WO2006104208A1 - 送信電力制御方法及び移動局 - Google Patents

送信電力制御方法及び移動局 Download PDF

Info

Publication number
WO2006104208A1
WO2006104208A1 PCT/JP2006/306536 JP2006306536W WO2006104208A1 WO 2006104208 A1 WO2006104208 A1 WO 2006104208A1 JP 2006306536 W JP2006306536 W JP 2006306536W WO 2006104208 A1 WO2006104208 A1 WO 2006104208A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
transmission power
user data
transmission
power control
Prior art date
Application number
PCT/JP2006/306536
Other languages
English (en)
French (fr)
Inventor
Masafumi Usuda
Anil Umesh
Takehiro Nakamura
Original Assignee
Ntt Docomo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Docomo, Inc. filed Critical Ntt Docomo, Inc.
Priority to CN2006800105473A priority Critical patent/CN101151823B/zh
Priority to JP2007510566A priority patent/JP4521442B2/ja
Priority to EP06730484.0A priority patent/EP1873935A4/en
Priority to US11/909,949 priority patent/US8189505B2/en
Publication of WO2006104208A1 publication Critical patent/WO2006104208A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/44TPC being performed in particular situations in connection with interruption of transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/12Outer and inner loops
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a transmission power control method and mobile station for controlling transmission power of an uplink user data channel in a mobile station.
  • the radio resources of the radio base station NodeB In consideration of transmission power, mobile station UE transmission processing performance, transmission speed required by higher-level applications, etc., determine the transmission speed of the dedicated channel, and move according to the Layer 3 (Radio Resource Control Layer) message. It is configured to notify the determined transmission rate of the dedicated channel to each of the station UE and the radio base station NodeB.
  • Layer 3 Radio Resource Control Layer
  • the radio network controller RNC is an apparatus that exists above the radio base station NodeB and controls the radio base station NodeB and the mobile station UE.
  • the radio network controller RNC generally controls and controls many radio base stations NodeB. Therefore, in a conventional mobile communication system, the processing load and For reasons such as processing delay, it is difficult to perform change control of the transmission speed of a high-speed channel (for example, about 1 to: LOOms).
  • radio resource control methods that have been studied in "uplink genno, sentence" can be broadly classified into three as follows. The following outlines a powerful radio resource control method.
  • the radio base station NodeB power determines the mobile station UE that permits transmission of user data and the transmission rate of the user data for each predetermined timing, and together with the mobile station ID, Broadcasts information on the transmission rate (or the maximum allowable transmission rate of user data).
  • the mobile station UE designated by the radio base station NodeB transmits user data at the designated timing and transmission rate (or within the range of the maximum allowable transmission rate).
  • each mobile station UE power is capable of transmitting the user data if there is user data to be transmitted to the radio base station NodeB.
  • For the maximum permissible transmission rate of the data for each transmission frame or for each transmission frame
  • the radio base station NodeB when notifying the maximum allowable transmission rate, the radio base station NodeB, or the relative value of the maximum allowable transmission rate itself (for example, Up / Down) 3 values of / Hold).
  • the transmission rate of user data common to the mobile base station UE that is communicating with the radio base station NodeB or the information necessary for calculating the transmission rate is broadcasted.
  • the mobile station determines the transmission rate of user data based on the received information.
  • Time & Rate Control and “: Rate Control per UE” are ideally the power control stations that can be the best control method to improve the radio capacity in the uplink. Since it is necessary to assign the transmission rate of user data after knowing the amount of data being transmitted and the transmission power of the mobile station UE, there is a problem that the control load of the radio base station NodeB increases. there were.
  • radio resource control methods have a problem that the overhead due to the exchange of control signals becomes large.
  • Radio Base Station NodeB broadcasts information common to the radio base station NodeB power cell, and each mobile station UE autonomously obtains the transmission rate of user data based on the received information. Therefore, there is an advantage that the control load by the radio base station NodeB is small.
  • the radio base station NodeB needs to be configured so that any mobile station UE can receive user data in the uplink, it can effectively use the radio capacity in the uplink. In order to do so, there was a problem that the equipment scale of the radio base station NodeB increased.
  • Non-Patent Document 1 the mobile station UE increases the transmission rate of user data from the initial transmission rate notified in advance according to a predetermined rule. Therefore, a method (autonomous ramping method) has been proposed in which excessive radio capacity allocation by the radio base station NodeB is prevented, and as a result, the equipment scale of the radio base station NodeB is prevented from increasing.
  • a method autonomous ramping method
  • the radio base station Node B power is a parameter relating to the maximum allowable transmission rate (or the maximum allowable transmission rate based on hardware resources and radio resources (for example, the amount of interference in the uplink) in each cell. The same shall apply hereinafter) and control the transmission rate of user data in the mobile station in communication.
  • a control method based on hardware resources and a control method based on the amount of interference in the uplink will be specifically described.
  • the radio base station NodeB is configured to broadcast the maximum allowable transmission rate to the mobile station UE connected to the subordinate cell.
  • the radio base station NodeB reduces the maximum allowable transmission rate when the transmission rate of user data in the mobile station UE connected to the subordinate cell becomes high and hardware resources become insufficient. Configure and avoid hardware resource shortages.
  • the radio base station NodeB re-establishes the maximum allowable transmission rate when there is a surplus in hardware resources, such as when user data transmission in the mobile station UE connected to the subordinate cell ends. Set high.
  • control scheme based on the amount of interference in the uplink is configured to notify the maximum allowable transmission rate to the mobile station UE connected to the cell under the power of the radio base station NodeB. Yes.
  • the radio base station NodeB has a higher transmission rate of user data in the mobile station UE connected to the subordinate cell, and the measurement interference amount (for example, noise rise) in the uplink is an allowable value (for example, If the maximum allowable noise rise) is exceeded, the maximum allowable transmission rate is set low so that the amount of interference in the uplink falls within the allowable value (see Fig. 12).
  • the measurement interference amount for example, noise rise
  • an allowable value for example, If the maximum allowable noise rise
  • the maximum allowable transmission rate is set low so that the amount of interference in the uplink falls within the allowable value (see Fig. 12).
  • the radio base station NodeB when the user data transmission in the mobile station UE connected to the subordinate cell is completed, the amount of interference (for example, noise rise) in the uplink is an allowable value (for example, the maximum If it is within the allowable noise rise and there is a margin, Set the maximum allowable transmission rate to a high value again (see Figure 12).
  • an allowable value for example, the maximum If it is within the allowable noise rise and there is a margin
  • Transmitting section 101 of mobile station UE is configured to always transmit a dedicated physical control channel (DPCCH) to which layer 1 control information such as pilot signals and TPC commands are mapped. Has been.
  • DPCCH dedicated physical control channel
  • the transmission section 101 of the mobile station UE maps the uplink user data and control information of layer 2 or higher according to the presence / absence of uplink user data to be transmitted and the presence / absence of transmitter association.
  • DPDCH Dedicated Physical Data Channel
  • E-DPDCH Enhanced-Dedicated Physical Data Channel
  • the SIR calculation unit 202 of the radio base station NodeB receives the received dedicated physical control channel (DPC)
  • the received signal-to-interference power ratio (received SIR) of the control signal received via (CH) is calculated, and the set target SIR and received SIR are compared.
  • the transmitting unit 203 of the radio base station NodeB transmits a "Down" command to the mobile station UE, and when the received SIR is lower than the target SIR, the radio base station The NodeB transmission unit 203 is configured to transmit an “Up” command to the mobile station UE.
  • inner loop transmission power control A series of operations as described above is referred to as “inner loop transmission power control”.
  • the receiving unit 301 of the radio network controller RNC is configured to measure the reception quality of the enhanced dedicated physical data channel (E-DPDCH) (or dedicated physical data channel (DPDCH)).
  • E-DPDCH enhanced dedicated physical data channel
  • DPDCH dedicated physical data channel
  • the control unit 302 of the radio network controller RNC sets a target SIR in the radio base station NodeB based on the measurement result!
  • a transmission amplitude ratio (hereinafter referred to as a gain factor) between the data channel (E-DPDCH) and the dedicated physical control channel (DPCCH) is determined and notified to the mobile station UE.
  • outer loop transmission power control A series of operations as described above is referred to as “outer loop transmission power control”.
  • "outer loop transmission power control” is performed when the mobile station UE enters a soft handover state or when the mobile station UE moves at a higher speed. It is configured to adapt to various changes in the wireless environment, such as when it has changed or when radio waves are blocked by buildings.
  • E-DPDCH enhanced dedicated physical data channel
  • Non-Patent Document 1 3GPP TSG RAN R2- 042010
  • an object of the present invention is to provide a transmission power control method and a mobile station that can avoid deterioration of radio quality due to interruption of transmission of uplink user data.
  • a first feature of the present invention is a transmission power control method for controlling transmission power of an uplink user data channel in a mobile station, wherein the mobile station determines a transmission cycle of an outer loop transmission power control signal. And when the mobile station has no uplink user data to be transmitted via the uplink user data channel, the outer loop is transmitted at the transmission period via the uplink user data channel.
  • a step of transmitting a transmission power control signal, a step of measuring a reception quality of the outer loop transmission power control signal received by the radio base station via the uplink user data channel, and the radio base station The step of performing transmission power control of the uplink user data channel based on the measurement result and the target reception quality, and the radio base station A step of notifying the network controller, the radio network controller, based on the measurement result, to notify before Symbol determines the transmission power offset of the uplink user data channel to the mobile station A step of determining, based on the measurement result, the target reception quality and notifying the radio base station, the mobile station using the transmission power offset, And a step of controlling transmission power of the uplink user data channel.
  • the radio network controller may determine the transmission cycle and notify the mobile station.
  • the radio network controller determines the transmission period at the time of call connection in the mobile station or at the start of soft handover in the mobile station, and You may notify a mobile station.
  • the transmission cycle may be determined according to a state of the mobile station or a congestion level of a radio channel.
  • a second feature of the present invention is a mobile station that transmits an uplink user data channel, and even when there is no uplink user data to be transmitted via the uplink user data channel, the predetermined feature is provided.
  • An outer loop transmission power control signal transmission unit configured to transmit an outer loop transmission power control signal via the uplink user data channel in a transmission cycle, and the outer loop transmission power control signal
  • a transmission power control unit configured to control the transmission power of the uplink user data channel using the transmission power offset determined by using the transmission power offset.
  • the predetermined transmission cycle may be determined and notified by the radio network controller.
  • the predetermined transmission period may be notified when a call is connected or when a soft handover is started.
  • a third feature of the present invention is a radio network controller used in a transmission power control method for controlling transmission power of an uplink user data channel in a mobile station, wherein an outer loop transmission power control signal transmission cycle is used. And receiving the outer loop transmission power control signal received via the uplink user data channel notified by the radio base station, and a transmission cycle determining unit configured to determine and notify the mobile station Based on the quality measurement result, a transmission power offset of the uplink user data channel is determined.
  • a transmission power offset determination unit configured to notify the mobile station, and based on the measurement result, determine a target reception quality of the uplink user data channel and notify the radio base station And a target reception quality determination unit.
  • the transmission period determining unit determines the transmission period when a call is connected in the mobile station or when a soft handover is started in the mobile station, and the transmission period is determined. It is configured to notify the mobile station.
  • the transmission cycle determining unit determines the transmission cycle according to a state of the mobile station or a congestion degree of a radio channel and notifies the mobile station. It may be configured.
  • FIG. 1 is a functional block diagram of a mobile station in a mobile communication system according to a first embodiment of the present invention.
  • FIG. 2 is a functional block diagram of a baseband signal processing unit in a mobile station of the mobile communication system according to the first embodiment of the present invention.
  • FIG. 3 is a functional block diagram of a MAC-e processing unit of a baseband signal processing unit in the mobile station of the mobile communication system according to the first embodiment of the present invention.
  • FIG. 4 is a functional block diagram of a layer 1 processing unit of a baseband signal processing unit in the mobile station of the mobile communication system according to the first embodiment of the present invention.
