電解銅箔を用いて、最適な製造条件を得ることによって、本発明を完成するに至った。 As a result of intensive studies to solve such problems, the present inventors have completed the present invention by obtaining optimum manufacturing conditions using a rolled copper foil or electrolytic copper foil having high conductivity and low strength. It came.

すなわち、本発明は、ステンレス層/ポリイミド樹脂層/導体層から構成され、引張強度600MPa以下、導電率90%以上の圧延銅箔又は電解銅箔であって65mmディスクにおける反りが3mm以下であることを特徴とするHDDサスペンション用積層体である。   That is, the present invention is composed of a stainless steel layer / polyimide resin layer / conductor layer, a rolled copper foil or an electrolytic copper foil having a tensile strength of 600 MPa or less and a conductivity of 90% or more, and a warpage in a 65 mm disk is 3 mm or less. The laminate for HDD suspension characterized by the above.

上記本発明におけるステンレス層の厚みを5〜30μmの範囲、ポリイミド樹脂層の厚みを5〜20μmの範囲とした上記HDDサスペンション用積層体が望ましい。   The above-mentioned laminate for an HDD suspension in which the thickness of the stainless steel layer in the present invention is in the range of 5 to 30 μm and the thickness of the polyimide resin layer is in the range of 5 to 20 μm is desirable.

また、本発明は、5〜30μmのステンレス箔もしくは厚み1〜20μm、引張強度600MPa以下、導電率90%以上の圧延銅箔又は電解銅箔上にポリイミド樹脂液を塗布、熱処理しポリイミド樹脂層を形成した後、このポリイミド樹脂層上に厚み5〜20μm、引張強度600MPa以下、導電率90%以上の圧延銅箔又は電解銅箔もしくはステンレス箔を重ね合わせ、280℃以上の温度で加熱圧着してステンレス層/ポリイミド層/導体層から構成される積層体とすることを特徴とするHDDサスペンション用積層体の製造方法である。   In the present invention, a polyimide resin solution is applied to a 5-30 μm stainless steel foil or a rolled copper foil or an electrolytic copper foil having a thickness of 1-20 μm, a tensile strength of 600 MPa or less, and an electrical conductivity of 90% or more, and heat-treated to form a polyimide resin layer. After the formation, a rolled copper foil, an electrolytic copper foil or a stainless steel foil having a thickness of 5 to 20 μm, a tensile strength of 600 MPa or less, and an electrical conductivity of 90% or more is superposed on the polyimide resin layer, and thermocompression bonded at a temperature of 280 ° C. It is a manufacturing method of the laminated body for HDD suspension characterized by setting it as the laminated body comprised from a stainless steel layer / polyimide layer / conductor layer.

本発明によれば、導体層に導電率が高く、且つ強度が低い圧延銅箔又は電解銅箔を用いることによって、そりがなく、HDDの高容量化に対応したディスクとスライダの浮上距離の短縮やスライダの浮揚姿勢を安定化させるために必要なスティッフネスの制御をし易く、またインピーダンス制御の向上、電気信号の損失の低減や送信速度の向上が可能となるHDDサスペンション用基板用積層体を提供することができる。   According to the present invention, by using a rolled copper foil or electrolytic copper foil having high conductivity and low strength for the conductor layer, there is no warpage and the flying distance of the disk and slider corresponding to the increase in capacity of the HDD is shortened. And a laminate for a HDD suspension substrate that can easily control the stiffness required to stabilize the flying posture of the slider, improve impedance control, reduce electrical signal loss, and improve transmission speed. Can be provided.

