WO2006098423A1 - Polynucleotides imparting environmental stress-tolerance to plants - Google Patents

Polynucleotides imparting environmental stress-tolerance to plants Download PDF

Info

Publication number
WO2006098423A1
WO2006098423A1 PCT/JP2006/305328 JP2006305328W WO2006098423A1 WO 2006098423 A1 WO2006098423 A1 WO 2006098423A1 JP 2006305328 W JP2006305328 W JP 2006305328W WO 2006098423 A1 WO2006098423 A1 WO 2006098423A1
Authority
WO
WIPO (PCT)
Prior art keywords
polynucleotide
seq
protein
amino acid
set forth
Prior art date
Application number
PCT/JP2006/305328
Other languages
French (fr)
Japanese (ja)
Inventor
Hirokazu Kobayashi
Original Assignee
Shizuoka Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Prefectural Government filed Critical Shizuoka Prefectural Government
Priority to JP2007508219A priority Critical patent/JP5152845B2/en
Publication of WO2006098423A1 publication Critical patent/WO2006098423A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Definitions

  • the present invention relates to a polynucleotide that imparts salt stress tolerance to a plant, and a transforming product into which the polynucleotide is introduced.
  • the number of starved deaths on the earth is 28 (including 21 children) per minute, and the population of starvation is 15,000,000,000. More than a few people in the world are not satisfied with hunger, and the global food drought is obvious. Furthermore, since the world population is on the rise, a “world food crisis” is expected around 2010.
  • the present inventors have found that a polynucleotide having a specific sequence can impart salt tolerance to a plant, and a transformed plant into which the polynucleotide has been introduced has salt tolerance.
  • the present invention was completed. That is, the present invention provides the following polynucleotides, vectors containing the polynucleotides, plant cells transformed with the polynucleotides, plants transformed with the polynucleotides, and the like. To do.
  • amino acid sequence set forth in SEQ ID NO: 1, 6, .8 or 10 consisting of an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and Z or added; and A polynucleotide comprising a polynucleotide encoding a protein having a function of enhancing plant salt tolerance;
  • (d) encodes a protein having a homology of 80% or more with a protein consisting of the amino acid sequence set forth in SEQ ID NO: 1, 6, 8 or 10 and having a function of enhancing plant salt tolerance
  • (e) has a function of hybridizing with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence set forth in SEQ ID NO: 3, 7, 9 or 11 under stringent conditions and increasing the salt tolerance of plants
  • (f) encodes a protein having a homology of 80% or more with the polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 3, 7, 9, or 11 and having a function of enhancing plant salt tolerance
  • the amino acid sequence described in SEQ ID NO: 25 comprises an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and / or added, and enhances salt tolerance of plants.
  • a polynucleotide comprising a polynucleotide encoding a functional protein
  • a protein comprising the amino acid sequence set forth in SEQ ID NO: 25 and at least 80% A polynucleotide comprising a polynucleotide encoding a protein having homology and a function of enhancing plant salt tolerance;
  • SEQ ID NO: 2 6 Porinukure Ochido and Sutorinjiwento conditions consisting of a nucleotide sequence complementary to the nucleotide sequence hybridizes described, and encodes a protein having high mel function salt 1 production plant A polynucleotide containing a polynucleotide; and 1 (f) having a homology of 80% or more with a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 26, and a function of increasing plant salt tolerance A polynucleotide comprising a polynucleotide encoding a protein.
  • a polynucleotide comprising a polynucleotide comprising any one of the polynucleotides described in [1] above and any one of the polynucleotides described in [2] or [3] above.
  • the amino acid sequence described in SEQ ID NO: 27 comprises an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and Z or added, and the salt tolerance of the plant is increased.
  • a polynucleotide comprising a polynucleotide encoding a protein having an enhancing function;
  • a polynucleotide comprising a polynucleotide encoding a protein having a homology of 80% or more with the protein comprising the amino acid sequence of SEQ ID NO: 27 and having a function of enhancing plant salt tolerance ;
  • a polynucleotide comprising a polynucleotide encoding a protein having a function of increasing the salt tolerance of a plant and having a homology of 80% or more with the polynucleotide comprising the nucleotide sequence of SEQ ID NO: 28.
  • salt tolerance can be imparted to a plant, and therefore, a transformed cell having a salt tolerance can be obtained. Since the transformant or object of the present invention thus obtained can be grown even in salt-accumulated soil, it can contribute to the greening of the salt-accumulated soil.
  • a salt-tolerant transformed plant obtained by incorporating a vector containing the polynucleotide of the present invention into an edible plant has the advantage that it can be cultivated in a place where it is difficult to grow normally due to salt damage.
  • FIG. 1 shows the bHLH19 gene genome sequence.
  • Fig. 2 shows the RT-PCR product (qualitative experiment) of the bHLH19 gene.
  • Figure 3 shows a possible mechanism for the generation of bHLH transcription factor mRNAs of different sizes.
  • FIG. 4 shows the results of RT-PCR for the N-terminal intron.
  • ' Figure 5 shows alternative splicing of intron 1.
  • FIG. 6 is a diagram showing introduction of the bHLH19 gene into a binary vector.
  • FIG. 7 shows growth from germination under salt stress conditions.
  • FIG. 8 is a diagram showing the results of RT-PCT for the C-terminal intron.
  • RNA messenger RNA
  • the coding sequence of the cDNA of the new transcript found in the present invention is shown in SEQ ID NOs: 3, 4, 7, 9, and 11.
  • the new cDNA found in the present invention also includes a nucleotide sequence (SEQ ID NO: 5) containing both the coding sequence represented by SEQ ID NO: 3 and the coding sequence represented by SEQ ID NO: 4. included.
  • the amino acid ⁇ S rows of the proteins encoded by these cDNAs of the present invention are shown in SEQ ID NOs: 1, 2, 6, 8, and 10.
  • a vector containing the cDNA of SEQ ID NO: 5 was prepared, and a transformed plant transformed with this vector was prepared.
  • a transformed plant transformed with a vector containing the cDNA of this new transcript of the present invention is a normal transcript in the At2 g 22760 gene. More highly salt-tolerant than plants into which a vector containing a cDNA, ie, a vector containing a DNA having the base sequence (SEQ ID NO: 13) encoding normal bHLH19 (SEQ ID NO: 12) is introduced. I found.
  • the present invention provides a polynucleotide encoding a protein that imparts salt stress tolerance, a vector containing the polynucleotide, and a transformed cell into which the vector or polynucleotide has been introduced.
  • Pi transformation A plant body is provided.
  • the polynucleotide of the present invention is preferably DN A, and specific examples thereof include cDNA and synthetic DNA.
  • the biological species from which DNA is derived is not particularly limited, but is preferably a plant. Plants include, for example, Arabidopsis, rice, corn, wheat, barley, soybean, tomato, straw, tobacco, rapeseed, potato, sugar beet, sugarcane, sunflower, shiba, trees (poplar, eucalyptus, etc.) However, it is not limited to this.
  • polynucleotide of the present invention include, for example,
  • polynucleotide according to any one of the following (a) to (f) is exemplified.
  • polynucleotide comprising a polynucleotide encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 1, 6, 8 or 10;
  • (f) encodes a protein having a homology of 80% or more with the polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 3, 7, 9 or 11 and having a function of enhancing salt tolerance of plants.
  • polynucleotide of the present invention include, for example, the polynucleotide described in any one of the following (a) to (f): (a) a polynucleotide comprising the base sequence described in SEQ ID NO: 4;
  • (e) encodes a protein that hybridizes under stringent conditions with a polynucleotide consisting of a base sequence complementary to the base sequence set forth in SEQ ID NO: 4 and has a function of increasing plant I 1 tolerance.
  • polynucleotide of the present invention include, for example,
  • amino acid sequence set forth in SEQ ID NO: 25 or 27 it consists of an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and Z or added, and is salt-tolerant in plants.
  • a protein that hybridizes with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO: 26 or 28 under stringent conditions and has a function of enhancing plant salt tolerance
  • a polynucleotide containing the polynucleotide to be treated
  • the polynucleotide of the present invention includes a polynucleotide comprising a polynucleotide comprising any one of the polynucleotides exemplified in the above [1] and any one of the polynucleotides exemplified in the above [2]. And a polynucleotide containing a polynucleotide having the base sequence set forth in SEQ ID NO: 5 is preferred.
  • proteins with a certain amino acid sequence one or more amino acids are deleted, substituted, inserted and protein with Z or added amino acid sequence. It is already known to maintain its biological activity.
  • Mark, DF et al. Proc. Natl. Acad. Sci. USA 81, 5662-5666 (1984), Zoller, M. J “and Smith, M., Nucleic Acids Research 10, 6487-6500 (1982 ), Dalbadie- McFarland, G. et al "Proc. Natl. Acad. Sci. USA 79, 6409-6413 (1982), Bowie et al., Science 247, 1306-1310 (1990), etc.).
  • amino acid sequence set forth in SEQ ID NO: 1; 6, 8, or 10 it comprises an amino acid sequence in which one or more amino acids are deleted, substituted, inserted, and / or attached, and
  • a polynucleotide containing a polynucleotide encoding a protein having a function of enhancing salt tolerance is also within the scope of the present invention.
  • a polynucleotide encoding a protein having an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and / or added to a certain amino acid sequence is obtained by site-directed mutagenesis (eg, Gotoh, T. et al., Gene 152, 271-275 (1995), Zoller, MJ, and Smith, M., Methods Enzymol. 100, 468-500
  • PCR using a pair of primers for example, Ho SN et al., Gene
  • a pair of primers having a sequence introduced with the desired mutation (deletion, addition, substitution and Z or insertion) at the 5 'end of each. 77, 51 (1989), etc.
  • primers for example, Ho SN et al., Gene
  • the desired mutation deletion, addition, substitution and Z or insertion
  • a polynucleotide that encodes a partial fragment of a protein that is a type of deletion mutant has a sequence that matches the base sequence at the 5th and end of the region that encodes the partial fragment to be prepared in the polynucleotide that encodes the protein. It can be obtained by performing PCR using an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence at the 3 'end as a primer and using a polynucleotide encoding the protein as a cocoon.
  • the number of amino acids to be deleted, added, substituted, or inserted is not particularly limited,
  • any number of 1 or more is acceptable, but it is preferable that the number be sufficient to allow deletion, addition, substitution, or insertion by the above-mentioned site-directed mutagenesis method or PCR. In general, it is about 1 to 50, preferably 1 to 30, more preferably 1 to 20, more preferably 1 to 10, particularly preferably 1 to several (example 6).
  • BLAST see, for example, Altzshul SF et al "J. Mol. Biol. 215, 403 (1990), etc.
  • FASTA See Pearson WR, Methods in Enzymology 183, 63 (1990), etc.
  • BLAST Altzshul SF et al "J. Mol. Biol. 215, 403 (1990), etc.
  • FASTA See Pearson WR, Methods in Enzymology 183, 63 (1990), etc.
  • Polynucleotide hybridizing under stringent conditions refers to a colony 'hybrid using a polynucleotide consisting of a base sequence described in 3, 4, 7, 9, or 11 as a probe. This refers to polynucleotides obtained by using the dialysis method, plaque hybridization method, or Southern plot hyper-precipitation method, and more specifically, DNA derived from colonies or plaques.
  • “Low stringent conditions” suitable for the purposes of the present invention include, for example, 5 XSSC, 5 X Denhardt's solution, 0.5% SDS, 50% formamide, hybridization at 32 ° C, followed by 2XSSC, 0.1% SSC, washing at room temperature.
  • “Medium stringent conditions” are, for example, 5 XSSC, 5 X Denhardt's solution, 0.5% SDS, 50% formamide, 42. Hybridization under C conditions, followed by 0.2XSSC, 0.1% SDS, 37 ° C washing.
  • “High stringency conditions” include, for example, 5 XSSC, 5 X Denhanol solution, 0.5% SDS, 50% formamide, hybridization at 42 ° C, followed by 0.1 XSSC, 0.1% Wash with SDS at 65 ° C. Under these conditions, the higher the temperature, the higher the DNA with homology can be expected to be obtained efficiently. However, there are several factors that influence the stringency of hybridization, such as temperature, probe concentration, probe length, ionic strength, time, and salt concentration. It is possible to achieve the same stringency by appropriately selecting.
  • the polynucleotide is hybridized with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence set forth in SEQ ID NO: 3, 4, 7, 9 or 11 under stringent conditions, and has a function of increasing plant salt tolerance.
  • a polynucleotide that encodes a protein it is described in SEQ ID NO: 3, 4, 7, 9 or 11 when calculated using the default (initial setting) parameters in an analysis program such as BLAST or FAS TA. At least 80% or more, preferably 90% or more, more preferably 93% or more, more preferably 95% or more, particularly preferably 97% or more, and most preferably 98% or more. It is desirable to have a polynucleotide.
  • nucleic acid of the polynucleotide of the present invention examples include DNA and RNA.
  • the polynucleotide of the present invention may be single-stranded or double-stranded, and both are included.
  • the polynucleotide of the present invention is, for example, a suitable cell having DNA encoding the protein of the present invention (for example, a protein having the amino acid sequence described in SEQ ID NO: 1, 2, 6, 8 or 10).
  • cDNA can be synthesized based on mRNA prepared from tissues and inserted into a vector such as I ZAP. This can be obtained by developing and developing and screening using a probe prepared based on the polynucleotide of the present invention.
  • a primer specific to a polynucleotide encoding the protein of the present invention is prepared, and this is used.
  • cDNA is cloned by PCR using sequence information (MJ McPherson et al., PCR, A practical Approach, Oxford University Press (1991)). You can also.
  • cDNA cloning for example, the RACE (Rapid Amplification of cDNA ends) method is used.
  • the base sequence of the obtained cDNA is DNA sequencer (Applied Biosystems 3 7 7 etc.) manufactured by Applied Biosystems, Applied Biosystems, Amersham 'Falmasia' Biotech, and LI-COR ) And the dideoxy method (Sanger F. et al., Proc. Natl. Acad. Sci. USA 74, 5463 (1977)).
  • the recombinant vector of the present invention can be prepared by inserting the above DNA of the present invention into an appropriate vector.
  • a vector a pBluescript type vector, a pBI type vector, a pUC type vector and the like can be used.
  • Binary vector vectors such as pBluescript vectors and pBI vectors are preferred because the target DNA can be introduced into plants via agrobacterium.
  • the pBluescript vector include pBluescript SK (+), pBluescript SK, pBluescript II KS (+), pBluescript II KS, pBluescript II SK (ten), and pBluescript II SK (-).
  • Examples of pBI vectors include pBI121, pBI101, pBI101.2, pBI101.3, pBI221 and the like.
  • a pUC vector is preferable in that DNA can be directly introduced into a plant. 'The vector contains a promoter for constitutive gene expression in plant cells (eg, the cauliflower mosaic virus (CaMV) 35S promoter).
  • promoters that are inducibly activated by an external stimulus (eg, drying, irradiation with ultraviolet rays, salt stress).
  • an external stimulus eg, drying, irradiation with ultraviolet rays, salt stress.
  • promoters include, for example, the Arabidopsis rabl6 gene promoter induced by drying (Nundy et al., Proc. Natl. Acad. Sci. USA 87, 1406 (1990)), UV irradiation.
  • the promoter of the parsley chalcone synthase gene induced by lysine (Sclmlze-Lefert et al "EMBO J. 8, 651 (1989)) and the promoter induced by salt stress (Shinozaki, K. and Yamaguchi-Shinozaki, K , Curr. Opin. Plant Biol. 3, 217-223 (2000)).
  • a promoter, an enhancer, a terminator, a poly A addition signal, and the like may be linked to the vector of the present invention as necessary.
  • the promoter does not have to be derived from a plant as long as it can function in plant cells.
  • Specific examples include CaMV35S promoter, promoter of nopaline synthase gene (Pnos), ubiquitin promoter derived from maize, actin promoter derived from rice, and PR protein promoter derived from tobacco.
  • an enhancer is an enhancer region containing an upstream sequence in the CaMV35S promoter.
  • the terminator may be any sequence that can terminate the transcription of the gene transcribed by the above-mentioned promoter. Specific examples include nopaline synthase gene terminator (Tnos) and CaMV poly A terminator.
  • the purified DNA is cleaved with an appropriate restriction enzyme, and inserted into a restriction enzyme site or a multicloning site of an appropriate vector DNA. Used.
  • the transformed plant cell of the present invention can be obtained by introducing the recombinant vector of the present invention into a plant cell.
  • Recombinant vectors can be introduced into plant cells by methods known in the art, such as those introduced via viruses or bacteria that infect plants (I. Potrylkus, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 205 (1991))
  • DNA For example, direct introduction of DNA.
  • the agro-pacteria method, particle gun method, PEG method, electoral position method, etc. can be used. These methods can be appropriately determined depending on, for example, the type of host plant to be transformed.
  • Cauliflower mosaic virus, gemini virus, tobacco mosaic virus, prom mosaic virus, etc. can be used as viruses that infect plants. .
  • Transfer of the vector to the agglomerate can be done by the Elect Mouth Position method.
  • Examples of methods for directly introducing exogenous DNA into plant cells include the microinjection method, the electoral position method, and the like.
  • One known method such as the Takenoregan method, the polyethylene Daricol method, the fusion method, and the high-speed paristic penetration method (see L Potrykus, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 205 (1991)).
  • the electroporation method is preferably applied, for example, to plant cells in which protoplast culture is stable and easy and can be easily regenerated.
  • the particle gun method is not limited to the host, it is preferably applied to, for example, plant cells that are difficult to infect agrobacterium and plant cells that are difficult to prepare protoplasts.
  • a vector constituting the recombinant vector for example, pUC18, pUC19, pBR322, pBR325, pBluescript and the like are preferable. Since many monocotyledonous plants are not susceptible to infection by agrobacterium, the indirect introduction method using agrobacterium, which is widely used as a DNA introduction method, cannot be used. Is effective.
  • T1 DNA is introduced into the plant from agrobacterium, etc. into which the vector of the present invention has been introduced, and the plant is transformed.
  • agrobacterium having introduced a vector as described above was allowed to coexist for several minutes with callus or tissue pieces of plant cells, in a medium such as 2N6-AS or N6CO, 25-28 ° C for about 3 days Incubate.
  • seed plants having different levels of difficulty in co-cultivation are used.
  • monocotyledonous crops that have been difficult to transform until now such as rice, wheat, barley, corn, and buckwheat, and trees (such as poplar and eucalyptus) can also be targeted.
  • calli or tissue pieces are selectively cultured in a medium containing an appropriate antibiotic.
  • a hygromycin resistance gene is introduced into a vector as a selectable marker, hygromycin (10 to: 100
  • transformed callus bodies can be selectively obtained.
  • the callus body obtained selectively is induced to re-differentiate using an appropriate re-differentiation medium such as N6S3-CH or MSre to obtain re-differentiated individuals.
  • a DNA fragment can be introduced into a plant and transformed using the vector of the present invention.
  • Recombinant individuals can be selected by examining the expression of an antibiotic resistance gene (eg, a hygromycin gene) using a marker gene.
  • an antibiotic resistance gene eg, a hygromycin gene
  • chromosomal DNAs of the obtained transformed plant cells and transformed plant bodies are respectively prepared, for example, by PCR or Southern blotting using a primer or probe specific to the target DNA sequence. If the expression of DNA is confirmed, the desired transformed cells and transformed plants are obtained.
  • offspring can be obtained from the plant body by sexual reproduction or asexual reproduction, and clones can also be obtained by known methods.
  • further progeny or clones can be obtained from the plant body, its progeny or clone.
  • the plant transformed by introducing the vector or polynucleotide of the present invention is not particularly limited, and examples thereof include crops and ornamental plants.
  • crops include rice, corn, wheat, barley, soybeans, tomatoes, mandarin oranges, apples, strawberries, strawberries, tobacco, coffee trees, chiya, rapeseed, potatoes, sugar beets, sugar cane, sunflower seeds, and rubber trees.
  • Ornamental plants include chrysanthemum, carnation, para, cyclamen, Cattleya, petunia, tulips, gerberas and so on.
  • increasing salt tolerance means, for example, a plant cell or plant
  • the total weight of callus or plant, root elongation, leaf It means that the growth under salt stress is improved, such as the force with larger total area or number of sheets, or the suppression of whitening of Z and leaves (foliage, true leaves, etc.).
  • -Salt stress conditions such as the salt used for salt stress, its concentration, and growing period can be appropriately set according to the type of plant used.
  • salts used for salt stress include salt potassium and salt sodium, with sodium chloride being preferred.
  • the salt concentration is, for example, 0.1 to 2 M, preferably about 0.05 to 1 M, more preferably 0.1 to 0.5 M, and particularly preferably 0.2 to 0.3 M.
  • the period for applying salt stress is, for example, 1 hour to 10 weeks, preferably 2 hours to 8 weeks, more preferably 1 day to 4 weeks, and particularly preferably 1 week to 3 weeks.
  • a wild-type strain using the agro-pacterium method has a construct having a luciferase gene in the RBCS-3B promoter and a hygromycin resistance gene (iph) under the control of the RBCS-3B promoter and a bialaphos resistance gene Cbar under the control of the CAB1 promoter.
  • P st2 (63) derived from the 2-1-6 line was used as the mutant plant introduced into Col. 2. Growth conditions
  • Seeds were dispensed into a 1.5-mL tube, 1 mL of 70% ethanol was added, and the mixture was shaken for 1 minute. Centrifuge, discard the supernatant, add 1 mL of sterile solution (0.25% hypochlorous acid, 0.1% Tween 20) and shake for 10-15 minutes. Centrifuge lightly in a clean bench, discard the supernatant, and rinse with 1 mL ultrapure water. Rinse was repeated 5 times, and 1 mL of ultrapure water was added, wrapped in aluminum foil, and springed at 4 ° C for about 1 week.
  • sterile solution 0.25% hypochlorous acid, 0.1% Tween 20
  • the sample was centrifuged briefly in a clean bench, the supernatant was discarded, and it was suspended in 1 mL of 0.3% agarose solution that had been autoclaved (121 ° C, 20 minutes).
  • a filter paper that had been autoclaved (121 ° C, 20 minutes) was seeded on a petri dish that had been spread on the medium.
  • composition 5.0 mM KNO 3, 2.5 mM K 2 HP0 4 -H 3 P0 4 (H 5.5), 50 mM Fe- EDTA, 2.0 mM MgS0 4. 7H 2 0, microelements [70 mM H 3 B0 4, 14 mM MnCl 2 ⁇ 4H 2 0, 0.5 mM CuS0 4 53 ⁇ 40, 1 mM ZnS0 4 7H 2 0, 0.2 mM Na 2 Mo0 4 23 ⁇ 40, lO mM NaCl, 0.01 mM CoCl 2 ⁇ 63 ⁇ 40], 0.1 mM Ca (N0 3 ) 2 , 0.3% Gelrite 0 medium solution is prepared, then autoclaved (121 ° C, 20 minutes) and cooled to about 50 ° C Then dispensed into petri dishes. However, Ca (N0 3 ) 2 was autoclaved separately (121 ° C, 20 minutes) and added before dispensing. When 200 mM NaCl was added
  • the following composition is contained in 1L of ultrapure water (prepared to pH 6.3 with 2N KOH). After the medium solution was prepared, it was autoclaved (121 ° C, 20 minutes), cooled to about 50 ° C, and dispensed into a shear.
  • the following composition is contained in 1L of ultrapure water.
  • the medium solution was adjusted and autoclaved (121 ° C, 20 minutes).
  • 1.5% Bacto-agax was added to the medium solution, and after autoclaving, the solution was cooled to about 50 ° C and then dispensed into a petri dish.
  • RNA 20 purified using RNeasy Plant Mini Kit (Qiagen) was fluorescently labeled using Agilent Fluorescent Direct Label Kit (Agilent Technologies).
  • An Agilent Araoiaopsis 1 icroarray Kit (Agilent Technologies) was used and followed the standard y-mouth protocol. Data acquisition is performed using the Agilent DNA Microarray Scanner. (Agilent Technologies) was used, and Feature Extraction (Agilent Technologies) was used for the numerical value of Signanore. Excel (Microsoft) was used for the subsequent analysis.
  • the RACE PGR product was ligated and transformed using the pGEM-T (Promega) vector with Compitent High JM109 (Toyobo) as the host E. coli according to the standard protocol of the pGEM-T Vector System.
  • Colony PCR was performed to confirm whether cloning was successful. Using TaKaRa Ex Taq TM Hot Start Version (Takara) with DNA polymerase, 94 ° C 5 min ⁇ (94 ° C 15 sec, 55 ° C 15 sec, 72 ° C 30 sec) X 35 cycle ⁇ 72 ° C 5 Based on the temperature conditions of the samples, c- agarose gel electrophoresis was performed by PCR according to the size of the primer and target product, and the size of the product was confirmed.
  • the transformed Escherichia coli was cultured in an LB liquid medium containing 50 mg / mL ampicillin at about 150 rpm at 37 ° C for 14 hours. The culture was transferred to a 1.5 mL tube and centrifuged at 6,000 rpm for 4 minutes at 4 ° C. The supernatant was removed, and the pellet was suspended by pipetting with 200 Solution I. Add 300 xL of Solution ⁇ and gently invert 2 to 3 times and let stand on ice for 10 minutes. 300 iL of Solution was added and gently inverted 2 to 3 times and allowed to stand on ice for 10 minutes. Centrifugation was performed at 15,000 rpm at 4 ° C for 10 minutes, and the supernatant was collected.
  • the recovered plasmid solution was digested with a restriction enzyme that can confirm the correct construct. After the treatment, agarose gel electrophoresis was performed.
  • Plant plants (about Ol g) were frozen in liquid nitrogen, and the ruptured mortar was transferred to a new tube.
  • 1 mL Isogen ⁇ Nippon which has been incubated at 50 ° C in advance NJ) was added, and violently portexed. Incubated at 50 ° C for 10 minutes, and then allowed to stand at room temperature for 5 minutes.
  • 0.2 mL black mouth form was added, vortexed, and allowed to stand at room temperature for 2 minutes.
  • the mixture was centrifuged at 15,000 rpm (15,000 Xg) for 15 minutes (4 ° C), and the upper layer (aqueous layer) was collected and transferred to a new tube.
  • 0.2 mL of black mouth form was added, mixed vigorously for 1 minute, and centrifuged at 12,000 rpm (10,000 Xg) for 5 minutes (4 ° C) to recover the upper layer (aqueous layer). This black mouth form treatment was repeated until there was no protein in the intermediate layer.
  • 0.5 mL isopropanol was added to the upper layer (aqueous layer), and lightly mixed for 5 minutes. The mixture was centrifuged at 15,000 rpm (15,000 X ⁇ ) for 15 minutes (4 ° C), the supernatant was discarded, and the precipitate was air-dried. The precipitate was dissolved in 0.1 mL RNase-free water and mixed with 10 ⁇ 3 ⁇ sodium acetate.
  • the plate was allowed to stand on ice for 20 minutes, and centrifuged at 15,000 rpm (15,000 Xg) for 15 minutes (4 ° C). The supernatant was collected and added with 0.25 mL ethanol and incubated at 70 ° C: 1 hour. The mixture was centrifuged at 15,000 rpm (15,000 X ⁇ ) for 10 minutes (4 ° C), the supernatant was discarded, and 1 mL 70% ethanol was added to rinse. The mixture was centrifuged at 15,000 rpm (15,000 Xg) for 5 minutes (4 ° C), the supernatant was discarded, and the precipitate was air-dried. The precipitate was dissolved in 20 ⁇ RNase-free water.
  • RNase-free Deoxyribonuclease I (Takara) was used and reacted at 37 ° C for 30 minutes according to standard protocol. The black mouth form treatment was repeated until the protein in the intermediate layer disappeared, and total RNA was recovered by ethanol precipitation.
  • cDNA was prepared using 1st Strand cDNA Synthesis Kit for RT-PCR (AMV) (Roche) according to the standard protocol.
  • the template for the standard curve was Superscript TM One-Step RT-PCR with Platinum Taq (Life Technologies), swimming with agarose genole, cutting out the gel, and Quantum Prep TM Freeze 'N Squeeze DNA Gel Extraction Spin Column (Bio -Rad).
  • a 22-25mer primer was designed to sandwich the intron in order to confirm the contamination of the genomic DNA with high specificity to the gene to be measured.
  • the reagent was LightCycler-FastStart DNA Master SYBR Green I (Roche), and real-time RT-PCR was performed using Light-Cycler (Roche) according to the standard protocol. The measured values were corrected using the actin 2 gene ( ⁇ ⁇ 2) as an internal standard. 8. Plant transformation
  • Each insert was first subcloned into the EcoRI site of the pBluescriptn SK (+) (Nibonbon gene) vector, and confirmed by colony PCR, plasmid recovery, restriction enzyme treatment, and DNA sequencing. Thereafter, each of the above plasmids pSMAB701 vector was treated with the restriction enzyme SacVXbal, electrophoresed with agarose gel, the target band was excised from the gel, and Quantum Prep TM Freeze'N Squeeze DNA Gel Extraction Spin Columns (BIO -RAD). Ligation Pack (Nibonbon Gene) was used for ligation according to the standard protocol, and transformation was performed using Compitent high JM109 (Toyobo) according to the standard protocol.
  • Ligation Pack (Nibonbonbon Gene) was used for ligation according to the standard protocol, and transformation was performed using Compitent high JM109 (Toyobo) according to the standard protocol.
  • Transformation into agrobacterium was performed by electroporation. GV3101 40 ⁇ and 10-fold diluted plasmid solution are Moved to a cuvette for cuvoroporation.
  • the condition of the gene pulser was 2.5 kV, 25 ⁇ , 200 ⁇ .
  • the bacterial solution in the cuvette was transferred to 1 mL of LB liquid medium and cultured at 30 ° C for 20 minutes at about 150 rpm.
  • Colonies that have been grown at 28 ° C in an LB solid medium containing 100 g / mL of spectinomycin, 25 g / mL of gentamicin, and 50 ⁇ ⁇ ⁇ of rifampicin, which are selective markers for GV3101 and pSMAB701 was recovered as a transformation candidate strain.
  • the transformed agrobacterium was inoculated into 1.5 mL of LB liquid medium containing 100 g / mL spectinomycin, 25 g / mL gentamicin, and 50 g / mL rifampicin.
  • the culture was performed at 28 ° C and about 170 rpm for about 20 hours. Subsequently, plasmid recovery and restriction enzyme treatment were performed for confirmation. For transformation, transformation was performed using the two long chain patterns described above.
  • Agrobatatarum (GV3101) introduced with a binary vector was inoculated into 1.5 mL of LB liquid medium containing 100 g / mL spectinomycin, 25 g / mL gentamicin, and 50 g / mL rifampicin. Incubation was performed at 28 ° C and about 170 rpm for about 20 hours. As the main culture, the preculture was transferred 1/1000 times to 200 mL of liquid medium with the same composition, and cultured at 28 ° C and about 170 rpm for about 22 hours. Bacteria collected by centrifugation were suspended in about 80 mL of infiltration medium. The suspension was transferred to an appropriately sized container, and several mL of infiltration medium was further added to suspend it.
  • the Arabidopsis wild line Col grown for about 2 weeks in MS medium was transferred to Mouth Wool and further grown for about 2 weeks, and the strain from the time when the buds just before flowering appeared was used. The cells were directly immersed in the suspension for 3 minutes to infect and transformed.
  • Oligo Microarray pst2 mutant lines and wild-type guns were grown in low K + medium (mineral medium) and high K + medium (MS medium) for 3 weeks, and R ⁇ A was prepared from the leaves.
  • Arabidopsis thaliana nuclear gene chip 14,880 gene 60mer synthetic ori Gonucleide (Agilent Technologies) was used for analysis. As an index, the P value (significance probability) of the significant difference is 0.01 or less as a result of removing the test noise by the standard deviation.
  • the putative bHLH transcription factor (bHLH19) was highly expressed in a lineage-specific manner in low K + medium that was close to the growth conditions in the field (Table 1). This high expression was also confirmed in real-time RT-PCR (Figure 2). Table 1. Genes with increased or decreased expression in ⁇ compared to wild lines psi2Z wild lines> 3
  • APG-like anter-specific proline-rich-like protein
  • primers pst-555-r-fukuya Fw "5'-AGT CGA AAT CAA TGT CTA CTA G-3 '(SEQ ID NO: 1 9)
  • v (pst-1776-f-fukuya Fw ⁇ 5'-CAA AGC TA T TTC CGA TAA CGA CC-3 '(SEQ ID NO: 20) "
  • v (pst-1140-r-fukuya Rv (5'-GTT GTT CTT GGA GTT GTT TC-3 * (SEQ ID NO: 2 1))))
  • the analysis was carried out as a result of determining the nucleotide sequence, and both the plant that was treated with salt stress for 12 hours and the plant under non-stress conditions were expected to be the transcription start site.
  • Normal type is 551 to 688 from the transcription start point
  • Salt-induced type 4 is from 551 bases to 660 from the transcription start point
  • Salt-induced type 3 is from 551 bases to 643 from the transcription start point
  • Salt-induced type 2 excludes 618 bases from 551 to 618 from the transcription start point, and salt-derived type 1 does not exclude bases 551 to 688.
  • the first generation seeds of each line obtained by transformation were designated as T1 seeds.
  • the T-DNA used for transformation has a region encoding the gene bar and can be selected by the herbicide bialaphos.
  • T1 lines of each transformed line used 16 normal-foil lines and 9 salt-foil lines. A homozygous line of each gun was maintained. After examining the expression level of the introduced gene by real-time PCR, seeds and Cols of each transformed line were sown and grown in a mineral medium supplemented with 75 mM NaCl, and the phenotype was observed. .
  • Example 6 Seeds of each transformed line and wild line Col of Arabidopsis obtained in Example 4 Were seeded and grown in mineral media supplemented with 75 mM NaCl, and their phenotypes were observed. In the growth under salt stress conditions, each line showed higher salt tolerance than the wild line (Fig. 7). In addition, the line that introduced NF gained the most salt tolerance. The line introduced with SF also acquired salt tolerance compared to the wild type. For each transformation line, no difference from the wild line Col was observed in the growth in normal MS medium. This experiment showed that bHLH19 expression is involved in the salt tolerance mechanism.
  • Example 6 Example 6
  • the use of the polynucleotide of the present invention can impart salt tolerance to plants, it is possible to provide transformed cells and transformants having salt tolerance.
  • salt tolerance often accompanies resistance to environmental stresses, including water drought resistance (drying tolerance), so the greening of barren dry areas contributes to agriculture in these areas. Be expected.
  • irrigation is restricted to increase sugar content, but this is expected to contribute to alleviating the yield loss associated with this.
  • irrigation is expected to reduce irrigation costs on rooftop greening of buildings and road slopes.
  • resistance to environmental stresses such as strong light, low temperature, and high temperature 6Z