  • FIG. 5 is a functional block diagram of a radio base station of the mobile communication system according to the first embodiment of the present invention.
  • FIG. 6 is a functional block diagram of a baseband signal processing unit in the radio base station of the mobile communication system according to the first embodiment of the present invention.
  • FIG. 7 is a functional block diagram of MAC-e and layer 1 processing unit (uplink configuration) in the baseband signal processing unit of the radio base station of the mobile communication system according to the first embodiment of the present invention.
  • FIG. 7 is a functional block diagram of MAC-e and layer 1 processing unit (uplink configuration) in the baseband signal processing unit of the radio base station of the mobile communication system according to the first embodiment of the present invention.
  • FIG. 8 is a diagram of MAC-e and layer 1 processing unit (uplink configuration) in the baseband signal processing unit of the radio base station of the mobile communication system according to the first embodiment of the present invention. It is a functional block diagram of an AC-e function part.
  • FIG. 9 is a functional block diagram of a radio network controller of the mobile communication system according to the first embodiment of the present invention.
  • FIG. 10 is an overall configuration diagram of a general mobile communication system.
  • FIGS. 11 (a) to 11 (c) are diagrams for explaining an operation when transmitting burst data in a conventional mobile communication system.
  • FIG. 12 is a diagram for explaining an operation when controlling a transmission rate in an uplink in a conventional mobile communication system.
  • FIG. 13 is a diagram for explaining transmission power control in a conventional mobile communication system.
  • the configuration of the mobile communication system according to the first embodiment of the present invention will be described with reference to FIG. 1 to FIG.
  • the mobile communication system according to the present embodiment includes a plurality of radio base stations NodeB # 1 to # 5 and a radio network controller RNC as shown in FIG.
  • the mobile communication system is configured to automatically increase the transmission rate of user data transmitted via the uplink by the mobile station UE to the maximum allowable transmission rate. .
  • the mobile communication system according to the present embodiment may be configured such that the transmission rate of user data transmitted via the uplink by the mobile station UE is the maximum allowable transmission rate.
  • HSDPA high-power digital signal
  • EUL uplink enhancement
  • HARQ retransmission control N process stop undo
  • the enhanced dedicated physical data channel and the enhanced dedicated physical channel configured by the enhanced dedicated physical control channel and the dedicated dedicated physical data channel
  • the physical data channel (DPDCH: Dedicated Physical Data Channel) and the dedicated physical control channel (DPCCH: Dedicated Physical Control Channel) are used.
  • the enhanced dedicated physical control channel is a transmission format number for defining the transmission format (transmission block size, etc.) of E-DPDCH, information on HA RQ (number of retransmissions, etc.) Then, EUL control data such as scheduling information (transmission power, buffer retention, etc. at the mobile station UE) is transmitted.
  • E-DPDCH enhanced dedicated physical data channel
  • E-DPCCH enhanced dedicated physical control channel
  • E-DPCCH enhanced dedicated physical control channel
  • the dedicated physical control channel is a TFCI (Transport Format Combination Indicator) that identifies the symbol used for RAKE combining and SIR measurement, and the transmission format of the uplink dedicated physical data channel (DPDCH). ) And control data such as transmission power control bits in the downlink.
  • TFCI Transport Format Combination Indicator
  • the dedicated physical data channel (DPDCH) is mapped to the dedicated physical control channel (DPCCH), and based on the control data transmitted on the dedicated physical control channel (DPCCH), Send user data. However, if there is no user data to be transmitted to the mobile station UE, the dedicated physical data channel (DPDCH) is not transmitted! /.
  • HS—DPCCH high-speed dedicated physical control channel
  • the high-speed dedicated physical control channel transmits a quality identifier (CQI: Channel Quality Indicator) and an HSDPA acknowledgment signal (Ack or Nack) measured in the downlink.
  • CQI Quality Indicator
  • Ack or Nack HSDPA acknowledgment signal
  • the mobile station UE includes a bus interface 31, a call processing unit 32, a baseband processing unit 33, an RF unit 34, and a transmission / reception antenna 35.
  • the Yes the call processing unit 32, a baseband processing unit 33, an RF unit 34, and a transmission / reception antenna 35.
  • Such a function may exist independently as hardware, or may be partly or wholly integrated, or may be configured by a software process. Also good.
  • the bus interface 31 is configured to transfer user data output from the call processing unit 32 to another functional unit (for example, a functional unit related to an application).
  • the bus interface 31 is configured to transfer user data transmitted from another functional unit (for example, a functional unit related to an application) to the call processing unit 32.
  • the call processing unit 32 is configured to perform call control processing for transmitting and receiving user data.
  • the baseband signal processing unit 33 performs, on the baseband signal transmitted from the RF unit 34, layer 1 processing including despreading processing, RAKE combining processing, and FEC decoding processing, and MAC-e processing and MAC processing. It is configured to transmit user data obtained by performing MAC processing including -d processing and RLC processing to the call processing unit 32!
  • the baseband signal processing unit 33 performs RLC processing, MAC processing, and layer 1 processing on the user data transmitted from the call processing unit 32, generates a baseband signal, and transmits the baseband signal to the RF unit 34. It is configured to
  • the RF unit 34 generates a baseband signal by performing detection processing, filtering processing, quantization processing, and the like on the signal in the radio frequency band received via the transmission / reception antenna 35, and sends it to the baseband signal processing unit 33. Configured to send.
  • the RF unit 34 is configured to convert the baseband signal transmitted from the baseband signal processing unit 33 into a radio frequency band signal.
  • the baseband signal processing unit 33 includes an RLC processing unit 33a, a MAC-d processing unit 33b, a MAC-e processing unit 33c, and a layer 1 processing unit 33d. ing.
  • the RLC processing unit 33a is configured to perform processing (RLC processing) in an upper layer of Layer 2 on the user data transmitted from the call processing unit 32 and transmit the processed data to the MAC-d processing unit 33b. Has been.
  • the MAC-d processing unit 33b is configured to create a transmission format in the uplink by adding a channel identifier header based on a logical channel from which data is transmitted! Yes.
  • the MAC-e processing unit 33c includes an E-TFC selection unit 33cl and a HARQ processing unit.
  • the E-TFC selection unit 33cl transmits the enhanced dedicated physical data channel (E-DPDCH) transmission format based on the scheduling signal to which the radio base station NodeB power is also transmitted.
  • E-DPDCH enhanced dedicated physical data channel
  • the E-TFC selection unit 33cl transmits the transmission format information (transmission data block size, enhanced physical data channel (E-DP).
  • transmission format information transmission data block size, enhanced physical data channel (E-DP)
  • the transmission power ratio between the DCH) and the dedicated physical control channel (DPCCH) is transmitted to the layer 1 processing unit 33d, and the determined transmission format information is transmitted to the HARQ processing unit 33c2.
  • the scheduling signal is the maximum allowable transmission rate of user data transmitted by the absolute rate control channel (AGCH) in the mobile station UE (for example, the maximum allowable transmission data block size or the enhanced dedicated physical data channel).
  • AGCH absolute rate control channel
  • the maximum allowable transmission rate includes a parameter related to the maximum allowable transmission rate.
  • Scheduling signals are information broadcast in the cell where the mobile station UE is located, and all mobile stations located in the cell, or located in the cell. Control information for a particular group of mobile stations.
  • the HARQ processing unit 33c2 performs process management of "N process stop undo" and is based on a delivery confirmation signal (Ack / Nack for uplink data) received by the radio base station Node B! /, Configured to transmit user data in the uplink! RU
  • the HARQ processing unit 33c2 is configured to perform uplink use by the radio base station NodeB based on a delivery confirmation signal (Ack / Nack for uplink) transmitted by the radio base station NodeB. Whether or not the data reception process is successful is determined.
  • the HARQ processing unit 33c2 It is configured to transmit new uplink user data.
  • the HARQ processing unit 33c2 are configured to retransmit uplink user data.
  • the HARQ processing unit 33c2 is also notified of the radio network controller RNC power when the uplink user data is not transmitted for a certain period. It is configured to transmit a transmission data block including an outer loop transmission power control signal (MAC layer control information) at a transmission cycle (predetermined transmission cycle).
  • MAC layer control information outer loop transmission power control signal
  • the outer loop transmission power control signal stores the state of the mobile station UE (the state of transmission power availability, the state of the transmission buffer, etc.), CRC bits, and the like. Also, the transmission data block including the outer loop transmission power control signal is subjected to padding processing until the minimum transmission data block size is reached.
  • the radio network controller RNC power is also notified by an RRC message or the like when a call is connected or when a soft handover is started.
  • the layer 1 processing unit 33d includes a control information reception unit 33dl, a gain factor correspondence table storage unit 33d2, and a user data transmission unit 33d3.
  • the control information receiving unit 33dl is configured to receive control information related to the layer 1/2 from the radio network controller RNC via the call processing unit 33dl.
  • the gain factor correspondence table storage unit 33d2 determines the transmission data block size of the uplink user data and the EDCH transmission power ratio related to the uplink user data from the control information related to the layer 2 received by the control information reception unit 33dl. The table is extracted and stored.
  • the user data transmission unit 33d8 is stored in the gain factor correspondence table storage unit 33d2. It is configured to transmit uplink user data using the transmission power ratio (transmission rate) determined using the correspondence table between the transmission data block size and the EDCH transmission power ratio.
  • the user data transmission unit 33d8 is configured to transmit a transmission data block including an outer loop transmission power control signal (MAC layer control information) using the transmission power ratio described above.
  • MAC layer control information outer loop transmission power control signal
  • the radio base station NodeB includes an HWY interface 11, a baseband signal processing unit 12, a call control unit 13, and one or a plurality of transmission / reception units 14 And one or a plurality of amplifier units 15 and one or a plurality of transmission / reception antennas 16.
  • the HWY interface 11 is an interface with the radio network controller RNC.
  • the HWY interface 11 is configured to receive user data to be transmitted to the mobile station UE via the downlink from the radio network controller RNC and to input the user data to the baseband signal processing unit 12. .
  • the HWY interface 11 is configured to receive control data for the radio base station NodeB from the radio network controller RNC and input it to the call controller 13.
  • the HWY interface 11 acquires user data included in an uplink signal that has also received the mobile station UE power from the baseband signal processing unit 12 via the uplink, and transmits the user data to the radio network controller RNC. Is configured to do. Further, the HWY interface 11 is configured to acquire control data for the radio network controller RNC from the call controller 13 and transmit it to the radio network controller RNC.
  • the baseband signal processing unit 12 performs MAC-e processing and layer 1 processing on the user data acquired from the HWY interface 11, generates a baseband signal, and transfers the baseband signal to the transmission / reception unit 14. It is structured as follows.
  • downlink MAC processing includes HARQ processing, scheduling processing, transmission rate control processing, and the like.
  • downlink layer 1 processing includes channel coding processing and spreading processing of user data.
  • the baseband signal processing unit 12 performs layer 1 processing or MAC-e processing on the baseband signal that has also acquired the transmission / reception unit 14 power to extract user data, and outputs the user data to the HWY interface 11. Configured to forward.
  • the MAC-e processing in the uplink includes HARQ processing, scheduling processing, transmission rate control processing, header discard processing, and the like.
  • layer 1 processing in the uplink includes despreading processing, RAKE combining processing, error correction decoding processing, and the like.
  • the call control unit 13 performs call control processing based on the control data acquired from the HWY interface 11.
  • the transmission / reception unit 14 is configured to perform a process of converting the baseband signal acquired from the baseband signal processing unit 12 into a radio frequency band signal (downlink signal) and transmit the signal to the amplifier unit 15. .
  • the transceiver unit 14 is configured to perform a process of converting a radio frequency band signal (uplink signal) acquired from the amplifier unit 15 into a baseband signal and transmit the baseband signal to the baseband signal processing unit 12.
  • the amplifier unit 15 is configured to amplify the downlink signal acquired from the transmission / reception unit 14 and transmit the amplified downlink signal to the mobile station UE via the transmission / reception antenna 16.
  • the amplifier unit 15 is configured to amplify the uplink signal received by the transmission / reception antenna 16 and transmit it to the transmission / reception unit 14.
  • the baseband signal processing unit 12 includes a MAC-e and a layer 1 processing unit 123.
  • the MAC-e and layer 1 processing unit 123 is configured to perform despreading processing, RAKE combining processing, error correction decoding processing, HARQ processing, and the like on the baseband signal acquired from the transmission / reception unit 14. Yes.
  • the MAC-e and layer 1 processing unit (uplink configuration) 123 includes a DPCC H RAKE unit 123a, a DPDCH RAKE unit 123b, an E-DPCCH RAKE unit 123c, and an E- DPDCH RAKE unit 123d, HS-DPCCH RAKE unit 123e, TFCI decoder ⁇ 123g, nofer 123h, 123m, re-despreading ⁇ 123i, 123 ⁇ , FEC decoder ⁇ I 23j, 123p, E-DPCCH decoder unit 123k, MAC-e function part 1231, HARQ buffer 123 ⁇ , MAC-hs function part 123q, SIR measurement part 123s, SIR comparison part 123t It is equipped.
  • the E-DPCCH RAKE unit 123c performs despread processing and the dedicated physical control channel (DPCCH) on the enhanced dedicated physical control channel (E-DPCCH) in the baseband signal transmitted from the transmission / reception unit 14. It is configured to perform RAKE synthesis using pilot symbols! Speak.
  • DPCCH dedicated physical control channel
  • E-DPCCH enhanced dedicated physical control channel
  • the E-DPCCH decoder unit 123k performs a decoding process on the RAKE composite output of the E-DPCCH RAKE unit 123c to obtain a transmission format number, information on HARQ, information on scheduling, and the like.
  • e Function unit 1231 is configured to be input.
  • the E-DPDCH RAKE unit 123d transmits the transmission format transmitted from the MAC-e function unit 1231 to the enhanced dedicated physical data channel (E-DPDCH) in the baseband signal transmitted from the transmission / reception unit 14. It is configured to perform despreading processing using information (number of codes) and RAKE combining processing using pilot symbols included in the dedicated physical control channel (DPCCH).
  • E-DPDCH enhanced dedicated physical data channel
  • the notifier 123m is configured to store the RAKE composite output of the E-DPDCH RAKE unit 123d based on the transmission format information (number of symbols) transmitted from the MAC-e function unit 1231.
  • re-despreading unit 123 ⁇ Based on the transmission format information (spreading rate) transmitted from MAC-e function unit 1231, re-despreading unit 123 ⁇ performs the RAKE composite output of E-DPDCH RAKE unit 123d stored in buffer 123m. Thus, it may be configured to perform despreading processing.
  • the HARQ buffer 123 ⁇ is configured to store the despread processing output of the re-despreading unit 123 ⁇ based on the transmission format information transmitted from the MAC-e function unit 1231.
  • the FEC decoder unit 123 ⁇ is based on the transmission format information (transmission data block size) transmitted from the MAC-e function unit 1231 and performs despreading processing on the re-despreading unit 123 ⁇ stored in the HARQ buffer 123 ⁇ .
  • An error correction decoding process (FEC decoding process) is performed on the output.
  • the MAC-e function unit 1231 is a transmission format acquired from the E-DPCCH decoder unit 123k. It is configured to calculate and output transmission format information (number of codes, number of symbols, spreading factor, transmission data block size, etc.) on the basis of information on the mobile station number, HARQ, scheduling information, etc.
  • the SIR measurement unit 123s uses the pilot part of the dedicated physical control channel (DPCCH).
  • DPCCH dedicated physical control channel
  • the SIR comparing unit 123t compares the target SIR notified from the radio network controller RNC via the HWY interface 11 with the measured received SIR, and based on the comparison result, the "Do wnj command or" It is configured to instruct the downlink configuration of the baseband signal processing unit 12 to transmit the “Up” command via the downlink.
  • the MAC-e function unit 1231 includes a reception processing command unit 12311, a HAR
  • a Q management unit 12312 and a scheduling unit 12313 are provided.
  • the reception processing command unit 12311 is configured to transmit the transmission format number, information on HARQ, and information on scheduling input from the E-DPCCH decoder unit 123k to the HARQ management unit 12312.
  • reception processing command unit 12311 is configured to transmit information related to scheduling input from the E-DPCCH decoder unit 123k to the scheduling unit 12313.
  • reception processing command unit 12311 is configured to output transmission format information corresponding to the transmission format number input from the E-DPCCH decoder unit 123k!
  • the HARQ management unit 12312 determines whether or not the reception processing of the uplink user data is successful based on the CRC result input from the FEC decoder unit 123p. Then, the H ARQ management unit 12312 generates a delivery confirmation signal (Ack or Nack) based on the strong determination result and transmits it to the downlink configuration of the baseband signal processing unit 12. Further, when the above determination result is OK, the HARQ management unit 12312 transmits the uplink user data input from the FEC decoder unit 123p to the radio network controller RNC.
  • a delivery confirmation signal Ack or Nack
  • the HARQ management unit 12312 clears the soft decision information stored in the HARQ buffer 123 ⁇ . Meanwhile, HARQ manager 12312 If the above determination result is NG, the uplink user data is stored in the HARQ buffer 123 ⁇ .
  • the HARQ management unit 12312 transfers the above-described determination result to the reception processing command unit 12311.
  • the reception processing command unit 12311 is based on the received determination result, and the hardware resource to be prepared for the next step D- DPDCH RAKE unit 123d and buffer 123m are notified, and notification for securing resources in HARQ buffer 123 ⁇ is performed.
  • the reception processing command unit 12311 is stored in the H ARQ buffer 123 ⁇ .
  • the HARQ buffer 123 ⁇ and the FEC decoder unit 123 ⁇ are instructed to perform the FEC decoding process after adding the uplink user data and the newly received uplink user data in the process corresponding to the TTI.
  • the scheduling unit 12313 is configured to determine the maximum allowable transmission speed (maximum allowable transmission data block size and the like based on uplink radio resources of the radio base station NodeB, uplink interference amount (noise rise), and the like. Instruct the downlink configuration of the baseband signal processing unit 12 to notify the scheduling signal including the maximum allowable transmission power ratio.
  • scheduling section 12313 determines the maximum allowable transmission rate based on the scheduling-related information (radio resource in the uplink) transmitted from E-DPCCH decoder section 123k, and performs mobile station communication. And configured to control the transmission rate of user data.
  • the scheduling unit 12313 is configured to broadcast the maximum allowable transmission rate to the mobile station UE connected to the subordinate cell using the absolute rate allocation channel (AGCH). It has been.
  • AGCH absolute rate allocation channel
  • the scheduling unit 12313 sets the maximum allowable transmission rate to a low value when the transmission rate of user data in the mobile station UE connected to the subordinate cell becomes high and the hardware resources become insufficient. , Try not to run out of hardware resources.
  • the scheduling unit 12313 sets the maximum allowable transmission rate again when there is a surplus in hardware resources, such as when user data transmission in a mobile station connected to a subordinate cell ends. Set high.
  • the scheduling unit 12313 sets the maximum allowable transmission rate to the mobile station UE connected to the subordinate cell using the absolute rate allocation channel (AGC H). Configured to inform! Speak.
  • AGC H absolute rate allocation channel
  • the scheduling unit 12313 increases the transmission rate of user data in the mobile station UE connected to the subordinate cell, and the amount of interference (for example, noise rise) in the uplink is an allowable value (for example, the maximum allowable noise rise). ), The maximum allowable transmission rate is set to a low value so that the amount of interference in the uplink falls within the allowable value (see Fig. 12).
  • the scheduling unit 12313 when the user data transmission in the mobile station UE connected to the subordinate cell is completed, the amount of interference (for example, noise rating) in the uplink is an allowable value (for example, the maximum allowable If it is within the noise rise) and there is room, set the maximum allowable transmission rate to a higher value again (see Figure 12).
  • the allowable value for example, the maximum allowable If it is within the noise rise
  • the scheduling section 12313 is configured to set a priority class for each logical channel used when the mobile station UE transmits uplink user data. Then, the scheduling unit 12313 determines the absolute value of the maximum allowable transmission rate of the uplink user data for each priority class, and identifies the absolute value of the maximum allowable transmission rate and the priority class for each priority class. For this purpose, a scheduling signal including a priority class ID is transmitted to the downlink configuration of the baseband signal processing unit 12.
  • the radio network controller RNC is an apparatus positioned above the radio base station NodeB, and is configured to control radio communication between the radio base station NodeB and the mobile station UE. ing.
  • the radio network controller RNC includes an exchange interface 51, an RLC layer processing unit 52, a MAC layer processing unit 53, a media signal processing unit 54, A radio base station interface 55, a call control unit 56, and an outer loop transmission power control unit 57 are provided.
  • the exchange interface 51 is an interface with the exchange 1.
  • the switching center interface 51 transfers the downlink signal transmitted from the switching center 1 to the RLC layer processing unit 52, and transfers the uplink signal transmitted from the RLC layer processing unit 52 to the switching center 1. It is configured.
  • the RLC layer processing unit 52 is configured to perform RLC (Radio Link Control) sublayer processing such as header or trailer combining processing such as sequence numbers. After performing the RLC sublayer processing, the RLC layer processing unit 52 transmits the uplink signal to the switching center interface 51, and transmits the downlink signal to the MAC layer processing unit 53. It is composed!
  • RLC Radio Link Control
  • the MAC layer processing unit 53 is configured to perform MAC layer processing such as priority control processing and header assignment processing. After performing the MAC layer processing, the MAC layer processing unit 53 transmits the uplink signal to the RLC layer processing unit 52, and transmits the downlink signal to the radio base station interface 55 (or the media signal processing unit 54). It is configured to
  • the media signal processing unit 54 is configured to perform media signal processing on audio signals and real-time image signals.
  • the media signal processing unit 54 is configured to perform media signal processing, and then transmit an uplink signal to the MAC layer processing unit 53 and transmit a downlink signal to the radio base station interface 55.
  • the radio base station interface 55 is an interface with the radio base station NodeB.
  • the radio base station interface 55 transfers the uplink signal transmitted from the radio base station Node B to the MAC layer processing unit 53 (or media signal processing unit 54), and the MAC layer processing unit 53 (or media signal processing).
  • Unit 54 is also configured to forward the transmitted downlink signal to the radio base station NodeB.
  • the call control unit 56 is configured to perform radio resource management processing, channel setting and release processing by layer 3 signaling, and the like.
  • radio resource management includes call admission control, node over control, and the like.
  • the outer loop transmission power control unit 57 is configured to determine the transmission cycle of the outer loop transmission power control signal and notify the mobile station UE of it. [0145] For example, the outer loop transmission power control unit 57 determines whether or not the outer loop transmission power control unit 57 is based on the state of the mobile station UE (whether it is in the soft handover state, etc.), the degree of congestion in the uplink (wireless channel), The transmission cycle of the transmission power control signal is determined and notified to the mobile station UE.
  • the outer loop transmission power control unit 57 determines the above-described transmission period when a call (E-DCH) is connected in the mobile station UE or when a soft node over is started in the mobile station UE. It is configured to notify the mobile station UE!
  • E-DCH a call
  • the outer loop transmission power control unit 57 measures the reception quality of the outer loop transmission power control signal received via the "E-DPDCH (uplink user data channel)" notified by the radio base station NodeB. Based on the result (for example, received SIR), the transmission power offset (transmission power ratio or gain factor between E-DPDCH and DPCCH) of E-DPD CH (uplink user data channel) is determined and notified to mobile station UE It is structured like this!
  • the outer loop transmission power control unit 57 determines the target reception quality (target 311 ⁇ ) of the upper user data channel based on the above measurement result, and notifies the radio base station NodeB of the target reception quality (target 311 ⁇ ). It is composed.
  • the outer loop transmission power control unit 57 is configured to determine a target SIR and a gain factor based on uplink user data that also receives the radio base station NodeB power, a CRC result, the number of retransmissions, and the like.
  • outer loop transmission power control section 57 instructs radio base station NodeB to set a higher target SIR when the CRC result is “NG” and the number of retransmissions is large. Power, radio base station NodeB and mobile station UE are instructed to set a high gain factor.
  • the outer loop transmission power control unit 57 is configured to notify the mobile station UE or the radio base station NodeB of the transmission cycle, the target SIR, and the transmission power offset using the RRC message. .
  • the outer loop transmission power control signal is transmitted by the outer loop transmission power control signal because the transmission cycle of the outer loop transmission power control signal is too short. It is possible to prevent deterioration of the line capacity.
  • the transmission period of the outer loop transmission power control signal is too long, the deterioration of the radio quality due to the decrease in the accuracy of the outer loop transmission power control is suppressed. can do.
  • the present invention is also applicable to mobile communication systems other than the mobile communication system according to the first embodiment described above.
  • the above-mentioned “function for determining the transmission cycle of the outer loop transmission power control signal and notifying the mobile station (transmission cycle determination unit)" is the radio network controller.
  • the RNC is configured to be performed by an operation and maintenance terminal (OMT) connected to the wireless base station NodeB, an upper node, or the like.
  • the transmission power offset transmission power ratio or gain factor between E-DPDCH and DPCCH
  • the notification function transmission power offset determination unit ” is also configured to be performed by the above-described operation maintenance terminal, upper node, or the like.
  • transmission of uplink user data is performed by periodically performing outer loop transmission power control in a mobile communication system using a conventional “uplink enhancement”.
  • uplink enhancement a transmission power control method and a mobile station that can avoid degradation of radio quality due to interruptions.

Abstract

 本発明は、定期的に、アウターループ送信電力制御を行うことによって、上りユーザデータの送信が途切れることによる無線品質の劣化を回避する。本発明に係る送信電力制御方法は、無線回線制御局RNCが、送信周期を決定して、移動局UEに対して送信周期を通知する工程と、移動局UEが、データチャネルを介して送信すべき上りユーザデータがない場合に、データチャネルを介して前記送信周期でアウターループ制御信号を送信する工程と、無線基地局NodeBが、データチャネルの受信品質を測定して、測定結果を無線回線制御局RNCに通知する工程と、無線回線制御局RNCが、測定結果に基づいてデータチャネルにおける送信電力オフセットを決定して移動局UEに通知する工程と、移動局UEが、送信電力オフセットを用いてデータチャネルを介して送信される上りユーザデータの送信電力を制御する工程とを有する。

Description

明 細 書
送信電力制御方法及び移動局
技術分野
[0001] 本発明は、移動局における上りユーザデータチャネルの送信電力を制御する送信 電力制御方法及び移動局に関する。
背景技術
[0002] 従来の移動通信システムでは、無線回線制御局 RNC力 移動局 UEから無線基地 局 NodeBに対する上りリンクにおいて、無線基地局 NodeBの無線リソースや、上りリ ンクにおける干渉量や、移動局 UEの送信電力や、移動局 UEの送信処理性能や、 上位のアプリケーションが必要とする伝送速度等を鑑みて、個別チャネルの伝送速 度を決定し、レイヤ 3 (Radio Resource Control Layer)のメッセージによって、 移動局 UE及び無線基地局 NodeBのそれぞれに対して、決定した個別チャネルの 伝送速度を通知するように構成されて 、る。
[0003] ここで、無線回線制御局 RNCは、無線基地局 NodeBの上位に存在し、無線基地 局 NodeBや移動局 UEを制御する装置である。
[0004] 一般的に、データ通信は、音声通話や TV通話と比べて、トラヒックがバースト的に 発生することが多ぐ本来は、データ通信に用いられるチャネルの伝送速度を高速に 変更することが望ましい。
[0005] し力しながら、無線回線制御局 RNCは、図 10に示すように、通常、多くの無線基地 局 NodeBを統括して制御しているため、従来の移動通信システムでは、処理負荷や 処理遅延等の理由により、高速な (例えば、 1〜: LOOms程度の)チャネルの伝送速度 の変更制御を行うことは困難であるという問題点があった。
[0006] また、従来の移動通信システムでは、高速なチャネルの伝送速度の変更制御を行 うことができたとしても、装置の実装コストやネットワークの運用コストが大幅に高くなる という問題点があった。
[0007] そのため、従来の移動通信システムでは、数 100ms〜数 sオーダーでのチャネル の伝送速度の変更制御を行うのが通例である。 [0008] したがって、従来の移動通信システムでは、図 11 (a)に示すように、バースト的なデ ータ送信を行う場合、図 11 (b)に示すように、低速、高遅延及び低伝送効率を許容 してデータを送信するか、又は、図 11 (c)に示すように、高速通信用の無線リソース を確保して、空き時間の無線帯域リソースや無線基地局 NodeBにおけるハードゥエ ァリソースが無駄になるのを許容してデータを送信することとなる。
[0009] ただし、図 11において、縦軸の無線リソースには、上述の無線帯域リソース及びノヽ 一ドウエアリソースの両方が当てはめられるものとする。
[0010] そこで、第 3世代移動通信システムの国際標準化団体である「3GPP」及び「3GPP 2」において、無線リソースを有効利用するために、無線基地局 NodeBと移動局 UE との間のレイヤ 1及び MACサブレイヤ(レイヤ 2)における高速な無線リソース制御方 法が検討されてきた。以下、力かる検討又は検討された機能を総称して「上り回線ェ ンノヽンスメント(EUL: Enhanced Uplink)」と呼ぶこととする。
[0011] 従来から「上り回線ェンノ、ンスメント」の中で検討されてきた無線リソース制御方法 は、以下のように大きく 3つに分類され得る。以下、力かる無線リソース制御方法につ いて概説する。
[0012] 第 1に、「Time & Rate ControlJと呼ばれる無線リソース制御方法が検討され ている。
[0013] 力かる無線リソース制御方法では、無線基地局 NodeB力 所定のタイミング毎に、 ユーザデータの送信を許可する移動局 UE及びユーザデータの伝送速度を決定し、 移動局 IDと共に、ユーザデータの伝送速度 (又は、ユーザデータの最大許容伝送速 度)に係る情報を報知する。
[0014] そして、無線基地局 NodeBによって指定された移動局 UEは、指定されたタイミン グ及び伝送速度 (又は、最大許容伝送速度の範囲内)で、ユーザデータの送信を行
[0015] 第 2に、「Rate Control per UE」と呼ばれる無線リソース制御方法が検討され ている。
[0016] 力かる無線リソース制御方法では、各移動局 UE力 無線基地局 NodeBに対して 送信すべきユーザデータがあれば当該ユーザデータを送信できる力 当該ユーザデ ータの最大許容伝送速度に関しては、送信フレーム毎又は複数の送信フレーム毎に
、無線基地局 NodeBによって決定されて各移動局 UEに通知されたものを用いる。
[0017] ここで、無線基地局 NodeBは、当該最大許容伝送速度を通知する際は、そのタイ ミングにおける最大許容伝送速度そのもの、若しくは、当該最大許容伝送速度の相 対値(例えば、 Up/Down/Holdの 3値)を通知する。
[0018] 第 3に、「Rate Control per Cell」と呼ばれる無線リソース制御方法が検討され ている。
[0019] 力かる無線リソース制御方法では、無線基地局 NodeB力 通信中の移動局 UEに 共通なユーザデータの伝送速度、又は、当該伝送速度を計算するために必要な情 報を報知し、各移動局が、受信した情報に基づいて、ユーザデータの伝送速度を決 定する。
[0020] 「Time & Rate Control」及び「: Rate Control per UE」は、理想的には、 上りリンクにおける無線容量を改善させるために最も良い制御方法となり得る力 移 動局 UEのノ ッファに滞留しているデータ量や移動局 UEにおける送信電力等を把 握した上で、ユーザデータの伝送速度を割り当てする必要があるため、無線基地局 NodeBによる制御負荷が増大するという問題点という問題点があった。
[0021] また、これらの無線リソース制御方法では、制御信号のやりとりによるオーバーへッ ドが大きくなるという問題点があった。
[0022] 一方、「Rate Control per CellJは、無線基地局 NodeB力 セルに共通した情 報を報知し、各移動局 UEが、受信した情報に基づいて、ユーザデータの伝送速度 を自律的に求めるため、無線基地局 NodeBによる制御負荷が少ないという利点があ る。
[0023] しかしながら、無線基地局 NodeBは、どの移動局 UEが、上りリンクにおけるユーザ データを送信してきても受信できるように構成される必要があるため、上りリンクにお ける無線容量を有効に利用するためには、無線基地局 NodeBの装置規模が増大す るという問題点があった。
[0024] そこで、例えば、非特許文献 1に示すように、移動局 UEが、予め通知された初期伝 送速度から、所定のルールに従ってユーザデータの伝送速度を増加させて 、くこと で、無線基地局 NodeBによる過度な無線容量の割当を防ぎ、結果的に、無線基地 局 NodeBの装置規模の増大を防ぐ方式 (Autonomous ramping法)が提案され ている。
[0025] かかる方式では、無線基地局 NodeB力 各セルにおけるハードウェアリソースや無 線リソース (例えば、上りリンクにおける干渉量)に基づいて、最大許容伝送速度 (又 は、最大許容伝送速度に関するパラメータ。以下、同様。)を決定し、通信中の移動 局におけるユーザデータの伝送速度を制御する。以下、ハードウェアリソースに基づ く制御方式及び上りリンクにおける干渉量に基づく制御方式について具体的に説明 する。
[0026] ハードウェアリソースに基づく制御方式では、無線基地局 NodeBが、配下のセル に接続して ヽる移動局 UEに対して、最大許容伝送速度を報知するように構成されて いる。
[0027] 無線基地局 NodeBは、配下のセルに接続している移動局 UEにおけるユーザデー タの伝送速度が高くなり、ハードウェアリソースが足りなくなつてきた場合には、最大 許容伝送速度を低く設定し、ハードウェアリソース不足が生じな 、ようにして 、る。
[0028] 一方、無線基地局 NodeBは、配下のセルに接続している移動局 UEにおけるユー ザデータ伝送が終了した場合等、ハードウェアリソースに余裕が出てきた場合には、 再び最大許容伝送速度を高く設定する。
[0029] また、上りリンクにおける干渉量に基づく制御方式では、無線基地局 NodeB力 配 下のセルに接続して ヽる移動局 UEに対して、最大許容伝送速度を報知するように 構成されている。
[0030] 無線基地局 NodeBは、配下のセルに接続している移動局 UEにおけるユーザデー タの伝送速度が高くなり、上りリンクにおける測定干渉量 (例えば、ノイズライズ)が許 容値 (例えば、最大許容ノイズライズ)を超えた場合には、最大許容伝送速度を低く 設定し、上りリンクにおける干渉量が許容値内に収まるようにして 、る(図 12参照)。
[0031] 一方、無線基地局 NodeBは、配下のセルに接続している移動局 UEにおけるユー ザデータ伝送が終了した場合等、上りリンクにおける干渉量 (例えば、ノイズライズ)が 許容値 (例えば、最大許容ノイズライズ)内に収まっており余裕が出ている場合には、 再び最大許容伝送速度を高く設定する(図 12参照)。
[0032] また、図 13を参照して、「上り回線ェンノヽンスメント」を用いた移動通信システムにお ける送信電力制御について説明する。
[0033] 移動局 UEの送信部 101は、常時、パイロット信号や TPCコマンド等のレイヤ 1制御 情報がマッピングされて 、る個別物理制御チャネル(DPCCH: Dedicated Physic al Control Channel)を送信するように構成されている。
[0034] また、移動局 UEの送信部 101は、送信すべき上りユーザデータの有無や送信機 会割当の有無に応じて、当該上りユーザデータやレイヤ 2以上の制御情報がマツピ ングされている個別物理データチャネル(DPDCH : Dedicated Physical Data
Channel)又はェンハンスト個別物理データチャネル(E- DPDCH: Enhanced- De dicated Physical Data Channel)を送信するように構成されている。
[0035] 無線基地局 NodeBの SIR計算部 202は、受信した個別物理制御チャネル(DPC
CH)を介して受信した制御信号の受信信号対干渉電力比 (受信 SIR)を計算して、 設定されている目標 SIRと受信 SIRとを比較する。
[0036] 受信 SIRが目標 SIRよりも大き 、場合、無線基地局 NodeBの送信部 203が、移動 局 UEに対して「Down」コマンドを送信し、受信 SIRが目標 SIRを下回る場合、無線 基地局 NodeBの送信部 203が、移動局 UEに対して「Up」コマンドを送信するように 構成されている。
[0037] 以上のような一連の動作を「インナーループ送信電力制御」と呼ぶ。
[0038] 一方、無線回線制御局 RNCの受信部 301は、ェンハンスト個別物理データチヤネ ル (E- DPDCH) (又は個別物理データチャネル (DPDCH) )の受信品質を測定す るように構成されている。
[0039] そして、無線回線制御局 RNCの制御部 302は、測定結果に基づ!/、て、無線基地 局 NodeBにおける目標 SIRを設定すると共に、移動局 UEによって送信されるェン ハンスト個別物理データチャネル(E- DPDCH)と個別物理制御チャネル(DPCCH )との送信振幅比(以下、ゲインファクタと呼ぶ)を決定して当該移動局 UEに通知す るように構成されている。
[0040] 以上のような一連の動作を「アウターループ送信電力制御」と呼ぶ。 [0041] 従来の「上り回線ェンノヽンスメント」を用いた移動通信システムでは、「アウタールー プ送信電力制御」は、移動局 UEがソフトハンドオーバー状態に入る際や、移動局 U Eの移動速度が変わった場合や、建物等により電波が遮られる場合等、様々な無線 環境の変動に適応できるように構成されて 、る。
[0042] しかしながら、ェンハンスト個別物理データチャネル(E-DPDCH)を介して送信す べき上りユーザデータがない場合には、「アウターループ送信電力制御」が行われず 「インナーループ送信電力制御」のみが行われるため、伝播環境が変わっても適切 なゲインファクタ又は目標 SIRを設定することができず、再開時に上りユーザデータを 適切な送信電力で送信することができないため、無線品質の劣化が起こる可能性が あるという問題点があった。
非特許文献 1 : 3GPP TSG RAN R2- 042010
発明の開示
