WO2006106674A1 - 下りリンクチャネル用の送信装置及び送信方法 - Google Patents

下りリンクチャネル用の送信装置及び送信方法 Download PDF

Info

Publication number
WO2006106674A1
WO2006106674A1 PCT/JP2006/306300 JP2006306300W WO2006106674A1 WO 2006106674 A1 WO2006106674 A1 WO 2006106674A1 JP 2006306300 W JP2006306300 W JP 2006306300W WO 2006106674 A1 WO2006106674 A1 WO 2006106674A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
data channel
data
transmission
pilot
Prior art date
Application number
PCT/JP2006/306300
Other languages
English (en)
French (fr)
Inventor
Mamoru Sawahashi
Kenichi Higuchi
Hiroyuki Atarashi
Original Assignee
Ntt Docomo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Docomo, Inc. filed Critical Ntt Docomo, Inc.
Priority to US11/909,984 priority Critical patent/US8009748B2/en
Priority to CN2006800150074A priority patent/CN101171770B/zh
Priority to EP06730248A priority patent/EP1865626A4/en
Priority to BRPI0608673 priority patent/BRPI0608673A2/pt
Publication of WO2006106674A1 publication Critical patent/WO2006106674A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • H04B1/712Weighting of fingers for combining, e.g. amplitude control or phase rotation using an inner loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals

Definitions

  • the present invention relates to the technical field of wireless communication, and more particularly to a transmission device and a transmission method for a downlink channel.
  • Patent Document 1 discloses a technique for improving the quality of signal transmission by improving the channel configuration method in a communication system.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-259454
  • An object of the present invention is to provide a transmission device and a transmission method that improve signal quality in a downlink channel.
  • a transmission device that transmits a control channel, a pilot channel, and a data channel.
  • the transmission apparatus transmits the data channel using a multi-beam composed of a plurality of fixed directional beams having different fixed directional directions or a variable directional beam having a directional direction that changes according to the position of the mobile terminal.
  • FIG. 1 is a diagram for explaining a sector beam.
  • FIG. 2 is a diagram for explaining multi-beams and adaptive directional beams.
  • a schematic block diagram (part 1) of a transmitter that transmits a sector beam is shown below.
  • a schematic block diagram (part 2) of a transmitter that transmits a sector beam is shown.
  • FIG. 5 shows a schematic block diagram of a receiver that receives a sector beam.
  • FIG. 6 shows a schematic block diagram of a base station that uses multi-beams for transmission and reception.
  • FIG. 7 A schematic block diagram of a base station that uses an adaptive directional beam for transmission and reception is shown.
  • FIG. 8 A diagram showing a downlink transmission scheme realized by an embodiment of the present invention.
  • FIG. 9A is a diagram showing an example of a multiplexing method of a pilot channel and a data channel.
  • FIG. 9B is a diagram showing an example of a multiplexing method of pilot channels and data channels.
  • FIG. 9C is a diagram showing an example of a multiplexing method of pilot channels and data channels.
  • FIG. 9D is a diagram showing an example of a multiplexing method of pilot channels and data channels.
  • FIG. 9E is a diagram showing an example of a multiplexing method of a pilot channel and a data channel.
  • FIG. 10A is a diagram (part 1) illustrating an example of a multiplexing method of a pilot channel, a control channel, and a data channel.
  • FIG. 10B is a diagram (part 1) illustrating an example of a multiplexing method of a pilot channel, a control channel, and a data channel.
  • FIG. 11A is a diagram (part 2) illustrating an example of a multiplexing method of a pilot channel, a control channel, and a data channel.
  • FIG. 11B is a diagram (No. 2) illustrating an example of a multiplexing method of a pilot channel, a control channel, and a data channel.
  • FIG. 12A is a diagram (No. 3) illustrating an example of a multiplexing method of a pilot channel, a control channel, and a data channel.
  • FIG. 12B is a diagram (No. 3) illustrating an example of a multiplexing method of a pilot channel, a control channel, and a data channel.
  • FIG. 13A is a diagram (No. 4) illustrating an example of a multiplexing scheme of a pilot channel, a control channel, and a data channel.
  • FIG. 13B is a diagram (No. 4) illustrating an example of a multiplexing method of a pilot channel, a control channel, and a data channel.
  • FIG. 14A is a diagram (part 1) illustrating an example of a data channel multiplexing method
  • FIG. 14B is a diagram (part 1) illustrating an example of a data channel multiplexing method
  • FIG. 14C is a diagram (part 1) illustrating an example of a data channel multiplexing method
  • FIG. 15A is a diagram (part 2) illustrating an example of a data channel multiplexing method
  • FIG. 15B is a diagram (part 2) illustrating an example of a data channel multiplexing method
  • FIG. 16A is a diagram (No. 3) illustrating an example of a data channel multiplexing scheme
  • FIG. 16B is a diagram (No. 3) illustrating an example of a data channel multiplexing scheme
  • FIG. 16C is a diagram (No. 3) illustrating an example of a data channel multiplexing scheme
  • FIG. 17A is a diagram (part 4) illustrating an example of a data channel multiplexing method
  • FIG. 17B is a diagram (part 4) illustrating an example of a data channel multiplexing method
  • FIG. 17C is a diagram (part 4) illustrating an example of a data channel multiplexing method
  • FIG. 17D is a diagram (part 4) illustrating an example of a data channel multiplexing scheme
  • FIG. 18A is a diagram (No. 5) illustrating an example of a data channel multiplexing scheme.
  • FIG. 18B is a diagram (No. 5) illustrating an example of a data channel multiplexing scheme.
  • fast inverse Fourier transform unit 310 guard interval insertion unit 312 digital analog conversion unit (DZA) 322 turbo encoder 324 data modulator 326 interleaver 328 serial-parallel conversion unit (SZP) 330 spreading unit 342 convolutional encoder; 344 QPSK modulator; 346 interleaver; 348 serial-parallel converter (SZP); 35 0 spreading unit;
  • DZA digital analog conversion unit
  • SZP serial-parallel conversion unit
  • SZP serial-parallel conversion unit
  • a multi-beam composed of a plurality of fixed directional beams having different fixed directional directions, or a variable directional beam having a directional direction that changes in accordance with the position of a mobile terminal.
  • a predetermined known signal is transmitted as a pilot channel.
  • the data channel is transmitted with a multi-beam or a variable directional beam.
  • Multiple beam types such as multi-beams and variable directivity beams are prepared, and appropriate beams can be used and separated according to the channel to be transmitted, so that signal quality including transmission efficiency can be improved. .
  • a predetermined known signal is transmitted to each mobile terminal as a dedicated pie channel using a variable directional beam. Since the directivity of the variable directional beam changes depending on the position of the mobile terminal, a high-quality signal can be transmitted to the mobile terminal.
  • control channel force is transmitted with a multi-beam or a variable directional beam.
  • the weighting factor for the variable directivity beam is adaptively calculated according to the position of the mobile terminal. This allows signals to be transmitted with a beam that is optimally directed to the location of the mobile terminal.
  • the variable directional beam is generated by switching one or more fixed directional beams. Since the weighting factor of the fixed directional beam in the multi-beam is a fixed weight, it is possible to easily direct the beam according to the position of the mobile terminal without newly calculating the weighting factor. [0013] According to one aspect of the present invention, the pilot channel and the data channel are multiplexed by a time division multiplexing scheme or a frequency division multiplexing scheme.
  • control channel and the data channel are multiplexed by time division multiplexing or code division multiplexing.
  • control channel power is multiplexed with a pilot channel or data channel by frequency division multiplexing.
  • a plurality of traffic data included in a data channel is multiplexed by one or more of time division multiplexing, frequency division multiplexing, and code division multiplexing. It becomes.
  • a plurality of traffic data is interleaved with respect to one or more of time, frequency, and code.
  • a diversity effect relating to one or more of time, frequency and code can be obtained, and signal transmission quality can be further improved.
  • transmission is performed from a base station to a mobile terminal using one or more of four types of beams with various channel forces in the downlink.
  • the four types of beams include (1) sector beams, (2) multibeams, (3) switched beams, and (4) adaptive directional beams.
  • a sector beam is a directional beam that realizes an antenna gain pattern that extends over the entire cell or sector that the base station is in charge of.
  • the sector beam (the antenna gain pattern) for the entire sector having a 120-degree spread is drawn with a broken line.
  • the multi-beam includes a plurality of fixed directional beams having different fixed directional directions.
  • the number of beams is set to cover one sector with these fixed directional beams.
  • Fig. 2 shows how one fixed sector is covered by N fixed directional beams indicated by broken lines.
  • a switched beam is a directional beam generated by switching one or more fixed directional beams included in a multi-beam according to the position of the mobile terminal (even if called a switched directional beam). Good.) For example, the mobile terminal has moved from point P to point Q in Figure 2 Then the switched beam is initially equal to beam 1, but later switched to beam 3. For a mobile terminal (for example, point R) that is similar to both beam 1 and beam 2, a directional beam composed of beam 1 and beam 2 forms a switched beam for that mobile terminal. Even so.
  • the weighting factor set for each antenna to realize the beam is adaptively calculated according to the position of the mobile terminal.
  • Switched beams and adaptive directional beams are common in that the directivity changes depending on the position of the mobile terminal.
  • adaptive directional beams are calculated sequentially because the beam weighting factor is not set in advance. Different from a switched beam.
  • the adaptive directional beam is drawn with a solid line.
  • Figure 3 shows a schematic block diagram (part 1) of a transmitter that transmits a sector beam.
  • This transmitter is typically provided in a base station, but a similar transmitter may be provided in a mobile terminal.
  • the base station is used in an orthogonal frequency code division multiplexing (OFCDM) communication system.
  • the base station includes N data channel processing units 302-1 to N, and a control channel processing unit.
  • N data channel processing N data channel processing
  • the data channel processing unit 302-1 includes a turbo encoder 322, a data modulator 324, an interleaver 326, a serial / parallel conversion unit (SZP) 328, and a spreading unit 330.
  • the control channel processing unit 304 includes a convolutional encoder 342, a QPSK modulator 344, an interleaver 346, a serial / parallel conversion unit (SZP) 348, and a spreading unit 350.
  • the spreading sections 330 and 350 are omitted.
  • N data channel processing units 302-1 to N transfer traffic information data to OFCDM
  • the turbo encoder 322 performs code encoding for improving error tolerance of traffic information data.
  • the data modulator 324 modulates the traffic information data with an appropriate modulation scheme such as QPSK, 16QAM, 64QAM, or the like. When Adaptive Modulation and Coding (AMC) is performed In this case, the modulation method is changed as appropriate.
  • Interleaver 326 rearranges the order of traffic information data according to a predetermined pattern.
  • the serial / parallel converter (S / P) 328 converts a serial signal sequence (stream) into a parallel signal sequence. The number of parallel signal sequences may be determined according to the number of subcarriers.
  • Spreading section 330 performs code spreading by multiplying each of the parallel signal sequences by a predetermined spreading code. In this embodiment, two-dimensional spreading is performed, and the signal is spread in the time direction and the Z or frequency direction.
  • the control channel processing unit 304 performs baseband processing for transmitting control information data by the OFCDM method.
  • the convolutional encoder 342 performs code encoding for improving error tolerance of the control information data.
  • the QPSK modulator 344 modulates control information data using the QPSK modulation method. Any appropriate modulation scheme may be adopted, but since the amount of control information data is relatively small, the present embodiment employs a QPSK modulation scheme with a small number of modulation multi-levels.
  • Interleaver 346 rearranges the order in which the control information data is arranged according to a predetermined pattern.
  • a serial-parallel converter (SZP) 348 converts a serial signal sequence into a parallel signal sequence. The number of parallel signal sequences may be determined according to the number of subcarriers.
  • Spreading section 350 performs code spreading by multiplying each parallel signal sequence by a predetermined spreading code.
  • the multiplexing unit 306 multiplexes the processed traffic information data and the processed control information data. Multiplexing may be any of time multiplexing, frequency multiplexing, and code multiplexing.
  • a pilot channel is input to the multiplexing unit 306 and is also multiplexed.
  • the pilot channel is input to the serial / parallel conversion unit 348, and the pilot channel is multiplexed in the frequency axis direction (this will be described later). ;).
  • the fast inverse Fourier transform unit 308 performs fast inverse Fourier transform on the signal input thereto and performs OFDM modulation.
  • Guard inverter insertion section 310 creates a symbol in the OFDM scheme by adding a guard interval to the modulated signal. As is well known, the guard interval is obtained by duplicating the beginning or end of the symbol to be transmitted.
  • the digital-analog converter (DZA) 312 converts a baseband digital signal into an analog input. Convert to a digital signal.
  • FIG. 4 is a schematic block diagram (part 2) of the transmitter that transmits the sector beam, and shows the digital analog conversion unit 312 and subsequent parts (RF transmission unit) in FIG.
  • the RF transmission unit includes a quadrature modulator 402, a local oscillator 404, a non-frequency filter 406, a mixer 408, a local oscillator 410, a bandpass filter 412, and a power amplifier 414.
  • the quadrature modulator 402 generates an in-phase component (I) and a quadrature component (Q) having an intermediate frequency from the signal input thereto.
  • the bandpass filter 406 removes excess frequency components for the intermediate frequency band.
  • the mixer 408 uses the local oscillator 410 to convert (up-convert) an intermediate frequency signal into a high frequency signal.
  • the bandpass filter 412 removes excess frequency components.
  • the power amplifier 414 amplifies the power of the signal for wireless transmission from the antenna 416.
  • Traffic information data is encoded by a turbo encoder 322, modulated by a data modulation unit 324, rearranged by an interleaver 326, parallelized by a serial / parallel conversion 328, and subcarriers by a spreading unit 330 Diffused for each component.
  • control information data is encoded, modulated, interleaved, parallelized, and spread for each subcarrier component.
  • the spread data channel and control channel are multiplexed for each subcarrier by the multiplexing unit 326, OFDM modulation is performed by the fast inverse Fourier transform unit 308, and a guard interval is added to the modulated signal.
  • the baseband OFDM symbol is output.
  • the baseband signal is converted into an analog signal, subjected to quadrature modulation by the quadrature modulator 402 of the RF processing unit, appropriately amplified after band limitation, and wirelessly transmitted.
  • FIG. 5 shows a schematic block diagram of a receiver that receives a sector beam.
  • a receiver is typically provided in a mobile terminal, but may be provided in a base station. Although the receiver is described as receiving a sector beam for convenience of explanation, such a receiver may be used to receive other beams.
  • the receiver includes an antenna 502, a low noise amplifier 504, a mixer 506, a local oscillator 508, a band pass filter 510, an automatic gain control unit 512, a quadrature detector 514, a local oscillator 516, an analog digital Conversion unit 518, symbol timing detection unit 520, guard interval removal unit 522, fast Fourier transform unit 524, demultiplexer 526, channel estimation unit 528, despreading unit 530, and parallel-serial conversion Section (PZS) 532, despreading section 534, dintariba 536, turbo encoder 538, and Viterbi decoder 540.
  • PZS parallel-serial conversion Section
  • the low noise amplifier 504 appropriately amplifies the signal received by the antenna 502.
  • the amplified signal is converted to an intermediate frequency by mixer 506 and local oscillator 508 (down-conversion).
  • the band pass filter 510 removes unnecessary frequency components.
  • the automatic gain controller 512 controls the gain of the amplifier so that the signal level is properly maintained.
  • the quadrature detector 514 uses the local oscillator 516 to perform quadrature demodulation based on the in-phase component (I) and the quadrature component (Q) of the received signal.
  • the analog / digital conversion unit 518 converts an analog signal into a digital signal.
  • Symbol timing detection section 520 detects the timing of symbols (symbol boundaries) based on the digital signal!
  • Guard inverter removing section 522 removes a portion of the received signal power corresponding to the guard interval.
  • the fast Fourier transform section 524 performs fast Fourier transform on the input signal, and performs demodulation of the OFDM scheme.
  • the demultiplexer 526 separates the pilot channel, control channel, and data channel that are multiplexed with the received signal! /. This separation method is performed corresponding to multiplexing on the transmission side (contents of processing in the multiplexing unit 306 in FIG. 3).
  • Channel estimation section 528 estimates the state of the propagation path using the pilot channel and outputs a control signal for adjusting the amplitude and phase so as to compensate for channel fluctuation. This control signal is output for each subcarrier.
  • Receiveding section 530 despreads the channel channel after channel compensation for each subcarrier.
  • the code multiplex number is assumed to be C.
  • Parallel / serial converter (P / S) 532 converts a parallel signal sequence into a serial signal sequence.
  • the dintarber 536 changes the order in which signals are arranged according to a predetermined pattern.
  • the predetermined pattern corresponds to the reverse pattern of the reordering performed by the transmitting interleaver (326 in Fig. 3).
  • the turbo encoder 538 and the Viterbi decoder 540 decode the traffic information data and the control information data, respectively.
  • a signal received by the antenna is converted into a digital signal through processing such as amplification, frequency conversion, band limitation, quadrature demodulation, and the like in the RF receiver.
  • the signal from which the guard interval is removed is demodulated by the OFDM method by the fast Fourier transform unit 524.
  • the demodulated signal is separated into a pilot channel, a control channel, and a data channel by a separation unit 526.
  • the narrow channel is input to the channel estimator, and a control signal that compensates for variations in the propagation path is output for each subcarrier.
  • the data channel is compensated using a control signal, despread for each subcarrier, and converted to a serial signal.
  • the converted signal is rearranged by the dinger 526 in the reverse pattern to the rearrangement performed by the interleaver and decoded by the turbo decoder 538.
  • the control channel is compensated for channel fluctuation by the control signal, despread, and decoded by the Viterbi decoder 540. Thereafter, signal processing using the restored data and the control channel is performed.
  • FIG. 6 shows a schematic block diagram of a base station that uses multi-beams for transmission and reception. Such a transceiver is typically provided in a base station, but may be provided in a mobile terminal. Elements already described in FIG. 3 have the same reference numbers and will not be further described. In FIG. 6, the processing elements related to the control channel are omitted.
  • FIG. 6 shows a transmission weight setting unit 602, multiplexing units 604-1 to N with the number of antennas (N), N RF transmitting units 606-1 to N, and N RF receiving units 612— 1 to N, N separation units 614-1 to N, and L reception weight setting units 616-1 to L are depicted.
  • Transmission weight setting section 602 multiplies signals transmitted from N antennas by transmission weights (weight coefficients). This transmission weight is a fixed weight prepared in advance to realize multi-beam.
  • N multiplexing units 604-1 to N synthesize signals to be transmitted for each antenna.
  • the multiplex unit 604-1 processes a signal that also transmits the first antenna force by N data channel processing.
  • Multiplexer 604-2 collects N data channel processing unit powers and combines the signals transmitted from the second antenna.
  • N RF transmitters 606-1 to 606-N perform processing for transmitting a signal at a radio frequency for each antenna. The processing contents are generally the same as those described with reference to FIG. 4, and frequency conversion, band limitation, power amplification, and the like are performed.
  • the N RF receiving units 612-1 to N perform operations that are generally the reverse of those of the RF transmitting unit, and convert the signals received by the N antennas into signals suitable for baseband processing.
  • the N demultiplexing units 614-1 to 614 -N perform substantially the reverse operation of the multiplexing unit described above, and distribute the signals input thereto to the N data channel processing units, respectively.
  • the L reception weight setting units 616-1 to 616-1 to L multiply and multiply the signals received by N antenna forces by reception weights. This process is performed for each node, and in this embodiment, L multipath propagation paths are assumed. The combined signal for each path is supplied to a rake combiner (not shown). These processes are performed for each subcarrier. Similar to the transmission weight, the reception weight is a fixed weight prepared in advance to realize multi-beam. The transmission weight and the reception weight may be the same or different. For example, if the same frequency is used for transmission and reception, the same weight may be used for transmission and reception because the uplink and downlink link conditions are expected to be the same. On the other hand, when different frequencies are used for the uplink and downlink, different weights may be used because the propagation path conditions of the uplink and downlink may not be different.
  • a switched beam is one or more fixed directional beams included in a multi-beam. Therefore, a transmission weight that realizes a switched beam for a certain mobile terminal # 1 is a transmission weight related to a fixed directional beam (for example, the directivity direction is ⁇ ) corresponding to that mobile terminal # 1.
  • the transmission weight is set by the transmission weight multiplication unit 602 in the first data channel processing unit 302-1.
  • a transmission weight that realizes a switched beam for another mobile terminal # 2 is a transmission weight related to a fixed directional beam (for example, the directivity direction is ⁇ ) corresponding to the mobile terminal # 2.
  • the transmission weight is the second data
  • the transmission weight multiplier 602 in the channel processor 302-2 is set by the transmission weight multiplier 602 in the channel processor 302-2.
  • the switched beam is switched for each mobile terminal. Therefore, multiple Units 604-1 to 604 -N output only the signal related to the first mobile terminal at a certain time, and output only the signal related to the second mobile terminal at another time, and so on. Similar processing is performed.
  • a switched beam for the first mobile terminal is transmitted at a certain point in time
  • a switched beam for the second mobile terminal is transmitted at another point in time
  • the switched beam is switched in a time division manner in the same manner. It is done.
  • the demultiplexing unit provides the signals input to them at a certain point in time to the unit (typically, the data channel processing unit 302-1) that performs processing related to the first mobile terminal, and the second unit at the other point in time.
  • the processing related to the mobile terminal typically, the data channel processing unit 302-2
  • a signal received by each antenna is multiplied by a reception weight.
  • This reception weight is a weight that realizes a switched beam corresponding to the mobile terminal.
  • FIG. 7 shows a schematic block diagram of a base station that uses an adaptive directional beam for transmission and reception. Similar to the transceiver of FIG. 6, such a transceiver is typically provided in a base station, but may be provided in a mobile terminal. Elements already described in FIGS. 3 and 6 are given similar reference numbers and will not be further described. As explained at the beginning, in the adaptive directional beam, the directional direction and the like change adaptively according to the position of the mobile terminal. The change is not continuous with discrete switching between multiple fixed directional beams.
  • FIG. 7 shows a signal measurement unit 702, a transmission weight control unit 704, and a reception weight control unit 706.
  • the signal measurement unit 702 measures the reception power, the arrival direction, and the like of the signal that has received each antenna force, and outputs the measurement value to the transmission and reception weight control units 704 and 706.
  • Transmission weight control section 704 adjusts the transmission weight based on the measured value so as to further improve the signal quality.
  • the algorithm for this adjustment can be any suitable optimization algorithm for adaptive array antenna (AAA).
  • the transmission weight may be sequentially updated so that some evaluation function regarding the received signal quality reaches the minimum value.
  • reception weight control section 706 further improves the signal quality based on the measured value. Thus, the reception weight is adjusted.
  • a common control channel (2) an accompanying control channel, (3) a shared packet data channel, (4) a dedicated packet data channel, (5) a first common pilot channel, (6) a second All or part of the common pilot channel and (7) dedicated pilot channel are transmitted on the downlink.
  • the common control channel includes a broadcast channel (BCH), a paging channel (PCH), and a downlink access channel (FACH).
  • BCH broadcast channel
  • PCH paging channel
  • FACH downlink access channel
  • the common control channel includes control information related to processing at a relatively higher layer such as link setting and call control.
  • the associated control channel is relatively low, includes control information related to processing in the layer, and includes information necessary for demodulating the shared packet data channel.
  • the necessary information may include, for example, a packet number, modulation scheme, encoding scheme, transmission power control bit, retransmission control bit, and the like.
  • the shared packet data channel is a high-speed wireless resource shared among a plurality of users. Radio resources may be distinguished by frequency, code, transmission power, and the like. Wireless resource sharing may be done in time division multiplexing (TDM), frequency division multiplexing (FDM) and Z or code division multiplexing (CDM) systems! A specific mode of multiplexing will be described later with reference to FIGS. 14A-C and subsequent figures.
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • CDM code division multiplexing
  • AMC adaptive modulation and coding
  • ARQ automatic repeat request
  • the dedicated packet data channel is a radio resource dedicated to a specific user. Radio resources may be distinguished by frequency, code, transmission power, and the like. To achieve high-quality data transmission, adaptive modulation and coding (AMC), automatic retransmission (ARQ), etc. are adopted.
  • AMC adaptive modulation and coding
  • ARQ automatic retransmission
  • the first common pilot channel includes a known signal known on the transmission side and the reception side, and is transmitted by a sector beam.
  • the known signal may be referred to as a nolot signal, a reference signal, a training signal, or the like.
  • the first common pilot channel is used to estimate the sector beam propagation path. Used for etc.
  • the second common pilot channel includes a known signal known on the transmission side and the reception side, and is transmitted by multi-beams. That is, the second common pilot channel is transmitted by transmitting a known signal with each of a plurality of fixed directional beams. The second common pilot channel is used for estimating the propagation path of a certain fixed directional beam.
  • the dedicated pilot channel includes a known signal known on the transmitting side and the receiving side, and is transmitted with an adaptive directional beam.
  • the dedicated pilot channel is used for estimating the propagation path of the adaptive directional beam.
  • the contents of the signals (1) to (4) are unknown on at least one of the transmitting side and the receiving side, but the contents of the pilot channels (5) to (7) are Known for both sending and receiving.
  • FIG. 8 shows a downlink transmission scheme realized by an embodiment of the present invention.
  • This chart shows the four transmission methods 1 to 4, and each transmission method defines the beam used to transmit the above seven types of channels.
  • transmission method 1 transmission is performed using the common control channel, the first common pilot channel, and the accompanying control channel power sector beam (Fig. 1).
  • the common packet data channel, the dedicated packet data channel, and the second common pilot channel are transmitted by multi-beam or switched beam (Fig. 2).
  • the first common pilot channel is used to estimate the propagation path for the common control channel and the associated control channel.
  • the second common pilot channel is used to estimate the propagation path for the shared packet data channel and the dedicated packet data channel.
  • Individual pilot channels are not transmitted. Therefore, according to the transmission method 1, since it is not necessary to adaptively calculate the transmission weight, this is advantageous for a simple base station.
  • transmission scheme 2 transmission is performed using a common control channel, a first common pilot channel, and an accompanying control channel power sector beam.
  • the common packet data channel is transmitted by multi-beam, switched beam or adaptive directional beam.
  • the dedicated packet data channel and the dedicated pilot channel are transmitted with an adaptive directional beam.
  • the second common pilot channel is transmitted with multiple beams or switched beams.
  • the first common pilot channel is used to estimate the propagation path for the common control channel and the associated control channel. Used for.
  • the second common pilot channel is used to estimate the propagation path of the shared packet data channel transmitted by multibeam or switched beam.
  • the dedicated pilot channel is used to estimate the propagation path of the dedicated packet data channel and the shared packet data channel transmitted with an adaptive directional beam. Since transmission method 2 transmits an individual packet data channel using an adaptive directional beam, it can provide a higher quality service to the specific user.
  • the first common pilot channel and the dedicated pilot channel are not transmitted, and all other transmitted channels are transmitted by multibeams or switched beams.
  • Channel estimation by the second common pilot channel is performed for all of the propagation paths of the common control channel, associated control channel, shared packet data channel, and dedicated packet data channel.
  • the propagation path of any channel is also a force related to the fixed directional beam in the multi-beam. According to this method, it is not necessary to adaptively calculate the transmission weight, and the pilot channel can be reduced to one type. Since the resources and / or overhead for the pilot channel can be reduced, this method is advantageous from the viewpoint of information transmission efficiency.
  • the common control channel and the accompanying control channel force are transmitted by a multi-beam or a switched beam.
  • the shared packet data channel, dedicated packet data channel, and dedicated pilot channel are transmitted with an adaptive directional beam.
  • the first common pilot channel is not transmitted.
  • the second common pilot channel is transmitted with multiple beams or switched beams.
  • Channel estimation using the second common pilot channel is performed for the propagation paths of the common control channel and the associated common control channel.
  • Channel estimation using the dedicated pilot channel is performed for all the propagation paths of the shared packet data channel and the dedicated packet data channel. This method is also advantageous in that the first common pilot channel need not be transmitted. Since shared and dedicated packet data channels are transmitted with adaptive directional beams, the data channels can be transmitted with high quality.
  • the second common pilot transmitted by the fixed directional beam is used instead of the dedicated pilot channel.
  • a channel may be used.
  • send method 3 As with, the pilot channel can be reduced to one type.
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • CDM code division multiplexing
  • TDM is performed by switching multiple signals to be multiplexed one by one.
  • FDM and CDM are performed by adding multiple signals to be multiplexed.
  • FIG. 9A-E shows an example of a pilot channel and data channel multiplexing scheme.
  • FIG. 9A shows how the pilot and data channels are time multiplexed.
  • Figure 9B shows how the pilot and data channels are frequency multiplexed.
  • FIG. 9CD shows an example of multiplexing of the first or second common pilot channel, the dedicated pilot channel, and the data channel.
  • Figure 9C shows how the common and dedicated pilot channels and data channel power are time multiplexed.
  • Such multiplexing is particularly advantageous in a communication environment such as a hot spot (isolated cell) that employs a multi-carrier scheme in which code spreading is not performed in the downlink channel (the code spreading factor SF is 1).
  • the interference in its own cell that does not take into account the interference of adjacent cell forces (interference in other cells) can be made very small due to the orthogonality between the subcarriers. Therefore, it is advantageous not to perform code spreading in such a communication environment.
  • FIG. 9D shows a state in which common and dedicated pilot channels are code-multiplexed, and data channels are time-multiplexed with them. Also in this example, since the data channel is not code-multiplexed, an operation mode in which the code spreading factor SF is set to 1 in the data channel can be adopted as described with reference to FIG. 9C. Since fading in the frequency axis direction varies relatively greatly, it is desirable that the spreading of the individual and common pilot channels be performed in the time direction as much as possible. For this reason, in the example shown, the duration of the individual and common pilot channels is somewhat longer than in the case of FIG. 9C.
  • FIG. 9E shows a state in which dedicated pilot and data channels are code-multiplexed and a common pilot channel is time-multiplexed with them. Since dedicated pilot channels are assigned to each mobile terminal, it is desirable that a large number of dedicated pilot channels can be set. In this example, the duration of the individual pilot channel is longer than that shown in Figures 9C and 9D. Therefore, a large code spreading factor SF can be set, a large number of spreading codes can be secured, and a larger number of dedicated pilot channels can be prepared. Such multiplexing is advantageous, for example, in a multi-cell communication environment in which interference from adjacent cell forces (inter-cell interference) must be taken into account.
  • FIGS. 10A and 10B are diagrams (part 1) illustrating an example of a multiplexing method of a pilot channel, a control channel, and a data channel.
  • Figure 10A shows how pilot, control, and data channels are time multiplexed. As described above, it is preferable to multiplex in this way from the viewpoint of considering the influence of frequency selective fading.
  • FIG. 10B shows that the pilot and control channels are frequency multiplexed, the pilot and data channels are frequency multiplexed, and the control and data channels are time multiplexed.
  • FIG. 11A-B is a diagram (part 2) illustrating an example of a multiplexing method of the pilot channel, the control channel, and the data channel.
  • FIG. 11A shows how the pilot and control channels are frequency-multiplexed and the data channel is time-multiplexed.
  • a period of two symbols is required before the data channel, but the example of FIG. 11A is advantageous in that only a period of one symbol is required before the data channel.
  • Figure 11B shows the pie mouth
  • the control, control and data channels are time multiplexed and the control and data channels are frequency multiplexed.
  • FIG. 12A-B is a diagram (part 3) illustrating an example of a multiplexing method of the pilot channel, the control channel, and the data channel.
  • Figure 12A shows how the pilot channel, control and data channels are time multiplexed, and control and data channels are frequency multiplexed.
  • Figure 12B shows how pilot, control and data channels are frequency multiplexed
  • FIGS. 13A-B are diagrams (part 4) illustrating an example of a multiplexing method of the pilot channel, the control channel, and the data channel.
  • FIG. 13A shows how the pilot channel, the control and data channels are time-multiplexed, and the control and data channels are code-multiplexed.
  • FIG. 13B shows how the pilot channel, the control and data channels are frequency-multiplexed, and the control and data channels are code-multiplexed.
  • FIGS. 14A to 14C are diagrams (part 1) illustrating an example of a data channel multiplexing method.
  • the data channel power in one packet is shared by multiple users.
  • a period for transmitting one packet is called a transmission time interval (TTI), and the TTI may be a short period such as 0.5 milliseconds.
  • TTI transmission time interval
  • data channels within one packet are shared by multiple types of data channels such as voice data and image data, or by multiplexing traffic data with different quality of service (QoS). May be.
  • QoS quality of service
  • FIG. 14A shows a state in which a data channel is shared among users by a time division multiplexing method. Since the fading in the time direction is small if the TTI is short, this method is also preferable from the viewpoint of reducing the influence of frequency and fading in the time direction.
  • Figure 14B shows how the data channel is shared among users using frequency division multiplexing.
  • Figure 14C shows how the data channel is shared among users using the code division multiplexing method.
  • FIG. 15A-B is a diagram (part 2) illustrating an example of a data channel multiplexing scheme.
  • Figure 15 5A shares data channels among users using time and frequency division multiplexing It shows how to do. It should be noted that pilot channels and control channels are not drawn for simplicity.
  • the figure shows two types of blocks in the frequency direction and eight types of blocks in the time direction. For example, 100 subcarrier powers may be used separately for the first half and the second half.
  • Figure 15B shows the further interleaving in the frequency direction. Since each user's data channel is widely distributed in the frequency direction, a large interleaving effect (diversity effect) can be obtained.
  • FIGS. 16A to 16C are diagrams (part 3) illustrating an example of a data channel multiplexing method.
  • Figure 16A shows how data channels are shared between users using time and frequency division multiplexing. The figure shows two types of blocks in the time direction and eight types of blocks in the frequency direction. For example, the entire period of the data channel may be used separately in the first half and the second half.
  • Figure 16B shows the further interleaving in the time direction (the order in the frequency direction remains unchanged).
  • Figure 16C shows an interleaved pattern with arbitrary patterns in the two-dimensional domain of time and frequency.
  • FIGS. 17A to 17D are diagrams (part 4) illustrating an example of a data channel multiplexing method.
  • Figure 17A shows how data channels are shared between users using time and code division multiplexing. The figure shows two types of blocks in the code direction and eight types of blocks in the time direction.
  • Figure 17B shows the further interleaving.
  • Figure 17C shows how data channels are shared between users using frequency and code division multiplexing.
  • Figure 17D shows the further interleaving.
  • FIGS. 18A-B are diagrams (part 5) illustrating an example of a data channel multiplexing scheme.
  • Figure 18A shows how data channels are shared among users using time, frequency, and code division multiplexing.
  • two types of blocks are shown in the frequency and code directions, and eight types in the time direction.
  • Figure 18B shows the further interleaving in the frequency direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

 下りリンクチャネルの信号品質を向上させる送信装置は、制御チャネル、パイロットチャネル及びデータチャネルを送信する。本装置は、互いに異なる固定された指向方向を有する複数の固定指向性ビームより成るマルチビーム又は移動端末の位置に応じて変化する指向方向を有する可変指向性ビームで、前記データチャネルを送信する手段と、マルチビーム又は可変指向性ビームで、所定の既知信号を前記パイロットチャネルとして送信する手段とを備える。

Description

明 細 書
下りリンクチャネル用の送信装置及び送信方法
技術分野
[0001] 本発明は、無線通信の技術分野に関し、特に下りリンクチャネル用の送信装置及 び送信方法に関する。
背景技術
[0002] IMT- 2000 (International Mobile Telecommunications- 2000)に代表されるような第 3世代の通信方式では下りリンクの高速大容量ィ匕が特に必要とされ、例えば 5MHz の周波数帯域を用いて 2Mbps以上の情報伝送レートが実現されて 、る。し力しなが ら、更なる伝送レートの高速化、大容量ィ匕及び低コストィ匕が今後の通信システムには 要求される。また、移動端末の低消費電力化も必要になる。通信システムにおけるチ ャネル構成法を改善することで、信号伝送の高品質ィ匕を図る技術については、特許 文献 1に開示されている。
特許文献 1:特開 2003-259454号公報
発明の開示
発明が解決しょうとする課題
[0003] 本発明の課題は、下りリンクチャネルにおける信号品質を向上させる送信装置及び 送信方法を提供することである。
課題を解決するための手段
[0004] 本発明では、制御チャネル、パイロットチャネル及びデータチャネルを送信する送 信装置が使用される。本送信装置は、互いに異なる固定された指向方向を有する複 数の固定指向性ビームより成るマルチビーム又は移動端末の位置に応じて変化する 指向方向を有する可変指向性ビームで、前記データチャネルを送信する手段と、マ ルチビーム又は可変指向性ビームで、所定の既知信号を前記パイロットチャネルとし て送信する手段とを備える。
発明の効果
[0005] 本発明によれば、下りリンクチャネルにおける信号品質を向上させることができる。 図面の簡単な説明
[図 1]セクタビームを説明するための図である。
[図 2]マルチビーム及び適応指向性ビームを説明するための図である。
圆 3]セクタビームを送信する送信機の概略ブロック図(その 1)を示す。
圆 4]セクタビームを送信する送信機の概略ブロック図(その 2)を示す。
[図 5]セクタビームを受信する受信機の概略ブロック図を示す。
[図 6]マルチビームを送受信に使用する基地局の概略ブロック図を示す。
圆 7]適応指向性ビームを送受信に使用する基地局の概略ブロック図を示す。
圆 8]本発明の一実施例により実現される下りリンクの伝送方式を示す図表である。
[図 9A]パイロットチャネル及びデータチャネルの多重化方式の一例を示す図である。
[図 9B]パイロットチャネル及びデータチャネルの多重化方式の一例を示す図である。
[図 9C]パイロットチャネル及びデータチャネルの多重化方式の一例を示す図である。
[図 9D]パイロットチャネル及びデータチャネルの多重化方式の一例を示す図である。
[図 9E]パイロットチャネル及びデータチャネルの多重化方式の一例を示す図である。
[図 10A]パイロットチャネル、制御チャネル及びデータチャネルの多重化方式の一例 を示す図(その 1)である。
[図 10B]パイロットチャネル、制御チャネル及びデータチャネルの多重化方式の一例 を示す図(その 1)である。
[図 11A]パイロットチャネル、制御チャネル及びデータチャネルの多重化方式の一例 を示す図(その 2)である。
[図 11B]パイロットチャネル、制御チャネル及びデータチャネルの多重化方式の一例 を示す図(その 2)である。
[図 12A]パイロットチャネル、制御チャネル及びデータチャネルの多重化方式の一例 を示す図(その 3)である。
[図 12B]パイロットチャネル、制御チャネル及びデータチャネルの多重化方式の一例 を示す図(その 3)である。
[図 13A]パイロットチャネル、制御チャネル及びデータチャネルの多重化方式の一例 を示す図(その 4)である。 [図 13B]パイロットチャネル、制御チャネル及びデータチャネルの多重化方式の一例 を示す図(その 4)である。
[図 14A]データチャネルの多重化方式の一例を示す図(その 1)である。
[図 14B]データチャネルの多重化方式の一例を示す図(その 1)である。
[図 14C]データチャネルの多重化方式の一例を示す図(その 1)である。
[図 15A]データチャネルの多重化方式の一例を示す図(その 2)である。
[図 15B]データチャネルの多重化方式の一例を示す図(その 2)である。
[図 16A]データチャネルの多重化方式の一例を示す図(その 3)である。
[図 16B]データチャネルの多重化方式の一例を示す図(その 3)である。
[図 16C]データチャネルの多重化方式の一例を示す図(その 3)である。
[図 17A]データチャネルの多重化方式の一例を示す図(その 4)である。
[図 17B]データチャネルの多重化方式の一例を示す図(その 4)である。
[図 17C]データチャネルの多重化方式の一例を示す図(その 4)である。
[図 17D]データチャネルの多重化方式の一例を示す図(その 4)である。
[図 18A]データチャネルの多重化方式の一例を示す図(その 5)である。
[図 18B]データチャネルの多重化方式の一例を示す図(その 5)である。
符号の説明
302— 1〜N データチャネル処理部; 304 制御チャネル処理部; 306多重部
D
; 308 高速逆フーリエ変換部; 310 ガードインターバル揷入部; 312 ディジタ ルアナログ変換部(DZA) ; 322 ターボ符号器; 324 データ変調器; 326 ィ ンターリーバ; 328 直並列変換部(SZP) ; 330 拡散部; 342 畳込み符号器 ; 344 QPSK変調器; 346 インターリーバ; 348 直並列変換部(SZP) ; 35 0 拡散部;
402 Ε¾β^402 ; 404 ^ ^; 406 ノ ンドノスフイノレ夕; 408 ミ キサ; 410 局部発振器; 412 バンドパスフィルタ; 414 電力増幅器;
502 アンテナ; 504 低雑音増幅器; 506 ミキサ; 508 局部発振器; 510 帯域通過フィルタ; 512 自動利得制御部; 514 直交検波器; 516 局部発 振器; 518 アナログディジタル変換部; 520 シンボルタイミング検出部; 522 ガードインターバル除去部; 524 高速フーリエ変換部; 526 デマルチプレクサ; 528 チャネル推定部; 530 逆拡散部; 532 並直列変換部(PZS) ; 534 逆拡散部; 536 ディンタリーバ; 538 ターボ符号器; 540 ビタビデコーダ; 602 送信ウェイト設定部; 604— 1〜N 多重部; 606— 1〜N RF送信部; 6
12— 1〜N RF受信部; 614— 1〜N 分離部; 616— 1〜L 受信ウェイト設定 部;
702 信号測定部; 704 送信ウェイト制御部; 706 受信ウェイト制御部 発明を実施するための最良の形態
[0008] 本発明の一態様によれば、互いに異なる固定された指向方向を有する複数の固定 指向性ビームより成るマルチビーム又は移動端末の位置に応じて変化する指向方向 を有する可変指向性ビームで、所定の既知信号がパイロットチャネルとして送信され る。データチャネルは、マルチビーム又は可変指向性ビームで送信される。マルチビ ーム及び可変指向性ビームのようにビームの種類を複数用意し、伝送するチャネル に応じて適切なビームを使 、分けることができるので、伝送効率を含む信号品質を向 上させることができる。
[0009] 本発明の一態様によれば、所定の既知信号が、可変指向性ビームで、個別パイ口 ットチャネルとして移動端末毎に送信される。可変指向性ビームは、移動端末の位置 に応じて指向性が変化するので、その移動端末に高品質の信号を伝送することがで きる。
[0010] 本発明の一態様によれば、制御チャネル力 マルチビーム又は可変指向性ビーム で送信される。
[0011] 本発明の一態様によれば、可変指向性ビーム用の重み係数が、移動端末の位置 に応じて適応的に算出される。これにより、移動端末の位置に最適に指向するビーム で、信号を伝送することができる。
[0012] 本発明の一態様によれば、可変指向性ビームが、 1以上の固定指向性ビームを切 り換えることによって生成される。マルチビーム中の固定指向性ビームの重み係数は 、固定ウェイトであるので、重み係数を新たに算出せずに、移動端末の位置に応じて ビームを簡易に指向させることができる。 [0013] 本発明の一態様によれば、パイロットチャネル及びデータチャネルが時分割多重化 方式又は周波数分割多重化方式で多重化される。
[0014] 本発明の一態様によれば、制御チャネルとデータチャネルが時分割多重化又は符 号分割多重化方式で多重化される。
[0015] 本発明の一態様によれば、制御チャネル力 パイロットチャネル又はデータチヤネ ルと周波数分割多重化方式で多重化される。
[0016] 本発明の一態様によれば、データチャネルに含まれる複数のトラフィックデータが、 時分割多重化方式、周波数分割多重化方式及び符号分割多重化方式のうちの 1以 上の方式で多重化される。
[0017] 本発明の一態様によれば、複数のトラフィックデータが、時間、周波数及び符号の 1 以上に関してインターリーブされる。これにより、時間、周波数及び符号の 1以上に関 するダイバーシチ効果が得られ、信号の伝送品質を更に向上させることができる。 実施例 1
[0018] [ビーム]
本発明の一実施例では、下りリンクにおける各種のチャネル力 4種類のビームの 1 つ以上を用いて基地局から移動端末へ伝送される。 4種類のビームには、(1)セクタ ビーム、(2)マルチビーム、(3)スィッチトビーム及び (4)適応指向性ビームが含まれ る。
[0019] (1)セクタビームは、基地局が担当するセル又はセクタ全域に広がるアンテナ利得 パターンを実現する指向性ビームである。図 1には、 120度の広がりを有するセクタ 全域に対するセクタビーム(のアンテナ利得パターン)が破線で描かれて ヽる。
[0020] (2)マルチビームは、互いに異なる固定された指向方向を有する複数の固定指向 性ビームを含む。それら複数の固定指向性ビームで 1つのセクタをカバーするように ビーム数が設定される。図 2には、破線で示される N個の固定指向性ビームで 1つの セクタがカバーされる様子が示されて 、る。
[0021] (3)スィッチトビームは、マルチビームに含まれる 1以上の固定指向性ビームを、移 動端末の位置に応じて切り換えることによって生成される指向性ビーム (切換指向性 ビームと呼んでもよい。)である。例えば、移動端末が、図 2の点 Pから点 Qに移動した とすると、スィッチトビームは、当初はビーム 1に等しいが、後にビーム 3に切り換えら れる。また、ビーム 1とビーム 2の双方に同程度に近い移動端末 (例えば、点 R)に対 しては、ビーム 1とビーム 2の合成された指向性ビームで、その移動端末に対するスィ ツチトビームを形成してもよ 、。
[0022] (4)適応指向性ビームでは、そのビームを実現するために各アンテナに設定される 重み係数が、移動端末の位置に応じて適応的に算出される。スィッチトビームも適応 指向性ビームも移動端末の位置に応じて指向方向が変化する点では共通するが、 適応指向性ビームは、ビームの重み係数が予め設定されておらず逐次算出される点 で、スィッチトビームと異なる。図 2では、適応指向性ビームが実線で描かれている。
[0023] [装置構成]
図 3は、セクタビームを送信する送信機の概略ブロック図(その 1)を示す。この送信 機は典型的には基地局に設けられるが、同様の送信機を移動端末に備えてもよい。 基地局は、直交周波数符号分割多重化 (OFCDM)方式の通信システムに使用され る。基地局は、 N個のデータチャネル処理部 302— 1〜Nと、制御チャネル処理部
D D
304と、多重部 306と、高速逆フーリエ変換部 308と、ガードインターバル揷入部 310 と、ディジタルアナログ変換部(DZA) 312とを有する。 N個のデータチャネル処理
D
部 302— 1〜Nは同様な構成及び機能を有するので、 302— 1がそれらを代表して
D
説明される。データチャネル処理部 302— 1は、ターボ符号器 322と、データ変調器 324と、インターリーバ 326と、直並列変換部(SZP) 328と、拡散部 330とを有する。 制御チャネル処理部 304は、畳込み符号器 342と、 QPSK変調器 344と、インターリ ーバ 346と、直並列変換部(SZP) 348と、拡散部 350とを有する。尚、符号拡散を 行わない直交周波数多重化 (OFDM)方式が採用される他の実施例では、拡散部 3 30, 350は省略される。
[0024] N個のデータチャネル処理部 302— 1〜Nは、トラフィック情報データを OFCDM
D D
方式で伝送するためのベースバンド処理を行う。ターボ符号器 322は、トラフィック情 報データの誤り耐性を高めるための符号ィ匕を行う。データ変調器 324は、 QPSK、 1 6QAM、 64QAM等のような適切な変調方式で、トラフィック情報データを変調する 。適応変調符号化(AMC : Adaptive Modulation and Coding)が行われる場 合には、この変調方式は適宜変更される。インターリーバ 326は、トラフィック情報デ ータの並ぶ順序を所定のパターンに従って並べ換える。直並列変換部 (S/P) 328 は、直列的な信号系列 (ストリーム)を並列的な信号系列に変換する。並列的な信号 系列数は、サブキャリア数に応じて決定されてもよい。拡散部 330は、並列的な信号 系列の各々に所定の拡散符号を乗算することで、符号拡散を行う。本実施例では 2 次元拡散が行われ、時間方向及び Z又は周波数方向に信号が拡散される。
[0025] 制御チャネル処理部 304は、制御情報データを OFCDM方式で伝送するための ベースバンド処理を行う。畳込み符号器 342は、制御情報データの誤り耐性を高め るための符号ィ匕を行う。 QPSK変調器 344は、制御情報データを QPSK変調方式で 変調する。適切ないかなる変調方式が採用されてもよいが、制御情報データの情報 量は比較的少ないので、本実施例では、変調多値数の少ない QPSK変調方式が採 用されている。インターリーバ 346は、制御情報データの並ぶ順序を所定のパターン に従って並べ換える。直並列変換部(SZP) 348は、直列的な信号系列を並列的な 信号系列に変換する。並列的な信号系列数は、サブキャリア数に応じて決定されて もよい。拡散部 350は、並列的な信号系列の各々に所定の拡散符号を乗算すること で、符号拡散を行う。
[0026] 多重部 306は、処理済みのトラフィック情報データと、処理済みの制御情報データ とを多重化する。多重化は、時間多重、周波数多重及び符号多重の何れの方式でも よい。本実施例では、多重化部 306に、パイロットチャネルが入力され、これも多重化 される。他の実施例では、図中破線で示されるように、パイロットチャネルが直並列変 換部 348に入力され、パイロットチャネルが周波数軸方向に多重化される(これにつ いては、後述される。;)。
[0027] 高速逆フーリエ変換部 308は、そこに入力された信号を高速逆フーリエ変換し、 O FDM方式の変調を行う。
[0028] ガードインターノ レ揷入部 310は、変調済みの信号にガードインターバルを付加す ることで、 OFDM方式におけるシンボルを作成する。周知のように、ガードインターバ ルは、伝送するシンボルの先頭又は末尾の一部を複製することによって得られる。
[0029] ディジタルアナログ変換部(DZA) 312は、ベースバンドのディジタル信号をアナ口 グ信号に変換する。
[0030] 図 4は、セクタビームを送信する送信機の概略ブロック図(その 2)を示し、図 3のディ ジタルアナログ変換部 312以降の部分 (RF送信部)を示す。 RF送信部は、直交変 調器 402と、局咅発振器 404と、ノ ンドノ スフイノレタ 406と、ミキサ 408と、局咅発振 器 410と、バンドパスフィルタ 412と、電力増幅器 414とを有する。
[0031] 直交変調器 402は、そこに入力された信号から、中間周波数の同相成分 (I)及び 直交成分 (Q)を生成する。バンドパスフィルタ 406は、中間周波数帯域に対する余 分な周波数成分を除去する。ミキサ 408は、局部発振器 410を用いて、中間周波数 の信号を高周波数の信号に変換 (アップコンバート)する。バンドパスフィルタ 412は 余分な周波数成分を除去する。電力増幅器 414は、アンテナ 416から無線送信を行 うために、信号の電力を増幅する。
[0032] トラフィック情報データは、ターボ符号器 322で符号ィ匕され、データ変調部 324で変 調され、インターリーバ 326で並べ換えられ、直並列変翻328で並列化され、拡散 部 330でサブキャリア成分毎に拡散される。制御情報データも同様に、符号化され、 変調され、インターリーブされ、並列化され、サブキャリア成分毎に拡散される。拡散 後のデータチャネル及び制御チャネルは、多重部 326でサブキャリア毎に多重化さ れ、高速逆フーリエ変換部 308で OFDM方式の変調が行われ、変調後の信号にガ ードインターバルが付カ卩され、ベースバンドの OFDMシンボルが出力される。ベース バンドの信号は、アナログ信号に変換され、 RF処理部の直交変調器 402で直交変 調され、帯域制限の後に適切に増幅されて無線送信される。
[0033] 図 5は、セクタビームを受信する受信機の概略ブロック図を示す。このような受信機 は、典型的には移動端末に設けられるが、基地局に備えられてもよい。受信機は、説 明の便宜上セクタビームを受信するように説明されるが、このような受信機は、他のビ ームの受信に使用されてもよい。受信機は、アンテナ 502と、低雑音増幅器 504と、ミ キサ 506と、局部発振器 508と、帯域通過フィルタ 510と、自動利得制御部 512と、 直交検波器 514と、局部発振器 516と、アナログディジタル変換部 518と、シンボル タイミング検出部 520と、ガードインターバル除去部 522と、高速フーリエ変換部 524 と、デマルチプレクサ 526と、チャネル推定部 528と、逆拡散部 530と、並直列変換 部(PZS) 532と、逆拡散部 534と、ディンタリーバ 536と、ターボ符号器 538と、ビタ ビデコーダ 540とを有する。
[0034] 低雑音増幅器 504は、アンテナ 502で受信した信号を適切に増幅する。増幅後の 信号は、ミキサ 506及び局部発振器 508により中間周波数に変換される(ダウンコン バート)。帯域通過フィルタ 510は、不要な周波数成分を除去する。自動利得制御部 512は、信号レベルが適切に維持されるように、増幅器の利得が制御される。直交検 波器 514は、局部発振器 516を用いて、受信した信号の同相成分 (I)及び直交成分 (Q)に基づいて、直交復調する。アナログディジタル変換部 518は、アナログ信号を ディジタル信号に変換する。
[0035] シンボルタイミング検出部 520は、ディジタル信号に基づ!/、て、シンボル(シンボル 境界)のタイミングを検出する。
[0036] ガードインターノ レ除去部 522は、受信した信号力もガードインターバルに相当す る部分を除去する。
[0037] 高速フーリエ変換部 524は、入力された信号を高速フーリエ変換し、 OFDM方式 の復調を行う。
[0038] デマルチプレクサ 526は、受信した信号に多重化されて!/、るパイロットチャネル、制 御チャネル及びデータチャネルを分離する。この分離方法は、送信側の多重化(図 3 の多重部 306での処理内容)に対応して行われる。
[0039] チャネル推定部 528は、パイロットチャネルを用いて伝搬路の状況を推定し、チヤネ ル変動を補償するように、振幅及び位相を調整するための制御信号を出力する。こ の制御信号は、サブキャリア毎に出力される。
[0040] 逆拡散部 530は、チャネル補償済みのデータチャネルをサブキャリア毎に逆拡散 する。コード多重数は C であるとする。
mux
[0041] 並直列変換部 (P/S) 532は、並列的な信号系列を直列の信号系列に変換する。
[0042] 逆拡散部 534は、チャネル補償済みの制御チャネルを逆拡散する。
[0043] ディンタリーバ 536は、信号の並ぶ順序を所定のパターンに従って変更する。所定 のパターンは、送信側のインターリーバ(図 3の 326)で行われる並べ換えの逆パター ンに相当する。 [0044] ターボ符号器 538及びビタビデコーダ 540は、トラフィック情報データ及び制御情 報データをそれぞれ復号する。
[0045] アンテナで受信された信号は、 RF受信部内で増幅、周波数変換、帯域制限、直交 復調等の処理を経てディジタル信号に変換される。ガードインターバルの除去された 信号に対して、高速フーリエ変換部 524によって OFDM方式の復調が行われる。復 調後の信号は、分離部 526でパイロットチャネル、制御チャネル及びデータチャネル にそれぞれ分離される。ノ ィロットチャネルは、チャネル推定部に入力され、伝搬路 の変動を補償する制御信号がそこ力 サブキャリア毎に出力される。データチャネル は制御信号を用いて補償され、サブキャリア毎に逆拡散され、直列的な信号に変換 される。変換後の信号は、ディンタリーバ 526で、インターリーバで施された並べ換え と逆パターンで並べ換えられ、ターボ復号器 538で復号される。制御チャネルも同様 に、制御信号によりチャネル変動が補償され、逆拡散され、ビタビデコーダ 540で復 号される。以後、復元されたデータ及び制御チャネルを利用する信号処理が行われ る。
[0046] 図 6は、マルチビームを送受信に使用する基地局の概略ブロック図を示す。このよう な送受信機は、典型的には基地局に設けられるが、移動端末に設けられてもよい。 図 3で説明済みの要素については同じ参照番号が付され、更には説明されない。図 6では、制御チャネルに関する処理要素は省略されている。図 6には、送信ウェイト設 定部 602と、アンテナ数(N)個の多重部 604— 1〜Nと、 N個の RF送信部 606— 1 〜Nと、 N個の RF受信部 612—1〜Nと、 N個の分離部 614— 1〜Nと、 L個の受信 ウェイト設定部 616— 1〜Lとが描かれている。
[0047] 送信ウェイト設定部 602は、 N個のアンテナから送信される信号に送信ウェイト(重 み係数)をそれぞれ乗算する。この送信ウェイトは、マルチビームを実現するように予 め用意された固定ウェイトである。
[0048] N個の多重部 604— 1〜Nは、送信する信号をアンテナ毎に合成する。例えば、多 重部 604— 1は、第 1のアンテナ力も送信する信号を、 N個のデータチャネル処理
D
部から収集し、合成する。多重部 604— 2は、第 2のアンテナから送信する信号を、 N 個のデータチャネル処理部力 収集し、合成する。 [0049] N個の RF送信部 606— 1〜Nは、信号を無線周波数で送信するための処理をアン テナ毎に行う。処理内容は、概して図 4に関して説明されてものと同様であり、周波数 変換、帯域制限、電力増幅等が行われる。
[0050] N個の RF受信部 612— 1〜Nは、 RF送信部と概ね逆の動作を行い、 N個のアンテ ナで受信した信号をベースバンドでの処理に相応しい信号に変換する。
[0051] N個の分離部 614— 1〜Nは、上記の多重部と概ね逆の動作を行い、そこに入力さ れた信号を N個のデータチャネル処理部にそれぞれ分配する。
D
[0052] L個の受信ウェイト設定部 616— 1〜Lは、 N個のアンテナ力も受信された信号の各 々に受信ウェイトを乗算し、合成する。この処理はノ ス毎に行われ、本実施例では L 個のマルチパス伝搬経路が想定されている。パス毎の合成後の信号は、不図示のレ ーク合成器 (Rake combiner)へ与えられる。これらの処理は、サブキャリア毎に行 われる。受信ウェイトは、送信ウェイトと同様に、マルチビームを実現するように予め 用意された固定ウェイトである。送信ウェイト及び受信ウェイトは同じでもよいし、異な つていてもよい。例えば、送受信に同じ周波数が使用される場合は、上り及び下りリン クの伝搬路状況は同様であることが予想されるので、送受に同じウェイトが使用され てもよい。逆に、上下リンクに異なる周波数が使用される場合には、上り及び下りリン クの伝搬路状況が異なる力もしれないので、異なるウェイトが使用されてもよい。
[0053] 基地局が、スィッチトビームを送受信に使用する場合も、図 6に示される処理要素が 使用される。但し、送信及び受信ウェイトや多重部及び分離部等が異なる。冒頭で 説明したように、スィッチトビームは、マルチビームに含まれる 1以上の固定指向性ビ ームである。従って、ある移動端末 # 1に対するスィッチトビームを実現する送信ゥェ イトは、その移動端末 # 1に対応する固定指向性ビーム (例えば、指向方向が Θ )に 関する送信ウェイトである。その送信ウェイトが、第 1のデータチャネル処理部 302— 1内の送信ウェイト乗算部 602で設定される。別の移動端末 # 2に対するスィッチトビ ームを実現する送信ウェイトは、その移動端末 # 2に対応する固定指向性ビーム (例 えば、指向方向が Θ )に関する送信ウェイトである。その送信ウェイトが、第 2のデー
2
タチャネル処理部 302— 2内の送信ウェイト乗算部 602で設定される。スィッチトビー ムが使用される場合には、移動端末毎にスィッチトビームを切り換える。従って、多重 部 604— 1〜Nは、ある時点では第 1の移動端末に関する信号のみを出力し、別の 時点では第 2の移動端末に関する信号のみを出力する、以下同様に、他の移動端 末に関しても同様の処理が行われる。これにより、ある時点では第 1の移動端末に関 するスィッチトビームが送信され、別の時点では第 2の移動端末に関するスィッチトビ ームが送信され、以下同様に、スィッチトビームが時分割で切り換えられる。
[0054] 受信の場合は、上記の送信に関する処理と概ね逆の処理が行われる。即ち、分離 部は、ある時点でそれらに入力された信号を第 1の移動端末に関する処理を行う部 分 (典型的には、データチャネル処理部 302—1)に与え、別の時点では第 2の移動 端末に関する処理を行う部分 (典型的には、データチャネル処理部 302— 2)に与え 、以下同様な処理が行われる。データチャネル処理部内では、各アンテナで受信さ れた信号に、受信ウェイトが乗算される。この受信ウェイトは、移動端末に対応するス イッチトビームを実現するウェイトである。
[0055] 図 7は、適応指向性ビームを送受信に使用する基地局の概略ブロック図を示す。図 6の送受信機と同様に、このような送受信機は、典型的には基地局に設けられるが、 移動端末に設けられてもよい。図 3及び図 6で説明済みの要素については同様の参 照番号が付され、更には説明されない。冒頭で説明したように、適応指向性ビームで は、移動端末の位置に応じて指向方向等が適応的に変化する。その変化は、複数 の固定指向性ビーム間の離散的な切換ではなぐ連続的なものである。図 7には、信 号測定部 702と、送信ウェイト制御部 704と、受信ウェイト制御部 706とが示されてい る。
[0056] 信号測定部 702は、各アンテナ力も受信した信号の受信電力や到来方向等を測 定し、測定値を送信及び受信ウェイト制御部 704, 706に出力する。
[0057] 送信ウェイト制御部 704は、測定値に基づいて、信号品質を更に良好にするように 送信ウェイトを調整する。この調整を行うアルゴリズムは、適応アレーアンテナ (AAA : adaptive array antenna)に関する適切ないかなる最適化アルゴリズムでもよい
。例えば、受信信号品質に関する何らかの評価関数が最小値に到達するように、送 信ウェイトが逐次的に更新されてもよい。
[0058] 受信ウェイト制御部 706でも同様に、測定値に基づいて、信号品質を更に良好に するように受信ウェイトが調整される。
[0059] [送信方法]
図 3乃至図 7に関して説明された装置を用いることで、信号の送受信に各種のビー ムを使用することができる。本実施例では、(1)共通制御チャネル、(2)付随制御チ ャネル、(3)共有パケットデータチャネル、(4)個別パケットデータチャネル、(5)第 1 共通パイロットチャネル、(6)第 2共通パイロットチャネル及び(7)個別パイロットチヤ ネルの全部又は一部力 下りリンクで伝送される。
[0060] (1)共通制御チャネルは、報知チャネル(BCH)、ページングチャネル(PCH)及び 下りリンクアクセスチャネル (FACH)を含む。共通制御チャネルは、リンク設定や呼 制御等の比較的高いレイヤでの処理に関する制御情報を含む。
[0061] (2)付随制御チャネルは、比較的低!、レイヤでの処理に関する制御情報を含み、 共有パケットデータチャネルを復調するのに必要な情報を含む。必要な情報には、 例えば、パケット番号、変調方式、符号化方式、送信電力制御ビット、再送制御ビット 等が含まれてもよい。
[0062] (3)共有パケットデータチャネルは、複数のユーザ間で共有される高速の無線リソ ースである。無線リソースは、周波数、符号、送信電力等で区別されてもよい。無線リ ソースの共有は、時間分割多重化 (TDM)、周波数分割多重化 (FDM)及び Z又は 符号分割多重化 (CDM)方式で行われてもよ!/ヽ。多重化の具体的な態様につ!ヽて は、図 14A— C以降の図を参照しながら後述される。高品質なデータ伝送を実現す るため、適応変調符号化 (AMC)方式、自動再送 (ARQ: Automatic Repeat Re quest)方式等が採用される。
[0063] (4)個別パケットデータチャネルは、特定のユーザに専用に割り当てられる無線リソ ースである。無線リソースは、周波数、符号、送信電力等で区別されてもよい。高品 質なデータ伝送を実現するため、適応変調符号化 (AMC)方式、自動再送 (ARQ) 方式等が採用される。
[0064] (5)第 1共通パイロットチャネルは、送信側及び受信側で既知の既知信号を含み、 セクタビームで伝送される。既知信号は、ノ ィロット信号、参照信号、トレーニング信 号等と呼ばれてもよい。第 1共通パイロットチャネルは、セクタビームの伝搬路の推定 等に使用される。
[0065] (6)第 2共通パイロットチャネルは、送信側及び受信側で既知の既知信号を含み、 マルチビームで伝送される。即ち、複数の固定指向性ビームの各々で、既知信号を 送信することによって、第 2共通パイロットチャネルが伝送される。第 2共通パイロット チャネルは、ある固定指向性ビームの伝搬路の推定等に使用される。
[0066] (7)個別パイロットチャネルは、送信側及び受信側で既知の既知信号を含み、適応 指向性ビームで伝送される。個別パイロットチャネルは、適応指向性ビームの伝搬路 の推定等に使用される。
[0067] 概して、( 1)〜 (4)の信号の内容は、送信側及び受信側の少なくとも一方で未知で あるが、(5)〜(7)のパイロットチャネルの内容は、通信開始前に送受双方で既知で ある。
[0068] 図 8は、本発明の一実施例により実現される下りリンクの伝送方式を示す。この図表 は、 4通りの送信方式 1〜4を示し、各送信方式は、上記の 7種類のチャネルをどのよ うなビームで送信するかを定める。送信方式 1では、共通制御チャネル、第 1共通パ ィロットチャネル及び付随制御チャネル力 セクタビーム(図 1)で送信される。共通パ ケットデータチャネル、個別パケットデータチャネル及び第 2共通パイロットチャネル は、マルチビーム又はスィッチトビーム(図 2)で送信される。第 1共通パイロットチヤネ ルは、共通制御チャネル及び付随制御チャネルに関する伝搬路を推定するために 使用される。第 2共通パイロットチャネルは、共有パケットデータチャネル及び個別パ ケットデータチャネルに関する伝搬路を推定するために使用される。個別パイロットチ ャネルは伝送されない。従って、送信方式 1によれば、送信ウェイトを適応的に演算 する必要がないので、これは、簡易な基地局に有利である。
[0069] 送信方式 2では、共通制御チャネル、第 1共通パイロットチャネル及び付随制御チ ャネル力 セクタビームで送信される。共通パケットデータチャネルは、マルチビーム 、スィッチトビーム又は適応指向性ビームで送信される。個別パケットデータチャネル 及び個別パイロットチャネルは、適応指向性ビームで送信される。第 2共通パイロット チャネルは、マルチビーム又はスィッチトビームで送信される。第 1共通パイロットチヤ ネルは、共通制御チャネル及び付随制御チャネルに関する伝搬路を推定するため に使用される。第 2共通パイロットチャネルは、マルチビーム又はスィッチトビームで 伝送される共有パケットデータチャネルの伝搬路を推定するために使用される。個別 パイロットチャネルは、個別パケットデータチャネル及び適応指向性ビームで送信さ れる共有パケットデータチャネルの伝搬路を推定するために使用される。送信方式 2 は、個別パケットデータチャネルを適応指向性ビームで送信するので、その特定のュ 一ザに更に高品質のサービスを提供することができる。
[0070] 送信方式 3では、第 1共通パイロットチャネル及び個別パイロットチャネルが送信さ れず、送信される他のチャネルは総てマルチビーム又はスィッチトビームで送信され る。共通制御チャネル、付随制御チャネル、共有パケットデータチャネル及び個別パ ケットデータチャネルの伝搬路の総てに関して、第 2共通ノ ィロットチャネルによるチ ャネル推定が行われる。何れのチャネルの伝搬路も、マルチビーム中の固定指向性 ビームに関するものだ力もである。この方式によれば、送信ウェイトを適応的に演算 する必要がないことに加えて、パイロットチャネルを 1種類に減らすことができる。パイ ロットチャネルのためのリソース及び/又はオーバーヘッドが少なくて済むので、この 方式は、情報の伝送効率等の観点力 有利である。
[0071] 送信方式 4では、共通制御チャネル及び付随制御チャネル力 マルチビーム又は スィッチトビームで送信される。共有パケットデータチャネル、個別パケットデータチヤ ネル及び個別パイロットチャネルは、適応指向性ビームで送信される。第 1共通パイ ロットチャネルは送信されない。第 2共通パイロットチャネルは、マルチビーム又はスィ ツチトビームで送信される。共通制御チャネル及び付随共通制御チャネルの伝搬路 に関して、第 2共通パイロットチャネルによるチャネル推定が行われる。共有パケット データチャネル及び個別パケットデータチャネルの伝搬路の総てに関して、個別パイ ロットチャネルによるチャネル推定が行われる。この方式も、第 1共通パイロットチヤネ ルを送信しなくて済む点で有利である。共有及び個別パケットデータチャネルは適応 指向性ビームで送信されるので、データチャネルを高品質に伝送することができる。 なお、適応指向性ビームの伝搬路が、何れかの固定指向性ビームの伝搬路で近似 することにするならば、個別パイロットチャネルの代わりに、その固定指向性ビームで 伝送された第 2共通パイロットチャネルが利用されてもよい。その場合は、送信方式 3 と同様に、パイロットチャネルを 1種類に減らすことができる。
実施例 2
[0072] 次に、(第 1共通、第 2共通又は個別)パイロットチャネル、(共通又は付随)制御チ ャネル及び (共通又は個別)データチャネルの多重化方式が説明される。多重化は、 時間分割多重化 (TDM)、周波数分割多重化 (FDM)及び符号分割多重化 (CDM )の 1つ以上を用いて行われる。 TDM及び CDMは、図 3, 6, 7の送信機中の多重 部 306等で行われる。これに応じて、受信機における多重化された信号の分離は、 図 5の分離部 526等で行われる。 FDMは、図 3, 6, 7の送信機中の直並列変換部 3 28, 348等で行われる。これに応じて、受信機では図 5の並直列変換部 532等で、 多重化された信号の分離が行われる。 TDMは、多重化される複数の信号を 1つず つ切り換えることで行われる力 FDM及び CDMは、多重化される複数の信号を加 算することで行われる。以下に多重化の様々な態様が説明されるが、これらは単なる 一例であり、限定的に列挙されたものではないことに留意を要する。
[0073] 図 9A— Eは、パイロットチャネル及びデータチャネルの多重化方式の一例を示す。
図 9Aは、パイロット及びデータチャネルが時間多重される様子を示す。周波数選択 性フェージングの影響が強い場合は、このように、パイロットチャネルを周波数方向に 沿って挿入した方が有利である。周波数方向にインターリーブを施すことで、伝送品 質の劣化を軽減できるからである。図 9Bは、パイロット及びデータチャネルが周波数 多重される様子を示す。
[0074] 図 9C Dは、第 1又は第 2共通ノ ィロットチャネルと、個別パイロットチャネルと、デ ータチャネルとの多重化の一例を示す。図 9Cは、共通及び個別パイロットチャネル 並びにデータチャネル力 時間多重される様子を示す。このような多重化は、下りチ ャネルに符号拡散を行わない (符号拡散率 SFが 1の)マルチキャリア方式を採用する ホットスポット (孤立セル)のような通信環境に特に有利である。孤立セルでは、隣接 するセル力 の干渉 (他セル干渉)は考慮しなくてよぐ自セル内の干渉は、サブキヤ リア間の直交性によって非常に小さくできる。従って、このような通信環境では、符号 拡散を行わない方が有利である。符号拡散を行うと (符号拡散率 SFを 1より大きく設 定すると)、自セル内の干渉が大きくなるからである。また、フ ージングは、時間軸及 び周波数軸の双方で生じる可能性がある力 周波数方向のフ ージングは、時間方 向のそれより変化が激しいことが多い。従って、周波数多重を行うよりも、時間多重し た方が、伝送品質の劣化を抑制できる。
[0075] 図 9Dは、共通及び個別パイロットチャネルを符号多重し、且つそれらとデータチヤ ネルを時間多重する様子を示す。この例でも、データチャネルは符号多重されてい ないので、図 9Cに関して説明したのと同様に、データチャネルで符号拡散率 SFを 1 にする動作モードを採用することができる。周波数軸方向のフェージングは比較的大 きく変動するので、個別及び共通パイロットチャネルの拡散は、なるべく時間方向に 沿って行われることが望ましい。このため、図示の例では、図 9Cの場合よりも、個別 及び共通パイロットチャネルの持続時間が幾分長くなつている。
[0076] 図 9Eは、個別パイロット及びデータチャネルを符号多重し、それらと共通パイロット チャネルを時間多重する様子を示す。個別パイロットチャネルは、移動端末毎に割り 当てられるので、数多く設定できることが望ましい。この例では、個別パイロットチヤネ ルの持続時間が、図 9C, 9Dに示したものより長い。従って、符号拡散率 SFを大きく 設定し、多数の拡散符号を確保し、より多くの個別パイロットチャネルを用意すること ができる。このような多重化は、例えば、隣接するセル力 の干渉 (他セル干渉)に配 慮しなければならないマルチセル構成の通信環境に好都合である。
[0077] 図 10A, 10Bは、パイロットチャネル、制御チャネル及びデータチャネルの多重化 方式の一例を示す図(その 1)である。図 10Aは、パイロット、制御及びデータチヤネ ルが時間多重される様子を示す。上述したように、周波数選択性フェージングの影響 に配慮する観点からは、このように多重化するのが好ましい。図 10Bは、パイロット及 び制御チャネルが周波数多重され、パイロット及びデータチャネルが周波数多重さ れ、制御及びデータチャネルが時間多重される様子を示す。
[0078] 図 11A— Bは、パイロットチャネル、制御チャネル及びデータチャネルの多重化方 式の一例を示す図(その 2)である。図 11Aは、パイロット及び制御チャネルが周波数 多重され、それらとデータチャネルとが時間多重される様子を示す。図 10Aではデー タチャネルの前に 2シンボル分の期間が必要とされているが、図 11Aの例ではデータ チャネルの前に 1シンボル分の期間しか要しない点で有利である。図 11Bは、パイ口 ット、制御及びデータチャネルが時間多重され、制御及びデータチャネルが周波数 多重される様子を示す。
[0079] 図 12A— Bは、パイロットチャネル、制御チャネル及びデータチャネルの多重化方 式の一例を示す図(その 3)である。図 12Aは、パイロットチャネルと、制御及びデータ チャネルとが時間多重され、制御及びデータチャネルが周波数多重される様子を示 す。図 12Bは、パイロット、制御及びデータチャネルが周波数多重される様子を示す
[0080] 図 13A— Bは、パイロットチャネル、制御チャネル及びデータチャネルの多重化方 式の一例を示す図(その 4)である。図 13Aは、パイロットチャネルと、制御及びデータ チャネルとが時間多重され、制御及びデータチャネルが符号多重される様子を示す 。図 13Bは、パイロットチャネルと、制御及びデータチャネルとが周波数多重され、制 御及びデータチャネルが符号多重される様子を示す。
[0081] 図 14A—Cは、データチャネルの多重化方式の一例を示す図(その 1)である。無 線リソースを効率的に使用するため、 1つのパケット内のデータチャネル力 複数のュ 一ザによって共用される。 1つのパケットを送信する期間は、送信時間間隔 (TTI :tm nsmittion time interval)と呼ばれ、 TTIは例えば 0. 5ミリ秒のような短期間でも よい。また、音声データや画像データ等のような複数の種類のデータチャネルによつ て、或いは、サービス品質(QoS : quality of service)の異なるトラフィックデータ の多重化によって、 1パケット内のデータチャネルが共用されてもよい。簡単のため、 以下の説明では、複数のユーザによってデータチャネルが共用される例が示される。
[0082] 図 14Aは、時間分割多重化方式により、データチャネルをユーザ間で共用する様 子を示す。 TTIが短ければ、時間方向のフェージングが少ないので、この方式は、周 波数及び時間方向のフェージングの影響を少なくする観点力も好ましい。図 14Bは、 周波数分割多重化方式により、データチャネルをユーザ間で共用する様子を示す。 図 14Cは、符号分割多重化方式により、データチャネルをユーザ間で共用する様子 を示す。
[0083] 図 15A— Bは、データチャネルの多重化方式の一例を示す図(その 2)である。図 1 5Aは、時間及び周波数分割多重化方式により、データチャネルをユーザ間で共用 する様子を示す。パイロットチャネルや制御チャネルは、簡単のため描かれていない 点に留意を要する。図では、周波数方向に 2種類及び時間方向に 8種類のブロック が示されている。例えば、 100個のサブキャリア力 前半及び後半の 50個ずつに分 けて使用されてもよい。図 15Bは、更に周波数方向にインターリーブを施した様子を 示す。各ユーザのデータチャネルは周波数方向に広く分散されるので、大きなインタ 一リーブ効果 (ダイバーシチ効果)が得られる。
[0084] 図 16A— Cは、データチャネルの多重化方式の一例を示す図(その 3)である。図 1 6Aは、時間及び周波数分割多重化方式により、データチャネルをユーザ間で共用 する様子を示す。図では、時間方向に 2種類及び周波数方向に 8種類のブロックが 示されている。例えば、データチャネルの全期間が、前半及び後半に分けて使用さ れてもよい。図 16Bは、更に時間方向にインターリーブを施した様子を示す (周波数 方向の順序は不変にする)。図 16Cは、時間及び周波数の 2次元領域で、任意のパ ターンでインターリーブを施した様子を示す。
[0085] 図 17A— Dは、データチャネルの多重化方式の一例を示す図(その 4)である。図 1 7Aは、時間及び符号分割多重化方式により、データチャネルをユーザ間で共用す る様子を示す。図では、符号方向に 2種類及び時間方向に 8種類のブロックが示され ている。図 17Bは、更にインターリーブを施した様子を示す。図 17Cは、周波数及び 符号分割多重化方式により、データチャネルをユーザ間で共用する様子を示す。図 17Dは、更にインターリーブを施した様子を示す。
[0086] 図 18A— Bは、データチャネルの多重化方式の一例を示す図(その 5)である。図 1 8Aは、時間、周波数及び符号分割多重化方式により、データチャネルをユーザ間で 共用する様子を示す。図では、周波数及び符号方向に 2種類ずつ及び時間方向に 8種類のブロックが示されている。図 18Bは、更に周波数方向にインターリーブを施し た様子を示す。
[0087] 以上、本発明の好ましい実施例を説明したが、本発明はこれに限定されるわけでは なぐ本発明の要旨の範囲内で種々の変形及び変更が可能である。説明の便宜上、 本発明が幾つかの実施例に分けて説明されてきたが、各実施例の区分けは本発明 に本質的ではなぐ 1以上の実施例が必要に応じて使用されてよい。 本国際出願は 2005年 4月 1日に出願した日本国特許出願第 2005-106911号に基づ く優先権を主張するものであり、その全内容を本国際出願に援用する。