Abstract

It is intended to provide a polynucleotide containing a polynucleotide comprising a base sequence represented by SEQ ID NO:3, 7, 9 or 11; a vector containing this polynucleotide; a transgenic plant having this vector transferred thereinto; and so on. The above-described polynucleotide containing a polynucleotide comprising a base sequence represented by SEQ ID NO:3, 7, 9 or 11 and so on can impart salt tolerance to plants. Therefore, the transgenic plant as described above and so on are useful in greening soil with salt accumulation, cultivating soil with salt accumulation, etc.

Description

明細書  Specification
植物に環境ストレス耐性を付与するポリヌクレオチド 技術分野,  Polynucleotide technology for imparting environmental stress tolerance to plants,
本発明は、 植物に塩ストレス耐性を付与するポリヌクレオチド、 および、 この ポリヌクレオチドを導入した形質転衡疸物などに関する。 背景技術  The present invention relates to a polynucleotide that imparts salt stress tolerance to a plant, and a transforming product into which the polynucleotide is introduced. Background art
植物が受ける環境ストレスには、 塩、 乾燥、 高温、 低温、 空気汚染など様々な ものがあるが、 農業生産の観点から最も問題となっているのが塩および乾燥であ る。 - 地球上の不毛乾燥地域は、 陸地の 1 Z 3までも占め、 さらに 6万 k m 2Z年 (九州と四国を合わせて面積) ずつ増大している。 また、 熱帯雨林は 1 3万 k m 2/年 (北海道と九州を合わせた面積) ずつ減少している。 多くの農耕地におい て水分蒸発による土壌中塩分 (主に塩ィ匕ナトリウム) の地表層集積が問題になつ ており、 地球上に分布する塩集積土壌の総計は 9 5 5万 k m 2である。 これは、 ァメリカ合衆国の国土面積に匹敵する。 There are various environmental stresses on plants, such as salt, drying, high temperature, low temperature, and air pollution, but the most problematic from the viewpoint of agricultural production is salt and drought. -The barren arid region on the earth occupies up to 1 Z 3 on land, and is increasing by 60,000 km 2 Z years (area combined with Kyushu and Shikoku). In addition, the tropical rainforest is decreasing by 130,000 km 2 / year (the combined area of Hokkaido and Kyushu). In many farmland, the accumulation of soil salinity (mainly salty sodium) due to water evaporation has become a problem, and the total amount of salt accumulation soil distributed on the earth is 95,500,000 km 2 . This is comparable to the land area of the United States.
一方、 地球上の餓死者は、 2 8人 (うち子供 2 1人)/分であり、 餓死人口は 1, 5 0 0万人 Z年になる。 世界の 2 3以上の人は、 空腹を満たされておらず、 世界的な食糧の枯渴は明白である。 さらに世界人口は増加傾向にあるため、 2 0 3 0年ごろに 「世界食糧恐慌」 が予測される。  On the other hand, the number of starved deaths on the earth is 28 (including 21 children) per minute, and the population of starvation is 15,000,000,000. More than a few people in the world are not satisfied with hunger, and the global food drought is obvious. Furthermore, since the world population is on the rise, a “world food crisis” is expected around 2010.
また、 近年地球温暖化が深刻化していることから、 環境問題の観点からも、 生 • 物による大気中二酸ィ匕炭素の固定量を増大させる必要性が高く、 塩集積土壌の緑 化が強く望まれている。  In addition, since global warming has become serious in recent years, it is highly necessary to increase the amount of carbon dioxide in the atmosphere by living organisms from the viewpoint of environmental problems. It is strongly desired.
一方、 耐塩性植物の研究は種々行われており、 例えば、 光合成生育 (独立栄養 生育) が野生系統よりも耐塩性になった耐塩性光合成生育突然変異系統 pst (photoautotrophic salt tolerance) の一種である pst2 に関する報告がある' (例えば、 Tsugane, K. , Kobayashi, K. , Niwa, Υ. , Ohba, Υ. , Wada, Κ., and Kobayashi, Η., A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell., 11, 1195 - 1206 (1999)参照) 。 発明の開示 On the other hand, various researches have been conducted on salt-tolerant plants. For example, it is a kind of salt-tolerant photosynthetic growth tolerance pst (photoautotrophic salt tolerance) in which photosynthetic growth (autotrophic growth) is more salt-tolerant than wild strains. There are reports about pst2 '(eg Tsugane, K., Kobayashi, K., Niwa, Υ., Ohba, Υ., Wada, Κ., and Kobayashi, Η., A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. See Plant Cell., 11, 1195-1206 (1999)). Disclosure of the invention
上記状況において、 耐塩性を有する植物の研究は種々行われているが、 現在の ところ、 十分な耐塩性を有する植物の開発は成功していない。 そこで、 十分な耐 塩性を有する形質転換植物体などの開発が強く望まれている。  In the above situation, various researches have been conducted on plants having salt tolerance, but at present, the development of plants having sufficient salt tolerance has not been successful. Thus, development of transformed plants having sufficient salt tolerance is strongly desired.
本発明者らは、 前記課題を解決するため鋭意検討した結果、 特定の配列を有す るポリヌクレオチドが植物に耐塩性を付与することができ、 該ポリヌクレオチド を導入した形質転換植物が耐塩性を示すことを見出し、 本発明を完成した。 すな わち、 本発明は、 以下のようなポリヌクレオチド、 このポリヌクレオチドを含む ベクター、 このポリヌクレオチド どによって形質転換された植物細胞、 このポ リヌクレオチドなどによって形質転換された植物体などを提供する。  As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a polynucleotide having a specific sequence can impart salt tolerance to a plant, and a transformed plant into which the polynucleotide has been introduced has salt tolerance. The present invention was completed. That is, the present invention provides the following polynucleotides, vectors containing the polynucleotides, plant cells transformed with the polynucleotides, plants transformed with the polynucleotides, and the like. To do.
[ 1 ] 以下の (a ) 〜 (f ) のいずれかに記載のポリヌクレオチド。  [1] The polynucleotide according to any one of the following (a) to (f).
( a ) 配列番号: 3、 7、 9または 1 1に記載の塩基配列からなるポリヌクレオ チドを含有するポリヌクレオチド;  (a) a polynucleotide containing a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 3, 7, 9, or 11;
( b ) 配列番号: 1、 6、 8または 1 0に記載のアミノ酸配列からなるタンパク 質をコードするポリヌクレオチドを含有するポリヌクレオチド;  (b) a polynucleotide containing a polynucleotide encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 1, 6, 8, or 10;
( c ) 配列番号: 1、 6、 .8または 1 0に記載のアミノ酸配列において、 1若し くは複数個のアミノ酸が欠失、 置換、 揷入および Zまたは付加したアミノ酸配列 からなり、 かつ植物の耐塩性を高める機能を有するタンパク質をコードするポリ ヌクレオチドを含有するポリヌクレオチド;  (c) the amino acid sequence set forth in SEQ ID NO: 1, 6, .8 or 10 consisting of an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and Z or added; and A polynucleotide comprising a polynucleotide encoding a protein having a function of enhancing plant salt tolerance;
( d ) 配列番号: 1、 6、 8または 1 0に記載のアミノ酸配列からなるタンパク 質と 8 0 %以上の相同性を有し、 かつ植物の耐塩性を高める機能を有するタンパ ク質をコードするポリヌクレオチドを含有するポリヌクレオチド;  (d) encodes a protein having a homology of 80% or more with a protein consisting of the amino acid sequence set forth in SEQ ID NO: 1, 6, 8 or 10 and having a function of enhancing plant salt tolerance A polynucleotide containing a polynucleotide that:
( e ) 配列番号: 3、 7、 9または 1 1に記載の塩基配列と相補的な塩基配列か らなるポリヌクレオチドとストリンジヱントな条件下でハイプリダイズし、 かつ 植物の耐塩性を高める機能を有するタンパク質をコードするポリヌクレオチドを 含有するポリヌクレオチド;及び (f ) 配列番号: 3、 7、 9または 1 1に記載の塩基配列からなるポリヌクレオ チドと 80%以上の相同性を有し、 かつ植物の耐塩性を高める機能を有するタン パク質をコードするポリヌクレオチドを含有するポリヌクレオチド。 (e) has a function of hybridizing with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence set forth in SEQ ID NO: 3, 7, 9 or 11 under stringent conditions and increasing the salt tolerance of plants A polynucleotide comprising a polynucleotide encoding the protein; and (f) encodes a protein having a homology of 80% or more with the polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 3, 7, 9, or 11 and having a function of enhancing plant salt tolerance A polynucleotide containing a polynucleotide.
[2] 以下の (a) 〜 (f ) のいずれかに記載のポリヌクレオチド。  [2] The polynucleotide according to any one of the following (a) to (f).
(a) 配列番号: 4に記載の塩基配列からなるポリヌクレオチド;  (a) a polynucleotide comprising the base sequence described in SEQ ID NO: 4;
(b) 配列番号: 2に記載のアミノ酸配列からなるタンパク質をコードするポリ ヌクレオチド;  (b) a polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2;
(c) 配列番号: 2に記載のアミノ酸配列において、 1若しくは数個のアミノ酸 が欠失、 置換、 挿入おょぴ Zまたは付カ卩したアミノ酸配列からなり、 かつ植物の 耐塩性を高める機能を有するタンパク質をコードするポリヌクレオチド;  (c) The amino acid sequence shown in SEQ ID NO: 2, consisting of an amino acid sequence in which one or several amino acids are deleted, substituted, inserted, or attached, and has a function of increasing the salt tolerance of plants. A polynucleotide encoding a protein having;
(d) 配列番号: 2に記載のアミノ酸配列からなるタンパク質と 80%以上の相 同性を有し、 かつ植物の耐塩性を高める機能を有するタンパク質をコードするポ リヌクレオチド。  (d) A polynucleotide encoding a protein having 80% or more homology with the protein consisting of the amino acid sequence set forth in SEQ ID NO: 2 and having a function of enhancing plant salt tolerance.
(e) 配列番号: 4に記載の塩基配列と相補的な塩基配列からなるポリヌクレオ チドとストリンジヱントな条件下でハイブリダイズし、 かつ植物の耐塩性を高め る機能を有するタンパク質をコードするポリヌクレオチド;及ぴ  (e) a polynucleotide that encodes a protein that hybridizes with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence set forth in SEQ ID NO: 4 under stringent conditions and has a function of enhancing plant salt tolerance; Eiji
( f ) 配列番号: 4に記載の塩基配列からなるポリヌクレオチドと 80 %以上の 相同性を有し、 かつ植物の耐塩性を高める機能を有するタンパク質をコードする ポリヌクレオチド。  (f) a polynucleotide encoding a protein having a homology of 80% or more with the polynucleotide comprising the nucleotide sequence of SEQ ID NO: 4 and having a function of enhancing plant salt tolerance.
[3] 以下の (a) 〜 (f ) のいずれかに記載のポリヌクレオチド。  [3] The polynucleotide according to any one of the following (a) to (f).
( a ) 配列番号: 26に記載の塩基配列からなるポリヌクレオチドを含有するポ リヌクレオチド;  (a) a polynucleotide containing a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 26;
( b ) 配列番号: 25に記載のァミノ酸配列からなるタンパク質をコードするポ リヌクレオチドを含有するポリヌクレオチド;  (b) a polynucleotide containing a polynucleotide encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 25;
( c ) 配列番号: 2 5に記載のァミノ酸配列において、 1若しくは複数個のァミ ノ酸が欠失、 置換、 挿入および/または付加したアミノ酸配列からなり、 かつ植 物の耐塩性を高める機能を有するタンパク質をコ ドするポリヌクレオチドを含 有するポリヌクレオチド;  (c) The amino acid sequence described in SEQ ID NO: 25 comprises an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and / or added, and enhances salt tolerance of plants. A polynucleotide comprising a polynucleotide encoding a functional protein;
(d) 配列番号: 25に記載のアミノ酸配列からなるタンパク質と 80%以上の 相同性を有し、 かつ植物の耐塩性を高める機能を有するタンパク質をコードする ポリヌクレオチドを含有するポリヌクレオチド; (d) a protein comprising the amino acid sequence set forth in SEQ ID NO: 25 and at least 80% A polynucleotide comprising a polynucleotide encoding a protein having homology and a function of enhancing plant salt tolerance;
( e ) 配列番号: 2 6に記載の塩基配列と相補的な塩基配列からなるポリヌクレ ォチドとストリンジヱントな条件下でハイブリダイズし、 かつ植物の耐塩1生を高 める機能を有するタンパク質をコードするポリヌクレオチドを含有するポリヌク レオチド;及ぴ 1 ( f ) 配列番号: 2 6に記載の塩基配列からなるポリヌクレオチドと 8 0 %以上 の相同性を有し、 かつ植物の耐塩性を高める機能を有するタンパク質をコードす るポリヌクレオチドを含有するポリヌクレオチド。 (E) SEQ ID NO: 2 6 Porinukure Ochido and Sutorinjiwento conditions consisting of a nucleotide sequence complementary to the nucleotide sequence hybridizes described, and encodes a protein having high mel function salt 1 production plant A polynucleotide containing a polynucleotide; and 1 (f) having a homology of 80% or more with a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 26, and a function of increasing plant salt tolerance A polynucleotide comprising a polynucleotide encoding a protein.
[ 4 ] 上記 [ 1 ] に記載のポリヌクレオチドのいずれか 1つと、 上記 [ 2 ] も しくは [ 3 ] に記載のポリヌクレオチドのいずれか 1つとを含むポリヌクレオチ ドを含むポリヌクレオチド。  [4] A polynucleotide comprising a polynucleotide comprising any one of the polynucleotides described in [1] above and any one of the polynucleotides described in [2] or [3] above.
[ 5 ] 配列番号: 5に記載の塩基配列を有するポリヌクレオチドを含む、 上記 [ 4 ] に記載のポリヌクレオチド。  [5] The polynucleotide of [4] above, comprising a polynucleotide having the base sequence of SEQ ID NO: 5.
[ 6 ] 以下の (a ) 〜 (f ) のいずれかに記載のポリヌクレオチド。  [6] The polynucleotide according to any one of the following (a) to (f).
( a ) 配列番号: 2 8に記載の塩基配列からなるポリヌクレオチドを含有するポ リヌクレオチド;  (a) a polynucleotide containing a polynucleotide comprising the base sequence set forth in SEQ ID NO: 28;
( ) 配列番号: 2 7に記載のァミノ酸配列からなるタンパク質をコ一ドするポ リヌクレオチドを含有するポリヌクレオチド;  () A polynucleotide containing a polynucleotide encoding a protein comprising the amino acid sequence set forth in SEQ ID NO: 27;
( c ) 配列番号: 2 7に記載のァミノ酸配列において、 1若しくは複数個のァミ ノ酸が欠失、 置換、 揷入および Zまたは付加したアミノ酸配列からなり、 かつ植 物の耐塩性を高める機能を有するタンパク質をコードするポリヌクレオチドを含 有するポリヌクレオチド; ·  (c) The amino acid sequence described in SEQ ID NO: 27 comprises an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and Z or added, and the salt tolerance of the plant is increased. A polynucleotide comprising a polynucleotide encoding a protein having an enhancing function;
( d ) 配列番号: 2 7に記載のァミノ酸配列からなるタンパク質と 8 0 %以上の 相同性を有し、 かつ植物の耐塩性を高める機能を有するタンパク質をコードする ポリヌクレオチドを含有するポリヌクレオチド;  (d) a polynucleotide comprising a polynucleotide encoding a protein having a homology of 80% or more with the protein comprising the amino acid sequence of SEQ ID NO: 27 and having a function of enhancing plant salt tolerance ;
( e ) 配列番号: 2 8に記載の塩基配列と相補的な塩基配列からなるポリヌクレ ォチドとストリンジェントな条件下でハイブリダイズ、し、 かつ植物の耐塩性を高 める機能を有するタンパク質をコード るポリヌクレオチドを含有するポリヌク レオチド;及ぴ (e) A protein that hybridizes under stringent conditions with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence set forth in SEQ ID NO: 28 and that has the function of increasing plant salt tolerance. A polynucleotide containing a polynucleotide Leotide;
( f ) 配列番号: 28に記載の塩基配列からなるポリヌクレオチドと 80 %以上 の相同性を有し、 かつ植物の耐塩性を高める機能を有するタンパク質をコードす るポリヌクレオチドを含有するポリヌクレオチド。  (f) a polynucleotide comprising a polynucleotide encoding a protein having a function of increasing the salt tolerance of a plant and having a homology of 80% or more with the polynucleotide comprising the nucleotide sequence of SEQ ID NO: 28.
[7] DNAである上記 [1] 〜 [6] のいずれかに記載のポリヌクレオチド。  [7] The polynucleotide according to any one of [1] to [6], which is DNA.
[8] 上記 [1] 〜 [7] のいずれかに記載のポリヌクレオチドを含む,袓換え ベ々タ ,  [8] A modified solid comprising the polynucleotide according to any one of [1] to [7] above,
[9] . 上記 [1]〜 [7] のいずれかに記載のポリヌクレオチド、 または上記 [9]. The polynucleotide according to any one of [1] to [7] above, or the above
[ 8 ] に記載のベクターを保持する形質転換細胞。 [8] A transformed cell carrying the vector according to [8].
[10] 上記 [1] 〜 [7] のいずれかに記載のポリヌクレオチド、 または上 記 [8] に記載のベクターを導入した形質転 »物体。  [10] A transformed object incorporating the polynucleotide according to any one of [1] to [7] above or the vector according to [8] above.
[11] 上記 [ 0] に記載の形質転 物体の子孫またはクローンである、 形質転換植物体。 本発明のポリヌクレオチドを用いれば、 植物に耐塩性を付与することができる ので、 耐塩性を有する形質転 m«物細胞おょぴ形質転 m¾物体を得ることができ る。 そのようにして得られる本発明の形質転,物体は、 塩集積土壌においても 育成することができるので、 塩集積土壌の緑化に貢献することができる。 また、 本発明のポリヌクレオチドを含むベクターを食用植物に組み込んでなる耐塩性形 質転換植物体は、 塩害で通常育成しにくい場所でも育成できるという利点がある。 図面の簡単な説明  [11] A transformed plant which is a descendant or clone of the transformed object according to [0]. By using the polynucleotide of the present invention, salt tolerance can be imparted to a plant, and therefore, a transformed cell having a salt tolerance can be obtained. Since the transformant or object of the present invention thus obtained can be grown even in salt-accumulated soil, it can contribute to the greening of the salt-accumulated soil. In addition, a salt-tolerant transformed plant obtained by incorporating a vector containing the polynucleotide of the present invention into an edible plant has the advantage that it can be cultivated in a place where it is difficult to grow normally due to salt damage. Brief Description of Drawings
図 1は、 bHLH19遺伝子ゲノム配列を示す図である。  FIG. 1 shows the bHLH19 gene genome sequence.
図 2は、 bHLH19遺伝子の RT-PCR産物 (定性実験) を示す図である。  Fig. 2 shows the RT-PCR product (qualitative experiment) of the bHLH19 gene.
図 3は、 サイズの異なる bHLH転写因子 mRNAが生じる機構の可能性を示す図 である。  Figure 3 shows a possible mechanism for the generation of bHLH transcription factor mRNAs of different sizes.
図 4は、 N末端側ィントロンに対する RT- PCRの結果を示す図である。 ' 図 5は、 イントロン 1の選択的スプライシングを示す図である。  FIG. 4 shows the results of RT-PCR for the N-terminal intron. 'Figure 5 shows alternative splicing of intron 1.
図 6は、 bHLH19遺伝子のバイナリーベクターへの導入を示す図である。 図 7は、 塩ス トレス条件下での発芽からの生育を示す図である。 FIG. 6 is a diagram showing introduction of the bHLH19 gene into a binary vector. FIG. 7 shows growth from germination under salt stress conditions.
図 8は、 C末端側ィントロンに対する RT - PCTの結果を示す図である 発明を実施するための最良の形態  FIG. 8 is a diagram showing the results of RT-PCT for the C-terminal intron. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を、 その実施態様に基づいて詳細に説明する。  Hereinafter, the present invention will be described in detail based on the embodiments.
本発明者らは、 核ゲノム D N A全塩基配列が決定されているシロイヌナズナ (例 ば、 The Arabidopsis Genome Initiative : Analysis of the genome sequence of the flowering plant Arabidopsis tha liana. Nature, 408, 796— 815 (2000)参照) において、 変異原メタンスルホン酸ェチル処理により突然変異 を誘発し、 光合成生育 (独立栄養生育) が野生系統よりも耐塩性になった耐塩性 光合成生育突然変異系銃 st (photoautotrophic salt tolerance) の一種であ る pst2 (例えば、 Tsugane, K. , Kobayashi, - K. , Niwa, Y. , Ohba, Υ., Wada, K., and Kobayashi, H. , A recessive Arabidopsis mutant that grows photoautotrophica丄丄 y under salt stress shows enhanced active oxygen detoxification. Plant Cell. , 11, 1195-1206 (1999) ) について、 非ス トレス 条件下において発現している遺伝子を D NAチップ (オリゴマイクロアレイ) を 用いて解析し、 At2g22760 (bHLH19) 遺伝子が野生系統に対して特異的に高発現 していることを見いだした。 さらに、 驚くべきことに、 この At2g22760遺伝子に おいて、 塩ス トレスにより選択的スプライシングが起こり、 新たな転写産物 (R NA) が生じることを見出した。 本発明で見出された新たな転写産物の c D NA のコード配列を配列番号: 3、 4、 7、 9および 1 1に示す。 本発明で見出され た新たな c D N Aには、 配列番号: 3で示されるコード配列と、 配列番号: 4で 示されるコード配列とを共に含む塩基配列 (配列番号: 5 ) を含むものも含まれ る。  The present inventors have found that Arabidopsis Genome Initiative: Analysis of the genome sequence of the flowering plant Arabidopsis tha liana. Nature, 408, 796—815 (2000) In the case of the salt-tolerant photosynthetic growth mutant gun st (photoautotrophic salt tolerance) Pst2 (e.g. Tsugane, K., Kobayashi,-K., Niwa, Y., Ohba, Υ., Wada, K., and Kobayashi, H., A recessive Arabidopsis mutant that grows photoautotrophica 丄 丄 y Under Cell stress shows enhanced active oxygen detoxification. Plant Cell., 11, 1195-1206 (1999)), the genes expressed under non-stress conditions were analyzed using DNA chips (oligo microarray), and At2g227 We found that the 60 (bHLH19) gene was highly expressed specifically in the wild strain. In addition, surprisingly, we found that alternative splicing occurs at the At2g22760 gene due to salt stress, resulting in a new transcript (RNA). The coding sequence of the cDNA of the new transcript found in the present invention is shown in SEQ ID NOs: 3, 4, 7, 9, and 11. The new cDNA found in the present invention also includes a nucleotide sequence (SEQ ID NO: 5) containing both the coding sequence represented by SEQ ID NO: 3 and the coding sequence represented by SEQ ID NO: 4. included.