[0043] そこで、本発明は、以上の点に鑑みてなされたもので、従来の「上り回線ェンノヽンス メント」を用いた移動通信システムにおいて、定期的に、アウターループ送信電力制 御を行うことによって、上りユーザデータの送信が途切れることによる無線品質の劣 化を回避することができる送信電力制御方法及び移動局を提供することを目的とす る。
[0044] 本発明の第 1の特徴は、移動局における上りユーザデータチャネルの送信電力を 制御する送信電力制御方法であって、アウターループ送信電力制御用信号の送信 周期を決定して前記移動局に通知する工程と、前記移動局が、前記上りユーザデー タチャネルを介して送信すべき上りユーザデータがな 、場合であっても、該上りユー ザデータチャネルを介して前記送信周期で前記アウターループ送信電力制御用信 号を送信する工程と、無線基地局が、前記上りユーザデータチャネルを介して受信し た前記アウターループ送信電力制御用信号の受信品質を測定する工程と、前記無 線基地局が、前記測定結果と目標受信品質とに基づいて、前記上りユーザデータチ ャネルの送信電力制御を行う工程と、前記無線基地局が、前記測定結果を無線回線 制御局に通知する工程と、前記無線回線制御局が、前記測定結果に基づいて、前 記上りユーザデータチャネルの送信電力オフセットを決定して前記移動局に通知す る工程と、前記無線回線制御局が、前記測定結果に基づいて、前記目標受信品質 を決定して前記無線基地局に通知する工程と、前記移動局が、前記送信電力オフ セットを用いて、前記上りユーザデータチャネルの送信電力を制御する工程とを有す ることを要旨とする。
[0045] 本発明の第 1の特徴において、前記無線回線制御局が、前記送信周期を決定して 前記移動局に通知してもよ ヽ。
[0046] 本発明の第 1の特徴において、前記無線回線制御局が、前記移動局における呼の 接続時、又は、前記移動局におけるソフトハンドオーバーの開始時に、前記送信周 期を決定して前記移動局に通知してもよい。
[0047] 本発明の第 1の特徴において、前記送信周期が、前記移動局の状態或いは無線 回線の混雑度に応じて決定されてもょ 、。
[0048] 本発明の第 2の特徴は、上りユーザデータチャネルを送信する移動局であって、前 記上りユーザデータチャネルを介して送信すべき上りユーザデータがない場合であ つても、所定の送信周期で、該上りユーザデータチャネルを介してアウターループ送 信電力制御用信号を送信するように構成されて ヽるアウターループ送信電力制御用 信号送信部と、前記アウターループ送信電力制御用信号を用いて決定された送信 電力オフセットを用いて、前記上りユーザデータチャネルの送信電力を制御するよう に構成されている送信電力制御部とを具備することを要旨とする。
[0049] 本発明の第 2の特徴において、前記所定の送信周期が、前記無線回線制御局によ つて決定されて通知されてもょ ヽ。
[0050] 本発明の第 2の特徴において、前記所定の送信周期が、呼の接続時、又は、ソフト ハンドオーバーの開始時に、通知されてもよい。
[0051] 本発明の第 3の特徴は、移動局における上りユーザデータチャネルの送信電力を 制御する送信電力制御方法で用いられる無線回線制御局であって、アウターループ 送信電力制御用信号の送信周期を決定して前記移動局に通知するように構成され ている送信周期決定部と、無線基地局によって通知された前記上りユーザデータチ ャネルを介して受信した前記アウターループ送信電力制御用信号の受信品質の測 定結果に基づ 、て、前記上りユーザデータチャネルの送信電力オフセットを決定し て前記移動局に通知するように構成されている送信電力オフセット決定部と、前記測 定結果に基づいて、前記上りユーザデータチャネルの目標受信品質を決定して前記 無線基地局に通知するように構成されて 、る目標受信品質決定部とを具備すること を要旨とする。
[0052] 本発明の第 3の特徴において、前記送信周期決定部が、前記移動局における呼の 接続時、又は、前記移動局におけるソフトハンドオーバーの開始時に、前記送信周 期を決定して前記移動局に通知するように構成されて 、てもよ 、。
[0053] 本発明の第 3の特徴において、前記送信周期決定部が、前記移動局の状態或い は無線回線の混雑度に応じて、前記送信周期を決定して前記移動局に通知するよう に構成されていてもよい。
図面の簡単な説明
[0054] [図 1]図 1は、本発明の第 1の実施形態に係る移動通信システムの移動局の機能プロ ック図である。
[図 2]図 2は、本発明の第 1の実施形態に係る移動通信システムの移動局におけるべ ースバンド信号処理部の機能ブロック図である。
[図 3]図 3は、本発明の第 1の実施形態に係る移動通信システムの移動局におけるべ ースバンド信号処理部の MAC-e処理部の機能ブロック図である。
[図 4]図 4は、本発明の第 1の実施形態に係る移動通信システムの移動局におけるべ ースバンド信号処理部のレイヤ 1処理部の機能ブロック図である。
[図 5]図 5は、本発明の第 1の実施形態に係る移動通信システムの無線基地局の機 能ブロック図である。
[図 6]図 6は、本発明の第 1の実施形態に係る移動通信システムの無線基地局にお けるベースバンド信号処理部の機能ブロック図である。
[図 7]図 7は、本発明の第 1の実施形態に係る移動通信システムの無線基地局のベ ースバンド信号処理部における MAC-e及びレイヤ 1処理部(上りリンク用構成)の機 能ブロック図である。
[図 8]図 8は、本発明の第 1の実施形態に係る移動通信システムの無線基地局のベ ースバンド信号処理部における MAC-e及びレイヤ 1処理部(上りリンク用構成)の M AC- e機能部の機能ブロック図である。
[図 9]図 9は、本発明の第 1の実施形態に係る移動通信システムの無線回線制御局 の機能ブロック図である。
[図 10]図 10は、一般的な移動通信システムの全体構成図である。
[図 11]図 11 (a)乃至 (c)は、従来の移動通信システムにおいて、バースト的なデータ を送信する際の動作を説明するための図である。
[図 12]図 12は、従来の移動通信システムにおいて、上りリンクにおける伝送速度を制 御する際の動作を説明するための図である。
[図 13]図 13は、従来の移動通信システムにおける送信電力制御を説明するための 図である。
発明を実施するための最良の形態
[0055] (本発明の第 1の実施形態に係る移動通信システム)
図 1乃至図 9を参照して、本発明の第 1の実施形態に係る移動通信システムの構成 について説明する。なお、本実施形態に係る移動通信システムは、図 10に示すよう に、複数の無線基地局 NodeB # 1乃至 # 5と、無線回線制御局 RNCとを具備してい る。
[0056] 本実施形態に係る移動通信システムは、移動局 UEによって上りリンクを介して送 信されるユーザデータの伝送速度を最大許容伝送速度まで自動的に上げて 、くよう に構成されている。
[0057] また、本実施形態に係る移動通信システムは、移動局 UEによって上りリンクを介し て送信されるユーザデータの伝送速度を、最大許容伝送速度とするように構成され ていてもよい。
[0058] また、本実施形態に係る移動通信システムでは、下りリンクにぉ 、て「HSDPA」が 用いられており、上りリンクにお!、て「EUL (上り回線エンハンスメント)」が用いられて いる。なお、「HSDPA」及び「EUL」において、 HARQによる再送制御(Nプロセスス トップアンドゥエイト)が行われるものとする。
[0059] したがって、上りリンクにおいて、ェンハンスト個別物理データチャネル及びェンノヽ ンスト個別物理制御チャネルカゝら構成されるェンハンスト個別物理チャネルと、個別 物理データチャネル(DPDCH : Dedicated Physical Data Channel)及び個別 物理制御チャネル(DPCCH : Dedicated Physical Control Channel)力ら構 成される個別物理チャネルとが用いられて 、る。
[0060] ここで、ェンハンスト個別物理制御チャネル(E- DPCCH)は、 E- DPDCHの送信 フォーマット(送信ブロックサイズ等)を規定するための送信フォーマット番号や、 HA RQに関する情報 (再送回数等)や、スケジューリングに関する情報 (移動局 UEにお ける送信電力やバッファ滞留量等)等の EUL用制御データを送信する。
[0061] また、ェンハンスト個別物理データチャネル(E- DPDCH)は、ェンハンスト個別物 理制御チャネル(E- DPCCH)にマッピングされており、当該ェンハンスト個別物理制 御チャネル (E- DPCCH)で送信される EUL用制御データに基づ 、て、移動局 UE 用のユーザデータを送信する。
[0062] 個別物理制御チャネル (DPCCH)は、 RAKE合成や SIR測定等に用いられるノ ィ ロットシンボルや、上り個別物理データチャネル(DPDCH)の送信フォーマットを識 別するための TFCI (Transport Format Combination Indicator)や、下りリン クにおける送信電力制御ビット等の制御データを送信する。
[0063] また、個別物理データチャネル(DPDCH)は、個別物理制御チャネル(DPCCH) にマッピングされており、当該個別物理制御チャネル (DPCCH)で送信される制御 データに基づいて、移動局 UE用のユーザデータを送信する。ただし、移動局 UEに ぉ ヽて送信すべきユーザデータが存在しな 、場合には、個別物理データチャネル ( DPDCH)は送信されな!、ように構成されて 、てもよ!/、。
[0064] また、上りリンクでは、 HSPDAが適用されている場合に必要な高速個別物理制御 チャネル(HS— DPCCH : High Speed Dedicated Physical Control Chann el)も用いられている。
[0065] 高速個別物理制御チャネル (HS-DPCCH)は、下りリンクにぉ 、て測定された品 質識別子(CQI: Channel Quality Indicator)や、 HSDPA用送達確認信号 (Ac k又は Nack)を送信する。
[0066] 図 1に示すように、本実施形態に係る移動局 UEは、バスインターフェース 31と、呼 処理部 32と、ベースバンド処理部 33と、 RF部 34と、送受信アンテナ 35とを具備して いる。
[0067] ただし、かかる機能は、ハードウェアとして独立して存在して 、てもよ 、し、一部又 は全部が一体化して 、てもよ 、し、ソフトウェアのプロセスによって構成されて ヽても よい。
[0068] バスインターフェース 31は、呼処理部 32から出力されたユーザデータを他の機能 部(例えば、アプリケーションに関する機能部)に転送するように構成されている。また 、バスインターフェース 31は、他の機能部(例えば、アプリケーションに関する機能部 )から送信されたユーザデータを呼処理部 32に転送するように構成されている。
[0069] 呼処理部 32は、ユーザデータを送受信するための呼制御処理を行うように構成さ れている。
[0070] ベースバンド信号処理部 33は、 RF部 34から送信されたベースバンド信号に対して 、逆拡散処理や RAKE合成処理や FEC復号処理を含むレイヤ 1処理と、 MAC-e処 理ゃ MAC-d処理を含む MAC処理と、 RLC処理とを施して取得したユーザデータ を呼処理部 32に送信するように構成されて!ヽる。
[0071] また、ベースバンド信号処理部 33は、呼処理部 32から送信されたユーザデータに 対して RLC処理や MAC処理やレイヤ 1処理を施してベースバンド信号を生成して R F部 34に送信するように構成されて 、る。
[0072] なお、ベースバンド信号処理部 33の具体的な機能については後述する。 RF部 34 は、送受信アンテナ 35を介して受信した無線周波数帯の信号に対して、検波処理や フィルタリング処理や量子化処理等を施してベースバンド信号を生成して、ベースバ ンド信号処理部 33に送信するように構成されている。また、 RF部 34は、ベースバン ド信号処理部 33から送信されたベースバンド信号を無線周波数帯の信号に変換す るように構成されている。
[0073] 図 2に示すように、ベースバンド信号処理部 33は、 RLC処理部 33aと、 MAC-d処 理部 33bと、 MAC-e処理部 33cと、レイヤ 1処理部 33dとを具備している。
[0074] RLC処理部 33aは、呼処理部 32から送信されたユーザデータに対して、レイヤ 2の 上位レイヤにおける処理 (RLC処理)を施して、 MAC-d処理部 33bに送信するよう に構成されている。 [0075] MAC-d処理部 33bは、データが発信された論理チャネルに基づ!/、て、チャネル識 別子ヘッダを付与することによって、上りリンクにおける送信フォーマットを作成するよ うに構成されている。
[0076] 図 3に示すように、 MAC-e処理部 33cは、 E-TFC選択部 33clと、 HARQ処理部
33c2とを具備している。
[0077] E-TFC選択部 33clは、無線基地局 NodeB力も送信されたスケジューリング信号 に基づ 、て、ェンハンスト個別物理データチャネル(E- DPDCH)の送信フォーマット
(E-TFC)を決定するように構成されて 、る。
[0078] また、 E-TFC選択部 33clは、決定した送信フォーマットについての送信フォーマ ット情報(送信データブロックサイズや、ェンハンスト個別物理データチャネル (E-DP
DCH)と個別物理制御チャネル (DPCCH)との送信電力比等)をレイヤ 1処理部 33 dに送信すると共に、決定した送信フォーマット情報を、 HARQ処理部 33c2に送信 する。
[0079] ここで、スケジューリング信号は、絶対速度制御チャネル (AGCH)によって送信さ れた当該移動局 UEにおけるユーザデータの最大許容伝送速度 (例えば、最大許容 送信データブロックサイズや、ェンハンスト個別物理データチャネル(E- DPDCH)と 個別物理制御チャネル (DPCCH)との送信電力比の最大値 (最大許容送信電力比 )等)の絶対値等を含むものである。
[0080] 本明細書において、特段の断りがない場合、最大許容伝送速度には、最大許容伝 送速度に関するパラメータが含まれるものとする。
[0081] 力かるスケジューリング信号は、当該移動局 UEが在圏しているセルにおいて報知 されている情報であり、当該セルに在圏している全ての移動局、又は、当該セルに在 圏している特定グループの移動局に対する制御情報を含む。
[0082] HARQ処理部 33c2は、「Nプロセスのストップアンドゥエイト」のプロセス管理を行 い、無線基地局 NodeB力 受信される送達確認信号 (上りデータ用の Ack/Nack) に基づ!/、て、上りリンクにおけるユーザデータの伝送を行うように構成されて!、る。
[0083] 具体的には、 HARQ処理部 33c2は、無線基地局 NodeBにより送信される送達確 認信号(上りリンク用の Ack/Nack)に基づいて、無線基地局 NodeBによる上りユー ザデータの受信処理が成功したか否かにっ 、て判定するように構成されて 、る。
[0084] 無線基地局 NodeB力 HARQプロセスに対して送信された送達確認信号が「Ack 」である場合 (上りユーザデータの受信処理が成功した場合)、 HARQ処理部 33c2 は、当該 HARQプロセスにおいて、新しい上りユーザデータを送信するように構成さ れている。
[0085] また、無線基地局 NodeB力 HARQプロセスに対して送信された送達確認信号が 「Nack」である場合 (上りユーザデータの受信処理が失敗した場合)、 HARQ処理部 33c2は、当該 HARQプロセスにおいて、上りユーザデータを再送するように構成さ れている。
[0086] また、 HARQ処理部 33c2は、送信すべき上りユーザデータがな!、場合であっても 、一定期間、上りユーザデータを送信していない場合、無線回線制御局 RNC力も通 知されて!ヽる送信周期 (所定の送信周期)で、アウターループ送信電力制御用信号( MACレイヤ制御情報)を含む送信データブロックを送信するように構成されて 、る。
[0087] なお、アウターループ送信電力制御用信号には、移動局 UEの状態 (送信電力の 空き具合や送信バッファの状態等)や CRCビット等が格納されて ヽるものとする。また 、アウターループ送信電力制御用信号を含む送信データブロックには、最小の送信 データブロックサイズに達するまで、パディング処理がなされる。
[0088] 例えば、上述の送信周期は、呼の接続時、又は、ソフトハンドオーバーの開始時に 、 RRCメッセージ等によって、無線回線制御局 RNC力も通知される。
[0089] 図 4に示すように、レイヤ 1処理部 33dは、制御情報受信部 33dlと、ゲインファクタ 対応表格納部 33d2と、ユーザデータ送信部 33d3とを具備して ヽる。
[0090] 制御情報受信部 33dlは、呼処理部 33dlを介して、無線回線制御局 RNCから、レ ィャ 1/2に関する制御情報を受信するように構成されている。
[0091] ゲインファクタ対応表格納部 33d2は、制御情報受信部 33dlによって受信されたレ ィャ 2に関する制御情報から、上りユーザデータの送信データブロックサイズと、当該 上りユーザデータに係る EDCH送信電力比との対応表を抽出して格納するように構 成されている。
[0092] ユーザデータ送信部 33d8は、ゲインファクタ対応表格納部 33d2に格納されている 当該送信データブロックサイズと EDCH送信電力比との対応表を用いて決定した送 信電力比 (伝送速度)を用いて、上りユーザデータを送信するように構成されている。
[0093] また、ユーザデータ送信部 33d8は、上述の送信電力比を用いて、アウターループ 送信電力制御用信号 (MACレイヤ制御情報)を含む送信データブロックを送信する ように構成されている。
[0094] 図 5に示すように、本実施形態に係る無線基地局 NodeBは、 HWYインターフ ー ス 11と、ベースバンド信号処理部 12と、呼制御部 13と、 1つ又は複数の送受信部 14 と、 1つ又は複数のアンプ部 15と、 1つ又は複数の送受信アンテナ 16とを備える。
[0095] HWYインターフェース 11は、無線回線制御局 RNCとのインターフェースである。
具体的には、 HWYインターフェース 11は、無線回線制御局 RNCから、下りリンクを 介して移動局 UEに送信するユーザデータを受信して、ベースバンド信号処理部 12 に入力するように構成されている。また、 HWYインターフェース 11は、無線回線制御 局 RNCから、無線基地局 NodeBに対する制御データを受信して、呼制御部 13に入 力するように構成されている。
[0096] また、 HWYインターフェース 11は、ベースバンド信号処理部 12から、上りリンクを 介して移動局 UE力も受信した上りリンク信号に含まれるユーザデータを取得して、無 線回線制御局 RNCに送信するように構成されている。さらに、 HWYインターフエ一 ス 11は、無線回線制御局 RNCに対する制御データを呼制御部 13から取得して、無 線回線制御局 RNCに送信するように構成されて 、る。
[0097] ベースバンド信号処理部 12は、 HWYインターフェース 11から取得したユーザデー タに対して、 MAC-e処理やレイヤ 1処理を施してベースバンド信号を生成して、送受 信部 14に転送するように構成されて 、る。
[0098] ここで、下りリンクにおける MAC処理には、 HARQ処理やスケジューリング処理や 伝送速度制御処理等が含まれる。また、下りリンクにおけるレイヤ 1処理には、ユーザ データのチャネル符号化処理や拡散処理等が含まれる。
[0099] また、ベースバンド信号処理部 12は、送受信部 14力も取得したベースバンド信号 に対して、レイヤ 1処理や MAC-e処理を施してユーザデータを抽出して、 HWYイン ターフェース 11に転送するように構成されて 、る。 [0100] ここで、上りリンクにおける MAC-e処理には、 HARQ処理やスケジューリング処理 や伝送速度制御処理やヘッダ廃棄処理等が含まれる。また、上りリンクにおけるレイ ャ 1処理には、逆拡散処理や RAKE合成処理や誤り訂正復号処理等が含まれる。
[0101] なお、ベースバンド信号処理部 12の具体的な機能については後述する。また、呼 制御部 13は、 HWYインターフェース 11から取得した制御データに基づいて呼制御 処理を行うものである。
[0102] 送受信部 14は、ベースバンド信号処理部 12から取得したベースバンド信号を無線 周波数帯の信号 (下りリンク信号)に変換する処理を施してアンプ部 15に送信するよ うに構成されている。また、送受信部 14は、アンプ部 15から取得した無線周波数帯 の信号 (上りリンク信号)をベースバンド信号に変換する処理を施してベースバンド信 号処理部 12に送信するように構成されて 、る。
[0103] アンプ部 15は、送受信部 14から取得した下りリンク信号を増幅して、送受信アンテ ナ 16を介して移動局 UEに送信するように構成されている。また、アンプ部 15は、送 受信アンテナ 16によって受信された上りリンク信号を増幅して、送受信部 14に送信 するように構成されている。
[0104] 図 6に示すように、ベースバンド信号処理部 12は、 MAC- e及びレイヤ 1処理部 12 3を具備している。
[0105] MAC-e及びレイヤ 1処理部 123は、送受信部 14から取得したベースバンド信号に 対して、逆拡散処理や RAKE合成処理や誤り訂正復号処理や HARQ処理等を行う ように構成されている。
[0106] ただし、これらの機能は、ハードウェアで明確に分けられておらず、ソフトウェアによ つて実現されていてもよい。
[0107] 図 7に示すように、 MAC- e及びレイヤ 1処理部(上りリンク用構成) 123は、 DPCC H RAKE部 123aと、 DPDCH RAKE部 123bと、 E- DPCCH RAKE部 123cと 、E- DPDCH RAKE部 123dと、 HS- DPCCH RAKE部 123eと、 TFCIデコーダ 咅 123gと、ノ ッファ 123h、 123mと、再逆拡散咅 123i、 123ηと、 FECデコーダ咅 I 23j、 123pと、 E- DPCCHデコーダ部 123kと、 MAC- e機能部 1231と、 HARQバッ ファ 123οと、 MAC- hs機能部 123qと、 SIR測定部 123sと、 SIR比較部 123tとを具 備している。
[0108] E-DPCCH RAKE部 123cは、送受信部 14から送信されたベースバンド信号内 のェンハンスト個別物理制御チャネル (E- DPCCH)に対して、逆拡散処理と、個別 物理制御チャネル(DPCCH)に含まれて!/、るパイロットシンボルを用いた RAKE合 成処理を施すように構成されて!ヽる。
[0109] E- DPCCHデコーダ部 123kは、 E- DPCCH RAKE部 123cの RAKE合成出力 に対して復号処理を施して、送信フォーマット番号や HARQに関する情報やスケジ ユーリングに関する情報等を取得して MAC- e機能部 1231に入力するように構成さ れている。
[0110] E-DPDCH RAKE部 123dは、送受信部 14から送信されたベースバンド信号内 のェンハンスト個別物理データチャネル(E- DPDCH)に対して、 MAC- e機能部 12 31から送信された送信フォーマット情報 (コード数)を用いた逆拡散処理と、個別物理 制御チャネル (DPCCH)に含まれて!/、るパイロットシンボルを用いた RAKE合成処 理を施すように構成されて 、る。
[0111] ノ ッファ 123mは、 MAC- e機能部 1231から送信された送信フォーマット情報(シン ボル数)に基づいて、 E- DPDCH RAKE部 123dの RAKE合成出力を蓄積するよ うに構成されている。
[0112] 再逆拡散部 123ηは、 MAC-e機能部 1231から送信された送信フォーマット情報( 拡散率)に基づいて、バッファ 123mに蓄積されている E- DPDCH RAKE部 123d の RAKE合成出力に対して、逆拡散処理を施すように構成されて ヽる。
[0113] HARQバッファ 123οは、 MAC- e機能部 1231から送信された送信フォーマット情 報に基づいて、再逆拡散部 123ηの逆拡散処理出力を蓄積するように構成されてい る。
[0114] FECデコーダ部 123ρは、 MAC- e機能部 1231から送信された送信フォーマット情 報(送信データブロックサイズ)に基づいて、 HARQバッファ 123οに蓄積されている 再逆拡散部 123ηの逆拡散処理出力に対して、誤り訂正復号処理 (FEC復号処理) を施すように構成されている。
[0115] MAC-e機能部 1231は、 E- DPCCHデコーダ部 123kから取得した送信フォーマ ット番号や HARQに関する情報やスケジューリングに関する情報等に基づいて、送 信フォーマット情報 (コード数やシンボル数や拡散率や送信データブロックサイズ等) を算出して出力するように構成されて 、る。
[0116] SIR測定部 123sは、個別物理制御チャネル (DPCCH)のパイロット部分を用いて
、受信 SIRを測定するように構成されている。
[0117] SIR比較部 123tは、 HWYインターフェース 11を介して無線回線制御局 RNCから 通知された目標 SIRと測定された受信 SIRとを比較して、比較結果に基づいて、「Do wnjコマンド又は「Up」コマンドを下りリンクを介して送信するように、ベースバンド信 号処理部 12の下りリンク構成に指示するように構成されている。
[0118] また、 MAC- e機能部 1231は、図 8に示すように、受信処理命令部 12311と、 HAR
Q管理部 12312と、スケジューリング部 12313とを具備して 、る。
[0119] 受信処理命令部 12311は、 E- DPCCHデコーダ部 123kから入力された送信フォ 一マツト番号や HARQに関する情報やスケジューリングに関する情報を、 HARQ管 理部 12312に送信するように構成されている。
[0120] また、受信処理命令部 12311は、 E- DPCCHデコーダ部 123kから入力されたスケ ジユーリングに関する情報を、スケジューリング部 12313に送信するように構成されて いる。
[0121] さらに、受信処理命令部 12311は、 E- DPCCHデコーダ部 123kから入力された送 信フォーマット番号に対応する送信フォーマット情報を出力するように構成されて!、る
[0122] HARQ管理部 12312は、 FECデコーダ部 123pから入力された CRC結果に基づ いて、上りユーザデータの受信処理が成功したか否かについて判定する。そして、 H ARQ管理部 12312は、力かる判定結果に基づいて送達確認信号 (Ack又は Nack) を生成して、ベースバンド信号処理部 12の下りリンク用構成に送信する。また、 HAR Q管理部 12312は、上述の判定結果が OKであった場合、 FECデコーダ部 123pか ら入力された上りユーザデータを無線回線制御局 RNCに送信する。
[0123] また、 HARQ管理部 12312は、上述の判定結果が OKである場合には、 HARQバ ッファ 123οに蓄積されている軟判定情報をクリアする。一方、 HARQ管理部 12312 は、上述の判定結果が NGである場合には、 HARQバッファ 123οに、上りユーザデ ータを蓄積する。
[0124] また、 HARQ管理部 12312は、上述の判定結果を受信処理命令部 12311に転送 し、受信処理命令部 12311は、受信した判定結果に基づいて、次の ΤΤΙに備えるベ きハードウェアリソースを Ε- DPDCH RAKE部 123d及びバッファ 123mに通知し、 HARQバッファ 123οにおけるリソース確保のための通知を行う。
[0125] また、受信処理命令部 12311は、バッファ 123m及び FECデコーダ部 123ρに対し て、 ΤΤΙ毎に、バッファ 123mに蓄積されている上りユーザデータがある場合には、 H ARQバッファ 123οに蓄積されている当該 TTIに該当するプロセスにおける上りユー ザデータと新規に受信した上りユーザデータとを加算した後に、 FEC復号処理を行う ように、 HARQバッファ 123ο及び FECデコーダ部 123ρに指示する。
[0126] また、スケジューリング部 12313は、無線基地局 NodeBの上りリンクにおける無線リ ソースや、上りリンクにおける干渉量 (ノイズライズ)等に基づいて、最大許容伝送速 度 (最大許容送信データブロックサイズや最大許容送信電力比等)を含むスケジユー リング信号を通知するように、ベースバンド信号処理部 12の下りリンク用構成に指示 する。
[0127] 具体的には、スケジューリング部 12313は、 E- DPCCHデコーダ部 123kから送信 されたスケジューリングに関する情報(上りリンクにおける無線リソース)に基づいて、 最大許容伝送速度を決定し、通信中の移動局におけるユーザデータの伝送速度を 制御するように構成されて 、る。
[0128] 以下、ハードウェアリソースに基づく制御方式及び上りリンクにおける干渉量に基づ く制御方式について具体的に説明する。
[0129] ハードウェアリソースに基づく制御方式では、スケジューリング部 12313は、配下の セルに接続している移動局 UEに対して、絶対速度割当チャネル (AGCH)によって 最大許容伝送速度を報知するように構成されて 、る。
[0130] スケジューリング部 12313は、配下のセルに接続している移動局 UEにおけるユー ザデータの伝送速度が高くなり、ハードウェアリソースが足りなくなつてきた場合には 、最大許容伝送速度を低く設定し、ハードウェアリソース不足が生じないようにしてい る。
[0131] 一方、スケジューリング部 12313は、配下のセルに接続している移動局におけるュ 一ザデータ伝送が終了した場合等、ハードウェアリソースに余裕が出てきた場合には 、再び最大許容伝送速度を高く設定する。
[0132] また、上りリンクにおける干渉量に基づく制御方式では、スケジューリング部 12313 は、配下のセルに接続している移動局 UEに対して、絶対速度割当チャネル (AGC H)によって最大許容伝送速度を報知するように構成されて!ヽる。
[0133] スケジューリング部 12313は、配下のセルに接続している移動局 UEにおけるユー ザデータの伝送速度が高くなり、上りリンクにおける干渉量 (例えば、ノイズライズ)が 許容値 (例えば、最大許容ノイズライズ)を超えた場合には、最大許容伝送速度を低 く設定し、上りリンクにおける干渉量が許容値内に収まるようにして 、る(図 12参照)。
[0134] 一方、スケジューリング部 12313は、配下のセルに接続している移動局 UEにおける ユーザデータ伝送が終了した場合等、上りリンクにおける干渉量 (例えば、ノイズライ ズ)が許容値 (例えば、最大許容ノイズライズ)内に収まっており余裕が出ている場合 には、再び最大許容伝送速度を高く設定する(図 12参照)。
[0135] また、スケジューリング部 12313は、移動局 UEが上りユーザデータを送信する際に 用いる論理チャネル毎に、優先度クラスを設定するように構成されている。そして、ス ケジユーリング部 12313は、優先度クラス毎に、上りユーザデータの最大許容伝送速 度の絶対値を決定して、優先度クラス毎の最大許容伝送速度の絶対値及び優先度 クラスを識別するための優先度クラス IDを含むスケジューリング信号を、ベースバンド 信号処理部 12の下りリンク用構成に送信する。
[0136] 本実施形態に係る無線回線制御局 RNCは、無線基地局 NodeBの上位に位置す る装置であり、無線基地局 NodeBと移動局 UEとの間の無線通信を制御するように 構成されている。
[0137] 図 9に示すように、本実施形態に係る無線回線制御局 RNCは、交換局インターフ エース 51と、 RLCレイヤ処理部 52と、 MACレイヤ処理部 53と、メディア信号処理部 54と、無線基地局インターフェース 55と、呼制御部 56と、アウターループ送信電力 制御部 57とを具備している。 [0138] 交換局インターフェース 51は、交換局 1とのインターフェースである。交換局インタ 一フェース 51は、交換局 1から送信された下りリンク信号を RLCレイヤ処理部 52に転 送し、 RLCレイヤ処理部 52から送信された上りリンク信号を交換局 1に転送するよう に構成されている。
[0139] RLCレイヤ処理部 52は、シーケンス番号等のヘッダ又はトレーラの合成処理等の RLC (無線リンク制御: Radio Link Control)サブレイヤ処理を施すように構成さ れている。 RLCレイヤ処理部 52は、 RLCサブレイヤ処理を施した後、上りリンク信号 につ 、ては交換局インターフェース 51に送信し、下りリンク信号にっ 、ては MACレ ィャ処理部 53に送信するように構成されて!、る。
[0140] MACレイヤ処理部 53は、優先制御処理やヘッダ付与処理等の MACレイヤ処理 を施すように構成されている。 MACレイヤ処理部 53は、 MACレイヤ処理を施した後 、上りリンク信号については RLCレイヤ処理部 52に送信し、下りリンク信号について は無線基地局インターフェース 55 (又は、メディア信号処理部 54)に送信するように 構成されている。
[0141] メディア信号処理部 54は、音声信号やリアルタイムの画像信号に対して、メディア 信号処理を施すように構成されている。メディア信号処理部 54は、メディア信号処理 を施した後、上りリンク信号については MACレイヤ処理部 53に送信し、下りリンク信 号につ 、ては無線基地局インターフェース 55に送信するように構成されて 、る。
[0142] 無線基地局インターフェース 55は、無線基地局 NodeBとのインターフェースである 。無線基地局インターフェース 55は、無線基地局 NodeBから送信された上りリンク信 号を MACレイヤ処理部 53 (又は、メディア信号処理部 54)に転送し、 MACレイヤ処 理部 53 (又は、メディア信号処理部 54)力も送信された下りリンク信号を無線基地局 NodeBに転送するように構成されて 、る。
[0143] 呼制御部 56は、無線リソース管理処理や、レイヤ 3シグナリングによるチャネルの設 定及び開放処理等を施すように構成されている。ここで、無線リソース管理には、呼 受付制御ゃノヽンドオーバー制御等が含まれる。
[0144] アウターループ送信電力制御部 57は、アウターループ送信電力制御用信号の送 信周期を決定して移動局 UEに通知するように構成されて 、る。 [0145] 例えば、アウターループ送信電力制御部 57は、移動局 UEの状態(ソフトハンドォ 一バー状態か否か等)や、上りリンク (無線回線)における混雑度等に基づいて、ァゥ ターループ送信電力制御用信号の送信周期を決定して、移動局 UEに対して通知 するように構成されている。
[0146] また、アウターループ送信電力制御部 57は、移動局 UEにおける呼 (E- DCH)の 接続時、又は、移動局 UEにおけるソフトノヽンドオーバーの開始時に、上述の送信周 期を決定して移動局 UEに通知するように構成されて 、てもよ!/、。
[0147] また、アウターループ送信電力制御部 57は、無線基地局 NodeBによって通知され た「E- DPDCH (上りユーザデータチャネル)」を介して受信したアウターループ送信 電力制御用信号の受信品質の測定結果 (例えば、受信 SIR)に基づいて、 E-DPD CH (上りユーザデータチャネル)の送信電力オフセット(E- DPDCHと DPCCHとの 送信電力比又はゲインファクタ)を決定して移動局 UEに通知するように構成されて!ヽ る。
[0148] また、アウターループ送信電力制御部 57は、上述の測定結果に基づいて、前記上 りユーザデータチャネルの目標受信品質(目標311^)を決定して無線基地局 NodeB に通知するように構成されて 、る。
[0149] 例えば、アウターループ送信電力制御部 57は、無線基地局 NodeB力も受信する 上りユーザデータや CRC結果や再送回数等に基づ 、て、目標 SIRやゲインファクタ を決定するように構成されて 、る。
[0150] すなわち、アウターループ送信電力制御部 57は、 CRC結果が「NG」で、かつ、再 送回数が大きい場合には、無線基地局 NodeBに対して目標 SIRを高く設定するよう に指示する力、無線基地局 NodeB及び移動局 UEに対してゲインファクタを高く設 定するように指示する。
[0151] また、アウターループ送信電力制御部 57は、 RRCメッセージを用いて、上述の送 信周期や目標 SIRや送信電力オフセットを、移動局 UE又は無線基地局 NodeBに 通知するように構成されて 、てもよ 、。
[0152] 本実施形態に係る移動通信システムによれば、アウターループ送信電力制御用信 号の送信周期が短すぎることにより、当該アウターループ送信電力制御用信号によ る回線容量の劣化を防ぐことができる。
[0153] また、本実施形態に係る移動通信システムによれば、アウターループ送信電力制 御用信号の送信周期が長すぎることにより、アウターループ送信電力制御の精度が 下がることによる無線品質の劣化を抑制することができる。
[0154] (変更例 1)
なお、本発明は、上述の第 1の実施形態に係る移動通信システム以外の移動通信 システムにも適用可能である。
[0155] 変更例 1に係る移動通信システムでは、上述の「アウターループ送信電力制御用信 号の送信周期を決定して移動局に通知する機能 (送信周期決定部)」が、無線回線 制御局 RNCではなぐ無線基地局 NodeBに接続されている運用保守端末 (OMT: Operation & Maintenance Terminal)や上位ノード等によって行われるように 構成されている。
[0156] また、変更例 1に係る移動通信システムでは、上述の「無線基地局 NodeBによって 通知された E- DPDCH (上りユーザデータチャネル)を介して受信したアウタールー プ送信電力制御用信号の受信品質の測定結果 (受信 SIR)に基づいて、 E-DPDC H (上りユーザデータチャネル)の送信電力オフセット(E- DPDCHと DPCCHとの送 信電力比又はゲインファクタ)を決定して移動局 UEに通知する機能 (送信電力オフ セット決定部)」も、上述の運用保守端末や上位ノード等によって行われるように構成 されている。
[0157] また、変更例 1に係る移動通信システムでは、上述の「測定結果に基づ!/、て、前記 上りユーザデータチャネルの目標受信品質を決定して前記無線基地局に通知する 機能(目標受信品質決定部) J上述の運用保守端末や上位ノード等によって行われ るように構成されている。
[0158] 以上、本発明を実施例により詳細に説明したが、当業者にとっては、本発明が本願 中に説明した実施例に限定されるものではないということは明らかである。本発明の 装置は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱すること なく修正及び変更態様として実施することができる。従って、本願の記載は、例示説 明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない 産業上の利用の可能性
以上説明したように、本発明によれば、従来の「上り回線ェンノヽンスメント」を用いた 移動通信システムにおいて、定期的に、アウターループ送信電力制御を行うことによ つて、上りユーザデータの送信が途切れることによる無線品質の劣化を回避すること ができる送信電力制御方法及び移動局を提供することができる。