Claims

請求の範囲
[1] 制御チャネル、ノ ィロットチャネル及びデータチャネルを送信する送信装置であつ て、
互 ヽに異なる固定された指向方向を有する複数の固定指向性ビームより成るマル チビーム又は移動端末の位置に応じて変化する指向方向を有する可変指向性ビー ムで、前記データチャネルを送信する手段と、
マルチビーム又は可変指向性ビームで、所定の既知信号を前記パイロットチャネル として送信する手段と、
を備えることを特徴とする送信装置。
[2] 可変指向性ビームで、所定の既知信号を個別パイロットチャネルとして移動端末毎 に送信する手段を備える
ことを特徴とする請求項 1記載の送信装置。
[3] マルチビーム又は可変指向性ビームで前記制御チャネルを送信する手段を備える ことを特徴とする請求項 1記載の送信装置。
[4] 可変指向性ビーム用の重み係数が、移動端末の位置に応じて適応的に算出され る
ことを特徴とする請求項 1記載の送信装置。
[5] 可変指向性ビーム力 1以上の固定指向性ビームを切り換えることによって生成さ れる
ことを特徴とする請求項 1記載の送信装置。
[6] ノ ィロットチャネル及びデータチャネルが時分割多重化方式又は周波数分割多重 化方式で多重化される
ことを特徴とする請求項 1記載の送信装置。
[7] 制御チャネルとデータチャネルが時分割多重化又は符号分割多重化方式で多重 化される
ことを特徴とする請求項 6記載の送信装置。
[8] 制御チャネル力 パイロットチャネル又はデータチャネルと周波数分割多重化方式 で多重化される ことを特徴とする請求項 6記載の送信装置。
[9] データチャネルに含まれる複数のトラフィックデータ力 時分割多重化方式、周波 数分割多重化方式及び符号分割多重化方式のうちの 1以上の方式で多重化される ことを特徴とする請求項 6記載の送信装置。
[10] 制御チャネル、ノ ィロットチャネル及びデータチャネルを送信する送信方法であつ て、
互 ヽに異なる固定された指向方向を有する複数の固定指向性ビームより成るマル チビーム又は移動端末の位置に応じて変化する指向方向を有する可変指向性ビー ムで、所定の既知信号を前記パイロットチャネルとして送信し、
マルチビーム又は可変指向性ビームで、前記データチャネルを送信する、 ことを特徴とする送信方法。
PCT/JP2006/306300 2005-04-01 2006-03-28 下りリンクチャネル用の送信装置及び送信方法 WO2006106674A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/909,984 US8009748B2 (en) 2005-04-01 2006-03-28 Downlink channel transmission device and method thereof
CN2006800150074A CN101171770B (zh) 2005-04-01 2006-03-28 用于下行链路信道的发送装置以及发送方法
EP06730248A EP1865626A4 (en) 2005-04-01 2006-03-28 RECEIVING DEVICE AND RECEIVING METHOD FOR THE DOWNSTREAM CHANNEL
BRPI0608673 BRPI0608673A2 (pt) 2005-04-01 2006-03-28 dispositivo de transmissço de canal de downlink e seu mÉtodo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-106911 2005-04-01
JP2005106911A JP2006287757A (ja) 2005-04-01 2005-04-01 下りリンクチャネル用の送信装置及び送信方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/922,503 A-371-Of-International US20090133435A1 (en) 2005-10-06 2006-05-09 Refrigerating Air-Conditioning Apparatus
US13/219,346 Division US8931303B2 (en) 2005-10-06 2011-08-26 Refrigerating air-conditioning apparatus

Publications (1)

Publication Number Publication Date
WO2006106674A1 true WO2006106674A1 (ja) 2006-10-12

Family

ID=37073240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306300 WO2006106674A1 (ja) 2005-04-01 2006-03-28 下りリンクチャネル用の送信装置及び送信方法

Country Status (9)

Country Link
US (1) US8009748B2 (ja)
EP (1) EP1865626A4 (ja)
JP (1) JP2006287757A (ja)
KR (1) KR20070114388A (ja)
CN (1) CN101171770B (ja)
BR (1) BRPI0608673A2 (ja)
RU (1) RU2405258C2 (ja)
TW (1) TW200707948A (ja)
WO (1) WO2006106674A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7965619B2 (en) 2006-07-07 2011-06-21 Mitsubishi Electric Corporation Wireless communication system and communication control method
EP2077634B1 (en) * 2006-10-26 2016-02-24 Fujitsu Limited Radio base station apparatus, pilot transmitting method thereof and terminal apparatus
US8433357B2 (en) 2007-01-04 2013-04-30 Qualcomm Incorporated Method and apparatus for utilizing other sector interference (OSI) indication
US8681749B2 (en) 2007-01-04 2014-03-25 Qualcomm Incorporated Control resource mapping for a wireless communication system
US8457315B2 (en) 2007-01-05 2013-06-04 Qualcomm Incorporated Pilot transmission in a wireless communication system
JP5077024B2 (ja) * 2008-03-31 2012-11-21 富士通株式会社 送信方法および無線基地局
JP5007283B2 (ja) * 2008-07-28 2012-08-22 パナソニック株式会社 無線監視システム
US8767524B2 (en) 2008-08-19 2014-07-01 Qualcomm Incorporated Training sequences for very high throughput wireless communication
US8155138B2 (en) * 2008-08-19 2012-04-10 Qualcomm Incorporated Training sequences for very high throughput wireless communication
EP2200361A1 (en) * 2008-10-07 2010-06-23 Nokia Siemens Networks OY Wireless cellular network using adaptive beamforming with different coverage for control and data channels
US9137077B2 (en) * 2011-11-10 2015-09-15 Xiao-an Wang Heterogeneous pilots
WO2014056197A1 (zh) * 2012-10-12 2014-04-17 华为技术有限公司 提高物理扇区用户容量的方法、装置和基站
KR102172442B1 (ko) * 2014-02-19 2020-10-30 삼성전자주식회사 우선 순위를 갖는 송신 빔 인덱스 선택 및 할당 방법 및 장치
JP6121931B2 (ja) * 2014-03-20 2017-04-26 株式会社Nttドコモ 移動通信システム、基地局、およびユーザ装置
EP2925040A1 (en) * 2014-03-28 2015-09-30 Alcatel Lucent A method for transmission in a wireless communication system using beamforming, and a base station transceiver and a user terminal therefor
US9698884B2 (en) 2014-09-24 2017-07-04 Mediatek Inc. Control signaling in a beamforming system
US9705581B2 (en) 2014-09-24 2017-07-11 Mediatek Inc. Synchronization in a beamforming system
EP3229381B1 (en) * 2014-12-31 2019-04-24 Huawei Technologies Co. Ltd. Array antenna beam adjustment device and method
JP2019050439A (ja) * 2016-01-22 2019-03-28 シャープ株式会社 無線制御局装置および制御方法
EP3226437B1 (en) * 2016-03-31 2020-04-22 Alcatel Lucent Apparatuses, methods, and computer programs for a base station transceiver and a mobile transceiver
WO2019166973A1 (en) * 2018-03-02 2019-09-06 Sony Mobile Communications Inc. Tailored beam management of beamformed transmission
US11677436B1 (en) * 2021-12-01 2023-06-13 Rockwell Collins, Inc. Antenna optimization for SATCOM waveforms

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244054A (ja) * 2002-02-21 2003-08-29 Ntt Docomo Inc 送信制御装置及び送信制御方法
JP2005064546A (ja) * 2003-08-08 2005-03-10 Ntt Docomo Inc 信号伝送装置及び信号伝送方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI98171C (fi) * 1995-05-24 1997-04-25 Nokia Telecommunications Oy Menetelmä pilottikanavien lähettämiseksi ja solukkoradiojärjestelmä
US6782277B1 (en) * 1999-09-30 2004-08-24 Qualcomm Incorporated Wireless communication system with base station beam sweeping
JP4094190B2 (ja) 1999-10-26 2008-06-04 三菱電機株式会社 送信ビーム制御装置および制御方法
AU2001226986A1 (en) * 2000-01-18 2001-07-31 Nortel Networks Limited Multi-beam antenna system for high speed data
US7099384B1 (en) * 2000-09-01 2006-08-29 Qualcomm, Inc. Method and apparatus for time-division power assignments in a wireless communication system
JP5079189B2 (ja) * 2001-04-13 2012-11-21 Kddi株式会社 多ビームセルラ無線基地局、移動機及びスペクトラム拡散信号送信方法
US7266103B2 (en) * 2001-10-25 2007-09-04 Qualcomm Incorporated Controlling forward link traffic channel power
JP3987738B2 (ja) * 2002-03-05 2007-10-10 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおけるチャネル構成方法、無線基地局、移動局及び移動通信システム
JP4038408B2 (ja) 2002-08-07 2008-01-23 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、基地局及び無線通信方法
US7263385B2 (en) * 2002-08-23 2007-08-28 Qualcomm Incorporated System and method for beamforming with data rate control feedback
JP4559270B2 (ja) * 2005-03-22 2010-10-06 株式会社日立製作所 無線通信システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244054A (ja) * 2002-02-21 2003-08-29 Ntt Docomo Inc 送信制御装置及び送信制御方法
JP2005064546A (ja) * 2003-08-08 2005-03-10 Ntt Docomo Inc 信号伝送装置及び信号伝送方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1865626A4 *

Also Published As

Publication number Publication date
BRPI0608673A2 (pt) 2010-01-19
RU2007136936A (ru) 2009-05-10
CN101171770A (zh) 2008-04-30
KR20070114388A (ko) 2007-12-03
TW200707948A (en) 2007-02-16
US8009748B2 (en) 2011-08-30
EP1865626A1 (en) 2007-12-12
US20090161772A1 (en) 2009-06-25
JP2006287757A (ja) 2006-10-19
EP1865626A4 (en) 2013-01-16
TWI309517B (ja) 2009-05-01
CN101171770B (zh) 2012-07-11
RU2405258C2 (ru) 2010-11-27

Similar Documents

Publication Publication Date Title
WO2006106674A1 (ja) 下りリンクチャネル用の送信装置及び送信方法
US8005063B2 (en) Uplink channel receiving and transmitting apparatuses and methods
KR101242592B1 (ko) 무선 파라미터군을 생성하는 장치, 송신기 및 수신기
KR100861878B1 (ko) Ofdm 시스템의 실시간 서비스 및 비-실시간 서비스의멀티플렉싱
EP2790331B1 (en) MIMO-OFDM transmission device and MIMO-OFDM transmission method
US7483675B2 (en) Method and system for weight determination in a spatial multiplexing MIMO system for WCDMA/HSDPA
JP4463723B2 (ja) 送信機及び送信方法
KR101276191B1 (ko) 송신장치, 송신방법, 수신장치 및 수신방법
AU2002330470B2 (en) Radio transmission system and method and transmission station apparatus and reception station apparatus used in the radio transmission system
US8320849B2 (en) Transmitter for communications system
US20090296925A1 (en) Transmission apparatus and transmission method
KR20030007481A (ko) 채널 상태 정보를 측정하기 위한 방법 및 장치
JP2004527166A (ja) ある方向にofdmをそして別の方向にdsssを使用する通信システム
US8824600B2 (en) Multiuser MIMO system, receiver, and transmitter
WO2007074623A1 (ja) 無線送信機、無線受信機、無線通信システム、無線送信方法及び無線受信方法
JP5043080B2 (ja) 通信システム
WO2007052571A1 (ja) 受信状態情報通知方法および受信状態情報通知装置
Raulefs et al. 4MORE: An advanced MIMO downlink MC-CDMA system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680015007.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 3597/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006730248

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/011907

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077023548

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007136936

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006730248

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11909984

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0608673

Country of ref document: BR

Kind code of ref document: A2