WO2006107838A1 - Systems, methods, and apparatus for highband time warping - Google Patents
Systems, methods, and apparatus for highband time warping Download PDFInfo
- Publication number
- WO2006107838A1 WO2006107838A1 PCT/US2006/012232 US2006012232W WO2006107838A1 WO 2006107838 A1 WO2006107838 A1 WO 2006107838A1 US 2006012232 W US2006012232 W US 2006012232W WO 2006107838 A1 WO2006107838 A1 WO 2006107838A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- highband
- narrowband
- excitation signal
- speech
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 60
- 230000005284 excitation Effects 0.000 claims abstract description 225
- 238000012545 processing Methods 0.000 claims abstract description 23
- 238000005070 sampling Methods 0.000 claims description 24
- 230000001413 cellular effect Effects 0.000 claims description 5
- 238000013500 data storage Methods 0.000 claims description 4
- 230000003595 spectral effect Effects 0.000 description 68
- 238000010586 diagram Methods 0.000 description 55
- 230000006870 function Effects 0.000 description 52
- 238000001228 spectrum Methods 0.000 description 43
- 238000004458 analytical method Methods 0.000 description 30
- 238000003786 synthesis reaction Methods 0.000 description 20
- 230000003044 adaptive effect Effects 0.000 description 19
- 230000004044 response Effects 0.000 description 19
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 17
- 239000013598 vector Substances 0.000 description 17
- FEPMHVLSLDOMQC-UHFFFAOYSA-N virginiamycin-S1 Natural products CC1OC(=O)C(C=2C=CC=CC=2)NC(=O)C2CC(=O)CCN2C(=O)C(CC=2C=CC=CC=2)N(C)C(=O)C2CCCN2C(=O)C(CC)NC(=O)C1NC(=O)C1=NC=CC=C1O FEPMHVLSLDOMQC-UHFFFAOYSA-N 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 16
- 239000004606 Fillers/Extenders Substances 0.000 description 14
- 238000004364 calculation method Methods 0.000 description 14
- 230000007774 longterm Effects 0.000 description 14
- 230000002087 whitening effect Effects 0.000 description 13
- 230000008901 benefit Effects 0.000 description 9
- 238000004891 communication Methods 0.000 description 9
- 238000001914 filtration Methods 0.000 description 9
- 230000007704 transition Effects 0.000 description 9
- 238000013459 approach Methods 0.000 description 8
- 238000013139 quantization Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000002123 temporal effect Effects 0.000 description 6
- 238000009499 grossing Methods 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 238000012952 Resampling Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000005311 autocorrelation function Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000001463 effect on reproduction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/0204—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
- G10L19/0208—Subband vocoders
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0208—Noise filtering
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/038—Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
- G10L21/0388—Details of processing therefor
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/02—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
- G10L19/032—Quantisation or dequantisation of spectral components
- G10L19/038—Vector quantisation, e.g. TwinVQ audio
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/16—Vocoder architecture
- G10L19/18—Vocoders using multiple modes
- G10L19/24—Variable rate codecs, e.g. for generating different qualities using a scalable representation such as hierarchical encoding or layered encoding
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/0208—Noise filtering
- G10L21/0216—Noise filtering characterised by the method used for estimating noise
- G10L21/0232—Processing in the frequency domain
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L21/00—Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
- G10L21/02—Speech enhancement, e.g. noise reduction or echo cancellation
- G10L21/038—Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
Definitions
- This invention relates to signal processing.
- PSTN public switched telephone network
- New networks for voice communications such as cellular telephony and voice over IP (Internet Protocol, VoIP) may not have the same bandwidth limits, and it may be desirable to transmit and receive voice communications that include a wideband frequency range over such networks. For example, it may be desirable to support an audio frequency range that extends down to 50 Hz and/or up to 7 or 8 kHz. It may also be desirable to support other applications, such as high-quality audio or audio/video conferencing, that may have audio speech content in ranges outside the traditional PSTN limits.
- Extension of the range supported by a speech coder into higher frequencies may improve intelligibility. For example, the information that differentiates fricatives such as V and T is largely in the high frequencies. Highband extension may also improve other qualities of speech, such as presence. For example, even a voiced vowel may have spectral energy far above the PSTN limit.
- One approach to wideband speech coding involves scaling a narrowband speech coding technique (e.g., one configured to encode the range of 0-4 kHz) to cover the wideband spectrum. For example, a speech signal may be sampled at a higher rate to include components at high frequencies, and a narrowband coding technique may be reconfigured to use more filter coefficients to represent this wideband signal.
- a narrowband speech coding technique e.g., one configured to encode the range of 0-4 kHz
- Narrowband coding techniques such as CELP (codebook excited linear prediction) are computationally intensive, however, and a wideband CELP coder may consume too many processing cycles to be practical for many mobile and other embedded applications. Encoding the entire spectrum of a wideband signal to a desired quality using such a technique may also lead to an unacceptably large increase in bandwidth. Moreover, transcoding of such an encoded signal would be required before even its narrowband portion could be transmitted into and/or decoded by a system that only supports narrowband coding.
- CELP codebook excited linear prediction
- Another approach to wideband speech coding involves extrapolating the highband spectral envelope from the encoded narrowband spectral envelope. While such an approach may be implemented without any increase in bandwidth and without a need for transcoding, the coarse spectral envelope or formant structure of the highband portion of a speech signal generally cannot be predicted accurately from the spectral envelope of the narrowband portion.
- wideband speech coding such that at least the narrowband portion of the encoded signal may be sent through a narrowband channel (such as a PSTN channel) without transcoding or other significant modification.
- Efficiency of the wideband coding extension may also be desirable, for example, to avoid a significant reduction in the number of users that may be serviced in applications such as wireless cellular telephony and broadcasting over wired and wireless channels.
- a method of signal processing including encoding a low- frequency portion of a speech signal into at least an encoded lowband excitation signal and a plurality of lowband filter parameters; generating a highband excitation signal based on the encoded lowband excitation signal.
- the method also includes encoding, according to at least the highband excitation signal, a high-frequency portion of the speech signal into at least a plurality of highband filter parameters.
- the encoded lowband excitation signal describes a signal that is warped in time, with respect to the speech signal, according to a time-varying time warping.
- the method includes applying, based on information relating to the time warping, a plurality of different time shifts to a corresponding plurality of successive portions in time of the high-frequency portion.
- an apparatus in another embodiment, includes a lowband speech encoder configured to encode a low-frequency portion of a speech signal into at least an encoded lowband excitation signal and a plurality of lowband filter parameters; and a highband speech encoder configured to generate a highband excitation signal based on the encoded lowband excitation signal.
- the highband encoder is configured to encode a high-frequency portion of the speech signal into at least a plurality of highband filter parameters according to at least the highband excitation signal.
- the narrowband speech encoder is configured to output a regularization data signal describing a time-varying time warping, with respect to the speech signal, that is included in the encoded narrowband excitation signal.
- the apparatus includes a delay line configured to apply a plurality of different time shifts to a corresponding plurality of successive portions in time of the high-frequency portion, wherein the plurality of different time shifts are based on the regularization data signal.
- an apparatus in another embodiment, includes means for encoding a low- frequency portion of a speech signal into at least an encoded lowband excitation signal and a plurality of lowband filter parameters; means for generating a highband excitation signal based on the encoded lowband excitation signal; and means for encoding a high- frequency portion of the speech signal into at least a plurality of highband filter parameters according to at least the highband excitation signal.
- the encoded narrowband excitation signal describes a signal that is warped in time, with respect to the speech signal, according to a time-varying time warping.
- the apparatus includes means for applying, based on information relating to the time warping, a plurality of different time shifts to a corresponding plurality of successive portions in time of the high-frequency portion.
- FIGURE Ia shows a block diagram of a wideband speech encoder AlOO according to an embodiment.
- FIGURE Ib shows a block diagram of an implementation A102 of wideband speech encoder AlOO.
- FIGURE 2a shows a block diagram of a wideband speech decoder BlOO according to an embodiment.
- FIGURE 2b shows a block diagram of an implementation B 102 of wideband speech encoder BlOO.
- FIGURE 3a shows a block diagram of an implementation Al 12 of filter bank AIlO.
- FIGURE 3b shows a block diagram of an implementation B 122 of filter bank B120.
- FIGURE 4a shows bandwidth coverage of the low and high bands for one example of filter bank Al 10.
- FIGURE 4b shows bandwidth coverage of the low and high bands for another example of filter bank Al 10.
- FIGURE 4c shows a block diagram of an implementation Al 14 of filter bank A112.
- FIGURE 4d shows a block diagram of an implementation B 124 of filter bank B 122.
- FIGURE 5a shows an example of a plot of frequency vs. log amplitude for a speech signal.
- FIGURE 5b shows a block diagram of a basic linear prediction coding system.
- FIGURE 6 shows a block diagram of an implementation A122 of narrowband encoder A 120.
- FIGURE 7 shows a block diagram of an implementation Bl 12 of narrowband decoder BIlO.
- FIGURE 8a shows an example of a plot of frequency vs. log amplitude for a residual signal for voiced speech.
- FIGURE 8b shows an example of a plot of time vs. log amplitude for a residual signal for voiced speech.
- FIGURE 9 shows a block diagram of a basic linear prediction coding system that also performs long-term prediction.
- FIGURE 10 shows a block diagram of an implementation A202 of highband encoder A200.
- FIGURE 11 shows a block diagram of an implementation A302 of highband excitation generator A300.
- FIGURE 12 shows a block diagram of an implementation A402 of spectrum extender A400.
- FIGURE 12a shows plots of signal spectra at various points in one example of a spectral extension operation.
- FIGURE 12b shows plots of signal spectra at various points in another example of a spectral extension operation.
- FIGURE 13 shows a block diagram of an implementation A304 of highband excitation generator A302.
- FIGURE 14 shows a block diagram of an implementation A306 of highband excitation generator A302.
- FIGURE 15 shows a flowchart for an envelope calculation task TlOO.
- FIGURE 16 shows a block diagram of an implementation 492 of combiner 490.
- FIGURE 17 illustrates an approach to calculating a measure of periodicity of highband signal S30.
- FIGURE 18 shows a block diagram of an implementation A312 of highband excitation generator A302.
- FIGURE 19 shows a block diagram of an implementation A314 of highband excitation generator A302.
- FIGURE 20 shows a block diagram of an implementation A316 of highband excitation ⁇ ge v nerator A302.
- FIGURE 21 shows a flowchart for a gain calculation task T200.
- FIGURE 22 shows a flowchart for an implementation T210 of gain calculation task T200.
- FIGURE 23a shows a diagram of a windowing function.
- FIGURE 23b shows an application of a windowing function as shown in FIGURE 23a to subframes of a speech signal.
- FIGURE 24 shows a block diagram for an implementation B202 of highband decoder B200.
- FIGURE 25 shows a block diagram of an implementation ADlO of wideband speech encoder AlOO.
- FIGURE 26a shows a schematic diagram of an implementation D122 of delay line D120.
- FIGURE 26b shows a schematic diagram of an implementation D 124 of delay line D120.
- FIGURE 27 shows a schematic diagram of an implementation D 130 of delay line D 120.
- FIGURE 28 shows a block diagram of an implementation AD 12 of wideband speech encoder ADlO.
- FIGURE 29 shows a flowchart of a method of signal processing MDlOO according to an embodiment.
- FIGURE 30 shows a flowchart for a method MlOO according to an embodiment.
- FIGURE 31a shows a flowchart for a method M200 according to an embodiment.
- FIGURE 31b shows a flowchart for an implementation M210 of method M200.
- FIGURE 32 shows a flowchart for a method M300 according to an embodiment.
- Embodiments as described herein include systems, methods, and apparatus that may be configured to provide an extension to a narrowband speech coder to support transmission and/or storage of wideband speech signals at a bandwidth increase of only about 800 to 1000 bps (bits per second).
- Potential advantages of such implementations include embedded coding to support compatibility with narrowband systems, relatively easy allocation and reallocation of bits between the narrowband and highband coding channels, avoiding a computationally intensive wideband synthesis operation, and maintaining a low sampling rate for signals to be processed by computationally intensive waveform coding routines.
- the term “calculating” is used herein to indicate any of its ordinary meanings, such as computing, generating, and selecting from a list of values. Where the term “comprising” is used in the present description and claims, it does not exclude other elements or operations.
- the term “A is based on B” is used to indicate any of its ordinary meanings, including the cases (i) "A is equal to B” and (ii) "A is based on at least B.”
- Internet Protocol includes version 4, as described in IETF (Internet Engineering Task Force) RFC (Request for Comments) 791, and subsequent versions such as version 6.
- FIGURE Ia shows a block diagram of a wideband speech encoder AlOO according to an embodiment.
- Filter bank AIlO is configured to filter a wideband speech signal SlO to produce a narrowband signal S20 and a highband signal S30.
- Narrowband encoder A 120 is configured to encode narrowband signal S20 to produce narrowband (NB) filter parameters S40 and a narrowband residual signal S50.
- narrowband encoder A 120 is typically configured to produce narrowband filter parameters S40 and encoded narrowband excitation signal S50 as codebook indices or in another quantized form.
- Highband encoder A200 is configured to encode highband signal S30 according to information in encoded narrowband excitation signal S50 to produce highband coding parameters S60.
- highband encoder A200 is typically configured to produce highband coding parameters S60 as codebook indices or in another quantized form.
- wideband speech encoder AlOO is configured to encode wideband speech signal SlO at a rate of about 8.55 kbps (kilobits per second), with about 7.55 kbps being used for narrowband filter parameters S40 and encoded narrowband excitation signal S50, and about 1 kbps being used for highband coding parameters S60.
- FIGURE Ib shows a block diagram of an implementation A102 of wideband speech encoder AlOO that includes a multiplexer A130 configured to combine narrowband filter parameters S40, encoded narrowband excitation signal S50, and highband filter parameters S60 into a multiplexed signal S70.
- An apparatus including encoder A102 may also include circuitry configured to transmit multiplexed signal S70 into a transmission channel such as a wired, optical, or wireless channel. Such an apparatus may also be configured to perform one or more channel encoding operations on the signal, such as error correction encoding (e.g., rate- compatible convolutional encoding) and/or error detection encoding (e.g., cyclic redundancy encoding), and/or one or more layers of network protocol encoding (e.g., Ethernet, TCP/IP, cdma2000).
- error correction encoding e.g., rate- compatible convolutional encoding
- error detection encoding e.g., cyclic redundancy encoding
- layers of network protocol encoding e.g., Ethernet, TCP/IP, cdma2000.
- multiplexer A130 may be configured to embed the encoded narrowband signal (including narrowband filter parameters S40 and encoded narrowband excitation signal S50) as a separable substream of multiplexed signal S70, such that the encoded narrowband signal may be recovered and decoded independently of another portion of multiplexed signal S70 such as a highband and/or lowband signal.
- multiplexed signal S70 may be arranged such that the encoded narrowband signal may be recovered by stripping away the highband filter parameters S60.
- One potential advantage of such a feature is to avoid the need for transcoding the encoded wideband signal before passing it to a system that supports decoding of the narrowband signal but does not support decoding of the highband portion.
- FIGURE 2a is a block diagram of a wideband speech decoder BlOO according to an embodiment.
- Narrowband decoder BIlO is configured to decode narrowband filter parameters S40 and encoded narrowband excitation signal S50 to produce a narrowband signal S90.
- Highband decoder B200 is configured to decode highband coding parameters S60 according to a narrowband excitation signal S80, based on encoded narrowband excitation signal S50, to produce a highband signal SlOO.
- narrowband decoder BIlO is configured to provide narrowband excitation signal S 80 to highband decoder B200.
- Filter bank B 120 is configured to combine narrowband signal S90 and highband signal SlOO to produce a wideband speech signal SIlO.
- FIGURE 2b is a block diagram of an implementation B 102 of wideband speech decoder BlOO that includes a demultiplexer B 130 configured to produce encoded signals S40, S50, and S60 from multiplexed signal S70.
- An apparatus including decoder B 102 may include circuitry configured to receive multiplexed signal S70 from a transmission channel such as a wired, optical, or wireless channel.
- Such an apparatus may also be configured to perform one or more channel decoding operations on the signal, such as error correction decoding (e.g., rate-compatible convolutional decoding) and/or error detection decoding (e.g., cyclic redundancy decoding), and/or one or more layers of network protocol decoding (e.g., Ethernet, TCP/IP, cdma2000).
- error correction decoding e.g., rate-compatible convolutional decoding
- error detection decoding e.g., cyclic redundancy decoding
- layers of network protocol decoding e.g., Ethernet, TCP/IP, cdma2000.
- Filter bank AIlO is configured to filter an input signal according to a split- band scheme to produce a low-frequency subband and a high-frequency subband. Depending on the design criteria for the particular application, the output subbands may have equal or unequal bandwidths and may be overlapping or nonoverlapping. A configuration of filter bank Al 10 that produces more than two subbands is also
- such a filter bank may be configured to produce one or more lowband signals that include components in a frequency range below that of narrowband signal S20 (such as the range of 50-300 Hz). It is also possible for such a filter bank to be configured to produce one or more additional highband signals that include components in a frequency range above that of highband signal S30 (such as a range of 14-20, 16-20, or 16-32 kHz). In such case, wideband speech encoder AlOO may be implemented to encode this signal or signals separately, and multiplexer A130 may be configured to include the additional encoded signal or signals in multiplexed signal S70 (e.g., as a separable portion).
- FIGURE 3a shows a block diagram of an implementation Al 12 of filter bank AIlO that is configured to produce two subband signals having reduced sampling rates.
- Filter bank AIlO is arranged to receive a wideband speech signal SlO having a high- frequency (or highband) portion and a low-frequency (or lowband) portion.
- Filter bank Al 12 includes a lowband processing path configured to receive wideband speech signal SlO and to produce narrowband speech signal S20, and a highband processing path configured to receive wideband speech signal SlO and to produce highband speech signal S30.
- Lowpass filter 110 filters wideband speech signal SlO to pass a selected low-frequency subband
- highpass filter 130 filters wideband speech signal SlO to pass a selected high-frequency subband.
- Downsampler 120 reduces the sampling rate of the lowpass signal according to a desired decimation factor (e.g., by removing samples of the signal and/or replacing samples with average values), and downsampler 140 likewise reduces the sampling rate of the highpass signal according to another desired decimation factor.
- a desired decimation factor e.g., by removing samples of the signal and/or replacing samples with average values
- FIGURE 3b shows a block diagram of a corresponding implementation B 122 of filter bank B 120.
- Upsampler 150 increases the sampling rate of narrowband signal S90 (e.g., by zero-stuffing and/or by duplicating samples), and lowpass filter 160 filters the upsampled signal to pass only a lowband portion (e.g., to prevent aliasing).
- upsampler 170 increases the sampling rate of highband signal SlOO and highpass filter 180 filters the upsampled signal to pass only a highband portion. The two passband signals are then summed to form wideband speech signal SIlO.
- filter bank B 120 is configured to produce a weighted sum of the two passband signals according to one or more weights received and/or calculated by highband decoder B200.
- a configuration of filter bank B 120 that combines more than two passband signals is also contemplated.
- Each of the filters 110, 130, 160, 180 may be implemented as a finite-impulse- response (FIR) filter or as an infinite-impulse-response (IIR) filter.
- the frequency responses of encoder filters 110 and 130 may have symmetric or dissimilarly shaped transition regions between stopband and passband.
- the frequency responses of decoder filters 160 and 180 may have symmetric or dissimilarly shaped transition regions between stopband and passband. It may be desirable but is not strictly necessary for lowpass filter 110 to have the same response as lowpass filter 160, and for highpass filter 130 to have the same response as highpass filter 180.
- the two filter pairs 110, 130 and 160, 180 are quadrature mirror filter (QMF) banks, with filter pair 110, 130 having the same coefficients as filter pair 160, 180.
- QMF quadrature mirror filter
- lowpass filter 110 has a passband that includes the limited PSTN range of 300-3400 Hz (e.g., the band from 0 to 4 kHz).
- FIGURES 4a and 4b show relative bandwidths of wideband speech signal SlO, narrowband signal S20, and highband signal S30 in two different implementational examples.
- wideband speech signal SlO has a sampling rate of 16 kHz (representing frequency components within the range of 0 to 8 kHz)
- narrowband signal S20 has a sampling rate of 8 kHz (representing frequency components within the range of 0 to 4 kHz).
- a highband signal S30 as shown in this example may be obtained using a highpass filter 130 with a passband of 4-8 kHz. In such a case, it may be desirable to reduce the sampling rate to 8 kHz by downsampling the filtered signal by a factor of two. Such an operation, which may be expected to significantly reduce the computational complexity of further processing operations on the signal, will move the passband energy down to the range of 0 to 4 kHz without loss of information.
- the upper and lower subbands have an appreciable overlap, such that the region of 3.5 to 4 kHz is described by both subband signals.
- a highband signal S30 as in this example may be obtained using a highpass filter 130 with a passband of 3.5-7 kHz. In such a case, it may be desirable to reduce the sampling rate to 7 kHz by downsampling the filtered signal by a factor of 16/7. Such an operation, which may be expected to significantly reduce the computational complexity of further processing operations on the signal, will move the passband energy down to the range of 0 to 3.5 kHz without loss of information.
- one or more of the transducers i.e., the microphone and the earpiece or loudspeaker
- the portion of wideband speech signal SlO between 7 and 8 kHz is not included in the encoded signal.
- Other particular examples of highpass filter 130 have passbands of 3.5- 7.5 kHz and 3.5-8 kHz.
- providing an overlap between subbands as in the example of FIGURE 4b allows for the use of a lowpass and/or a highpass filter having a smooth rolloff over the overlapped region.
- Such filters are typically easier to design, less computationally complex, and/or introduce less delay than filters with sharper or "brick-wall" responses.
- Filters having sharp transition regions tend to have higher sidelobes (which may cause aliasing) than filters of similar order that have smooth rolloff s. Filters having sharp transition regions may also have long impulse responses which may cause ringing artifacts.
- allowing for a smooth rolloff over the overlapped region may enable the use of a filter or filters whose poles are farther away from the unit circle, which may be important to ensure a stable fixed-point implementation.
- Overlapping of subbands allows a smooth blending of lowband and highband that may lead to fewer audible artifacts, reduced aliasing, and/or a less noticeable transition from one band to the other.
- the coding efficiency of narrowband encoder A120 may drop with increasing frequency.
- coding quality of the narrowband coder may be reduced at low bit rates, especially in the presence of background noise.
- providing an overlap of the subbands may increase the quality of reproduced frequency components in the overlapped region.
- overlapping of subbands allows a smooth blending of lowband and highband that may lead to fewer audible artifacts, reduced aliasing, and/or a less noticeable transition from one band to the other.
- Such a feature may be especially desirable for an implementation in which narrowband encoder A120 and highband encoder A200 operate according to different coding methodologies.
- different coding techniques may produce signals that sound quite different.
- a coder that encodes a spectral envelope in the form of codebook indices may produce a signal having a different sound than a coder that encodes the amplitude spectrum instead.
- a time-domain coder (e.g., a pulse-code-modulation or PCM coder) may produce a signal having a different sound than a frequency-domain coder.
- a coder that encodes a signal with a representation of the spectral envelope and the corresponding residual signal may produce a signal having a different sound than a coder that encodes a signal with only a representation of the spectral envelope.
- a coder that encodes a signal as a representation of its waveform may produce an output having a different sound than that from a sinusoidal coder. In such cases, using filters having sharp transition regions to define nonoverlapping subbands may lead to an abrupt and perceptually noticeable transition between the subbands in the synthesized wideband signal.
- QMF filter banks having complementary overlapping frequency responses are often used in subband techniques, such filters are unsuitable for at least some of the wideband coding implementations described herein.
- a QMF filter bank at the encoder is configured to create a significant degree of aliasing that is canceled in the corresponding QMF filter bank at the decoder. Such an arrangement may not be appropriate for an application in which the signal incurs a significant amount of distortion between the filter banks, as the distortion may reduce the effectiveness of the alias cancellation property.
- applications described herein include coding implementations configured to operate at very low bit rates.
- the decoded signal is likely to appear significantly distorted as compared to the original signal, such that use of QMF filter banks may lead to uncanceled aliasing.
- Applications that use QMF filter banks typically have higher bit rates (e.g., over 12 kbps for AMR, and 64 kbps for G.722).
- a coder may be configured to produce a synthesized signal that is perceptually similar to the original signal but which actually differs significantly from the original signal.
- a coder that derives the highband excitation from the narrowband residual as described herein may produce such a signal, as the actual highband residual may be completely absent from the decoded signal.
- Use of QMF filter banks in such applications may lead to a significant degree of distortion caused by uncanceled aliasing.
- the amount of distortion caused by QMF aliasing may be reduced if the affected subband is narrow, as the effect of the aliasing is limited to a bandwidth equal to the width of the subband.
- each subband includes about half of the wideband bandwidth
- distortion caused by uncanceled aliasing could affect a significant part of the signal.
- the quality of the signal may also be affected by the location of the frequency band over which the uncanceled aliasing occurs. For example, distortion created near the center of a wideband speech signal (e.g., between 3 and 4 kHz) may be much more objectionable than distortion that occurs near an edge of the signal (e.g., above 6 IdEIz).
- the lowband and highband paths of filter banks Al 10 and B 120 may be configured to have spectra that are completely unrelated apart from the overlapping of the two subbands.
- the overlap of the two subbands as the distance from the point at which the frequency response of the highband filter drops to -20 dB up to the point at which the frequency response of the lowband filter drops to -20 dB.
- this overlap ranges from around 200 Hz to around 1 kHz.
- the range of about 400 to about 600 Hz may represent a desirable tradeoff between coding efficiency and perceptual smoothness.
- the overlap is around 500 Hz.
- FIGURE 4c shows a block diagram of an implementation Al 14 of filter bank Al 12 that performs a functional equivalent of highpass filtering and downsampling operations using a series of interpolation, resampling, decimation, and other operations.
- Such an implementation may be easier to design and/or may allow reuse of functional blocks of logic and/or code.
- the same functional block may be used to perform the operations of decimation to 14 kHz and decimation to 7 kHz as shown in FIGURE 4c.
- the spectral reversal operation may be implemented by multiplying the signal with the function e Jn ⁇ or the sequence (—1)", whose values alternate between +1 and -1.
- the spectral shaping operation may be implemented as a lowpass filter configured to shape the signal to obtain a desired overall filter response.
- highband excitation generator A300 as described herein may be configured to produce a highband excitation signal S 120 that also has a spectrally reversed form.
- FIGURE 4d shows a block diagram of an implementation B 124 of filter bank B 122 that performs a functional equivalent of upsampling and highpass filtering operations using a series of interpolation, resampling, and other operations.
- Filter bank B 124 includes a spectral reversal operation in the highband that reverses a similar operation as performed, for example, in a filter bank of the encoder such as filter bank Al 14.
- filter bank B124 also includes notch filters in the lowband and highband that attenuate a component of the signal at 7100 Hz, although such filters are optional and need not be included.
- Narrowband encoder A120 is implemented according to a source-filter model that encodes the input speech signal as (A) a set of parameters that describe a filter and (B) an excitation signal that drives the described filter to produce a synthesized reproduction of the input speech signal.
- FIGURE 5a shows an example of a spectral envelope of a speech signal. The peaks that characterize this spectral envelope represent resonances of the vocal tract and are called formants. Most speech coders encode at least this coarse spectral structure as a set of parameters such as filter coefficients.
- FIGURE 5b shows an example of a basic source-filter arrangement as applied to coding of the spectral envelope of narrowband signal S20.
- An analysis module calculates a set of parameters that characterize a filter corresponding to the speech sound over a period of time (typically 20 msec).
- a whitening filter also called an analysis or prediction error filter
- the resulting whitened signal (also called a residual) has less energy and thus less variance and is easier to encode than the original speech signal. Errors resulting from coding of the residual signal may also be spread more evenly over the spectrum.
- the filter parameters and residual are typically quantized for efficient transmission over the channel.
- a synthesis filter configured according to the filter parameters is excited by a signal based on the residual to produce a synthesized version of the original speech sound.
- the synthesis filter is typically configured to have a transfer function that is the inverse of the transfer function of the whitening filter.
- FIGURE 6 shows a block diagram of a basic implementation A122 of narrowband encoder A120.
- a linear prediction coding (LPC) analysis module 210 encodes the spectral envelope of narrowband signal S20 as a set of linear prediction (LP) coefficients (e.g., coefficients of an all-pole filter 1/A(z)).
- the analysis module typically processes the input signal as a series of nonoverlapping frames, with a new set of coefficients being calculated for each frame.
- the frame period is generally a period over which the signal may be expected to be locally stationary; one common example is 20 milliseconds (equivalent to 160 samples at a sampling rate of 8 kHz).
- LPC analysis module 210 is configured to calculate a set of ten LP filter coefficients to characterize the formant structure of each 20-millisecond frame. It is also possible to implement the analysis module to process the input signal as a series of overlapping frames.
- the analysis module may be configured to analyze the samples of each frame directly, or the samples may be weighted first according to a windowing function (for example, a Hamming window). The analysis may also be performed over a window that is larger than the frame, such as a 30-msec window. This window may be symmetric (e.g. 5-20-5, such that it includes the 5 milliseconds immediately before and after the 20-millisecond frame) or asymmetric (e.g. 10-20, such that it includes the last 10 milliseconds of the preceding frame).
- An LPC analysis module is typically configured to calculate the LP filter coefficients using a Levinson-Durbin recursion or the Leroux-Gueguen algorithm. In another implementation, the analysis module may be configured to calculate a set of cepstral coefficients for each frame instead of a set of LP filter coefficients.
- the output rate of encoder A120 may be reduced significantly, with relatively little effect on reproduction quality, by quantizing the filter parameters.
- Linear prediction filter coefficients are difficult to quantize efficiently and are usually mapped into another representation, such as line spectral pairs (LSPs) or line spectral frequencies (LSFs), for quantization and/or entropy encoding.
- LSPs line spectral pairs
- LSFs line spectral frequencies
- LP filter coefficient-to-LSF transform 220 transforms the set of LP filter coefficients into a corresponding set of LSFs.
- LP filter coefficients include parcor coefficients; log-area-ratio values; immittance spectral pairs (ISPs); and immittance spectral frequencies (ISFs), which are used in the GSM (Global System for Mobile Communications) AMR-WB (Adaptive Multirate- Wideband) codec.
- ISPs immittance spectral pairs
- ISFs immittance spectral frequencies
- GSM Global System for Mobile Communications
- AMR-WB Adaptive Multirate- Wideband
- Quantizer 230 is configured to quantize the set of narrowband LSFs (or other coefficient representation), and narrowband encoder A122 is configured to output the result of this quantization as the narrowband filter parameters S40.
- Such a quantizer typically includes a vector quantizer that encodes the input vector as an index to a corresponding vector entry in a table or codebook.
- narrowband encoder A 122 also generates a residual signal by passing narrowband signal S20 through a whitening filter 260 (also called an analysis or prediction error filter) that is configured according to the set of filter coefficients.
- whitening filter 260 is implemented as a FIR filter, although IIR implementations may also be used.
- This residual signal will typically contain perceptually important information of the speech frame, such as long- term structure relating to pitch, that is not represented in narrowband filter parameters S40.
- Quantizer 270 is configured to calculate a quantized representation of this residual signal for output as encoded narrowband excitation signal S50.
- Such a quantizer typically includes a vector quantizer that encodes the input vector as an index to a corresponding vector entry in a table or codebook.
- a quantizer may be configured to send one or more parameters from which the vector may be generated dynamically at the decoder, rather than retrieved from storage, as in a sparse codebook method.
- Such a method is used in coding schemes such as algebraic CELP (codebook excitation linear prediction) and codecs such as 3GPP2 (Third Generation Partnership 2) EVRC (Enhanced Variable Rate Codec).
- narrowband encoder A120 It is desirable for narrowband encoder A120 to generate the encoded narrowband excitation signal according to the same filter parameter values that will be available to the corresponding narrowband decoder. In this manner, the resulting encoded narrowband excitation signal may already account to some extent for nonidealities in those parameter values, such as quantization error. Accordingly, it is desirable to configure the whitening filter using the same coefficient values that will be available at the decoder.
- inverse quantizer 240 dequantizes narrowband coding parameters S40
- LSF-to-LP filter coefficient transform 250 maps the resulting values back to a corresponding set of LP filter coefficients, and this set of coefficients is used to configure whitening filter 260 to generate the residual signal that is quantized by quantizer 270.
- narrowband encoder A120 Some implementations of narrowband encoder A120 are configured to calculate encoded narrowband excitation signal S50 by identifying one among a set of codebook vectors that best matches the residual signal. It is noted, however, that narrowband encoder A120 may also be implemented to calculate a quantized representation of the residual signal without actually generating the residual signal. For example, narrowband encoder A120 may be configured to use a number of codebook vectors to generate corresponding synthesized signals (e.g., according to a current set of filter parameters), and to select the codebook vector associated with the generated signal that best matches the original narrowband signal S20 in a perceptually weighted domain.
- FIGURE 7 shows a block diagram of an implementation B 112 of narrowband decoder BIlO.
- Inverse quantizer 310 dequantizes narrowband filter parameters S40 (in this case, to a set of LSFs), and LSF-to-LP filter coefficient transform 320 transforms the LSFs into a set of filter coefficients (for example, as described above with reference to inverse quantizer 240 and transform 250 of narrowband encoder A122).
- Inverse quantizer 340 dequantizes narrowband residual signal S40 to produce a narrowband excitation signal S80.
- narrowband synthesis filter 330 synthesizes narrowband signal S90.
- narrowband synthesis filter 330 is configured to spectrally shape narrowband excitation signal S 80 according to the dequantized filter coefficients to produce narrowband signal S90.
- Narrowband decoder Bl 12 also provides narrowband excitation signal S 80 to highband encoder A200, which uses it to derive the highband excitation signal S 120 as described herein.
- narrowband decoder BIlO may be configured to provide additional information to highband decoder B200 that relates to the narrowband signal, such as spectral tilt, pitch gain and lag, and speech mode.
- the system of narrowband encoder A122 and narrowband decoder Bl 12 is a basic example of an analysis-by-synthesis speech codec.
- Codebook excitation linear prediction (CELP) coding is one popular family of analysis-by-synthesis coding, and implementations of such coders may perform waveform encoding of the residual, including such operations as selection of entries from fixed and adaptive codebooks, error minimization operations, and/or perceptual weighting operations.
- Other implementations of analysis-by-synthesis coding include mixed excitation linear prediction (MELP), algebraic CELP (ACELP), relaxation CELP (RCELP), regular pulse excitation (RPE), multi-pulse CELP (MPE), and vector-sum excited linear prediction (VSELP) coding.
- MELP mixed excitation linear prediction
- ACELP algebraic CELP
- RPE regular pulse excitation
- MPE multi-pulse CELP
- VSELP vector-sum excited linear prediction
- MBE multi-band excitation
- PWI prototype waveform interpolation
- ETSI European Telecommunications Standards Institute
- GSM 06.10 GSM full rate codec
- RELP residual excited linear prediction
- GSM enhanced full rate codec ETSI-GSM 06.60
- ITU International Telecommunication Union
- IS-641 IS-136
- GSM-AMR GSM adaptive multirate
- 4GVTM Full- Generation VocoderTM codec
- Narrowband encoder A 120 and corresponding decoder Bl 10 may be implemented according to any of these technologies, or any other speech coding technology (whether known or to be developed) that represents a speech signal as (A) a set of parameters that describe a filter and (B) an excitation signal used to drive the described filter to reproduce the speech signal.
- FIGURE 8a shows a spectral plot of one example of a residual signal, as may be produced by a whitening filter, for a voiced signal such as a vowel.
- the periodic structure visible in this example is related to pitch, and different voiced sounds spoken by the same speaker may have different formant structures but similar pitch structures.
- FIGURE 8b shows a time-domain plot of an example of such a residual signal that shows a sequence of pitch pulses in time.
- Coding efficiency and/or speech quality may be increased by using one or more parameter values to encode characteristics of the pitch structure.
- One important characteristic of the pitch structure is the frequency of the first harmonic (also called the fundamental frequency), which is typically in the range of 60 to 400 Hz. This characteristic is typically encoded as the inverse of the fundamental frequency, also called the pitch lag.
- the pitch lag indicates the number of samples in one pitch period and may be encoded as one or more codebook indices. Speech signals from male speakers tend to have larger pitch lags than speech signals from female speakers.
- Periodicity indicates the strength of the harmonic structure or, in other words, the degree to which the signal is harmonic or nonharmonic.
- Two typical indicators of periodicity are zero crossings and normalized autocorrelation functions (NACFs).
- Periodicity may also be indicated by the pitch gain, which is commonly encoded as a codebook gain (e.g., a quantized adaptive codebook gain).
- Narrowband encoder Al 20 may include one or more modules configured to encode the long-term harmonic structure of narrowband signal S20.
- one typical CELP paradigm that may be used includes an open-loop LPC analysis module, which encodes the short-term characteristics or coarse spectral envelope, followed by a closed-loop long-term prediction analysis stage, which encodes the fine pitch or harmonic structure.
- the short-term characteristics are encoded as filter coefficients, and the long-term characteristics are encoded as values for parameters such as pitch lag and pitch gain.
- narrowband encoder A120 may be configured to output encoded narrowband excitation signal S50 in a form that includes one or more codebook indices (e.g., a fixed codebook index and an adaptive codebook index) and corresponding gain values. Calculation of this quantized representation of the narrowband residual signal (e.g., by quantizer 270) may include selecting such indices and calculating such values. Encoding of the pitch structure may also include interpolation of a pitch prototype waveform, which operation may include calculating a difference between successive pitch pulses. Modeling of the long-term structure may be disabled for frames corresponding to unvoiced speech, which is typically noise-like and unstructured.
- codebook indices e.g., a fixed codebook index and an adaptive codebook index
- Calculation of this quantized representation of the narrowband residual signal may include selecting such indices and calculating such values.
- Encoding of the pitch structure may also include interpolation of a pitch prototype waveform, which operation may include calculating a difference between successive pitch pulses.
- An implementation of narrowband decoder BIlO may be configured to output narrowband excitation signal S 80 to highband decoder B200 after the long-term structure (pitch or harmonic structure) has been restored.
- a decoder may be configured to output narrowband excitation signal S 80 as a dequantized version of encoded narrowband excitation signal S50.
- narrowband decoder BIlO it is also possible to implement narrowband decoder BIlO such that highband decoder B200 performs dequantization of encoded narrowband excitation signal S50 to obtain narrowband excitation signal S80.
- highband encoder A200 may be configured to receive the narrowband excitation signal as produced by the short-term analysis or whitening filter.
- narrowband encoder A120 may be configured to output the narrowband excitation signal to highband encoder A200 before encoding the long-term structure. It is desirable, however, for highband encoder A200 to receive from the narrowband channel the same coding information that will be received by highband decoder B200, such that the coding parameters produced by highband encoder A200 may already account to some extent for nonidealities in that information.
- highband encoder A200 may reconstruct narrowband excitation signal S 80 from the same parametrized and/or quantized encoded narrowband excitation signal S50 to be output by wideband speech encoder AlOO.
- One potential advantage of this approach is more accurate calculation of the highband gain factors S60b described below.
- narrowband encoder A120 may produce parameter values that relate to other characteristics of narrowband signal S20. These values, which may be suitably quantized for output by wideband speech encoder AlOO, may be included among the narrowband filter parameters S40 or outputted separately. Highband encoder A200 may also be configured to calculate highband coding parameters S60 according to one or more of these additional parameters (e.g., after dequantization). At wideband speech decoder BlOO, highband decoder B200 may be configured to receive the parameter values via narrowband decoder BIlO (e.g., after dequantization). Alternatively, highband decoder B200 may be configured to receive (and possibly to dequantize) the parameter values directly.
- narrowband encoder A 120 produces values for spectral tilt and speech mode parameters for each frame.
- Spectral tilt relates to the shape of the spectral envelope over the passband and is typically represented by the quantized first reflection coefficient.
- the spectral energy decreases with increasing frequency, such that the first reflection coefficient is negative and may approach — 1.
- Most unvoiced sounds have a spectrum that is either flat, such that the first reflection coefficient is close to zero, or has more energy at high frequencies, such that the first reflection coefficient is positive and may approach +1.
- Speech mode indicates whether the current frame represents voiced or unvoiced speech.
- This parameter may have a binary value based on one or more measures of periodicity (e.g., zero crossings, NACFs, pitch gain) and/or voice activity for the frame, such as a relation between such a measure and a threshold value.
- the speech mode parameter has one or more other states to indicate modes such as silence or background noise, or a transition between silence and voiced speech.
- Highband encoder A200 is configured to encode highband signal S30 according to a source-filter model, with the excitation for this filter being based on the encoded narrowband excitation signal.
- FIGURE 10 shows a block diagram of an implementation A202 of highband encoder A200 that is configured to produce a stream of highband coding parameters S60 including highband filter parameters S60a and highband gain factors S60b.
- Highband excitation generator A300 derives a highband excitation signal S 120 from encoded narrowband excitation signal S50.
- Analysis module A210 produces a set of parameter values that characterize the spectral envelope of highband signal S30.
- analysis module A210 is configured to perform LPC analysis to produce a set of LP filter coefficients for each frame of highband signal S30.
- Linear prediction filter coefficient-to-LSF transform 410 transforms the set of LP filter coefficients into a corresponding set of LSFs.
- analysis module A210 and/or transform 410 may be configured to use other coefficient sets (e.g., cepstral coefficients) and/or coefficient representations (e.g., ISPs).
- Quantizer 420 is configured to quantize the set of highband LSFs (or other coefficient representation, such as ISPs), and highband encoder A202 is configured to output the result of this quantization as the highband filter parameters S60a.
- a quantizer typically includes a vector quantizer that encodes the input vector as an index to a corresponding vector entry in a table or codebook.
- Highband encoder A202 also includes a synthesis filter A220 configured to produce a synthesized highband signal S 130 according to highband excitation signal S 120 and the encoded spectral envelope (e.g., the set of LP filter coefficients) produced by analysis module A210.
- Synthesis filter A220 is typically implemented as an BDR. filter, although FIR implementations may also be used.
- synthesis filter A220 is implemented as a sixth-order linear autoregressive filter.
- Highband gain factor calculator A230 calculates one or more differences between the levels of the original highband signal S30 and synthesized highband signal S 130 to specify a gain envelope for the frame.
- Quantizer 430 which may be implemented as a vector quantizer that encodes the input vector as an index to a corresponding vector entry in a table or codebook, quantizes the value or values specifying the gain envelope, and highband encoder A202 is configured to output the result of this quantization as highband gain factors S60b.
- synthesis filter A220 is arranged to receive the filter coefficients from analysis module A210.
- highband encoder A202 includes an inverse quantizer and inverse transform configured to decode the filter coefficients from highband filter parameters S60a, and in this case synthesis filter A220 is arranged to receive the decoded filter coefficients instead. Such an alternative arrangement may support more accurate calculation of the gain envelope by highband gain calculator A230.
- analysis module A210 and highband gain calculator A230 output a set of six LSFs and a set of five gain values per frame, respectively, such that a wideband extension of the narrowband signal S20 may be achieved with only eleven additional values per frame.
- the ear tends to be less sensitive to frequency errors at high frequencies, such that highband coding at a low LPC order may produce a signal having a comparable perceptual quality to narrowband coding at a higher LPC order.
- a typical implementation of highband encoder A200 may be configured to output 8 to 12 bits per frame for high-quality reconstruction of the spectral envelope and another 8 to 12 bits per frame for high-quality reconstruction of the temporal envelope.
- analysis module A210 outputs a set of eight LSFs per frame.
- highband encoder A200 are configured to produce highband excitation signal S 120 by generating a random noise signal having highband frequency components and amplitude-modulating the noise signal according to the time- domain envelope of narrowband signal S20, narrowband excitation signal S80, or highband signal S30. While such a noise-based method may produce adequate results for unvoiced sounds, however, it may not be desirable for voiced sounds, whose residuals are usually harmonic and consequently have some periodic structure.
- Highband excitation generator A300 is configured to generate highband excitation signal S 120 by extending the spectrum of narrowband excitation signal S 80 into the highband frequency range.
- FIGURE 11 shows a block diagram of an implementation A302 of highband excitation generator A300.
- Inverse quantizer 450 is configured to dequantize encoded narrowband excitation signal S50 to produce narrowband excitation signal S80.
- Spectrum extender A400 is configured to produce a harmonically extended signal S 160 based on narrowband excitation signal S80.
- Combiner 470 is configured to combine a random noise signal generated by noise generator 480 and a time-domain envelope calculated by envelope calculator 460 to produce a modulated noise signal S 170.
- Combiner 490 is configured to mix harmonically extended signal S60 and modulated noise signal S 170 to produce highband excitation signal S 120.
- spectrum extender A400 is configured to perform a spectral folding operation (also called mirroring) on narrowband excitation signal S 80 to produce harmonically extended signal S 160. Spectral folding may be performed by zero-stuffing excitation signal S80 and then applying a highpass filter to retain the alias.
- spectrum extender A400 is configured to produce harmonically extended signal S 160 by spectrally translating narrowband excitation signal S 80 into the highband (e.g., via upsampling followed by multiplication with a constant-frequency cosine signal).
- Spectral folding and translation methods may produce spectrally extended signals whose harmonic structure is discontinuous with the original harmonic structure of narrowband excitation signal S 80 in phase and/or frequency. For example, such methods may produce signals having peaks that are not generally located at multiples of the fundamental frequency, which may cause tinny-sounding artifacts in the reconstructed speech signal. These methods also tend to produce high-frequency harmonics that have unnaturally strong tonal characteristics.
- a PSTN signal may be sampled at 8 kHz but bandlimited to no more than 3400 Hz, the upper spectrum of narrowband excitation signal S 80 may contain little or no energy, such that an extended signal generated according to a spectral folding or spectral translation operation may have a spectral hole above 3400 Hz.
- harmonically extended signal S 160 include identifying one or more fundamental frequencies of narrowband excitation signal S 80 and generating harmonic tones according to that information.
- the harmonic structure of an excitation signal may be characterized by the fundamental frequency together with amplitude and phase information.
- Another implementation of highband excitation generator A300 generates a harmonically extended signal S 160 based on the fundamental frequency and amplitude (as indicated, for example, by the pitch lag and pitch gain). Unless the harmonically extended signal is phase-coherent with narrowband excitation signal S 80, however, the quality of the resulting decoded speech may not be acceptable.
- a nonlinear function may be used to create a highband excitation signal that is phase-coherent with the narrowband excitation and preserves the harmonic structure without phase discontinuity.
- a nonlinear function may also provide an increased noise level between high-frequency harmonics, which tends to sound more natural than the tonal high-frequency harmonics produced by methods such as spectral folding and spectral translation.
- Typical memoryless nonlinear functions that may be applied by various implementations of spectrum extender A400 include the absolute value function (also called fullwave rectification), halfwave rectification, squaring, cubing, and clipping. Other implementations of spectrum extender A400 may be configured to apply a nonlinear function having memory.
- FIG. 12 is a block diagram of an implementation A402 of spectrum extender A400 that is configured to apply a nonlinear function to extend the spectrum of narrowband excitation signal S 80.
- Upsampler 510 is configured to upsample narrowband excitation signal S80. It may be desirable to upsample the signal sufficiently to minimize aliasing upon application of the nonlinear function. In one particular example, upsampler 510 upsamples the signal by a factor of eight. Upsampler 510 may be configured to perform the upsampling operation by zero-stuffing the input signal and lowpass filtering the result.
- Nonlinear function calculator 520 is configured to apply a nonlinear function to the upsampled signal.
- Nonlinear function calculator 520 may also be configured to perform an amplitude warping of the upsampled or spectrally extended signal.
- Downsampler 530 is configured to downsample the spectrally extended result of applying the nonlinear function. It may be desirable for downsampler 530 to perform a bandpass filtering operation to select a desired frequency band of the spectrally extended signal before reducing the sampling rate (for example, to reduce or avoid aliasing or corruption by an unwanted image). It may also be desirable for downsampler 530 to reduce the sampling rate in more than one stage.
- FIGURE 12a is a diagram that shows the signal spectra at various points in one example of a spectral extension operation, where the frequency scale is the same across the various plots. Plot (a) shows the spectrum of one example of narrowband excitation signal S80.
- Plot (b) shows the spectrum after signal S80 has been upsampled by a factor of eight.
- Plot (c) shows an example of the extended spectrum after application of a nonlinear function.
- Plot (d) shows the spectrum after lowpass filtering. In this example, the passband extends to the upper frequency limit of highband signal S30 (e.g., 7 kHz or 8 kHz).
- Plot (e) shows the spectrum after a first stage of downsampling, in which the sampling rate is reduced by a factor of four to obtain a wideband signal.
- Plot (f) shows the spectrum after a highpass filtering operation to select the highband portion of the extended signal
- plot (g) shows the spectrum after a second stage of downsampling, in which the sampling rate is reduced by a factor of two.
- downsampler 530 performs the highpass filtering and second stage of downsampling by passing the wideband signal through highpass filter 130 and downsampler 140 of filter bank Al 12 (or other structures or routines having the same response) to produce a spectrally extended signal having the frequency range and sampling rate of highband signal S30.
- downsampling of the highpass signal shown in plot (f) causes a reversal of its spectrum.
- downsampler 530 is also configured to perform a spectral flipping operation on the signal.
- Plot (h) shows a result of applying the spectral flipping operation, which may be performed by multiplying the signal with the function e Jn ⁇ or the sequence (-l) n , whose values alternate between +1 and -1. Such an operation is equivalent to shifting the digital spectrum of the signal in the frequency domain by a distance of ⁇ , It is noted that the same result may also be obtained by applying the downsampling and spectral flipping operations in a different order.
- the operations of upsampling and/or downsampling may also be configured to include resampling to obtain a spectrally extended signal having the sampling rate of highband signal S30 (e.g., 7 kHz).
- filter banks Al 10 and B 120 may be implemented such that one or both of the narrowband and highband signals S20, S30 has a spectrally reversed form at the output of filter bank Al 10, is encoded and decoded in the spectrally reversed form, and is spectrally reversed again at filter bank B 120 before being output in wideband speech signal SIlO.
- a spectral flipping operation as shown in FIGURE 12a would not be necessary, as it would be desirable for highband excitation signal S 120 to have a spectrally reversed form as well.
- FIGURE 12b is a diagram that shows the signal spectra at various points in another example of a spectral extension operation, where the frequency scale is the same across the various plots.
- Plot (a) shows the spectrum of one example of narrowband excitation signal S80.
- Plot (b) shows the spectrum after signal S 80 has been upsampled by a factor of two.
- Plot (c) shows an example of the extended spectrum after application of a nonlinear function. In this case, aliasing that may occur in the higher frequencies is accepted.
- Plot (d) shows the spectrum after a spectral reversal operation.
- Plot (e) shows the spectrum after a single stage of downsampling, in which the sampling rate is reduced by a factor of two to obtain the desired spectrally extended signal.
- the signal is in spectrally reversed form and may be used in an implementation of highband encoder A200 which processed highband signal S30 in such a form.
- Spectral extender A402 includes a spectral flattener 540 configured to perform a whitening operation on the downsampled signal.
- Spectral flattener 540 may be configured to perform a fixed whitening operation or to perform an adaptive whitening operation.
- spectral flattener 540 includes an LPC analysis module configured to calculate a set of four filter coefficients from the downsampled signal and a fourth-order analysis filter configured to whiten the signal according to those coefficients.
- Other implementations of spectrum extender A400 include configurations in which spectral flattener 540 operates on the spectrally extended signal before downsampler 530.
- Highband excitation generator A300 may be implemented to output harmonically extended signal S 160 as highband excitation signal S 120. In some cases, however, using only a harmonically extended signal as the highband excitation may result in audible artifacts.
- the harmonic structure of speech is generally less pronounced in the highband than in the low band, and using too much harmonic structure in the highband excitation signal can result in a buzzy sound. This artifact may be especially noticeable in speech signals from female speakers.
- Embodiments include implementations of highband excitation generator A300 that are configured to mix harmonically extended signal S 160 with a noise signal.
- highband excitation generator A302 includes a noise generator 480 that is configured to produce a random noise signal.
- noise generator 480 is configured to produce a unit-variance white pseudorandom noise signal, although in other implementations the noise signal need not be white and may have a power density that varies with frequency. It may be desirable for noise generator 480 to be configured to output the noise signal as a deterministic function such that its state may be duplicated at the decoder.
- noise generator 480 may be configured to output the noise signal as a deterministic function of information coded earlier within the same frame, such as the narrowband filter parameters S40 and/or encoded narrowband excitation signal S50.
- the random noise signal produced by noise generator 480 may be amplitude-modulated to have a time- domain envelope that approximates the energy distribution over time of narrowband signal S20, highband signal S30, narrowband excitation signal S 80, or harmonically extended signal S160.
- highband excitation generator A302 includes a combiner 470 configured to amplitude-modulate the noise signal produced by noise generator 480 according to a time-domain envelope calculated by envelope calculator 460.
- combiner 470 may be implemented as a multiplier arranged to scale the output of noise generator 480 according to the time-domain envelope calculated by envelope calculator 460 to produce modulated noise signal S 170.
- envelope calculator 460 is arranged to calculate the envelope of harmonically extended signal S 160.
- envelope calculator 460 is arranged to calculate the envelope of narrowband excitation signal S80. Further implementations of highband excitation generator A302 may be otherwise configured to add noise to harmonically extended signal S 160 according to locations of the narrowband pitch pulses in time.
- Envelope calculator 460 may be configured to perform an envelope calculation as a task that includes a series of subtasks.
- FIGURE 15 shows a flowchart of an example TlOO of such a task.
- Subtask Tl 10 calculates the square of each sample of the frame of the signal whose envelope is to be modeled (for example, narrowband excitation signal S 80 or harmonically extended signal S 160) to produce a sequence of squared values.
- Subtask T120 performs a smoothing operation on the sequence of squared values.
- subtask T 120 applies a first-order IIR lowpass filter to the sequence according to the expression
- x is the filter input
- y is the filter output
- n is a time-domain index
- a is a smoothing coefficient having a value between 0.5 and 1.
- the value of the smoothing coefficient a may be fixed or, in an alternative implementation, may be adaptive according to an indication of noise in the input signal, such that a is closer to 1 in the absence of noise and closer to 0.5 in the presence of noise.
- Subtask T130 applies a square root function to each sample of the smoothed sequence to produce the time- domain envelope.
- envelope calculator 460 may be configured to perform the various subtasks of task TlOO in serial and/or parallel fashion.
- subtask TIlO may be preceded by a bandpass operation configured to select a desired frequency portion of the signal whose envelope is to be modeled, such as the range of 3-4 kHz.
- Combiner 490 is configured to mix harmonically extended signal S 160 and modulated noise signal S 170 to produce highband excitation signal S 120.
- Implementations of combiner 490 may be configured, for example, to calculate highband excitation signal S 120 as a sum of harmonically extended signal S 160 and modulated noise signal S 170.
- Such an implementation of combiner 490 may be configured to calculate highband excitation signal S 120 as a weighted sum by applying a weighting factor to harmonically extended signal S 160 and/or to modulated noise signal S 170 before the summation.
- Each such weighting factor may be calculated according to one or more criteria and may be a fixed value or, alternatively, an adaptive value that is calculated on a frame-by-frame or subframe-by-subframe basis.
- FIGURE 16 shows a block diagram of an implementation 492 of combiner 490 that is configured to calculate highband excitation signal S 120 as a weighted sum of harmonically extended signal S 160 and modulated noise signal S 170.
- Combiner 492 is configured to weight harmonically extended signal S 160 according to harmonic weighting factor S 180, to weight modulated noise signal S 170 according to noise weighting factor S 190, and to output highband excitation signal S 120 as a sum of the weighted signals.
- combiner 492 includes a weighting factor calculator 550 that is configured to calculate harmonic weighting factor S180 and noise weighting factor S 190.
- Weighting factor calculator 550 may be configured to calculate weighting factors S 180 and S 190 according to a desired ratio of harmonic content to noise content in highband excitation signal S 120. For example, it may be desirable for combiner 492 to produce highband excitation signal S 120 to have a ratio of harmonic energy to noise energy similar to that of highband signal S30. In some implementations of weighting factor calculator 550, weighting factors S 180, S 190 are calculated according to one or more parameters relating to a periodicity of narrowband signal S20 or of the narrowband residual signal, such as pitch gain and/or speech mode.
- weighting factor calculator 550 may be configured to assign a value to harmonic weighting factor S 180 that is proportional to the pitch gain, for example, and/or to assign a higher value to noise weighting factor S 190 for unvoiced speech signals than for voiced speech signals.
- weighting factor calculator 550 is configured to calculate values for harmonic weighting factor S 180 and/or noise weighting factor S 190 according to a measure of periodicity of highband signal S30.
- weighting factor calculator 550 calculates harmonic weighting factor S 180 as the maximum value of the autocorrelation coefficient of highband signal S30 for the current frame or subframe, where the autocorrelation is performed over a search range that includes a delay of one pitch lag and does not include a delay of zero samples.
- FIGURE 17 shows an example of such a search range of length n samples that is centered about a delay of one pitch lag and has a width not greater than one pitch lag.
- FIGURE 17 also shows an example of another approach in which weighting factor calculator 550 calculates a measure of periodicity of highband signal S30 in several stages.
- the current frame is divided into a number of subframes, and the delay for which the autocorrelation coefficient is maximum is identified separately for each subframe.
- the autocorrelation is performed over a search range that includes a delay of one pitch lag and does not include a delay of zero samples.
- a delayed frame is constructed by applying the corresponding identified delay to each subframe, concatenating the resulting subframes to construct an optimally delayed frame, and calculating harmonic weighting factor S 180 as the correlation coefficient between the original frame and the optimally delayed frame.
- weighting factor calculator 550 calculates harmonic weighting factor S 180 as an average of the maximum autocorrelation coefficients obtained in the first stage for each subframe. Implementations of weighting factor calculator 550 may also be configured to scale the correlation coefficient, and/or to combine it with another value, to calculate the value for harmonic weighting factor S 180.
- weighting factor calculator 550 may be configured to calculate a measure of periodicity of highband signal S30 only in cases where a presence of periodicity in the frame is otherwise indicated.
- weighting factor calculator 550 may be configured to calculate a measure of periodicity of highband signal S30 according to a relation between another indicator of periodicity of the current frame, such as pitch gain, and a threshold value.
- weighting factor calculator 550 is configured to perform an autocorrelation operation on highband signal S30 only if the frame's pitch gain (e.g., the adaptive codebook gain of the narrowband residual) has a value of more than 0.5 (alternatively, at least 0.5).
- weighting factor calculator 550 is configured to perform an autocorrelation operation on highband signal S30 only for frames having particular states of speech mode (e.g., only for voiced signals). In such cases, weighting factor calculator 550 may be configured to assign a default weighting factor for frames having other states of speech mode and/or lesser values of pitch gain.
- Embodiments include further implementations of weighting factor calculator 550 that are configured to calculate weighting factors according to characteristics other than or in addition to periodicity. For example, such an implementation may be configured to assign a higher value to noise gain factor S 190 for speech signals having a large pitch lag than for speech signals having a small pitch lag.
- weighting factor calculator 550 is configured to determine a measure of harmonicity of wideband speech signal SlO, or of highband signal S30, according to a measure of the energy of the signal at multiples of the fundamental frequency relative to the energy of the signal at other frequency components.
- Some implementations of wideband speech encoder AlOO are configured to output an indication of periodicity or harmonicity (e.g. a one-bit flag indicating whether the frame is harmonic or nonharmonic) based on the pitch gain and/or another measure of periodicity or harmonicity as described herein.
- an indication of periodicity or harmonicity e.g. a one-bit flag indicating whether the frame is harmonic or nonharmonic
- a corresponding wideband speech decoder BlOO uses this indication to configure an operation such as weighting factor calculation.
- such an indication is used at the encoder and/or decoder in calculating a value for a speech mode parameter.
- weighting factor calculator 550 may be configured to calculate a value for harmonic weighting factor S 180 or for noise weighting factor S 190 (or to receive such a value from storage or another element of highband encoder A200) and to derive a value for the other weighting factor according to an expression such as
- weighting factor calculator 550 may be configured to select, according to a value of a periodicity measure for the current frame or subframe, a corresponding one among a plurality of pairs of weighting factors S 180, S 190, where the pairs are precalculated to satisfy a constant-energy ratio such as expression (2).
- expression (2) For an implementation of weighting factor calculator 550 in which expression (2) is observed, typical values for harmonic weighting factor S 180 range from about 0.7 to about 1.0, and typical values for noise weighting factor S 190 range from about 0.1 to about 0.7.
- Other implementations of weighting factor calculator 550 may be configured to operate according to a version of expression (2) that is modified according to a desired baseline weighting between harmonically extended signal S 160 and modulated noise signal S 170.
- Artifacts may occur in a synthesized speech signal when a sparse codebook (one whose entries are mostly zero values) has been used to calculate the quantized representation of the residual.
- Codebook sparseness occurs especially when the narrowband signal is encoded at a low bit rate. Artifacts caused by codebook sparseness are typically quasi-periodic in time and occur mostly above 3 kHz. Because the human ear has better time resolution at higher frequencies, these artifacts may be more noticeable in the highband.
- Embodiments include implementations of highband excitation generator A300 that are configured to perform anti-sparseness filtering.
- FIGURE 18 shows a block diagram of an implementation A312 of highband excitation generator A302 that includes an anti-sparseness filter 600 arranged to filter the dequantized narrowband excitation signal produced by inverse quantizer 450.
- FIGURE 19 shows a block diagram of an implementation A314 of highband excitation generator A302 that includes an anti-sparseness filter 600 arranged to filter the spectrally extended signal produced by spectrum extender A400.
- FIGURE 20 shows a block diagram of an implementation A316 of highband excitation generator A302 that includes an anti- sparseness filter 600 arranged to filter the output of combiner 490 to produce highband excitation signal S 120.
- an anti- sparseness filter 600 arranged to filter the output of combiner 490 to produce highband excitation signal S 120.
- implementations of highband excitation generator A300 that combine the features of any of implementations A304 and A306 with the features of any of implementations A312, A314, and A316 are contemplated and hereby expressly disclosed.
- Anti-sparseness filter 600 may also be arranged within spectrum extender A400: for example, after any of the elements 510, 520, 530, and 540 in spectrum extender A402. It is expressly noted that anti-sparseness filter 600 may also be used with implementations of spectrum extender A400 that perform spectral folding, spectral translation, or harmonic extension.
- Anti-sparseness filter 600 may be configured to alter the phase of its input signal. For example, it may be desirable for anti-sparseness filter 600 to be configured and arranged such that the phase of highband excitation signal S 120 is randomized, or otherwise more evenly distributed, over time. It may also be desirable for the response of anti-sparseness filter 600 to be spectrally flat, such that the magnitude spectrum of the filtered signal is not appreciably changed. In one example, anti-sparseness filter 600 is implemented as an all-pass filter having a transfer function according to the following expression:
- H ⁇ z -°- 1 + Z ⁇ 0 - 6 + Z ⁇ 6 6 . (3). 1 -0.7Z "4 l + 0.6z- 6
- One effect of such a filter may be to spread out the energy of the input signal so that it is no longer concentrated in only a few samples.
- Unvoiced signals are characterized by a low pitch gain (e.g. quantized narrowband adaptive codebook gain) and a spectral tilt (e.g. quantized first reflection coefficient) that is close to zero or positive, indicating a spectral envelope that is flat or tilted upward with increasing frequency.
- a low pitch gain e.g. quantized narrowband adaptive codebook gain
- a spectral tilt e.g. quantized first reflection coefficient
- Typical implementations of anti-sparseness filter 600 are configured to filter unvoiced sounds (e.g., as indicated by the value of the spectral tilt), to filter voiced sounds when the pitch gain is below a threshold value (alternatively, not greater than the threshold value), and otherwise to pass the signal without alteration.
- anti-sparseness filter 600 include two or more filters that are configured to have different maximum phase modification angles (e.g., up to 180 degrees).
- anti-sparseness filter 600 may be configured to select among these component filters according to a value of the pitch gain (e.g., the quantized adaptive codebook or LTP gain), such that a greater maximum phase modification angle is used for frames having lower pitch gain values.
- An implementation of anti- sparseness filter 600 may also include different component filters that are configured to modify the phase over more or less of the frequency spectrum, such that a filter configured to modify the phase over a wider frequency range of the input signal is used for frames having lower pitch gain values.
- highband encoder A200 may be configured to characterize highband signal S30 by specifying a temporal or gain envelope.
- highband encoder A202 includes a highband gain factor calculator A230 that is configured and arranged to calculate one or more gain factors according to a relation between highband signal S30 and synthesized highband signal S 130, such as a difference or ratio between the energies of the two signals over a frame or some portion thereof.
- highband gain calculator A230 may be likewise configured but arranged instead to calculate the gain envelope according to such a time-varying relation between highband signal S30 and narrowband excitation signal S80 or highband excitation signal S120.
- highband encoder A202 is configured to output a quantized index of eight to twelve bits that specifies five gain factors for each frame.
- Highband gain factor calculator A230 may be configured to perform gain factor calculation as a task that includes one or more series of subtasks.
- FIGURE 21 shows a flowchart of an example T200 of such a task that calculates a gain value for a corresponding subframe according to the relative energies of highband signal S30 and synthesized highband signal S 130.
- Tasks 220a and 220b calculate the energies of the corresponding subframes of the respective signals.
- tasks 220a and 220b may be configured to calculate the energy as a sum of the squares of the samples of the respective subframe.
- Task T230 calculates a gain factor for the subframe as the square root of the ratio of those energies.
- task T230 calculates the gain factor as the square root of the ratio of the energy of highband signal S30 to the energy of synthesized highband signal S 130 over the subframe.
- FIGtORE 22 shows a flowchart of such an implementation T210 of gain factor calculation task T200.
- Task T215a applies a windowing function to highband signal S30, and task T215b applies the same windowing function to synthesized highband signal S 130.
- Implementations 222a and 222b of tasks 220a and 220b calculate the energies of the respective windows, and task T230 calculates a gain factor for the subframe as the square root of the ratio of the energies.
- highband gain factor calculator A230 is configured to apply a trapezoidal windowing function as shown in FIGURE 23 a, in which the window overlaps each of the two adjacent subframes by one millisecond.
- FIGURE 23b shows an application of this windowing function to each of the five subframes of a 20- millisecond frame.
- highband gain factor calculator A230 may be configured to apply windowing functions having different overlap periods and/or different window shapes (e.g., rectangular, Hamming) that may be symmetrical or asymmetrical. It is also possible for an implementation of highband gain factor calculator A230 to be configured to apply different windowing functions to different subframes within a frame and/or for a frame to include subframes of different lengths.
- windowing functions having different overlap periods and/or different window shapes (e.g., rectangular, Hamming) that may be symmetrical or asymmetrical. It is also possible for an implementation of highband gain factor calculator A230 to be configured to apply different windowing functions to different subframes within a frame and/or for a frame to include subframes of different lengths.
- each frame has 140 samples. If such a frame is divided into five subframes of equal length, each subframe will have 28 samples, and the window as shown in FIGURE 23a will be 42 samples wide. For a highband signal sampled at 8 kHz, each frame has 160 samples. If such frame is divided into five subframes of equal length, each subframe will have 32 samples, and the window as shown in FIGURE 23a will be 48 samples wide. In other implementations, subframes of any width may be used, and it is even possible for an implementation of highband gain calculator A230 to be configured to produce a different gain factor for each sample of a frame.
- FIG. 24 shows a block diagram of an implementation B202 of highband decoder B200.
- Highband decoder B202 includes a highband excitation generator B300 that is configured to produce highband excitation signal S 120 based on narrowband excitation signal S80.
- highband excitation generator B300 may be implemented according to any of the implementations of highband excitation generator A300 as described herein. Typically it is desirable to implement highband excitation generator B300 to have the same response as the highband excitation generator of the highband encoder of the particular coding system.
- narrowband decoder BIlO will typically perform dequantization of encoded narrowband excitation signal S50, however, in most cases highband excitation generator B300 may be implemented to receive narrowband excitation signal S80 from narrowband decoder BIlO and need not include an inverse quantizer configured to dequantize encoded narrowband excitation signal S50. It is also possible for narrowband decoder BIlO to be implemented to include an instance of anti-sparseness filter 600 arranged to filter the dequantized narrowband excitation signal before it is input to a narrowband synthesis filter such as filter 330.
- Inverse quantizer 560 is configured to dequantize highband filter parameters S60a (in this example, to a set of LSFs), and LSF-to-LP filter coefficient transform 570 is configured to transform the LSFs into a set of filter coefficients (for example, as described above with reference to inverse quantizer 240 and transform 250 of narrowband encoder A122).
- different coefficient sets e.g., cepstral coefficients
- coefficient representations e.g., ISPs
- Highband synthesis filter B200 is configured to produce a synthesized highband signal according to highband excitation signal S 120 and the set of filter coefficients.
- Hi ghband decoder B202 also includes an inverse quantizer 580 configured to dequantize highband gain factors S60b, and a gain control element 590 (e.g., a multiplier or amplifier) configured and arranged to apply the dequantized gain factors to the synthesized highband signal to produce highband signal SlOO.