Claims

請求の範囲
[1] 移動局における上りユーザデータチャネルの送信電力を制御する送信電力制御方 法であって、
アウターループ送信電力制御用信号の送信周期を決定して前記移動局に通知す る工程と、
前記移動局力 前記上りユーザデータチャネルを介して送信すべき上りユーザデ ータがな 、場合であっても、該上りユーザデータチャネルを介して前記送信周期で 前記アウターループ送信電力制御用信号を送信する工程と、
無線基地局が、前記上りユーザデータチャネルを介して受信した前記アウタールー プ送信電力制御用信号の受信品質を測定する工程と、
前記無線基地局が、前記測定結果と目標受信品質とに基づいて、前記上りユーザ データチャネルの送信電力制御を行う工程と、
前記無線基地局が、前記測定結果を無線回線制御局に通知する工程と、 前記無線回線制御局が、前記測定結果に基づいて、前記上りユーザデータチヤネ ルの送信電力オフセットを決定して前記移動局に通知する工程と、
前記無線回線制御局が、前記測定結果に基づいて、前記目標受信品質を決定し て前記無線基地局に通知する工程と、
前記移動局が、前記送信電力オフセットを用いて、前記上りユーザデータチャネル の送信電力を制御する工程とを有することを特徴とする送信電力制御方法。
[2] 前記無線回線制御局が、前記送信周期を決定して前記移動局に通知することを特 徴とする請求項 1に記載の送信電力制御方法。
[3] 前記無線回線制御局が、前記移動局における呼の接続時、又は、前記移動局に おけるソフトハンドオーバーの開始時に、前記送信周期を決定して前記移動局に通 知することを特徴とする請求項 1に記載の送信電力制御方法。
[4] 前記送信周期は、前記移動局の状態或いは無線回線の混雑度に応じて決定され ることを特徴とする請求項 1に記載の送信電力制御方法。
[5] 上りユーザデータチャネルを送信する移動局であって、
前記上りユーザデータチャネルを介して送信すべき上りユーザデータがない場合 であっても、所定の送信周期で、該上りユーザデータチャネルを介してアウタールー プ送信電力制御用信号を送信するように構成されて ヽるアウターループ送信電力制 御用信号送信部と、
前記アウターループ送信電力制御用信号を用いて決定された送信電力オフセット を用いて、前記上りユーザデータチャネルの送信電力を制御するように構成されてい る送信電力制御部とを具備することを特徴とする移動局。
[6] 前記所定の送信周期は、前記無線回線制御局によって決定されて通知されること を特徴とする請求項 5に記載の移動局。
[7] 前記所定の送信周期は、呼の接続時、又は、ソフトハンドオーバーの開始時に、通 知されることを特徴とする請求項 5に記載の移動局。
[8] 移動局における上りユーザデータチャネルの送信電力を制御する送信電力制御方 法で用いられる無線回線制御局であって、
アウターループ送信電力制御用信号の送信周期を決定して前記移動局に通知す るように構成されて 、る送信周期決定部と、
無線基地局によって通知された前記上りユーザデータチャネルを介して受信した 前記アウターループ送信電力制御用信号の受信品質の測定結果に基づ 、て、前記 上りユーザデータチャネルの送信電力オフセットを決定して前記移動局に通知する ように構成されて 、る送信電力オフセット決定部と、
前記測定結果に基づいて、前記上りユーザデータチャネルの目標受信品質を決定 して前記無線基地局に通知するように構成されて 、る目標受信品質決定部とを具備 することを特徴とする無線回線制御局。
[9] 前記送信周期決定部は、前記移動局における呼の接続時、又は、前記移動局に おけるソフトハンドオーバーの開始時に、前記送信周期を決定して前記移動局に通 知するように構成されて 、ることを特徴とする請求項 8に記載の無線回線制御局。
[10] 前記送信周期決定部は、前記移動局の状態或いは無線回線の混雑度に応じて、 前記送信周期を決定して前記移動局に通知するように構成されていることを特徴と する請求項 8に記載の無線回線制御局。
PCT/JP2006/306536 2005-03-29 2006-03-29 送信電力制御方法及び移動局 WO2006104208A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800105473A CN101151823B (zh) 2005-03-29 2006-03-29 发送功率控制方法、移动台以及无线线路控制台
JP2007510566A JP4521442B2 (ja) 2005-03-29 2006-03-29 送信電力制御方法及び移動局
EP06730484.0A EP1873935A4 (en) 2005-03-29 2006-03-29 METHOD FOR CONTROLLING TRANSMISSION POWER AND MOBILE STATION
US11/909,949 US8189505B2 (en) 2005-03-29 2006-03-29 Transmission power control method and mobile station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005127061 2005-03-29
JP2005-127061 2005-03-29

Publications (1)

Publication Number Publication Date
WO2006104208A1 true WO2006104208A1 (ja) 2006-10-05

Family

ID=37053462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306536 WO2006104208A1 (ja) 2005-03-29 2006-03-29 送信電力制御方法及び移動局

Country Status (6)

Country Link
US (1) US8189505B2 (ja)
EP (1) EP1873935A4 (ja)
JP (1) JP4521442B2 (ja)
KR (1) KR100937370B1 (ja)
CN (1) CN101151823B (ja)
WO (1) WO2006104208A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008101056A2 (en) * 2007-02-14 2008-08-21 Qualcomm Incorporated Uplink power control for lte
CN101527587A (zh) * 2008-03-04 2009-09-09 大唐移动通信设备有限公司 功率控制方法、系统以及中继设备
EP2117246A1 (en) * 2007-03-01 2009-11-11 NTT DoCoMo, Inc. Base station device and communication control method
JP2010521892A (ja) * 2007-03-13 2010-06-24 クゥアルコム・インコーポレイテッド 電力制御方法と装置
US7986959B2 (en) 2007-02-14 2011-07-26 Qualcomm Incorporated Preamble based uplink power control for LTE
CN101611565B (zh) * 2007-02-14 2013-06-19 高通股份有限公司 用于lte的上行链路功率控制

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538366B2 (ja) * 2005-03-29 2010-09-08 株式会社エヌ・ティ・ティ・ドコモ 伝送速度制御方法、移動局及び無線基地局
US7937054B2 (en) * 2005-12-16 2011-05-03 Honeywell International Inc. MEMS based multiband receiver architecture
EP2250739B1 (en) * 2008-03-05 2016-03-02 Telefonaktiebolaget LM Ericsson (publ) Wireless communication power control
US20090291642A1 (en) * 2008-05-23 2009-11-26 Telefonaktiebolaget Lm Ericsson (Publ) Systems and Methods for SIR Estimation for Power Control
US9370021B2 (en) * 2008-07-31 2016-06-14 Google Technology Holdings LLC Interference reduction for terminals operating on neighboring bands in wireless communication systems
US8787185B2 (en) * 2008-12-19 2014-07-22 Nec Corporation Base station, wireless communication system, method for controlling base station, wireless communication method, control program, and mobile station
CN102804875B (zh) * 2010-02-22 2015-10-21 高通股份有限公司 基于事件触发的接入终端消息发送来控制接入点发射功率
WO2012155785A1 (zh) * 2011-05-19 2012-11-22 北京新岸线无线技术有限公司 上行传输开环功率控制方法及装置
US9042344B2 (en) * 2011-11-09 2015-05-26 Telefonaktiebolaget L M Ericsson (Publ) Base station, user equipment, radio network controller and methods therein
DE102013206147B4 (de) * 2013-04-08 2022-06-09 Beckhoff Automation Gmbh Dongle-Modul und Automatisierungssystem
US10397833B2 (en) 2017-07-27 2019-08-27 Lg Electronics Inc. Method and apparatus for performing EDT

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136123A (ja) * 1999-08-20 2001-05-18 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置、及び送信電力制御方法
JP2003318818A (ja) * 2002-04-23 2003-11-07 Nec Corp 携帯電話装置とその送信電力制御方法
JP2006135485A (ja) * 2004-11-04 2006-05-25 Nec Corp 無線通信システム、無線ネットワーク制御装置、無線基地局、無線通信装置及びその制御方法。
JP2006140650A (ja) * 2004-11-10 2006-06-01 Ntt Docomo Inc 移動通信システム、移動局及び無線基地局

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1313332B1 (en) * 2000-02-17 2006-03-22 Samsung Electronics Co., Ltd. Methods for assigning a common packet channel in a CDMA communication system
CA2371556C (en) * 2001-02-19 2005-08-23 Samsung Electronics Co., Ltd. Dpch multiplexing apparatus and method for outer loop power control in a w-cdma communication system
US6763244B2 (en) * 2001-03-15 2004-07-13 Qualcomm Incorporated Method and apparatus for adjusting power control setpoint in a wireless communication system
JP4025979B2 (ja) * 2002-04-24 2007-12-26 日本電気株式会社 Cdma移動通信方式における送信電力制御方法および無線基地局とcdma通信システム
JP3629017B2 (ja) 2002-08-20 2005-03-16 松下電器産業株式会社 アウターループ送信電力制御方法および無線通信装置
EP1533948A4 (en) * 2002-08-30 2009-09-30 Fujitsu Ltd COMMUNICATION METHOD, COMMUNICATION DEVICE AND COMMUNICATION SYSTEM
US7127267B2 (en) * 2002-12-02 2006-10-24 Nortel Networks Limited Enhanced forward link power control during soft hand-off
US7286846B2 (en) * 2003-02-18 2007-10-23 Qualcomm, Incorporated Systems and methods for performing outer loop power control in wireless communication systems
JP2004274117A (ja) * 2003-03-05 2004-09-30 Mitsubishi Electric Corp 通信装置及び送信電力制御方法
US6944142B2 (en) * 2003-05-13 2005-09-13 Interdigital Technology Corporation Method for soft and softer handover in time division duplex code division multiple access (TDD-CDMA) networks
JP2005005762A (ja) * 2003-06-09 2005-01-06 Fujitsu Ltd 送信電力制御方法及び装置
JP4230288B2 (ja) * 2003-06-13 2009-02-25 富士通株式会社 送信電力制御方法及び移動局
EP1507422A1 (en) * 2003-08-14 2005-02-16 Matsushita Electric Industrial Co., Ltd. Serving base station selection during soft handover
JP4447281B2 (ja) * 2003-10-20 2010-04-07 富士通株式会社 移動通信システムにおける送信電力制御装置
US7412254B2 (en) * 2004-10-05 2008-08-12 Nortel Networks Limited Power management and distributed scheduling for uplink transmissions in wireless systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136123A (ja) * 1999-08-20 2001-05-18 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置、及び送信電力制御方法
JP2003318818A (ja) * 2002-04-23 2003-11-07 Nec Corp 携帯電話装置とその送信電力制御方法
JP2006135485A (ja) * 2004-11-04 2006-05-25 Nec Corp 無線通信システム、無線ネットワーク制御装置、無線基地局、無線通信装置及びその制御方法。
JP2006140650A (ja) * 2004-11-10 2006-06-01 Ntt Docomo Inc 移動通信システム、移動局及び無線基地局

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8559889B2 (en) 2007-02-14 2013-10-15 Qualcomm Incorporated Preamble based uplink power control for LTE
US9137755B2 (en) 2007-02-14 2015-09-15 Qualcomm Incorporated Preamble based uplink power control for LTE
US9894617B2 (en) 2007-02-14 2018-02-13 Qualcomm Incorporated Preamble based uplink power control for LTE
US8437792B2 (en) 2007-02-14 2013-05-07 Qualcomm Incorporated Uplink power control for LTE
US7986959B2 (en) 2007-02-14 2011-07-26 Qualcomm Incorporated Preamble based uplink power control for LTE
WO2008101056A3 (en) * 2007-02-14 2008-11-27 Qualcomm Inc Uplink power control for lte
CN101611565B (zh) * 2007-02-14 2013-06-19 高通股份有限公司 用于lte的上行链路功率控制
KR101124904B1 (ko) 2007-02-14 2012-05-24 콸콤 인코포레이티드 Lte를 위한 업링크 전력 제어
WO2008101056A2 (en) * 2007-02-14 2008-08-21 Qualcomm Incorporated Uplink power control for lte
CN107124754A (zh) * 2007-02-14 2017-09-01 高通股份有限公司 用于lte的基于前导的上行链路功率控制
EP2117246A1 (en) * 2007-03-01 2009-11-11 NTT DoCoMo, Inc. Base station device and communication control method
EP2117246A4 (en) * 2007-03-01 2014-11-05 Ntt Docomo Inc BASE STATION DEVICE AND COMMUNICATION CONTROL METHOD
JP2010521892A (ja) * 2007-03-13 2010-06-24 クゥアルコム・インコーポレイテッド 電力制御方法と装置
US8744510B2 (en) 2007-03-13 2014-06-03 Pranav Dayal Power control method and apparatus for wireless communications
CN101527587A (zh) * 2008-03-04 2009-09-09 大唐移动通信设备有限公司 功率控制方法、系统以及中继设备

Also Published As

Publication number Publication date
KR100937370B1 (ko) 2010-01-20
EP1873935A1 (en) 2008-01-02
EP1873935A4 (en) 2015-02-25
US8189505B2 (en) 2012-05-29
US20080069075A1 (en) 2008-03-20
KR20070117669A (ko) 2007-12-12
JPWO2006104208A1 (ja) 2008-09-11
CN101151823A (zh) 2008-03-26
JP4521442B2 (ja) 2010-08-11
CN101151823B (zh) 2012-09-05

Similar Documents

Publication Publication Date Title
JP4521442B2 (ja) 送信電力制御方法及び移動局
WO2006104211A1 (ja) 送信電力制御方法及び移動局
JP4649496B2 (ja) 移動局、送信電力制御方法及び移動通信システム
JP4769485B2 (ja) 送信電力制御方法、無線回線制御局及び無線基地局
EP1845746B1 (en) Transmission rate control method, radio base station, and radio network controller
WO2006098440A1 (ja) 送信電力制御方法、移動局、無線基地局及び無線回線制御局
WO2006075629A1 (ja) 伝送速度制御方法、移動局及び無線回線制御局
JP4083771B2 (ja) 無線リソース管理方法、無線回線制御局及び無線基地局
WO2006075630A1 (ja) 無線リソース管理方法、無線基地局及び無線回線制御局
WO2006118301A1 (ja) 送信電力制御方法、移動局、無線基地局及び無線回線制御局
KR101044031B1 (ko) 전송 속도 제어 방법, 이동국 및 무선 네트워크 제어국
WO2006075610A1 (ja) 伝送速度制御方法、移動局及び無線回線制御局
JP4105196B2 (ja) 伝送速度制御方法、移動局及び無線回線制御局
JP4249195B2 (ja) 送信電力制御方法、移動局及び無線回線制御局
JP4587814B2 (ja) 伝送速度制御方法及び移動局
JP2006222698A (ja) 伝送速度制御方法及び移動局
JP2006197040A (ja) 伝送速度制御方法及び移動局
JP2006222699A (ja) 伝送速度制御方法及び移動局

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680010547.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007510566

Country of ref document: JP

Ref document number: 11909949

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077023186

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 2006730484

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006730484

Country of ref document: EP