WO2006106618A1 - Contact probe - Google Patents

Contact probe Download PDF

Info

Publication number
WO2006106618A1
WO2006106618A1 PCT/JP2006/306115 JP2006306115W WO2006106618A1 WO 2006106618 A1 WO2006106618 A1 WO 2006106618A1 JP 2006306115 W JP2006306115 W JP 2006306115W WO 2006106618 A1 WO2006106618 A1 WO 2006106618A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
contact
contact probe
cantilever
piezoelectric element
Prior art date
Application number
PCT/JP2006/306115
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Ishikawa
Jun Tominaga
Original Assignee
Nhk Spring Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nhk Spring Co., Ltd. filed Critical Nhk Spring Co., Ltd.
Publication of WO2006106618A1 publication Critical patent/WO2006106618A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06705Apparatus for holding or moving single probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07342Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being at an angle other than perpendicular to test object, e.g. probe card
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips

Definitions

  • the present invention relates to a contact probe that is connected to an electrode or a terminal portion of an electronic component such as a liquid crystal panel or an integrated circuit and is used for a conduction state inspection or an operation test in the electronic component.
  • the contact terminal of the LCD panel is electrically contacted via a contact probe, and the other end of each contact probe is electrically connected. Connected to a flat cable, etc. via a contact block that connects to the flat cable, and tested the LCD panel by applying various test signals to the inspection device connected to this flat cable!
  • Some of these contact probes collectively form a plurality of beam-shaped probes corresponding to a plurality of inspection electrodes on a substrate surface by using a lithography technique of a semiconductor manufacturing method (Patent Documents 1 to 4). reference). Furthermore, there is a type in which a conductive foil such as a flexible substrate is subjected to pattern etching at an extremely narrow pitch by lithography, and a bump is formed as a probe head on this pattern (see Patent Document 5). Since these contact probes use a lithographic technique, they can cope with the recent narrowing of the electrode pitch.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-50146
  • Patent Document 2 Japanese Patent No. 3123483
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-215161
  • Patent Document 4 Japanese Translation of Special Publication 2004—503785
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-98189
  • cantilever-type contact probes generally cannot increase the load applied to the probe head, if there is an oxide film or dirt covering the electrode to be inspected during the above-described inspection, it can break through these. However, there was a tendency that the final excessive load was applied to the probe head, resulting in damage and the life of the contact probe was shortened.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a contact probe having a long life and high accuracy while maintaining an ultra narrow pitch.
  • the contact probe according to claim 1 has a probe directly connected to the inspection object when the inspection object is electrically inspected.
  • the contact probe comprises a vibrating means for minutely vibrating the probe.
  • the vibration means is a piezoelectric element provided on the probe, and the probe is driven by driving the piezoelectric element. It is characterized by minute vibrations.
  • the vibrating means is a coil provided on the probe, and a current applied to the coil in a region where a magnetic field is formed.
  • the probe is microvibrated by changing.
  • the contact probe according to claim 4 is the above-described invention, wherein the vibration means further includes a plurality of fixed probes provided between a plurality of beam-like probes.
  • the probe is microvibrated by changing the voltage applied between each probe and each fixed probe.
  • the contact probe according to claim 5 is characterized in that, in the above invention, the probe is a beam-like probe.
  • the probe is formed of a conductive needle member and a conductive bar in a holder formed substantially perpendicular to the contact surface.
  • the probe is characterized in that it is confined by being connected to the contact member, and the tip of the conductive needle-like member protrudes from the opening of the holder so as to be extendable and contractible.
  • the contact probe according to claim 7 is characterized in that, in the above invention, the vibration means is provided on a support member that forms an opening of the holder.
  • the contact probe according to claim 8 is characterized in that, in the above invention, the probe is a needle probe.
  • the contact probe according to claim 9 is characterized in that, in the above invention, the probe is a bump formed on a support member.
  • the probe is a thin plate member, a plate surface direction is a pressing direction, and the plate member is Ni.
  • the ratio of width to thickness is 5 or more.
  • the contact probe according to claim 11 is characterized in that, in the above invention, the vibrating means vibrates the probe tip in a direction substantially perpendicular to the contact surface.
  • the contact probe according to claim 12 is characterized in that, in the above invention, the vibrating means vibrates the probe tip substantially parallel to the contact surface.
  • the contact probe according to claim 13 has a plurality of probes in the above invention, and the plurality of probes are covered with a holding member that holds the pitch of each probe. It is characterized by.
  • the vibration means rubs the plurality of probes so as to make a minute vibration, and the minute vibration removes dirt on the electrode to be inspected to break through an oxide film or the like. Therefore, the contact surface can be exposed and the desired contact resistance can be secured with a low contact load, reducing the load applied to the contact probe, achieving a long life and accuracy while maintaining a compact size that maintains an ultra-narrow pitch. High contact probe can be realized.
  • FIG. 1 is a perspective view showing a schematic configuration of a contact probe according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view showing the tip portion of the cantilever.
  • FIG. 3 is a perspective view showing a configuration of a contact probe with a flexible cable attached.
  • FIG. 4 is a diagram showing a state where the probe block is connected.
  • FIG. 5 is a view showing a modification of the probe head.
  • FIG. 6A shows a state in which, in the contact probe manufacturing process shown in FIG. 1, the surface on which the probe head is formed is opened and a hole having a triangular cross section is formed by anisotropic etching.
  • FIG. 6B is a diagram showing a state where a seed layer for forming the electo-mouth and a resist corresponding to the plate thickness of the cantilever are formed in the contact probe manufacturing process shown in FIG.
  • FIG. 6C is a diagram showing a state in which the resist corresponding to the cantilever is removed in the contact probe manufacturing process shown in FIG.
  • FIG. 6D is a diagram showing a state where a cantilever is formed in the contact probe manufacturing process shown in FIG. 1.
  • FIG. 6E is a diagram showing a state in which a hold film and a support member are formed in the contact probe manufacturing process shown in FIG.
  • FIG. 6F is a diagram showing a state where a piezoelectric element is formed on a support member in the contact probe manufacturing process shown in FIG. 1.
  • FIG. 7 is a diagram showing a modification of the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a modification of the first embodiment of the present invention.
  • FIG. 9 is a diagram showing a modification of the first embodiment of the present invention.
  • FIG. 10 is a diagram showing a modification of the first embodiment of the present invention.
  • FIG. 11 is a perspective view showing a schematic configuration of a contact probe according to Embodiment 2 of the present invention.
  • FIG. 12 is a perspective view showing a schematic configuration of a contact probe according to Embodiment 3 of the present invention.
  • FIG. 13 shows a schematic configuration of a contact probe according to Embodiment 4 of the present invention. It is sectional drawing.
  • FIG. 14 is a view showing the back surface of the contact probe shown in FIG.
  • FIG. 15 is a perspective view showing a schematic configuration of a contact probe according to Embodiment 5 of the present invention.
  • FIG. 16 is a perspective view showing a schematic configuration of a contact probe according to Embodiment 6 of the present invention.
  • FIG. 17 is a top view of the contact probe shown in FIG.
  • FIG. 1 is a perspective view showing a configuration of a contact probe according to Embodiment 1 of the present invention.
  • a contact probe 10 performs an electrical inspection by lowering a probe head 1 to an electrode of an electronic component such as a liquid crystal panel and bringing the electrode and the probe head 1 into contact with each other.
  • the contact probe 10 has a plurality of cantilevers 2 each having a cantilever structure arranged in parallel.
  • a probe head 1 having a triangular plate shape and a pointed tip is vertically provided at the tip of the cantilever 2.
  • the contact probe 10 is roughly divided into a movable part 11 on the probe head 1 side and a fixed part 12 on the base side. The length of the movable part 11 and the fixed part 12 is about 2 mm each.
  • the cantilever 2 is made of Ni, and the surface thereof is plated with 1 ⁇ m by an Au—Co alloy. 400 cantilevers 2 are arranged in parallel, and are arranged at a pitch of 0 ⁇ m as shown in FIG.
  • the cantilever 2 is formed in a plate shape, has a thickness of 20 / ⁇ ⁇ , a width of 100 m, a probe head height of 100 ⁇ m, and a gap between adjacent cantilevers 2 of 20 ⁇ m.
  • each cantilever 2 is covered so as to cover each cantilever 2.
  • a hold film 3 for connecting and holding the lever 2 is provided.
  • the hold film 3 has a thickness of 5 to: LO m, and is formed of a low elastic body compared to the cantilever 2. For example, it is formed by BCB (benzocyclotene) resin.
  • a support member 4a is provided on the probe head 1 side of the fixed portion 12 so as to cover and connect each force punch lever 2 with the same material as the hold film 3, and the piezoelectric element 4 is provided on the upper surface thereof.
  • This piezoelectric element 4 expands and contracts by being polarized in the longitudinal direction of the cantilever 2. Therefore, when the piezoelectric element 4 expands and contracts due to the piezoelectric effect, the upper surface side of each cantilever 2 expands and contracts, and the tip side of each cantilever 2 vibrates up and down.
  • the piezoelectric element 4 is formed of PZT and has a thickness of 10 ⁇ m, and the electrode is patterned with Pt. The thickness of this electrode is 0.5 m.
  • an anisotropic conductive film 5 is formed on the upper surface of the cantilever 2, and each cantilever 2 is electrically connected. That is, the anisotropic conductive film 5 has conductivity in a direction perpendicular to the surface where the cantilever 2 and the anisotropic conductive film 5 are in contact with each other, and functions as an extraction electrode with respect to the upper surface.
  • the electrode of the piezoelectric element 4 and the extraction end of the anisotropic conductive film are electrically connected to the measuring device 20 side, and the electrode of the piezoelectric element 4 is connected to the oscillation unit 22, The take-out end is connected to the measurement unit 21.
  • the control unit 23 controls the measurement unit 21 and the oscillation unit 22. In particular, when the probe head 1 comes into contact with the electrode to be inspected, the control unit 23 outputs a signal of a predetermined frequency from the oscillation unit 22 and drives the piezoelectric element 4 to drive the probe head 1 and the inspection target. Make sure to remove the acid film and dirt between the electrodes and make sure they are in contact.
  • a flexible cable (FPC) 13 can be used for electrical connection between the contact probe 10 and the measuring device 20.
  • the FPC 13 is also used for mounting to the probe block 14.
  • the contact probe 10 is installed to be inclined downward with respect to the horizontal plane of the probe block 14. Therefore, as shown in FIG. 5, the shape of the probe head 1 may be a rectangular plate shape that is not a triangular plate shape like the probe head 31. In short, a pointed part in the lower direction may be used.
  • the probe head is made of SiO formed on the Si wafer substrate 41 using a resist.
  • FIG. 6A Open the surface where 1 is to be formed, and form a hole with a triangular cross section by anisotropic etching (Fig. 6A).
  • a resist corresponding to the seed layer 43 for forming the elect port and the plate thickness of the cantilever 2, that is, 100 / zm is formed (FIG. 6B).
  • the resist corresponding to the cantilever 2 is removed by reactive ion etching (FIG. 6C).
  • linear Ni is formed in the removed area by electret forming to form cantilever 2 (Fig. 6D).
  • BCB is laminated so as to cover the upper surface of the cantilever to form the hold film 3 and the support member 4a (FIG. 6E).
  • the piezoelectric element 4 is formed on the support member 4a. That is, the pattern that is PZT and the electrode that applies voltage to it is formed by Pt (Fig. 6F). Thereafter, the Si wafer substrate 41 is removed, and the contact probe 10 is formed by connecting the anisotropic conductive film.
  • the piezoelectric element 4 of the contact probe 10 shown in FIG. 1 is a force that is driven to expand and contract in the longitudinal direction of the cantilever 2. Like the piezoelectric element 51 shown in FIG. You may make it extend-contract drive in a perpendicular direction.
  • the cantilever 2 is extended and contracted in the longitudinal direction, so that the probe head 1 minutely vibrates up and down and can easily break through the acid film as described above.
  • the cantilever 1 The pitch of the cantilever 2 can be variably set by driving to extend and contract in a direction perpendicular to the longitudinal direction of 2. Since the pitch of the cantilever 2 changes depending on environmental conditions such as temperature, the pitch can be adjusted by the expansion and contraction movement in the vertical direction.
  • the cantilever 2 may be expanded and contracted in the longitudinal direction, and the probe head 1 may be vibrated in a direction substantially perpendicular to the contact surface, or the probe head 1 may be substantially horizontal with respect to the contact surface. You may make it vibrate in the direction, for example, right and left and back and forth. Furthermore, you may combine these vibration directions as appropriate.
  • a piezoelectric element 52 that is extended and contracted in the longitudinal direction of the cantilever 2 may be provided for each cantilever 2.
  • the desired cantilever 2 is caused to vibrate minutely, and electrical contact can be made reliably. That is, dirt on the electrode to be inspected is removed by minute vibration of each cantilever 2, and an oxide film, etc.
  • the contact surface can be exposed and the desired contact resistance can be secured with a low contact load, reducing the load applied to the contact probe and reducing the size while maintaining an extremely narrow pitch. While achieving this, it is possible to realize a contact probe with a long life and high accuracy.
  • a piezoelectric element 53 that is extended and contracted in a direction perpendicular to the longitudinal direction of the cantilever 2 may be provided between adjacent cantilevers 2.
  • the pitch can be adjusted more finely and flexibly.
  • the contact probe 10 described above is not limited to a force that has a cantilever structure, and may have a structure that supports both end forces.
  • two contact probes 10 may be opposed to each other, and the tip of each cantilever 12 may be arranged in a staggered manner.
  • the pitch of each probe head is halved as compared with the case of one probe head, and it is possible to cope with the electrode inspection with a narrower pitch.
  • the above-described hold film 3 is formed on the upper surface of the cantilever 2 and has a! / Capping force, which is not limited thereto, and may be formed so as to cover the lower surface of the cantilever 2, or the cantilever 2 You can form it to fill the gap!
  • the base material of the cantilever 2 is not limited to the force formed by Ni, but is not limited to Fe-based alloy, Ni-based alloy, Cu-based alloy, aluminum, tungsten, silicon, carbon and other metals, polyimide, etc.
  • the purpose may be ceramics such as alumina (Al 2 O 3) or silica (SiO 2). Ma
  • the plating of cantilever 2 is preferably a highly conductive metal such as Au, Rd, or Pt.
  • the hold film 3 and the support member 4a are not limited to BCB, and may be realized by polyimide or the like.
  • the piezoelectric element 4 may be formed of other piezoelectric materials, for example, LiNbO.
  • the tip of the cantilever 2 is vibrated minutely using the piezoelectric element 4.
  • the thin film coil 61 is provided and energized in a magnetic field, thereby providing a cantilever. 1. Make the tip of 2 minutely vibrate.
  • FIG. 11 is a perspective view showing a schematic configuration of the contact probe according to the second embodiment of the present invention.
  • the contact probe 60 is provided with a thin film coil 61 on the hold film 3 instead of the piezoelectric element 4.
  • Other configurations are the same as those in the first embodiment.
  • the thin film coil 61 is realized by a conductive material such as Cu or Ni.
  • the thin film coil 61 is realized by a coil having 30 turns of Cu having a thickness of 2 ⁇ m and a width of 20 ⁇ m.
  • the thin film coil 61 is formed on the BCB sheet 3a formed on the hold film 3, and the central portion of the thin film coil 61 is connected to the back surface of the BCB sheet 3a and is electrically connected to the pad on the hold film 3. It is connected.
  • the thin film coil 61 When the thin film coil 61 is energized in the magnetic field, the thin film coil 61 is displaced according to the energization amount, and the tip portion of the cantilever 2 vibrates minutely by applying an AC signal.
  • the tip portion of the cantilever 2 is vibrated minutely using the piezoelectric element 4, but in this third embodiment, the cantilever 2 is used as one of the comb-teeth electrodes. It is made to vibrate.
  • FIG. 12 is a perspective view showing a schematic configuration of a contact probe according to Embodiment 3 of the present invention. As shown in FIG. 12, this contact probe 70 is not provided with the piezoelectric element 2 or the thin film coil 61, and the opposing comb electrode 72 is formed between each cantilever 2, and the opposing comb electrode 72 and the cantilever 2 A comb electrode is formed.
  • the cantilever 2 When a voltage is applied to the opposing comb electrode 72, the cantilever 2 changes up and down by an electrostatic force between the opposing comb electrode 72 and the cantilever 2. Therefore, when the voltage applied to the opposing comb electrode 72 is an AC signal, the tip portion of the cantilever 2 slightly vibrates.
  • the force was a cantilever structure.
  • the needle-like member and the panel portion The contact probe using the material is provided with vibration means.
  • FIG. 13 is a cross-sectional view showing a schematic configuration of the contact probe according to the fourth embodiment of the present invention.
  • FIG. 14 is a view showing the back surface of the contact probe shown in FIG.
  • the contact probe 80 has a plurality of holders 84 extending in a direction perpendicular to the contact surface and arranged at a predetermined pitch, and each holder 84 has a needle that makes contact with the lead wire 86 side.
  • the needle-like member 81, the panel member 83, and the needle-like member 82 that comes into contact with the electrode to be inspected are confined in an electrically fixed state, and the tip portion of the needle-like member 82 is inspected. It protrudes from the opening on the target electrode side so that it can expand and contract, and contacts the electrode to be inspected with contact load.
  • Piezoelectric element 85 is disposed on the surface of the support member having an opening from which the tip of needle-like member 82 projects. By applying a voltage to the piezoelectric element 85 and causing it to vibrate, the needle-like member 82 can be caused to vibrate in the horizontal direction with respect to the surface of the support member. Contact with the electrode to be inspected can be ensured and contact can be made with low contact weight. Further, the pitch between the needle-like members 82 can be made variable.
  • the vibration direction of the piezoelectric element 85 is set to a direction perpendicular to the inspection target electrode, and the needle-like member 82 is moved up and down, so that the tip portion of the needle-like member 82 and the inspection target electrode are moved. Make sure the contact is reliable and with a low contact load.
  • vibration means is provided on a contact probe having a high rigidity and a plurality of needle-like members.
  • FIG. 15 is a perspective view showing a schematic configuration of a contact probe according to the fifth embodiment of the present invention.
  • this contact probe 90 is composed of cylindrical members arranged with a conical tip, and the tip is bent at about 90 degrees to be inspected electrode direction. It has a plurality of needle probes 91 facing in the direction.
  • the plurality of needle probes 91 have a pitch between the needle probes 91 held by the support member 92 on the base side, and a piezoelectric element 93 is provided on the upper surface of the support member 92.
  • the tip portion of the needle probe 91 is minutely vibrated by the minute vibration of the piezoelectric element 93, so that the contact between the tip of the needle probe 91 and the electrode to be inspected can be made reliably and with a low contact weight. Can do.
  • the minute vibration direction of the piezoelectric element 93 may be a direction parallel to the surface of the electrode to be inspected or a perpendicular direction.
  • the tip of the needle probe 91 can be expanded in a parallel direction by the voltage applied to the piezoelectric element 93, and the pitch can be set variably.
  • the vibration means is provided on the contact probe in which a plurality of bumps are formed on the surface of the support member.
  • FIG. 16 is a perspective view showing a schematic configuration of a contact probe according to Embodiment 6 of the present invention.
  • FIG. 17 is a top view of the contact probe shown in FIG. 16 and 17, the contact probe 100 has a support member 101 on a flat plate realized by polyimide or the like, and a plurality of Ni formed near the edge of one surface of the support member 101.
  • the bumps 103 are arranged in a straight line. The bump 103 comes into contact with the inspection target electrode.
  • the bumps 103 are arranged at a predetermined pitch, and lead by the wiring pattern 102 realized by Ni.
  • a piezoelectric element 104 is provided on the other side of the support member 101 and on the base side.
  • the portions of the support member 101 corresponding to the bumps 103 and the wiring patterns in the vicinity thereof are formed with a gap 105 by a dicing saw or the like so that the bumps 103 can easily vibrate.
  • the bump 103 vibrates minutely due to the minute vibration of the piezoelectric element 104, and this causes the bump 103 to be in contact with the inspection target electrode. Contact can be made reliably and with a low contact load.
  • the direction of minute vibration of the piezoelectric element 104 is relative to the surface of the electrode to be inspected. Parallel directions or perpendicular directions. Further, the bump 103 is spread in a parallel direction by a voltage applied to the piezoelectric element 104, and the pitch is set to be variable.
  • the force described for the contact probe having a plurality of probes is not limited to this, and the contact probe may be composed of one probe.
  • the vibration means such as a piezoelectric element is provided on the base side of the probe. In short, the tip of the probe only needs to vibrate.
  • the contact probe according to the present invention is connected to an electrode or a terminal portion of an electronic component such as a liquid crystal panel or an integrated circuit, and is suitable for a conduction state inspection or an operation test in the electronic component. .

Abstract

A contact probe increased in life and accuracy while maintaining ultranarrow pitches. The contact probe (10) comprises a plurality of beam-like cantilevers (2) directly connected to an inspected object when the inspected object is electrically inspected and a piezoelectric element (4) finely vibrating the cantilevers (2). When the piezoelectric element (4) is driven, the tips of the cantilevers (2) are vertically moved to easily break through oxidized film on the electrodes of the inspected object, and securely brought into contact with the electrodes.

Description

明 細 書  Specification
コンタクトプローブ  Contact probe
技術分野  Technical field
[0001] この発明は、液晶パネルや集積回路などの電子部品の電極あるいは端子部に接 続して、この電子部品における導通状態検査や動作試験に用いるコンタクトプローブ に関するものである。  The present invention relates to a contact probe that is connected to an electrode or a terminal portion of an electronic component such as a liquid crystal panel or an integrated circuit and is used for a conduction state inspection or an operation test in the electronic component.
背景技術  Background art
[0002] 従来から、 LCDパネルなどの電子部品である検査対象物を検査する場合、 LCD パネルの接続端子にコンタクトプローブを介して電気的に接触させ、さら〖こ各コンタク トプローブの他端に電気的に接続するコンタクトブロックを介してフラットケーブルなど に接続し、このフラットケーブルに接続された検査装置力 各種のテスト信号などを 与えて LCDパネルの検査を行って!/、た。  Conventionally, when inspecting an inspection object that is an electronic component such as an LCD panel, the contact terminal of the LCD panel is electrically contacted via a contact probe, and the other end of each contact probe is electrically connected. Connected to a flat cable, etc. via a contact block that connects to the flat cable, and tested the LCD panel by applying various test signals to the inspection device connected to this flat cable!
[0003] このコンタクトプローブは、半導体製造方法のリソグラフィ技術を用いて、複数の検 查用電極に対応した複数の梁形状のプローブを基板表面上に一括形成するものが ある (特許文献 1〜4参照)。さらに、フレキシブル基板などの導電箔をリソグラフィによ つて超狭ピッチにパターンエッチングし、このパターン上にプローブヘッドとしてバン プを形成するものがある(特許文献 5参照)。これらのコンタクトプローブは、リソグラフ ィ技術を用いるので、近年における電極狭ピッチ化に対応することができる。  [0003] Some of these contact probes collectively form a plurality of beam-shaped probes corresponding to a plurality of inspection electrodes on a substrate surface by using a lithography technique of a semiconductor manufacturing method (Patent Documents 1 to 4). reference). Furthermore, there is a type in which a conductive foil such as a flexible substrate is subjected to pattern etching at an extremely narrow pitch by lithography, and a bump is formed as a probe head on this pattern (see Patent Document 5). Since these contact probes use a lithographic technique, they can cope with the recent narrowing of the electrode pitch.
[0004] 特許文献 1 :特開平 8— 50146号公報  Patent Document 1: Japanese Patent Laid-Open No. 8-50146
特許文献 2:特許第 3123483号公報  Patent Document 2: Japanese Patent No. 3123483
特許文献 3:特開 2003— 215161号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-215161
特許文献 4:特表 2004— 503785号公報  Patent Document 4: Japanese Translation of Special Publication 2004—503785
特許文献 5:特開 2003 - 98189号公報  Patent Document 5: Japanese Patent Laid-Open No. 2003-98189
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら、上述した従来のコンタクトプローブでは、 40 μ m程度の超狭ピッチを 維持しつつ大加重を付加するとプローブやプローブヘッドが破壊しやすく寿命が短 V、とともに、検査対象の電極を覆う酸化被膜や汚れがある場合に精度の高!、検査を 行うことができな!/ヽと 、う問題点があった。 [0005] However, with the conventional contact probe described above, if a heavy load is applied while maintaining an ultra-narrow pitch of about 40 μm, the probe and the probe head are liable to break and have a short life. In addition to V, when there is an oxide film or dirt covering the electrode to be inspected, it is highly accurate! There was a problem with ヽ.
[0006] なお、カンチレバー型のコンタクトプローブは一般にプローブヘッドにかかる加重を 大きくすることができないため、上述した検査時に、検査対象の電極を覆う酸化皮膜 や汚れがある場合、これらを突き破ることができず、最終的な過大な加重をプローブ ヘッドにかけて損傷してしまい、コンタクトプローブの寿命が短くなる傾向があった。 [0006] Since cantilever-type contact probes generally cannot increase the load applied to the probe head, if there is an oxide film or dirt covering the electrode to be inspected during the above-described inspection, it can break through these. However, there was a tendency that the final excessive load was applied to the probe head, resulting in damage and the life of the contact probe was shortened.
[0007] この発明は、上記に鑑みてなされたものであって、超狭ピッチを維持しつつ寿命が 長く精度の高いコンタクトプローブを提供することを目的とする。 [0007] The present invention has been made in view of the above, and an object of the present invention is to provide a contact probe having a long life and high accuracy while maintaining an ultra narrow pitch.
課題を解決するための手段  Means for solving the problem
[0008] 上述した課題を解決し、 目的を達成するために、請求項 1にかかるコンタクトプロ一 ブは、検査対象物を電気的に検査する際に該検査対象物に直接接続するプローブ を有したコンタクトプローブであって、前記プローブを微小振動させる振動手段を備 えたことを特徴とする。 [0008] In order to solve the above-described problems and achieve the object, the contact probe according to claim 1 has a probe directly connected to the inspection object when the inspection object is electrically inspected. The contact probe comprises a vibrating means for minutely vibrating the probe.
[0009] また、請求項 2にかかるコンタクトプローブは、上記の発明において、前記振動手段 は、前記プローブ上に設けられた圧電素子であり、該圧電素子を駆動することによつ て前記プローブを微小振動させることを特徴とする。  [0009] In the contact probe according to claim 2, in the above invention, the vibration means is a piezoelectric element provided on the probe, and the probe is driven by driving the piezoelectric element. It is characterized by minute vibrations.
[0010] また、請求項 3にかかるコンタクトプローブは、上記の発明において、前記振動手段 は、前記プローブ上に設けられたコイルであり、磁場が形成される領域において該コ ィルに印可する電流を変化させることによって前記プローブを微小振動させることを 特徴とする。  [0010] Further, in the contact probe according to claim 3, in the above invention, the vibrating means is a coil provided on the probe, and a current applied to the coil in a region where a magnetic field is formed. The probe is microvibrated by changing.
[0011] また、請求項 4に力かるコンタクトプローブは、上記の発明において、前記振動手段 は、複数の梁状のプローブ間に設けられた複数の固定プローブをさらに設けて形成 された櫛歯電極であり、各プローブと各固定プローブとの間に印可される電圧を変化 させることによって前記プローブを微小振動させることを特徴とする。  [0011] Further, the contact probe according to claim 4 is the above-described invention, wherein the vibration means further includes a plurality of fixed probes provided between a plurality of beam-like probes. The probe is microvibrated by changing the voltage applied between each probe and each fixed probe.
[0012] また、請求項 5にかかるコンタクトプローブは、上記の発明において、前記プローブ は、梁状のプローブであることを特徴とする。  [0012] Further, the contact probe according to claim 5 is characterized in that, in the above invention, the probe is a beam-like probe.
[0013] また、請求項 6にかかるコンタクトプローブは、上記の発明において、前記プローブ は、接触面に対してほぼ垂直に形成されたホルダ内に導電性針状部材と導電性バ ネ部材とが接続して閉じ込められ、導電性針状部材の先端が前記ホルダの開口部か ら伸縮可能に突出したプローブであることを特徴とする。 [0013] In the contact probe according to claim 6, in the above invention, the probe is formed of a conductive needle member and a conductive bar in a holder formed substantially perpendicular to the contact surface. The probe is characterized in that it is confined by being connected to the contact member, and the tip of the conductive needle-like member protrudes from the opening of the holder so as to be extendable and contractible.
[0014] また、請求項 7にかかるコンタクトプローブは、上記の発明において、前記振動手段 は、前記ホルダの開口部を形成する支持部材上に設けることを特徴とする。  [0014] The contact probe according to claim 7 is characterized in that, in the above invention, the vibration means is provided on a support member that forms an opening of the holder.
[0015] また、請求項 8にかかるコンタクトプローブは、上記の発明において、前記プローブ は、針プローブであることを特徴とする。 [0015] Further, the contact probe according to claim 8 is characterized in that, in the above invention, the probe is a needle probe.
[0016] また、請求項 9にかかるコンタクトプローブは、上記の発明において、前記プローブ は、支持部材上に形成されたバンプであることを特徴とする。 [0016] Further, the contact probe according to claim 9 is characterized in that, in the above invention, the probe is a bump formed on a support member.
[0017] また、請求項 10にかかるコンタクトプローブは、上記の発明において、前記プロ一 ブは、薄い板状部材であり、板面方向が押圧方向であり、前記板状部材は、 Niであり[0017] Further, in the contact probe according to claim 10, in the above invention, the probe is a thin plate member, a plate surface direction is a pressing direction, and the plate member is Ni.
、厚さに対する幅の比が 5以上であることを特徴とする。 The ratio of width to thickness is 5 or more.
