WO2006100048A2 - Procede pour determiner le niveau de liquide d'une phase liquide par mesure du temps de propagation d'ultrasons - Google Patents

Procede pour determiner le niveau de liquide d'une phase liquide par mesure du temps de propagation d'ultrasons Download PDF

Info

Publication number
WO2006100048A2
WO2006100048A2 PCT/EP2006/002607 EP2006002607W WO2006100048A2 WO 2006100048 A2 WO2006100048 A2 WO 2006100048A2 EP 2006002607 W EP2006002607 W EP 2006002607W WO 2006100048 A2 WO2006100048 A2 WO 2006100048A2
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
waveguide section
liquid phase
waveguide
liquid
Prior art date
Application number
PCT/EP2006/002607
Other languages
German (de)
English (en)
Inventor
Hans-Jürgen Salzburger
Frank Niese
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2006100048A2 publication Critical patent/WO2006100048A2/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2962Measuring transit time of reflected waves

Definitions

  • the present invention relates to a method for determining the liquid level of a liquid phase via an ultrasonic transit time measurement, wherein the transit time of an ultrasonic pulse between an ultrasonic transmitter and an ultrasonic receiver is measured and determined from the running time of the liquid level.
  • the method is particularly suitable for measuring the filling level of a container filled with liquids or liquid gases, but can also readily be used to determine the liquid level of, for example, an open water body.
  • the ultrasonic waves are either generated at the bottom of the container in the liquid or generated as air ultrasonic waves in the liquid-free space above the liquid surface.
  • the resolution or accuracy of the determination of the filling level depends on the wavelength of the ultrasonic waves and the reflection properties of the liquid surface. Especially in foam and blistering occur in these known methods problems. Also, a strong wave motion of the liquid, such as may occur in fuel tanks of vehicles, significantly deteriorates the reflection properties of the liquid surface.
  • side echo signals resulting from the container geometry can cause erroneous measurements.
  • the object of the present invention is to provide a method for determining the liquid level of a liquid phase, which does not require mechanically moving parts and allows high accuracy regardless of the surface condition of the liquid surface.
  • the present method for determining the liquid level of a liquid phase employs an ultrasonic runtime measurement in which the transit time of an ultrasonic pulse between an ultrasonic transmitter and an ultrasonic receiver is measured and determined from the running time of the liquid level.
  • a first waveguide section and a second waveguide section are partially immersed in the liquid phase from above and are positioned at a fixed distance from each other.
  • an ultrasonic transmitter an ultrasonic pulse running in the direction of the liquid phase is generated as a guided elastic wave in the first waveguide section and an ultrasonic receiver receives a portion of the ultrasonic pulse returning from the liquid phase in the second waveguide section. From the duration of the ultrasonic pulse between the ultrasonic transmitter and the ultrasonic receiver, the immersion depth and thus the liquid level can be determined in this method.
  • the reflection of the ultrasound pulse at the liquid surface is not utilized. Rather, in the contact region of the first waveguide section with the liquid phase, ultrasonic energy is coupled in the form of a Longitudinal wave in the liquid phase. If the longitudinal wave strikes the second waveguide section at a suitable angle, then a guided elastic wave is again excited there, which flows back out of the liquid phase in the second waveguide section and can be detected by the ultrasonic receiver.
  • the duration of the ultrasonic pulse between the ultrasonic transmitter and the ultrasonic receiver depends on the immersion depth of the arrangement of the two waveguide sections in the liquid
  • Phase off With a larger immersion depth results in a longer duration of the ultrasonic pulse than at a smaller immersion depth. This effect is exploited in the present method for determining the liquid level.
  • a reflector for ultrasound is used instead of the second waveguide section, which is positioned in the same way as the second waveguide section in the first alternative relative to the first waveguide section.
  • the longitudinal wave coupled into the liquid phase is reflected at the reflector and in turn excites in the first waveguide section a returning guided elastic wave, which can be detected in this waveguide section by an ultrasound receiver.
  • the duration of the ultrasonic pulse depends on the depth of immersion of the array of first waveguide section and reflector in the liquid phase.
  • a first waveguide section of an at least approximately tubular waveguide is used which has a cylindrical or conical shape. It may be a completely or not completely closed pipe shape.
  • this waveguide section is partially immersed in the liquid phase from above and positioned stationary.
  • the longitudinal wave coupled into the liquid phase is radiated within the volume formed by the tube shape and in turn excites in this first waveguide section a returning guided elastic wave, which can be detected by an ultrasonic receiver.
  • the duration of the ultrasonic pulse depends on the depth of immersion of the first waveguide section in the liquid phase.
  • the method is particularly suitable for determining the filling level of a liquid phase, for example a liquid or a liquid gas, in a container.
  • the waveguide sections can in this case protrude through the container wall into the outer space, so that the ultrasonic transducers outside the liquid container can be attached to the waveguide sections. This is particularly advantageous in applications in which the filling level of explosive materials to be determined.
  • the method does not require any moving parts. Rather, the waveguide sections or the waveguide section and the reflector project into the liquid phase as stationary parts which are firmly connected to the container.
  • the waveguide may be bent in an approximately U-shaped manner, wherein the two waveguide sections preferably run in the direction of the liquid at an acute angle or are oriented approximately parallel to one another.
  • Receivers can be spatially separated at both waveguide sections or realized by a single ultrasonic transducer. Of course, it is also possible to use two separate waveguides, the two
  • the ultrasonic transmitter and the ultrasonic receiver on the first waveguide section may also be formed both by separate ultrasonic transducers or by a common ultrasonic transducer.
  • the waveguide or waveguide sections may consist of metallic or non-metallic materials. They are preferably designed as plates, strips, rods or tubes.
  • the reflector consists in known manner of a suitable material of higher acoustic impedance for longitudinal waves than the liquid.