これら本発明の c D NAがコードするタンパク質のアミノ酸酉 S列を配列番号: 1、 2、 6、 8および 1 0に示す。 後述する実施例においては、 配列番号: 5の c D N Aを含むベクタ一を作成し、 このベクターによつて形質転換した形質転換 植物体を作成した。 この本発明の新たな転写産物の c D NAを含むベクターによ つて形質転換した形質転換植物体は、 At2g22760遺伝子における通常の転写産物 の c DNAを含むベクター、 すなわち、 通常の bHLH19 (配列番号: - 12) をコ ードする塩基配列 (配列番号: 13) を有する DNAを含むベクターを導入した 植物体よりも耐塩性が高いことを見出した。 The amino acid 酉 S rows of the proteins encoded by these cDNAs of the present invention are shown in SEQ ID NOs: 1, 2, 6, 8, and 10. In Examples described later, a vector containing the cDNA of SEQ ID NO: 5 was prepared, and a transformed plant transformed with this vector was prepared. A transformed plant transformed with a vector containing the cDNA of this new transcript of the present invention is a normal transcript in the At2 g 22760 gene. More highly salt-tolerant than plants into which a vector containing a cDNA, ie, a vector containing a DNA having the base sequence (SEQ ID NO: 13) encoding normal bHLH19 (SEQ ID NO: 12) is introduced. I found.
本発明は、 これらの知見に基づき、 塩ストレス耐性を付与するタンパク質をコ ードするポリヌクレオチド、 このポリヌクレオチドを含むベクター、 並びに、 こ のベクターまたはポリヌクレオチドを導入した形質転■物細胞おょぴ形質転換 植物体を提供するものである。  Based on these findings, the present invention provides a polynucleotide encoding a protein that imparts salt stress tolerance, a vector containing the polynucleotide, and a transformed cell into which the vector or polynucleotide has been introduced. Pi transformation A plant body is provided.
1. 本発明のポリヌクレオチド 1. Polynucleotide of the present invention
本発明のポリヌクレオチドは、 好ましくは DN Aであり、 具体的には、 cDN A、 合成 DNAなどが挙げられる。 DNAが由来する生物種としては、 特に制限 はないが、 好ましくは植物である。 植物としては、 例えば、 シロイヌナズナ、 ィ ネ、 トウモロコシ、 コムギ、 ォォムギ、 ダイズ、 トマト、 ヮタ、 タバコ、 ナタネ、 ジャガイモ、 テンサイ、 サトウキビ、 ヒマヮリ、 シバ、 樹木 (ポプラやユーカリ など) などがあげられるが、 これに限定されるものではない。  The polynucleotide of the present invention is preferably DN A, and specific examples thereof include cDNA and synthetic DNA. The biological species from which DNA is derived is not particularly limited, but is preferably a plant. Plants include, for example, Arabidopsis, rice, corn, wheat, barley, soybean, tomato, straw, tobacco, rapeseed, potato, sugar beet, sugarcane, sunflower, shiba, trees (poplar, eucalyptus, etc.) However, it is not limited to this.
本発明のポリヌクレオチドの具体例としては、 例えば、  Specific examples of the polynucleotide of the present invention include, for example,
[1] 以下の (a) 〜 (f) のいずれかに記載のポリヌクレオチドがあげられる。 (a) 配列番号: 3、 7、 9または 11に記載の塩基配列からなるポリヌクレオ チドを含有するポリヌクレオチド、  [1] The polynucleotide according to any one of the following (a) to (f) is exemplified. (a) a polynucleotide containing a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 3, 7, 9, or 11,
(b) 配列番号: 1、 6、 8または 10に記載のアミノ酸配列からなるタンパク 質をコードするポリヌクレオチドを含有するポリヌクレオチド、  (b) a polynucleotide comprising a polynucleotide encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 1, 6, 8 or 10;
(c) 配列番号: 1、 6、 8または 10に記載のアミノ酸配列において、 1若し くは複数個のアミノ酸が欠失、 置換、 挿入おょひゾまたは付加したアミノ酸配列 からなり、 かつ植物の耐塩性を高める機能を有するタンパク質をコードするポリ ヌクレオチドを含有するポリヌクレオチド、  (c) In the amino acid sequence set forth in SEQ ID NO: 1, 6, 8 or 10, consisting of an amino acid sequence in which one or more amino acids are deleted, substituted, inserted or added, and a plant A polynucleotide comprising a polynucleotide encoding a protein having a function of increasing the salt tolerance of
(d) 配列番号: 1、 6、 8または 10に記載のアミノ酸配列からなるタンパク 質と 80%以上の相同性を有し、 かつ植物の耐塩性を高める機能を有するタンパ ク質をコードするポリヌクレオチドを含有するポリヌクレオチド、  (d) a protein encoding a protein having a homology of 80% or more with a protein comprising the amino acid sequence set forth in SEQ ID NO: 1, 6, 8 or 10 and having a function of enhancing plant salt tolerance. A polynucleotide containing nucleotides,
..(e) 配列番号: 3、 7、 9または 11に記載の塩基配列と相補的な塩基配列か らなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、 かつ 植物の耐塩性を高める機能を有するタンパク,質をコードするポリヌクレオチドを 含有するポリヌクレオチド、 または、 ' .. (e) Is the base sequence complementary to the base sequence described in SEQ ID NO: 3, 7, 9 or 11 Or a polynucleotide containing a polynucleotide encoding a protein or quality having a function of increasing the salt tolerance of a plant and hybridizing under stringent conditions, or
( f ) 配列番号: 3、 7、 9または 1 1に記載の塩基配列からなるポリヌクレオ チドと 8 0 %以上の相同性を有し、 かつ植物の耐塩性を高める機能を有するタン パク質をコードするポリヌクレオチドを含有するポリヌクレオチド。  (f) encodes a protein having a homology of 80% or more with the polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 3, 7, 9 or 11 and having a function of enhancing salt tolerance of plants. A polynucleotide containing a polynucleotide to be treated.
本発明のポリヌクレオチドの他の具体例としては、 例えば、 - [ 2 ] 以下の (a ) 〜 (f ) のいずれかに記載のポリヌクレオチドがあげられる。 ( a ) 配列番号: 4に記載の塩基配列からなるポリヌクレオチド、  Other specific examples of the polynucleotide of the present invention include, for example, the polynucleotide described in any one of the following (a) to (f): (a) a polynucleotide comprising the base sequence described in SEQ ID NO: 4;
( b ) 配列番号: 2に記載のァミノ酸配列からなるタンパク質をコードするポリ ヌクレオチド、  (b) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO: 2,
( c ) 配列番号: 2に記載のアミノ酸配列において、 1若しくは複数個のァミノ 酸が欠失、 置換、 揷入および/または付カ卩したアミノ酸配列からなり、 かつ植物 の耐塩性を高める機能を有するタンパク質をコードするポリヌクレオチド、 ( d ) 配列番号: 2に記載のァミノ酸配列からなるタンパク質と 8 0 %以上の相 同性を有し、 かつ植物の耐塩性を高める機能を有するタンパク質をコードするポ リヌクレオチド、  (c) the amino acid sequence of SEQ ID NO: 2, comprising an amino acid sequence in which one or more amino acids have been deleted, substituted, inserted and / or attached, and has a function of enhancing plant salt tolerance (D) encoding a protein having a homology of 80% or more with the protein comprising the amino acid sequence described in SEQ ID NO: 2 and having a function of enhancing plant salt tolerance Polynucleotides,
( e ) 配列番号: 4に記載の塩基配列と相補的な塩基配列からなるポリヌクレオ チドとストリンジェントな条件下でハイブリダイズし、 かつ植物の耐 I1生を高め る機能を有するタンパク質をコードするポリヌクレオチド、 または (e) encodes a protein that hybridizes under stringent conditions with a polynucleotide consisting of a base sequence complementary to the base sequence set forth in SEQ ID NO: 4 and has a function of increasing plant I 1 tolerance. Polynucleotide, or
( f ) 配列番号: 4に記載の塩基配列からなるポリヌクレオチドと 8 0 %以上の 相同性を有し、 かつ植物の耐塩性を高める機能を有するタンパク質をコードする ポリヌクレオチド。  (f) a polynucleotide encoding a protein having a homology of 80% or more with the polynucleotide comprising the nucleotide sequence of SEQ ID NO: 4 and a function of enhancing plant salt tolerance;
本発明のポリヌクレオチドのさらに他の具体例としては、 例えば、  Other specific examples of the polynucleotide of the present invention include, for example,
[ 3 ] 以下の (a ) 〜 (f ) のいずれかに記載のポリヌクレオチドがあげられ る。 '  [3] The polynucleotide according to any one of the following (a) to (f) can be mentioned. '
( a ) 配列番号: 2 6または 2 8に記載の塩基配列からなるポリヌクレオチドを 含有するポリヌクレオチド;  (a) a polynucleotide containing a polynucleotide comprising the base sequence set forth in SEQ ID NO: 26 or 28;
( b ) 配列番号: 2 5または 2 7に記載のアミノ酸配列からなるタンパク質をコ 一ドするポリヌクレオチドを含有するポリヌクレオチド; (b) a protein comprising the amino acid sequence set forth in SEQ ID NO: 25 or 27 A polynucleotide comprising a polynucleotide to be isolated;
( c ) 配列番号: 2 5または 2 7に記載のアミノ酸配列において、 1若しくは複 数個のアミノ酸が欠失、 置換、 挿入およぴ Zまたは付加したアミノ酸配列からな り、 かつ植物の耐塩性を高める機能を有するタンパク質をコードするポリヌクレ ォチドを含有するポリヌクレオチド;  (c) In the amino acid sequence set forth in SEQ ID NO: 25 or 27, it consists of an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and Z or added, and is salt-tolerant in plants. A polynucleotide containing a polynucleotide encoding a protein having a function of enhancing the activity;
( d ) 配列番号: 2 5または 2 7に記載のァミノ酸配列からなるタンパク質と 8 0 %以上の相同性を有し、 かつ植物の耐塩性を高める機能を有するタンパク質を コードするポリヌクレオチドを含有するポリヌクレオチド;  (d) containing a polynucleotide encoding a protein having a homology of 80% or more with the protein consisting of the amino acid sequence described in SEQ ID NO: 25 or 27 and having a function of enhancing plant salt tolerance A polynucleotide to:
( e ) 配列番号: 2 6または 2 8に記載の塩基配列と相捕的な塩基配列からなる ポリヌクレオチドとストリンジヱントな条件下でハイブリダイズし、 かつ植物の 耐塩性を高める機能を有するタンパク質をコードするポリヌクレオチドを含有す るポリヌクレオチド;及ぴ  (e) a protein that hybridizes with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO: 26 or 28 under stringent conditions and has a function of enhancing plant salt tolerance A polynucleotide containing the polynucleotide to be treated;
( f ) 配列番号: 2 6または 2 8に記載の塩基配列からなるポリヌクレオチドと 8 0 %以上の相同性を有し、 かつ植物の耐塩性を高める機能を有するタンパク質 をコードするポリヌクレオチドを含有するポリヌクレオチド。  (f) containing a polynucleotide encoding a protein having a homology of 80% or more with the polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 26 or 28 and having a function of enhancing plant salt tolerance Polynucleotide.
本発明のポリヌクレオチドとしては、 上記 [ 1 ] に例示されたポリヌクレオチ ドのいずれか 1つと、 上記 [ 2 ]·に例示されたポリヌクレオチドのいずれか 1つ とを含むポリヌクレオチドを含むポリヌクレオチドが好ましく、 さらに配列番 号: 5に記載の塩基配列を有するポリヌクレオチドを含むポリヌクレオチドが好 ましい。  The polynucleotide of the present invention includes a polynucleotide comprising a polynucleotide comprising any one of the polynucleotides exemplified in the above [1] and any one of the polynucleotides exemplified in the above [2]. And a polynucleotide containing a polynucleotide having the base sequence set forth in SEQ ID NO: 5 is preferred.
あるアミノ酸配列を有するタンパク質に対して、 1若しくは複数個のアミノ酸 が欠失、 置換、 揷入および Zまたは付加したアミノ酸配列を有するタンパク質力 その生物学的活性を維持することはすでに知られている (例えば、 Mark, D. F. et al., Proc. Natl. Acad. Sci. USA 81, 5662-5666 (1984)、 Zoller, M. J" and Smith, M., Nucleic Acids Research 10, 6487-6500 (1982)、 Dalbadie- McFarland, G. et al" Proc. Natl. Acad. Sci. USA 79, 6409-6413 (1982)、 Bowie et al., Science 247, 1306-1310 (1990)、 など参照) 。 したがって、 配列番号: 1 ; 6、 8または 1 0に記載のアミノ酸配列において、 1若しくは複数個のアミノ酸 が欠失、 置換、 挿入および/または付カ卩したアミノ酸配列からなり、 かつ植物の 耐塩性を高める機能を有するタンパク質をコードするポリヌクレオチドを含有す るポリヌクレオチドも本発明の範囲内である。 For proteins with a certain amino acid sequence, one or more amino acids are deleted, substituted, inserted and protein with Z or added amino acid sequence. It is already known to maintain its biological activity. (For example, Mark, DF et al., Proc. Natl. Acad. Sci. USA 81, 5662-5666 (1984), Zoller, M. J "and Smith, M., Nucleic Acids Research 10, 6487-6500 (1982 ), Dalbadie- McFarland, G. et al "Proc. Natl. Acad. Sci. USA 79, 6409-6413 (1982), Bowie et al., Science 247, 1306-1310 (1990), etc.). Accordingly, in the amino acid sequence set forth in SEQ ID NO: 1; 6, 8, or 10, it comprises an amino acid sequence in which one or more amino acids are deleted, substituted, inserted, and / or attached, and A polynucleotide containing a polynucleotide encoding a protein having a function of enhancing salt tolerance is also within the scope of the present invention.
あるアミノ酸配列に対して、 1若しくは数個のアミノ酸が欠失、 置換、 揷入お よび/または付加したアミノ酸配列を有するタンパク質をコードするポリヌクレ ォチドは、 部位特異的変異導入法 (例えば、 Gotoh, T. et al. , Gene 152, 271 - 275 (1995)、 Zoller, M. J. , and Smith, M., Methods Enzymol. 100, 468—500 A polynucleotide encoding a protein having an amino acid sequence in which one or several amino acids have been deleted, substituted, inserted and / or added to a certain amino acid sequence is obtained by site-directed mutagenesis (eg, Gotoh, T. et al., Gene 152, 271-275 (1995), Zoller, MJ, and Smith, M., Methods Enzymol. 100, 468-500
(1983)、 Kramer, W. et al. , ucleic "Acids Res. 12, 9441—9456 (1984)、 Kramer W, and Fritz H. J. , Methods. Enzymol. 154, 350-367 (1987) 、 Kunkel, T. A. , Proc. Natl. Acad. Sci. USA. 82, 488-492 (1985) 、 Kunkel, Methods Enzymol. 85, 2763-2766 (1988)、 など参照) 、 アンバー変異を利用す る方法 (例えば、 Gapped duple 法、 ucleic Acids Res. 12, 9441-9456(1983), Kramer, W. et al., Ucleic "Acids Res. 12, 9441-9456 (1984), Kramer W, and Fritz HJ, Methods. Enzymol. 154, 350-367 (1987), Kunkel, TA, Proc. Natl. Acad. Sci. USA. 82, 488-492 (1985), Kunkel, Methods Enzymol. 85, 2763-2766 (1988), etc.), methods using amber mutation (eg, Gapped duple method) , Ucleic Acids Res. 12, 9441-9456
(1984)、 など参照) などを用いることにより得ることができる。 (See 1984), etc.).
また目的の変異 (欠失、 付加、 置換および Zまたは揷入) を導入した配列をそ れぞれの 5 ' 端に持つ 1組のプライマーを用いた P C R (例えば、 Ho S. N. et al., Gene 77, 51 (1989)、 など参照) によっても、 ポリヌクレオチドに変異を導 入することができる。  In addition, PCR using a pair of primers (for example, Ho SN et al., Gene) having a sequence introduced with the desired mutation (deletion, addition, substitution and Z or insertion) at the 5 'end of each. 77, 51 (1989), etc.) can also introduce mutations into polynucleotides.
また欠失変異体の一種であるタンパク質の部分断片をコードするポリヌクレオ チドは、 そのタンパク質をコードするポリヌクレオチド中の作製したい部分断片 をコードする領域の 5, 端の塩基配列と一致する配列を有するオリゴヌクレオチ ドおよび 3 ' 端の塩基配列と相補的な配列を有するオリゴヌクレオチドをプライ マーとして用いて、 そのタンパク質をコードするポリヌクレオチドを鍚型にした P C Rを行うことにより取得でき 。  A polynucleotide that encodes a partial fragment of a protein that is a type of deletion mutant has a sequence that matches the base sequence at the 5th and end of the region that encodes the partial fragment to be prepared in the polynucleotide that encodes the protein. It can be obtained by performing PCR using an oligonucleotide having a nucleotide sequence complementary to the nucleotide sequence at the 3 'end as a primer and using a polynucleotide encoding the protein as a cocoon.
欠失、 付加、 置換おょぴ Zまたは挿入されるアミノ酸の数は特に限定されず、 The number of amino acids to be deleted, added, substituted, or inserted is not particularly limited,
1以上の任意の数であればよいが、 上記の部位特異的変異法や P C R等の周知の 方法により欠失、 付加、 置換おょぴ Zまたは挿入できる程度の数であることが好 ましく、 一般的には 1個から 5 0個程度であり、 好ましくは 1から 3 0個、 より 好ましくは 1〜2 0個、 さらに好ましくは 1〜 1 0個、 特に好ましくは 1〜数個 (例、 6個) である。 Any number of 1 or more is acceptable, but it is preferable that the number be sufficient to allow deletion, addition, substitution, or insertion by the above-mentioned site-directed mutagenesis method or PCR. In general, it is about 1 to 50, preferably 1 to 30, more preferably 1 to 20, more preferably 1 to 10, particularly preferably 1 to several (example 6).
また、 本発明のタンパク質が植物の耐塩性を高める機能を有するためには、 配 列番号: 1、 2、 6、 8または 1 0に記載のアミノ酸配列との相同性が B L A S T (例えば、 Altzshul S. F. et al" J. Mol. Biol. 215, 403 (1990)、 など参照) や F A S T A (Pearson W. R., Methods in Enzymology 183, 63 (1990)、 など参 照) 等の解析プログラムでデフォルト (初期設定) のパラメーターを用いて計算 したときに、 少なくとも 8 0 %以上、 好ましくは 9 0 %以上、 より好ましくは 9 3 %以上、 さらに好ましくは 9 5 %以上、 特に好ましくは 9 7 %以上、 最も好ま しくは 9 8 %以上であることが好ましい。 In addition, in order for the protein of the present invention to have a function of increasing plant salt tolerance, The homology with the amino acid sequence described in column numbers 1, 2, 6, 8 or 10 is BLAST (see, for example, Altzshul SF et al "J. Mol. Biol. 215, 403 (1990), etc.) and FASTA (See Pearson WR, Methods in Enzymology 183, 63 (1990), etc.) When using the default (initial setting) parameters in an analysis program such as, at least 80% or more, preferably 90% or more More preferably, it is 93% or more, more preferably 95% or more, particularly preferably 97% or more, and most preferably 98% or more.
「ストリンジェントな条件下でハイブリダイズするポリヌクレオチド」 とは、 3、 4、 7、 9また.は 1 1に記載の塩基配列と相捕的な配列からなるポリヌクレ ォチドをプローブとして、 コロニー 'ハイブリダィゼーシヨン法、 プラーク ·ハ ィプリダイゼーシヨン法あるいはサザンプロットハイプリダイゼーシヨン法等を 用いることにより得られるポリヌクレオチドを意味し、 具体的には、 コロニーあ るいはプラーク由来の D NAを固定化したフィルターを用いて、 0 . 7〜1 . 0. m o 1 Z Lの N a C 1存在下、 6 5 °Cでハイブリダィゼーシヨンを行った後、 0 . 1〜 2倍濃度の S S C (Saline-sodium citrate) 溶液 ( 1倍濃度の S S C溶液の 組成は、 1 5 O mm o 1 / L塩ィ匕ナトリウム、 1 5 mm o 1 / Lクェン酸ナトリ ゥムよりなる) を用い、 6 5 °C条件下でフィルターを洗浄することにより同定で きるポリヌクレオチドをあげることができる。  “Polynucleotide hybridizing under stringent conditions” refers to a colony 'hybrid using a polynucleotide consisting of a base sequence described in 3, 4, 7, 9, or 11 as a probe. This refers to polynucleotides obtained by using the dialysis method, plaque hybridization method, or Southern plot hyper-precipitation method, and more specifically, DNA derived from colonies or plaques. After the hybridization at 65 ° C in the presence of 0.7 to 1.0.mo 1 ZL of Na C 1 using a filter with immobilized SSC (Saline-sodium citrate) solution (The composition of 1-fold concentration of SSC solution consists of 15 Ommo1 / L sodium chloride, 15mmO1 / L sodium citrate) Clean the filter at 65 ° C It is possible to increase the polynucleotide that can be identified by.
ノヽイブリダイゼーションは、 Sambrook J. et al., Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press (2001) (以下、 モレキュラー 'クローニング第 3版と略す) 、 Ausbel F. M. et al., Current Protocols m Molecular Biology, Supplement 1〜38, dohn Wiley and Sons (1987-1997)、 Glover D. M. and Hames B. D., DNA Cloning 1: Core Techniques, A practical Approach, Second Edition, Oxford University Press (1995)等の実験書に記載されている方法に準じて行うことができる。 。 本発明の ハイブリダイゼーション反応においては、 さまざまな ¾度のストリンジェントな 条件を用いることができる。 条件を厳しくするほど、 二本鎖形成に必要とする枏 補性が高くなる。  Molecular hybridization, Sambrook J. et al., Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press (2001) (hereinafter abbreviated as Molecular 'Cloning 3rd Edition), Ausbel FM et al., Current Protocols m Molecular Biology, Supplement 1-38, dohn Wiley and Sons (1987-1997), Glover DM and Hames BD, DNA Cloning 1: Core Techniques, A practical Approach, Second Edition, Oxford University Press (1995) Can be carried out according to the method described in. . In the hybridization reaction of the present invention, various stringent conditions can be used. The more severe the conditions, the higher the complementarity required for duplex formation.