[0018] また、請求項 11にかかるコンタクトプローブは、上記の発明において、前記振動手 段は、プローブ先端を接触面に対してほぼ垂直方向に振動させることを特徴とする。 [0018] The contact probe according to claim 11 is characterized in that, in the above invention, the vibrating means vibrates the probe tip in a direction substantially perpendicular to the contact surface.
[0019] また、請求項 12にかかるコンタクトプローブは、上記の発明において、前記振動手 段は、プローブ先端を接触面に対してほぼ平行に振動させることを特徴とする。 [0019] Further, the contact probe according to claim 12 is characterized in that, in the above invention, the vibrating means vibrates the probe tip substantially parallel to the contact surface.
[0020] また、請求項 13にかかるコンタクトプローブは、上記の発明において、複数のプロ ーブを有し、該複数のプローブは、各プローブのピッチを保持する保持部材によって 覆われて 、ることを特徴とする。 [0020] Further, the contact probe according to claim 13 has a plurality of probes in the above invention, and the plurality of probes are covered with a holding member that holds the pitch of each probe. It is characterized by.
発明の効果  The invention's effect
[0021] この発明にかかるコンタクトプローブは、振動手段が、複数のプローブを微小振動さ せるよう〖こし、この微小振動によって検査対象電極上の汚れをとり、酸化皮膜などを 突き破るようにし、これによつてコンタクト表面を露出させ、低コンタクト加重で所望の 接触抵抗を確保することができるので、コンタクトプローブに力かる負荷が軽減され、 超狭ピッチを維持した小型化を実現しつつ寿命が長く精度の高いコンタクトプローブ を実現することができる。  [0021] In the contact probe according to the present invention, the vibration means rubs the plurality of probes so as to make a minute vibration, and the minute vibration removes dirt on the electrode to be inspected to break through an oxide film or the like. Therefore, the contact surface can be exposed and the desired contact resistance can be secured with a low contact load, reducing the load applied to the contact probe, achieving a long life and accuracy while maintaining a compact size that maintains an ultra-narrow pitch. High contact probe can be realized.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]図 1は、この発明の実施の形態 1であるコンタクトプローブの概要構成を示す斜 視図である。 圆 2]図 2は、カンチレバーの先端部分を示す斜視図である。 FIG. 1 is a perspective view showing a schematic configuration of a contact probe according to Embodiment 1 of the present invention. 2] FIG. 2 is a perspective view showing the tip portion of the cantilever.
[図 3]図 3は、フレキシブルケーブルを付カ卩したコンタクトプローブの構成を示す斜視 図である。  FIG. 3 is a perspective view showing a configuration of a contact probe with a flexible cable attached.
[図 4]図 4は、プローブブロックに接続された状態を示す図である。  FIG. 4 is a diagram showing a state where the probe block is connected.
[図 5]図 5は、プローブヘッドの変形例を示す図である。 FIG. 5 is a view showing a modification of the probe head.
[図 6A]図 6Aは、図 1に示したコンタクトプローブの製造工程のうち、プローブヘッドが 形成される面を開口し、異方性エッチングによって断面が三角状の穴を形成した状 態を示す図である。  [FIG. 6A] FIG. 6A shows a state in which, in the contact probe manufacturing process shown in FIG. 1, the surface on which the probe head is formed is opened and a hole having a triangular cross section is formed by anisotropic etching. FIG.
[図 6B]図 6Bは、図 1に示したコンタクトプローブの製造工程のうち、エレクト口フォーミ ング用のシード層と、カンチレバーの板厚に相当するレジストを形成した状態を示す 図である。  FIG. 6B is a diagram showing a state where a seed layer for forming the electo-mouth and a resist corresponding to the plate thickness of the cantilever are formed in the contact probe manufacturing process shown in FIG.
[図 6C]図 6Cは、図 1に示したコンタクトプローブの製造工程のうち、カンチレバーに 対応する領域のレジストを取り除いた状態を示す図である。  [FIG. 6C] FIG. 6C is a diagram showing a state in which the resist corresponding to the cantilever is removed in the contact probe manufacturing process shown in FIG.
[図 6D]図 6Dは、図 1に示したコンタクトプローブの製造工程のうち、カンチレバーを 形成した状態を示す図である。  FIG. 6D is a diagram showing a state where a cantilever is formed in the contact probe manufacturing process shown in FIG. 1.
[図 6E]図 6Eは、図 1に示したコンタクトプローブの製造工程のうち、ホールドフィルム および支持部材を形成した状態を示す図である。  FIG. 6E is a diagram showing a state in which a hold film and a support member are formed in the contact probe manufacturing process shown in FIG.
[図 6F]図 6Fは、図 1に示したコンタクトプローブの製造工程のうち、支持部材上に圧 電素子を形成した状態を示す図である。  FIG. 6F is a diagram showing a state where a piezoelectric element is formed on a support member in the contact probe manufacturing process shown in FIG. 1.
[図 7]図 7は、この発明の実施の形態 1の変形例を示す図である。  FIG. 7 is a diagram showing a modification of the first embodiment of the present invention.
[図 8]図 8は、この発明の実施の形態 1の変形例を示す図である。  FIG. 8 is a diagram showing a modification of the first embodiment of the present invention.
[図 9]図 9は、この発明の実施の形態 1の変形例を示す図である。  FIG. 9 is a diagram showing a modification of the first embodiment of the present invention.
[図 10]図 10は、この発明の実施の形態 1の変形例を示す図である。  FIG. 10 is a diagram showing a modification of the first embodiment of the present invention.
[図 11]図 11は、この発明の実施の形態 2であるコンタクトプローブの概要構成を示す 斜視図である。  FIG. 11 is a perspective view showing a schematic configuration of a contact probe according to Embodiment 2 of the present invention.
[図 12]図 12は、この発明の実施の形態 3であるコンタクトプローブの概要構成を示す 斜視図である。  FIG. 12 is a perspective view showing a schematic configuration of a contact probe according to Embodiment 3 of the present invention.
[図 13]図 13は、この発明の実施の形態 4であるコンタクトプローブの概要構成を示す 断面図である。 FIG. 13 shows a schematic configuration of a contact probe according to Embodiment 4 of the present invention. It is sectional drawing.
[図 14]図 14は、図 13に示したコンタクトプローブの裏面を示す図である。  FIG. 14 is a view showing the back surface of the contact probe shown in FIG.
[図 15]図 15は、この発明の実施の形態 5であるコンタクトプローブの概要構成を示す 斜視図である。  FIG. 15 is a perspective view showing a schematic configuration of a contact probe according to Embodiment 5 of the present invention.
[図 16]図 16は、この発明の実施の形態 6であるコンタクトプローブの概要構成を示す 斜視図である。  FIG. 16 is a perspective view showing a schematic configuration of a contact probe according to Embodiment 6 of the present invention.
[図 17]図 17は、図 16に示したコンタクトプローブの上面図である。  FIG. 17 is a top view of the contact probe shown in FIG.
符号の説明 Explanation of symbols
1, 31 プローブヘッド  1, 31 probe head
2 カンチレバー  2 Cantilever
3 ホールドフィルム  3 Hold film
3a BCBシート  3a BCB sheet
4, 51, 52, 53, 85, 85a〜85d, 93, 104 圧電素子  4, 51, 52, 53, 85, 85a to 85d, 93, 104 Piezoelectric element
4a, 92, 101 支持部材  4a, 92, 101 Support member
5 異方性導電フィルム  5 Anisotropic conductive film
10, 30, 60, 70, 80, 90, 100 コンタク卜プローブ  10, 30, 60, 70, 80, 90, 100 Contact probe
11 可動部  11 Moving parts
12 固定部  12 Fixed part
13 FPC  13 FPC
14 プローブブロック  14 Probe block
20 計測装置  20 Measuring equipment
21 計測部  21 Measuring unit
22 発振部  22 Oscillator
23 制御部  23 Control unit
41 ウェハ 板  41 Wafer plate
43 シード層  43 Seed layer
55 検査電極端子部  55 Inspection electrode terminal
61 薄膜コイル 72 対向櫛歯電極 61 Thin film coil 72 Opposite comb electrode
81 , 82 針状部材  81, 82 Needle-shaped member
83 パネ部材  83 Panel members
84 ホノレダ  84 Honoreda
86 リード線  86 Lead wire
91 針状部材  91 Needle-shaped member
102 配線パターン  102 Wiring pattern
103 ノ ンプ  103 Knobs
105 間隙  105 gap
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、この発明を実施するための最良の形態であるコンタクトプローブについて説 明する。なお、ここでは LCDパネルの検査に用いるコンタクトプローブについて説明 する。  Hereinafter, a contact probe that is the best mode for carrying out the present invention will be described. Here, the contact probe used for LCD panel inspection is described.
[0025] (実施の形態 1)  [Embodiment 1]
図 1は、この発明の実施の形態 1であるコンタクトプローブの構成を示す斜視図であ る。図 1において、コンタクトプローブ 10は、液晶パネルなどの電子部品の電極にプ ローブヘッド 1を下降させ、電極とプローブヘッド 1とを接触させることによって電気的 な検査を行う。このコンタクトプローブ 10は、片持ち梁構造である複数のカンチレバ 一 2を並列配置したものであり、カンチレバー 2の先端部には、三角板状で先端が尖 つたプローブヘッド 1が垂直に設けられている。コンタクトプローブ 10は、大きく分けて プローブヘッド 1側の可動部 11と基部側の固定部 12とからなる。可動部 11および固 定部 12の長さはそれぞれ 2mm程度である。  FIG. 1 is a perspective view showing a configuration of a contact probe according to Embodiment 1 of the present invention. In FIG. 1, a contact probe 10 performs an electrical inspection by lowering a probe head 1 to an electrode of an electronic component such as a liquid crystal panel and bringing the electrode and the probe head 1 into contact with each other. The contact probe 10 has a plurality of cantilevers 2 each having a cantilever structure arranged in parallel. A probe head 1 having a triangular plate shape and a pointed tip is vertically provided at the tip of the cantilever 2. . The contact probe 10 is roughly divided into a movable part 11 on the probe head 1 side and a fixed part 12 on the base side. The length of the movable part 11 and the fixed part 12 is about 2 mm each.