本発明のHDDサスペンション用積層体(以下、積層体と称する)は、ステンレス層/ポリイミド樹脂層/導体層からなる。本発明におけるステンレス層は特に制約はないが、ばね特性や寸法安定性の観点から例えばSUS304のような高弾性、高強度のステンレス箔が好ましく、300℃以上の温度でアニール処理されたSUS304が特に好ましい。用いられるステンレスの厚さは5〜30μmの範囲にあることがよく、10〜20μmの範囲にあることが特に好ましい。   The laminate for HDD suspension of the present invention (hereinafter referred to as a laminate) comprises a stainless layer / polyimide resin layer / conductor layer. The stainless steel layer in the present invention is not particularly limited, but from the viewpoint of spring characteristics and dimensional stability, a high-elasticity and high-strength stainless steel foil such as SUS304 is preferable, and SUS304 annealed at a temperature of 300 ° C. or higher is particularly preferable. preferable. The thickness of the stainless steel used is preferably in the range of 5 to 30 μm, and particularly preferably in the range of 10 to 20 μm.

ステンレス層の厚みが5μmに満たないと、スライダの浮上量を十分抑えるバネ性を確保できないおそれがあり、一方、30μmを超えると剛性が大きくなりすぎ、搭載されるスライダの低浮上化が困難となるおそれがある。   If the thickness of the stainless steel layer is less than 5 μm, there is a possibility that the spring property that sufficiently suppresses the flying height of the slider cannot be secured. On the other hand, if the thickness exceeds 30 μm, the rigidity becomes too large and it is difficult to lower the slider mounted. There is a risk.

本発明の積層体において絶縁層を構成するポリイミド樹脂は、ポリイミド、ポリアミドイミド、ポリエーテルイミド等、その構造中にイミド結合を有するものであればよい。ポリイミド樹脂層は、単層のみからなるものでもよいが、好ましくは、複数層のポリイミド樹脂層からなるものがよい。ポリイミド層を複数層のポリイミド樹脂層とする場合、導体層又はステンレス層と接するポリイミド樹脂層にはこれら導体層又はステンレス層と良好な接着性を示すものを使用することが好ましい。   The polyimide resin which comprises an insulating layer in the laminated body of this invention should just have an imide bond in the structure, such as a polyimide, a polyamideimide, a polyetherimide. The polyimide resin layer may be composed of only a single layer, but is preferably composed of a plurality of polyimide resin layers. When making a polyimide layer into a polyimide resin layer of multiple layers, it is preferable to use what shows favorable adhesiveness with these conductor layers or stainless steel layers for the polyimide resin layer which touches a conductor layer or stainless steel layer.

良接着性を示すポリイミド樹脂としては、そのガラス転移温度が300℃以下のものが挙げられる。また、導体層又はステンレス層と接しない中間層には、HDDサスペンションとした時の寸法安定性の点からも温度変化に対する寸法変化率、すなわち線膨張係数が30×10-6/℃以下のものを使用することが好ましい。ポリイミド樹脂層を3層以上の複数層で形成する場合、両最外層の合計厚み(ta)と他の中間層との厚み(tb)比は、ta/tb=0.1〜0.5の範囲とすることが有利である。 Examples of the polyimide resin exhibiting good adhesion include those having a glass transition temperature of 300 ° C. or lower. In addition, the intermediate layer not in contact with the conductor layer or the stainless steel layer has a dimensional change rate with respect to a temperature change, that is, a linear expansion coefficient of 30 × 10 −6 / ° C. or less from the viewpoint of dimensional stability when HDD suspension is used. Is preferably used. When forming a polyimide resin layer with 3 or more layers, the thickness (t b) ratio of the total thickness of the both outermost layers (t a) and the other intermediate layer, t a / t b = 0.1~ A range of 0.5 is advantageous.