本発明の目的に適した 「低ストリンジェントな条件」 は、 例えば、 5 X S S C、 5 Xデンハルト溶液、 0 · 5 % S D S、 50 %ホルムアミド、 32 °C条件でのハ ィプリダイゼーシヨン、 それに続く 2XSSC、 0. 1%SSC、 室温での洗浄 である。 また、 「中ス トリンジェントな条件」 は、 例えば、 5 XSSC、 5 Xデ ンハルト溶液、 0. 5 % S D S、 50 %ホルムァミド、 42。C条件でのハイブリ ダイゼーシヨン、 それに続く 0. 2XSSC、 0. 1%SDS、 37 °Cでの洗浄 である。 「高ストリンジェントな条件」 は、 例えば、 5 XSSC、 5 Xデンハノレ ト溶液、 0. 5 % S D S、 50 %ホルムアミド、 42 °C条件でのハイブリダイゼ ーシヨン、 それに続く 0. 1 XSSC、 0. 1 % S D S , 65°Cでの洗浄である。 これらの条件において、 温度を上げるほど高レ、相同性を有する D N Aが効率的に 得られることが期待できる。 ただし、 ハイブリダィゼーシヨンのストリンジェン シ一に影響する要素としては温度、 プローブ濃度、 プローブの長さ、 イオン強度、 時間、 塩濃度など複数の要素が考えられ、 当業者であればこれら要素を適宜選択 することで同様のストリンジエンシーを実現することが可能である。 “Low stringent conditions” suitable for the purposes of the present invention include, for example, 5 XSSC, 5 X Denhardt's solution, 0.5% SDS, 50% formamide, hybridization at 32 ° C, followed by 2XSSC, 0.1% SSC, washing at room temperature. “Medium stringent conditions” are, for example, 5 XSSC, 5 X Denhardt's solution, 0.5% SDS, 50% formamide, 42. Hybridization under C conditions, followed by 0.2XSSC, 0.1% SDS, 37 ° C washing. “High stringency conditions” include, for example, 5 XSSC, 5 X Denhanol solution, 0.5% SDS, 50% formamide, hybridization at 42 ° C, followed by 0.1 XSSC, 0.1% Wash with SDS at 65 ° C. Under these conditions, the higher the temperature, the higher the DNA with homology can be expected to be obtained efficiently. However, there are several factors that influence the stringency of hybridization, such as temperature, probe concentration, probe length, ionic strength, time, and salt concentration. It is possible to achieve the same stringency by appropriately selecting.
ポリヌクレオチドが配列番号: 3、 4、 7、 9または 11に記載の塩基配列と 相補的な塩基配列からなるポリヌクレオチドとストリンジヱントな条件下でハイ プリダイズし、 かつ植物の耐塩性を高める機能を有するタンパク質をコードする ポリヌクレオチドであるためには、 BLASTや FAS T A等の解析プログラム でデフォルト (初期設定) のパラメーターを用いて計算したときに、 配列番号: 3、 4、 7、 9または 11に記載の塩基配列と少なくとも 80 %以上、 好ましく は 90 %以上、 より好ましくは 93 %以上、 さらに好ましくは 95 %以上、 特に 好ましくは 97%以上、 最も好ましくは 98%以上の相同性を有する塩基配列を 有するポリヌクレオチドであることが望ましい。  The polynucleotide is hybridized with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence set forth in SEQ ID NO: 3, 4, 7, 9 or 11 under stringent conditions, and has a function of increasing plant salt tolerance. To be a polynucleotide that encodes a protein, it is described in SEQ ID NO: 3, 4, 7, 9 or 11 when calculated using the default (initial setting) parameters in an analysis program such as BLAST or FAS TA. At least 80% or more, preferably 90% or more, more preferably 93% or more, more preferably 95% or more, particularly preferably 97% or more, and most preferably 98% or more. It is desirable to have a polynucleotide.
本発明のポリヌクレオチドの核酸の種類としては DN Aまたは RN Aを挙げる ことができる。 また本発明のポリヌクレオチドは 1本鎖でも 2本鎖でもよく、 両 者が含まれる。  Examples of the nucleic acid of the polynucleotide of the present invention include DNA and RNA. The polynucleotide of the present invention may be single-stranded or double-stranded, and both are included.
本発明のポリヌクレオチドは、 例えば、 本発明のタンパク質 (例えば、 配列番 号: 1、 2、 6、 8または 10に記載のアミノ酸配列を有するタンパク質) をコ' ードする D N Aを有する適当な細胞または組織から調製した m R N Aを基に c D N Aを合成し、 これを; I ZAPなどのベクターに挿入して cDNAライブラリー を作成し、 これを展開して、 本発明のポリヌクレオチドを基にして調製したプロ ーブを用いてスクリーニングを行うことにより取得することができる。 また、 本 発明のタンパク質をコードするポリヌクレオチド (例えば、 配列番号: 3、 4、 7、 9または 1 1に記載の塩基配列を有するポリヌクレオチド) に特異的なブラ イマ一を作製し、 これを利用した P C Rを行うことにより取得することもできる, また、 配列情報を利用した P C R (M. J. McPherson et al., PCR, A practical Approach, Oxford University Press (1991)) によって、 c D NAをクローニン グすることもできる。 このような c D NAのクローユングには、 例えば、 R A C E (Rapid Amplification of cDNA ends) 法が用いられる。 The polynucleotide of the present invention is, for example, a suitable cell having DNA encoding the protein of the present invention (for example, a protein having the amino acid sequence described in SEQ ID NO: 1, 2, 6, 8 or 10). Alternatively, cDNA can be synthesized based on mRNA prepared from tissues and inserted into a vector such as I ZAP. This can be obtained by developing and developing and screening using a probe prepared based on the polynucleotide of the present invention. In addition, a primer specific to a polynucleotide encoding the protein of the present invention (for example, a polynucleotide having the base sequence described in SEQ ID NO: 3, 4, 7, 9, or 11) is prepared, and this is used. It can also be obtained by performing PCR, and cDNA is cloned by PCR using sequence information (MJ McPherson et al., PCR, A practical Approach, Oxford University Press (1991)). You can also. For such cDNA cloning, for example, the RACE (Rapid Amplification of cDNA ends) method is used.
得られた c D N Aの塩基配列は、 アプライ ドバイオシステムズ (Applied Biosystems) 社やアマシャム 'フアルマシア 'バイオテク社、 ライコア (LI- COR) 社製の D NAシークェンサ一 (アプライドバイオシステムズ社製 3 7 7 など) やジデォキシ法 (Sanger F. et al., Proc. Natl. Acad. Sci. USA 74, 5463 (1977)) により確認することができる。  The base sequence of the obtained cDNA is DNA sequencer (Applied Biosystems 3 7 7 etc.) manufactured by Applied Biosystems, Applied Biosystems, Amersham 'Falmasia' Biotech, and LI-COR ) And the dideoxy method (Sanger F. et al., Proc. Natl. Acad. Sci. USA 74, 5463 (1977)).
2 . 本発明の植物の形質転換用組換えベクター 2. Recombinant vector for plant transformation of the present invention
本発明の組換えベクターは、 本発明の上記 D NAを適当なベクターに揷入する ことによって作成することができる。 ベクターとじては、 pBluescript系のベタ ター、 pBI系のベクター、 pUC系のベクターなどが使用できる。  The recombinant vector of the present invention can be prepared by inserting the above DNA of the present invention into an appropriate vector. As a vector, a pBluescript type vector, a pBI type vector, a pUC type vector and the like can be used.
pBluescript系のベクター、 pBI系のベクターなどのバイナリーべクタ一は、 ァグロバタテリゥムを介して植物に目的の D NAを導入できるという点で好まし い。 pBluescript 系のベクターと しては、 例えば、 pBluescript SK (+)、 pBluescript SK、 、 pBluescript II KS(+)、 pBluescript II KS 、 pBluescript II SK (十)、 pBluescript II SK (-)などがあげられる。 pBI系のベクターとしては、 例えば、 pBI121、 pBI101、 pBI101.2, pBI101.3、 pBI221などがあげられる。 pUC系のベクターは、 植物に D NAを直接導入することができるという点で 好ましい。 ' ベクターは、 植物細胞内での恒常的な遺伝子発現を行うためのプロモーター (例えば、 カリフラワーモザイクウィルス (CaMV) の 35S プロモーター) を 有するベクターや、 外的な刺激 (例えば、 乾燥、 紫外線の照射、 塩ストレス) に より誘導的に活性化されるプロモーターを有していてもよい。 このようなプロモ 一ターとしては、 例えば、 乾燥によって誘導されるシロイヌナズナの rabl6遣 伝子のプロモーター (Nundy et al., Proc. Natl. Acad. Sci. USA 87, 1406 (1990)) 、 紫外線の照射によって誘導されるパセリのカルコン舍成酵素遺伝子の プロモーター (Sclmlze-Lefert et al" EMBO J. 8, 651 (1989)) 、 塩ストレスに よって誘導されるプロモーター (Shinozaki, K. and Yamaguchi-Shinozaki, K, Curr. Opin. Plant Biol. 3, 217-223 (2000)) などがあげられる。 Binary vector vectors such as pBluescript vectors and pBI vectors are preferred because the target DNA can be introduced into plants via agrobacterium. Examples of the pBluescript vector include pBluescript SK (+), pBluescript SK, pBluescript II KS (+), pBluescript II KS, pBluescript II SK (ten), and pBluescript II SK (-). Examples of pBI vectors include pBI121, pBI101, pBI101.2, pBI101.3, pBI221 and the like. A pUC vector is preferable in that DNA can be directly introduced into a plant. 'The vector contains a promoter for constitutive gene expression in plant cells (eg, the cauliflower mosaic virus (CaMV) 35S promoter). Or a promoter that is inducibly activated by an external stimulus (eg, drying, irradiation with ultraviolet rays, salt stress). Such promoters include, for example, the Arabidopsis rabl6 gene promoter induced by drying (Nundy et al., Proc. Natl. Acad. Sci. USA 87, 1406 (1990)), UV irradiation. The promoter of the parsley chalcone synthase gene induced by lysine (Sclmlze-Lefert et al "EMBO J. 8, 651 (1989)) and the promoter induced by salt stress (Shinozaki, K. and Yamaguchi-Shinozaki, K , Curr. Opin. Plant Biol. 3, 217-223 (2000)).
さちに、 本発明のベクターには、 必要に応じて、 プロモーター、 ェンハンサー. ターミネータ一、 ポリ A付加シグナルなどを連結してもよい。  Furthermore, a promoter, an enhancer, a terminator, a poly A addition signal, and the like may be linked to the vector of the present invention as necessary.
プロモーターとしては、 植物細胞において機能することができれば植物由来の ものでなくてもよい。 具体的には、 CaMV35Sプロモーター、 ノパリン合成酵素 遺伝子のプロモーター (Pnos) 、 トウモロコシ由来のュビキチンプロモーター. イネ由来のァクチンプロモーター、 タバコ由来の PRタンパク質プロモーターな どがあげられる。 さらに、 前述の外的な刺激により誘導的に活性ィ匕されるプロモ 一ターもあげられる。  The promoter does not have to be derived from a plant as long as it can function in plant cells. Specific examples include CaMV35S promoter, promoter of nopaline synthase gene (Pnos), ubiquitin promoter derived from maize, actin promoter derived from rice, and PR protein promoter derived from tobacco. Furthermore, there is a promoter that is activated inductively by the aforementioned external stimulus.
ェンハンサ一としては、 CaMV35Sプロモーター内の上流側の配列を含むェン ハンサー領域があげられる。  An example of an enhancer is an enhancer region containing an upstream sequence in the CaMV35S promoter.
ターミネータ一としては、 前述のプロモーターにより転写された遺伝子の転写 を終結できる配列であればよく、 具体的には、 ノパリン合成酵素遺伝子のターミ ネーター (Tnos) 、 CaMVポリ Aターミネータ一などがあげられる。  The terminator may be any sequence that can terminate the transcription of the gene transcribed by the above-mentioned promoter. Specific examples include nopaline synthase gene terminator (Tnos) and CaMV poly A terminator.
本発明の D NAをベクターに挿入するには、 まず、 精製された D NAを適当な 制限酵素で切断し、 適当なベクター D NAの制限酵素部位またはマルチクローニ ングサイトに揷入する方法などが用いられる。  In order to insert the DNA of the present invention into a vector, first, the purified DNA is cleaved with an appropriate restriction enzyme, and inserted into a restriction enzyme site or a multicloning site of an appropriate vector DNA. Used.
3 . 本発明の形質転換植物細胞およぴ形質転換植物体 ' 3. Transformed plant cell and transformed plant body of the present invention ''
本発明の形質転換植物細胞は、 本発明の組換えベクターを植物細胞に導入する' ことによって得ることができる。 組換えベクターの植物細胞への導入は、 従来公 知の方法、 例えば、 植物に感染するウィルスや細菌を介して導入する方法 (I. Potrylkus, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 205 (1991)) 、 外来The transformed plant cell of the present invention can be obtained by introducing the recombinant vector of the present invention into a plant cell. Recombinant vectors can be introduced into plant cells by methods known in the art, such as those introduced via viruses or bacteria that infect plants (I. Potrylkus, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 205 (1991))
D NAを直接導入する方法などがあげられる。 具体的には、 ァグロパクテリゥム 法、 パーティクルガン法、 P E G法、 エレクト口ポレーシヨン法などを用いるこ とができる。 これらの方法は、 例えば、 形質転換する宿主植物の種類などに応じ て適宜決定できる。 For example, direct introduction of DNA. Specifically, the agro-pacteria method, particle gun method, PEG method, electoral position method, etc. can be used. These methods can be appropriately determined depending on, for example, the type of host plant to be transformed.
植物に感染するウィルスとしては、 カリフラワーモザイクウィルス、 ジェミニ ウィルス、 タバコモザイクウィルス、 プロムモザイクウィルスなどが使用できる, 細菌としては、 ァグロバタテリゥム ·ッメファシエンス、 ァグロパクテリゥム · リゾジェネスなどが使用できる。  Cauliflower mosaic virus, gemini virus, tobacco mosaic virus, prom mosaic virus, etc. can be used as viruses that infect plants. .
ァグロパクテリゥムへのベクターの移行は、 エレクト口ポレーシヨン法によつ て行うことができる。  Transfer of the vector to the agglomerate can be done by the Elect Mouth Position method.
植物細胞に外来 D N Aを直接導入する方法としては、 例えば、 マイクロインジ ェクシヨン法、 エレクト口ポレーシヨン法、 ノ、。一テイクノレガン法、 ポリエチレン ダリコール法、 融合法、 高速パリスティックぺネトレーション法等の従来公知の 方法があげられる (L Potrykus, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 205 (1991)参照) 。 エレクトロポレーシヨン法は、 例えば、 プロトプラストの培 養が安定かつ容易であり、 再生が容易な植物細胞に適用することが好ましい。 ま た、 パーティクルガン法は、 宿主の限定を受けないため、 例えば、 ァグロバクテ リゥムに感染し難い植物細胞や、 プロトプラストの調製が困難な植物細胞に適用 することが好ましい。 なお、 このようにエレクト口ポレーシヨン法を行う場合、 前記組換えベクターを構成するベクターとしては、 例えば、 pUC18、 pUC19、 pBR322、 pBR325、 pBluescript 等が好ましい。 単子葉植物の多くゃァグロバ クテリゥムの感染しにくい双子葉植物に対しては、 D N A導入法として汎用され ているァグロパクテリゥムを用いた間接導入法が使用できないため、 これらの直 接導入法が有効である。  Examples of methods for directly introducing exogenous DNA into plant cells include the microinjection method, the electoral position method, and the like. One known method such as the Takenoregan method, the polyethylene Daricol method, the fusion method, and the high-speed paristic penetration method (see L Potrykus, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 205 (1991)). ) The electroporation method is preferably applied, for example, to plant cells in which protoplast culture is stable and easy and can be easily regenerated. In addition, since the particle gun method is not limited to the host, it is preferably applied to, for example, plant cells that are difficult to infect agrobacterium and plant cells that are difficult to prepare protoplasts. In addition, when the electopore position method is performed in this way, as a vector constituting the recombinant vector, for example, pUC18, pUC19, pBR322, pBR325, pBluescript and the like are preferable. Since many monocotyledonous plants are not susceptible to infection by agrobacterium, the indirect introduction method using agrobacterium, which is widely used as a DNA introduction method, cannot be used. Is effective.
次に、 本発明のベクターを導入したァグロバタテリゥム等から植物へ T一 D N Aを導入して、 植物の形質転換を行う。 例えば、 上述のようにしてベクターを導 入したァグロパクテリウム株を植物細胞のカルスまたは組織片と数分間程度共存 させた後、 2N6— ASまたは N6CO などの培地中で、 25〜28°Cで 3 日間程度共 存培養する。 ここで共存培養する植物としては、 共存培養の難易度に差があるも のの種子植物が用いられる。 特に、 これまで形質転換の困難であった単子葉作物、 すなわち、 イネ、 コムギ、 ォォムギ、 トウモロコシ、 シバなど、 さらに樹木 (ポ ブラやユーカリなど) なども対象となり得る。 Next, T1 DNA is introduced into the plant from agrobacterium, etc. into which the vector of the present invention has been introduced, and the plant is transformed. For example, after agrobacterium having introduced a vector as described above was allowed to coexist for several minutes with callus or tissue pieces of plant cells, in a medium such as 2N6-AS or N6CO, 25-28 ° C for about 3 days Incubate. Here, seed plants having different levels of difficulty in co-cultivation are used. In particular, monocotyledonous crops that have been difficult to transform until now, such as rice, wheat, barley, corn, and buckwheat, and trees (such as poplar and eucalyptus) can also be targeted.
上記のァグロパクテリゥムとの共存培養の後、 カルスまたは組織片は、 適当な 抗生物質を含む培地で選択培養を行う。 例えば、 ベクターに選択マーカーとして ハイグロマイシン耐性遺伝子を導入した場合には、 ハイグロマイシン (10〜: 100 After co-cultivation with the above agrobacterium, calli or tissue pieces are selectively cultured in a medium containing an appropriate antibiotic. For example, when a hygromycin resistance gene is introduced into a vector as a selectable marker, hygromycin (10 to: 100
IX g/mL) とァグロパクテリクム除去のためのセフオタキシム (25 g/mL) また はカルペニシリン (500/i g/inL) とを含む 2N6— CHまたは N6Se培地を用い て、 1〜3週間選択培養を行うことにより、 形質転換したカルス体を選択的に得 ることができる。 選択的に得たカルス体を、 N6S3—CH、 MSreなどの適当な再 分化培地を用いて再分化を誘導し、 再分化個体を得る。 以上のようにして、 本発 明のベクターを用いて D N A断片を植物に導入し形質転換することができる。 組換え個体の選抜は、 マーカー遺伝子で抗生物質耐性遺伝子. (例えば、 ハイグ ロマイシン遺伝子) の発現を調べることによって行うことができる。 また、 得ら れた形質転換植物細胞および形質転換植物体の染色体 D N Aをそれぞれ調製し、 例えば、 目的 D N A配列に特異的なプライマーやプローブを用いた P C Rゃサザ ンブロッテイング法等により、 前記目的 D N Aの発現が確認されれば、 所望の形 質転 物細胞おょぴ形質転換植物体が得られたこととなる。 IX g / mL) and 2N6-CH or N6Se medium containing cefotaxime (25 g / mL) or carpenicillin (500 / ig / inL) for agropactericum removal for 1-3 weeks By performing selective culture, transformed callus bodies can be selectively obtained. The callus body obtained selectively is induced to re-differentiate using an appropriate re-differentiation medium such as N6S3-CH or MSre to obtain re-differentiated individuals. As described above, a DNA fragment can be introduced into a plant and transformed using the vector of the present invention. Recombinant individuals can be selected by examining the expression of an antibiotic resistance gene (eg, a hygromycin gene) using a marker gene. In addition, chromosomal DNAs of the obtained transformed plant cells and transformed plant bodies are respectively prepared, for example, by PCR or Southern blotting using a primer or probe specific to the target DNA sequence. If the expression of DNA is confirmed, the desired transformed cells and transformed plants are obtained.
形質転 m¾物体が得られれば、 その植物体から有性生殖または無性生殖により 子孫を得ることができ、 公知の方法によりクローンを得ることもできる。 また、 その植物体、 その子孫もしくはクローンから、 さらに子孫もしくはクローンを得 ることもできる。  If a transformed m 3 object is obtained, offspring can be obtained from the plant body by sexual reproduction or asexual reproduction, and clones can also be obtained by known methods. In addition, further progeny or clones can be obtained from the plant body, its progeny or clone.
本発明のベクターまたはポリヌクレオチドが導入されることで形質転換される 植物としては、 特に制限はなく、.例えば、 農作物、 観賞用植物などをあげること ができる。 農作物としては、 例えば、 イネ、 トウモロコシ、 コムギ、 ォォムギ、 ダイズ、 トマト、 ミカン、 リンゴ、 イチゴ、 ヮタ、 タバコ、 コーヒーノキ、 チヤ、 ナタネ、 ジャガイモ、 テンサイ、 サトウキビ、 ヒマヮリ、 ゴムノキなどがあげら れる。 観賞用植物としては、 例えば、 キク、 カーネーション、 パラ、 シクラメン、 カトレア、 ペチュニア、 チューリップ、 ガーベラなどがあげられる。 The plant transformed by introducing the vector or polynucleotide of the present invention is not particularly limited, and examples thereof include crops and ornamental plants. Examples of crops include rice, corn, wheat, barley, soybeans, tomatoes, mandarin oranges, apples, strawberries, strawberries, tobacco, coffee trees, chiya, rapeseed, potatoes, sugar beets, sugar cane, sunflower seeds, and rubber trees. Ornamental plants include chrysanthemum, carnation, para, cyclamen, Cattleya, petunia, tulips, gerberas and so on.
本発明において、 「耐塩性を高める」 とは、 例えば、 植物細胞または植物体を、 In the present invention, “increasing salt tolerance” means, for example, a plant cell or plant,
0 . 2 MN a C 1を含む培地で 3週間培養または育成した場合に、 形質転換して いない植物細胞または植物体と比較して、 カルスまたは植物体の総重量、 根の伸 長、 葉の総面積もしくは枚数などがより大きい力、 または Zおよび、 葉 (双葉、 本葉など) の白色化が抑制されているなど、 塩ストレス下での生育を向上させる ことを意味する。 - 塩ストレスに用いられる塩類、 その濃度、 育成期間などの塩ストレスの条件は、 用いられる植物の種類などに応じて適宜設定することができる。 塩ストレスに用 いる塩類としては、 例えば、 塩ィ匕カリウム、 塩ィ匕ナトリゥムなどがあげられ、 塩 化ナトリウムが好ましい。 塩濃度としては、 例えば、 0 . 0 1〜2 M、 好ましく ほ 0 . 0 5〜1 M、 より好ましくは 0 . 1〜0 . 5 M、 特に好ましくは 0 . 2〜 0 . 3 Mである。 塩ストレスを付す期間としては、 例えば、 1時間〜 1 0週間、 好ましくは 2時間〜 8週間、 より好ましくは 1日〜 4週間、 特に好ましくは 1週 間〜 3週間である。 When compared to non-transformed plant cells or plants, the total weight of callus or plant, root elongation, leaf It means that the growth under salt stress is improved, such as the force with larger total area or number of sheets, or the suppression of whitening of Z and leaves (foliage, true leaves, etc.). -Salt stress conditions such as the salt used for salt stress, its concentration, and growing period can be appropriately set according to the type of plant used. Examples of salts used for salt stress include salt potassium and salt sodium, with sodium chloride being preferred. The salt concentration is, for example, 0.1 to 2 M, preferably about 0.05 to 1 M, more preferably 0.1 to 0.5 M, and particularly preferably 0.2 to 0.3 M. . The period for applying salt stress is, for example, 1 hour to 10 weeks, preferably 2 hours to 8 weeks, more preferably 1 day to 4 weeks, and particularly preferably 1 week to 3 weeks.