  • piezoelectric, electromagnetic or magnetostrictive ultrasonic transducers with which guided elastic waves can be generated in the first waveguide section can be used as ultrasound transmitters and ultrasound receivers.
  • the guided elastic waves are preferably in
  • the waveguides or waveguide sections can both be arranged completely inside the container as well as project through the container wall into the outer space.
  • the one or more ultrasonic transducers are also arranged inside the container.
  • these ultrasonic transducers can be coupled outside the container to the waveguide section (s).
  • FIG. 2 shows a second example of an arrangement for carrying out the method
  • FIG. 5 shows a fifth example of an arrangement for carrying out the method
  • Fig. 6 is a sixth example of an arrangement for carrying out the method
  • FIG. 7 shows a seventh example of an arrangement for carrying out the method
  • Fig. 9 is a cross-sectional shape of a waveguide in a section parallel to the liquid surface according to another example of an arrangement for carrying out the method.
  • Fig. 1 shows a first example of an arrangement of stationary waveguides 1 for carrying out the present method.
  • the two waveguides 1 are in this case aligned at a fixed distance parallel to each other and partially immersed in the liquid 3 to be measured.
  • an ultrasonic transmitter 21, on the right an ultrasonic receiver 22 is mounted on the left of the two waveguides 1.
  • a guided ultrasonic wave 41 is generated in the left waveguide 1, which propagates in the direction of the liquid 3, as indicated in the figure.
  • a longitudinal ultrasonic ultrasonic wave 42 is coupled into the liquid 3, which propagates in the direction of the second waveguide 1.
  • This longitudinal wave 42 generates in the right waveguide 1, a returning guided elastic wave 41, which is detected by the ultrasonic receiver 22 which is mounted outside of the liquid 3 on this waveguide. From the duration of the ultrasonic pulse between the
  • Ultrasonic transmitter 21 and ultrasonic receiver 22 may measure the height of liquid surface 31, i. the liquid level can be determined.
  • calibration measurements are preferably carried out with this arrangement beforehand, which indicate the immersion depth of the arrangement as a function of the transit time of the ultrasonic pulse.
  • Fig. 3 again shows an arrangement like that of Fig. 1 in the determination of the filling level in a container, the container wall 32 is indicated in the figure.
  • the two waveguides 1 protrude through the container wall 32 into the outer space, in which the ultrasonic transmitter 21 and the ultrasonic receiver 22 are attached to the waveguides 1.
  • the live parts can attach outside the container, which in particular allows the measurement of explosive liquids.
  • Fig. 4 shows an advantageous embodiment of an arrangement for carrying out the present method, in which a U-shaped waveguide 11 is used.
  • the two waveguide sections of this waveguide 11 submerged in the liquid 3 in this case run parallel to one another.
  • an ultrasonic transducer is mounted on each side of this waveguide 11, of which the left serves as the ultrasonic transmitter 21 and the right as the ultrasonic receiver 22.
  • the ultrasonic transmitter 21 in turn generates a guided elastic wave 41 in the waveguide 11.
  • the guided elastic wave is reflected at its ends, so that every time the ultrasonic receiver 22 is passed, an echo signal is detected.
  • This echo signal can be used to check the functionality of the measuring device, for example.
  • a longitudinal wave 42 is coupled in the near-surface region into the liquid at an angle. The angle depends u.a. from the liquid and in the example of water is about 40 °.
  • This longitudinal wave 42 again generates a guided elastic wave 41 in the waveguide upon reaching the adjacent waveguide section, which propagates in the direction of the ultrasound receiver 22 and can be detected therewith.
  • Liquid 3 is significantly smaller than that of the guided elastic wave 41 in the waveguide.
  • the longitudinal wave 42 is reflected back and forth between the two waveguide sections several times before the returning guided elastic wave 41 is generated in the reception waveguide.
  • the same measurement can be carried out with only one waveguide 1, which is arranged at a fixed distance to a reflector 5 for ultrasonic waves. This is indicated schematically in FIGS. 5 and 6.
  • the longitudinal wave 42 emitted in the liquid is reflected at the reflector 5 and in turn generates in the waveguide 1 a returning wave 41 which can be detected by the common transmit / receive converter 2.
  • the best results are achieved with an arrangement such as that of FIG. 6, in which the reflector 5 and the waveguide 1 are arranged at an acute angle to each other, wherein the mutual distance decreases towards the liquid.
  • Fig. 7 shows an arrangement with a likewise approximately U-shaped waveguide 11, whose
  • Run leg in the direction of the liquid 3 at an acute angle has been found to be particularly advantageous since it formed on the one hand only from a single waveguide 11 and thus is very robust and on the other by the acute angle, in the present example an angle of about 10 ° between the two waveguide sections or legs, a particularly large
  • Measurement signal is obtained.
  • the measurement was carried out in this example with a frequency of 600 kHz.
  • the waveguide 11 is formed of a 20 to 25 mm wide steel sheet having a thickness of 1 mm, which has been bent to the U-shape shown.
  • the length of the two legs of the sheet is about 150 mm.
  • a transit time change of about 0.3 .mu.s per mm thigh immersion depth in water could be measured.
  • the high measurement signal results from multiple reflections between the two legs in the water reversing the direction of the central wave of the longitudinal wave originally emitted below about 40 °, which then generates the corresponding return-guided guided elastic wave in the other leg.
  • a direction reversal can not be achieved by the central beam but only by marginal rays of the sound beam.
  • FIG. 8 shows, by way of example, possible cross sections of the waveguides 1 and 11 used.
  • a corresponding plate-shaped or strip-shaped waveguide is shown in plan view, in the middle part a rod-shaped and in the right-hand part a tubular waveguide.
  • other crossover realize sectional forms as long as they are suitable for the guidance of an elastic ultrasonic wave.
  • a first waveguide section of an at least approximately tubular waveguide is used, which may have a cylindrical or conical shape.
  • a waveguide appears as in the illustration of FIGS. 1 and 2.
  • a conical shape is mediated by the Fig. 2.
  • Fig. 9 shows a sectional view in a cross section parallel to the liquid surface through such a waveguide 1, from which the closed tube shape can be seen.
  • the transmitting and receiving transducers not shown, extend in this example over the entire circumference of the waveguide 1. Alternatively, a plurality of transmitting and receiving transducers can be distributed over the circumference of the waveguide 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