本発明における導体層は、導電率の高い圧延銅箔又は電解銅箔から形成される。導体層を形成する圧延銅箔又は電解銅箔の厚みは、1〜20μmとすることが必要であり、好ましくは3〜18μmの範囲である。この厚みが3μmに満たない点に対しては特に制限はないが、3μmに満たないとハンドリング性が悪くなり、歩留りが低下するなど不具合が発生するため好ましくない。また、18μmを超えると銅箔の強度がスライダの浮上を制御するためのスティッフネス制御に与える影響が大きくなり、また微細な配線に加工することが困難となり好ましくない。   The conductor layer in the present invention is formed from a rolled copper foil or an electrolytic copper foil having high conductivity. The thickness of the rolled copper foil or the electrolytic copper foil forming the conductor layer needs to be 1 to 20 μm, and preferably 3 to 18 μm. There is no particular limitation on the point where the thickness is less than 3 μm. However, if the thickness is less than 3 μm, the handling property is deteriorated, and problems such as a decrease in yield occur. On the other hand, if it exceeds 18 μm, the strength of the copper foil has a great influence on the stiffness control for controlling the flying of the slider, and it becomes difficult to process into fine wiring.

また、本発明に使用する銅箔の厚みにおいては、市販されている銅箔を用いてもよいが、ハーフエッチング法等を用いて、所定の厚みに後で加工してもよい。本発明で用いられる導体層は導電率が90%以上であることが好ましい。90%に満たない場合データ転送速度の高速化に対応したインピーダンス制御が困難となる。   Moreover, regarding the thickness of the copper foil used in the present invention, a commercially available copper foil may be used, but it may be later processed to a predetermined thickness using a half etching method or the like. The conductor layer used in the present invention preferably has a conductivity of 90% or more. When less than 90%, it becomes difficult to control the impedance corresponding to the increase in data transfer speed.

また本発明で用いられる導体層の引張強度は600MPa以下であることが好ましい。600MPaを超えるとHDDサスペンションとした場合に要求される厳密なスティフネス制御に悪影響を及ぼすので好ましくない。また下限については0に近いほど好ましいが、実用上200MPa以上である。   Moreover, it is preferable that the tensile strength of the conductor layer used by this invention is 600 Mpa or less. Exceeding 600 MPa is not preferable because it adversely affects the strict stiffness control required for HDD suspensions. The lower limit is preferably closer to 0, but practically 200 MPa or more.

次に、本発明の積層体の製造方法について説明する。
積層体を製造するにあたっては、まず、基体となる5〜30μmのステンレス箔上にポリイミド樹脂液を塗布する。ポリイミド樹脂液の塗布は公知の方法により可能であり、通常、アプリケータを用いて塗布される。ポリイミド樹脂溶液は、イミド化されたポリイミド樹脂が溶媒に溶解されたものを使用してもよいが、本発明においてはポリイミド樹脂前駆体の樹脂溶液を使用し、塗布後、予備加熱により溶媒をある程度除去した後、熱処理によりイミド化をする方法が好ましい。なお、イミド化されたポリイミド樹脂溶液を使用する場合には、当然、イミド化のための熱処理は省略される。
Next, the manufacturing method of the laminated body of this invention is demonstrated.
When manufacturing a laminated body, first, a polyimide resin liquid is apply | coated on 5-30 micrometers stainless steel foil used as a base | substrate. The polyimide resin liquid can be applied by a known method, and is usually applied using an applicator. The polyimide resin solution may be prepared by dissolving an imidized polyimide resin in a solvent. In the present invention, a polyimide resin precursor resin solution is used, and after application, the solvent is removed to some extent by preheating. A method of imidization by heat treatment after removal is preferred. In addition, when using the imidized polyimide resin solution, the heat processing for imidation is naturally omitted.

このようにして、ポリイミド樹脂層を形成したら、導体層となる厚み1〜20μm、引張強度600MPa以下、導電率90%以上の圧延銅箔又は電解銅箔を重ね合わせて、280℃以上の温度で、3〜120分間の範囲で加圧する。加圧時間が120分を超えると銅箔の加熱伸びによって反りが発生し易く、安定したラミネート材が得られ難いので好ましくない。また、加圧時間が3分に満たない場合は十分な剥離強度が得られず好ましくない。さらに好ましい加熱加圧時間としては10〜100分間である。また、導体層となる圧延銅箔又は電解銅箔上にポリイミド樹脂層を形成し、後からステンレス箔を重ね合わせる方法でもなんら差し支えない。   Thus, when the polyimide resin layer is formed, a rolled copper foil or an electrolytic copper foil having a thickness of 1 to 20 μm, a tensile strength of 600 MPa or less, and a conductivity of 90% or more, which is a conductor layer, is superposed at a temperature of 280 ° C. or more. , Pressurize in the range of 3 to 120 minutes. When the pressurization time exceeds 120 minutes, warpage is likely to occur due to heat elongation of the copper foil, and it is difficult to obtain a stable laminate material. Further, when the pressurization time is less than 3 minutes, a sufficient peel strength cannot be obtained, which is not preferable. A more preferable heating and pressing time is 10 to 100 minutes. Moreover, there is no problem even if a polyimide resin layer is formed on a rolled copper foil or an electrolytic copper foil to be a conductor layer, and a stainless steel foil is overlapped later.

以下、実施例及び比較例などに基づき本発明を更に具体的に説明する。
なお、実施例における各種特性の評価は以下の方法による。また、試料のポリイミドは十分にイミド化が終了したものを用いた。
Hereinafter, the present invention will be described more specifically based on examples and comparative examples.
The evaluation of various characteristics in the examples is based on the following method. Moreover, the polyimide used as a sample was sufficiently imidized.

(a)剥離強度の測定
金属箔とポリイミド系樹脂との間の接着力は、ステンレス箔上にポリイミド系樹脂層を形成した後、更に銅箔を熱圧着して両面金属箔の積層体を作成し、回路加工により1/8インチ配線幅の測定用試験片を作成した。このサンプルを固定板にSUS箔側および銅箔側をそれぞれ貼り付け、引張試験機(東洋精機株式会社製、ストログラフ−M1)を用いて、各金属箔を90°方向に引き剥がし強さを測定した。
(A) Measurement of peel strength The adhesive strength between the metal foil and the polyimide resin is such that after forming a polyimide resin layer on the stainless steel foil, the copper foil is further thermocompression bonded to create a laminate of double-sided metal foil. Then, a test piece for measuring 1/8 inch wiring width was prepared by circuit processing. Affix the SUS foil side and the copper foil side to the fixed plate, and peel off each metal foil in the 90 ° direction using a tensile tester (Toyo Seiki Co., Ltd., Strograph-M1). It was measured.

(b)反りの測定
積層体の反りは、回路加工により直径65mmのディスクを作成し、ノギスを用いて机上に置いた際に最も反りが大きくなる部分と机上面との距離を実測した。
(B) Measurement of warpage As for the warpage of the laminated body, a distance between a portion having the largest warpage and a desk surface was measured when a disk having a diameter of 65 mm was prepared by circuit processing and placed on a desk using a caliper.

(c)導電率の測定
銅箔をアセトンで脱脂後,硫酸10%、過酸化水素5%の混酸からなるソフトエッチング液にて粗化処理部を落とした後、長さ300mm×幅10mmの短冊試験片を切り出し、20℃の恒温室にて横川北辰電機(株)製精密級低電圧用電流電位差計を用いて導電率の測定
を行なった。
(C) Conductivity measurement After degreasing the copper foil with acetone, the roughened portion was dropped with a soft etching solution consisting of a mixed acid of 10% sulfuric acid and 5% hydrogen peroxide, and then a strip 300 mm long x 10 mm wide. The test piece was cut out, and the conductivity was measured in a constant temperature room at 20 ° C. using a precision low voltage current potentiometer manufactured by Yokogawa Hokushin Electric Co., Ltd.

(d)銅箔の強度の測定
幅12.7mm×長さ254mmの短冊形状試験片を切り出し、引張試験機(東洋精機株式会社製、ストログラフ−R1)を用いて、クロスヘッドスピード50mm/min、チャック間距離50.8mmにて測定を行い、引張試験中の変位(伸び)を求め、SS曲線から0.2%耐力を算出した。
(D) Measurement of strength of copper foil A strip-shaped test piece having a width of 12.7 mm and a length of 254 mm was cut out, and the crosshead speed was 50 mm / min using a tensile testing machine (Toyo Seiki Co., Ltd., Strograph-R1). The distance between chucks was 50.8 mm, the displacement (elongation) during the tensile test was determined, and the 0.2% yield strength was calculated from the SS curve.

(e)線熱膨張係数の測定
線熱膨張係数の測定は、サーモメカニカルアナライザー(セイコーインスツルメンツ(株)製)を用いて255℃まで20℃/分の速度で昇温し、その温度で10分間保持した後、更に5℃/分の一定速度で冷却した。冷却時の240℃から100℃までの平均熱膨張係数(線熱膨張係数)を算出した。
(E) Measurement of linear thermal expansion coefficient The linear thermal expansion coefficient was measured at a rate of 20 ° C./minute up to 255 ° C. using a thermomechanical analyzer (manufactured by Seiko Instruments Inc.), and at that temperature for 10 minutes. After being held, it was further cooled at a constant rate of 5 ° C./min. The average thermal expansion coefficient (linear thermal expansion coefficient) from 240 ° C. to 100 ° C. during cooling was calculated.

また、実施例等に用いられる略号は以下の通りである。
BPDA:3,3’,4,4’−ビフェニルテトラカルボン酸二無水物
DADMB:4,4’−ジアミノ−2,2’−ジメチルビフェニル
BAPP: 2,2’−ビス[4−(4−アミノフェノキシ)フェニル]プロパン
DMAc:N,N−ジメチルアセトアミド
Abbreviations used in Examples and the like are as follows.
BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride DADMB: 4,4′-diamino-2,2′-dimethylbiphenyl BAPP: 2,2′-bis [4- (4-amino Phenoxy) phenyl] propane DMAc: N, N-dimethylacetamide

合成例1
線膨張係数が30×10-6/℃以下の低熱膨張性のポリイミド系樹脂層を合成するため、9.0モルのDADMBを秤量し、40Lのプラネタリーミキサーの中で攪拌しながら溶媒DMAc25.5kgに溶解させた。次いで、8.9モルのBPDAを加え、室温にて3時間攪拌を続けて重合反応を行い、粘稠なポリイミド前駆体Aの溶液を得た。
Synthesis example 1
In order to synthesize a low thermal expansion polyimide resin layer having a linear expansion coefficient of 30 × 10 −6 / ° C. or lower, 9.0 mol of DADMB was weighed and stirred in a 40 L planetary mixer with the solvent DMAc 25. Dissolved in 5 kg. Next, 8.9 mol of BPDA was added, and the polymerization reaction was continued by stirring at room temperature for 3 hours to obtain a viscous polyimide precursor A solution.

合成例2
ガラス転移温度が300℃以下のポリイミド系樹脂層として、6.3モルのDADMBを秤量し、40Lのプラネタリーミキサーの中で攪拌しながら溶媒DMAc25.5kgに溶解させた。次いで、6.4モルのBPDAを加え、室温にて3時間攪拌を続けて重合反応を行い、粘稠なポリイミド前駆体Bの溶液を得た。
Synthesis example 2
As a polyimide resin layer having a glass transition temperature of 300 ° C. or less, 6.3 mol of DADMB was weighed and dissolved in 25.5 kg of the solvent DMAc while stirring in a 40 L planetary mixer. Next, 6.4 mol of BPDA was added, and the polymerization reaction was continued for 3 hours at room temperature to obtain a viscous polyimide precursor B solution.