- a gain control element 590 e.g., a multiplier or amplifier
- gain control element 590 may include logic configured to apply the gain factors to the respective subframes, possibly according to a windowing function that may be the same or a different windowing function as applied by a gain calculator (e.g., highband gain calculator A230) of the corresponding highband encoder.
- gain control element 590 is similarly configured but is arranged instead to apply the dequantized gain factors to narrowband excitation signal S80 or to highband excitation signal S 120.
- highband excitation generators A300 and B300 of such an implementation may be configured such that the state of the noise generator is a deterministic function of information already coded within the same frame (e.g., narrowband filter parameters S40 or a portion thereof and/or encoded narrowband excitation signal S50 or a portion thereof).
- One or more of the quantizers of the elements described herein may be configured to perform classified vector quantization.
- a quantizer may be configured to select one of a set of codebooks based on information that has already been coded within the same frame in the narrowband channel and/or in the highband channel.
- Such a technique typically provides increased coding efficiency at the expense of additional codebook storage.
- the residual signal may contain a sequence of roughly periodic pulses or spikes over time.
- Such structure which is typically related to pitch, is especially likely to occur in voiced speech signals.
- Calculation of a quantized representation of the narrowband residual signal may include encoding of this pitch structure according to a model of long-term periodicity as represented by, for example, one or more codebooks.
- the pitch structure of an actual residual signal may not match the periodicity model exactly.
- the residual signal may include small jitters in the regularity of the locations of the pitch pulses, such that the distances between successive pitch pulses in a frame are not exactly equal and the structure is not quite regular. These irregularities tend to reduce coding efficiency.
- narrowband encoder A120 are configured to perform a regularization of the pitch structure by applying an adaptive time warping to the residual before or during quantization, or by otherwise including an adaptive time warping in the encoded excitation signal.
- an encoder may be configured to select or otherwise calculate a degree of warping in time (e.g., according to one or more perceptual weighting and/or error minimization criteria) such that the resulting excitation signal optimally fits the model of long-term periodicity.
- Regularization of pitch structure is performed by a subset of CELP encoders called Relaxation Code Excited Linear Prediction (RCELP) encoders.
- RELP Relaxation Code Excited Linear Prediction
- An RCELP encoder is typically configured to perform the time warping as an adaptive time shift. This time shift may be a delay ranging from a few milliseconds negative to a few milliseconds positive, and it is usually varied smoothly to avoid audible discontinuities.
- such an encoder is configured to apply the regularization in a piecewise fashion, wherein each frame or subframe is warped by a corresponding fixed time shift.
- the encoder is configured to apply the regularization as a continuous warping function, such that a frame or subframe is warped according to a pitch contour (also called a pitch trajectory).
- the encoder is configured to include a time warping in the encoded excitation signal by applying the shift to a perceptually weighted input signal that is used to calculate the encoded excitation signal.
- the encoder calculates an encoded excitation signal that is regularized and quantized, and the decoder dequantizes the encoded excitation signal to obtain an excitation signal that is used to synthesize the decoded speech signal.
- the decoded output signal thus exhibits the same varying delay that was included in the encoded excitation signal by the regularization. Typically, no information specifying the regularization amounts is transmitted to the decoder.
- Regularization tends to make the residual signal easier to encode, which improves the coding gain from the long-term predictor and thus boosts overall coding efficiency, generally without generating artifacts. It may be desirable to perform regularization only on frames that are voiced. For example, narrowband encoder A124 may be configured to shift only those frames or subframes having a long-term structure, such as voiced signals. It may even be desirable to perform regularization only on subframes that include pitch pulse energy.
- RCELP coding are described in U.S. Pats. Nos. 5,704,003 (Kleijn et al.) and 6,879,955 (Rao) and in U.S. Pat. Appl. Publ.
- RCELP coders include the Enhanced Variable Rate Codec (EVRC), as described in Telecommunications Industry Association (TIA) IS-127, and the Third Generation Partnership Project 2 (3GPP2) Selectable Mode Vocoder (SMV).
- EVRC Enhanced Variable Rate Codec
- TIA Telecommunications Industry Association
- 3GPP2 Third Generation Partnership Project 2
- SMV Selectable Mode Vocoder
- a misalignment in time between the warped highband excitation signal and the original highband speech signal may cause several problems.
- the warped highband excitation signal may no longer provide a suitable source excitation for a synthesis filter that is configured according to the filter parameters extracted from the original highband speech signal.
- the synthesized highband signal may contain audible artifacts that reduce the perceived quality of the decoded wideband speech signal.
- the misalignment in time may also cause inefficiencies in gain envelope encoding. As mentioned above, a correlation is likely to exist between the temporal envelopes of narrowband excitation signal S80 and highband signal S30.
- Embodiments include methods of wideband speech encoding that perform time warping of a highband speech signal according to a time warping included in a corresponding encoded narrowband excitation signal. Potential advantages of such methods include improving the quality of a decoded wideband speech signal and/or improving the efficiency of coding a highband gain envelope.
- FIGURE 25 shows a block diagram of an implementation ADlO of wideband speech encoder AlOO.
- Encoder ADlO includes an implementation A124 of narrowband encoder A120 that is configured to perform regularization during calculation of the encoded narrowband excitation signal S50.
- narrowband encoder A124 may be configured according to one or more of the RCELP implementations discussed above.
- Narrowband encoder Al 24 is also configured to output a regularization data signal SDlO that specifies the degree of time warping applied.
- regularization data signal SDlO may include a series of values indicating each time shift amount as an integer or non-integer value in terms of samples, milliseconds, or some other time increment.
- regularization information signal SDlO may include a corresponding description of the modification, such as a set of function parameters.
- narrowband encoder A124 is configured to divide a frame into three subframes and to calculate a fixed time shift for each subframe, such that regularization data signal SDlO indicates three time shift amounts for each regularized frame of the encoded narrowband signal.
- Wideband speech encoder ADlO includes a delay line D 120 configured to advance or retard portions of highband speech signal S30, according to delay amounts indicated by an input signal, to produce time-warped highband speech signal S30a.
- delay line D 120 is configured to time warp highband speech signal S30 according to the warping indicated by regularization data signal SDlO. In such manner, the same amount of time warping that was included in encoded narrowband excitation signal S50 is also applied to the corresponding portion of highband speech signal S30 before analysis.
- delay line D 120 is arranged as part of the highband encoder.
- highband encoder A200 may be configured to perform spectral analysis (e.g., LPC analysis) of the unwarped highband speech signal S30 and to perform time warping of highband speech signal S30 before calculation of highband gain parameters S60b.
- spectral analysis e.g., LPC analysis
- Such an encoder may include, for example, an implementation of delay line D 120 arranged to perform the time warping.
- highband filter parameters S60a based on the analysis of unwarped signal S30 may describe a spectral envelope that is misaligned in time with highband excitation signal S 120.
- Delay line D 120 may be configured according to any combination of logic elements and storage elements suitable for applying the desired time warping operations to highband speech signal S30.
- delay line D 120 may be configured to read highband speech signal S30 from a buffer according to the desired time shifts.
- FIGURE 26a shows a schematic diagram of such an implementation D 122 of delay line D120 that includes a shift register SRl.
- Shift register SRl is a buffer of some length m that is configured to receive and store the m most recent samples of highband speech signal S30.
- the value m is equal to at least the sum of the maximum positive (or "advance") and negative (or "retard”) time shifts to be supported.
- Delay line D 122 is configured to output the time-warped highband signal S30a from an offset location OL of shift register SRl.
- the position of offset location OL varies about a reference position (zero time shift) according to the current time shift as indicated by, for example, regularization data signal SDlO.
- Delay line D 122 may be configured to support equal advance and retard limits or, alternatively, one limit larger than the other such that a greater shift may be performed in one direction than in the other.
- FIGURE 26a shows a particular example that supports a larger positive than negative time shift.
- Delay line D 122 may be configured to output one or more samples at a time (depending on an output bus width, for example).
- a regularization time shift having a magnitude of more than a few milliseconds may cause audible artifacts in the decoded signal.
- the magnitude of a regularization time shift as performed by a narrowband encoder A124 will not exceed a few milliseconds, such that the time shifts indicated by regularization data signal SDlO will be limited.
- delay line D 122 it may be desired in such cases for delay line D 122 to be configured to impose a maximum limit on time shifts in the positive and/or negative direction (for example, to observe a tighter limit than that imposed by the narrowband encoder).
- FIGURE 26b shows a schematic diagram of an implementation D 124 of delay line D122 that includes a shift window SW.
- the position of offset location OL is limited by the shift window SW.
- FIGURE 26b shows a case in which the buffer length m is greater than the width of shift window SW, delay line D 124 may also be implemented such that the width of shift window SW is equal to m.
- delay line D 120 is configured to write highband speech signal S30 to a buffer according to the desired time shifts.
- FIGURE 27 shows a schematic diagram of such an implementation D 130 of delay line D 120 that includes two shift registers SR2 and SR3 configured to receive and store highband speech signal S30.
- Delay line D 130 is configured to write a frame or subframe from shift register SR2 to shift register SR3 according to a time shift as indicated by, for example, regularization data signal SDlO.
- Shift register SR3 is configured as a FIFO buffer arranged to output time-warped highband signal S30.
- shift register SR2 includes a frame buffer portion FBI and a delay buffer portion DB
- shift register SR3 includes a frame buffer portion FB2, an advance buffer portion AB, and a retard buffer portion RB.
- the lengths of advance buffer AB and retard buffer RB may be equal, or one may be larger than the other, such that a greater shift in one direction is supported than in the other.
- Delay buffer DB and retard buffer portion RB may be configured to have the same length.
- delay buffer DB may be shorter than retard buffer RB to account for a time interval required to transfer samples from frame buffer FB 1 to shift register SR3, which may include other processing operations such as warping of the samples before storage to shift register SR3.
- frame buffer FBI is configured to have a length equal to that of one frame of highband signal S30.
- frame buffer FBI is configured to have a length equal to that of one subframe of highband signal S30.
- delay line D 130 may be configured to include logic to apply the same (e.g., an average) delay to all subframes of a frame to be shifted.
- Delay line D130 may also include logic to average values from frame buffer FBI with values to be overwritten in retard buffer RB or advance buffer AB.
- shift register SR3 may be configured to receive values of highband signal S30 only via frame buffer FBI, and in such case delay line D 130 may include logic to interpolate across gaps between successive frames or subframes written to shift register SR3.
- delay line D130 may be configured to perform a warping operation on samples from frame buffer FBI before writing them to shift register SR3 (e.g., according to a function described by regularization data signal SDlO).
- FIGURE 28 shows a block diagram of an implementation AD12 of wideband speech encoder ADlO that includes a delay value mapper Dl 10.
- Delay value mapper Dl 10 is configured to map the warping indicated by regularization data signal SDlO into mapped delay values SDlOa.
- Delay line D 120 is arranged to produce time-warped highband speech signal S30a according to the warping indicated by mapped delay values SDlOa.
- the time shift applied by the narrowband encoder may be expected to evolve smoothly over time.
- delay value mapper Dl 10 is configured to calculate an average of the subframe delay values for each frame, and delay line D120 is configured to apply the calculated average to a corresponding frame of highband signal S30.
- delay value mapper DIlO may be configured to round the value to an integer number of samples before outputting it to delay line D 120.
- Narrowband encoder A124 may be configured to include a regularization time shift of a non-integer number of samples in the encoded narrowband excitation signal.
- delay value mapper DIlO it may be desirable for delay value mapper DIlO to be configured to round the narrowband time shift to an integer number of samples and for delay line D120 to apply the rounded time shift to highband speech signal S30.
- delay value mapper DIlO may be configured to adjust time shift amounts indicated in regularization data signal SDlO to account for a difference between the sampling rates of narrowband speech signal S20 (or narrowband excitation signal S80) and highband speech signal S30.
- delay value mapper Dl 10 may be configured to scale the time shift amounts according to a ratio of the sampling rates. In one particular example as mentioned above, narrowband speech signal S20 is sampled at 8 kHz, and highband speech signal S30 is sampled at 7 kHz. In this case, delay value mapper Dl 10 is configured to multiply each shift amount by 7/8. Implementations of delay value mapper DIlO may also be configured to perform such a scaling operation together with an integer-rounding and/or a time shift averaging operation as described herein.
- delay line D 120 is configured to otherwise modify the time scale of a frame or other sequence of samples (e.g., by compressing one portion and expanding another portion).
- narrowband encoder A124 may be configured to perform the regularization according to a function such as a pitch contour or trajectory.
- regularization data signal SDlO may include a corresponding description of the function, such as a set of parameters
- delay line D 120 may include logic configured to warp frames or subframes of highband speech signal S30 according to the function.
- delay value mapper Dl 10 is configured to average, scale, and/or round the function before it is applied to highband speech signal S30 by delay line D 120.
- delay value mapper DIlO may be configured to calculate one or more delay values according to the function, each delay value indicating a number of samples, which are then applied by delay line D 120 to time warp one or more corresponding frames or subframes of highband speech signal S30.
- FIG. 29 shows a flowchart for a method MDlOO of time warping a highband speech signal according to a time warping included in a corresponding encoded narrowband excitation signal.
- Task TDlOO processes a wideband speech signal to obtain a narrowband speech signal and a highband speech signal.
- task TDlOO may be configured to filter the wideband speech signal using a filter bank having lowpass and highpass filters, such as an implementation of filter bank AIlO.
- Task TD200 encodes the narrowband speech signal into at least a encoded narrowband excitation signal and a plurality of narrowband filter parameters.
- the encoded narrowband excitation signal and/or filter parameters may be quantized, and the encoded narrowband speech signal may also include other parameters such as a speech mode parameter.
- Task TD200 also includes a time warping in the encoded narrowband excitation signal.
- Task TD300 generates a highband excitation signal based on a narrowband excitation signal.
- the narrowband excitation signal is based on the encoded narrowband excitation signal.
- task TD400 encodes the highband speech signal into at least a plurality of highband filter parameters.
- task TD400 may be configured to encode the highband speech signal into a plurality of quantized LSFs.
- Task TD500 applies a time shift to the highband speech signal that is based on information relating to a time warping included in the encoded narrowband excitation signal.
- Task TD400 may be configured to perform a spectral analysis (such as an LPC analysis) on the highband speech signal, and/or to calculate a gain envelope of the highband speech signal.
- task TD500 may be configured to apply the time shift to the highband speech signal prior to the analysis and/or the gain envelope calculation.
- wideband speech encoder AlOO are configured to reverse a time warping of highband excitation signal S 120 caused by a time warping included in the encoded narrowband excitation signal.
- highband excitation generator A300 may be implemented to include an implementation of delay line D120 that is configured to receive regularization data signal SDlO or mapped delay values SDlOa, and to apply a corresponding reverse time shift to narrowband excitation signal S 80, and/or to a subsequent signal based on it such as harmonically extended signal S 160 or highband excitation signal S 120.
- Further wideband speech encoder implementations may be configured to encode narrowband speech signal S20 and highband speech signal S30 independently from one another, such that highband speech signal S30 is encoded as a representation of a highband spectral envelope and a highband excitation signal.
- Such an implementation may be configured to perform time warping of the highband residual signal, or to otherwise include a time warping in an encoded highband excitation signal, according to information relating to a time warping included in the encoded narrowband excitation signal.
- the highband encoder may include an implementation of delay line D120 and/or delay value mapper DIlO as described herein that are configured to apply a time warping to the highband residual signal. Potential advantages of such an operation include more efficient encoding of the highband residual signal and a better match between the synthesized narrowband and highband speech signals.
- embodiments as described herein include implementations that may be used to perform embedded coding, supporting compatibility with narrowband systems and avoiding a need for transcoding.
- Support for highband coding may also serve to differentiate on a cost basis between chips, chipsets, devices, and/or networks having wideband support with backward compatibility, and those having narrowband support only.
- Support for highband coding as described herein may also be used in conjunction with a technique for supporting lowband coding, and a system, method, or apparatus according to such an embodiment may support coding of frequency components from, for example, about 50 or 100 Hz up to about 7 or 8 kHz.
- highband support may improve intelligibility, especially regarding differentiation of fricatives. Although such differentiation may usually be derived by a human listener from the particular context, highband support may serve as an enabling feature in speech recognition and other machine interpretation applications, such as systems for automated voice menu navigation and/or automatic call processing.
- An apparatus may be embedded into a portable device for wireless communications such as a cellular telephone or personal digital assistant (PDA).
- a portable device for wireless communications
- such an apparatus may be included in another communications device such as a VoIP handset, a personal computer configured to support VoIP communications, or a network device configured to route telephonic or VoIP communications.
- an apparatus according to an embodiment may be implemented in a chip or chipset for a communications device.
- such a device may also include such features as analog-to-digital and/or digital-to-analog conversion of a speech signal, circuitry for performing amplification and/or other signal processing operations on a speech signal, and/or radio- frequency circuitry for transmission and/or reception of the coded speech signal.
- embodiments may include and/or be used with any one or more of the other features disclosed in the U.S. Provisional Pat. Appls. Nos. 60/667,901 and 60/673,965 of which this application claims benefit.
- Such features include removal of high-energy bursts of short duration that occur in the highband and are substantially absent from the narrowband.
- Such features include fixed or adaptive smoothing of coefficient representations such as highband LSFs.
- Such features include fixed or adaptive shaping of noise associated with quantization of coefficient representations such as LSFs.
- Such features also include fixed or adaptive smoothing of a gain envelope, and adaptive attenuation of a gain envelope.
- an embodiment may be implemented in part or in whole as a hard-wired circuit, as a circuit configuration fabricated into an application-specific integrated circuit, or as a firmware program loaded into non- volatile storage or a software program loaded from or into a data storage medium as machine-readable code, such code being instructions executable by an array of logic elements such as a microprocessor or other digital signal processing unit.
- the data storage medium may be an array of storage elements such as semiconductor memory (which may include without limitation dynamic or static RAM (random-access memory), ROM (read-only memory), and/or flash RAM), or ferroelectric, magnetoresistive, ovonic, polymeric, or phase-change memory; or a disk medium such as a magnetic or optical disk.
- semiconductor memory which may include without limitation dynamic or static RAM (random-access memory), ROM (read-only memory), and/or flash RAM), or ferroelectric, magnetoresistive, ovonic, polymeric, or phase-change memory
- a disk medium such as a magnetic or optical disk.
- the term "software” should be understood to include source code, assembly language code, machine code, binary code, firmware, macrocode, microcode, any one or more sets or sequences of instructions executable by an array of logic elements, and any combination of such examples.
- highband excitation generators A300 and B300, highband encoder AlOO, highband decoder B200, wideband speech encoder AlOO, and wideband speech decoder BlOO may be implemented as electronic and/or optical devices residing, for example, on the same chip or among two or more chips in a chipset, although other arrangements without such limitation are also contemplated.
- One or more elements of such an apparatus may be implemented in whole or in part as one or more sets of instructions arranged to execute on one or more fixed or programmable arrays of logic elements (e.g., transistors, gates) such as microprocessors, embedded processors, IP cores, digital signal processors, FPGAs (field-programmable gate arrays), ASSPs (application-specific standard products), and ASICs (application-specific integrated circuits). It is also possible for one or more such elements to have structure in common (e.g., a processor used to execute portions of code corresponding to different elements at different times, a set of instructions executed to perform tasks corresponding to different elements at different times, or an arrangement of electronic and/or optical devices performing operations for different elements at different times). Moreover, it is possible for one or more such elements to be used to perform tasks or execute other sets of instructions that are not directly related to an operation of the apparatus, such as a task relating to another operation of a device or system in which the apparatus is embedded.
- logic elements e.g., transistors,
- FIGURE 30 shows a flowchart of a method MlOO, according to an embodiment, of encoding a highband portion of a speech signal having a narrowband portion and the highband portion.
- Task XlOO calculates a set of filter parameters that characterize a spectral envelope of the highband portion.
- Task X200 calculates a spectrally extended signal by applying a nonlinear function to a signal derived from the narrowband portion.
- Task X300 generates a synthesized highband signal according to (A) the set of filter parameters and (B) a highband excitation signal based on the spectrally extended signal.
- Task X400 calculates a gain envelope based on a relation between (C) energy of the highband portion and (D) energy of a signal derived from the narrowband portion.
- FIGURE 31a shows a flowchart of a method M200 of generating a highband excitation signal according to an embodiment.
- Task YlOO calculates a harmonically extended signal by applying a nonlinear function to a narrowband excitation signal , derived from a narrowband portion of a speech signal.
- Task Y200 mixes the harmonically extended signal with a modulated noise signal to generate a highband excitation signal.
- FIGURE 31b shows a flowchart of a method M210 of generating a highband excitation signal according to another embodiment including tasks Y300 and Y400.
- Task Y300 calculates a time-domain envelope according to energy over time of one among the narrowband excitation signal and the harmonically extended signal.
- Task Y400 modulates a noise signal according to the time-domain envelope to produce the modulated noise signal.
- FIGURE 32 shows a flowchart of a method M300 according to an embodiment, of decoding a highband portion of a speech signal having a narrowband portion and the highband portion.
- Task ZlOO receives a set of filter parameters that characterize a spectral envelope of the highband portion and a set of gain factors that characterize a temporal envelope of the highband portion.
- Task Z200 calculates a spectrally extended signal by applying a nonlinear function to a signal derived from the narrowband portion.
- Task Z300 generates a synthesized highband signal according to (A) the set of filter parameters and (B) a highband excitation signal based on the spectrally extended signal.
- Task Z400 modulates a gain envelope of the synthesized highband signal based on the set of gain factors.
- task Z400 may be configured to modulate the gain envelope of the synthesized highband signal by applying the set of gain factors to an excitation signal derived from the narrowband portion, to the spectrally extended signal, to the highband excitation signal, or to the synthesized highband signal.
- Embodiments also include additional methods of speech coding, encoding, and decoding as are expressly disclosed herein, e.g., by descriptions of structural embodiments configured to perform such methods.
- Each of these methods may also be tangibly embodied (for example, in one or more data storage media as listed above) as one or more sets of instructions readable and/or executable by a machine including an array of logic elements (e.g., a processor, microprocessor, microcontroller, or other finite state machine).