L'invention concerne un procédé pour déterminer le niveau de liquide d'une phase liquide (3) par mesure du temps de propagation d'ultrasons. Selon ce procédé, une première partie de guide d'onde (1,11) et une deuxième partie de guide d'onde (1,11) sont plongées au moins partiellement, par le haut, dans la phase liquide (3) et positionnées de manière stationnaire à distance l'une de l'autre. Une impulsion ultrasonore (41), se propageant en direction de la phase liquide (3), est produite, sous la forme d'une onde élastique guidée, dans une première partie de guide d'onde (1,11) au moyen d'un émetteur d'ultrasons (21) et une partie de l'impulsion ultrasonore (41), renvoyée dans la deuxième partie de guide d'onde (1, 11), est reçue au moyen d'un récepteur d'ultrasons (22). Le temps de propagation de l'impulsion ultrasonore (41) entre l'émetteur d'ultrasons (21) et le récepteur d'ultrasons (22) est mesuré pour permettre d'en déduire le niveau de liquide. Ce procédé ne nécessite pas de pièces mobiles mécaniques et permet une détermination précise du niveau d'un liquide indépendamment des caractéristiques de la surface du liquide.
PCT/EP2006/002607 2005-03-22 2006-03-21 Procede pour determiner le niveau de liquide d'une phase liquide par mesure du temps de propagation d'ultrasons WO2006100048A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510013269 DE102005013269A1 (de) 2005-03-22 2005-03-22 Verfahren zur Bestimmung des Flüssigkeitsstandes einer flüssigen Phase über eine Ultraschall-Laufzeitmessung
DE102005013269.3 2005-03-22

Publications (1)

Publication Number Publication Date
WO2006100048A2 true WO2006100048A2 (fr) 2006-09-28

Family

ID=36973571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/002607 WO2006100048A2 (fr) 2005-03-22 2006-03-21 Procede pour determiner le niveau de liquide d'une phase liquide par mesure du temps de propagation d'ultrasons

Country Status (2)

Country Link
DE (1) DE102005013269A1 (fr)
WO (1) WO2006100048A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151784A1 (fr) * 2008-06-12 2009-12-17 Illinois Tool Works Inc. Système et procédé de détection de niveaux de liquide