実施例1
合成例2で得られたポリイミド前駆体Bの溶液をステンレス箔(新日本製鐵株式会社製、SUS304、テンションアニール処理品、厚み20μm)上に、硬化後の厚みが1μmになるように塗布して110℃で3間分乾燥した後、その上に合成例1で得られたポリイミド前駆体Aの溶液を硬化後の厚さが7.5μmになるように塗布して110℃で10分間乾燥し、更にその上に合成例2で得られたポリイミド前駆体Bの溶液をそれぞれ硬化後の厚みが1.5μmになるように塗布して110℃で3分間乾燥した後、更に130〜360℃の範囲で数段階、各3分間段階的な熱処理によりイミド化を完了させ、ステンレス上にポリイミド樹脂層の厚み10μmの積層体を得た。なお、第1層目のポリイミド樹脂層と第3層目のポリイミド樹脂層は同じとした。次に、日本電解製銅箔(USLP、銅箔厚み12μm)を重ね合わせ、真空プレス機を用いて、面圧10MPa、温度300℃、プレス時間20分間の条件で加熱圧着して目的の積層体を得た。この積層体は引張強度、そりなどサスペンション基板材料としての要求される基本性能を十分に満たし、高導電率に優れた材料を得るに至った。結果を使用した銅箔の物性と合わせて表1に示す。
Example 1
The solution of polyimide precursor B obtained in Synthesis Example 2 was applied on a stainless steel foil (manufactured by Nippon Steel Corp., SUS304, tension annealed product, thickness 20 μm) so that the thickness after curing was 1 μm. After drying at 110 ° C. for 3 minutes, the polyimide precursor A solution obtained in Synthesis Example 1 was applied thereon so that the thickness after curing was 7.5 μm and dried at 110 ° C. for 10 minutes. Further, the polyimide precursor B solution obtained in Synthesis Example 2 was applied thereon so that the thickness after curing was 1.5 μm and dried at 110 ° C. for 3 minutes, and then further 130 to 360 ° C. In several steps, imidization was completed by stepwise heat treatment for 3 minutes each for 3 minutes to obtain a laminate having a polyimide resin layer thickness of 10 μm on stainless steel. The first polyimide resin layer and the third polyimide resin layer were the same. Next, copper foil (USLP, copper foil thickness 12 μm) made by Nihon Electrolytic Co., Ltd. is laminated, and the desired laminate is subjected to thermocompression bonding using a vacuum press machine under conditions of a surface pressure of 10 MPa, a temperature of 300 ° C., and a press time of 20 minutes. Got. This laminated body sufficiently satisfies the basic performance required as a suspension substrate material such as tensile strength and warpage, and has led to obtaining a material having high conductivity. The results are shown in Table 1 together with the physical properties of the copper foil used.

実施例2
実施例1と同様の方法により、日本電解製銅箔(USLP、銅箔厚み12μm)上にポリイミド樹脂層の厚み10μmの積層体を作成した。次に、ステンレスを重ね合わせ、真空プレス機を用いて、面圧10MPa、温度300℃、プレス時間20分間の条件で加熱圧着して目的の積層体を得た。この積層体の特性を評価した結果を表1に示す。
Example 2
By a method similar to that of Example 1, a laminate having a polyimide resin layer thickness of 10 μm was formed on Nippon Electrolytic copper foil (USLP, copper foil thickness 12 μm). Next, stainless steel was overlaid, and a target laminate was obtained by thermocompression bonding under conditions of a surface pressure of 10 MPa, a temperature of 300 ° C., and a press time of 20 minutes using a vacuum press. The results of evaluating the properties of this laminate are shown in Table 1.

実施例3
実施例1と同様の方法により、ステンレス上にポリイミド樹脂層の厚み10μmの積層体を作成した。次に、三井金属製電解箔(NA−VLP、銅箔厚み12μm)を重ね合わせ、真空プレス機を用いて、面圧10Mpa、温度300℃、プレス時間60分の条件で加熱圧着して目的の積層体を得た。この積層体の特性を評価した結果を表1に示す。
Example 3
A laminate having a polyimide resin layer thickness of 10 μm was formed on stainless steel by the same method as in Example 1. Next, an electrolytic foil made of Mitsui Metal (NA-VLP, copper foil thickness 12 μm) is overlaid and heat-pressed using a vacuum press machine under conditions of a surface pressure of 10 Mpa, a temperature of 300 ° C., and a press time of 60 minutes. A laminate was obtained. The results of evaluating the properties of this laminate are shown in Table 1.

比較例1
実施例1と同様の方法により、ステンレス上にポリイミド樹脂層の厚み10μmの積層体を作成した。次に、日本電解製銅箔(USLP、銅箔厚み12μm)を重ね合わせ、真空プレス機を用いて、面圧10MPa、温度300℃、プレス時間150分間の条件で加熱圧着して目的の積層体を得た。この積層体の特性を評価した結果を表1に示したように、反りの発生が大きくサスペンション基板材料として適さないことを確認した。
Comparative Example 1
In the same manner as in Example 1, a laminate having a polyimide resin layer thickness of 10 μm was formed on stainless steel. Next, a copper foil made of Nihon Electrolytic (USLP, copper foil thickness 12 μm) is superposed and heat-pressed using a vacuum press machine under conditions of a surface pressure of 10 MPa, a temperature of 300 ° C., and a press time of 150 minutes. Got. As shown in Table 1, as a result of evaluating the characteristics of the laminate, it was confirmed that warpage is large and is not suitable as a suspension board material.

Figure 2005285198
Figure 2005285198

Claims (6)

ステンレス層/ポリイミド樹脂層/導体層から構成され、導体層が厚み1〜20μm、引張強度600MPa以下、導電率90%以上の圧延銅箔又は電解銅箔であって、65mmディスクにおける反りが3mm以下であることを特徴とするHDDサスペンション用積層体。   It is composed of a stainless steel layer / polyimide resin layer / conductor layer, and the conductor layer is a rolled copper foil or electrolytic copper foil having a thickness of 1 to 20 μm, a tensile strength of 600 MPa or less, and an electrical conductivity of 90% or more, and warpage in a 65 mm disk is 3 mm or less. A laminate for HDD suspension, characterized in that ステンレス層の厚みが5〜30μmの範囲にある請求項1記載のHDDサスペンション用積層体。   The laminate for an HDD suspension according to claim 1, wherein the stainless steel layer has a thickness in the range of 5 to 30 μm. ポリイミド樹脂層の厚みが5〜20μmの範囲にある請求項1または2に記載のサスペンション用積層体。   The suspension laminate according to claim 1 or 2, wherein the polyimide resin layer has a thickness in the range of 5 to 20 µm. ステンレス層上にポリイミド樹脂層を形成した後、ポリイミド樹脂層上に厚み1〜20μm、引張強度600MPa以下、導電率90%以上の圧延銅箔又は電解銅箔を重ね合わせ、280℃以上の温度で加熱圧着してステンレス層/ポリイミド層/導体層から構成される積層体とすることを特徴とするHDDサスペンション用積層体の製造方法。   After forming a polyimide resin layer on the stainless steel layer, a rolled copper foil or an electrolytic copper foil having a thickness of 1 to 20 μm, a tensile strength of 600 MPa or less, and a conductivity of 90% or more is superposed on the polyimide resin layer at a temperature of 280 ° C. or more. A method for producing a laminate for an HDD suspension, wherein the laminate is made of a stainless steel layer / polyimide layer / conductor layer by thermocompression bonding. 厚み1〜20μm、引張強度600MPa以下、導電率90%以上の圧延銅箔又は電解銅箔上にポリイミド樹脂層を形成した後、前記ポリイミド樹脂層上にステンレス箔を重ね合わせ、280℃以上の温度で加熱圧着してステンレス層/ポリイミド層/導体層から構成される積層体とすることを特徴とするHDDサスペンション用積層体の製造方法。   After forming a polyimide resin layer on a rolled copper foil or electrolytic copper foil having a thickness of 1 to 20 μm, a tensile strength of 600 MPa or less, and an electrical conductivity of 90% or more, a stainless steel foil is overlaid on the polyimide resin layer, and a temperature of 280 ° C. or more. A method of manufacturing a laminate for an HDD suspension, wherein the laminate is made of a stainless steel layer / polyimide layer / conductor layer by thermocompression bonding. 280℃以上での加熱加圧時間が3〜120分間の範囲であることを特徴とする請求項5記載のHDDサスペンション用積層体の製造方法。

6. The method for manufacturing a laminate for an HDD suspension according to claim 5, wherein the heating and pressing time at 280 [deg.] C. or higher is in the range of 3 to 120 minutes.