なお、 本発明において、 詳細な実験操作は、 特に述べる場合を除き、 モレキュ ラー · クロー -ング第 3版、 Augbel F M. et al., Current Protocols in Molecular Biology, Supplement 1~38, John Wiley and Sons (1987.1997)、 Glover D. M. and Hames B. D., DNA Cloning 1: Core Techniques, A practical Approach, Second Edition, Oxford University Press (1995)等の実験書に記載さ れている方法などの公知の方法により、 または市販のキットの取扱い説明書に記 載の方法により行うことができる。 実施例 In the present invention, unless otherwise specified, detailed experimental procedures are described in Molecular Cloning 3rd Edition, Augbel F M. et al., Current Protocols in Molecular Biology, Supplement 1-38 , John Wiley and Sons (1987.1997), Glover DM and Hames BD, DNA Cloning 1: Core Techniques, A practical Approach, Second Edition, Oxford University Press (1995), etc. This can be done by the method described in the instruction manual of the commercially available kit. Example
以下、 本発明を実施例に基づいてより具体的に説明する。 なお、 本発明はこれ . らの実施例に限定されるものではない。  Hereinafter, the present invention will be described more specifically based on examples. The present invention is not limited to these examples.
まず、 本発明で用いた材料、 実験方法について説明する。 -  First, the materials and experimental methods used in the present invention will be described. -
1 . 植物材料 1. Plant material
本研究ではシロイヌナズナ野生型系統 Columbia (Col) および当研究室におい て保存 ·継代されてきたシロイヌナズナを用いた。 2-1-6系統形質転換植物は当 研究室で作成されたもので、 光合成遺伝子 RBCS-3Bプロモータ一制御下に β - ダルクロニダーゼ (GUS)遺伝子 (uidA) およびクロロフィル 結合タンパク 質遺伝子 CAB1 プロモーター制御下にルシフヱラーゼ遺伝子を持つコンストラ タトと、 RBCS-3Bプロモータ一制御下にハイグロマイシン耐性遺伝子 ( iph) および CAB1 プロモーター制御下にビアラフォス耐性遺伝子 Cbar) を持つコン ストラクトがァグロパクテリゥム法によって野生型系統 Col に導入されている, 変異体植物は 2-1-6系統由来の、 Pst2(63)を用いた。 2. 生育条件 In this study, we used the Arabidopsis wild-type strain Columbia (Col) and our laboratory. Preservation · Used Arabidopsis thaliana. 2-1-6 transgenic plants were created in our laboratory. Under the control of the photosynthetic gene RBCS-3B promoter, the β-dalcronidase (GUS) gene (uidA) and the chlorophyll-binding protein gene CAB1 are under the control of the promoter. A wild-type strain using the agro-pacterium method has a construct having a luciferase gene in the RBCS-3B promoter and a hygromycin resistance gene (iph) under the control of the RBCS-3B promoter and a bialaphos resistance gene Cbar under the control of the CAB1 promoter. P st2 (63) derived from the 2-1-6 line was used as the mutant plant introduced into Col. 2. Growth conditions
人工気象機 (Biotron NC220、 Nksystem) を用い、 22°C、 湿度 40-60%、 照度 3,000— 5,000 lux の連続白色光条件下で、 3週間生育させた。 塩ストレスを付す 場合は、 0.2 M NaClを添加した培地に移植し、 同条件下で培養した。 3 . 種子の滅菌、 播種  Using an artificial weather machine (Biotron NC220, Nksystem), they were grown for 3 weeks under continuous white light conditions of 22 ° C, humidity 40-60%, and illuminance 3,000-5,000 lux. When salt stress was applied, the cells were transferred to a medium supplemented with 0.2 M NaCl and cultured under the same conditions. 3. Seed sterilization and sowing
1.5-mLチューブに種子を分注し、 70%エタノール 1 mL .を加え、 1分間振 ¾し た。 遠心し、 上清を捨て、 滅菌溶液(0.25%次亜塩素酸、 0.1%Tween 20) 1 mLを 加えて、 10-15分振塗した。 クリーンベンチ内で軽く遠心し、 上清を捨て、 1 mL 超純水を加えてリンスした。 リンスを 5回繰り返し、 1 mL超純水を加えた状態 でアルミホイルに包み、 4°Cで約 1 週間春化処理を行った。 再ぴ、 クリーンベン チ内で軽く遠心し、 上清を捨て、 別にオートクレープ処理(121°C、 20分) した 0.3% ァガロース溶液 1 mLに懸濁した。 オートピぺットのチップにとり、 別に オートクレープ処理(121°C、 20分) したろ紙を培地上に敷いたシャーレに播種 した。  Seeds were dispensed into a 1.5-mL tube, 1 mL of 70% ethanol was added, and the mixture was shaken for 1 minute. Centrifuge, discard the supernatant, add 1 mL of sterile solution (0.25% hypochlorous acid, 0.1% Tween 20) and shake for 10-15 minutes. Centrifuge lightly in a clean bench, discard the supernatant, and rinse with 1 mL ultrapure water. Rinse was repeated 5 times, and 1 mL of ultrapure water was added, wrapped in aluminum foil, and springed at 4 ° C for about 1 week. The sample was centrifuged briefly in a clean bench, the supernatant was discarded, and it was suspended in 1 mL of 0.3% agarose solution that had been autoclaved (121 ° C, 20 minutes). A filter paper that had been autoclaved (121 ° C, 20 minutes) was seeded on a petri dish that had been spread on the medium.
4. ^菌培地の調製 4. Preparation of fungal medium
( 1 ) ミネラル培地  (1) Mineral medium
以下の組成を含む。 5.0 mM KNO3、 2.5 mM K2HP04-H3P04 ( H 5.5), 50 mM Fe- EDTA、 2.0 mM MgS04 . 7H20、 microelements [70 mM H3B04、 14 mM MnCl2 · 4H20、 0.5 mM CuS04 · 5¾0、 1 mM ZnS04 · 7H20、 0.2 mM Na2Mo04 · 2¾0、 lO mM NaCl, 0.01 mM CoCl2 · 6¾0]、 0.1 mM Ca(N03)2、 0.3% Gelrite0 培地溶液 を調製後オートクレープ処理(121°C、 20分) し、 約 50°C程度まで冷やしてから シャーレに分注した。 ただし、 Ca(N03)2は別にオートクレープ処理(121°C、 20 分) し、 分注前に加えた。 また、 200 mM NaClを添加する場合は上記培地組成に 11.69 g NaCl/1 Lの割合で加えた。 The following composition is included. 5.0 mM KNO 3, 2.5 mM K 2 HP0 4 -H 3 P0 4 (H 5.5), 50 mM Fe- EDTA, 2.0 mM MgS0 4. 7H 2 0, microelements [70 mM H 3 B0 4, 14 mM MnCl 2 · 4H 2 0, 0.5 mM CuS0 4 5¾0, 1 mM ZnS0 4 7H 2 0, 0.2 mM Na 2 Mo0 4 2¾0, lO mM NaCl, 0.01 mM CoCl 2 · 6¾0], 0.1 mM Ca (N0 3 ) 2 , 0.3% Gelrite 0 medium solution is prepared, then autoclaved (121 ° C, 20 minutes) and cooled to about 50 ° C Then dispensed into petri dishes. However, Ca (N0 3 ) 2 was autoclaved separately (121 ° C, 20 minutes) and added before dispensing. When 200 mM NaCl was added, 11.69 g NaCl / 1 L was added to the above medium composition.
( 2 ) Murashige Skoog培地 (MS培地)  (2) Murashige Skoog medium (MS medium)
超純水 1L中に以下の組成を含む(2N KOHで pH 6.3に調製)。 培地溶液を調製 後オートクレーブ処理(121°C、 20分) し、 約 50°C程度まで冷やしてからシヤー レに分注した。  The following composition is contained in 1L of ultrapure water (prepared to pH 6.3 with 2N KOH). After the medium solution was prepared, it was autoclaved (121 ° C, 20 minutes), cooled to about 50 ° C, and dispensed into a shear.
Murashige Skoog培地用混合塩類 4.3 g Mixed salt for Murashige Skoog medium 4.3 g
Sucrose 20 g  Sucrose 20 g
1000 Xビタミンストック 1 mL
Figure imgf000020_0001
1000 X vitamin stock 1 mL
Figure imgf000020_0001
2.4 m pyndoxine hydrochloride  2.4 m pyndoxine hydrochloride
Gelrite  Gelrite
( 3 ) 1^培地 (3) 1 ^ Medium
超純水 1L 中に以下の組成を含む。 培地溶液を調整後オートクレープ処理 (121°C、 20分間) した。 固形培地の場合は、 培地溶液に Bacto-agaxを 1.5%加 え、 オートクレープ処理後、 約 50°Cまで冷ましてからシャーレに分注した。  The following composition is contained in 1L of ultrapure water. The medium solution was adjusted and autoclaved (121 ° C, 20 minutes). In the case of a solid medium, 1.5% Bacto-agax was added to the medium solution, and after autoclaving, the solution was cooled to about 50 ° C and then dispensed into a petri dish.
Bacto-Peptone 10 g Bacto-Peptone 10 g
Bacto- Yeast extract 5 g  Bacto- Yeast extract 5 g
NaCl 10 g  NaCl 10 g
5 . オリゴマイクロアレイ 5. Oligo microarray
( 1 ) RNA精製'螢光標識  (1) RNA purification 'fluorescent labeling
RNeasy Plant Mini Kit (Qiagen) を用いて精製した RNA 20 を Agilent Fluorescent Direct Label Kit (Agilent Technologies) を用いて螢光標識した。  RNA 20 purified using RNeasy Plant Mini Kit (Qiagen) was fluorescently labeled using Agilent Fluorescent Direct Label Kit (Agilent Technologies).
( 2 ) ハイブリダィゼーションぉよぴデータ処理  (2) Hybridization ぉ yopi data processing
Agilent Araoiaopsis 1 icroarray Kit (Agilent Technologies) を用い、 標準 y口ト コールに従い行った。 データの取り込みは、 Agilent DNA Microarray Scanner (Agilent Technologies) を用い、 シグナノレの数値ィ匕には Feature Extraction (Agilent Technologies) を用いた。 その後の解析には Excel (Microsoft) を使用した。 An Agilent Araoiaopsis 1 icroarray Kit (Agilent Technologies) was used and followed the standard y-mouth protocol. Data acquisition is performed using the Agilent DNA Microarray Scanner. (Agilent Technologies) was used, and Feature Extraction (Agilent Technologies) was used for the numerical value of Signanore. Excel (Microsoft) was used for the subsequent analysis.
6 . R A C E 6. R A C E
SMART™ RACE cDNA Amplification Kit (Clontech) を用い、 標準プロトコール に従って、 プライマーの設計、 cDNAの調整および RACE PCRを行った。  Using the SMART ™ RACE cDNA Amplification Kit (Clontech), primer design, cDNA preparation and RACE PCR were performed according to standard protocols.
( 1 ) TAクローニング  (1) TA cloning
RACE PGR産物を、 pGEM-T (Promega)ベクターを用いて、 Compitent High JM109 (Toyobo) をホスト大腸菌とし、 pGEM-T Vector Systemの標準プロトコ一 ルに従いライゲーシヨン、 形質転換を行った。  The RACE PGR product was ligated and transformed using the pGEM-T (Promega) vector with Compitent High JM109 (Toyobo) as the host E. coli according to the standard protocol of the pGEM-T Vector System.
( 2 ) コロニー PCR  (2) Colony PCR
正しくクローニングできたかどうか確認するため、 コロニー PCR を行った。 DNAポリメラーゼに TaKaRa Ex Taq™ Hot Start Version (Takara) を使用して、 94°C 5分→ (94°C 15 sec, 55°C 15sec、 72°C 30 sec) X 35 cycle→ 72°C 5分 の温度条件を基本とし、 プライマーと目的産物の大きさに合わせて PCR させた c ァガロースゲル電気泳動を行って産物の大きさを確認した。 Colony PCR was performed to confirm whether cloning was successful. Using TaKaRa Ex Taq ™ Hot Start Version (Takara) with DNA polymerase, 94 ° C 5 min → (94 ° C 15 sec, 55 ° C 15 sec, 72 ° C 30 sec) X 35 cycle → 72 ° C 5 Based on the temperature conditions of the samples, c- agarose gel electrophoresis was performed by PCR according to the size of the primer and target product, and the size of the product was confirmed.
( 3 ) プラスミド回収  (3) Plasmid recovery
形質転換を行った大腸菌を、 50 mg/mL のアンピシリンを含む LB液体培地で 約 150 rpm 37°C、 14時間しんとう培養を行った。 培養液を 1.5 mLのチューブに 移し、 6,000 rpm 4°C 3 分間遠心した。 上清を除き、 ペレットを 200 の Solution Iでピペッティングし懸濁した。 300 \xLの Solution Πを加え 2~3回穏ゃ かに倒置し、 氷上で 10分間静置した。 300 iL の Solutionsを加え 2~3回穏やか に倒置し、 氷上で 10分間静置した。 15,000 rpm 4°C 10分遠心し、 上清を回収し た。 1 μΐ:の 1 mg/mL RNase Aを加え 37°C、 20分以上静置した。 200 のクロ 口ホルムを加え激しく攪拌し、 15,000 rpm 4°C 10分間遠心し、 上層 (水層) を回 収した (2回行った)。 等量のイソプロパノールを加え激しく攪拌し、 15,000 rpm 4°C 10分遠心し、 上清を除きペレツトを 600 x の 70%エタノールで洗浄した c 15,000 rpm 4°C 10分間遠心し、 上清を除きドライアップじた。 10~20 μΐの ΤΕ もしくは超純水にて溶解し、 プラスミド溶液と.した。 Solution I (超純水 1L中)
Figure imgf000022_0001
Solutionll (使用時調整:超純水で目的量を調製)
The transformed Escherichia coli was cultured in an LB liquid medium containing 50 mg / mL ampicillin at about 150 rpm at 37 ° C for 14 hours. The culture was transferred to a 1.5 mL tube and centrifuged at 6,000 rpm for 4 minutes at 4 ° C. The supernatant was removed, and the pellet was suspended by pipetting with 200 Solution I. Add 300 xL of Solution Π and gently invert 2 to 3 times and let stand on ice for 10 minutes. 300 iL of Solution was added and gently inverted 2 to 3 times and allowed to stand on ice for 10 minutes. Centrifugation was performed at 15,000 rpm at 4 ° C for 10 minutes, and the supernatant was collected. 1 μΐ: 1 mg / mL RNase A was added and allowed to stand at 37 ° C for 20 minutes or longer. 200 chloroform was added, and the mixture was vigorously stirred and centrifuged at 15,000 rpm at 4 ° C for 10 minutes, and the upper layer (aqueous layer) was collected (performed twice). Stirred vigorously adding an equal volume of isopropanol, 15,000 rpm 4 ° C for 10 minutes centrifugation, the Peretsuto remove the supernatant was centrifuged washed c 15,000 rpm 4 ° C 10 minutes with 70% ethanol 600 x, the supernatant was removed Dry up. Dissolve in 10-20 μΐ or ultrapure water to make a plasmid solution. Solution I (in 1L of ultrapure water)
Figure imgf000022_0001
Solutionll (Adjustment at the time of use: Prepare the target amount with ultrapure water)
2NNaOH (使用時調整) 1/5倍容  2NNaOH (Adjustment when using) 1/5 volume
10% SDS 1/10倍  10% SDS 1/10 times
SolutionlE (超純水 1 L中) SolutionlE (in 1 L of ultrapure water)
酢酸カリウム 29.44 g  Potassium acetate 29.44 g
酢酸 11.5 mL  Acetic acid 11.5 mL
調整後オートクレーブ処理(121°C、 20分間) した。 (4) 制限酵素処理 After adjustment, it was autoclaved (121 ° C, 20 minutes). (4) Restriction enzyme treatment
回収したプラスミド溶液を、 正しいコンストラクトの確認ができるような制限 酵素を用いて、 消化を行った。 処理後、 ァガロースゲル電気泳動を行った。  The recovered plasmid solution was digested with a restriction enzyme that can confirm the correct construct. After the treatment, agarose gel electrophoresis was performed.
(5) DNAシークェンス  (5) DNA sequence
回収したプラスミ ドをテンプレートとし、 DYEnamic™ Terminator Cycle Sequence Kit (Amercham Biosciences) ¾·用い、 反 L、液は 20 (テンプレート 1 μΐ^ プライマー各 10 pmol、 プレミックス 8 L、 超純水で 20 μΙ、 反応条件は 94°C 20秒→ (95°C 20秒、 50°C 15 秒、 60°C 1 分) X 30 cycle, PCR を行った。 PCR産物を Autoseq G-50 (Amersham Biosciences) を用レヽ標準プロトコールに従レヽ サンプルの精製を行つた。 ABI PRISM™ 310 GeneticAnalyzer (ABI) により泳動、 解析を行った。  Using the collected plasmid as a template, use DYEnamic ™ Terminator Cycle Sequence Kit (Amercham Biosciences) ¾, anti-L, solution 20 (10 μmol of template 1 μΐ ^ each primer, 8 L premix, 20 μΙ with ultrapure water, Reaction conditions were 94 ° C for 20 seconds → (95 ° C for 20 seconds, 50 ° C for 15 seconds, 60 ° C for 1 minute) X 30 cycle, PCR was performed using Autoseq G-50 (Amersham Biosciences) The sample was purified according to the label standard protocol, and run and analyzed with ABI PRISM ™ 310 Genetic Analyzer (ABI).
7. リアルタイム RT— PCR 7. Real-time RT—PCR
(1) R A精製おょぴ DNase I処理  (1) R A purified opi DNase I treatment
植物個体(約 O.l g) を液体窒素で凍らせ、 乳鉢で破薛したものを新しいチュー ブに移した。 あらかじめ 50°Cにィンキュベートしておいた 1 mL Isogen ίニッポ ンジーン) を加え、 激しくポルテックスした。 50°Cで 10分間インキュベートし、 その後、 室温で 5分間静置した。 0.2 mL クロ口ホルムを加え、 ボルテックスし、 室温で 2分間静置した。 15,000 rpm (15,000 Xg) で 15分間 (4°C)遠心し、 上層 (水層) を回収して新しいチューブに移した。 0.2 mL クロ口ホルムを加え、 1 分 間激しく混合し、 12,000 rpm (10,000 Xg) で 5分間 (4°C)遠心し、 上層 (水層) を回収した。 このクロ口ホルム処理を中間層のタンパクがなくなるまで繰り返し た。 上層 (水層) に 0.5 mLイソプロパノールを加え、 5 分間軽く混和した。 15,000 rpm (15,000 X^) で 15分間 (4°C)遠心し、 上清を捨てて、 沈殿を風乾した。 沈殿を 0.1 mL RNase-free waterに溶解し、 10 μ∑ 3Μ酢酸ナトリウムを加え混合し た。 氷上で 20分間静置し、 15,000 rpm (15,000 Xg) で 15分間 (4°C)遠心した。 上清を回収し、 0.25 mLエタノールを加えて、 一 70°Cで: 1時間インキュベートし た。 15,000 rpm (15,000 X^) で 10分間 (4°C)遠心し、 上清を捨て 1 mL70%エタ ノーノレを加えて、 リンスした。 15,000 rpm (15,000 Xg) で 5分間 (4°C)遠心し、 上清を捨て、 沈殿を風乾した。 沈殿を 20 μ RNase-free water に溶解した。 RNase-free Deoxyribonuclease I (Takara) を用い、 標準プトロコールに従って 37°C で 30分間反応させた。 クロ口ホルム処理を中間層のタンパクがなくなるまで繰 ^返し、 エタノール沈殿で全 RNAを回収した。 Plant plants (about Ol g) were frozen in liquid nitrogen, and the ruptured mortar was transferred to a new tube. 1 mL Isogen ί Nippon which has been incubated at 50 ° C in advance NJ) was added, and violently portexed. Incubated at 50 ° C for 10 minutes, and then allowed to stand at room temperature for 5 minutes. 0.2 mL black mouth form was added, vortexed, and allowed to stand at room temperature for 2 minutes. The mixture was centrifuged at 15,000 rpm (15,000 Xg) for 15 minutes (4 ° C), and the upper layer (aqueous layer) was collected and transferred to a new tube. 0.2 mL of black mouth form was added, mixed vigorously for 1 minute, and centrifuged at 12,000 rpm (10,000 Xg) for 5 minutes (4 ° C) to recover the upper layer (aqueous layer). This black mouth form treatment was repeated until there was no protein in the intermediate layer. 0.5 mL isopropanol was added to the upper layer (aqueous layer), and lightly mixed for 5 minutes. The mixture was centrifuged at 15,000 rpm (15,000 X ^) for 15 minutes (4 ° C), the supernatant was discarded, and the precipitate was air-dried. The precipitate was dissolved in 0.1 mL RNase-free water and mixed with 10 μ∑ 3Μ sodium acetate. The plate was allowed to stand on ice for 20 minutes, and centrifuged at 15,000 rpm (15,000 Xg) for 15 minutes (4 ° C). The supernatant was collected and added with 0.25 mL ethanol and incubated at 70 ° C: 1 hour. The mixture was centrifuged at 15,000 rpm (15,000 X ^) for 10 minutes (4 ° C), the supernatant was discarded, and 1 mL 70% ethanol was added to rinse. The mixture was centrifuged at 15,000 rpm (15,000 Xg) for 5 minutes (4 ° C), the supernatant was discarded, and the precipitate was air-dried. The precipitate was dissolved in 20 μ RNase-free water. RNase-free Deoxyribonuclease I (Takara) was used and reacted at 37 ° C for 30 minutes according to standard protocol. The black mouth form treatment was repeated until the protein in the intermediate layer disappeared, and total RNA was recovered by ethanol precipitation.
( 2 ) cDNA合成およぴ検量線用テンプレートめ調製  (2) Preparation of template for cDNA synthesis and calibration curve
cDNAは 1st Strand cDNA Synthesis Kit for RT-PCR (AMV) (Roche) を用い、 標準 プロトコールに従って調製した。 検量線用テンプレートは、 Superscript™ One- Step RT-PCR with Platinum Taq (Life Technologies) を用いて、 ァガロースゲノレで泳 動後、 ゲルを切り出して、 Quantum Prep™ Freeze 'N Squeeze DNA Gel Extraction Spin Column (Bio-Rad)を用いて精製した。  cDNA was prepared using 1st Strand cDNA Synthesis Kit for RT-PCR (AMV) (Roche) according to the standard protocol. The template for the standard curve was Superscript ™ One-Step RT-PCR with Platinum Taq (Life Technologies), swimming with agarose genole, cutting out the gel, and Quantum Prep ™ Freeze 'N Squeeze DNA Gel Extraction Spin Column (Bio -Rad).
( 3 ) 測定  (3) Measurement
測定する遺伝子に対して特異性が高く、 かつゲノム DNAのコンタミネーショ ンを確認するためにイントロンを挟むように 22— 25 mer のプライマーを設計し た。 試薬は LightCycler-FastStart DNA Master SYBR Green I (Roche) を用い、 標準 プロトコールに従って、 Light-Cycler (Roche) を使つてリアルタィム RT-PCRを行 つた。 測定値はァクチン 2遺伝子 (^Τ2) を内部標準として、 補正した。 8 . 植物形質転換 A 22-25mer primer was designed to sandwich the intron in order to confirm the contamination of the genomic DNA with high specificity to the gene to be measured. The reagent was LightCycler-FastStart DNA Master SYBR Green I (Roche), and real-time RT-PCR was performed using Light-Cycler (Roche) according to the standard protocol. The measured values were corrected using the actin 2 gene (^ Τ2) as an internal standard. 8. Plant transformation
( 1 ) バイナリーベクターの構築  (1) Construction of binary vector
フォワー ドプライマーに制限酵素 αΐ サィ トを付加 (プライマー (ix) (bHLH19-Nf Fw 「5'- ATT ATT TCT AGA CGA TCG TTT CCC ATG GAT GAA GAT TTT TTC TTA CCC GAT TTC TCA CTA G-3' (配列番号: 1 4 ) 」 ) 、 リバースプ ライマーに Sa サイトを付カ卩したもの (プライマー (X) (HLH19-Cr Rv 「5'-ACT AAA ACT CGA GAG AAG ACC TAA ACC ATT GCG AGT CTC AGG-3' (配列番 号: 1 5 ) 」 ) を設計した。 プライマー (ix)と (X)の組み合わせで、 通常の開始コ ドンと終止コドンを含んだ長鎖の断片を増幅させた。 ストレス条件サンプルには Salt-foilを、 非ストレス条件のサンプルには Normal-foilをテンプレートとして増 幅させた。  Add restriction enzyme αΐ site to forward primer (Primer (ix) (bHLH19-Nf Fw “5'-ATT ATT TCT AGA CGA TCG TTT CCC ATG GAT GAA GAT TTT TTC TTA CCC GAT TTC TCA CTA G-3 '( SEQ ID NO: 14))) Reverse primer with Sa site (Primer (X) (HLH19-Cr Rv “5'-ACT AAA ACT CGA GAG AAG ACC TAA ACC ATT GCG AGT CTC AGG-3 '(SEQ ID NO: 15)))) A long fragment containing the normal start codon and stop codon was amplified with a combination of primers (ix) and (X) Stress condition sample Salt-foil was amplified as a template, and Normal-foil was amplified as a template for non-stressed samples.
それぞれのィンサートをまず pBluescriptn SK(+) (二ツボンジーン)ベクターの EcoRIサイトへサブクローニングし、 コロニー PCR、 プラスミ ド回収、 制限酵素 処理及び DNAシークェンスにより確認を行つた。 その後、 上記プラスミ ドぉよ ぴ pSMAB701ベクターを、 それぞれ制限酵素 SacVXbalで処理し、 ァガロースゲ ルで電気泳動後、 目的のバンドをゲルから切り出して、 Quantum Prep™ Freeze'N Squeeze DNA Gel Extraction Spin Columns (BIO-RAD) を用いて精製した。 Ligation Pack (二ツボンジーン) を用いて、 標準プロトコールに従ってライゲーシヨンし、 Compitent high JM109 (Toyobo) を用い標準プロトコールに従い形質転換を行つた。 ィンサートは pSMAB701ベタター上の XbaVSaclサイトで切断される GUSの コード領域へ揷入した (図 6 )。 pSMAB701 に含まれる薬剤マーカーであるスぺ クチノマイシン 100 mg/mL を含む LB 固形培地で、 生育してきたコロニーを形 質転換候補株として回収した。 コロニー PCR で選抜後、 プラスミ ド回収、 制限 酵素処理、 DNA シークェンスを行い、 バイナリーベクター構築の最終的な確認 を行った。  Each insert was first subcloned into the EcoRI site of the pBluescriptn SK (+) (Nibonbon gene) vector, and confirmed by colony PCR, plasmid recovery, restriction enzyme treatment, and DNA sequencing. Thereafter, each of the above plasmids pSMAB701 vector was treated with the restriction enzyme SacVXbal, electrophoresed with agarose gel, the target band was excised from the gel, and Quantum Prep ™ Freeze'N Squeeze DNA Gel Extraction Spin Columns (BIO -RAD). Ligation Pack (Nibonbon Gene) was used for ligation according to the standard protocol, and transformation was performed using Compitent high JM109 (Toyobo) according to the standard protocol. The insert inserted into the GUS coding region that was cleaved at the XbaVSacl site on the pSMAB701 betater (Figure 6). Colonies that grew on LB solid medium containing 100 mg / mL of spectinomycin, a drug marker contained in pSMAB701, were recovered as transformation candidates. After selection by colony PCR, plasmid collection, restriction enzyme treatment, and DNA sequencing were performed, and final confirmation of binary vector construction was performed.
( 2 ) ァグロパクテリゥムへの形質転換 ' エレク トロポレーション法でァグロパクテリゥム (GV3101) への形質転換を 行った。 GV3101 40 μΐ とプラスミ ド溶液を 10倍希釈したものを 1 を、 エレ クトロポレーション用キュべットに移した。 ジーンパルサーの条件は、 2.5 kV、 25 μΡ、 200 Ωにて行った。 キュべット内の菌液を LB液体培地 lmL に移し、 30°C 20分約 150 rpmで培養を行った。 GV3101および pSMAB701の選択マー カーである、 スぺクチノマイシン 100 g/mL、 ゲンタマイシン 25 g/mL、 リファ ンピシン 50 μ^τήΐを含む LB固形培地で 28°C、 一晚培養し、 生育してきたコロ ニーを形質転換候補株として回収した。 (2) Transformation into agrobacterium [Transformation into agrobacterium (GV3101) was performed by electroporation. GV3101 40 μΐ and 10-fold diluted plasmid solution are Moved to a cuvette for cuvoroporation. The condition of the gene pulser was 2.5 kV, 25 μΡ, 200 Ω. The bacterial solution in the cuvette was transferred to 1 mL of LB liquid medium and cultured at 30 ° C for 20 minutes at about 150 rpm. Colonies that have been grown at 28 ° C in an LB solid medium containing 100 g / mL of spectinomycin, 25 g / mL of gentamicin, and 50 μ ^ τήΐ of rifampicin, which are selective markers for GV3101 and pSMAB701 Was recovered as a transformation candidate strain.
形質転換したァグロパクテリゥムを、 スぺクチノマイシン 100 g/mL、 ゲンタマ イシン 25 g/mL、 リファンピシン 50 g/mLを含む LB液体培地 1.5 mLに植菌 した。 28°C約 170 rpmで約 20時間培養を行った。 その後、 プラスミド回収、 制限酵素処理を行って確認した。 形質転換には上記の長鎖 2パターンを使って形 質転換を行った。 The transformed agrobacterium was inoculated into 1.5 mL of LB liquid medium containing 100 g / mL spectinomycin, 25 g / mL gentamicin, and 50 g / mL rifampicin. The culture was performed at 28 ° C and about 170 rpm for about 20 hours. Subsequently, plasmid recovery and restriction enzyme treatment were performed for confirmation. For transformation, transformation was performed using the two long chain patterns described above.
( 3 ) シロイヌナズナ野生系統への形質転換  (3) Transformation into wild Arabidopsis
バイナリーベクターを導入したァグロバタテリゥム (GV3101) を、 スぺクチ ノマイシン 100 g/mL、 ゲンタマイシン 25 g/mL、 リファンピシン 50 g/mL を 含む LB液体培地 1.5 mLに植菌し、 前培養として 28°C約 170 rpmで約 20時間 培養を行つた。 本培養として前培養液を同じ組成の液体培地 200 mLに 1/1000倍 容移し、 28°C約 170 rpmで、 約 22時間培養を行った。 遠心して集菌した菌を、 infiltration medium約 80 mLに懸濁させた。 適当な大きさの容器に懸濁液を移し、 さらに infiltration medium数 mLを加えて懸濁させた。  Agrobatatarum (GV3101) introduced with a binary vector was inoculated into 1.5 mL of LB liquid medium containing 100 g / mL spectinomycin, 25 g / mL gentamicin, and 50 g / mL rifampicin. Incubation was performed at 28 ° C and about 170 rpm for about 20 hours. As the main culture, the preculture was transferred 1/1000 times to 200 mL of liquid medium with the same composition, and cultured at 28 ° C and about 170 rpm for about 22 hours. Bacteria collected by centrifugation were suspended in about 80 mL of infiltration medium. The suspension was transferred to an appropriately sized container, and several mL of infiltration medium was further added to suspend it.
MS培地にて約 2週間育成させたシロイヌナズナ野生系統 Colを口ックウール に移し、 さらに約 2週間育成させ、 開花直前の蕾が出てきた頃の株を用いた。 直 接懸濁液に浸して 3分おき、 感染させ、 形質転換を行った。  The Arabidopsis wild line Col grown for about 2 weeks in MS medium was transferred to Mouth Wool and further grown for about 2 weeks, and the strain from the time when the buds just before flowering appeared was used. The cells were directly immersed in the suspension for 3 minutes to infect and transformed.
infiltration medium infiltration medium
MurasHge Skoog培地用混合塩類 4.3 g  Mixed salt for MurasHge Skoog medium 4.3 g
1000 X vitamin stock 2 1000 X vitamin stock 2
sucrose 100 & sucrose 100 &
1 mg/mL benzylamino purine μΐ^  1 mg / mL benzylamino purine μΐ ^
silicon L-77 400 ^ silicon L-77 400 ^
超純水で 2 L。 ' ' 実施例 1 2 L with ultra pure water. '' Example 1
ォリゴマイクロアレイ pst2変異系統および野生系銃を低 K+培地(ミネラル培地) および高 K+培地 (MS培地) において 3週間生育させ、 葉から R^Aを調製し、 シロイヌナズナ核 遺伝子チップ (14,880 遺伝子 60 mer 合成オリ ゴヌク レオチド、 Agilent Technologies) を用いた解析に供した。 標準偏差による検定おょぴノイズ除去の 結果有意差の P値(有意確率) が 0.01以下となることを指標とした。 野外での生 育条件により近い低 K+培地において、 putative bHLH transcription factor (bHLH19) は、 系統特定的に高発現を示した (表 1 )。 この高発現は、 リア ルタイム RT-PCRにおいても確認した (図 2 ) .。 表 1 . 野生系統に比べ ^において発現が増加あるいは低下している遺伝子 psi2Z野生系統 > 3 Oligo Microarray pst2 mutant lines and wild-type guns were grown in low K + medium (mineral medium) and high K + medium (MS medium) for 3 weeks, and R ^ A was prepared from the leaves. Arabidopsis thaliana nuclear gene chip (14,880 gene 60mer synthetic ori Gonucleide (Agilent Technologies) was used for analysis. As an index, the P value (significance probability) of the significant difference is 0.01 or less as a result of removing the test noise by the standard deviation. The putative bHLH transcription factor (bHLH19) was highly expressed in a lineage-specific manner in low K + medium that was close to the growth conditions in the field (Table 1). This high expression was also confirmed in real-time RT-PCR (Figure 2). Table 1. Genes with increased or decreased expression in ^ compared to wild lines psi2Z wild lines> 3
低 K+培地(ミネラル培地) putative bHLH transcription factor 14.37  Low K + medium (mineral medium) putative bHLH transcription factor 14.37
anter-specific proline-rich-like protein (APG-like) 6  anter-specific proline-rich-like protein (APG-like) 6
高 K+培地 (MS培地)  High K + medium (MS medium)
233 233
633 psi2Z野生系統 < 0.333  633 psi2Z wild strain <0.333
低 K+培地(ミネラル培地) Low K + medium (mineral medium)
高 K+培地(MS培地)
Figure imgf000026_0001
High K + medium (MS medium)
Figure imgf000026_0001
putative receptor protein kinase 0 putative protein 0 putative protein 0 ethylene responsive element binding factor-like 0 実施例 2  putative receptor protein kinase 0 putative protein 0 putative protein 0 ethylene responsive element binding factor-like 0 Example 2
R A C E R A C E
塩ストレス特異的な転写開始点の存在、 または塩ストレス選択的スプライシン' グのどちらかの可能性が考えられたため (図 3 )、 RACEによる解析を行った。 5' 側の RACE PCRには、 確実に末端領域を増幅させるために、 プライマーを、 ス プライシングが変化すると考えられるイント口ンの上流と下流に一つずつ (プラ ィマー (i) (pst-p6-r-fukuya Rv 「5'-CTT GAA AGA AGA CCT AAA CCA TTG CG-3' (配列番号: 1 6 ) 」 ) 、 (ii) (pst-p3-r-fukuya Rv 「5'-TTC ATT GCT CTT TCA GCT CTC CTT CCC G-3' (配列番号: 1 7 ) 」 )、 3,側の RACE PCRにはィント ロンの上流に一つ (プライマー (iii) (pst-pl-f-fukuya Fw 「5'-CTC ATG GCA CAA GAT CTC CGG TTC TTG C-3' (配列番号: 1 8 ) 」 )設計した。 塩ストレス 12 時間の処理を行った植物から全 RNAを回収し、 それぞれのプライマーと、 逆転 写の際に末端に付加する配列に相補するプライマーで RACEを行った。 DNAシ ークエンスには上記プライマーと、 さらに三つのプライマー (プライマー (iv) (pst-555-r-fukuya Fw 「5'-AGT CGA AAT CAA TGT CTA CTA G-3' (配列番号: 1 9 ) 」 ) 、 (v) (pst-1776-f-fukuya Fw 「5'-CAA AGC TAT TTC CGA TAA CGA CC-3' (配列番号: 2 0 ) 」 ) 、 (vi) (pst-1140-r-fukuya Rv (5'-GTT GTT CTT GGA GTT GTT TC-3* (配列番号: 2 1 ) 」 ) を使用して解析を行った。 塩基配列を決定し た結果、 塩ストレス 12時間処理を行った植物と非ストレス条件下の植物ともに、 転写開始点と予想される 5'側の末端は、 開始コドンと予想される部位から約 HObp上流の Aであることがわかった (図 1 )。 また、 RACE産物を 57に対し シーケンスを行 V、イントロンの状態を調べたところ、 スプライシングのされ方は 五つのパターンがあり、 それぞれ、 通常のスプライシングが起こっている通常型、 塩ストレスで誘導すると考えられる三つのパターン (塩誘導型 2、 3、 4) 、 スプ ライシングが起こっていない塩誘導型 1が存在していた(図 5 )。 The possibility of either salt stress-specific transcription initiation site or salt stress-selective splicing was considered (Fig. 3). For 5 'RACE PCR, primers are used to ensure amplification of the end region. One upstream and one downstream of the inlet that is thought to change pricing (Primer (i) (pst-p6-r-fukuya Rv '5'-CTT GAA AGA AGA CCT AAA CCA TTG CG-3' (sequence Number: 1 6) "))), (ii) (pst-p3-r-fukuya Rv"5'-TTC ATT GCT CTT TCA GCT CTC CTT CCC G-3 '(SEQ ID NO: 17) "), 3, side In the RACE PCR, one upstream of the intron (primer (iii) (pst-pl-f-fukuya Fw "5'-CTC ATG GCA CAA GAT CTC CGG TTC TTG C-3 '(SEQ ID NO: 1 8) ”) Designed Total RNA was recovered from plants that had been treated with salt stress for 12 hours, and RACE was performed with each primer and a primer complementary to the sequence added to the terminal during reverse transcription. In addition to the above primers, and three additional primers (primer (iv) (pst-555-r-fukuya Fw "5'-AGT CGA AAT CAA TGT CTA CTA G-3 '(SEQ ID NO: 1 9)")) ( v) (pst-1776-f-fukuya Fw `` 5'-CAA AGC TA T TTC CGA TAA CGA CC-3 '(SEQ ID NO: 20) "), (vi) (pst-1140-r-fukuya Rv (5'-GTT GTT CTT GGA GTT GTT TC-3 * (SEQ ID NO: 2 1)))) The analysis was carried out as a result of determining the nucleotide sequence, and both the plant that was treated with salt stress for 12 hours and the plant under non-stress conditions were expected to be the transcription start site. The end was found to be A approximately HObp upstream from the predicted start codon (Figure 1), and the RACE product was sequenced against 57, and the intron status was examined. There are five patterns, each of which is a normal type where normal splicing occurs, and three patterns which are thought to be induced by salt stress (salt-induced types 2, 3, 4), and salt induction where no splicing occurs Type 1 was present (Figure 5).
通常型は転写開始点から 551塩基から 688  Normal type is 551 to 688 from the transcription start point
塩誘導型 4は転写開始点から 551塩基から 660  Salt-induced type 4 is from 551 bases to 660 from the transcription start point
塩誘導型 3は転写開始点から 551塩基から 643  Salt-induced type 3 is from 551 bases to 643 from the transcription start point
塩誘導型 2は転写開始点から 551塩基から 618がイントロンとして除かれ、 塩誘導型 1は 551塩基から 688は除かれない。  Salt-induced type 2 excludes 618 bases from 551 to 618 from the transcription start point, and salt-derived type 1 does not exclude bases 551 to 688.
5,側 RACE、 3,側 RACE の産物あわせて 57サンプルのシークェンスの結果、 通常型が 28サンプル、 塩誘導型 4が 2サンプル、 塩誘導型 3が 15サンプノレ、 ' 塩誘導型 2が 7サンプル、 塩誘導型 1が 5サンプルであった (図 5 )。 ここでク ローニングした塩誘導型 3 および通常型の完全長 cDNA をそれぞれ Salt-f ll (SF) 、 Normal-foil (NP) として今後の実験に用いた。 実施例 3 As a result of sequencing 57 samples in total for 5 side RACE and 3 side RACE, 28 samples for normal type, 2 samples for salt induced type 4, 15 samples for salt induced type 3, 7 samples for salt induced type 2 There were 5 samples of salt-derived type 1 (Fig. 5). The cloned salt-induced type 3 and normal full-length cDNAs were salt-f ll. (SF) and Normal-foil (NP) were used for future experiments. Example 3
リアルタイム R T— P C R  Real time R T— P C R
ストレス処理時間、 植物の各部位(葉、 根) における RNA量の変化およびス プライシングパターンを観察しようと試みた。 サンプルは 3週間 MS培地で生育 させた植物を 16時間ミネラル液体培地で馴化した後、 200 mM NaClを含む培地 に移し、 0、 1、 2、 5、 10、 24時間後に根と葉を分けて回収した RNAを用いた。 プライマー (vii) (at2g22760-f Fw 「5'-TGT TCT CAT GGC ACAAGA TCT CC-3' (配 列番号: 2 2 ) 」 ) 、 (viii) (at2g22760-r Rv 「5'-AAG AAT CGT TAG CTT GTC CGC C-3' (配列番号: 2 3 ) 」 ) を用いて. RT-PCRを行いゲルによる増幅産物の • 観察を行ったところ、 塩ストレスが 2時間で根、 葉ともにスプライシングが起こ らないパターンの大きさの R A量が最大になり、 その後徐々にイントロンが短 いパターンへと移行し、 通常のスプライシングパターンへと戻っていった。 24 時間後には再び変則的なスプライシングが起こっていた (図 4 )。 実施例 4  We tried to observe the stress treatment time, changes in RNA content and splicing patterns in each part of the plant (leaves, roots). Samples were grown in MS medium for 3 weeks, conditioned for 16 hours in mineral liquid medium, then transferred to medium containing 200 mM NaCl, and the roots and leaves were separated after 0, 1, 2, 5, 10, 24 hours. The recovered RNA was used. Primer (vii) (at2g22760-f Fw "5'-TGT TCT CAT GGC ACAAGA TCT CC-3 '(SEQ ID NO: 2 2)"), (viii) (at2g22760-r Rv "5'-AAG AAT CGT TAG CTT GTC CGC C-3 '(SEQ ID NO: 2 3) "). RT-PCR and gel amplification products were observed • When salt stress was observed for 2 hours, splicing occurred in both roots and leaves. The amount of RA with the size of the pattern that was not reached the maximum, and then the intron gradually shifted to a shorter pattern and returned to the normal splicing pattern. After 24 hours, spurious splicing occurred again (Fig. 4). Example 4
形質転換系統の作製  Production of transformed lines
形質転換によって得られた各系統の第一世代種子を T1種子とした。 形質転換 に用いた T-DNAは遺伝子 bar をコードする領域を持ち、 除草剤ビアラホスによ る選抜が可能である。 各形質転換系統の T1系統は Normal-foilを 16系統、 Salt- foilを 9系統用いていた。 各系銃のホモ接合系統を維持した。 リアルタイム PCR により導入した遺伝子の発現量を調べた後、 75 mM の NaCl を加えたミネラル培 地に各形質転換系統の種子及び Colをそれぞれ播種し、 育成し、 その表現型の観 察を行った。 実施例 5 ' 塩ストレス条件下での表現型  The first generation seeds of each line obtained by transformation were designated as T1 seeds. The T-DNA used for transformation has a region encoding the gene bar and can be selected by the herbicide bialaphos. T1 lines of each transformed line used 16 normal-foil lines and 9 salt-foil lines. A homozygous line of each gun was maintained. After examining the expression level of the introduced gene by real-time PCR, seeds and Cols of each transformed line were sown and grown in a mineral medium supplemented with 75 mM NaCl, and the phenotype was observed. . Example 5 'Phenotype under salt stress conditions
実施例 4で得られたシロイヌナズナの各形質転換系統及び野生系統 Colの種子 を、 75 mM の NaCl を加えたミネラル培地にそれぞれ播種し、 育成し、 その表現 型の観察を行った。 塩ストレス条件下における生育では、 各系統で野生系統より 高い耐塩性を示した (図 7 )。 また、 NF を導入レた系統が最も耐塩性を獲得して いた。 SF を導入した系統も野生株に比べ耐塩性を獲得していた。 各形質転換系 統も通常の MS培地における生育では野生系統 Colとの差は観察されなかった。 本実験により、 bHLH19の発現が耐塩機構に関与していることが示された。 実施例 6 Seeds of each transformed line and wild line Col of Arabidopsis obtained in Example 4 Were seeded and grown in mineral media supplemented with 75 mM NaCl, and their phenotypes were observed. In the growth under salt stress conditions, each line showed higher salt tolerance than the wild line (Fig. 7). In addition, the line that introduced NF gained the most salt tolerance. The line introduced with SF also acquired salt tolerance compared to the wild type. For each transformation line, no difference from the wild line Col was observed in the growth in normal MS medium. This experiment showed that bHLH19 expression is involved in the salt tolerance mechanism. Example 6
リアルタイム R T—P C R Real time R T—P C R
ストレス処理時間、 植物の各部位(葉、 根) における R A量の変化および C 末端側イントロンに対するスプライシングパターンを観察しようと試みた。 ブラ ィマー (xi) (pst-p7-r-fukuya Rv 「5'-GAC CTA AAC CAT TGC GAG TCT CAG GTT CCG-3' (配列番号: 2 9 ) 」 ) 、 (xii) (1328-f Fw 「5'-CTT TGC GAG AAA AGC AAA GGG TGC ATG ATC-3' (配列番号: 3 0 ) 」 ) を用いた以外は実施例 3と同 様にして RT-PCRを行いゲルによる增幅産物の観察を行ったところ、 塩ストレス から 2 時間で根、 葉ともにスプライシングが起こらないパターンの大きさの RNA量が最大になり、 その後徐々にイントロンが短いパターンへと移行し、 通 常のスプライシングパターンへと戻っていった。 24 時間後には再び変則的なス プライシングが起こっていた (図 8 )。 産業上の利用可能性  Attempts were made to observe the stress treatment time, changes in the amount of RA in each part of the plant (leaves, roots), and the splicing pattern for the C-terminal intron. Blimmer (xi) (pst-p7-r-fukuya Rv "5'-GAC CTA AAC CAT TGC GAG TCT CAG GTT CCG-3 '(SEQ ID NO: 2 9)"), (xii) (1328-f Fw " Except for using 5'-CTT TGC GAG AAA AGC AAA GGG TGC ATG ATC-3 '(SEQ ID NO: 30))), RT-PCR was performed in the same manner as in Example 3 to observe the amplified product by gel. After 2 hours from salt stress, the amount of RNA in the size of the pattern where splicing does not occur in both roots and leaves is maximized, and then the intron gradually shifts to a shorter pattern and returns to the normal splicing pattern. I went. After 24 hours, spurious splicing occurred again (Fig. 8). Industrial applicability
本発明のポリヌクレオチドを用いると、 植物に耐塩性を付与することができる ので、 耐塩性を有する形質転 m«物細胞および形質転 i«物体を提供することが できる。 また、 耐塩性は、 水分枯渴耐性 (乾燥耐性) を含むたの環境ストレスに 対する耐性を伴っていることが多いので、 不毛乾燥地帯の緑化おょぴこれらの地 域における農耕への寄与が期待される。 さらに、 果物の栽培においては、 糖度を 上げるために灌漉を制限するが、 これに伴う収量の減少の緩和への貢献が期待さ ' れる。 加えて、 ビルの屋上緑化や道路のり面などにおける灌漑コストの低減も期 待される。 さらに、 強光、 低温、 高温等の環境ストレスに対しても耐性の付与が 6Z Since the use of the polynucleotide of the present invention can impart salt tolerance to plants, it is possible to provide transformed cells and transformants having salt tolerance. In addition, salt tolerance often accompanies resistance to environmental stresses, including water drought resistance (drying tolerance), so the greening of barren dry areas contributes to agriculture in these areas. Be expected. Furthermore, in fruit cultivation, irrigation is restricted to increase sugar content, but this is expected to contribute to alleviating the yield loss associated with this. In addition, it is expected to reduce irrigation costs on rooftop greening of buildings and road slopes. In addition, resistance to environmental stresses such as strong light, low temperature, and high temperature 6Z
°2 纏 ZCS0C/900Zdf/X3d £ひ 860/900Z OAV ° 2 Summary ZCS0C / 900Zdf / X3d £ H 860 / 900Z OAV

Claims

請求の範囲 The scope of the claims
1. 以下の (a) 〜 (f ) のいずれかに記載のポリヌクレオチド。1. The polynucleotide according to any one of the following (a) to (f).
) 配列番号: 3、 7、 9または 1 1に記載の塩基配列からなるポリヌクレオ チドを含有するポリヌクレオチド;  ) A polynucleotide containing a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 3, 7, 9 or 11;
(b) 配列番号: 1、 6、 8または 1 0に記載のアミノ酸配列からなるタンパク 質をコードするポリヌクレオチドを含有するポリヌクレオチド;  (b) a polynucleotide containing a polynucleotide encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 1, 6, 8, or 10;
(c) 配列番号: 1、 6、 8または 1 0に記載のァミノ酸配列において、 1若し くは複数個のァミノ酸が欠失、 置換、 挿入おょぴ Zまたは付加したァミノ酸配列 からなり、 かつ植物の輯塩性を高める機能を有するタンパク質をコードするポリ ヌクレオチドを含有するポリヌクレオチド;  (c) In the amino acid sequence described in SEQ ID NO: 1, 6, 8 or 10, from one or more amino acid deletions, substitutions, insertions Z or added amino acid sequences And a polynucleotide comprising a polynucleotide encoding a protein having a function of enhancing the salt-salt property of a plant;
(d) , 配列番号: 1、 6、 8または 1 0に記載のアミノ酸配列からなるタンパク 質と 80%以上の相同性を有し、 かつ植物の耐塩性を高める機能を有するタンパ ク質をコードするポリヌクレオチドを含有するポリヌクレオチド;  (d), which encodes a protein having a function of increasing the salt tolerance of plants and having a homology of 80% or more with a protein comprising the amino acid sequence set forth in SEQ ID NO: 1, 6, 8 or 10 A polynucleotide containing a polynucleotide that:
(e) 配列番号: 3、 7、 9または 1 1に記載の塩基配列と相捕的な塩基配列か らなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズし、 かつ 植物の耐塩性を高める機能を有するタンパク質をコードするポリヌクレオチドを 含有するポリヌクレオチド;及び  (e) a function of hybridizing with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence set forth in SEQ ID NO: 3, 7, 9 or 11 under stringent conditions and enhancing the salt tolerance of plants A polynucleotide comprising a polynucleotide encoding a protein having:
(f ) 配列番号: 3、 7、 9または 1 1に記載の塩基配列からなるポリヌクレオ チドと 80%以上の相同性を有し、 かつ植物の耐塩性を高める機能を有するタン パク質をコードするポリヌクレオチドを含有するポリヌクレオチド。  (f) encodes a protein having a homology of 80% or more with the polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 3, 7, 9, or 11 and having a function of enhancing plant salt tolerance A polynucleotide containing a polynucleotide.
2. 以下の (a) 〜 (f ) のいずれかに記載のポリヌクレオチド。  2. The polynucleotide according to any one of the following (a) to (f).
( a ) 配列番号: 4に記載の塩基配列からなるポリヌクレオチド;  (a) a polynucleotide comprising the base sequence set forth in SEQ ID NO: 4;
(b) 配列番号: 2に記載のアミノ酸配列からなるタンパク質をコードするポリ ヌクレオチド;  (b) a polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2;
(c) 配列番号: 2に記載のアミノ酸配列において、 1若しくは数個のアミノ酸 が欠失、 置換、 揷入およびノまたは付加したアミノ酸配列からなり、 かつ植物の' 耐塩性を高める機能を有するタンパク質をコードするポリヌクレオチド;  (c) a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted, inserted and added or added in the amino acid sequence described in SEQ ID NO: 2 and having a function of enhancing plant salt tolerance A polynucleotide encoding
(d) 配列番号: 2に記載のアミノ酸配列からなるタンパク質と 80%以上の相 同性を有し、 かつ植物の耐塩性を高める機能を有するタンパク質をコードするポ リヌクレオチド。 (d) a protein comprising the amino acid sequence set forth in SEQ ID NO: 2 and at least 80% phase A polynucleotide encoding a protein having the same sex and having a function of enhancing plant salt tolerance.
( e ) 配列番号: 4に記載の塩基配列と相補的な塩基配列からなるポリヌクレオ チドとストリンジヱントな条件下でハイブリダイズし、 かつ植物の耐塩性を高め る機能を有するタンパク質をコードするポリヌクレオチド;及ぴ  (e) a polynucleotide encoding a protein that hybridizes with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence set forth in SEQ ID NO: 4 under stringent conditions and has a function of enhancing plant salt tolerance; Eiji
( f ) 配列番号: 4に記載の塩基配列からなるポリヌクレオチドと 8 0 %以上の 相同性を有し、 かつ植物の耐塩性を高める機能を有するタンパク質をコードする ポリヌクレオチド。  (f) a polynucleotide encoding a protein having a homology of 80% or more with the polynucleotide comprising the nucleotide sequence of SEQ ID NO: 4 and a function of enhancing plant salt tolerance;
3 . 以下の (a ) 〜 (f ) のいずれかに記載のポリヌクレオチド。  3. The polynucleotide according to any one of the following (a) to (f).
( a ) 配列番号: 2 6に記載の塩基配列からなるポリヌクレオチドを含有するポ リヌクレオチド; ·  (a) a polynucleotide comprising a polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 26;
( b ) 配列番号: 2 5に記載のアミノ酸配列からなるタンパク質をコードするポ リヌクレオチドを含有するポリヌクレオチド;  (b) a polynucleotide containing a polynucleotide encoding a protein consisting of the amino acid sequence set forth in SEQ ID NO: 25;
( c ) 配列番号: 2 5に記載のァミノ酸配列において、 1若しくは複数個のァミ ノ酸が欠失、 置換、 揷入および Zまたは付カ卩したアミノ酸配列からなり、 かつ植 物の耐塩性を高める機能を有するタンパク質をコードするポリヌクレオチドを含 有するポリヌクレオチド;  (c) The amino acid sequence described in SEQ ID NO: 25, which consists of an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and Z or attached, and is salt-tolerant in plants. A polynucleotide comprising a polynucleotide encoding a protein having a function of enhancing sex;
( d ) 配列番号: 2 5に記載のァミノ酸配列からなるタンパク質と 8 0 %以上の 相同性を有し、 かつ植物の耐塩性を高める機能を有するタンパク質をコードする ポリヌクレオチドを含有するポリヌクレオチド;  (d) a polynucleotide containing a polynucleotide encoding a protein having a homology of 80% or more with the protein comprising the amino acid sequence of SEQ ID NO: 25 and having a function of enhancing plant salt tolerance ;
( e ) 配列番号: 2 6に記載の塩基配列と相補的な塩基配列からなるポリヌクレ ォチドとストリンジェントな条件下でハイブリダイズし、 かつ植物の耐塩性を高 める機能を有するタンパク質をコードするポリヌクレオチドを含有するポリヌク レオチド;及び  (e) encodes a protein that hybridizes with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence set forth in SEQ ID NO: 26 under stringent conditions and has a function of enhancing plant salt tolerance. A polynucleotide containing the polynucleotide; and
( f ) 配列番号: 2 6に記載の塩基配列からなるポリヌクレオチドと 8 0 %以上 の相同性を有し、 かつ植物の耐塩性を高める機能を有するタンパク質をコードす るポリヌクレオチドを含有するポリヌクレオチド。 ' (f) a polynucleotide comprising a polynucleotide encoding a protein having a homology of 80% or more with the polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 26 and having a function of enhancing plant salt tolerance; nucleotide. '
4 . 請求項 1に記載のポリヌクレオチドのいずれか 1つと、 請求項 2もしくは 3に記載のポリヌクレオチドのいずれか 1つとを含むポリヌクレオチドを含むポ リヌクレオチド。 4. A polynucleotide comprising a polynucleotide comprising any one of the polynucleotides according to claim 1 and any one of the polynucleotides according to claim 2 or 3. Renucleotide.
5 . 配列番号: 5に記載の塩基配列を有するポリヌクレオチドを含む、 請求項 4に記載のポリヌクレオチド。  5. The polynucleotide according to claim 4, comprising a polynucleotide having the base sequence set forth in SEQ ID NO: 5.
6 . 以下の (a ) 〜 (f ) のいずれかに記載のポリヌクレオチド。  6. The polynucleotide according to any one of the following (a) to (f).
( a ) 配列番号: 2 8に記載の塩基配列からなるポリヌクレオチドを含有するポ リヌクレオチド;  (a) a polynucleotide containing a polynucleotide comprising the base sequence set forth in SEQ ID NO: 28;
( ) 配列番号: 2 7に記載のァミノ酸配列からなるタンパク質をコ一ドするポ リヌクレオチドを含有するポリヌクレオチド;  () A polynucleotide containing a polynucleotide encoding a protein comprising the amino acid sequence set forth in SEQ ID NO: 27;
( c ) 配列番号: 2 7に記載のァミノ酸配列において、 1若しくは複数個のァミ ノ酸が欠失、 置換、 揷入および Zまたは付加したアミノ酸配列からなり、 かつ植 物の耐塩性を高める機能を有するタンパク質をコードするポリヌクレオチドを含 有するポリヌクレオチド;  (c) The amino acid sequence described in SEQ ID NO: 27 comprises an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and Z or added, and the salt tolerance of the plant is increased. A polynucleotide comprising a polynucleotide encoding a protein having the function of enhancing;
( d ) 配列番号: 2 7に記載のアミノ酸配列からなるタンパク質と 8 0 %以上の 相同性を有し、 かつ植物の耐塩性を高める機能を有するタンパク質をコードする ポリヌクレオチドを含有するポリヌクレオチド;  (d) a polynucleotide comprising a polynucleotide that encodes a protein having a function of increasing the salt tolerance of a plant and having a homology of 80% or more with the protein comprising the amino acid sequence of SEQ ID NO: 27;
( e ) 配列番号: 2 8に記載の塩基配列と相補的な塩基配列からなるポリヌクレ ォチドとストリンジヱントな条件下でハイブリダイズし、 かつ植物の耐塩性を高 める機能を有するタンパク質をコードするポリヌクレオチドを含有するポリヌク レオチド;及び  (e) a polynucleotide that encodes a protein that hybridizes with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence set forth in SEQ ID NO: 28 under stringent conditions and has a function of enhancing plant salt tolerance. A polynucleotide containing nucleotides; and
( f ) 配列番号: 2 8に記載の塩基配列からなるポリヌクレオチドと 8 0 %以上 の相同性を有し、 かつ植物の耐塩性を高める機能を有するタンパク質をコードす るポリヌクレオチドを含有するポリヌクレオチド。  (f) a polynucleotide comprising a polynucleotide encoding a protein having a homology of 80% or more with the polynucleotide comprising the nucleotide sequence set forth in SEQ ID NO: 28 and having a function of enhancing plant salt tolerance; nucleotide.
7 . D N Aである請求項 1〜 6のいずれかに記載のポリヌクレオチド。  7. The polynucleotide according to any one of claims 1 to 6, which is DNA.
8 . 請求項 1〜 7のいずれかに記載のポリヌクレオチドを含む組換えべクター < 9 . 請求項 1〜 7のいずれかに記載のポリヌクレオチド、 または請求項 8に記 載のベクターを保持する形質転換細胞。  8. Recombinant vector comprising the polynucleotide according to any one of claims 1 to 7 <9. The polynucleotide according to any one of claims 1 to 7 or the vector according to claim 8 is retained. Transformed cells.
1 0 . 請求項 1〜 7のいずれかに記載のポリヌクレオチド、 または請求項 8に' 記載のベクターを導入した形質転^ I物体。  10. A transformant object into which the polynucleotide according to any one of claims 1 to 7 or the vector according to claim 8 has been introduced.
1 1 . 請求項 1 0に記載の形質転換植物体の子孫またはクローンである、 形質 εε 1 1. A trait that is a descendant or clone of the transformed plant according to claim 10. εε
°棚蘭 ZCS0C/900Zdf/X3d £ひ 860/900Z OAV ° Tanran ZCS0C / 900Zdf / X3d £ 860 / 900Z OAV
PCT/JP2006/305328 2005-03-14 2006-03-13 Polynucleotides imparting environmental stress-tolerance to plants WO2006098423A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007508219A JP5152845B2 (en) 2005-03-14 2006-03-13 Polynucleotide that confers environmental stress tolerance to plants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-071774 2005-03-14
JP2005071774 2005-03-14

Publications (1)

Publication Number Publication Date
WO2006098423A1 true WO2006098423A1 (en) 2006-09-21

Family

ID=36991766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305328 WO2006098423A1 (en) 2005-03-14 2006-03-13 Polynucleotides imparting environmental stress-tolerance to plants

Country Status (2)

Country Link
JP (1) JP5152845B2 (en)
WO (1) WO2006098423A1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK, ON NCBI 26 February 2002 JAKOBY M. J. ET AL.: 'Arabidopsis thaliana clone bHLH019 putative bHLH transcription factor mRNA', XP003000065 *

Also Published As

Publication number Publication date
JPWO2006098423A1 (en) 2008-08-28
JP5152845B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
RU2326527C2 (en) Potato with increase starch in terms of each plant and method of its cultivation
EP2552946B1 (en) Method of enhancing the seed yield and promoting the growth of plants
CN107299100B (en) Plant constitutive expression promoter and application thereof
CN113563442B (en) Drought-resistant related protein IbSPB1, and coding gene and application thereof
CA2917105C (en) Methods and means for modulating flowering time in monocot plants
JP5787413B2 (en) A method for producing a toothpick-forming plant in which the ability to produce tubers or the ability to form a toothpick is improved compared to a wild strain, and a toothpick-forming plant produced by the method
KR20110071821A (en) Gene implicated in drought stress tolerance and transformed plants with the same
EP2314702B1 (en) Plant having resistance to low-temperature stress and method of production thereof
WO2013133454A1 (en) Environmental stress-resistant plant with high seed productivity and method for constructing same
CN107177602B (en) NtDR1 gene related to drought tolerance of plant and application thereof
JP5152845B2 (en) Polynucleotide that confers environmental stress tolerance to plants
KR101285763B1 (en) Genes Related to ABA Mediated Abiotic Stress Resistances and Transformed Plants with the Same
CN107739403B (en) Protein related to plant flowering phase and coding gene and application thereof
KR101874192B1 (en) OsTat1 gene enhancing plant disease and uses thereof
JP4582853B2 (en) Low temperature resistant rice introduced with glutathione-S-transferase gene
JP5871222B2 (en) ABC transporter gene that imparts salt tolerance to plants
WO2015042734A1 (en) Bruguiera gymnorhiza vacuolar pyrophosphatase vp2, coding gene of same, and application thereof
WO2014205597A1 (en) Transporter hkt2 with high affinity for potassium ions and which is derived from cotton and the coding gene and use thereof
CN112979775B (en) Method for cultivating pre-sprouting resistant transgenic wheat and related biological material thereof
CN114539373B (en) IbPIF1 related to sweet potato stem nematode resistance as well as encoding gene and application thereof
KR101825219B1 (en) NtROS2a gene involved in demethylation from Nicotiana tabacum and uses thereof
WO2015024147A1 (en) Zinc finger protein zpt5-5 from cotton, and coding gene and uses thereof
WO2015024145A1 (en) Zinc finger protein zpt5-3 from cotton, and coding gene and uses thereof
CN111303260A (en) Plant stress resistance related protein OsC3HC4, coding gene and application
WO2015024146A1 (en) Zinc finger protein zpt5-4 from cotton, and coding gene and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007508219

Country of ref document: JP

NENP Non-entry into the national phase in:

Ref country code: DE

NENP Non-entry into the national phase in:

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729318

Country of ref document: EP

Kind code of ref document: A1