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012211848B4 (de) * 2012-07-06 2019-08-01 KSB SE & Co. KGaA Füllstandmessung
DE102015113311B4 (de) * 2015-08-12 2017-03-16 Inoson GmbH Verfahren und Vorrichtung zur Positionsbestimmung eines Kolbens in einem mit Flüssigkeit befüllten Zylinder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884074A (en) * 1974-05-08 1975-05-20 Saab Scania Ab Sonic liquid level measuring apparatus
GB2019568B (en) * 1978-03-01 1983-02-02 Atomic Energy Authority Uk Ultrasonic liquid level gauges
DE3707385A1 (de) * 1987-03-07 1988-09-15 Bosch Gmbh Robert Fuellstandsmessvorrichtung
DE3738515A1 (de) * 1987-11-13 1989-05-24 Bosch Gmbh Robert Fuellstandsanzeiger
DE3822994A1 (de) * 1988-07-07 1990-01-11 Bosch Gmbh Robert Fuellstandsanzeiger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151784A1 (fr) * 2008-06-12 2009-12-17 Illinois Tool Works Inc. Système et procédé de détection de niveaux de liquide
US8180582B2 (en) 2008-06-12 2012-05-15 Illinois Tool Works Inc. System and method for sensing liquid levels
CN102066884B (zh) * 2008-06-12 2014-11-05 伊利诺斯工具制品有限公司 探测液位的系统和方法

Also Published As

Publication number Publication date
DE102005013269A1 (de) 2006-09-28

Similar Documents

Publication Publication Date Title
EP3577427B1 (fr) Compteur à ultrasons et procédé d'acquisition d'une grandeur de débit
DE2260932C3 (de) Verfahren zum Bestimmen der RiBtiefe von in Werkstücken auftretenden Rissen
EP1701142B1 (fr) Procédé de mesure du niveau d'un milieu dans un récipient basé sur le principe du radar
DE3211021C2 (de) Meßwertgeber zur Bestimmung der Durchflußmenge einer strömenden Flüssigkeit
EP2032978B1 (fr) Appareil de contrôle ultrasonore muni de têtes de contrôle à réseau
EP0412580A1 (fr) Indicateur de niveau
DE102008027228B4 (de) Verfahren und Vorrichtung zur zerstörungsfreien Ultraschalluntersuchung eines Prüfstücks mit zueinander gewinkelten, ebenen Oberflächen
DE3036951C2 (de) Verfahren zur Schallemissionsprüfung von aus Stahl bestehenden Behältern oder Rohrleitungen, insbesondere für Kernreaktoranlagen
DE1648361B2 (de) Ultraschall-doppelwandlertastkopf
WO2010057480A2 (fr) Procédé et dispositif de mesure de courants de fluide
DE2129110C3 (de) Verfahren zum Überprüfen von metallischen Schweißnähten auf Fehlerfreiheit mittels Ultraschall
EP3769050B1 (fr) Procédé pour la détermination non invasive du flux ou du débit dans un objet électriquement conducteur traversé par un médium gazeux ainsi qu'un débitmètre acoustique pour l'exécution du procédé
WO2006100048A2 (fr) Procede pour determiner le niveau de liquide d'une phase liquide par mesure du temps de propagation d'ultrasons
DE102009039633A1 (de) Ultraschall-Durchflussmesser
WO2018202485A1 (fr) Procédé pour l'évaluation d'un jeu de données de contrôle d'un contrôle ultrasonore
DE202020104105U1 (de) Durchflussmessgerät zur Messung des Durchflusses eines Fluids
EP1922529B1 (fr) Procede pour mesurer la hauteur de remplissage et l'inclinaison de la surface d'un fluide
EP3405781B1 (fr) Dispositif de détermination de caractéristiques d'un milieu, comprenant un élément d'amortissement et/ou un élément de guidage ouvert
DE3241815A1 (de) Zerstoerungsfreie ultraschall-pruefvorrichtung
EP2238443B1 (fr) Procédé et dispositif destinés au contrôle non destructif d'un échantillon selon la méthode TOFD par ultrasons
DE3129498C2 (de) Ultraschallhandprüfkopf für die Prüfung von runden Rohren oder Stangen
DE602005002534T2 (de) Bestimmung der Fläche einer lateralen Schattenzone in einem Ultraschallprüfungsverfahren
EP3855134A1 (fr) Dispositif de mesure du débit d'écoulement d'un fluide
DE102020002834A1 (de) Messeinrichtung zur Ermittlung einer Fluidgröße
DE10034474C1 (de) Verfahren und Vorrichtung zur Charakterisierung eines Fluides oder Gases mittels Ultraschall

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06723607

Country of ref document: EP

Kind code of ref document: A2

WWW Wipo information: withdrawn in national office

Ref document number: 6723607

Country of ref document: EP