JP2004095904A 2004-03-29 2004-03-29 Laminate for hdd suspension and method for manufacturing the same Withdrawn JP2005285198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004095904A JP2005285198A (en) 2004-03-29 2004-03-29 Laminate for hdd suspension and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004095904A JP2005285198A (en) 2004-03-29 2004-03-29 Laminate for hdd suspension and method for manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008104204A Division JP2008210511A (en) 2008-04-14 2008-04-14 Laminate for hdd suspension and method for manufacturing same

Publications (1)

Publication Number Publication Date
JP2005285198A true JP2005285198A (en) 2005-10-13

Family

ID=35183415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004095904A Withdrawn JP2005285198A (en) 2004-03-29 2004-03-29 Laminate for hdd suspension and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2005285198A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094177A1 (en) * 2006-02-15 2007-08-23 Nippon Steel Materials Co., Ltd. Stainless steel substrate with conductive metal layer, hard disk suspension material and hard disk suspension manufactured by using the material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094177A1 (en) * 2006-02-15 2007-08-23 Nippon Steel Materials Co., Ltd. Stainless steel substrate with conductive metal layer, hard disk suspension material and hard disk suspension manufactured by using the material
JP2007220785A (en) * 2006-02-15 2007-08-30 Nippon Steel Materials Co Ltd Stainless-steel base material with conductive metal layer and its manufacturing method, and hard disk suspension and material thereof

Similar Documents

Publication Publication Date Title
JP4272243B2 (en) HDD suspension and manufacturing method thereof
JP4699261B2 (en) Multilayer laminate and flexible copper-clad laminate
JP4781930B2 (en) Method for producing highly flexible flexible copper clad laminate
WO2005096299A1 (en) Laminate for hdd suspension and process for producing the same
JP4491574B2 (en) HDD suspension and manufacturing method thereof
JP4921420B2 (en) Metal-clad laminate and manufacturing method thereof
JPWO2004049336A1 (en) Laminate for HDD suspension using thin copper foil and manufacturing method thereof
JP2005285178A (en) Laminate for hdd suspension and method for using the same
JP2004237596A (en) Flexible copper-clad laminated plate and its production method
JP2005285198A (en) Laminate for hdd suspension and method for manufacturing the same
JP2010120239A (en) Metal-clad laminate and its production method
JP2008210511A (en) Laminate for hdd suspension and method for manufacturing same
JP2007265543A (en) Method for manufacturing layered body for hdd suspension
JP2008238517A (en) Multilayer laminate and manufacturing method of metal clad laminate using the same
JP2008246695A (en) Manufacturing method of metal clad laminate
JP2007272935A (en) Method of manufacturing laminated plate for hdd suspension
JP2005259790A (en) Flexible printed wiring board and its production method
JP2008135164A (en) Manufacturing method of layered product for hard disc drive (hdd)suspension
JP2008123622A (en) Method for manufacturing laminate for hdd suspension
JP4823884B2 (en) Method for producing flexible copper-clad laminate
JP2007323697A (en) Laminated product for hdd suspension, and its manufacturing method
JP2009289313A (en) Metal coating laminated body and wiring integrated suspension
JP2006268949A (en) Laminate for hdd suspension
JP2005288723A (en) Substrate material for hdd suspension and its manufacturing method
JP4921421B2 (en) Metal-clad laminate and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

A521 Written amendment

Effective date: 20071210

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080212

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080527