[0026] カンチレバー 2は、 Niで形成され、表面が Au— Co合金によって 1 μ mのメツキが施 されている。このカンチレバー 2は、 400本が並列配置され、図 2に示すように、 0 μ mピッチに配列される。カンチレバー 2は、板状に形成され、厚さが 20 /ζ πι、幅が 10 0 m、プローブヘッドの高さが 100 μ mであり、隣接するカンチレバー 2の間隙は 20 μ mであ 。  [0026] The cantilever 2 is made of Ni, and the surface thereof is plated with 1 μm by an Au—Co alloy. 400 cantilevers 2 are arranged in parallel, and are arranged at a pitch of 0 μm as shown in FIG. The cantilever 2 is formed in a plate shape, has a thickness of 20 / ζ πι, a width of 100 m, a probe head height of 100 μm, and a gap between adjacent cantilevers 2 of 20 μm.
[0027] カンチレバー 2の可動部 11側の上面には、各カンチレバー 2を覆うように各カンチ レバー 2を接続して保持するホールドフィルム 3が設けられる。ホールドフィルム 3は、 厚さが 5〜: LO mであり、カンチレバー 2に比して低弾性体で形成されている。たとえ ば、 BCB (ベンゾサイクロテン)榭脂によって形成されて 、る。 [0027] On the upper surface of the movable part 11 side of the cantilever 2, each cantilever 2 is covered so as to cover each cantilever 2. A hold film 3 for connecting and holding the lever 2 is provided. The hold film 3 has a thickness of 5 to: LO m, and is formed of a low elastic body compared to the cantilever 2. For example, it is formed by BCB (benzocyclotene) resin.
[0028] 固定部 12のプローブヘッド 1側には、ホールドフィルム 3と同様の材質によって各力 ンチレバー 2を覆って接続する支持部材 4aが設けられ、その上面に圧電素子 4が設 けられる。この圧電素子 4は、カンチレバー 2の長手方向に分極して伸縮する。このた め、圧電素子 4が圧電効果によって伸縮すると、各カンチレバー 2の上面側が伸縮し 、各カンチレバー 2の先端側が上下に振動することになる。圧電素子 4は、 PZTによ つて形成され、厚さ 10 μ mであり、電極は Ptがパターン形成され、この電極の厚さは 、 0. 5 mである。 [0028] A support member 4a is provided on the probe head 1 side of the fixed portion 12 so as to cover and connect each force punch lever 2 with the same material as the hold film 3, and the piezoelectric element 4 is provided on the upper surface thereof. This piezoelectric element 4 expands and contracts by being polarized in the longitudinal direction of the cantilever 2. Therefore, when the piezoelectric element 4 expands and contracts due to the piezoelectric effect, the upper surface side of each cantilever 2 expands and contracts, and the tip side of each cantilever 2 vibrates up and down. The piezoelectric element 4 is formed of PZT and has a thickness of 10 μm, and the electrode is patterned with Pt. The thickness of this electrode is 0.5 m.
[0029] 固定部 12の基部側には、異方性導電フィルム 5がカンチレバー 2の上面に形成さ れ、各カンチレバー 2を電気的に接続している。すなわち、異方性導電フィルム 5は、 カンチレバー 2と異方性導電フィルム 5とが接する面に垂直な方向に導電性をもち、 上面に対する取り出し電極としての機能を果たして 、る。  [0029] On the base side of the fixed portion 12, an anisotropic conductive film 5 is formed on the upper surface of the cantilever 2, and each cantilever 2 is electrically connected. That is, the anisotropic conductive film 5 has conductivity in a direction perpendicular to the surface where the cantilever 2 and the anisotropic conductive film 5 are in contact with each other, and functions as an extraction electrode with respect to the upper surface.
[0030] 圧電素子 4の電極および異方性導電フィルムの取り出し端は、計測装置 20側に電 気的に接続され、圧電素子 4の電極は発振部 22に接続され、異方性導電フィルムの 取り出し端は計測部 21に接続される。制御部 23は、計測部 21および発振部 22を制 御する。特に、プローブヘッド 1が検査対象の電極に接触した際に、制御部 23は、発 振部 22から所定周波数の信号を出力し、圧電素子 4を駆動することによって、プロ一 ブヘッド 1と検査対象の電極との間の酸ィ匕皮膜や汚れを確実に取り除き、確実な接 触を行わせる。  [0030] The electrode of the piezoelectric element 4 and the extraction end of the anisotropic conductive film are electrically connected to the measuring device 20 side, and the electrode of the piezoelectric element 4 is connected to the oscillation unit 22, The take-out end is connected to the measurement unit 21. The control unit 23 controls the measurement unit 21 and the oscillation unit 22. In particular, when the probe head 1 comes into contact with the electrode to be inspected, the control unit 23 outputs a signal of a predetermined frequency from the oscillation unit 22 and drives the piezoelectric element 4 to drive the probe head 1 and the inspection target. Make sure to remove the acid film and dirt between the electrodes and make sure they are in contact.
[0031] 図 3に示すように、このコンタクトプローブ 10と計測装置 20との電気的な接続は、フ レキシブルケーブル(FPC) 13を用いることができる。図 4に示すように、この FPC13 は、プローブブロック 14への取付にも用いられる。なお、コンタクトプローブ 10は、プ ローブブロック 14の水平面に対して下方に傾斜して設置される。したがって、図 5に 示すようにプローブヘッド 1の形状は、プローブヘッド 31のように、三角板状でなぐ 矩形板状であってもよい。要は、下部方向に尖った部分をもてばよい。  As shown in FIG. 3, a flexible cable (FPC) 13 can be used for electrical connection between the contact probe 10 and the measuring device 20. As shown in FIG. 4, the FPC 13 is also used for mounting to the probe block 14. The contact probe 10 is installed to be inclined downward with respect to the horizontal plane of the probe block 14. Therefore, as shown in FIG. 5, the shape of the probe head 1 may be a rectangular plate shape that is not a triangular plate shape like the probe head 31. In short, a pointed part in the lower direction may be used.
[0032] ここで、コンタクトプローブ 10の製造方法の概要を、図 6A〜図 6Fを参照して説明 する。まず、 Siウェハ基板 41上に形成された SiOをレジストによって、プローブヘッド [0032] Here, an outline of a method for manufacturing the contact probe 10 will be described with reference to FIGS. 6A to 6F. To do. First, the probe head is made of SiO formed on the Si wafer substrate 41 using a resist.
2  2
1が形成される面を開口し、異方性エッチングによって断面が三角状の穴を形成する (図 6A)。その後、エレクト口フォーミング用のシード層 43と、カンチレバー 2の板厚、 すなわち 100 /z mに相当するレジストを形成する(図 6B)。その後、リアクティブイオン エッチングによってカンチレバー 2に対応する領域のレジストを取り除く(図 6C)。さら にこの取り除いた領域に線状の Niをエレクト口フォーミングし、カンチレバー 2を形成 する(図 6D)。その後、このカンチレバーの上面を覆うように BCBを積層し、ホールド フィルム 3および支持部材 4aを形成する(図 6E)。さらに支持部材 4a上に圧電素子 4 を形成する。すなわち、 PZTとこれに電圧を印加する電極であるパターンを Ptによつ て形成する(図 6F)。その後、 Siウェハ基板 41が取り除かれ、異方性導電フィルムを 接続することによって、コンタクトプローブ 10が形成されることになる。  Open the surface where 1 is to be formed, and form a hole with a triangular cross section by anisotropic etching (Fig. 6A). Thereafter, a resist corresponding to the seed layer 43 for forming the elect port and the plate thickness of the cantilever 2, that is, 100 / zm is formed (FIG. 6B). After that, the resist corresponding to the cantilever 2 is removed by reactive ion etching (FIG. 6C). In addition, linear Ni is formed in the removed area by electret forming to form cantilever 2 (Fig. 6D). Thereafter, BCB is laminated so as to cover the upper surface of the cantilever to form the hold film 3 and the support member 4a (FIG. 6E). Further, the piezoelectric element 4 is formed on the support member 4a. That is, the pattern that is PZT and the electrode that applies voltage to it is formed by Pt (Fig. 6F). Thereafter, the Si wafer substrate 41 is removed, and the contact probe 10 is formed by connecting the anisotropic conductive film.
[0033] ところで、図 1に示したコンタクトプローブ 10の圧電素子 4は、カンチレバー 2の長手 方向に伸縮駆動するものであった力 図 7に示す圧電素子 51のように、カンチレバー 2の長手方向に垂直な方向に伸縮駆動するようにしてもよい。図 1では、カンチレバ 一 2が長手方向に伸縮駆動することによってプローブヘッド 1が上下に微小振動し、 上述したように酸ィ匕皮膜などを容易に突き破ることができるが、図 7では、カンチレバ 一 2の長手方向に垂直な方向に伸縮駆動することによって、カンチレバー 2のピッチ を可変設定することができる。カンチレバー 2のピッチは、温度などの環境条件によつ て変化するため、この垂直な方向への伸縮運動によってピッチを調整することができ る。 By the way, the piezoelectric element 4 of the contact probe 10 shown in FIG. 1 is a force that is driven to expand and contract in the longitudinal direction of the cantilever 2. Like the piezoelectric element 51 shown in FIG. You may make it extend-contract drive in a perpendicular direction. In FIG. 1, the cantilever 2 is extended and contracted in the longitudinal direction, so that the probe head 1 minutely vibrates up and down and can easily break through the acid film as described above. In FIG. 7, the cantilever 1 The pitch of the cantilever 2 can be variably set by driving to extend and contract in a direction perpendicular to the longitudinal direction of 2. Since the pitch of the cantilever 2 changes depending on environmental conditions such as temperature, the pitch can be adjusted by the expansion and contraction movement in the vertical direction.
[0034] なお、カンチレバー 2を長手方向に伸縮させ、プローブヘッド 1を接触面に対してほ ぼ垂直な方向に振動するようにしてもよいし、プローブヘッド 1を接触面に対してほぼ 水平な方向、たとえば左右前後に振動させるようにしてもよい。さらには、これらの振 動方向を適宜組み合わせるようにしてもょ ヽ。  [0034] Note that the cantilever 2 may be expanded and contracted in the longitudinal direction, and the probe head 1 may be vibrated in a direction substantially perpendicular to the contact surface, or the probe head 1 may be substantially horizontal with respect to the contact surface. You may make it vibrate in the direction, for example, right and left and back and forth. Furthermore, you may combine these vibration directions as appropriate.
[0035] また、図 8に示すように、カンチレバー 2の長手方向に伸縮駆動する圧電素子 52を 各カンチレバー 2毎に設けるようにしてもよい。これによつて、所望のカンチレバー 2の みに対して微小振動を起こさせ、電気的な接触を確実に行うことができる。すなわち 、各カンチレバー 2の微小振動によって検査対象電極上の汚れをとり、酸化皮膜など を突き破るようにし、これによつてコンタクト表面を露出させ、低コンタクト加重で所望 の接触抵抗を確保することができるので、コンタクトプローブに力かる負荷が軽減され 、超狭ピッチを維持した小型化を実現しつつ、寿命が長く精度の高いコンタクトプロ ーブを実現することができる。 Further, as shown in FIG. 8, a piezoelectric element 52 that is extended and contracted in the longitudinal direction of the cantilever 2 may be provided for each cantilever 2. As a result, only the desired cantilever 2 is caused to vibrate minutely, and electrical contact can be made reliably. That is, dirt on the electrode to be inspected is removed by minute vibration of each cantilever 2, and an oxide film, etc. As a result, the contact surface can be exposed and the desired contact resistance can be secured with a low contact load, reducing the load applied to the contact probe and reducing the size while maintaining an extremely narrow pitch. While achieving this, it is possible to realize a contact probe with a long life and high accuracy.
[0036] さらに、図 9に示すように、カンチレバー 2の長手方向に垂直な方向に伸縮駆動す る圧電素子 53を、隣接するカンチレバー 2間にそれぞれ設けるようにしてもよい。これ によって、ピッチを一層微細かつ柔軟に調整することができる。  Furthermore, as shown in FIG. 9, a piezoelectric element 53 that is extended and contracted in a direction perpendicular to the longitudinal direction of the cantilever 2 may be provided between adjacent cantilevers 2. As a result, the pitch can be adjusted more finely and flexibly.
[0037] また、上述したコンタクトプローブ 10は、片持ち梁構造であった力 これに限らず、 両端力も支える構造であってもよ 、。  [0037] Further, the contact probe 10 described above is not limited to a force that has a cantilever structure, and may have a structure that supports both end forces.
[0038] さらに、図 10に示すように、 2つのコンタクトプローブ 10を対向させ、各カンチレバ 一 2の先端を千鳥配置する構成としてもよい。この場合、各プローブヘッドのピッチは 、 1つのプローブヘッドの場合に比して半減し、一層、狭ピッチの電極検査にも対応 することができる。  Furthermore, as shown in FIG. 10, two contact probes 10 may be opposed to each other, and the tip of each cantilever 12 may be arranged in a staggered manner. In this case, the pitch of each probe head is halved as compared with the case of one probe head, and it is possible to cope with the electrode inspection with a narrower pitch.
[0039] また、上述したホールドフィルム 3は、カンチレバー 2の上面に形成するようにして!/ヽ る力 これに限らず、カンチレバー 2の下面を覆うように形成してもよいし、カンチレバ 一 2間を埋めるように形成してもよ!/、。  [0039] Further, the above-described hold film 3 is formed on the upper surface of the cantilever 2 and has a! / Capping force, which is not limited thereto, and may be formed so as to cover the lower surface of the cantilever 2, or the cantilever 2 You can form it to fill the gap!
[0040] さらに、上述した圧電素子の構成などは任意に組み合わせ可能である。 [0040] Further, the above-described configurations of the piezoelectric elements can be arbitrarily combined.
[0041] なお、カンチレバー 2の母材は、 Niで形成していた力 これに限らず、 Fe系合金、 Ni系合金、 Cu系合金、アルミニウム、タングステン、シリコン、カーボンなどの金属、 ポリイミドなどの趣旨、アルミナ (Al O )やシリカ(SiO )などのセラミックスでもよい。ま [0041] It should be noted that the base material of the cantilever 2 is not limited to the force formed by Ni, but is not limited to Fe-based alloy, Ni-based alloy, Cu-based alloy, aluminum, tungsten, silicon, carbon and other metals, polyimide, etc. The purpose may be ceramics such as alumina (Al 2 O 3) or silica (SiO 2). Ma
2 3 2  2 3 2
た、カンチレバー 2のメツキは、 Au、 Rd、 Ptなどの高導電性金属が好ましい。さらに、 ホールドフィルム 3や支持部材 4aは、 BCBに限らず、ポリイミドなどで実現してもよい 。また、圧電素子 4は、その他の圧電材料によって形成してもよぐたとえば LiNbO  Further, the plating of cantilever 2 is preferably a highly conductive metal such as Au, Rd, or Pt. Furthermore, the hold film 3 and the support member 4a are not limited to BCB, and may be realized by polyimide or the like. The piezoelectric element 4 may be formed of other piezoelectric materials, for example, LiNbO.
3 によって実現してもよい。  It may be realized by 3.
[0042] (実施の形態 2) [0042] (Embodiment 2)
つぎに、この発明の実施の形態 2について説明する。上述した実施の形態 1では、 圧電素子 4を用いてカンチレバー 2の先端を微小振動させるようにして 、たが、この 実施の形態 2では、薄膜コイル 61を設け、磁場内で通電することによってカンチレバ 一 2の先端を微小振動させるようにして 、る。 Next, a second embodiment of the present invention will be described. In the first embodiment described above, the tip of the cantilever 2 is vibrated minutely using the piezoelectric element 4. However, in the second embodiment, the thin film coil 61 is provided and energized in a magnetic field, thereby providing a cantilever. 1. Make the tip of 2 minutely vibrate.
[0043] 図 11は、この発明の実施の形態 2であるコンタクトプローブの概要構成を示す斜視 図である。図 11に示すように、このコンタクトプローブ 60は、圧電素子 4の代わりに薄 膜コイル 61をホールドフィルム 3上に設けている。その他の構成は、実施の形態 1と 同じである。 FIG. 11 is a perspective view showing a schematic configuration of the contact probe according to the second embodiment of the present invention. As shown in FIG. 11, the contact probe 60 is provided with a thin film coil 61 on the hold film 3 instead of the piezoelectric element 4. Other configurations are the same as those in the first embodiment.
[0044] この薄膜コイル 61は、 Cuや Niなどの導電性材料によって実現されるが、図 11では 、厚さ 2 μ m、幅 20 μ mの Cuを 30巻したコイルによって実現している。薄膜コイル 61 は、ホールドフィルム 3上に形成された BCBシート 3a上に形成され、薄膜コイル 61の 中央部は、この BCBシート 3aの裏面に接続され、ホールドフィルム 3上のパッドに電 気的に接続されている。  The thin film coil 61 is realized by a conductive material such as Cu or Ni. In FIG. 11, the thin film coil 61 is realized by a coil having 30 turns of Cu having a thickness of 2 μm and a width of 20 μm. The thin film coil 61 is formed on the BCB sheet 3a formed on the hold film 3, and the central portion of the thin film coil 61 is connected to the back surface of the BCB sheet 3a and is electrically connected to the pad on the hold film 3. It is connected.
[0045] 薄膜コイル 61が磁場内において通電されると、この通電量に応じて変位し、交流信 号を印加することによってカンチレバー 2の先端部分は微小振動する。  When the thin film coil 61 is energized in the magnetic field, the thin film coil 61 is displaced according to the energization amount, and the tip portion of the cantilever 2 vibrates minutely by applying an AC signal.
[0046] (実施の形態 3)  [Embodiment 3]
つぎに、この発明の実施の形態 3について説明する。上述した実施の形態 1では、 圧電素子 4を用いてカンチレバー 2の先端部分を微小振動させるようにして 、たが、 この実施の形態 3では、カンチレバー 2を櫛歯電極の一方とすることによって微小振 動させるようにしている。  Next, a third embodiment of the present invention will be described. In the first embodiment described above, the tip portion of the cantilever 2 is vibrated minutely using the piezoelectric element 4, but in this third embodiment, the cantilever 2 is used as one of the comb-teeth electrodes. It is made to vibrate.
[0047] 図 12は、この発明の実施の形態 3であるコンタクトプローブの概要構成を示す斜視 図である。図 12に示すように、このコンタクトプローブ 70は、圧電素子 2や薄膜コイル 61を設けず、各カンチレバー 2間に対向櫛歯電極 72を形成し、この対向櫛歯電極 7 2とカンチレバー 2とで櫛歯電極を形成して 、る。  FIG. 12 is a perspective view showing a schematic configuration of a contact probe according to Embodiment 3 of the present invention. As shown in FIG. 12, this contact probe 70 is not provided with the piezoelectric element 2 or the thin film coil 61, and the opposing comb electrode 72 is formed between each cantilever 2, and the opposing comb electrode 72 and the cantilever 2 A comb electrode is formed.
[0048] 対向櫛歯電極 72に電圧を印加すると、対向櫛歯電極 72とカンチレバー 2との間の 静電力によってカンチレバー 2が上下に変化する。したがって、対向櫛歯電極 72に 印加する電圧を交流信号とすることによって、カンチレバー 2の先端部分が微小振動 すること〖こなる。  When a voltage is applied to the opposing comb electrode 72, the cantilever 2 changes up and down by an electrostatic force between the opposing comb electrode 72 and the cantilever 2. Therefore, when the voltage applied to the opposing comb electrode 72 is an AC signal, the tip portion of the cantilever 2 slightly vibrates.
[0049] (実施の形態 4)  [0049] (Embodiment 4)
つぎに、この発明の実施の形態 4について説明する。上述した実施の形態 1〜3で はいずれもカンチレバー構造であった力 この実施の形態 4では、針状部材とパネ部 材とを用いたコンタクトプローブに振動手段を設けるようにして 、る。 Next, a fourth embodiment of the present invention will be described. In Embodiments 1 to 3 described above, the force was a cantilever structure. In Embodiment 4, the needle-like member and the panel portion The contact probe using the material is provided with vibration means.
[0050] 図 13は、この発明の実施の形態 4であるコンタクトプローブの概要構成を示す断面 図である。また、図 14は、図 13に示したコンタクトプローブの裏面を示す図である。図 13および図 14において、このコンタクトプローブ 80は、接触面に対して垂直な方向 に延びるホルダ 84が複数、所定ピッチで配置され、各ホルダ 84内にはリード線 86側 との接触をとる針状部材 81と、パネ部材 83と、検査対象電極との接触をとる針状部 材 82とがそれぞれ電気的に固着された状態で閉じ込められ、針状部材 82の先端部 分力 ホルダ 84の検査対象電極側の開口部カゝら伸縮自在に突出し、検査対象電極 にコンタクト加重をかけて接触する。  FIG. 13 is a cross-sectional view showing a schematic configuration of the contact probe according to the fourth embodiment of the present invention. FIG. 14 is a view showing the back surface of the contact probe shown in FIG. In FIG. 13 and FIG. 14, the contact probe 80 has a plurality of holders 84 extending in a direction perpendicular to the contact surface and arranged at a predetermined pitch, and each holder 84 has a needle that makes contact with the lead wire 86 side. The needle-like member 81, the panel member 83, and the needle-like member 82 that comes into contact with the electrode to be inspected are confined in an electrically fixed state, and the tip portion of the needle-like member 82 is inspected. It protrudes from the opening on the target electrode side so that it can expand and contract, and contacts the electrode to be inspected with contact load.
[0051] 針状部材 82の先端部分が突出する開口部を有する支持部材の面には圧電素子 8 5が配置される。この圧電素子 85に電圧を印加して微小振動させることによって針状 部材 82を支持部材の面に対して水平方向に微小振動させることができ、これによつ て針状部材 82の先端部分と検査対象電極との間の接触を確実、かつ低コンタクト加 重で接触させることができる。また、針状部材 82間のピッチを可変とすることができる  [0051] Piezoelectric element 85 is disposed on the surface of the support member having an opening from which the tip of needle-like member 82 projects. By applying a voltage to the piezoelectric element 85 and causing it to vibrate, the needle-like member 82 can be caused to vibrate in the horizontal direction with respect to the surface of the support member. Contact with the electrode to be inspected can be ensured and contact can be made with low contact weight. Further, the pitch between the needle-like members 82 can be made variable.
[0052] この場合、図 14に示すように複数のエリアに圧電素子 85a〜85dを配置することに よって停止状態の針状部材 82がなくなり、全ての針状部材 82を水平方向に微小振 動させることができる。 In this case, as shown in FIG. 14, by disposing the piezoelectric elements 85a to 85d in a plurality of areas, the needle-like members 82 in the stopped state are eliminated, and all the needle-like members 82 are slightly vibrated in the horizontal direction. Can be made.
[0053] さらに、圧電素子 85の振動方向を検査対象電極に対して垂直な方向にし、針状部 材 82を上下動させることによって、針状部材 82の先端部分と検査対象電極との間の 接触を確実、かつ低コンタクト加重で接触させるようにしてもょ 、。  [0053] Further, the vibration direction of the piezoelectric element 85 is set to a direction perpendicular to the inspection target electrode, and the needle-like member 82 is moved up and down, so that the tip portion of the needle-like member 82 and the inspection target electrode are moved. Make sure the contact is reliable and with a low contact load.
[0054] (実施の形態 5)  [Embodiment 5]
つぎに、この発明の実施の形態 5について説明する。この実施の形態 5では、剛性 の高 、複数の針状部材を有したコンタクトプローブに振動手段を設けるようにして ヽ る。  Next, a fifth embodiment of the present invention will be described. In the fifth embodiment, vibration means is provided on a contact probe having a high rigidity and a plurality of needle-like members.
[0055] 図 15は、この発明の実施の形態 5であるコンタクトプローブの概要構成を示す斜視 図である。図 15に示すように、このコンタクトプローブ 90は、先端部分が錐上となった 円柱部材が並列配置され、この先端部分が約 90度に折り曲がって検査対象電極方 向に臨んだ複数の針プローブ 91を有する。複数の針プローブ 91は、基部側で支持 部材 92によって各針プローブ 91間のピッチが保持され、この支持部材 92の上面に は、圧電素子 93が設けられている。 FIG. 15 is a perspective view showing a schematic configuration of a contact probe according to the fifth embodiment of the present invention. As shown in FIG. 15, this contact probe 90 is composed of cylindrical members arranged with a conical tip, and the tip is bent at about 90 degrees to be inspected electrode direction. It has a plurality of needle probes 91 facing in the direction. The plurality of needle probes 91 have a pitch between the needle probes 91 held by the support member 92 on the base side, and a piezoelectric element 93 is provided on the upper surface of the support member 92.
[0056] 圧電素子 93の微小振動によって針プローブ 91の先端部分が微小振動し、これに よって針プローブ 91の先端と検査対象電極との間の接触を確実、かつ低コンタクト加 重で接触することができる。なお、上述した実施の形態 1〜4と同様に、圧電素子 93 の微小振動方向は、検査対象電極の面に対して平行な方向であってもよいし、垂直 な方向であってもよい。また、圧電素子 93に印加する電圧によって針プローブ 91の 先端を平行な方向に広げ、ピッチを可変に設定することもできる。  [0056] The tip portion of the needle probe 91 is minutely vibrated by the minute vibration of the piezoelectric element 93, so that the contact between the tip of the needle probe 91 and the electrode to be inspected can be made reliably and with a low contact weight. Can do. As in the first to fourth embodiments described above, the minute vibration direction of the piezoelectric element 93 may be a direction parallel to the surface of the electrode to be inspected or a perpendicular direction. Further, the tip of the needle probe 91 can be expanded in a parallel direction by the voltage applied to the piezoelectric element 93, and the pitch can be set variably.
[0057] (実施の形態 6)  [0057] (Embodiment 6)
つぎに、この発明の実施の形態 6について説明する。この実施の形態 5では、支持 部材の面に複数のバンプを形成したコンタクトプローブに振動手段を設けるようにし ている。  Next, a sixth embodiment of the present invention will be described. In the fifth embodiment, the vibration means is provided on the contact probe in which a plurality of bumps are formed on the surface of the support member.
[0058] 図 16は、この発明の実施の形態 6であるコンタクトプローブの概要構成を示す斜視 図である。また、図 17は、図 16に示したコンタクトプローブの上面図である。図 16お よび図 17において、このコンタクトプローブ 100は、ポリイミドなどによって実現される 平板上の支持部材 101を有し、この支持部材 101の一方の面の縁近傍に、 Niで形 成される複数のバンプ 103を直線状に配置される。このバンプ 103が検査対象電極 と接触することになる。各バンプ 103間は所定のピッチで配置され、それぞれ Niで実 現される配線パターン 102によってリードされる。  FIG. 16 is a perspective view showing a schematic configuration of a contact probe according to Embodiment 6 of the present invention. FIG. 17 is a top view of the contact probe shown in FIG. 16 and 17, the contact probe 100 has a support member 101 on a flat plate realized by polyimide or the like, and a plurality of Ni formed near the edge of one surface of the support member 101. The bumps 103 are arranged in a straight line. The bump 103 comes into contact with the inspection target electrode. The bumps 103 are arranged at a predetermined pitch, and lead by the wiring pattern 102 realized by Ni.
[0059] 支持部材 101の他方の面であって基部側には圧電素子 104が設けられる。なお、 バンプ 103とその近傍の配線パターンとに対応する支持部材 101の部分は、ダイシ ングソ一などによって間隙 105を形成し、各バンプ 103部分の振動がし易いようにし ている。  A piezoelectric element 104 is provided on the other side of the support member 101 and on the base side. The portions of the support member 101 corresponding to the bumps 103 and the wiring patterns in the vicinity thereof are formed with a gap 105 by a dicing saw or the like so that the bumps 103 can easily vibrate.
[0060] この実施の形態 6では、上述した実施の形態 1〜5と同様に、圧電素子 104の微小 振動によってバンプ 103が微小振動し、これによつてバンプ 103と検査対象電極との 間の接触を確実、かつ低コンタクト加重で接触することができる。なお、上述した実施 の形態 1〜5と同様に、圧電素子 104の微小振動方向は、検査対象電極の面に対し て平行な方向であってもよいし、垂直な方向であってもよい。また、圧電素子 104に 印加する電圧によってバンプ 103を平行な方向に広げ、ピッチを可変に設定すること ちでさる。 In the sixth embodiment, as in the first to fifth embodiments described above, the bump 103 vibrates minutely due to the minute vibration of the piezoelectric element 104, and this causes the bump 103 to be in contact with the inspection target electrode. Contact can be made reliably and with a low contact load. As in Embodiments 1 to 5 described above, the direction of minute vibration of the piezoelectric element 104 is relative to the surface of the electrode to be inspected. Parallel directions or perpendicular directions. Further, the bump 103 is spread in a parallel direction by a voltage applied to the piezoelectric element 104, and the pitch is set to be variable.
[0061] なお、上述した実施の形態 1〜6では、複数のプローブを有したコンタクトプローブ について説明した力 これに限らず、 1つのプローブで構成されたコンタクトプローブ であってもよい。また、上述した実施の形態 1〜6では、圧電素子などの振動手段が プローブの基部側に設けられていた力 これに限らず、プローブの先端側に配置し てもよい。要は、プローブの先端部分が振動すればよい。  [0061] In Embodiments 1 to 6 described above, the force described for the contact probe having a plurality of probes is not limited to this, and the contact probe may be composed of one probe. In Embodiments 1 to 6 described above, the vibration means such as a piezoelectric element is provided on the base side of the probe. In short, the tip of the probe only needs to vibrate.
[0062] なお、上述した実施の形態 1〜6に示した構成要素は、適宜組み合わせ可能である [0062] It should be noted that the components shown in Embodiments 1 to 6 described above can be combined as appropriate.
産業上の利用可能性 Industrial applicability
[0063] 以上のように、本発明に力かるコンタクトプローブは、液晶パネルや集積回路などの 電子部品の電極あるいは端子部に接続して、この電子部品における導通状態検査 や動作試験に好適である。 [0063] As described above, the contact probe according to the present invention is connected to an electrode or a terminal portion of an electronic component such as a liquid crystal panel or an integrated circuit, and is suitable for a conduction state inspection or an operation test in the electronic component. .

Claims

請求の範囲 The scope of the claims
[1] 検査対象物を電気的に検査する際に該検査対象物に直接接続するプローブを有 したコンタクトプローブであって、  [1] A contact probe having a probe that is directly connected to an inspection object when the inspection object is electrically inspected.
前記プローブを微小振動させる振動手段を備えたことを特徴とするコンタクトプロ一 ブ。  A contact probe comprising vibration means for minutely vibrating the probe.
[2] 前記振動手段は、前記プローブ上に設けられた圧電素子であり、該圧電素子を駆 動することによって前記プローブを微小振動させることを特徴とする請求項 1に記載 のコンタクトプローブ。  2. The contact probe according to claim 1, wherein the vibrating means is a piezoelectric element provided on the probe, and the probe is microvibrated by driving the piezoelectric element.
[3] 前記振動手段は、前記プローブ上に設けられたコイルであり、磁場が形成される領 域において該コイルに印可する電流を変化させることによって前記プローブを微小 振動させることを特徴とする請求項 1に記載のコンタクトプローブ。  [3] The vibrating means is a coil provided on the probe, and the probe is microvibrated by changing a current applied to the coil in a region where a magnetic field is formed. Item 1. The contact probe according to item 1.
[4] 前記振動手段は、複数の梁状のプローブ間に設けられた複数の固定プローブをさ らに設けて形成された櫛歯電極であり、各プローブと各固定プローブとの間に印可さ れる電圧を変化させることによって前記プローブを微小振動させることを特徴とする 請求項 1に記載のコンタクトプローブ。  [4] The vibrating means is a comb electrode formed by further providing a plurality of fixed probes provided between a plurality of beam-like probes, and is applied between each probe and each fixed probe. The contact probe according to claim 1, wherein the probe is vibrated minutely by changing a voltage to be applied.
[5] 前記プローブは、梁状のプローブであることを特徴とする請求項 1〜4のいずれか 一つに記載のコンタクトプローブ。  [5] The contact probe according to any one of claims 1 to 4, wherein the probe is a beam-shaped probe.
[6] 前記プローブは、接触面に対してほぼ垂直に形成されたホルダ内に導電性針状部 材と導電性パネ部材とが接続して閉じ込められ、導電性針状部材の先端が前記ホル ダの開口部から伸縮可能に突出したプローブであることを特徴とする請求項 1〜4の いずれか一つに記載のコンタクトプローブ。  [6] The probe is confined by connecting a conductive needle-shaped member and a conductive panel member in a holder formed substantially perpendicular to the contact surface, and the tip of the conductive needle-shaped member is the hole. The contact probe according to any one of claims 1 to 4, wherein the probe protrudes from an opening of the slider so as to be extendable and contractible.
[7] 前記振動手段は、前記ホルダの開口部を形成する支持部材上に設けることを特徴 とする請求項 6に記載のコンタクトプローブ。  7. The contact probe according to claim 6, wherein the vibration means is provided on a support member that forms an opening of the holder.
[8] 前記プローブは、針プローブであることを特徴とする請求項 1〜4のいずれか一つ に記載のコンタクトプローブ。  [8] The contact probe according to any one of [1] to [4], wherein the probe is a needle probe.
[9] 前記プローブは、支持部材上に形成されたバンプであることを特徴とする請求項 1 〜4のいずれか一つに記載のコンタクトプローブ。  [9] The contact probe according to any one of [1] to [4], wherein the probe is a bump formed on a support member.
[10] 前記プローブは、薄い板状部材であり、板面方向が押圧方向であり、 前記板状部材は、 Niであり、厚さに対する幅の比が 5以上であることを特徴とする 請求項 1〜4のいずれか一つに記載のコンタクトプローブ。 [10] The probe is a thin plate member, the plate surface direction is the pressing direction, The contact probe according to any one of claims 1 to 4, wherein the plate-like member is Ni and a ratio of a width to a thickness is 5 or more.
[11] 前記振動手段は、プローブ先端を接触面に対してほぼ垂直方向に振動させること を特徴とする請求項 1〜4のいずれか一つに記載のコンタクトプローブ。 [11] The contact probe according to any one of [1] to [4], wherein the vibration means vibrates the probe tip in a direction substantially perpendicular to the contact surface.
[12] 前記振動手段は、プローブ先端を接触面に対してほぼ平行に振動させることを特 徴とする請求項 1〜4のいずれか一つに記載のコンタクトプローブ。 [12] The contact probe according to any one of [1] to [4], wherein the vibration means vibrates the probe tip substantially parallel to the contact surface.
[13] 複数のプローブを有し、該複数のプローブは、各プローブのピッチを保持する保持 部材によって覆われていることを特徴とする請求項 1〜4のいずれか一つに記載のコ ンタクトプローブ。 [13] The contact according to any one of claims 1 to 4, wherein the contact has a plurality of probes, and the plurality of probes are covered with a holding member that holds a pitch of each probe. probe.
PCT/JP2006/306115 2005-03-31 2006-03-27 Contact probe WO2006106618A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005104604A JP2006284362A (en) 2005-03-31 2005-03-31 Contact probe
JP2005-104604 2005-03-31

Publications (1)

Publication Number Publication Date
WO2006106618A1 true WO2006106618A1 (en) 2006-10-12

Family

ID=37073184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306115 WO2006106618A1 (en) 2005-03-31 2006-03-27 Contact probe

Country Status (4)

Country Link
JP (1) JP2006284362A (en)
KR (1) KR100966907B1 (en)
CN (1) CN101151541A (en)
WO (1) WO2006106618A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101261286B (en) * 2007-03-09 2011-05-11 海鸿科技股份有限公司 Probe device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5294195B2 (en) * 2008-05-01 2013-09-18 株式会社 東京ウエルズ Work characteristic measuring apparatus and work characteristic measuring method
KR100972049B1 (en) * 2009-03-10 2010-07-22 주식회사 프로이천 Probe unit for testing panel
JP5356148B2 (en) * 2009-08-21 2013-12-04 富士通株式会社 Prober apparatus and inspection method
JP5036892B2 (en) * 2010-05-10 2012-09-26 株式会社神戸製鋼所 Contact probe
JP5597564B2 (en) 2011-02-04 2014-10-01 株式会社日本マイクロニクス Probe device and manufacturing method thereof
JP5947139B2 (en) * 2012-07-27 2016-07-06 株式会社日本マイクロニクス Probe and electrical connection device
JP6079456B2 (en) * 2013-06-07 2017-02-15 三菱電機株式会社 Inspection method of semiconductor device
CN105785083B (en) * 2016-04-12 2019-01-15 义乌臻格科技有限公司 A kind of microprobe and preparation method thereof of rake cantilever beam structure
CN107677953B (en) * 2017-09-29 2020-05-05 京东方科技集团股份有限公司 Probe system, control method thereof and lighting machine
CN108682632A (en) * 2018-05-11 2018-10-19 德淮半导体有限公司 Semiconductor detection and its operating method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313785A (en) * 1993-04-28 1994-11-08 Hioki Ee Corp Detecting method of fault of soldering of pack-aged component by vibration, vibration generating device and vibration-generating and measuring probe unit
JPH0875786A (en) * 1994-09-05 1996-03-22 Kawasaki Steel Corp Probe card
JPH11133085A (en) * 1997-10-31 1999-05-21 Ngk Insulators Ltd Visual inspection device and method for electronic part
JP2002257893A (en) * 2001-02-28 2002-09-11 Matsushita Electric Ind Co Ltd Device and method for inspecting semiconductor device
JP2002311106A (en) * 2001-02-09 2002-10-23 Taiheiyo Cement Corp Electrical characteristic inspecting probe
JP2004085240A (en) * 2002-08-23 2004-03-18 Mitsubishi Materials Corp Contact probe, probe device and method for manufacturing the contact probe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313785A (en) * 1993-04-28 1994-11-08 Hioki Ee Corp Detecting method of fault of soldering of pack-aged component by vibration, vibration generating device and vibration-generating and measuring probe unit
JPH0875786A (en) * 1994-09-05 1996-03-22 Kawasaki Steel Corp Probe card
JPH11133085A (en) * 1997-10-31 1999-05-21 Ngk Insulators Ltd Visual inspection device and method for electronic part
JP2002311106A (en) * 2001-02-09 2002-10-23 Taiheiyo Cement Corp Electrical characteristic inspecting probe
JP2002257893A (en) * 2001-02-28 2002-09-11 Matsushita Electric Ind Co Ltd Device and method for inspecting semiconductor device
JP2004085240A (en) * 2002-08-23 2004-03-18 Mitsubishi Materials Corp Contact probe, probe device and method for manufacturing the contact probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101261286B (en) * 2007-03-09 2011-05-11 海鸿科技股份有限公司 Probe device

Also Published As

Publication number Publication date
JP2006284362A (en) 2006-10-19
CN101151541A (en) 2008-03-26
KR100966907B1 (en) 2010-06-30
KR20070108561A (en) 2007-11-12

Similar Documents

Publication Publication Date Title
WO2006106618A1 (en) Contact probe
JP3208734B2 (en) Probe device
US7649367B2 (en) Low profile probe having improved mechanical scrub and reduced contact inductance
JP5008005B2 (en) Probe card
US5909121A (en) Method and apparatus for scrubbing the bond pads of an integrated circuit during wafer sort
JP2008506112A (en) Probe head with membrane suspension probe
US20090189485A1 (en) Piezoelectric actuator provided with a displacement meter, piezoelectric element used therefor, and positioning device using a piezoelectric actuator
WO2007083769A1 (en) Contact device and process for producing the same
JP2002082130A (en) Apparatus and method for inspecting semiconductor device
WO2007060940A1 (en) Probe holder and probe unit
JP5179347B2 (en) Conductive contact unit
KR0165714B1 (en) Acceleration sensor and method for producing the same
JP2002071719A (en) Probe card and production method thereof
US6635940B1 (en) Micro-electromechanical actuator and methods of use
JP2002311106A (en) Electrical characteristic inspecting probe
JP2006284599A (en) Device for acquiring information on sample face using cantilever
JP3820953B2 (en) Electrical circuit inspection equipment
JP4056983B2 (en) Probe card
JP3694290B2 (en) probe
JP4062919B2 (en) Inspection probe and inspection jig using the same
JP3431246B2 (en) Probe excitation mechanism
JPH07169802A (en) Prober
JP2010103583A (en) Method of measuring electromechanical characteristic of piezoelectric element
JPH01231337A (en) Probe card

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010370.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077022330

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730063

Country of ref document: EP

Kind code of ref document: A1