WO2006097102A1 - Interface utilisateur pour un montage de télescope astronomique - Google Patents

Interface utilisateur pour un montage de télescope astronomique Download PDF

Info

Publication number
WO2006097102A1
WO2006097102A1 PCT/DK2006/000143 DK2006000143W WO2006097102A1 WO 2006097102 A1 WO2006097102 A1 WO 2006097102A1 DK 2006000143 W DK2006000143 W DK 2006000143W WO 2006097102 A1 WO2006097102 A1 WO 2006097102A1
Authority
WO
WIPO (PCT)
Prior art keywords
user interface
telescope mounting
rotational
astronomical telescope
signals
Prior art date
Application number
PCT/DK2006/000143
Other languages
English (en)
Inventor
Niels Tvergaard Haagh
Original Assignee
Track The Stars Aps
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Track The Stars Aps filed Critical Track The Stars Aps
Publication of WO2006097102A1 publication Critical patent/WO2006097102A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/16Housings; Caps; Mountings; Supports, e.g. with counterweight

Definitions

  • the present invention relates to astronomical telescope mountings and, more particularly, to user interfaces for such mountings.
  • Telescopes for observing and/or photographing celestial objects are well known.
  • Common types of astronomical telescopes include refractor telescopes, reflector telescopes and catadioptic (compound) types.
  • Astronomical telescopes are normally mounted upon mountings typically having two orthogonal axes of rotation. Rotation around these axes allows the telescope to be pointed in any arbitrary direction.
  • the rotation around each axis is typically driven by a kind of drive unit. These drive units can be manually or electrical driven via a handle or a motor (see US 4,709,178).
  • the wish to have a motorized telescope mounting originate from the need to be able to compensate for the earth rotation by turning the telescope very slowly keeping a celestial object centered in the telescopes field of view over extended periods of time. All kinds of photographic observations need the telescope to precisely track the object as it moves across the sky.
  • the earliest telescope mountings had mechanical clocks as the drive units. Later, different kinds of electrical motor driven units have been used. Introduction of modern types of motors e.g. step motors or servo motors made it possible to slew the telescope between different objects using the drive units on the mounting axes. This caused the need for a user interface to enable the observer to control the motors of the mounting and point the telescope towards selected objects.
  • microprocessor controlled telescope mountings have brought a number of new possibilities such as, automatic pointing to selected objects, tracking fast moving objects e.g. satellites, movement in spherical coordinate systems with axes not coincident with the mountings movement axes etc.
  • User interfaces used to control these microprocessor controlled telescope mountings are all based on pushbuttons alone.
  • the typical user interface contains 4 main pushbuttons to activate the movement of the mounting in the four possible directions and moreover a number of pushbuttons to receive other inputs to the microprocessor.
  • a kind of keyboard is used for the input of data and in other cases a limited number of pushbuttons are used to select between different commands presented to the user on a display (see US 6,392,799 fig- 5a, fig. 6a).
  • the objective of the present invention is to create a user interface that is easier to use in darkness and when wearing gloves.
  • the use of, one or more rotational encoders for sensing user inputs gives the possibl ⁇ ty to construct a user interface based on a few large rotational knobs for handling all user inputs. These knobs are very easy to identify and operate in complete darkness and wearing gloves. Additionally it gives the user new improved possibilities for adjusting the movements and position of the telescope.
  • the invention consists of a control unit that uses two rotational knobs with encoders, to control the movement of the telescope mounting around two axes in a spherical coordinate system.
  • the connected encoder When a user turns one of the knobs, the connected encoder sends signals to a data processing unit The data processing unit processes these signals and commands the motors to perform a certain motion around the relevant axis.
  • the relationship between the turning of the knobs and the movements of the mounting can, by the user, be selected to follow different rules.
  • One possibility is to have a certain angular movement of a knob resulting in a certain angular movement of the telescope mounting around one axis, in one spherical coordinate system.
  • Another possibility is to have a certain angular movement of a knob resulting in the telescope mounting rotating at a certain speed around one axis, in one spherical coordinate system, until another control signal is given.
  • the speed at which a knob is rotated can also be used to control the movements of the mounting. Besides the above described relations between the movements of the knobs and the resulting movements of the mounting several other relations are possible.
  • the rotational knobs are also used for inputting data to the software applications used for controlling the telescope mounting. They are among others things used for scrolling in menu's, scrolling in lists and scrolling in alphanumerical sets of characters.
  • Fig.l shows one possible embodiment of a telescope user interface in accordance with the present invention.
  • the altitude rotational knob (1) is connected to an encoder that gives signals to a microprocessor. Based on these signals the microprocessor calculates control signals for the two motors in the telescope mounting . Often, but not always, the altitude rotational knob is used for controling the motor that operates the altitude or the declination axis.
  • the azimuth rotational knob (2) is connected in the same way as the altitude rotational knob. Often, but not always, the azimuth rotational knob is used for controlling the motor that operates the azimuth or the right ascension axis. Both rotational knobs are used for scrolling and selecting in software menues showed on the display (3) and for inputting data necessary for the use of the telescope mounting.