- logic elements e.g., a processor, microprocessor, microcontroller, or other finite state machine.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Quality & Reliability (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
- Analogue/Digital Conversion (AREA)
- Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
- Control Of Amplification And Gain Control (AREA)
- Control Of Eletrric Generators (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Image Analysis (AREA)
- Amplitude Modulation (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Air Conditioning Control Device (AREA)
- Telephonic Communication Services (AREA)
- Transmitters (AREA)
- Filters And Equalizers (AREA)
- Filtration Of Liquid (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Developing Agents For Electrophotography (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
- Ticket-Dispensing Machines (AREA)
- Stereo-Broadcasting Methods (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0607691A BRPI0607691B1 (en) | 2005-04-01 | 2006-04-03 | method and equipment for broadband speech coding |
JP2008504479A JP5203930B2 (en) | 2005-04-01 | 2006-04-03 | System, method and apparatus for performing high-bandwidth time axis expansion and contraction |
MX2007012187A MX2007012187A (en) | 2005-04-01 | 2006-04-03 | Systems, methods, and apparatus for highband time warping. |
CA2603231A CA2603231C (en) | 2005-04-01 | 2006-04-03 | Systems, methods, and apparatus for highband time warping |
AU2006232362A AU2006232362B2 (en) | 2005-04-01 | 2006-04-03 | Systems, methods, and apparatus for highband time warping |
EP06740356A EP1864283B1 (en) | 2005-04-01 | 2006-04-03 | Systems, methods, and apparatus for highband time warping |
CN200680018212.6A CN101185126B (en) | 2005-04-01 | 2006-04-03 | Systems, methods, and apparatus for highband time warping |
IL186405A IL186405A (en) | 2005-04-01 | 2007-10-07 | Systems, methods and apparatus for highband time warping |
NO20075512A NO20075512L (en) | 2005-04-01 | 2007-10-31 | Hoyband's time wasting |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66790105P | 2005-04-01 | 2005-04-01 | |
US60/667,901 | 2005-04-01 | ||
US67396505P | 2005-04-22 | 2005-04-22 | |
US60/673,965 | 2005-04-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006107838A1 true WO2006107838A1 (en) | 2006-10-12 |
Family
ID=36588741
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/012227 WO2006107833A1 (en) | 2005-04-01 | 2006-04-03 | Method and apparatus for vector quantizing of a spectral envelope representation |
PCT/US2006/012234 WO2006130221A1 (en) | 2005-04-01 | 2006-04-03 | Systems, methods, and apparatus for highband excitation generation |
PCT/US2006/012231 WO2006107837A1 (en) | 2005-04-01 | 2006-04-03 | Methods and apparatus for encoding and decoding an highband portion of a speech signal |
PCT/US2006/012232 WO2006107838A1 (en) | 2005-04-01 | 2006-04-03 | Systems, methods, and apparatus for highband time warping |
PCT/US2006/012228 WO2006107834A1 (en) | 2005-04-01 | 2006-04-03 | Systems, methods, and apparatus for highband burst suppression |
PCT/US2006/012233 WO2006107839A2 (en) | 2005-04-01 | 2006-04-03 | Method and apparatus for anti-sparseness filtering of a bandwidth extended speech prediction excitation signal |
PCT/US2006/012235 WO2006107840A1 (en) | 2005-04-01 | 2006-04-03 | Systems, methods, and apparatus for wideband speech coding |
PCT/US2006/012230 WO2006107836A1 (en) | 2005-04-01 | 2006-04-03 | Method and apparatus for split-band encoding of speech signals |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/012227 WO2006107833A1 (en) | 2005-04-01 | 2006-04-03 | Method and apparatus for vector quantizing of a spectral envelope representation |
PCT/US2006/012234 WO2006130221A1 (en) | 2005-04-01 | 2006-04-03 | Systems, methods, and apparatus for highband excitation generation |
PCT/US2006/012231 WO2006107837A1 (en) | 2005-04-01 | 2006-04-03 | Methods and apparatus for encoding and decoding an highband portion of a speech signal |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/012228 WO2006107834A1 (en) | 2005-04-01 | 2006-04-03 | Systems, methods, and apparatus for highband burst suppression |
PCT/US2006/012233 WO2006107839A2 (en) | 2005-04-01 | 2006-04-03 | Method and apparatus for anti-sparseness filtering of a bandwidth extended speech prediction excitation signal |
PCT/US2006/012235 WO2006107840A1 (en) | 2005-04-01 | 2006-04-03 | Systems, methods, and apparatus for wideband speech coding |
PCT/US2006/012230 WO2006107836A1 (en) | 2005-04-01 | 2006-04-03 | Method and apparatus for split-band encoding of speech signals |
Country Status (24)
Country | Link |
---|---|
US (8) | US8078474B2 (en) |
EP (8) | EP1864101B1 (en) |
JP (8) | JP5129115B2 (en) |
KR (8) | KR100956525B1 (en) |
CN (1) | CN102411935B (en) |
AT (4) | ATE482449T1 (en) |
AU (8) | AU2006232362B2 (en) |
BR (8) | BRPI0607646B1 (en) |
CA (8) | CA2603246C (en) |
DE (4) | DE602006012637D1 (en) |
DK (2) | DK1864101T3 (en) |
ES (3) | ES2636443T3 (en) |
HK (5) | HK1113848A1 (en) |
IL (8) | IL186442A (en) |
MX (8) | MX2007012187A (en) |
NO (7) | NO20075512L (en) |
NZ (6) | NZ562186A (en) |
PL (4) | PL1864282T3 (en) |
PT (2) | PT1864101E (en) |
RU (9) | RU2387025C2 (en) |
SG (4) | SG163556A1 (en) |
SI (1) | SI1864282T1 (en) |
TW (8) | TWI319565B (en) |
WO (8) | WO2006107833A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011511311A (en) * | 2008-01-31 | 2011-04-07 | フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン | Apparatus and method for bandwidth extension of audio signal |
JP2012527637A (en) * | 2009-05-19 | 2012-11-08 | エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート | Audio signal encoding and decoding method and apparatus using hierarchical sinusoidal pulse coding |
CN107527629A (en) * | 2013-07-12 | 2017-12-29 | 皇家飞利浦有限公司 | For carrying out the optimization zoom factor of bandspreading in audio signal decoder |
US10096322B2 (en) | 2013-06-21 | 2018-10-09 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Audio decoder having a bandwidth extension module with an energy adjusting module |
US10354663B2 (en) | 2014-07-28 | 2019-07-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for generating an enhanced signal using independent noise-filling |
Families Citing this family (320)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7987095B2 (en) * | 2002-09-27 | 2011-07-26 | Broadcom Corporation | Method and system for dual mode subband acoustic echo canceller with integrated noise suppression |
US7619995B1 (en) * | 2003-07-18 | 2009-11-17 | Nortel Networks Limited | Transcoders and mixers for voice-over-IP conferencing |
JP4679049B2 (en) | 2003-09-30 | 2011-04-27 | パナソニック株式会社 | Scalable decoding device |
US7668712B2 (en) | 2004-03-31 | 2010-02-23 | Microsoft Corporation | Audio encoding and decoding with intra frames and adaptive forward error correction |
WO2005111568A1 (en) * | 2004-05-14 | 2005-11-24 | Matsushita Electric Industrial Co., Ltd. | Encoding device, decoding device, and method thereof |
US8725501B2 (en) * | 2004-07-20 | 2014-05-13 | Panasonic Corporation | Audio decoding device and compensation frame generation method |
ATE488838T1 (en) * | 2004-08-30 | 2010-12-15 | Qualcomm Inc | METHOD AND APPARATUS FOR AN ADAPTIVE DEJITTER BUFFER |
US8085678B2 (en) * | 2004-10-13 | 2011-12-27 | Qualcomm Incorporated | Media (voice) playback (de-jitter) buffer adjustments based on air interface |
US8155965B2 (en) * | 2005-03-11 | 2012-04-10 | Qualcomm Incorporated | Time warping frames inside the vocoder by modifying the residual |
US8355907B2 (en) * | 2005-03-11 | 2013-01-15 | Qualcomm Incorporated | Method and apparatus for phase matching frames in vocoders |
EP1872364B1 (en) * | 2005-03-30 | 2010-11-24 | Nokia Corporation | Source coding and/or decoding |
BRPI0607646B1 (en) * | 2005-04-01 | 2021-05-25 | Qualcomm Incorporated | METHOD AND EQUIPMENT FOR SPEECH BAND DIVISION ENCODING |
PL1875463T3 (en) * | 2005-04-22 | 2019-03-29 | Qualcomm Incorporated | Systems, methods, and apparatus for gain factor smoothing |
WO2006114368A1 (en) * | 2005-04-28 | 2006-11-02 | Siemens Aktiengesellschaft | Noise suppression process and device |
US7177804B2 (en) * | 2005-05-31 | 2007-02-13 | Microsoft Corporation | Sub-band voice codec with multi-stage codebooks and redundant coding |
US7707034B2 (en) * | 2005-05-31 | 2010-04-27 | Microsoft Corporation | Audio codec post-filter |
US7831421B2 (en) * | 2005-05-31 | 2010-11-09 | Microsoft Corporation | Robust decoder |
DE102005032724B4 (en) * | 2005-07-13 | 2009-10-08 | Siemens Ag | Method and device for artificially expanding the bandwidth of speech signals |
ATE443318T1 (en) * | 2005-07-14 | 2009-10-15 | Koninkl Philips Electronics Nv | AUDIO SIGNAL SYNTHESIS |
WO2007013973A2 (en) * | 2005-07-20 | 2007-02-01 | Shattil, Steve | Systems and method for high data rate ultra wideband communication |
KR101171098B1 (en) * | 2005-07-22 | 2012-08-20 | 삼성전자주식회사 | Scalable speech coding/decoding methods and apparatus using mixed structure |
US7734462B2 (en) * | 2005-09-02 | 2010-06-08 | Nortel Networks Limited | Method and apparatus for extending the bandwidth of a speech signal |
US8326614B2 (en) * | 2005-09-02 | 2012-12-04 | Qnx Software Systems Limited | Speech enhancement system |
CN101273404B (en) * | 2005-09-30 | 2012-07-04 | 松下电器产业株式会社 | Audio encoding device and audio encoding method |
WO2007043643A1 (en) * | 2005-10-14 | 2007-04-19 | Matsushita Electric Industrial Co., Ltd. | Audio encoding device, audio decoding device, audio encoding method, and audio decoding method |
KR20080047443A (en) * | 2005-10-14 | 2008-05-28 | 마츠시타 덴끼 산교 가부시키가이샤 | Transform coder and transform coding method |
JP4876574B2 (en) * | 2005-12-26 | 2012-02-15 | ソニー株式会社 | Signal encoding apparatus and method, signal decoding apparatus and method, program, and recording medium |
EP1852848A1 (en) * | 2006-05-05 | 2007-11-07 | Deutsche Thomson-Brandt GmbH | Method and apparatus for lossless encoding of a source signal using a lossy encoded data stream and a lossless extension data stream |
US8949120B1 (en) | 2006-05-25 | 2015-02-03 | Audience, Inc. | Adaptive noise cancelation |
US8725499B2 (en) * | 2006-07-31 | 2014-05-13 | Qualcomm Incorporated | Systems, methods, and apparatus for signal change detection |
US8260609B2 (en) | 2006-07-31 | 2012-09-04 | Qualcomm Incorporated | Systems, methods, and apparatus for wideband encoding and decoding of inactive frames |
US7987089B2 (en) * | 2006-07-31 | 2011-07-26 | Qualcomm Incorporated | Systems and methods for modifying a zero pad region of a windowed frame of an audio signal |
US8532984B2 (en) | 2006-07-31 | 2013-09-10 | Qualcomm Incorporated | Systems, methods, and apparatus for wideband encoding and decoding of active frames |
US8135047B2 (en) | 2006-07-31 | 2012-03-13 | Qualcomm Incorporated | Systems and methods for including an identifier with a packet associated with a speech signal |
DE602007012116D1 (en) | 2006-08-15 | 2011-03-03 | Dolby Lab Licensing Corp | ARBITRARY FORMATION OF A TEMPORARY NOISE CURVE WITHOUT SIDE INFORMATION |
KR101040160B1 (en) * | 2006-08-15 | 2011-06-09 | 브로드콤 코포레이션 | Constrained and controlled decoding after packet loss |
US8239190B2 (en) * | 2006-08-22 | 2012-08-07 | Qualcomm Incorporated | Time-warping frames of wideband vocoder |
US8046218B2 (en) * | 2006-09-19 | 2011-10-25 | The Board Of Trustees Of The University Of Illinois | Speech and method for identifying perceptual features |
JP4972742B2 (en) * | 2006-10-17 | 2012-07-11 | 国立大学法人九州工業大学 | High-frequency signal interpolation method and high-frequency signal interpolation device |
USRE50132E1 (en) | 2006-10-25 | 2024-09-17 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples |
USRE50158E1 (en) | 2006-10-25 | 2024-10-01 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for generating audio subband values and apparatus and method for generating time-domain audio samples |
KR101375582B1 (en) * | 2006-11-17 | 2014-03-20 | 삼성전자주식회사 | Method and apparatus for bandwidth extension encoding and decoding |
US8639500B2 (en) * | 2006-11-17 | 2014-01-28 | Samsung Electronics Co., Ltd. | Method, medium, and apparatus with bandwidth extension encoding and/or decoding |
KR101565919B1 (en) * | 2006-11-17 | 2015-11-05 | 삼성전자주식회사 | Method and apparatus for encoding and decoding high frequency signal |
US8005671B2 (en) * | 2006-12-04 | 2011-08-23 | Qualcomm Incorporated | Systems and methods for dynamic normalization to reduce loss in precision for low-level signals |
GB2444757B (en) * | 2006-12-13 | 2009-04-22 | Motorola Inc | Code excited linear prediction speech coding |
US20080147389A1 (en) * | 2006-12-15 | 2008-06-19 | Motorola, Inc. | Method and Apparatus for Robust Speech Activity Detection |
FR2911031B1 (en) * | 2006-12-28 | 2009-04-10 | Actimagine Soc Par Actions Sim | AUDIO CODING METHOD AND DEVICE |
FR2911020B1 (en) * | 2006-12-28 | 2009-05-01 | Actimagine Soc Par Actions Sim | AUDIO CODING METHOD AND DEVICE |
KR101379263B1 (en) * | 2007-01-12 | 2014-03-28 | 삼성전자주식회사 | Method and apparatus for decoding bandwidth extension |
US7873064B1 (en) | 2007-02-12 | 2011-01-18 | Marvell International Ltd. | Adaptive jitter buffer-packet loss concealment |
US8032359B2 (en) * | 2007-02-14 | 2011-10-04 | Mindspeed Technologies, Inc. | Embedded silence and background noise compression |
GB0704622D0 (en) * | 2007-03-09 | 2007-04-18 | Skype Ltd | Speech coding system and method |
KR101411900B1 (en) * | 2007-05-08 | 2014-06-26 | 삼성전자주식회사 | Method and apparatus for encoding and decoding audio signal |
US9653088B2 (en) * | 2007-06-13 | 2017-05-16 | Qualcomm Incorporated | Systems, methods, and apparatus for signal encoding using pitch-regularizing and non-pitch-regularizing coding |
PT2186089T (en) * | 2007-08-27 | 2019-01-10 | Ericsson Telefon Ab L M | Method and device for perceptual spectral decoding of an audio signal including filling of spectral holes |
FR2920545B1 (en) * | 2007-09-03 | 2011-06-10 | Univ Sud Toulon Var | METHOD FOR THE MULTIPLE CHARACTEROGRAPHY OF CETACEANS BY PASSIVE ACOUSTICS |
EP2207166B1 (en) * | 2007-11-02 | 2013-06-19 | Huawei Technologies Co., Ltd. | An audio decoding method and device |
US20100250260A1 (en) * | 2007-11-06 | 2010-09-30 | Lasse Laaksonen | Encoder |
WO2009059633A1 (en) * | 2007-11-06 | 2009-05-14 | Nokia Corporation | An encoder |
CN101896968A (en) * | 2007-11-06 | 2010-11-24 | 诺基亚公司 | Audio coding apparatus and method thereof |
KR101444099B1 (en) * | 2007-11-13 | 2014-09-26 | 삼성전자주식회사 | Method and apparatus for detecting voice activity |
WO2009066959A1 (en) * | 2007-11-21 | 2009-05-28 | Lg Electronics Inc. | A method and an apparatus for processing a signal |
US8050934B2 (en) * | 2007-11-29 | 2011-11-01 | Texas Instruments Incorporated | Local pitch control based on seamless time scale modification and synchronized sampling rate conversion |
US8688441B2 (en) * | 2007-11-29 | 2014-04-01 | Motorola Mobility Llc | Method and apparatus to facilitate provision and use of an energy value to determine a spectral envelope shape for out-of-signal bandwidth content |
TWI356399B (en) * | 2007-12-14 | 2012-01-11 | Ind Tech Res Inst | Speech recognition system and method with cepstral |
KR101439205B1 (en) * | 2007-12-21 | 2014-09-11 | 삼성전자주식회사 | Method and apparatus for audio matrix encoding/decoding |
WO2009084221A1 (en) * | 2007-12-27 | 2009-07-09 | Panasonic Corporation | Encoding device, decoding device, and method thereof |
KR101413967B1 (en) * | 2008-01-29 | 2014-07-01 | 삼성전자주식회사 | Encoding method and decoding method of audio signal, and recording medium thereof, encoding apparatus and decoding apparatus of audio signal |
KR101413968B1 (en) * | 2008-01-29 | 2014-07-01 | 삼성전자주식회사 | Method and apparatus for encoding audio signal, and method and apparatus for decoding audio signal |
US8433582B2 (en) * | 2008-02-01 | 2013-04-30 | Motorola Mobility Llc | Method and apparatus for estimating high-band energy in a bandwidth extension system |
US20090201983A1 (en) * | 2008-02-07 | 2009-08-13 | Motorola, Inc. | Method and apparatus for estimating high-band energy in a bandwidth extension system |
US8326641B2 (en) * | 2008-03-20 | 2012-12-04 | Samsung Electronics Co., Ltd. | Apparatus and method for encoding and decoding using bandwidth extension in portable terminal |
US8983832B2 (en) * | 2008-07-03 | 2015-03-17 | The Board Of Trustees Of The University Of Illinois | Systems and methods for identifying speech sound features |
CA2729665C (en) * | 2008-07-10 | 2016-11-22 | Voiceage Corporation | Variable bit rate lpc filter quantizing and inverse quantizing device and method |
MY154452A (en) * | 2008-07-11 | 2015-06-15 | Fraunhofer Ges Forschung | An apparatus and a method for decoding an encoded audio signal |
EP2176862B1 (en) | 2008-07-11 | 2011-08-31 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for calculating bandwidth extension data using a spectral tilt controlling framing |
CN103000178B (en) * | 2008-07-11 | 2015-04-08 | 弗劳恩霍夫应用研究促进协会 | Time warp activation signal provider and audio signal encoder employing the time warp activation signal |
KR101614160B1 (en) | 2008-07-16 | 2016-04-20 | 한국전자통신연구원 | Apparatus for encoding and decoding multi-object audio supporting post downmix signal |
US20110178799A1 (en) * | 2008-07-25 | 2011-07-21 | The Board Of Trustees Of The University Of Illinois | Methods and systems for identifying speech sounds using multi-dimensional analysis |
US8463412B2 (en) * | 2008-08-21 | 2013-06-11 | Motorola Mobility Llc | Method and apparatus to facilitate determining signal bounding frequencies |
US8532998B2 (en) | 2008-09-06 | 2013-09-10 | Huawei Technologies Co., Ltd. | Selective bandwidth extension for encoding/decoding audio/speech signal |
US8352279B2 (en) * | 2008-09-06 | 2013-01-08 | Huawei Technologies Co., Ltd. | Efficient temporal envelope coding approach by prediction between low band signal and high band signal |
WO2010028292A1 (en) * | 2008-09-06 | 2010-03-11 | Huawei Technologies Co., Ltd. | Adaptive frequency prediction |
US8515747B2 (en) * | 2008-09-06 | 2013-08-20 | Huawei Technologies Co., Ltd. | Spectrum harmonic/noise sharpness control |
US8407046B2 (en) * | 2008-09-06 | 2013-03-26 | Huawei Technologies Co., Ltd. | Noise-feedback for spectral envelope quantization |
KR101178801B1 (en) * | 2008-12-09 | 2012-08-31 | 한국전자통신연구원 | Apparatus and method for speech recognition by using source separation and source identification |
US20100070550A1 (en) * | 2008-09-12 | 2010-03-18 | Cardinal Health 209 Inc. | Method and apparatus of a sensor amplifier configured for use in medical applications |
WO2010031003A1 (en) * | 2008-09-15 | 2010-03-18 | Huawei Technologies Co., Ltd. | Adding second enhancement layer to celp based core layer |
US8577673B2 (en) * | 2008-09-15 | 2013-11-05 | Huawei Technologies Co., Ltd. | CELP post-processing for music signals |
WO2010036061A2 (en) * | 2008-09-25 | 2010-04-01 | Lg Electronics Inc. | An apparatus for processing an audio signal and method thereof |
US8364471B2 (en) * | 2008-11-04 | 2013-01-29 | Lg Electronics Inc. | Apparatus and method for processing a time domain audio signal with a noise filling flag |
DE102008058496B4 (en) * | 2008-11-21 | 2010-09-09 | Siemens Medical Instruments Pte. Ltd. | Filter bank system with specific stop attenuation components for a hearing device |
GB2466201B (en) * | 2008-12-10 | 2012-07-11 | Skype Ltd | Regeneration of wideband speech |
GB0822537D0 (en) | 2008-12-10 | 2009-01-14 | Skype Ltd | Regeneration of wideband speech |
US9947340B2 (en) | 2008-12-10 | 2018-04-17 | Skype | Regeneration of wideband speech |
EP2360687A4 (en) * | 2008-12-19 | 2012-07-11 | Fujitsu Ltd | Voice band extension device and voice band extension method |
GB2466671B (en) | 2009-01-06 | 2013-03-27 | Skype | Speech encoding |
GB2466673B (en) | 2009-01-06 | 2012-11-07 | Skype | Quantization |
GB2466672B (en) * | 2009-01-06 | 2013-03-13 | Skype | Speech coding |
GB2466674B (en) * | 2009-01-06 | 2013-11-13 | Skype | Speech coding |
GB2466675B (en) | 2009-01-06 | 2013-03-06 | Skype | Speech coding |
GB2466669B (en) * | 2009-01-06 | 2013-03-06 | Skype | Speech coding |
GB2466670B (en) * | 2009-01-06 | 2012-11-14 | Skype | Speech encoding |
EP2380172B1 (en) | 2009-01-16 | 2013-07-24 | Dolby International AB | Cross product enhanced harmonic transposition |
US8463599B2 (en) * | 2009-02-04 | 2013-06-11 | Motorola Mobility Llc | Bandwidth extension method and apparatus for a modified discrete cosine transform audio coder |
JP5459688B2 (en) * | 2009-03-31 | 2014-04-02 | ▲ホア▼▲ウェイ▼技術有限公司 | Method, apparatus, and speech decoding system for adjusting spectrum of decoded signal |
JP4921611B2 (en) * | 2009-04-03 | 2012-04-25 | 株式会社エヌ・ティ・ティ・ドコモ | Speech decoding apparatus, speech decoding method, and speech decoding program |
JP4932917B2 (en) | 2009-04-03 | 2012-05-16 | 株式会社エヌ・ティ・ティ・ドコモ | Speech decoding apparatus, speech decoding method, and speech decoding program |
CN101609680B (en) * | 2009-06-01 | 2012-01-04 | 华为技术有限公司 | Compression coding and decoding method, coder, decoder and coding device |
US8000485B2 (en) * | 2009-06-01 | 2011-08-16 | Dts, Inc. | Virtual audio processing for loudspeaker or headphone playback |
KR20110001130A (en) * | 2009-06-29 | 2011-01-06 | 삼성전자주식회사 | Apparatus and method for encoding and decoding audio signals using weighted linear prediction transform |
WO2011029484A1 (en) * | 2009-09-14 | 2011-03-17 | Nokia Corporation | Signal enhancement processing |
WO2011037587A1 (en) * | 2009-09-28 | 2011-03-31 | Nuance Communications, Inc. | Downsampling schemes in a hierarchical neural network structure for phoneme recognition |
US8452606B2 (en) * | 2009-09-29 | 2013-05-28 | Skype | Speech encoding using multiple bit rates |
JP5754899B2 (en) * | 2009-10-07 | 2015-07-29 | ソニー株式会社 | Decoding apparatus and method, and program |
WO2011048099A1 (en) | 2009-10-20 | 2011-04-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio encoder, audio decoder, method for encoding an audio information, method for decoding an audio information and computer program using a region-dependent arithmetic coding mapping rule |
WO2011048792A1 (en) * | 2009-10-21 | 2011-04-28 | パナソニック株式会社 | Sound signal processing apparatus, sound encoding apparatus and sound decoding apparatus |
ES2936307T3 (en) * | 2009-10-21 | 2023-03-16 | Dolby Int Ab | Upsampling in a combined re-emitter filter bank |
US8484020B2 (en) | 2009-10-23 | 2013-07-09 | Qualcomm Incorporated | Determining an upperband signal from a narrowband signal |
EP2502231B1 (en) * | 2009-11-19 | 2014-06-04 | Telefonaktiebolaget L M Ericsson (PUBL) | Bandwidth extension of a low band audio signal |
CN102714041B (en) * | 2009-11-19 | 2014-04-16 | 瑞典爱立信有限公司 | Improved excitation signal bandwidth extension |
US8489393B2 (en) * | 2009-11-23 | 2013-07-16 | Cambridge Silicon Radio Limited | Speech intelligibility |
US9838784B2 (en) | 2009-12-02 | 2017-12-05 | Knowles Electronics, Llc | Directional audio capture |
RU2464651C2 (en) * | 2009-12-22 | 2012-10-20 | Общество с ограниченной ответственностью "Спирит Корп" | Method and apparatus for multilevel scalable information loss tolerant speech encoding for packet switched networks |
US20110167445A1 (en) * | 2010-01-06 | 2011-07-07 | Reams Robert W | Audiovisual content channelization system |
US8326607B2 (en) * | 2010-01-11 | 2012-12-04 | Sony Ericsson Mobile Communications Ab | Method and arrangement for enhancing speech quality |
BR122021008583B1 (en) * | 2010-01-12 | 2022-03-22 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Audio encoder, audio decoder, method of encoding and audio information, and method of decoding audio information using a hash table that describes both significant state values and range boundaries |
US8699727B2 (en) | 2010-01-15 | 2014-04-15 | Apple Inc. | Visually-assisted mixing of audio using a spectral analyzer |
US9525569B2 (en) * | 2010-03-03 | 2016-12-20 | Skype | Enhanced circuit-switched calls |
KR101445296B1 (en) * | 2010-03-10 | 2014-09-29 | 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. | Audio signal decoder, audio signal encoder, methods and computer program using a sampling rate dependent time-warp contour encoding |
US8700391B1 (en) * | 2010-04-01 | 2014-04-15 | Audience, Inc. | Low complexity bandwidth expansion of speech |
CN102870156B (en) * | 2010-04-12 | 2015-07-22 | 飞思卡尔半导体公司 | Audio communication device, method for outputting an audio signal, and communication system |
JP5652658B2 (en) | 2010-04-13 | 2015-01-14 | ソニー株式会社 | Signal processing apparatus and method, encoding apparatus and method, decoding apparatus and method, and program |
CN102971788B (en) * | 2010-04-13 | 2017-05-31 | 弗劳恩霍夫应用研究促进协会 | The method and encoder and decoder of the sample Precise Representation of audio signal |
JP5609737B2 (en) | 2010-04-13 | 2014-10-22 | ソニー株式会社 | Signal processing apparatus and method, encoding apparatus and method, decoding apparatus and method, and program |
JP5850216B2 (en) | 2010-04-13 | 2016-02-03 | ソニー株式会社 | Signal processing apparatus and method, encoding apparatus and method, decoding apparatus and method, and program |
US9443534B2 (en) * | 2010-04-14 | 2016-09-13 | Huawei Technologies Co., Ltd. | Bandwidth extension system and approach |
BR112012025347B1 (en) * | 2010-04-14 | 2020-06-09 | Voiceage Corp | combined innovation codebook coding device, celp coder, combined innovation codebook, celp decoder, combined innovation codebook coding method and combined innovation codebook coding method |
EP2559032B1 (en) * | 2010-04-16 | 2019-01-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus, method and computer program for generating a wideband signal using guided bandwidth extension and blind bandwidth extension |
US8538035B2 (en) | 2010-04-29 | 2013-09-17 | Audience, Inc. | Multi-microphone robust noise suppression |
US8473287B2 (en) | 2010-04-19 | 2013-06-25 | Audience, Inc. | Method for jointly optimizing noise reduction and voice quality in a mono or multi-microphone system |
US8798290B1 (en) | 2010-04-21 | 2014-08-05 | Audience, Inc. | Systems and methods for adaptive signal equalization |
US8781137B1 (en) | 2010-04-27 | 2014-07-15 | Audience, Inc. | Wind noise detection and suppression |
US9378754B1 (en) | 2010-04-28 | 2016-06-28 | Knowles Electronics, Llc | Adaptive spatial classifier for multi-microphone systems |
US9558755B1 (en) | 2010-05-20 | 2017-01-31 | Knowles Electronics, Llc | Noise suppression assisted automatic speech recognition |
KR101660843B1 (en) | 2010-05-27 | 2016-09-29 | 삼성전자주식회사 | Apparatus and method for determining weighting function for lpc coefficients quantization |
US8600737B2 (en) * | 2010-06-01 | 2013-12-03 | Qualcomm Incorporated | Systems, methods, apparatus, and computer program products for wideband speech coding |
ES2372202B2 (en) * | 2010-06-29 | 2012-08-08 | Universidad De Málaga | LOW CONSUMPTION SOUND RECOGNITION SYSTEM. |
CA3160488C (en) | 2010-07-02 | 2023-09-05 | Dolby International Ab | Audio decoding with selective post filtering |
US8447596B2 (en) | 2010-07-12 | 2013-05-21 | Audience, Inc. | Monaural noise suppression based on computational auditory scene analysis |
JP5589631B2 (en) * | 2010-07-15 | 2014-09-17 | 富士通株式会社 | Voice processing apparatus, voice processing method, and telephone apparatus |
EP2593937B1 (en) * | 2010-07-16 | 2015-11-11 | Telefonaktiebolaget LM Ericsson (publ) | Audio encoder and decoder and methods for encoding and decoding an audio signal |
JP5777041B2 (en) * | 2010-07-23 | 2015-09-09 | 沖電気工業株式会社 | Band expansion device and program, and voice communication device |
JP6075743B2 (en) | 2010-08-03 | 2017-02-08 | ソニー株式会社 | Signal processing apparatus and method, and program |
WO2012031125A2 (en) | 2010-09-01 | 2012-03-08 | The General Hospital Corporation | Reversal of general anesthesia by administration of methylphenidate, amphetamine, modafinil, amantadine, and/or caffeine |
KR102564590B1 (en) * | 2010-09-16 | 2023-08-09 | 돌비 인터네셔널 에이비 | Cross product enhanced subband block based harmonic transposition |
US8924200B2 (en) | 2010-10-15 | 2014-12-30 | Motorola Mobility Llc | Audio signal bandwidth extension in CELP-based speech coder |
JP5707842B2 (en) | 2010-10-15 | 2015-04-30 | ソニー株式会社 | Encoding apparatus and method, decoding apparatus and method, and program |
WO2012053149A1 (en) * | 2010-10-22 | 2012-04-26 | パナソニック株式会社 | Speech analyzing device, quantization device, inverse quantization device, and method for same |
JP5743137B2 (en) * | 2011-01-14 | 2015-07-01 | ソニー株式会社 | Signal processing apparatus and method, and program |
US9767823B2 (en) | 2011-02-07 | 2017-09-19 | Qualcomm Incorporated | Devices for encoding and detecting a watermarked signal |
US9767822B2 (en) | 2011-02-07 | 2017-09-19 | Qualcomm Incorporated | Devices for encoding and decoding a watermarked signal |
AU2012217216B2 (en) | 2011-02-14 | 2015-09-17 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for coding a portion of an audio signal using a transient detection and a quality result |
PL3471092T3 (en) | 2011-02-14 | 2020-12-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Decoding of pulse positions of tracks of an audio signal |
MY159444A (en) | 2011-02-14 | 2017-01-13 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E V | Encoding and decoding of pulse positions of tracks of an audio signal |
CN103534754B (en) | 2011-02-14 | 2015-09-30 | 弗兰霍菲尔运输应用研究公司 | The audio codec utilizing noise to synthesize during the inertia stage |
AU2012217153B2 (en) | 2011-02-14 | 2015-07-16 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for encoding and decoding an audio signal using an aligned look-ahead portion |
CA2827000C (en) | 2011-02-14 | 2016-04-05 | Jeremie Lecomte | Apparatus and method for error concealment in low-delay unified speech and audio coding (usac) |
AR085895A1 (en) * | 2011-02-14 | 2013-11-06 | Fraunhofer Ges Forschung | NOISE GENERATION IN AUDIO CODECS |
CN102959620B (en) | 2011-02-14 | 2015-05-13 | 弗兰霍菲尔运输应用研究公司 | Information signal representation using lapped transform |
SG192746A1 (en) | 2011-02-14 | 2013-09-30 | Fraunhofer Ges Forschung | Apparatus and method for processing a decoded audio signal in a spectral domain |
CA2823262C (en) | 2011-02-16 | 2018-03-06 | Dolby Laboratories Licensing Corporation | Methods and systems for generating filter coefficients and configuring filters |
DK3998607T3 (en) * | 2011-02-18 | 2024-04-15 | Ntt Docomo Inc | VOICE CODES |
WO2012122397A1 (en) | 2011-03-09 | 2012-09-13 | Srs Labs, Inc. | System for dynamically creating and rendering audio objects |
US10642934B2 (en) | 2011-03-31 | 2020-05-05 | Microsoft Technology Licensing, Llc | Augmented conversational understanding architecture |
US9244984B2 (en) | 2011-03-31 | 2016-01-26 | Microsoft Technology Licensing, Llc | Location based conversational understanding |
US9760566B2 (en) | 2011-03-31 | 2017-09-12 | Microsoft Technology Licensing, Llc | Augmented conversational understanding agent to identify conversation context between two humans and taking an agent action thereof |
JP5704397B2 (en) * | 2011-03-31 | 2015-04-22 | ソニー株式会社 | Encoding apparatus and method, and program |
US9842168B2 (en) | 2011-03-31 | 2017-12-12 | Microsoft Technology Licensing, Llc | Task driven user intents |
US9298287B2 (en) | 2011-03-31 | 2016-03-29 | Microsoft Technology Licensing, Llc | Combined activation for natural user interface systems |
US9064006B2 (en) | 2012-08-23 | 2015-06-23 | Microsoft Technology Licensing, Llc | Translating natural language utterances to keyword search queries |
CN102811034A (en) | 2011-05-31 | 2012-12-05 | 财团法人工业技术研究院 | Signal processing device and signal processing method |
JP5986565B2 (en) * | 2011-06-09 | 2016-09-06 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | Speech coding apparatus, speech decoding apparatus, speech coding method, and speech decoding method |
US9070361B2 (en) * | 2011-06-10 | 2015-06-30 | Google Technology Holdings LLC | Method and apparatus for encoding a wideband speech signal utilizing downmixing of a highband component |
EP2728577A4 (en) * | 2011-06-30 | 2016-07-27 | Samsung Electronics Co Ltd | Apparatus and method for generating bandwidth extension signal |
US9059786B2 (en) * | 2011-07-07 | 2015-06-16 | Vecima Networks Inc. | Ingress suppression for communication systems |
JP5942358B2 (en) * | 2011-08-24 | 2016-06-29 | ソニー株式会社 | Encoding apparatus and method, decoding apparatus and method, and program |
RU2486636C1 (en) * | 2011-11-14 | 2013-06-27 | Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации | Method of generating high-frequency signals and apparatus for realising said method |
RU2486638C1 (en) * | 2011-11-15 | 2013-06-27 | Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации | Method of generating high-frequency signals and apparatus for realising said method |
RU2486637C1 (en) * | 2011-11-15 | 2013-06-27 | Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации | Method for generation and frequency-modulation of high-frequency signals and apparatus for realising said method |
RU2496222C2 (en) * | 2011-11-17 | 2013-10-20 | Федеральное государственное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации | Method for generation and frequency-modulation of high-frequency signals and apparatus for realising said method |
RU2486639C1 (en) * | 2011-11-21 | 2013-06-27 | Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации | Method for generation and frequency-modulation of high-frequency signals and apparatus for realising said method |
RU2496192C2 (en) * | 2011-11-21 | 2013-10-20 | Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации | Method for generation and frequency-modulation of high-frequency signals and apparatus for realising said method |
RU2490727C2 (en) * | 2011-11-28 | 2013-08-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уральский государственный университет путей сообщения" (УрГУПС) | Method of transmitting speech signals (versions) |
RU2487443C1 (en) * | 2011-11-29 | 2013-07-10 | Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации | Method of matching complex impedances and apparatus for realising said method |
JP5817499B2 (en) * | 2011-12-15 | 2015-11-18 | 富士通株式会社 | Decoding device, encoding device, encoding / decoding system, decoding method, encoding method, decoding program, and encoding program |
US9972325B2 (en) | 2012-02-17 | 2018-05-15 | Huawei Technologies Co., Ltd. | System and method for mixed codebook excitation for speech coding |
US9082398B2 (en) * | 2012-02-28 | 2015-07-14 | Huawei Technologies Co., Ltd. | System and method for post excitation enhancement for low bit rate speech coding |
US9437213B2 (en) * | 2012-03-05 | 2016-09-06 | Malaspina Labs (Barbados) Inc. | Voice signal enhancement |
CN108831501B (en) | 2012-03-21 | 2023-01-10 | 三星电子株式会社 | High frequency encoding/decoding method and apparatus for bandwidth extension |
TR201911121T4 (en) * | 2012-03-29 | 2019-08-21 | Ericsson Telefon Ab L M | Vector quantizer. |
US10448161B2 (en) | 2012-04-02 | 2019-10-15 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for gestural manipulation of a sound field |
JP5998603B2 (en) * | 2012-04-18 | 2016-09-28 | ソニー株式会社 | Sound detection device, sound detection method, sound feature amount detection device, sound feature amount detection method, sound interval detection device, sound interval detection method, and program |
KR101343768B1 (en) * | 2012-04-19 | 2014-01-16 | 충북대학교 산학협력단 | Method for speech and audio signal classification using Spectral flux pattern |
RU2504894C1 (en) * | 2012-05-17 | 2014-01-20 | Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации | Method of demodulating phase-modulated and frequency-modulated signals and apparatus for realising said method |
RU2504898C1 (en) * | 2012-05-17 | 2014-01-20 | Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации | Method of demodulating phase-modulated and frequency-modulated signals and apparatus for realising said method |
US20140006017A1 (en) * | 2012-06-29 | 2014-01-02 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for generating obfuscated speech signal |
EP3113184B1 (en) | 2012-08-31 | 2017-12-06 | Telefonaktiebolaget LM Ericsson (publ) | Method and device for voice activity detection |
US9460729B2 (en) | 2012-09-21 | 2016-10-04 | Dolby Laboratories Licensing Corporation | Layered approach to spatial audio coding |
WO2014062859A1 (en) * | 2012-10-16 | 2014-04-24 | Audiologicall, Ltd. | Audio signal manipulation for speech enhancement before sound reproduction |
KR101413969B1 (en) | 2012-12-20 | 2014-07-08 | 삼성전자주식회사 | Method and apparatus for decoding audio signal |
CN103928031B (en) * | 2013-01-15 | 2016-03-30 | 华为技术有限公司 | Coding method, coding/decoding method, encoding apparatus and decoding apparatus |
US9728200B2 (en) | 2013-01-29 | 2017-08-08 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for adaptive formant sharpening in linear prediction coding |
CN106847297B (en) | 2013-01-29 | 2020-07-07 | 华为技术有限公司 | Prediction method of high-frequency band signal, encoding/decoding device |
ES2768179T3 (en) * | 2013-01-29 | 2020-06-22 | Fraunhofer Ges Forschung | Audio encoder, audio decoder, method of providing encoded audio information, method of providing decoded audio information, software and encoded representation using signal adapted bandwidth extension |
MX347316B (en) | 2013-01-29 | 2017-04-21 | Fraunhofer Ges Forschung | Apparatus and method for synthesizing an audio signal, decoder, encoder, system and computer program. |
US20140213909A1 (en) * | 2013-01-31 | 2014-07-31 | Xerox Corporation | Control-based inversion for estimating a biological parameter vector for a biophysics model from diffused reflectance data |
US9711156B2 (en) | 2013-02-08 | 2017-07-18 | Qualcomm Incorporated | Systems and methods of performing filtering for gain determination |
US9741350B2 (en) | 2013-02-08 | 2017-08-22 | Qualcomm Incorporated | Systems and methods of performing gain control |
US9601125B2 (en) | 2013-02-08 | 2017-03-21 | Qualcomm Incorporated | Systems and methods of performing noise modulation and gain adjustment |
US9336789B2 (en) * | 2013-02-21 | 2016-05-10 | Qualcomm Incorporated | Systems and methods for determining an interpolation factor set for synthesizing a speech signal |
WO2014136629A1 (en) * | 2013-03-05 | 2014-09-12 | 日本電気株式会社 | Signal processing device, signal processing method, and signal processing program |
EP2784775B1 (en) * | 2013-03-27 | 2016-09-14 | Binauric SE | Speech signal encoding/decoding method and apparatus |
CN117253498A (en) | 2013-04-05 | 2023-12-19 | 杜比国际公司 | Audio signal decoding method, audio signal decoder, audio signal medium, and audio signal encoding method |
MX343673B (en) * | 2013-04-05 | 2016-11-16 | Dolby Int Ab | Audio encoder and decoder. |
EP2981955B1 (en) * | 2013-04-05 | 2023-06-07 | Dts Llc | Layered audio coding and transmission |
MX371425B (en) * | 2013-06-21 | 2020-01-29 | Fraunhofer Ges Forschung | Apparatus and method for improved concealment of the adaptive codebook in acelp-like concealment employing improved pitch lag estimation. |
FR3007563A1 (en) * | 2013-06-25 | 2014-12-26 | France Telecom | ENHANCED FREQUENCY BAND EXTENSION IN AUDIO FREQUENCY SIGNAL DECODER |
JP6660878B2 (en) | 2013-06-27 | 2020-03-11 | ザ ジェネラル ホスピタル コーポレイション | System for tracking dynamic structures in physiological data and method of operating the system |
US10383574B2 (en) | 2013-06-28 | 2019-08-20 | The General Hospital Corporation | Systems and methods to infer brain state during burst suppression |
CN104282308B (en) | 2013-07-04 | 2017-07-14 | 华为技术有限公司 | The vector quantization method and device of spectral envelope |
EP2830061A1 (en) | 2013-07-22 | 2015-01-28 | Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for encoding and decoding an encoded audio signal using temporal noise/patch shaping |
EP3503095A1 (en) | 2013-08-28 | 2019-06-26 | Dolby Laboratories Licensing Corp. | Hybrid waveform-coded and parametric-coded speech enhancement |
TWI557726B (en) * | 2013-08-29 | 2016-11-11 | 杜比國際公司 | System and method for determining a master scale factor band table for a highband signal of an audio signal |
US10602978B2 (en) | 2013-09-13 | 2020-03-31 | The General Hospital Corporation | Systems and methods for improved brain monitoring during general anesthesia and sedation |
US9875746B2 (en) | 2013-09-19 | 2018-01-23 | Sony Corporation | Encoding device and method, decoding device and method, and program |
CN104517610B (en) * | 2013-09-26 | 2018-03-06 | 华为技术有限公司 | The method and device of bandspreading |
CN105761723B (en) * | 2013-09-26 | 2019-01-15 | 华为技术有限公司 | A kind of high-frequency excitation signal prediction technique and device |
US9224402B2 (en) | 2013-09-30 | 2015-12-29 | International Business Machines Corporation | Wideband speech parameterization for high quality synthesis, transformation and quantization |
US9620134B2 (en) * | 2013-10-10 | 2017-04-11 | Qualcomm Incorporated | Gain shape estimation for improved tracking of high-band temporal characteristics |
US10083708B2 (en) * | 2013-10-11 | 2018-09-25 | Qualcomm Incorporated | Estimation of mixing factors to generate high-band excitation signal |
US9384746B2 (en) * | 2013-10-14 | 2016-07-05 | Qualcomm Incorporated | Systems and methods of energy-scaled signal processing |
KR102271852B1 (en) * | 2013-11-02 | 2021-07-01 | 삼성전자주식회사 | Method and apparatus for generating wideband signal and device employing the same |
EP2871641A1 (en) * | 2013-11-12 | 2015-05-13 | Dialog Semiconductor B.V. | Enhancement of narrowband audio signals using a single sideband AM modulation |
CN105765655A (en) | 2013-11-22 | 2016-07-13 | 高通股份有限公司 | Selective phase compensation in high band coding |
US10163447B2 (en) * | 2013-12-16 | 2018-12-25 | Qualcomm Incorporated | High-band signal modeling |
CN103714822B (en) * | 2013-12-27 | 2017-01-11 | 广州华多网络科技有限公司 | Sub-band coding and decoding method and device based on SILK coder decoder |
AU2014371411A1 (en) | 2013-12-27 | 2016-06-23 | Sony Corporation | Decoding device, method, and program |
FR3017484A1 (en) * | 2014-02-07 | 2015-08-14 | Orange | ENHANCED FREQUENCY BAND EXTENSION IN AUDIO FREQUENCY SIGNAL DECODER |
US9564141B2 (en) | 2014-02-13 | 2017-02-07 | Qualcomm Incorporated | Harmonic bandwidth extension of audio signals |
JP6281336B2 (en) * | 2014-03-12 | 2018-02-21 | 沖電気工業株式会社 | Speech decoding apparatus and program |
JP6035270B2 (en) * | 2014-03-24 | 2016-11-30 | 株式会社Nttドコモ | Speech decoding apparatus, speech encoding apparatus, speech decoding method, speech encoding method, speech decoding program, and speech encoding program |
CN111710342B (en) * | 2014-03-31 | 2024-04-16 | 弗朗霍弗应用研究促进协会 | Encoding device, decoding device, encoding method, decoding method, and program |
US9542955B2 (en) * | 2014-03-31 | 2017-01-10 | Qualcomm Incorporated | High-band signal coding using multiple sub-bands |
US9697843B2 (en) | 2014-04-30 | 2017-07-04 | Qualcomm Incorporated | High band excitation signal generation |
CN105336336B (en) * | 2014-06-12 | 2016-12-28 | 华为技术有限公司 | The temporal envelope processing method and processing device of a kind of audio signal, encoder |
CN105336338B (en) * | 2014-06-24 | 2017-04-12 | 华为技术有限公司 | Audio coding method and apparatus |
US9626983B2 (en) * | 2014-06-26 | 2017-04-18 | Qualcomm Incorporated | Temporal gain adjustment based on high-band signal characteristic |
US9984699B2 (en) * | 2014-06-26 | 2018-05-29 | Qualcomm Incorporated | High-band signal coding using mismatched frequency ranges |
CN106486129B (en) * | 2014-06-27 | 2019-10-25 | 华为技术有限公司 | A kind of audio coding method and device |
US9721584B2 (en) * | 2014-07-14 | 2017-08-01 | Intel IP Corporation | Wind noise reduction for audio reception |
EP2980795A1 (en) | 2014-07-28 | 2016-02-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio encoding and decoding using a frequency domain processor, a time domain processor and a cross processor for initialization of the time domain processor |
EP2980798A1 (en) * | 2014-07-28 | 2016-02-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Harmonicity-dependent controlling of a harmonic filter tool |
EP2980794A1 (en) | 2014-07-28 | 2016-02-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio encoder and decoder using a frequency domain processor and a time domain processor |
EP3182412B1 (en) | 2014-08-15 | 2023-06-07 | Samsung Electronics Co., Ltd. | Sound quality improving method and device, sound decoding method and device, and multimedia device employing same |
CN104217730B (en) * | 2014-08-18 | 2017-07-21 | 大连理工大学 | A kind of artificial speech bandwidth expanding method and device based on K SVD |
US9978388B2 (en) | 2014-09-12 | 2018-05-22 | Knowles Electronics, Llc | Systems and methods for restoration of speech components |
TWI550945B (en) * | 2014-12-22 | 2016-09-21 | 國立彰化師範大學 | Method of designing composite filters with sharp transition bands and cascaded composite filters |
US9595269B2 (en) * | 2015-01-19 | 2017-03-14 | Qualcomm Incorporated | Scaling for gain shape circuitry |
WO2016123560A1 (en) | 2015-01-30 | 2016-08-04 | Knowles Electronics, Llc | Contextual switching of microphones |
CA2976864C (en) | 2015-02-26 | 2020-07-14 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for processing an audio signal to obtain a processed audio signal using a target time-domain envelope |
WO2016142002A1 (en) | 2015-03-09 | 2016-09-15 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Audio encoder, audio decoder, method for encoding an audio signal and method for decoding an encoded audio signal |
US10847170B2 (en) | 2015-06-18 | 2020-11-24 | Qualcomm Incorporated | Device and method for generating a high-band signal from non-linearly processed sub-ranges |
US9837089B2 (en) * | 2015-06-18 | 2017-12-05 | Qualcomm Incorporated | High-band signal generation |
US9407989B1 (en) | 2015-06-30 | 2016-08-02 | Arthur Woodrow | Closed audio circuit |
US9830921B2 (en) * | 2015-08-17 | 2017-11-28 | Qualcomm Incorporated | High-band target signal control |
CN107924683B (en) * | 2015-10-15 | 2021-03-30 | 华为技术有限公司 | Sinusoidal coding and decoding method and device |
NO339664B1 (en) | 2015-10-15 | 2017-01-23 | St Tech As | A system for isolating an object |
BR112017024480A2 (en) | 2016-02-17 | 2018-07-24 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E. V. | postprocessor, preprocessor, audio encoder, audio decoder, and related methods for enhancing transient processing |
FR3049084B1 (en) | 2016-03-15 | 2022-11-11 | Fraunhofer Ges Forschung | CODING DEVICE FOR PROCESSING AN INPUT SIGNAL AND DECODING DEVICE FOR PROCESSING A CODED SIGNAL |
MX2018012490A (en) * | 2016-04-12 | 2019-02-21 | Fraunhofer Ges Forschung | Audio encoder for encoding an audio signal, method for encoding an audio signal and computer program under consideration of a detected peak spectral region in an upper frequency band. |
US10770088B2 (en) * | 2016-05-10 | 2020-09-08 | Immersion Networks, Inc. | Adaptive audio decoder system, method and article |
US10756755B2 (en) * | 2016-05-10 | 2020-08-25 | Immersion Networks, Inc. | Adaptive audio codec system, method and article |
CN109416913B (en) * | 2016-05-10 | 2024-03-15 | 易默森服务有限责任公司 | Adaptive audio coding and decoding system, method, device and medium |
US10699725B2 (en) * | 2016-05-10 | 2020-06-30 | Immersion Networks, Inc. | Adaptive audio encoder system, method and article |
US20170330575A1 (en) * | 2016-05-10 | 2017-11-16 | Immersion Services LLC | Adaptive audio codec system, method and article |
US10264116B2 (en) * | 2016-11-02 | 2019-04-16 | Nokia Technologies Oy | Virtual duplex operation |
KR102507383B1 (en) * | 2016-11-08 | 2023-03-08 | 한국전자통신연구원 | Method and system for stereo matching by using rectangular window |
US10786168B2 (en) | 2016-11-29 | 2020-09-29 | The General Hospital Corporation | Systems and methods for analyzing electrophysiological data from patients undergoing medical treatments |
WO2018109143A1 (en) | 2016-12-16 | 2018-06-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods, encoder and decoder for handling envelope representation coefficients |
PL3684001T3 (en) * | 2017-01-06 | 2022-02-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and apparatuses for signaling and determining reference signal offsets |
KR102687184B1 (en) * | 2017-02-10 | 2024-07-19 | 삼성전자주식회사 | WFST decoding system, speech recognition system including the same and Method for stroing WFST data |
US10553222B2 (en) | 2017-03-09 | 2020-02-04 | Qualcomm Incorporated | Inter-channel bandwidth extension spectral mapping and adjustment |
US10304468B2 (en) * | 2017-03-20 | 2019-05-28 | Qualcomm Incorporated | Target sample generation |
TWI807562B (en) * | 2017-03-23 | 2023-07-01 | 瑞典商都比國際公司 | Backward-compatible integration of harmonic transposer for high frequency reconstruction of audio signals |
US10825467B2 (en) * | 2017-04-21 | 2020-11-03 | Qualcomm Incorporated | Non-harmonic speech detection and bandwidth extension in a multi-source environment |
US20190051286A1 (en) * | 2017-08-14 | 2019-02-14 | Microsoft Technology Licensing, Llc | Normalization of high band signals in network telephony communications |
US11876659B2 (en) | 2017-10-27 | 2024-01-16 | Terawave, Llc | Communication system using shape-shifted sinusoidal waveforms |
US10666481B2 (en) * | 2017-10-27 | 2020-05-26 | Terawave, Llc | High spectral efficiency data communications system using energy-balanced modulation |
CN109729553B (en) * | 2017-10-30 | 2021-12-28 | 成都鼎桥通信技术有限公司 | Voice service processing method and device of LTE (Long term evolution) trunking communication system |
EP3483884A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Signal filtering |
EP3483886A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Selecting pitch lag |
WO2019091576A1 (en) | 2017-11-10 | 2019-05-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio encoders, audio decoders, methods and computer programs adapting an encoding and decoding of least significant bits |
WO2019091573A1 (en) | 2017-11-10 | 2019-05-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for encoding and decoding an audio signal using downsampling or interpolation of scale parameters |
EP3483882A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Controlling bandwidth in encoders and/or decoders |
EP3483880A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Temporal noise shaping |
EP3483879A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Analysis/synthesis windowing function for modulated lapped transformation |
EP3483883A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio coding and decoding with selective postfiltering |
EP3483878A1 (en) | 2017-11-10 | 2019-05-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio decoder supporting a set of different loss concealment tools |
US10460749B1 (en) * | 2018-06-28 | 2019-10-29 | Nuvoton Technology Corporation | Voice activity detection using vocal tract area information |
US10957331B2 (en) | 2018-12-17 | 2021-03-23 | Microsoft Technology Licensing, Llc | Phase reconstruction in a speech decoder |
US10847172B2 (en) * | 2018-12-17 | 2020-11-24 | Microsoft Technology Licensing, Llc | Phase quantization in a speech encoder |
JP7088403B2 (en) * | 2019-02-20 | 2022-06-21 | ヤマハ株式会社 | Sound signal generation method, generative model training method, sound signal generation system and program |
CN110610713B (en) * | 2019-08-28 | 2021-11-16 | 南京梧桐微电子科技有限公司 | Vocoder residue spectrum amplitude parameter reconstruction method and system |
US11380343B2 (en) | 2019-09-12 | 2022-07-05 | Immersion Networks, Inc. | Systems and methods for processing high frequency audio signal |
TWI723545B (en) * | 2019-09-17 | 2021-04-01 | 宏碁股份有限公司 | Speech processing method and device thereof |
US11295751B2 (en) | 2019-09-20 | 2022-04-05 | Tencent America LLC | Multi-band synchronized neural vocoder |
KR102201169B1 (en) * | 2019-10-23 | 2021-01-11 | 성균관대학교 산학협력단 | Method for generating time code and space-time code for controlling reflection coefficient of meta surface, recording medium storing program for executing the same, and method for signal modulation using meta surface |
CN114548442B (en) * | 2022-02-25 | 2022-10-21 | 万表名匠(广州)科技有限公司 | Wristwatch maintenance management system based on internet technology |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6732070B1 (en) * | 2000-02-16 | 2004-05-04 | Nokia Mobile Phones, Ltd. | Wideband speech codec using a higher sampling rate in analysis and synthesis filtering than in excitation searching |
Family Cites Families (147)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US321993A (en) * | 1885-07-14 | Lantern | ||
US525147A (en) * | 1894-08-28 | Steam-cooker | ||
US526468A (en) * | 1894-09-25 | Charles d | ||
US596689A (en) * | 1898-01-04 | Hose holder or support | ||
US1126620A (en) * | 1911-01-30 | 1915-01-26 | Safety Car Heating & Lighting | Electric regulation. |
US1089258A (en) * | 1914-01-13 | 1914-03-03 | James Arnot Paterson | Facing or milling machine. |
US1300833A (en) * | 1918-12-12 | 1919-04-15 | Moline Mill Mfg Company | Idler-pulley structure. |
US1498873A (en) * | 1924-04-19 | 1924-06-24 | Bethlehem Steel Corp | Switch stand |
US2073913A (en) * | 1934-06-26 | 1937-03-16 | Wigan Edmund Ramsay | Means for gauging minute displacements |
US2086867A (en) * | 1936-06-19 | 1937-07-13 | Hall Lab Inc | Laundering composition and process |
US3044777A (en) * | 1959-10-19 | 1962-07-17 | Fibermold Corp | Bowling pin |
US3158693A (en) * | 1962-08-07 | 1964-11-24 | Bell Telephone Labor Inc | Speech interpolation communication system |
US3855416A (en) | 1972-12-01 | 1974-12-17 | F Fuller | Method and apparatus for phonation analysis leading to valid truth/lie decisions by fundamental speech-energy weighted vibratto component assessment |
US3855414A (en) * | 1973-04-24 | 1974-12-17 | Anaconda Co | Cable armor clamp |
JPS59139099A (en) | 1983-01-31 | 1984-08-09 | 株式会社東芝 | Voice section detector |
US4616659A (en) * | 1985-05-06 | 1986-10-14 | At&T Bell Laboratories | Heart rate detection utilizing autoregressive analysis |
US4630305A (en) * | 1985-07-01 | 1986-12-16 | Motorola, Inc. | Automatic gain selector for a noise suppression system |
US4747143A (en) | 1985-07-12 | 1988-05-24 | Westinghouse Electric Corp. | Speech enhancement system having dynamic gain control |
NL8503152A (en) * | 1985-11-15 | 1987-06-01 | Optische Ind De Oude Delft Nv | DOSEMETER FOR IONIZING RADIATION. |
US4862168A (en) | 1987-03-19 | 1989-08-29 | Beard Terry D | Audio digital/analog encoding and decoding |
US4805193A (en) * | 1987-06-04 | 1989-02-14 | Motorola, Inc. | Protection of energy information in sub-band coding |
US4852179A (en) * | 1987-10-05 | 1989-07-25 | Motorola, Inc. | Variable frame rate, fixed bit rate vocoding method |
JP2707564B2 (en) | 1987-12-14 | 1998-01-28 | 株式会社日立製作所 | Audio coding method |
US5285520A (en) | 1988-03-02 | 1994-02-08 | Kokusai Denshin Denwa Kabushiki Kaisha | Predictive coding apparatus |
US5077798A (en) | 1988-09-28 | 1991-12-31 | Hitachi, Ltd. | Method and system for voice coding based on vector quantization |
US5086475A (en) | 1988-11-19 | 1992-02-04 | Sony Corporation | Apparatus for generating, recording or reproducing sound source data |
JPH02244100A (en) | 1989-03-16 | 1990-09-28 | Ricoh Co Ltd | Noise sound source signal forming device |
DE69128772T2 (en) | 1990-09-19 | 1998-08-06 | Philips Electronics N.V., Eindhoven | SYSTEM WITH A RECORDING CARRIER AND A PLAYER |
JP2779886B2 (en) | 1992-10-05 | 1998-07-23 | 日本電信電話株式会社 | Wideband audio signal restoration method |
JP3191457B2 (en) * | 1992-10-31 | 2001-07-23 | ソニー株式会社 | High efficiency coding apparatus, noise spectrum changing apparatus and method |
US5455888A (en) * | 1992-12-04 | 1995-10-03 | Northern Telecom Limited | Speech bandwidth extension method and apparatus |
PL173718B1 (en) | 1993-06-30 | 1998-04-30 | Sony Corp | Apparatus for encoding digital signals, apparatus for decoding digital signals and recording medium adapted for use in conjunction with them |
WO1995010760A2 (en) | 1993-10-08 | 1995-04-20 | Comsat Corporation | Improved low bit rate vocoders and methods of operation therefor |
US5684920A (en) | 1994-03-17 | 1997-11-04 | Nippon Telegraph And Telephone | Acoustic signal transform coding method and decoding method having a high efficiency envelope flattening method therein |
US5487087A (en) * | 1994-05-17 | 1996-01-23 | Texas Instruments Incorporated | Signal quantizer with reduced output fluctuation |
US5797118A (en) | 1994-08-09 | 1998-08-18 | Yamaha Corporation | Learning vector quantization and a temporary memory such that the codebook contents are renewed when a first speaker returns |
JP2770137B2 (en) | 1994-09-22 | 1998-06-25 | 日本プレシジョン・サーキッツ株式会社 | Waveform data compression device |
US5699477A (en) | 1994-11-09 | 1997-12-16 | Texas Instruments Incorporated | Mixed excitation linear prediction with fractional pitch |
FI97182C (en) | 1994-12-05 | 1996-10-25 | Nokia Telecommunications Oy | Procedure for replacing received bad speech frames in a digital receiver and receiver for a digital telecommunication system |
JP3365113B2 (en) * | 1994-12-22 | 2003-01-08 | ソニー株式会社 | Audio level control device |
JP2798003B2 (en) | 1995-05-09 | 1998-09-17 | 松下電器産業株式会社 | Voice band expansion device and voice band expansion method |
JP2956548B2 (en) | 1995-10-05 | 1999-10-04 | 松下電器産業株式会社 | Voice band expansion device |
EP0732687B2 (en) * | 1995-03-13 | 2005-10-12 | Matsushita Electric Industrial Co., Ltd. | Apparatus for expanding speech bandwidth |
JP3189614B2 (en) | 1995-03-13 | 2001-07-16 | 松下電器産業株式会社 | Voice band expansion device |
US6263307B1 (en) | 1995-04-19 | 2001-07-17 | Texas Instruments Incorporated | Adaptive weiner filtering using line spectral frequencies |
US5706395A (en) * | 1995-04-19 | 1998-01-06 | Texas Instruments Incorporated | Adaptive weiner filtering using a dynamic suppression factor |
JP3334419B2 (en) * | 1995-04-20 | 2002-10-15 | ソニー株式会社 | Noise reduction method and noise reduction device |
US5699485A (en) | 1995-06-07 | 1997-12-16 | Lucent Technologies Inc. | Pitch delay modification during frame erasures |
US5704003A (en) * | 1995-09-19 | 1997-12-30 | Lucent Technologies Inc. | RCELP coder |
US6097824A (en) | 1997-06-06 | 2000-08-01 | Audiologic, Incorporated | Continuous frequency dynamic range audio compressor |
DE69530204T2 (en) * | 1995-10-16 | 2004-03-18 | Agfa-Gevaert | New class of yellow dyes for photographic materials |
JP3707116B2 (en) | 1995-10-26 | 2005-10-19 | ソニー株式会社 | Speech decoding method and apparatus |
US5737716A (en) * | 1995-12-26 | 1998-04-07 | Motorola | Method and apparatus for encoding speech using neural network technology for speech classification |
JP3073919B2 (en) * | 1995-12-30 | 2000-08-07 | 松下電器産業株式会社 | Synchronizer |
US5689615A (en) * | 1996-01-22 | 1997-11-18 | Rockwell International Corporation | Usage of voice activity detection for efficient coding of speech |
TW307960B (en) * | 1996-02-15 | 1997-06-11 | Philips Electronics Nv | Reduced complexity signal transmission system |
DE69730779T2 (en) | 1996-06-19 | 2005-02-10 | Texas Instruments Inc., Dallas | Improvements in or relating to speech coding |
JP3246715B2 (en) | 1996-07-01 | 2002-01-15 | 松下電器産業株式会社 | Audio signal compression method and audio signal compression device |
DE69712537T2 (en) * | 1996-11-07 | 2002-08-29 | Matsushita Electric Industrial Co., Ltd. | Method for generating a vector quantization code book |
US6009395A (en) | 1997-01-02 | 1999-12-28 | Texas Instruments Incorporated | Synthesizer and method using scaled excitation signal |
US6202046B1 (en) * | 1997-01-23 | 2001-03-13 | Kabushiki Kaisha Toshiba | Background noise/speech classification method |
US6041297A (en) * | 1997-03-10 | 2000-03-21 | At&T Corp | Vocoder for coding speech by using a correlation between spectral magnitudes and candidate excitations |
US5890126A (en) | 1997-03-10 | 1999-03-30 | Euphonics, Incorporated | Audio data decompression and interpolation apparatus and method |
EP0878790A1 (en) * | 1997-05-15 | 1998-11-18 | Hewlett-Packard Company | Voice coding system and method |
SE512719C2 (en) * | 1997-06-10 | 2000-05-02 | Lars Gustaf Liljeryd | A method and apparatus for reducing data flow based on harmonic bandwidth expansion |
US6889185B1 (en) * | 1997-08-28 | 2005-05-03 | Texas Instruments Incorporated | Quantization of linear prediction coefficients using perceptual weighting |
US6029125A (en) * | 1997-09-02 | 2000-02-22 | Telefonaktiebolaget L M Ericsson, (Publ) | Reducing sparseness in coded speech signals |
US6122384A (en) * | 1997-09-02 | 2000-09-19 | Qualcomm Inc. | Noise suppression system and method |
US6231516B1 (en) * | 1997-10-14 | 2001-05-15 | Vacusense, Inc. | Endoluminal implant with therapeutic and diagnostic capability |
JPH11205166A (en) | 1998-01-19 | 1999-07-30 | Mitsubishi Electric Corp | Noise detector |
US6301556B1 (en) * | 1998-03-04 | 2001-10-09 | Telefonaktiebolaget L M. Ericsson (Publ) | Reducing sparseness in coded speech signals |
US6449590B1 (en) | 1998-08-24 | 2002-09-10 | Conexant Systems, Inc. | Speech encoder using warping in long term preprocessing |
US6385573B1 (en) * | 1998-08-24 | 2002-05-07 | Conexant Systems, Inc. | Adaptive tilt compensation for synthesized speech residual |
JP4170458B2 (en) * | 1998-08-27 | 2008-10-22 | ローランド株式会社 | Time-axis compression / expansion device for waveform signals |
US6353808B1 (en) * | 1998-10-22 | 2002-03-05 | Sony Corporation | Apparatus and method for encoding a signal as well as apparatus and method for decoding a signal |
KR20000047944A (en) | 1998-12-11 | 2000-07-25 | 이데이 노부유끼 | Receiving apparatus and method, and communicating apparatus and method |
JP4354561B2 (en) * | 1999-01-08 | 2009-10-28 | パナソニック株式会社 | Audio signal encoding apparatus and decoding apparatus |
US6223151B1 (en) | 1999-02-10 | 2001-04-24 | Telefon Aktie Bolaget Lm Ericsson | Method and apparatus for pre-processing speech signals prior to coding by transform-based speech coders |
JP3696091B2 (en) | 1999-05-14 | 2005-09-14 | 松下電器産業株式会社 | Method and apparatus for extending the bandwidth of an audio signal |
US6604070B1 (en) * | 1999-09-22 | 2003-08-05 | Conexant Systems, Inc. | System of encoding and decoding speech signals |
JP4792613B2 (en) * | 1999-09-29 | 2011-10-12 | ソニー株式会社 | Information processing apparatus and method, and recording medium |
US6556950B1 (en) | 1999-09-30 | 2003-04-29 | Rockwell Automation Technologies, Inc. | Diagnostic method and apparatus for use with enterprise control |
US6715125B1 (en) * | 1999-10-18 | 2004-03-30 | Agere Systems Inc. | Source coding and transmission with time diversity |
JP5220254B2 (en) * | 1999-11-16 | 2013-06-26 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Wideband audio transmission system |
CA2290037A1 (en) * | 1999-11-18 | 2001-05-18 | Voiceage Corporation | Gain-smoothing amplifier device and method in codecs for wideband speech and audio signals |
US7260523B2 (en) * | 1999-12-21 | 2007-08-21 | Texas Instruments Incorporated | Sub-band speech coding system |
US7167828B2 (en) | 2000-01-11 | 2007-01-23 | Matsushita Electric Industrial Co., Ltd. | Multimode speech coding apparatus and decoding apparatus |
US6757395B1 (en) * | 2000-01-12 | 2004-06-29 | Sonic Innovations, Inc. | Noise reduction apparatus and method |
US6704711B2 (en) | 2000-01-28 | 2004-03-09 | Telefonaktiebolaget Lm Ericsson (Publ) | System and method for modifying speech signals |
JP3681105B2 (en) | 2000-02-24 | 2005-08-10 | アルパイン株式会社 | Data processing method |
FI119576B (en) * | 2000-03-07 | 2008-12-31 | Nokia Corp | Speech processing device and procedure for speech processing, as well as a digital radio telephone |
US6523003B1 (en) * | 2000-03-28 | 2003-02-18 | Tellabs Operations, Inc. | Spectrally interdependent gain adjustment techniques |
US6757654B1 (en) * | 2000-05-11 | 2004-06-29 | Telefonaktiebolaget Lm Ericsson | Forward error correction in speech coding |
US7330814B2 (en) * | 2000-05-22 | 2008-02-12 | Texas Instruments Incorporated | Wideband speech coding with modulated noise highband excitation system and method |
JP2001337700A (en) | 2000-05-22 | 2001-12-07 | Texas Instr Inc <Ti> | System for coding wideband speech and its method |
US7136810B2 (en) * | 2000-05-22 | 2006-11-14 | Texas Instruments Incorporated | Wideband speech coding system and method |
JP2002055699A (en) | 2000-08-10 | 2002-02-20 | Mitsubishi Electric Corp | Device and method for encoding voice |
CN1279531C (en) * | 2000-08-25 | 2006-10-11 | 皇家菲利浦电子有限公司 | Method and apparatus for reducing the word length of a digital input signal and method and apparatus for recovering the digital input signal |
US6515889B1 (en) * | 2000-08-31 | 2003-02-04 | Micron Technology, Inc. | Junction-isolated depletion mode ferroelectric memory |
US7386444B2 (en) | 2000-09-22 | 2008-06-10 | Texas Instruments Incorporated | Hybrid speech coding and system |
US6947888B1 (en) * | 2000-10-17 | 2005-09-20 | Qualcomm Incorporated | Method and apparatus for high performance low bit-rate coding of unvoiced speech |
JP2002202799A (en) * | 2000-10-30 | 2002-07-19 | Fujitsu Ltd | Voice code conversion apparatus |
JP3558031B2 (en) * | 2000-11-06 | 2004-08-25 | 日本電気株式会社 | Speech decoding device |
EP1336175A1 (en) * | 2000-11-09 | 2003-08-20 | Koninklijke Philips Electronics N.V. | Wideband extension of telephone speech for higher perceptual quality |
SE0004163D0 (en) * | 2000-11-14 | 2000-11-14 | Coding Technologies Sweden Ab | Enhancing perceptual performance or high frequency reconstruction coding methods by adaptive filtering |
SE0004187D0 (en) * | 2000-11-15 | 2000-11-15 | Coding Technologies Sweden Ab | Enhancing the performance of coding systems that use high frequency reconstruction methods |
KR100910282B1 (en) | 2000-11-30 | 2009-08-03 | 파나소닉 주식회사 | Vector quantizing device for lpc parameters, decoding device for lpc parameters, recording medium, voice encoding device, voice decoding device, voice signal transmitting device, and voice signal receiving device |
GB0031461D0 (en) | 2000-12-22 | 2001-02-07 | Thales Defence Ltd | Communication sets |
US20040204935A1 (en) | 2001-02-21 | 2004-10-14 | Krishnasamy Anandakumar | Adaptive voice playout in VOP |
JP2002268698A (en) | 2001-03-08 | 2002-09-20 | Nec Corp | Voice recognition device, device and method for standard pattern generation, and program |
US20030028386A1 (en) * | 2001-04-02 | 2003-02-06 | Zinser Richard L. | Compressed domain universal transcoder |
SE522553C2 (en) * | 2001-04-23 | 2004-02-17 | Ericsson Telefon Ab L M | Bandwidth extension of acoustic signals |
EP1388147B1 (en) * | 2001-05-11 | 2004-12-29 | Siemens Aktiengesellschaft | Method for enlarging the band width of a narrow-band filtered voice signal, especially a voice signal emitted by a telecommunication appliance |
JP2004521394A (en) * | 2001-06-28 | 2004-07-15 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Broadband signal transmission system |
US6879955B2 (en) * | 2001-06-29 | 2005-04-12 | Microsoft Corporation | Signal modification based on continuous time warping for low bit rate CELP coding |
JP2003036097A (en) * | 2001-07-25 | 2003-02-07 | Sony Corp | Device and method for detecting and retrieving information |
TW525147B (en) | 2001-09-28 | 2003-03-21 | Inventec Besta Co Ltd | Method of obtaining and decoding basic cycle of voice |
US6988066B2 (en) * | 2001-10-04 | 2006-01-17 | At&T Corp. | Method of bandwidth extension for narrow-band speech |
US6895375B2 (en) | 2001-10-04 | 2005-05-17 | At&T Corp. | System for bandwidth extension of Narrow-band speech |
TW526468B (en) | 2001-10-19 | 2003-04-01 | Chunghwa Telecom Co Ltd | System and method for eliminating background noise of voice signal |
JP4245288B2 (en) | 2001-11-13 | 2009-03-25 | パナソニック株式会社 | Speech coding apparatus and speech decoding apparatus |
KR20040066835A (en) * | 2001-11-23 | 2004-07-27 | 코닌클리즈케 필립스 일렉트로닉스 엔.브이. | Audio signal bandwidth extension |
CA2365203A1 (en) | 2001-12-14 | 2003-06-14 | Voiceage Corporation | A signal modification method for efficient coding of speech signals |
US6751587B2 (en) * | 2002-01-04 | 2004-06-15 | Broadcom Corporation | Efficient excitation quantization in noise feedback coding with general noise shaping |
JP4290917B2 (en) * | 2002-02-08 | 2009-07-08 | 株式会社エヌ・ティ・ティ・ドコモ | Decoding device, encoding device, decoding method, and encoding method |
JP3826813B2 (en) | 2002-02-18 | 2006-09-27 | ソニー株式会社 | Digital signal processing apparatus and digital signal processing method |
ES2259158T3 (en) | 2002-09-19 | 2006-09-16 | Matsushita Electric Industrial Co., Ltd. | METHOD AND DEVICE AUDIO DECODER. |
JP3756864B2 (en) | 2002-09-30 | 2006-03-15 | 株式会社東芝 | Speech synthesis method and apparatus and speech synthesis program |
KR100841096B1 (en) * | 2002-10-14 | 2008-06-25 | 리얼네트웍스아시아퍼시픽 주식회사 | Preprocessing of digital audio data for mobile speech codecs |
US20040098255A1 (en) | 2002-11-14 | 2004-05-20 | France Telecom | Generalized analysis-by-synthesis speech coding method, and coder implementing such method |
US7242763B2 (en) * | 2002-11-26 | 2007-07-10 | Lucent Technologies Inc. | Systems and methods for far-end noise reduction and near-end noise compensation in a mixed time-frequency domain compander to improve signal quality in communications systems |
CA2415105A1 (en) | 2002-12-24 | 2004-06-24 | Voiceage Corporation | A method and device for robust predictive vector quantization of linear prediction parameters in variable bit rate speech coding |
KR100480341B1 (en) | 2003-03-13 | 2005-03-31 | 한국전자통신연구원 | Apparatus for coding wide-band low bit rate speech signal |
CN1820306B (en) | 2003-05-01 | 2010-05-05 | 诺基亚有限公司 | Method and device for gain quantization in variable bit rate wideband speech coding |
WO2005004113A1 (en) | 2003-06-30 | 2005-01-13 | Fujitsu Limited | Audio encoding device |
US20050004793A1 (en) * | 2003-07-03 | 2005-01-06 | Pasi Ojala | Signal adaptation for higher band coding in a codec utilizing band split coding |
FI118550B (en) | 2003-07-14 | 2007-12-14 | Nokia Corp | Enhanced excitation for higher frequency band coding in a codec utilizing band splitting based coding methods |
US7428490B2 (en) | 2003-09-30 | 2008-09-23 | Intel Corporation | Method for spectral subtraction in speech enhancement |
US7698292B2 (en) * | 2003-12-03 | 2010-04-13 | Siemens Aktiengesellschaft | Tag management within a decision, support, and reporting environment |
KR100587953B1 (en) * | 2003-12-26 | 2006-06-08 | 한국전자통신연구원 | Packet loss concealment apparatus for high-band in split-band wideband speech codec, and system for decoding bit-stream using the same |
CA2454296A1 (en) * | 2003-12-29 | 2005-06-29 | Nokia Corporation | Method and device for speech enhancement in the presence of background noise |
JP4259401B2 (en) | 2004-06-02 | 2009-04-30 | カシオ計算機株式会社 | Speech processing apparatus and speech coding method |
US8000967B2 (en) * | 2005-03-09 | 2011-08-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Low-complexity code excited linear prediction encoding |
US8155965B2 (en) | 2005-03-11 | 2012-04-10 | Qualcomm Incorporated | Time warping frames inside the vocoder by modifying the residual |
BRPI0607646B1 (en) | 2005-04-01 | 2021-05-25 | Qualcomm Incorporated | METHOD AND EQUIPMENT FOR SPEECH BAND DIVISION ENCODING |
UA94041C2 (en) * | 2005-04-01 | 2011-04-11 | Квелкомм Инкорпорейтед | Method and device for anti-sparseness filtering |
PL1875463T3 (en) | 2005-04-22 | 2019-03-29 | Qualcomm Incorporated | Systems, methods, and apparatus for gain factor smoothing |
-
2006
- 2006-04-03 BR BRPI0607646-7A patent/BRPI0607646B1/en active IP Right Grant
- 2006-04-03 WO PCT/US2006/012227 patent/WO2006107833A1/en active Application Filing
- 2006-04-03 PL PL06740358T patent/PL1864282T3/en unknown
- 2006-04-03 KR KR1020077025432A patent/KR100956525B1/en active IP Right Grant
- 2006-04-03 SG SG201004744-7A patent/SG163556A1/en unknown
- 2006-04-03 MX MX2007012187A patent/MX2007012187A/en active IP Right Grant
- 2006-04-03 EP EP06784345A patent/EP1864101B1/en active Active
- 2006-04-03 TW TW095111851A patent/TWI319565B/en active
- 2006-04-03 CA CA2603246A patent/CA2603246C/en active Active
- 2006-04-03 US US11/397,370 patent/US8078474B2/en active Active
- 2006-04-03 MX MX2007012184A patent/MX2007012184A/en active IP Right Grant
- 2006-04-03 BR BRPI0608306-4A patent/BRPI0608306A2/en not_active Application Discontinuation
- 2006-04-03 AU AU2006232362A patent/AU2006232362B2/en active Active
- 2006-04-03 PL PL06740357T patent/PL1866915T3/en unknown
- 2006-04-03 AU AU2006232360A patent/AU2006232360B2/en active Active
- 2006-04-03 US US11/397,432 patent/US8364494B2/en active Active
- 2006-04-03 EP EP06740357A patent/EP1866915B1/en active Active
- 2006-04-03 RU RU2007140429/09A patent/RU2387025C2/en active
- 2006-04-03 JP JP2008504475A patent/JP5129115B2/en active Active
- 2006-04-03 BR BRPI0608305-6A patent/BRPI0608305B1/en active IP Right Grant
- 2006-04-03 KR KR1020077025293A patent/KR100982638B1/en active IP Right Grant
- 2006-04-03 US US11/397,505 patent/US8332228B2/en active Active
- 2006-04-03 JP JP2008504477A patent/JP5129116B2/en active Active
- 2006-04-03 BR BRPI0608270-0A patent/BRPI0608270A2/en not_active Application Discontinuation
- 2006-04-03 TW TW095111814A patent/TWI330828B/en active
- 2006-04-03 WO PCT/US2006/012234 patent/WO2006130221A1/en active Application Filing
- 2006-04-03 WO PCT/US2006/012231 patent/WO2006107837A1/en active Application Filing
- 2006-04-03 BR BRPI0608269A patent/BRPI0608269B8/en active IP Right Grant
- 2006-04-03 BR BRPI0607690A patent/BRPI0607690A8/en not_active Application Discontinuation
- 2006-04-03 KR KR1020077025400A patent/KR100956877B1/en active IP Right Grant
- 2006-04-03 JP JP2008504479A patent/JP5203930B2/en active Active
- 2006-04-03 NZ NZ562186A patent/NZ562186A/en not_active IP Right Cessation
- 2006-04-03 BR BRPI0609530-5A patent/BRPI0609530B1/en active IP Right Grant
- 2006-04-03 TW TW095111852A patent/TWI324335B/en active
- 2006-04-03 RU RU2007140406/09A patent/RU2390856C2/en active
- 2006-04-03 EP EP06740356A patent/EP1864283B1/en active Active
- 2006-04-03 NZ NZ562188A patent/NZ562188A/en not_active IP Right Cessation
- 2006-04-03 NZ NZ562182A patent/NZ562182A/en not_active IP Right Cessation
- 2006-04-03 JP JP2008504481A patent/JP4955649B2/en active Active
- 2006-04-03 PT PT06784345T patent/PT1864101E/en unknown
- 2006-04-03 KR KR1020077025290A patent/KR100956876B1/en active IP Right Grant
- 2006-04-03 CA CA2603231A patent/CA2603231C/en active Active
- 2006-04-03 MX MX2007012183A patent/MX2007012183A/en active IP Right Grant
- 2006-04-03 JP JP2008504474A patent/JP5203929B2/en active Active
- 2006-04-03 MX MX2007012191A patent/MX2007012191A/en active IP Right Grant
- 2006-04-03 JP JP2008504482A patent/JP5161069B2/en active Active
- 2006-04-03 TW TW095111819A patent/TWI321315B/en active
- 2006-04-03 DE DE602006012637T patent/DE602006012637D1/en active Active
- 2006-04-03 DE DE602006017050T patent/DE602006017050D1/en active Active
- 2006-04-03 RU RU2007140382/09A patent/RU2381572C2/en active
- 2006-04-03 JP JP2008504480A patent/JP5129118B2/en active Active
- 2006-04-03 WO PCT/US2006/012232 patent/WO2006107838A1/en active Application Filing
- 2006-04-03 DE DE602006017673T patent/DE602006017673D1/en active Active
- 2006-04-03 PL PL06784345T patent/PL1864101T3/en unknown
- 2006-04-03 EP EP06740355A patent/EP1869673B1/en active Active
- 2006-04-03 MX MX2007012189A patent/MX2007012189A/en active IP Right Grant
- 2006-04-03 BR BRPI0607691A patent/BRPI0607691B1/en active IP Right Grant
- 2006-04-03 WO PCT/US2006/012228 patent/WO2006107834A1/en active Application Filing
- 2006-04-03 RU RU2007140365/09A patent/RU2376657C2/en active
- 2006-04-03 TW TW095111804A patent/TWI321314B/en active
- 2006-04-03 EP EP06740358.4A patent/EP1864282B1/en active Active
- 2006-04-03 SG SG201004741-3A patent/SG163555A1/en unknown
- 2006-04-03 RU RU2007140383/09A patent/RU2402826C2/en active
- 2006-04-03 JP JP2008504478A patent/JP5129117B2/en active Active
- 2006-04-03 TW TW095111794A patent/TWI320923B/en active
- 2006-04-03 ES ES06740358.4T patent/ES2636443T3/en active Active
- 2006-04-03 CA CA2602804A patent/CA2602804C/en active Active
- 2006-04-03 KR KR1020077025255A patent/KR100956624B1/en active IP Right Grant
- 2006-04-03 DK DK06784345.8T patent/DK1864101T3/en active
- 2006-04-03 WO PCT/US2006/012233 patent/WO2006107839A2/en active Application Filing
- 2006-04-03 MX MX2007012181A patent/MX2007012181A/en active IP Right Grant
- 2006-04-03 NZ NZ562190A patent/NZ562190A/en not_active IP Right Cessation
- 2006-04-03 KR KR1020077025421A patent/KR100956524B1/en active IP Right Grant
- 2006-04-03 MX MX2007012182A patent/MX2007012182A/en active IP Right Grant
- 2006-04-03 PT PT67403584T patent/PT1864282T/en unknown
- 2006-04-03 AU AU2006232357A patent/AU2006232357C1/en active Active
- 2006-04-03 AU AU2006232363A patent/AU2006232363B2/en active Active
- 2006-04-03 US US11/397,433 patent/US8244526B2/en active Active
- 2006-04-03 SG SG201002300-0A patent/SG161223A1/en unknown
- 2006-04-03 PL PL06740355T patent/PL1869673T3/en unknown
- 2006-04-03 TW TW095111800A patent/TWI321777B/en active
- 2006-04-03 ES ES06784345T patent/ES2391292T3/en active Active
- 2006-04-03 CN CN201110326747.2A patent/CN102411935B/en active Active
- 2006-04-03 KR KR1020077025447A patent/KR101019940B1/en active IP Right Grant
- 2006-04-03 WO PCT/US2006/012235 patent/WO2006107840A1/en active Application Filing
- 2006-04-03 AT AT06740355T patent/ATE482449T1/en not_active IP Right Cessation
- 2006-04-03 US US11/397,794 patent/US8484036B2/en active Active
- 2006-04-03 AT AT06740357T patent/ATE492016T1/en not_active IP Right Cessation
- 2006-04-03 RU RU2009131435/08A patent/RU2491659C2/en active
- 2006-04-03 AT AT06740351T patent/ATE485582T1/en not_active IP Right Cessation
- 2006-04-03 KR KR1020077025422A patent/KR100956523B1/en active IP Right Grant
- 2006-04-03 RU RU2007140394/09A patent/RU2413191C2/en active
- 2006-04-03 MX MX2007012185A patent/MX2007012185A/en active IP Right Grant
- 2006-04-03 SI SI200632188T patent/SI1864282T1/en unknown
- 2006-04-03 US US11/397,871 patent/US8140324B2/en active Active
- 2006-04-03 EP EP06740351A patent/EP1869670B1/en active Active
- 2006-04-03 CA CA2603219A patent/CA2603219C/en active Active
- 2006-04-03 EP EP06740354A patent/EP1866914B1/en active Active
- 2006-04-03 US US11/397,870 patent/US8260611B2/en active Active
- 2006-04-03 CA CA2603255A patent/CA2603255C/en active Active
- 2006-04-03 US US11/397,872 patent/US8069040B2/en active Active
- 2006-04-03 DE DE602006018884T patent/DE602006018884D1/en active Active
- 2006-04-03 EP EP06740352A patent/EP1864281A1/en not_active Withdrawn
- 2006-04-03 WO PCT/US2006/012230 patent/WO2006107836A1/en active Application Filing
- 2006-04-03 AU AU2006232358A patent/AU2006232358B2/en not_active Expired - Fee Related
- 2006-04-03 RU RU2007140381/09A patent/RU2386179C2/en active
- 2006-04-03 DK DK06740358.4T patent/DK1864282T3/en active
- 2006-04-03 AU AU2006232361A patent/AU2006232361B2/en active Active
- 2006-04-03 TW TW095111797A patent/TWI316225B/en active
- 2006-04-03 NZ NZ562185A patent/NZ562185A/en not_active IP Right Cessation
- 2006-04-03 AU AU2006252957A patent/AU2006252957B2/en active Active
- 2006-04-03 CA CA2603187A patent/CA2603187C/en active Active
- 2006-04-03 AT AT06740354T patent/ATE459958T1/en not_active IP Right Cessation
- 2006-04-03 SG SG201002303-4A patent/SG161224A1/en unknown
- 2006-04-03 NZ NZ562183A patent/NZ562183A/en unknown
- 2006-04-03 AU AU2006232364A patent/AU2006232364B2/en active Active
- 2006-04-03 ES ES06740354T patent/ES2340608T3/en active Active
- 2006-04-03 CA CA2603229A patent/CA2603229C/en active Active
- 2006-04-03 RU RU2007140426/09A patent/RU2402827C2/en active
- 2006-04-03 CA CA2602806A patent/CA2602806C/en active Active
-
2007
- 2007-10-07 IL IL186442A patent/IL186442A/en active IP Right Grant
- 2007-10-07 IL IL186441A patent/IL186441A0/en active IP Right Grant
- 2007-10-07 IL IL186438A patent/IL186438A/en active IP Right Grant
- 2007-10-07 IL IL186404A patent/IL186404A/en active IP Right Grant
- 2007-10-07 IL IL186405A patent/IL186405A/en active IP Right Grant
- 2007-10-07 IL IL186443A patent/IL186443A/en active IP Right Grant
- 2007-10-07 IL IL186436A patent/IL186436A0/en active IP Right Grant
- 2007-10-07 IL IL186439A patent/IL186439A0/en unknown
- 2007-10-31 NO NO20075512A patent/NO20075512L/en not_active Application Discontinuation
- 2007-10-31 NO NO20075514A patent/NO340434B1/en unknown
- 2007-10-31 NO NO20075503A patent/NO20075503L/en not_active Application Discontinuation
- 2007-10-31 NO NO20075513A patent/NO340428B1/en unknown
- 2007-10-31 NO NO20075510A patent/NO20075510L/en not_active Application Discontinuation
- 2007-10-31 NO NO20075511A patent/NO20075511L/en not_active Application Discontinuation
- 2007-10-31 NO NO20075515A patent/NO340566B1/en unknown
-
2008
- 2008-08-28 HK HK08109568.5A patent/HK1113848A1/en unknown
- 2008-09-19 HK HK08110384.5A patent/HK1115023A1/en unknown
- 2008-09-22 HK HK08110465.7A patent/HK1114901A1/en unknown
- 2008-09-24 HK HK12110024.5A patent/HK1169509A1/en unknown
- 2008-09-24 HK HK08110589.8A patent/HK1115024A1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6732070B1 (en) * | 2000-02-16 | 2004-05-04 | Nokia Mobile Phones, Ltd. | Wideband speech codec using a higher sampling rate in analysis and synthesis filtering than in excitation searching |
Non-Patent Citations (2)
Title |
---|
KLEIJN W B ET AL: "THE RCELP SPEECH-CODING ALGORITHM", EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS AND RELATED TECHNOLOGIES, AEI, MILANO, IT, vol. 5, no. 5, 1 September 1994 (1994-09-01), pages 573 - 582, XP000470678, ISSN: 1120-3862 * |
TAMMI M ET AL: "Coding distortion caused by a phase difference between the LP filter and its residual", SPEECH CODING PROCEEDINGS, 1999 IEEE WORKSHOP ON PORVOO, FINLAND 20-23 JUNE 1999, PISCATAWAY, NJ, USA,IEEE, US, 20 June 1999 (1999-06-20), pages 102 - 104, XP010345571, ISBN: 0-7803-5651-9 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011511311A (en) * | 2008-01-31 | 2011-04-07 | フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン | Apparatus and method for bandwidth extension of audio signal |
US8996362B2 (en) | 2008-01-31 | 2015-03-31 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Device and method for a bandwidth extension of an audio signal |
JP2012527637A (en) * | 2009-05-19 | 2012-11-08 | エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート | Audio signal encoding and decoding method and apparatus using hierarchical sinusoidal pulse coding |
US10096322B2 (en) | 2013-06-21 | 2018-10-09 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Audio decoder having a bandwidth extension module with an energy adjusting module |
CN107527629A (en) * | 2013-07-12 | 2017-12-29 | 皇家飞利浦有限公司 | For carrying out the optimization zoom factor of bandspreading in audio signal decoder |
US10354663B2 (en) | 2014-07-28 | 2019-07-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for generating an enhanced signal using independent noise-filling |
US10529348B2 (en) | 2014-07-28 | 2020-01-07 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for generating an enhanced signal using independent noise-filling identified by an identification vector |
US10885924B2 (en) | 2014-07-28 | 2021-01-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for generating an enhanced signal using independent noise-filling |
US11264042B2 (en) | 2014-07-28 | 2022-03-01 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for generating an enhanced signal using independent noise-filling information which comprises energy information and is included in an input signal |
US11705145B2 (en) | 2014-07-28 | 2023-07-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for generating an enhanced signal using independent noise-filling |
US11908484B2 (en) | 2014-07-28 | 2024-02-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for generating an enhanced signal using independent noise-filling at random values and scaling thereupon |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006232361B2 (en) | Methods and apparatus for encoding and decoding an highband portion of a speech signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680018212.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2008504479 Country of ref document: JP Kind code of ref document: A Ref document number: 2603231 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/a/2007/012187 Country of ref document: MX Ref document number: 12007502150 Country of ref document: PH Ref document number: 2006740356 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 562184 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006232362 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 186405 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1737/MUMNP/2007 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077025293 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2006232362 Country of ref document: AU Date of ref document: 20060403 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007140365 Country of ref document: RU Ref document number: 1200702294 Country of ref document: VN |
|
ENP | Entry into the national phase |
Ref document number: PI0607691 Country of ref document: BR Kind code of ref document: A2 |