Abstract

L’invention concerne des interfaces utilisateurs pour des montages de télescopes astronomiques qui sont normalement basées sur des boutons poussoirs. L’interface utilisateur selon l’invention utilise des codeurs rotatifs en tant que dispositif d’entrée des utilisateurs. Les signaux provenant des codeurs rotatifs sont transformés par l’intermédiaire d’une unité de traitement de données en des signaux de commande pour un ou plusieurs moteurs pilotant le mouvement du montage de télescope. La transformation des signaux provenant des codeurs rotatifs en des signaux de commande de moteur peut être faite sur la base de différents principes donnant à l’utilisateur la possibilité de réaliser des tâches de commande avancées grâce à une interface très simple.
PCT/DK2006/000143 2005-03-18 2006-03-14 Interface utilisateur pour un montage de télescope astronomique WO2006097102A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA200500395 2005-03-18
DKPA200500395 2005-03-18

Publications (1)

Publication Number Publication Date
WO2006097102A1 true WO2006097102A1 (fr) 2006-09-21

Family

ID=36991295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DK2006/000143 WO2006097102A1 (fr) 2005-03-18 2006-03-14 Interface utilisateur pour un montage de télescope astronomique

Country Status (1)

Country Link
WO (1) WO2006097102A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014140357A1 (fr) * 2013-03-15 2014-09-18 Freefly Systems Inc. Procédé et système pour permettre la commande d'orientation d'une caméra activement stabilisée
US9900511B2 (en) 2015-04-10 2018-02-20 Freefly Systems, Inc. Method, system, and device for controlling a stabilized camera remotely

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400066A (en) * 1981-06-04 1983-08-23 Byers Edward R Mounting and precision drive system for astronomical telescope, and the like
US4709178A (en) * 1987-04-06 1987-11-24 Burr James D Motor control for telescope
WO2000025168A1 (fr) * 1998-10-26 2000-05-04 Meade Instruments Corporation Systeme de telescope evolutif
US6300938B1 (en) * 1998-04-13 2001-10-09 Immersion Corporation Multiple-cylinder control device for computers and other electronic apparatus
US6392799B1 (en) * 1998-10-26 2002-05-21 Meade Instruments Corporation Fully automated telescope system with distributed intelligence
US6636197B1 (en) * 1996-11-26 2003-10-21 Immersion Corporation Haptic feedback effects for control, knobs and other interface devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400066A (en) * 1981-06-04 1983-08-23 Byers Edward R Mounting and precision drive system for astronomical telescope, and the like
US4709178A (en) * 1987-04-06 1987-11-24 Burr James D Motor control for telescope
US6636197B1 (en) * 1996-11-26 2003-10-21 Immersion Corporation Haptic feedback effects for control, knobs and other interface devices
US6300938B1 (en) * 1998-04-13 2001-10-09 Immersion Corporation Multiple-cylinder control device for computers and other electronic apparatus
WO2000025168A1 (fr) * 1998-10-26 2000-05-04 Meade Instruments Corporation Systeme de telescope evolutif
US6392799B1 (en) * 1998-10-26 2002-05-21 Meade Instruments Corporation Fully automated telescope system with distributed intelligence

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014140357A1 (fr) * 2013-03-15 2014-09-18 Freefly Systems Inc. Procédé et système pour permettre la commande d'orientation d'une caméra activement stabilisée
US8938161B2 (en) 2013-03-15 2015-01-20 Freefly Systems, Inc. Method and system for enabling pointing control of an actively stabilized camera
CN105144695A (zh) * 2013-03-15 2015-12-09 费福利系统公司 用于启用主动稳定摄像机的指向控制的方法和系统
AU2014230009B2 (en) * 2013-03-15 2017-05-25 Freefly Systems Inc. Method and system for enabling pointing control of an actively stabilized camera
CN105144695B (zh) * 2013-03-15 2018-11-13 费福利系统公司 用于启用主动稳定摄像机的指向控制的方法和系统
US10298846B2 (en) 2013-03-15 2019-05-21 Freefly Systems, Inc. Method and system for enabling pointing control of an actively stabilized camera
US9900511B2 (en) 2015-04-10 2018-02-20 Freefly Systems, Inc. Method, system, and device for controlling a stabilized camera remotely

Similar Documents

Publication Publication Date Title
JP5014706B2 (ja) ディスプレイ表面上にポインティングデバイスによって表示されるポインタの場所を制御するための方法
EP3470952B1 (fr) Dispositif de commande, cardan sur lequel est appliqué le dispositif de commande et procédé de commande d'un cardan
WO2016065519A1 (fr) Affichage de vol de véhicule aérien sans pilote
US6181988B1 (en) Guidance system having a body fixed seeker with an adjustable look angle
US20090244700A1 (en) Telescope system and method of use
JP4810582B2 (ja) 移動体画像追尾装置および方法
EP1064591A2 (fr) Systeme de controle d'attitude en continu permettant d'eviter la presence de singularites de reseau de cmg
WO2006003660B1 (fr) Systeme et procede d'interception exo-atmospherique
EP2142875B1 (fr) Réticule auto-orientable
CN111566579A (zh) 用于远程操作的交通工具和虚拟环境的相机和传感器控件
US20130321656A1 (en) Wireless network connected camera positioning system
CN110383812B (zh) 控制装置、系统、控制方法以及程序
US11739881B2 (en) Gimbal control method, gimbal and machine-readable storage medium
JP2019526182A (ja) 陸上車両用光電子視認装置
US8095239B2 (en) Method and apparatus for controlling the motion of a robotic device
US8902165B1 (en) Cursor control device with integrated scroll ring
WO2006097102A1 (fr) Interface utilisateur pour un montage de télescope astronomique
EP1064197A1 (fr) Commande de l'orientation d'un satellite par systeme de regulation gyroscopique a inertie basee sur le moment cinetique
CN102168967B (zh) 光学仪器经纬仪托架及其控制方法
WO2018178506A1 (fr) Procédé, système et dispositif pour afficher des images vidéo en temps réel de l'environnement d'un véhicule
US10250813B2 (en) Methods and systems for sharing views
Hilkert et al. Development of mirror stabilization line-of-sight rate equations for an unconventional sensor-to-gimbal orientation
US9389410B2 (en) Facilitating the more natural aiming of telescopes
JP2004266876A (ja) 監視カメラ装置
JP7032711B2 (ja) 天体案内装置、天体案内方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU